
Calligo Technologies Pvt Ltd, Bangalore 1

CODE MODERNIZATION

Intel® C/C++ Compilers

Set Compiler path and compiler related environment variables

$source <install-dir>/bin/compilervars.sh

Invoke C compiler

 $ icc <C filename > -o <Executable filename> <compiler options>

Invoke C++ compiler

 $ icpc <C++ filename > -o <Executable filename> <compiler options>

Example

 $ icc foo.c –o foo.out

 $ icpc foo1.cpp –o foo1.out

icc Intel® C Compiler

icpc Intel® C++ Compiler

ifort Intel® fortran Compiler

-openmp Link Intel® version of Openmp

-mkl Link Intel® Math Kernel Library

-tbb Link Intel® Thread Building Blocks

-O0 Compile program with no Optimizations

-O1/-O2/-O3 Compile program with different levels of optimization

-opt-report=5 Generate Optimization Report of level 5 (MAX 5)

-mmic Generates executable for MIC architecture (Intel® Xeonphi Arch)

-xHOST
Generates optimized executable with Highest possible instruction set with current
processor

-ipo Enables inter procedural optimizations between multiple source files

-guide-vec[=n] Guidance for auto vectorization. n is level of auto vectorization from 1 to 4

-g Generate Symbolic debugging information in the object file

Calligo Technologies Pvt Ltd, Bangalore 2

OpenMP

Compile OpenMP Program:

 $icc <C filename> -o <executable filename> -openmp

Example

 $icc foo.c –o foo.out –openmp

Structure

 #pragma omp parallel <directives>

Core Elements:

OpenMP Directives:

parallel Defines a parallel region to be executed by multiple threads.

for Iterative work sharing construct. Iterations of the for loop are distributed across spawned threads.

sections
Non-iterative work-sharing construct that specifies a set of constructs that are to be divided among
threads in a team and executed once.

single
Associated structured block is executed by only one thread in the team (not necessarily the master
thread).

Calligo Technologies Pvt Ltd, Bangalore 3

parallel
for

A shortcut form for a parallel region that contains only for directive.

master Associated structured block is executed by the master thread of the team.

barrier
Used to synchronize. Each thread waits for other threads to reach this point. After all threads
encountering the barrier, each thread begins executing further statements in parallel.

atomic Specifies memory location that must be updated sequentially. One thread at a time.

OpenMP Library Routines:

omp_set_num_threads(int) Sets the maximum number of threads at runtime

int omp_get_num_threads() Returns total number of active threads

int omp_get_thread_num() Returns thread number

num_threads(int) Sets the total number of threads to spawn

double omp_get_wtime() Returns current time of the machine

int omp_num_procs() Returns number of logical processors

int omp_get_max_threads() Returns maximum available threads

omp_set_dynamic(0/1)
Enable (1) or disable(0) the dynamic adjustment of the number of threads within a
team

omp_set_nested(0/1) Enable(1) or disable(0) nested parallelism

OpenMP Environment Variables:

OMP_NUM_THREADS Specifies the default number of threads to use in parallel regions.

OMP_NESTED Enable or disable nested parallel regions.

OMP_DYNAMIC Enable or disable the dynamic adjustment of the number of threads within a team

OMP_WAIT_POLICY Specifies whether waiting threads should be active or passive.

OMP_MAX_ACTIVE_LEVELS Specifies the initial value for the maximum number of nested parallel regions.

Calligo Technologies Pvt Ltd, Bangalore 4

OpenMP 4.0 Features:

Type Name Description

D
ir

e
ct

iv
e

s

simd Indicates loop to be transformed for SIMD vectorization

loop simd
Specifies that a loop that can be executed concurrently using SIMD instructions,
and that those iterations will also be executed in parallel by threads in the team

target[data]
Creates a device data environment for the extent of the region and also starts
executing on the device

target update
Makes the corresponding list items in the device data environment consistent
with their original list items, according to the specified motion clauses.

teams
Creates a league of thread teams where the master thread of each team executes
the region.

distribute[simd]
Distribute specifies loops which are executed by the thread teams. Distribute
simd specifies loops which are executed concurrently using SIMD instructions

cancel
Requests cancellation of the innermost enclosing region of the type specified.
The cancel directive may not be used in place of the statement following an if,
while, do, switch, or label.

cancellation point
Introduces a user-defined cancellation point at which tasks check if cancellation
of the innermost enclosing region of the type specified has been requested

declare reduction
Allows user to declare a reduction-identifier for user defined reduction
operation

L
ib

ra
ry

R

o
u

ti
n

e
s

omp_get_proc_bind
Returns the thread affinity policy to be used for the subsequent parallel
regions(includes nested) that do not specify a proc_bind clause

omp_set_default_device
Controls the default target device by assigning the value of the default-device-var
ICV

omp_is_initial_device
Returns true if the current task is executing on the host device; otherwise, it
returns false.

E
n

v
ir

o
n

m
e

n
t

V
a

ri
a

b
le

s

OMP_CANCELLATION
Sets the cancel-var ICV. policy may be true or false. If true, the effects of the
cancel construct and of cancellation points are enabled and cancellation is
activated

OMP_DEFAULT_DEVICE
Sets the default-device-var ICV that controls the default device number to use in
device constructs

OMP_DISPLAY_ENV

If var is TRUE, instructs the runtime to display the OpenMP version number and
the value of the ICVs associated with the environment variables as name=value
pairs. If var is VERBOSE
, the runtime may also display vendor-specific variables. If var
 is FALSE, no information is displayed

OMP_PLACES
Sets the place-partition-var ICV that defines the OpenMP places available to the
execution environment. places is an abstract name (threads, cores, sockets, or
implementation-defined), or a list of non-negative numbers

OpenMP4.0 features reference: http://openmp.org/mp-documents/OpenMP-4.0-C.pdf

Calligo Technologies Pvt Ltd, Bangalore 5

Intel® MPI (Message Passing Interface)

Important terms:

RANK Each Process is assigned an identifier (contiguous integers starting from zero) called rank.

GROUP

Group is an ordered set of processes. There are many predefined groups.
(MPI_GROUP_EMPTY, MPI_GROUP_NULL)

MPI_Group_incl(MPI_Group group, int n, const int
ranks[], MPI_Group *newgroup)

Produces a group by reordering an
existing group and taking only listed
members.

MPI_Group_size(MPI_Group group, int *size) Returns the size of a group

MPI_Group_free(MPI_Group *group) Frees a group

COMMUNICATOR Mechanism through which scope of process communication is determined. It is a dynamic
object that is created, used and destroyed. MPI_COMM_WORLD is a universal inter-
communicator for all processes, available immediately after MPI_init()

MPI_Comm_create(MPI_Comm comm, MPI_Group
group, MPI_Comm *newcomm)

Creates a new communicator

MPI_Comm_get_attr(MPI_Comm comm, int
comm_keyval, void *attribute_val, int *flag)

Retrieves attribute value by key

MPI_Comm_join(int fd, MPI_Comm *intercomm)
Establishes communication between
MPI jobs

MPI_Comm_free(MPI_Comm *comm)
Mark a communicator object for
deallocation

MPI Datatypes:

MPI Datatypes C Datatypes

MPI_CHAR signed char

MPI_SHORT signed short int

MPI_INT signed int

MPI_LONG signed long int

MPI_UNSIGNED_CHAR unsigned char

MPI_UNSIGNED_SHORT unsigned short int

MPI_UNSIGNED unsigned int

MPI_UNSIGNED_LONG unsigned long int

MPI_FLOAT float

MPI_DOUBLE double

MPI_LONG_DOUBLE long double

Calligo Technologies Pvt Ltd, Bangalore 6

Set Compiler path and compiler related environment variables

$source <install-dir>/bin64/mpivars.sh

Invoke MPI C compiler

 $ mpiicc <C filename > -o <Executable filename> <compiler options>

Executing an MPI executable

 $ mpirun –np <int> -machinefile <File with the list of IP’s> <Executable

filename>

Example

Compile:

 $ mpiicc foo.c –o foo.out

Execute:

 $ mpirun –np 15 –machinefile machinefile ./foo.out

MPI Library Routines:

MPI_Init (&argc, &argv); Intialize MPI

MPI_Comm_size (MPI_COMM_WORLD, &size); Number of process in MPI_COMM_WORLD

MPI_Comm_rank (MPI_COMM_WORLD, &rank); rank of each process in MPI_COMM_WORLD

MPI_Bcast(void *data, int length, MPI_Datatype, source,
MPI_Comm communicator);

Broadcast data of size length and type MPI_Datatype
from source to all the process in communicator

MPI_Send(void* data, int count, MPI_Datatype datatype,
int destination,int tag, MPI_Comm communicator)

Send data of size count and type datatype to
destination(rank) in communicator with tag

MPI_Recv(void* data, int count, MPI_Datatype datatype,
int source, int tag, MPI_Comm communicator,
MPI_Status* status)

Receive data of size count and type datatype from
source(rank) in communicator with tag

MPI_Isend(void *buf, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm, MPI_Request
*request)

Begins Non-blocking Send

Calligo Technologies Pvt Ltd, Bangalore 7

MPI_Irecv(void *buf, int count, MPI_Datatype datatype,
int source, int tag, MPI_Comm comm, MPI_Request
*request)

Begins Non-blocking Send

MPI_Put(const void *origin_addr, int origin_count,
MPI_Datatype origin_datatype, int target_rank, MPI_Aint
target_disp, int target_count, MPI_Datatype
target_datatype, MPI_Win win)

Put data into a memory window on a remote process

MPI_Get(void *origin_addr, int origin_count,
MPI_Datatype origin_datatype, int target_rank, MPI_Aint
target_disp, int target_count, MPI_Datatype
target_datatype, MPI_Win win)

Get data from a memory window on a remote process

int MPI_Barrier(MPI_Comm comm)
Blocks until all processes in the communicator have
reached this routine.

MPI_Finalize(void) Terminates MPI execution environment

Intel® MPI Environment Variables:

I_MPI_DEBUG Print out debugging information when an MPI program starts running

I_MPI_DEBUG_OUTPUT Set output file name for debug information.

I_MPI_PERHOST Define the default settings for the -perhost option in the mpiexec command

I_MPI_JOB_TIMEOUT Set the mpiexec/mpirun timeout

I_MPI_OUTPUT_CHUNK_SIZE Set the size of the stdout/stderr output buffer

I_MPI_PMI_EXTENSIONS
Turn on/off the use of the Intel® MPI Library Process Management Interface (PMI)
extensions.

I_MPI_PLATFORM Select the intended optimization platform.

I_MPI_PLATFORM_CHECK Turn on/off the optimization setting similarity check.

Calligo Technologies Pvt Ltd, Bangalore 8

MPI Derived Datatypes (User Defined Datatypes):

Other than the predefined MPI datatypes, it is possible to define new datatypes by grouping. This class of data is

the derived datatype. Derived datatypes in MPI can be used in:

 Grouping data of different datatypes for communication

 Grouping noncontiguous data for communication

Library Routine Description

MPI_Type_indexed(int count, const int array_of_blocklengths[], const int
array_of_displacements[], MPI_Datatype oldtype, MPI_Datatype *newtype)

Creates an indexed datatype

MPI_Type_commit(MPI_Datatype *datatype) Commits a data type

MPI_Type_free(MPI_Datatype *datatype) Frees a data type

MPI Error handling:

 MPI provides user reliable message transmission, thus doesn’t provide mechanism to deal with

communication system. MPI returns an error code when an error is encountered. By default, all MPI errors aborts

the parallel computation. The desired behavior is that a relevant error code be returned, and the effect of the error

be localized to the greatest possible extent.

Library Routines Description

int MPI_Error_class(int errorcode, int
*errorclass)

Converts an error code into an error class

int MPI_Error_string(int errorcode,
char *string, int *resultlen)

Returns a string for a given error code

int MPI_Errhandler_free
(MPI_Errhandler *errhandler)

Frees an MPI-style error handler

Error Code Description

MPI_SUCCESS No error

MPI_ERR_BUFFER Invalid buffer pointer

MPI_ERR_COUNT Invalid count argument

MPI_ERR_TYPE Invalid datatype argument

MPI_ERR_TAG Invalid tag argument

MPI_ERR_COMM Invalid communicator

MPI_ERR_RANK Invalid rank

MPI_ERR_REQUEST Invalid request

MPI_ERR_ROOT Invalid root

Calligo Technologies Pvt Ltd, Bangalore 9

MPI_ERR_GROUP Invalid Group

MPI_ERR_OP Invalid operation

MPI_ERR_TOPOLOGY Invalid topology

MPI_ERR_DIMS Invalid dimension argument

MPI_ERR_ARG Invalid argument of some other kind

MPI_ERR_UNKNOWN Unknown error

MPI_ERR_TRUNCATE Message truncated on receive

MPI_ERR_OTHER Known error not in the list

MPI_ERR_IN_STATUS Error code in status

MPI_ERR_PENDING Pending request

MPI_ERR_LASTCODE Last code error

Intel® Threading Advisor

Threading Advisor is part of Intel® Advisor XE 2016. It’s a threading design and prototyping tool that lets

you analyze, design, tune and check threading design options without disrupting your normal development.

Set Tool path and Tool related environment variables

$source <install-dir>/advisor_xe/advixe-vars.sh

Prerequisites:

To build applications that produce the most accurate and complete Threading Advisor analysis results,

build an optimized binary of your application in release mode using these compiler/linker settings:

 $icc <C filename> –g -I${ADVISOR_XE_2016_DIR}/include –O2 –ldl –Bdynamic

-o <Executable filename>

Example:

 $icc foo.c –g -I${ADVISOR_XE_2016_DIR}/include –O2 –ldl –Bdynamic –o foo.out

Note:

 Verify your application runs, before trying to analyze it with the Intel Advisor.

 Make sure you run the Intel Advisor in the same environment as your application.

Invoke Intel® Advisor XE GUI:

 $advixe-gui

Invoke Intel® Advisor XE CLI:

 $ advixe-cl -collect survey –project-dir ./<Executable Filename> -- <Project

Name>

Calligo Technologies Pvt Ltd, Bangalore 10

Intel® VTune Amplifier XE

Intel® VTune™ Amplifier XE is a Performance profiler targeted for analysis of applications running on

local and remote Linux systems. Use this tool to analyze the algorithm choices, find serial and parallel code

bottlenecks, understand where and how your application can benefit from available hardware resources, and

speed up the execution.

Set Tool path and Tool related environment variables

$source <install-dir>/ vtune_amplifier_xe_2016/ amplxe-vars.sh

Prerequisites:

To build applications that produce the most accurate and complete VTune Amplifier profiling results, build

an optimized binary of your application in release mode using these compiler/linker settings:
 $icc <C filename> –g –O2 –debug inline-debug-info -o <Executable filename>

Example:

 $icc foo.c –g –O2 –debug inline-debug-info –o foo.out

Note:

 Verify your application runs before trying to analyze it with the Intel ® Amplifier XE.

 Make sure you run the Intel ® Amplifier XE in the same environment as your application.

Invoke Intel® VTune Amplifier XE GUI:

 $amplxe-gui

Invoke Intel® VTune Amplifier XE CLI:
 $ amplxe-cl -collect <analysis_type> [--] <target>

Intel® Trace Analyzer and Collector (ITAC)

Intel® Trace Analyzer and Collector enables you to understand MPI application behavior, quickly find

bottlenecks and achieve high performance for parallel cluster applications.

Use this tool to do the following:

 Evaluate profiling statistics and load balancing

 Learn about communication patterns, parameters, and performance data

 Identify communication hotspots

 Decrease execution time and increase application efficiency

Set Tool path and Tool related environment variables
 $source <install-dir>/ itac/<version number>/bin/ itac-vars.sh

Prerequisites:

Execute an optimized binary of your MPI application using this option to generate *.stf file:
 $mpirun –np <int> <Executable filename> -trace

Calligo Technologies Pvt Ltd, Bangalore 11

Example:

 $mpirun –np 5 ./foo.out -trace

Invoke Intel® TAC GUI:

 $traceanalyzer

Invoke Intel® TAC GUI along with tracefile:

 $traceanalyzer foo.stf

Vectorization

Ways To Vectorize:

 Intel® Compilers Auto-Vectorization

 Intel® Compilers Auto-Vectorization with (Compiler Hints like #pragma)

 OpenMP SIMD Vectorization

 Vector Intrinsic and Array notations

Intel® Compiler Options for vectorization

Option Description

-O2
Enables intra-file inter procedural optimizations for speed, including:
• Vectorization
• Loop unrolling

-03

Performs O2 optimizations and enables more aggressive loop transformations such as:
• Loop fusion
• Block unroll-and-jam
• Collapsing IF statements
This option is recommended for applications that have loops that heavily use floating-point
calculations and process large data sets. However, it might incur in slower code, numerical
stability issues, and compilation time increase.

-xHost
Tells the compiler which processor features it may target, referring to which instruction
sets and optimizations it may generate (not available for Intel® Xeon Phi architecture).

-[no-]vec enables(DEFAULT)/disables vectorization

-vec-threshold[n]
sets a threshold for the vectorization of loops based on the probability of profitable
execution of the vectorized loop in parallel

-[no-]simd enables(DEFAULT)/disables vectorization using simd pragma

-ansi-alias
option allows the compiler to assume strict adherence to the aliasing rules in the ISO C
standard. Use these options responsibly; if you use these options when memory is aliased it
may lead to incorrect results (Disambiguation of pointers and arrays)

-opt-report=[n] (n<=5)indicate vectorized loops(DEFAULT when enabled)

-opt-report-
phase=vec

Indicates only vectorized loops in optimization reports

Calligo Technologies Pvt Ltd, Bangalore 12

Intel® Specific Compiler Directives

#pragma Description

simd Enforce vectorization ; ignore dependencies

ivdep

Place before a loop to control vectorizaton/software pipelining The compiler is instructed
to ignore “assumed” (not proven) dependencies preventing vectorization/software
pipelining. For Itanium: Assume no BACKWARD dependencies, FORWARD loopcarried
dependencies still can exist w/o preventing SWP. Use with –ivdep_parallel option to
exclude loopcarried dependencies completely (e.g. for indirect addressing)

vector always Always vectorize

vector aligned use aligned load/store instructions

vector unaligned use unaligned load/store instructions

loop count(n)
Place before a loop to communicate the approximate number of iterations the loop will
execute. Affects software pipelining, vectorization and other loop transformations.

distribute point
Placed before a loop, the compiler will attempt to distribute the loop based on its internal
heuristic. Placed within a loop, the compiler will attempt to distribute the loop at the point
of the pragma. All loop-carried dependencies will be ignored

nontemporal
directs the compiler to use nontemporal (that is, streaming) stores on systems based on all
supported architectures, unless otherwise specified; optionally takes a comma separated
list of variables

temporal
directs the compiler to use temporal (that is, non-streaming) stores on systems based on
all supported architectures, unless otherwise specified

unroll, nounroll,
unroll(n)

Place before an inner loop (ignored on non-inmost loops). #pragma unroll without a count
allows the compiler to determine the unroll factor. #pragma unroll(n) tell the compiler to
unroll the loop n times. #pragma nounroll is the same as #pragma unroll(0).

vecremainder instructs the compiler to vectorize the remainder loop when the original loop is vectorized

novecremainder
instructs the compiler not to vectorize the remainder loop when the original loop is
vectorized

Calligo Technologies Pvt Ltd, Bangalore 13

 OpenMP SIMD Directive clauses

Clauses Description

safelen(n)
Safelen clause is used then no two iterations executed concurrently with SIMD
instructions can have a greater distance in the logical iteration space than its value

collapse(n)
Collapse clause may be used to specify how many loops are associated with the
construct.

aligned(list[:linearstep])
Aligned clause declares that the object to which each list item points is aligned to
C/C++ the number of bytes expressed in the optional parameter of the aligned
clause

private(list) Specifies that each thread should have its own instance of a variable.

lastprivate(list)
Specifies thread that executes the ending loop index copies its value to the master
(serial) thread this gives the same result as serial execution

reduction(operator:var1,
var2,...,varN)

Loop code implements reduction (like “+”) on arguments listed which can be
vectorized

linear(list[:linear-step])
Linear clause declares one or more list items to be private to a SIMD lane and to
have a linear relationship with respect to the iteration space of a loop

Intel® Vector Advisor

Vector Advisor is part of Intel® Advisor XE 2016. It’s a is a vectorization analysis tool that lets you identify

loops that will benefit most from vectorization, identify what is blocking effective vectorization, explore the benefit

of alternative data reorganizations, and increase the confidence that vectorization is safe

Set Tool path and Tool related environment variables
 $source <install-dir>/advisor_xe/advixe-vars.sh

Prerequisites:

To build applications that produce the most accurate and complete Threading Advisor analysis results, build an

optimized binary of your application in release mode using these compiler/linker settings:
 $icc <C filename> –g –O2/O3 –opt-report=5 -o <Executable filename>

Example:

 $icc foo.c –g –O2 –opt-report=5 –o foo.out

Note:

 Verify your application runs before trying to analyze it with the Intel Advisor.

 Make sure you run the Intel Advisor in the same environment as your application.

Invoke Intel® Advisor XE GUI:
 $advixe-gui

Invoke Intel® Advisor XE CLI:

 $ advixe-cl -collect survey –project-dir ./<Executable Filename> -- <Project

Name>

