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Introduction
The Kitaev chain models a one-dimensional spinless p-wave superconductor [1] and provides one of the sim-
plest examples of a topological insulator. This system has the so-called Majorana Bound States (MBS), which
are topologically protected zero-energy bound states, localised at the boundaries of an open chain. Several pro-
posals were put forward [2] to realise the Kitaev chain experimentally and observe the MBS. Some of these
experimental proposals have already been successfully implemented [3, 4]. One of the key experimental signa-
tures of the MBS is the zero-bias peak in the differential tunnelling conductance and Ref. [3, 4] were some of
first experiments which reported evidence for this peak. More interesting topological phases are revealed as one
goes beyond the nearest neighbour Hamiltonian in a Kitaev chain. In particular, Ref. [5] shows the existence of
two different topologically non-trivial phases in a 1-D Kitaev chain with next to nearest neighbour couplings.

We consider a superconducting wire connected to two reservoirs kept at temperatures TL and TR respectively
and use the QLE-NEGF approach to obtain the exact steady state properties e.g. particle and heat current and
conductance etc. These quantities are obtained in terms of multiple NEGF transmission coefficients, which
could be interpreted physically as well. This approach has been used in Ref. [6] to study conductance of a one-
dimensional system consisting of a p-wave superconductor connected to leads at the two ends (NSN junction).

Methods
• We take the Hamiltonian of the full system of wire and baths as follows:

H = HW +HWL +HWR +HL +HR, (1)

where

HW =
∑
mn

HW
mnc
†
mcn + ∆mnc

†
mc
†
n + ∆

†
mncmcn, (2)

HWL =
∑
νm

V Lmνc
†
mcν + c.c., HWR =

∑
ν ′m

V Rmν ′c
†
mcν ′ + c.c., (3)

HL =
∑
µν

HL
µνc
†
µcν; HR =

∑
µ′ν ′

HR
µ′ν ′c

†
µ′cν ′. (4)

HL/R are the Hamiltonians of the left/right reservior respectively, HWL/R model the coulplings of the wire
with Hamiltonian, HW , with the two reserviors. The model considered here is quite general in the sense that
we allow non-zero hopping elements between arbitrary sites and similarly the superconducting pairing term
is allowed between any pair of sites. Thus there are no restrictions on dimensionality and the structure of the
underlying lattice and the range of the interactions. The results for the one-dimensional Kitaev chain with
nearest neighbor interactions follows as a special case.

• In the QLE-NEGF approach, the following steps are followed in general:
1. Write down the Hiesenberg equations of motion the wire and the reservoirs.
2. Obtain a formal solution for the reservoir equation of motion using the reservoir Green’s functions. These

for our case look like,

g+
L(t) = −ie−itH

L
θ(t) =

∫ ∞
−∞

dω

2π
g+
L(ω)e−iωt, g+

R(t) = −ie−itH
R
θ(t) =

∫ ∞
−∞

dω

2π
g+
R(ω)e−iωt. (5)

3. Use the formal solution to obtain the effective equation of motion for the wire operators. For this model we
obtain this equation to be,

iċl =
∑
m

HW
lmcm +

∑
m

Klmc
†
m + ηLl (t) + ηRl (t) +

∫ t

−∞
ds
(
[Σ+
L(t− s)]lm + [Σ+

R(t− s)]lm
)
cm(s).

Thus, the effect of the reservoirs on the dynamics of the wire operators is expressed as the sum of
the noise ηLl (t) and ηRl (t) and the history dependent dissipation terms given by the integrals. Here
Σ+
L(t) = V Lg+

L(t)V L† and Σ+
R(t) = V Rg+

R(t)V R† are therefore the self energy corrections to the wire
due to the left and the right reservoirs respectively. The properties of the noise and dissipation are easiest
to express in Fourier space and are given by:

Σ+
L(ω) = V Lg+

L(ω)V L†, ,
〈
η̃
L†
l (ω)η̃Lm(ω′)

〉
= [ΓL(ω)]mlfL(ω)δ(ω − ω′), (6)

with ΓL = 1
2πi(Σ

−
L (ω)− Σ+

L(ω)) and fL(ω) = f (ω, µL, TL) = [e(ω−µL)/TL + 1]−1 is the usual Fermi-Dirac
distribution. The right reservoir will have similar properties.

Results
• Steady State Solution

The exact steady state solution of the wire operators in terms of two Green’s functions, G+
1 (ω) and G+

2 (ω) as,

c̃m(ω) = [G+
1 (ω)]ml

[
η̃Ll (ω) + η̃Rl (ω)

]
+ [G+

2 (ω)]ml

[
η̃
L†
l (−ω) + η̃

R†
l (−ω)

]
,

The Green’s functions are given by,

G+
1 (ω) =

1

Π(ω) + K[Π∗(−ω)]−1K†
, G+

2 (ω) = G+
1 (ω)K[Π∗(−ω)]−1. (7)

. where,

Π(ω) = ω −HW − Σ+
L(ω)− Σ+

R(ω), and K = ∆−∆T (8)
(9)

• Particle Current and Conductance

JL =

∫ ∞
−∞

dω

(
T1(ω)(feL(ω)− feR(ω)) + T2(ω)(feL(ω)− fhR(ω)) + T3(ω)(feL(ω)− fhL(ω))

)
,

GL = T1(µL) + T2(µL) + T3(µL) + T3(−µL). (10)

where,

T1(ω) = 4π2 Tr
[
G+

1 (ω)ΓR(ω)G−1 (ω)ΓL(ω)
]
, T2(ω) = 4π2 Tr

[
G+

2 (ω)ΓTR(−ω)G−2 (ω)ΓL(ω)
]

and (11)

T3(ω) = 4π2 Tr
[
G+

2 (ω)ΓTL(−ω)G−2 (ω)ΓL(ω)
]
. (12)

feL(ω) and fhL(ω) are the electron and hole occupation numbers respectively. On comparison of the expression
for particle current with standard Landauer’s expressions we see that,
– T1(ω) corresponds to normal electrons being transmitted from the left to the right bath (normal transmis-

sion)
– T2(ω) corresponds to the process of an electron from the left bath being scattered as a hole into the right

bath (Andreev transmission)
– T3(ω) corresponds to the electron from the left bath scattered back as a hole into the left bath again (Andreev

reflection)
• Energy current and Conductance

JHL =

∫ ∞
−∞

dω ω [T1(ω) + T2(ω)] (feL(ω)− feR(ω)). (13)

GHL =
dJHL
dTL

=
k2
Bπ

2TL
6

GT (µL), GT (µL) = 2(T1(µL) + T2(µL)) (14)

Application to 1-D wires
These results when applied to 1-D models show zero bias peaks whenever the system posses the well known
Majorana bound state.

Nearest neighbor chain

HW =

N−1∑
j=1

[
−µwa†jaj +

(
− ηwa†jaj+1 + ∆ajaj+1 + c.c.

)]

Variation of zero temperature conductance and the terms contributing with, µL. Parameter values– N = 100,
VL = VR = 0.2, ηw = µw = 1, ηb = 1 and ∆ = 0.25.

(Left panel) Variation of thermal conductance at µL = 0 in units of π2k2
BTL/6 with the chemical potential, µw,

on the wire for different wire sizes. (Right panel) shows the wave function of the Majorana zero mode for
N = 100. Parameter values– VL = VR = 0.25, ηw = ηb = 1 and ∆ = 0.3.

Next to nearest neighbor Chain

HW =

N∑
j=1

[
−µwa†jaj − η1

(
a
†
jaj+1 + ajaj+1 + c.c.

)
− η2

(
a
†
jaj+2 + eiθajaj+2 + c.c.

)]
.

(a) θ = 0 (b) θ = 0 (c) θ = 0.1

(d) θ = 0.1

Figure 1: Conductance and Spectrum plots of a next to nearest neighbor chain. Parameter values η1 = 1, µw = −2, N = 100,
VL = VR = 0.3 and ηb = 1.5.

Conclusions
• Exact results for Energy current, particle current and corresponding conductance were obtained for a general

model of superconducting wire. The expressions of these quantities involve multiple NEGF Transmission
coefficients.

• These NEGF Transmission coefficients can also be physically interpreted in terms of scattering processes as
normal transmission, Andreev transmission and Andreev reflection.

• The results when applied to 1-D models show zero bias peaks whenever the system is in the topologically
non-trivial regime.
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Abstract
We have theoretically analysed D.C. resistivity (ρ) in the Kondo-lattice materials

using the powerful memory function formalism. The complete temperature
evolution of ρ is investigated using the Wölfle-Götze expansion of the memory

function. The resistivity in this model originates from spin-flip magnetic
scattering of conduction s-electron off the quasi-localized d or f electron spins.

We find the famous resistivity upturn in lower temperature regime
(kBT << µd), where µd is the effective chemical potential of d-electrons. In the
high temperature regime (µd << kBT ) we discover that resistivity scales as cube

root of T ( ρ ∝ T
3
2).

Introduction

Figure 1 Represents scattering mechanism of conduction and localized electrons spin. http://www.scholarpedia.org/article/Kondo effect.

Mathematical Formulation

Hsd =
J

N

∑
k′k

{
a†k′↑ak↓S

−(k′ − k) + a†k′↓ak↑S
+(k′ − k) +

(a†k′↑ak↑ − a
†
k′↓ak↓)S

z(k′ − k)

}
(1)

In Kubo’s linear response theory, the dynamical conductivity is given by

σµν(ω) = V

∫ ∞
0

dteiωt
∫ β

0

dλ〈Jµ(−i~λ)Jν(t)〉. (2)

Mori-Zwanzig projection operator technique rewrites the Kubo formula as

σµν(z) = i
ω2
p

4π

1

z + Mµν(z)
. (3)

Within the Götze-Wölfle approach the memory function is computed using the equa-
tion of motion method and a perturbative expansion of the memory function[1], [2].

M(z) ' 1

z
(
ne2

m
)[〈〈J̇1; J̇1〉〉z − 〈〈J̇1; J̇1〉〉0], J̇1 = − i

~
[J1, H ] (4)

H = H0 + Hsd J1 =
1

V

∑
kσ

evka
†
kσakσ, φ(z) = 〈〈J̇1; J̇1〉〉 (5)

φ(z) =
−e2J2

N 2~2V 2

∑
k′k

∑
pp′

(
v1(k

′)− v1(k)

)(
v1(p)− v1(p

′)

)
〈〈a†k′↑ak↓S

−(k′ − k) +

a†k′↓ak↑S
+(k′ − k) ; a†p↑ap′↓S

−(p− p′) + a†p↓ap′↑S
+(p− p′)〉〉. (6)

Correlator can be computed

φ(z) = 〈〈J̇1; J̇1〉〉 = i
V

~

∫ ∞
0

eizt〈 [J̇1(t); J̇1(0)] 〉dt. (7)

The time dependence of operators explicitly as a†k′↑(t) = e
iεk′t
~ a†k′↑(0) for s-band mobile

electrons. For d-band density operators we write S−(k′−k, t) = e−iωk′−ktS−(k′−k, 0)
and dispersion of the magnetic excitation is taken in the form of ~ωq ∝ q2.

M(z) = − J2m

N 2~3nV ω

∑
k′k

(v1(k
′)− v1(k))2

{
f sk′(1− f sk)

∑
kd,k′d

(fdkd − f
d
k′d

)− (f sk − f sk′)

∑
kd,k′d

fdkd(1− f
d
k′d

)

}[
1

εk′
~ −

εk
~ − ωk′−k + z

+
1

εk′
~ −

εk
~ − ωk′−k − z

−

1
εk′
~ −

εk
~ − ωk′−k

− 1
εk′
~ −

εk
~ − ωk′−k

]
(8)

Identity limη→0
1

a∓iη = P(1
a)± iπδ(a) transforms the expression to

M ′′(ω) =
J2πV

3N 2mn

∫ ∞
0

dq

ω
q2

∫ ∞
0

d3k

(2π)3

∫ ∞
0

d3k′

(2π)3
δ(~q − |~k′ − ~k|)

F (f sk , f
s
k′, f

d
kd
, fdk′d)[δ(εk+q − εk − ~ωq + ~ω)− δ(εk+q − εk − ~ωq − ~ω)].

(9)

M ′′(ω) =
1

4π3

J2V m2

3N 2~8n

∫ qD

0

dqq2q

k2
sω

∫ ∞
0

√
εdε

∫ ∞
0

dε′
√
ε′{f sk+q(1− f sk)∑

kd

(fdkd − f
d
kd+q

)− (f sk − f sk+q)
∑
kd

fdkd(1− f
d
kd+q

)}

[δ(εk+q − εk − ~ωq + ~ω)− δ(εk+q − εk − ~ωq − ~ω)].

(10)

In DC limit under assumptions kBT � µs and ~ωq � µs,

M ′′(T ) =
1

12π3

J2V 2m2

N 2~7n
µs

{
1

8π2
(
qD
qs

)6q5
s

√
λ√
βµs

(∫ ∞
−βµd

dx
√
x + βµd

ex

(ex + 1)2
+

2

3

∫ ∞
−βµd

dx(x + βµd)
3
2

ex

(ex + 1)2
− 4

3

∫ ∞
−βµd

dx(x + βµd)
3
2 ×

e2x

(ex + 1)3

)
+

1

8π2
(
qD
qs

)6q5
s(
λ

βµs
)

3
2

∫ ∞
−βµd

dx
√
x + βµd

ex

(ex + 1)2

}
. (11)

qD=5*108 m-1

qD=5.1*108 m-1

qD=5.2*108 m-1
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Figure 2. M ′′(T ) for various values of qD taking λ = 1.5. second presents M ′′(T ) for various values of µd at λ = 1.5. Notice the upturn in the low temperature limit. The curve for µd = 0.05eV and

µd = 0.1eV . The reason is that µd = 0.01eV corresponds to the temperature T = µd
kB
' 120K, thus the high temperature T

3
2 scaling shows its effect on the scale shown in the figure. Right shows

high temperature behaviour of M ′′(T ) for three different values of λ = 1.0 λ = 1.1 and λ = 1.2.

Results
Case 1: Low temperature limit (kBT � µd)

M ′′(T ) ' 1

12π3

J2V 2m2

N 2~7n
µs

[
1

8π2
(
qD
qs

)6q5
s

√
λ

(√
µd
µs

∫ ∞
−βµd

dx
ex

(ex + 1)2
+

2

3

µ
3
2

d√
µs

1

kBT∫ ∞
−βµd

dx

{
ex

(ex + 1)2
−2

e2x

(ex + 1)3

})
+

1

8π2
(
qD
qs

)4q5
s(
λ

µs
)

3
2kBT

√
µd

∫ ∞
−βµd

dx
ex

(ex + 1)2

]
.

(12)

M ′′(T → 0) ∼ 1

T
fs(T ), fs(T ) =

∫ ∞
−βµd

dx

{
ex

(ex + 1)2
− 2

e2x

(ex + 1)3

}
, (13)

Case 2: High temperature limit (kBT � µd)

M ′′(kBT � µd) ∼ C T
3
2

∫ ∞
0

dx
√
x

ex

(ex + 1)2
∼ 0.536 C T

3
2

M ′′(kBT � µd) ∼ T
3
2. (14)

Comparison with experimental data
Resistivity formula ρ(T ) = m

ne2
1

τ (T ) = m
ne2M

′′(T )

Theory λ=2.2, qD=2.2 10
9 m-1, μd=0.42eV

Experimental YbRhSn
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)

figure 3 represents theory comparison with resistivity of compound Y bRhSn [3], [4]. We observe best fit for λ = 2.2, qD = 2.2 × 109m−1 and µd = 0.42eV . Lattice constanta = 6.925Å, c = 3.984Å,

µs = 7.7eV , qs = 1.43× 109m−1 and number density n = 9.961× 1028m−3.
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Introduction

Applications

(i) Magnetic storage media

(ii) Catalyst production

(iii) Gas-sensors

(iv) Super-capacitors

(v) Li-ion batteries

 Ferrimagnetic Spinel Cu0.2Zn0.8Fe2-xMnxO4 

has a general formula: (AxB1-x)A[A1-xB1+x]BO4  

;(0 ≤ x ≤ 1)

 Its unit cell is made up of 32-Oxygen atoms, 

8-A atoms, and 16-B atoms.

Theory

 Néel’s expression for ferrimagnets:

(1/χ) = (T/C) + (1/χ0) – [σ0 / (T- Θ)]

 Fisher’s relation: CM ~ d(χT)/dT

 Curie-law:

(μeff / μB)2 = 3kBχT / NAμ𝐵
2
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Structural and Magnetization Studies of Cu, Mn co-doped 
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produced

Synthesis

MnO2

Cu0.2Zn0.8Fe2-xMnxO4

-Bulk

Conclusions 

Cations present in the system: Cu2+, Zn2+, Fe2+, Fe3+, Mn3+, O2-.

The system exhibits mixed spinel Cubic phase (Fd‒3m) for 0

≤ x ≤ 0.8 and Tetragonal phase (I41/amd) for 1 ≤ x ≤ 2.

Néel fits confirms ferrimagnetic ordering (TFN) in all x.

Three GT (Gabay and Toulouse) transitions are observed in all

the compounds owing to the geometrical frustration arising due

to competing exchange interaction between Mn and Fe cations.
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❑ Due to the advancement in nanotechnology, it has now become possible to fabricate ultra-narrow and clean

semiconductor-based electron quantum wire structures, and to perform a great number of experimental and

theoretical studies to explore their electronic properties.

❑ In these quantum wires, the motion of electrons is free only in one spatial direction and confined in the two transverse

directions quantum mechanically.

❑ There are many interesting quantum effects observed in these systems [1-2] primarily due to the strong electron-

electron (e-e) correlation effects. Besides, the interaction of electrons to the underlying lattice in terms of phonons is

also important as it contributes in addition to usual e-e interactions.

❑ Therefore, to better understand and compare the theoretical results with the experimental/simulation findings, the

electron-phonon (e-ph) interactions should also be included in addition to e-e correlations.

❑ In a doped polar semiconductor wherein most of the quantum wire structures are fabricated, coupling of free

electrons takes place with the longitudinal-optical (LO) phonons of the underlying lattice via the Fröhlich interaction

potential, resulting in a quasiparticle called a polaron.

❑ The e-ph interactions (polaronic effects) in quasi-one-dimensional electron gas (Q1DEG) as realized in quantum wires

have been theoretically studied over the years by several authors [3-7].

❑ In this work, we study the effect of e-ph interactions along with the usual e-e interactions on the collective excitation

energy i.e. plasmons of an electron quantum wire at absolute zero. The e-e interactions (exchange-correlations) will be

dealt using the STLS theory, while the electron LO-phonon interactions via the Fröhlich coupling.

❑ In this work, we consider an electron quantum wire at absolute zero in which the electrons are coupled to longitudinal
optical (LO) phonons.

❑ Electrons in the wire interact among themselves through the Coulomb potential and through virtual LO-phonon
exchange via the Fröhlich interaction. The Fourier transform of bare Coulomb interaction potential for the harmonic
confinement of electrons in the (cylindrical) quantum wire is expressed as

𝑉𝑒−𝑒(q) =
𝑒2

2ɛ∞
f 𝑞𝑏 ; (1)

❑ The LO-phonon-mediated electron-electron (e-e) interactions are both wave vector and frequency dependent,

described by the Fröhlich interaction potential as [4]

𝑉𝑒−𝑝ℎ 𝑞, 𝜔 = 𝑀𝑞
2𝐷0 𝜔 . (2)

❑ In Eq. (2), 𝑀𝑞 is the effective one-dimensional (1D) Fröhlich interaction matrix element given by

𝑀𝑞
2= 𝑉𝑒−𝑒(q)

𝜔𝐿𝑂

2
1 −

ɛ∞

ɛ0
, (3)

and 𝐷0(ω) is the unperturbed retarded bare LO-phonon propagator given as

𝐷0(ω) =
2𝜔𝐿𝑂

𝜔2−𝜔𝐿𝑂
2 . (4)

𝜔𝐿𝑂 is the LO-phonon frequency and 𝜀0 𝜀∞ is the static (high frequency) background lattice dielectric constant.

❑ To study the collective excitation energy i.e. plasmon-phonon coupled modes of an electron-phonon (e-ph) coupled

quantum wire system, we use the dielectric formulation within the linear response theory.

❑ Here, the dynamic density response function 𝜒(𝑞, 𝜔) is the quantity of central importance as the plasmon energy of

the quantum wire can easily be obtained from it. In the Singwi, Tosi, Land and Sjölander (STLS) theory [8], the density

response function is given as

𝜒 𝑞, 𝜔 =
𝜒0(𝑞,𝜔)

1−𝑉𝑇(𝑞,𝜔)[1−𝐺(𝑞)]𝜒0(𝑞,𝜔)
, (5)

where 𝑉𝑇 𝑞, 𝜔 is the total (bare) interaction potential describing the e-e and e-ph interactions as

𝑉𝑇 𝑞,𝜔 = 𝑉𝑒−𝑒 𝑞 + 𝑉𝑒−𝑝ℎ 𝑞,𝜔 , (6)

❑ 𝜒0 𝑞, 𝜔 in Eq. (5) is the non-interacting density response function of 1D electrons at absolute zero given by [2]

𝜒0(𝑞, 𝜔) = −
2

ℏ
∞−
+∞𝑑𝑝

ℎ

𝑓0 𝑝+
ℏ𝑞

2
−𝑓0 𝑝−

ħ𝑞

2

𝜔−
𝑝𝑞

𝑚∗+𝑖𝜂
. (7)

❑ In Eq. (5), 𝐺 𝑞 is the local-field correction (LFC) factor which gives correction to the total bare interaction potential

𝑉𝑇 𝑞,𝜔 due to exchange-correlations among the 1D electrons and is obtained as

𝐺 𝑞 = −
1

𝑛
∞−
∞ 𝑑𝑞′

2𝜋

𝑞′

𝑞

𝑉(𝑞′)

𝑉(𝑞)
𝑆 𝑞 − 𝑞′ − 1 , (8)

❑ S(q) is the static structure factor of the electron quantum wire which is related to the imaginary part of 𝜒 𝑞,𝜔

through the fluctuation-dissipation theorem as

S(q) = -
ћ

𝜋𝑛
0
∞
𝑑𝜔 𝜒 𝑞, 𝑖𝜔 . (9)

Here, we transform the ω-integration to the imaginary ω-axis i.e. 𝜔 → 𝑖𝜔 in 𝜒(𝑞, 𝜔) through Wick’s rotation.

❑ The collective excitation energies (plasmon-phonon coupled modes) can be calculated from the poles of 𝜒 𝑞,𝜔 i.e. by

setting denominator of 𝜒(𝑞,𝜔) equal to zero in Eq. (5) as

1 − 𝑉𝑇(𝑞, 𝜔)[1 − 𝐺(𝑞)]𝜒0(𝑞, 𝜔) = 0. (10)

❑ We have theoretically investigated the role of e-ph coupling along with the usual e-e interactions on the collective
excitation energy of an electron quantum wire at absolute zero using the STLS theory.

❑ The e-ph interactions affect the collective excitation energy to such an extent that their inclusion slightly splits the
plasmon-LO-phonon energy spectrum into two branches, with one branch having energy lower and other have
higher energy than the LO phonon energy.

❑ Interestingly, we observe that the lower branch of energy i.e. 𝜔− get soften as comparison to the true plasmon
energy i.e. 𝜔0 and at large value of 𝑞, 𝜔0 meets with the 𝜔+ modes.

❑ This demonstrates the importance of inclusion of e-ph coupling in addition to the usual e-e interactions.
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❑ For numerical calculations, it is convenient to work in a dimensionless system of units.

❑ 𝑞 is taken in the units of Fermi wave vector 𝑘𝐹, 𝜔, 𝜔𝐿𝑂 and 𝜔𝑇𝑂 are expressed in the units of Fermi energy 𝐸𝐹.

❑ The transverse wire width 𝑏 in the effective Bohr atomic radius 𝑎0
∗[= ɛ∞ћ2/(𝑚∗𝑒2)].

❑ The linear electron number density n is described by a dimensionless parameter 𝑟𝑠=1/(2n𝑎0
∗); n= N/L (Total no. of

electrons per unit length). Throughout our calculations, we take ћ equal to unity.

❑ We use the physical parameters corresponding to a GaAs based electron quantum wire system i.e. 𝜔𝐿𝑂 = 36.8 𝑚𝑒𝑉,
𝜔𝑇𝑂 = 33.8 𝑚𝑒𝑉 1 𝑅𝑦𝑑∗= 7.67𝑚𝑒𝑉, 𝑚∗ = 0.067𝑚𝑒 and 𝜀0 ɛ∞ = 12.9 (10.9).

❑ In this Section, we report our numerical results for the plasmon-phonon (pl-ph) coupled modes of an electron
quantum wire system at absolute zero, fixed wire width b and different electron number density parameter 𝑟𝑠.

❑ To calculate the pl-ph coupled modes along with the exchange correlations of an electron quantum wire, the set of
Eqs. (5), (8) and (9) is solved numerically in a self-consistent manner within a predefined tolerance of 10-7 at the
chosen q-points.

FIG. 2: Collective excitation energy (lower branch) 𝜔−/𝐸𝐹 as a function of 𝑞/𝑘𝐹 at wire width 𝑏 = 2𝑎0
∗ in STLS (solid lines) and

RPA (dashed lines) for 𝑟𝑠 = 2, 3, 4 and 5 with the consideration of e-ph interactions. Dotted lines present the boundary of e-h
pair continuum.

FIG.1: Collective excitation energy 𝜔(𝑞)/𝐸𝐹 as a function of 𝑞/𝑘𝐹 for 𝑟𝑠 = 1 [in panel (a)] and 𝑟𝑠 = 2 [in panel (b)], at wire

width 𝑏 = 0.1𝑎0
∗ in STLS (solid lines) and RPA (dashed lines). 𝜔+ and 𝜔− represent the upper and lower branches of the

plasmon-phonon excitation energy. 𝜔0 is the plasmon dispersion without the e-ph interactions. The dotted lines are the

boundaries of e-h pair continuum and dash-dotted lines represent the 𝜔𝐿𝑂 and 𝜔𝑇𝑂 energy.

❑ The numerical results for plasmon-phonon (pl-ph) coupled modes (𝜔(𝑞)) in quantum wire system are reported for
𝑟𝑠 = 1 in Fig. 1(a) and 𝑟𝑠 = 2 in Fig. 1(b), at 𝑏 = 0.1𝑎0

∗ .

❑ We observe that the inclusion of e-ph interactions causes the plasmon-LO-phonon collective excitation energy
spectrum to split into two branches, one with energy lower and other with energy higher than the LO phonon
energy.

❑ The lower branch of energy 𝜔− starts from the origin at smaller value of 𝑞, goes to 𝜔𝑇𝑂 and upper branch 𝜔+

starts from 𝜔𝐿𝑂 and meets with the electron-hole (e-h) pair continuum for sufficiently large value of 𝑞.

❑ This branching in the plasmon energy is observe only when we deal with the combine effect of both e-ph as well
as e-e interactions.

❑ For comparison, we also show the RPA results for the pl-ph coupled modes in quantum-wire system.

❑ We also depict the results for the true plasmon modes i.e. plasmon energy 𝜔0 due to the only e-e interaction
effects which has usually a single branch.

❑ In order to highlight the effect of exchange correlations along with the e-ph interactions, in Fig. 2 the numerical
results are depicted for collective excitation energy i.e. lower branch of pl-ph coupled modes 𝜔− in STLS and RPA
schemes at 𝑏 = 2𝑎0

∗ for 𝑟𝑠 = 2, 3, 4 and 5.

❑ It is clearly seen that RPA overestimate the energy modes 𝜔− and also, the inclusion of e-ph coupling significantly
affects the short-range correlations in the electron quantum wire system.



(1)

𝑫❑ parallel quantum wires is given by

(2)

Where 𝑚∗ is the electron effective mass and 𝑛 is the linear electron number density. ‘1’ and ‘2’ are the wire

𝑙indices. 𝐼𝑚𝜒0 𝑞,𝜔; µ, 𝑇 is the imaginary part of the 1D temperature dependent density response function of ‘l’
wire.

❑ Here 𝑊12 𝑞,𝜔; 𝜇, 𝑇 𝑖s the dynamically screened inter-wire interaction potential which is given as

(3)

❑ In Eq. (3), the dielectric function 𝜖 𝑞, 𝜔; µ, 𝑇 for coupled quantum wire system is expressed as

(4)

❑ The density response function 𝜒0 𝑞,𝜔; µ, 𝑇 of 1D non-interacting electrons in ‘𝑙’ wire at finite-temperature and

𝑙

𝑙

is related to 𝜒0 𝑞,𝜔; µ, 𝑇 = 0 by Maldague’s method [10] and can be written as

𝐷scaled drag rate 𝜏−1/T increases.

❑ It is believed that the RPA becomes less reliable for electron densities 𝑟 >1 (low density). Therefore, it is very
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FIG. 1. The scaled drag rate 𝜏−1/T plotted as a function of temperature for coupled electron-electron quantum

0

𝐷

wire system in the random-phase approximation (RPA) at indicated values of inter-wire separation for b=a *  and

𝑟𝑠=1.

𝐷 0FIG. 2. The scaled drag rate 𝜏−1/T plotted as a function of electron number density (𝑟𝑠) for b=a * and τ=0.5 at
indicated values of inter-wire separation in the RPA.
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❑ In the calculation of drag rate, the inter-wire interaction potential W12(q,𝜔; µ,T) plays a very crucial role. We 
assume that the inter-wire interaction potential is statically screened i.e. W12(q,0; µ,T) = V12(q) / ε(q,0; µ,T).

❑ The calculation of W12(q,0; µ,T) requires computation of V12(q) and ε(q,0; µ,T). In turn, ε(q,0; µ,T) can be obtained 
by setting 𝜔=0 in Eq. (4).

−1
❑ Fig. 1. shows the temperature dependence of scaled drag rate 𝜏𝐷 /T in the RPA for coupled electron-electron

0 𝐷quantum wire system with each wire having width b=a * and 𝑟𝑠=1. We observe that 𝜏−1/T has a non-monotonic T-
dependence i.e. it first increases and then decreases with rise in T for all separations. The scaled drag rate peaks 
are observed around 𝑇~0.2 − 0.6 𝑇𝐹 for all separations.

❑ For sufficiently small d, 𝜏−1/T shows a peaked structure at a finite-T which grows stronger and shifts towards𝐷

higher T with further decrease in d.

𝐷❑ In Fig. 2, we show the scaled drag rate 𝜏−1/T as a function of 𝑟𝑠at fixed wire width and temperature. It can be

𝐷 𝐷clearly seen that with increase in 𝑟𝑠, 𝜏−1/T first increases and then decreases and magnitude of 𝜏−1/T is maximum
for d=2a0

* .

𝐷❑ The increase in 𝜏−1/T is due to increases in coupling i.e., 𝑟𝑠among electrons.
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❑ Recent developments in the semiconductor growth technology and the modern fabrication techniques have led to
the fabrication of very high-quality one-dimensional (1D) quantum structures to explore the various aspects of
particle interactions in these systems [1-2].

❑ In 1D systems, the confinement of motion of the quantum particles (electrons or holes) is done in such a way that
they can move only in one spatial direction.

❑ In addition to isolated (single) 1D electron systems, presently, there is a great deal of theoretical and experimental
interest to explore the coupled 1D electron systems separated by a distance of few nanometers. These systems
are popularly known as coupled quantum wire systems and here the charge carriers may be electrons or holes.

❑ In coupled quantum wire systems, the two wires are placed at a sufficiently small inter-wire distance of the order
of few nanometers. Here, the energy and momentum transfer across the wires (without the actual contact) is
known to influence the transport properties of the individual quantum wire.

❑ There are many new and interesting physical phenomena observed in coupled quantum wire systems such as
Wigner crystallization, Coulomb drag [3-9] and charge-density-wave (CDW) instability etc.

❑ Coulomb drag is such a theoretically predicted [3-5] and an experimentally observed [6-9] phenomenon in
coupled quantum wire systems wherein, current in one wire drives the same in the other. The Coulomb drag effect
may also be used as a probe to investigate the localization properties of coupled quantum systems.

❑ In this work, we calculate the Coulomb drag rate between the electrons in coupled electron-electron quantum
wire system as a function of temperature and particle number density by applying the random-phase
approximation (RPA).

❑ In this work, we consider a coupled electron-electron quantum wire system with each wire having width b and
inter-wire spacing 𝑑(> 𝑏), the Fourier transform of interaction potential 𝑉𝑙𝑙′ 𝑞 among electrons is given as

(1)

with l and l’ as the wire indices (l = 1, 2). 휀0 is the dielectric constant of the background wire material (same for
both the wires). 𝐾0(𝑥) is the zeroth-order modified Bessel’s function of the first kind.

❑ We employ the dielectric formulation within the framework of linear response theory wherein the coupled
electron-electron system is perturbed by weak space-time dependent external electric potential and the density
response function is calculated.

❑ To study the Coulomb drag effect in coupled electron-electron quantum wire system, we will use the expression
for the drag rate derived through the Boltzmann equation [3-5].

❑ The Coulomb drag rate 𝝉𝑫
−𝟏 for two parallel quantum wires is given by

(2)

Where 𝑚∗ is the electron effective mass and 𝑛 is the linear electron number density. ‘1’ and ‘2’ are the wire
indices. 𝐼𝑚𝜒𝑙

0 𝑞,𝜔; µ, 𝑇 is the imaginary part of the 1D temperature dependent density response function of ‘l’
wire.

❑ Here 𝑊12 𝑞,𝜔; 𝜇, 𝑇 𝑖s the dynamically screened inter-wire interaction potential which is given as

(3)

❑ In Eq. (3), the dielectric function 𝜖 𝑞, 𝜔; µ, 𝑇 for coupled quantum wire system is expressed as

(4)

❑ The density response function 𝜒𝑙
0 𝑞, 𝜔; µ, 𝑇 of 1D non-interacting electrons in ‘𝑙’ wire at finite-temperature and

is related to 𝜒𝑙
0 𝑞,𝜔; µ, 𝑇 = 0 by Maldague’s method [10] and can be written as

(5)

Where µ is the chemical potential and 𝑘𝐵 is Boltzmann constant.

❑ We have theoretically calculated the temperature and particle number density dependence of scaled drag rate for
different values of inter-wire separation in the RPA. It is observe that, with decrease in inter-wire separation the
scaled drag rate 𝜏𝐷

−1/T increases.

❑ It is believed that the RPA becomes less reliable for electron densities 𝑟𝑠>1 (low density). Therefore, it is very
important to include the exchange-correlation effects to have a better understanding of Coulomb drag effect in
coupled quantum wire systems.
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FIG. 1. The scaled drag rate 𝜏𝐷
−1/T plotted as a function of temperature for coupled electron-electron quantum

wire system in the random-phase approximation (RPA) at indicated values of inter-wire separation for b=a0
* and

𝑟𝑠 =1.

FIG. 2. The scaled drag rate 𝜏𝐷
−1/T plotted as a function of electron number density (𝑟𝑠) for b=a0

* and τ=0.5 at
indicated values of inter-wire separation in the RPA.

❑ We work in dimensionless system of units in which q is taken in the units of the Fermi wave vector 𝑘𝐹 .

❑ Chemical potential µ and ω in Fermi energy EF , Temperature T in Fermi temperature (τ=T/TF). 

❑ Wire width 𝑏 and inter-wire spacing 𝑑 in the effective Bohr atomic radius a0e
* [=ε0 ћ

2/(me
* e2)].

❑ The linear electron number density n is described by a dimensionless parameter 𝑟𝑠 =1/(2na0e
*) and n= N/L (Total

no. of electrons per unit length of the wire).

❑ Throughout our calculations we take ε0, kB, ћ equal to unity.

𝜏𝐷
−1 =

1

4𝜋𝑚∗𝑛𝑇
න
0

∞

𝑞2𝑑𝑞 × න
0

∞

𝑊12 𝑞,𝜔: µ, 𝑇 2 ×
𝐼𝑚𝜒1

0 𝑞, 𝜔; µ, 𝑇 𝐼𝑚𝜒2
0 𝑞, 𝜔; µ, 𝑇

𝑠𝑖𝑛ℎ2
𝜔
2𝑇

𝑑𝜔.

𝑉𝑙𝑙′(𝑞) =
2𝑒2

휀0
𝐾0 𝑞 𝑏2 + 1 − 𝛿𝑙𝑙′ 𝑑

2 ,

𝜖 𝑞, 𝜔; µ, 𝑇 = 1 − 𝑉11(𝑞)𝜒1
0 𝑞,𝜔; µ, 𝑇 1 − 𝑉22 𝑞 𝜒2

0 𝑞, 𝜔; µ, 𝑇 − 𝑉12 𝑞 2𝜒1
0 𝑞,𝜔; µ, 𝑇 𝜒2

0 𝑞, 𝜔; µ, 𝑇

𝜒𝑙
0(𝑞, 𝜔 ; 𝜇 , 𝑇) =

න
𝑒(−𝜇/𝑘𝐵𝑇)

1

𝜒𝑙
0(𝑞, 𝜔 ; 𝜇 + 𝑘𝐵𝑇 𝑙𝑛 𝑥 , 𝑇 = 0)

𝑑𝑥

(1 + 𝑥)2
+

න
0

1

𝜒𝑙
0(𝑞, 𝜔 ; 𝜇 − 𝑘𝐵𝑇 𝑙𝑛 𝑥 , 𝑇 = 0)

𝑑𝑥

(1 + 𝑥)2
; 𝜇 > 0

න
0

𝑒(𝜇/𝑘𝐵𝑇)

𝜒𝑙
0(𝑞, 𝜔 ; 𝜇 − 𝑘𝐵𝑇 𝑙𝑛 𝑥 , 𝑇 = 0)

𝑑𝑥

(1 + 𝑥)2
; 𝜇 < 0

𝑊12 𝑞, 𝜔; 𝜇, 𝑇 =
𝑉12 𝑞

𝜖 𝑞,𝜔; µ, 𝑇

❑ In this section, we report our results for the Coulomb drag rate as a function of temperature and electron number
density for different values of inter-wire separation in the RPA.

❑ In the calculation of drag rate, the inter-wire interaction potential W12(q,𝜔; µ,T) plays a very crucial role. We
assume that the inter-wire interaction potential is statically screened i.e. W12(q,0; µ,T) = V12(q) / ε(q,0; µ,T).

❑ The calculation of W12(q,0; µ,T) requires computation of V12(q) and ε(q,0; µ,T). In turn, ε(q,0; µ,T) can be obtained
by setting 𝜔=0 in Eq. (4).

❑ Fig. 1. shows the temperature dependence of scaled drag rate 𝜏𝐷
−1/T in the RPA for coupled electron-electron

quantum wire system with each wire having width b=a0
* and 𝑟𝑠 =1. We observe that 𝜏𝐷

−1/T has a non-monotonic T-
dependence i.e. it first increases and then decreases with rise in T for all separations. The scaled drag rate peaks
are observed around 𝑇~0.2 − 0.6 𝑇𝐹 for all separations.

❑ For sufficiently small d, 𝜏𝐷
−1/T shows a peaked structure at a finite-T which grows stronger and shifts towards

higher T with further decrease in d.

❑ In Fig. 2, we show the scaled drag rate 𝜏𝐷
−1/T as a function of 𝑟𝑠 at fixed wire width and temperature. It can be

clearly seen that with increase in 𝑟𝑠 , 𝜏𝐷
−1/T first increases and then decreases and magnitude of 𝜏𝐷

−1/T is maximum
for d=2a0

* .

❑ The increase in 𝜏𝐷
−1/T is due to increases in coupling i.e., 𝑟𝑠 among electrons.
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Introduction

❑MnNb2O6 belongs to the columbites family with

orthorhombic crystal structure (space group Pbcn-D14
2h)

with 4 molecular formula units per unit cell [1,2,4].

❑A Columbite unit cell made up of 24 oxygen atoms, 4-Mn

atoms, and 8-Nb atoms.

❑The Mn (divalent) and the Nb (pentavalent) ions form

separate bc-planes with isosceles triangular arrangement and

these ions are stacked as -Mn-Nb-Nb-Mn-Nb-Nb-Mn- along

the a-axis [4].

❑The coordination number is 6 for both Mn2+ and Nb+5 ions.

❑ In this structure, staggered zig-zag chains are formed by

MnO6 and NbO6 octahedra along c-axis by sharing their

edges.

a ≠ b≠ c
α = β = γ = 90°

Orthorhombic

Anion

Cation

Octahedral site

UNIT CELL:
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Summary of Results 

▪ The system orders antiferromagnetically below TN = 4.36 K, in agreement 

with previous reported TN = (4.40 ± 0.05) K by Nielson et al [1,2] and 

Holmes et al [3]. 

▪ The specific heat data yields TN = 4.36 K which is in line with magnetic 

measurements.

▪ The Néel temperature TN shows decrease with magnetic field (H).

▪ The field dependent magnetization curve at 1.9 K shows a field induced 

transition nearly HSF = 18kOe

▪ The obtained average g-values are 2.020 and 2.014 for 80K and 300K 

respectively from EPR spectrum.

▪ The g-values at 300 K for Mn2+ ion decreases from 2.0296 to 2.0208 as the 

frequency increases.
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 A is the larger cation, B is the smaller cation 

 X is the generally Oxygen or Halogen Material.

Each corner is shared by BO6 octahedral with 12 

 Each A site cations are occupied at the corners 

of  the cube , B cations sit a the body centered 

sites and Oxygen at the face centered positions.

coordinated A cation
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The core level XPS spectra of  the respective 

cations

Morphological study by AFM of  SL 

LSMO/LNO ( 001) , (011) and ( 111) .

The LAS fit of  the three SLs and inset shows 

the MT chrectersics of  the same.

The Raman characteristics of  the three 

SLs and inset depicts the comparison  of  

SL-011 with respect to the bare 

substatretae of  STO-011.

Perovskites

Perovskites
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Formula : 
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3
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Distorted  

Perovskites

t<1

Super-lattices

Periodic structure of  two or more layers with thickness 

of  each layer typically around several nano-meters. 
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nanodevices.
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emitting diodes.

Capacitor dielectric for 
advanced packaging 

applications

spintronic and Ferro 
electromagnets
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tunable filters for wireless 

applications at cellular, PCS.

Applications of  Perovskite Super-lattice

Schematic Diagram of  
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Conclusions

Stranski–Krastanov growth is predominant in the SL-011 oriented superlattice while the other two different 

crystalline orientations (SL-111 and SL-001) follows the columnar grain growth features. 

The presence of mixed valence states of Ni in LNO layers and Mn in LSMO layer and confirms that the charge 

transferable interfaces are present across the layers. 

The entire superlattice systems exhibits ferromagnetic ordering temperatures (67≤TC≤110K) with altered 

ground state spin configuration from S = 3/2 due to which an increment in the effective exchange interaction Jeff

was noticed in these superlattices as compared to the pristine systems LSMO/LNO. 

The SL-011 system exhibits bulk anisotropy field HK ~ 18 kOe and cubic anisotropy constant K1 ~ 9.3×103 J/m3

in comparison to the other two orientations

The Raman spectroscopy data demonstrates the dominant directional dependent features in the investigated 

system, Overall it is quite evident that all the modes closely resemble the substrate characteristics influencing 

much of the growth pattern and pointing towards the highly oriented epitaxial growth except the ν4 and ν8 

modes which slightly differ in case of SL-111 superlattices. 
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Raman spectra

Surface Morphology study by AFM 

[Pr70Ca30MO/STO]15 on STO(001) & LAO(001)

[Pr50Ca50MO/STO]15 on STO(001) & LAO(001)

XRR of  the SLS on STO(001) & LAO(001), 
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Reciprocal Space Mapping of  SLs around the 

(103) reflection. 
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 Referred to lower dimensional structures like 
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Introduction

Method

• Condensate is considered free along the x-y plane and is confined by a harmonic trap along 

the z-direction. 

• The Rashba SO-coupling considered is 𝐻𝑆𝑂 = 𝛾 (𝑝𝑦𝑆𝑥 - 𝑝𝑥𝑆𝑦)

• At zero temperature, under mean-field approximation, the five CGPEs in the presence of

Rashba SOC for the wave-function components 𝜙𝑗 are given in dimensionless form as 

𝑖
𝜕𝜙±2

𝜕𝑡
= ℋ𝜙±2 + 𝑐0ρ𝜙±2 + 𝑐1 {𝐹∓𝜙±1±2𝐹𝑧𝜙±2} + 𝑐2

Θ𝜙∓2
∗

√5
+ Γ±2

𝑖
𝜕𝜙±1

𝜕𝑡
= ℋ𝜙±1 + 𝑐0ρ𝜙±1 + 𝑐1

3

2
𝐹∓𝜙0 + 𝐹±𝜙±2 ± 𝐹𝑧𝜙±1 − 𝑐2

Θ𝜙∓1
∗

√5
+ Γ±1

𝑖
𝜕𝜙0

𝜕𝑡
= ℋ𝜙0 + 𝑐0ρ𝜙0 + 𝑐1

3

2
{𝐹−𝜙−1+𝐹+𝜙1} + 𝑐2

Θ𝜙0
∗

√5
+ Γ0

• where        ℋ = −
1

2

𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
, 𝜌 = σ𝑗=−2

2 |𝜙𝑗|
2, Θ =

2 𝜙2 𝜙−2−2𝜙1 𝜙−1+𝜙0
2

√5
,    

• 𝐹𝑧 = σ𝑗=−2
2 𝑗|𝜙𝑗|

2 , 𝐹− = 𝐹+
∗ = 2 𝜙−2

∗ 𝜙−1 + √6 𝜙−1
∗ 𝜙0 +√6 𝜙0

∗𝜙1 + 2𝜙2𝜙1
∗;   𝐹± = 𝐹𝑥 ± 𝐹𝑦

• Θ is the spin-singlet pair amplitude. 𝜌 is the total density. 𝐹𝑥 , 𝐹𝑦 , and 𝐹𝑧 are 3 components of 

spin-density vector F.

• The interaction parameters are given as

𝑐0 = 
2√2𝜋𝑁(4𝑎2+3𝑎4)

7𝑎𝑜𝑠𝑐
; 𝑐1 = 

2√2𝜋𝑁(𝑎4−𝑎2)

7𝑎𝑜𝑠𝑐
; 𝑐2 = 

2√2𝜋𝑁(7𝑎0−10𝑎2+3𝑎4)

7𝑎𝑜𝑠𝑐
; 

• 𝑎0, 𝑎2, and 𝑎4 are s-wave scattering lengths in 3 allowed scattering length channels for spin-2 

BEC.

• The SO-coupling terms are given as     Γ±2 = −𝑖𝛾
𝜕𝜙±1

𝜕𝑦
± 𝑖

𝜕𝜙±1

𝜕𝑥

• Γ±1= - 𝑖
3

2
𝛾

𝜕𝜙0

𝜕𝑦
± 𝑖

𝜕𝜙0

𝜕𝑥
− 𝑖𝛾

𝜕𝜙±2

𝜕𝑦
∓ 𝑖

𝜕𝜙±2

𝜕𝑥
; Γ0 = - 𝑖

3

2
𝛾

𝜕𝜙1

𝜕𝑦
+

𝜕𝜙−1

𝜕𝑦
− 𝑖

𝜕𝜙1

𝜕𝑥
+ 𝑖

𝜕𝜙−1

𝜕𝑥

• To obtain the stationary states, we have solved these CGPEs with Fourier Spectral method.

• The dynamic stability of these solutions is confirmed by real-time evolution.

Results

(a) Phase Requirement
• The permitted vortex configuration in a spinor BEC depend on the inter-component phase 

relationships.

• The interaction and the energy contribution from the SO-coupling leading to following

independent relationships among permitted winding numbers :

𝑤2 − 𝑤1 + 1 = 0; 𝑤1 − 𝑤0 + 1 = 0; 𝑤−2− 𝑤−1 − 1 = 0; 𝑤1 − 𝑤0 + 1 = 0;

• The allowed winding number combinations are (-2, -1, 0, 1, 2), (-1, 0, 1, 2, 3), (0, 1, 2, 3, 4)

and higher.

(b) Single Particle Hamiltonian

• One eigen function of the single-particle Hamiltonian with (minimum) energy -2𝛾2 is 

Φ =
𝑒𝑖 𝒌.𝒓

4
𝑒−2𝑖𝜑 − 2𝑒−𝑖𝜑 6 − 2𝑒−𝑖𝜑 𝑒2𝑖𝜑

𝑇
≡ 𝜁 𝜑 𝑒𝑖 𝒌.𝒓 where 𝜑 = 𝑡𝑎𝑛−1

𝑘𝑦

𝑘𝑥
and 𝑘2 = 𝑘𝑥

2 + 𝑘𝑦
2 = (2𝛾)2

(c) Numerical Results

• The ground state for small SO-coupling strength is radially 

symmetric vortex-bright(-ring) soliton (-2,-1,0,1,2) for cyclic, 

polar and weakly ferromagnetic interactions e.g. for

ferromagnetic phase having  𝑐0= -2.5, 𝑐1= -0.025, 𝑐2 = 0.25, 

𝛾 = 0.5 is shown at the right.

• For intermediate SO-coupling strengths, triangular self-

trapped superlattice appears as a quasi-degenerate state in 

addition to the vortex-bright soliton of type (-2,-1,0,1,2) 

type soliton. e.g. with 𝑐0= -2.5, 𝑐1= -0.1, 𝑐2 = 0.25, 

𝛾 = 0.5 is shown at the right. 

• For cyclic, ferromagnetic as well as antiferromagnetic 

interactions, there is a (-1,0,1,2,3) type vortex bright soliton 

that exists as a metastable state. e.g. for ferromagnetic phase 

having 𝑐0= -2.5, 𝑐1= -0.025, 𝑐2 = 0.25, 𝛾 = 0.5 is shown at 

the left in 1st row.

• For sufficiently strong ferromagnetic interactions, 

asymmetric vortex bright solitons emerges as the ground 

state e.g. with 𝑐0= -2.5, 𝑐1= -0.1, 𝑐2 = 0.25, 𝛾 = 0.5 is 

shown at the left in 2nd row.

• For sufficiently strong SOC strengths, for case of ferromagnetic

interactions, we get five types of quasi-degenerate states as

following (1) self-trapped square-superlattice, (2) vortex-bright

(-ring) soliton, (3) asymmetric bright soliton, (4) a stripe

soliton, and (5) super-stripe lattice.

• For cyclic, and antiferromagnetic interactions, we get four of

the aforementioned degenerate states except the asymmetric

bright soliton.

• In polar phase, two of these square super-lattice (1st row in left)

and super-stripe lattice (2nd row at left) for 𝑐0 = −0.15,
𝑐1 = 0.25, 𝑐2 = −1 and 𝛾 = 4 are shown.

Conclusions

✓ Studied the self-trapped stationary state solutions of the SO-coupled spin-2 BEC.

✓ Established the permissible winding number relationships for the system by minimizing the energy contributions from 

spin-dependent interactions and SO-coupling.

✓ The degenerate ground state solutions of the non-interacting SO-coupled condensate are discussed.

✓ At small SO-strengths, bright ring solitons appear across the three phases as stationary state solution.

✓ At moderate to strong SO-coupling strengths ; emergence of multiple quasi degenerate self-trapped solutions is

discussed e.g. the hexagonal-super lattice, super-square lattice, and superstripe square lattice solutions.

✓ The stability of these solutions is checked via real-time propagation.

Spin-Orbit Coupling (SOC)
• SOC is the coupling between motion of entire atom to its hyperfine spin.

• SOC can be engineered in these neutral spinor BECs by controlling the atom light interaction   

leading to generation of artificial  gauge potentials coupled to the atoms.[2]

• Interplay of SOC and the mean-field interactions give rise to a variety of ground states.[3]

• SO-coupling leads to the stabilization of self-trapped solutions like bright solitons.

• Bright Soliton is a self-bound multi-component solitary wave which maintains its shape while 

moving with a constant velocity.[4]

• Another recent development in the field is the experimental realization of supersolid like 

stripe phase in SO-coupled pseudospin-1/2 spinor condensates.[5]

• Supersolid like phase corresponds to the simultaneous (and spontaneous) breaking of 

continuous translational and global gauge symmetries and posses both diagonal and off-

diagonal order. 

• The objective of this work is to construct quasi-two-dimensional (q2D) self-trapped stable 

structures in SO-coupled spin-2 condensate.

Spinor Bose Einstein Condensates (BECs)
• An ultracold atomic gas in optical traps having spin-f per atom led to experimental realization

of 2f+1 component BECs known as Spinor BECs. [1]

• In mean-field approximation, spin-2 BEC is described by set of five coupled 

time-dependent nonlinear partial differential equations with 1st order 

derivative in time and 2nd order derivative in space known as coupled

Gross-Pitaevskii equations. (CGPEs)

• Spin-2 condensates can have three ground state phases depending 

on relative strength of spin-dependent interaction terms i.e. 𝑐0, 𝑐1, and 𝑐2.

• The most general solution is by considering the superpositions of    

eigenfunctions with k  pointing along all directions in 2D plane

gives  rise to Multi-ring (MR) soliton.

• Φ𝑀𝑅 = −𝑒−2𝑖𝜃𝐽2 𝑝 − 2𝑖𝑒−𝑖𝜃𝐽1 𝑝 6𝐽0 𝑝 − 2𝑖𝑒−𝑖𝜃𝐽1 𝑝 − 𝑒−2𝑖𝜃𝐽2 𝑝
𝑇
; 𝑝 = 2𝛾𝑟

• The superposition of two counter-propagating plane waves 

represents a stripe phase (S)

Φ𝑆 =
1

√2
𝜁 0 𝑒2𝑖𝛾 𝑥 + 𝜁 𝜋 𝑒−2𝑖𝛾 𝑥

• The superposition of three plane waves whose propagation vectors 

make an angle 2𝜋/3 with each other gives a triangular superlattice 

(TS)

Φ𝑇𝐿=
1

√3
𝜁 0 𝑒2𝑖𝛾 𝑥 + 𝜁 2𝜋/3 𝑒𝑖𝛾 −𝑥+ 3𝑦 + 𝜁 4𝜋/3 𝑒𝑖𝛾 −𝑥− 3𝑦

• The superposition of four plane waves whose propagation vectors 

make an angle 𝜋/2 with each other gives a square superlattice (SS)

Φ𝑆𝑆=
1

2
𝜁 0 𝑒2𝑖𝛾𝑥 + 𝜁 𝜋/2 𝑒𝑖2𝛾𝑦 + 𝜁 𝜋 𝑒−2𝑖𝛾𝑥 + 𝜁 3𝜋/2 𝑒−𝑖2𝛾𝑦

The component densities and corresponding total density for these degenerate solutions corresponding to |Φ𝑆|
2, |Φ𝑇𝑆|

2, 

|Φ𝑆𝑆|
2 and |Φ𝑀𝑅|

2 are shown in 1st, 2nd, 3rd and 4th row, respectively.
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