Major ions, Stable isotopes, $^{87}\text{Sr}/^{86}\text{Sr}$ and Re in the headwaters of the Yamuna: Implications to chemical weathering in the Himalaya

Tarun Kumar Dalai

Ph. D. Thesis

December, 2001

Oceanography and Climate Studies Area
Physical Research Laboratory
Navrangpura, Ahmedabad - 380 009, India
Major ions, Stable isotopes, $^{87}\text{Sr}/^{86}\text{Sr}$ and Re in the headwaters of the Yamuna: Implications to chemical weathering in the Himalaya

Submitted to

The Maharaja Sayajirao University of Baroda,
Vadodara, India

By

Tarun Kumar Dalai

For the degree of

Doctor of Philosophy in Geology

December, 2001

Oceanography and Climate Studies Area
Physical Research Laboratory
Navrangpura, Ahmedabad - 380 009, India
CONTENTS

List of Tables iv
List of Figures v

Chapter 1 Introduction 1-9
1.1 Introduction 2
1.2 Objectives of the Thesis 7
1.3 Structure of the Thesis 8

Chapter 2 Materials and Methods 10-46

I Materials 11-22
2.1 General information on the study catchment 11
2.1.1 Major rivers of the Yamuna River System in the Himalaya 13
2.1.2 Climate of the Yamuna catchment 19

II Methods 23-46
2.2 Sampling 23
(a) River water 23
(b) River bed sediment 25
(c) Bed rocks 25

2.3 Analytical Techniques 25
2.3.1 River water 25
(i) Altitude measurement of sampling locations 25
(ii) pH and temperature 26
(iii) Major ions 26
(iv) Strontium and Barium 31
(v) Rhenium 32
(vi) Sr isotopes 38
(vii) Stable isotopes 39
2.3.2 Rocks and bed sediments 40
(i) Dissolution 40
(ii) Major ions 40
(iii) Strontium and Barium 41
(iv) Carbonate contents 43

Chapter 3 Stable Isotopes in the Yamuna River System 47-70

3.1 Introduction 48
3.2 Results and discussion 49
3.2.1 Seasonal variation 51
3.2.2 The δ^{18}O-δD relationship 53
 (a) Monsoon 54
 (b) Summer and post-monsoon 56
 (c) Comparison with the Ganga headwaters and Gaula catchment 56
3.2.3 Deuterium excess 57
3.2.4 Altitude effect 62
3.2.5 Stable isotope-stream chemistry relationship 66
3.3 Conclusions 69

Chapter 4 Major ions, Sr, Ba and 87Sr/86Sr in the Yamuna River System: Chemical weathering and CO$_2$ consumption in the Himalaya 71-133

4.1 Introduction 72
4.2 Results and Discussion 74
4.2.1 Major ion chemistry 74
4.2.2 Sources of major ions in the YRS 90
 (i) Silicate weathering 92
 (ii) Carbonate and evaporite weathering 97
4.2.3 Dissolved Strontium and 87Sr/86Sr in the YRS 101
4.2.4 Sources of Sr and their control on 87Sr/86Sr 107
4.2.5 Dissolved Barium in the YRS 121
4.2.6 Weathering rates and CO$_2$ consumption 126
4.2.7 Comparison of CO$_2$ consumption rates with other river basins 127
4.2.8 Chemical weathering: control of temperature and altitude 129
4.3 Conclusions 132
Chapter 5 Dissolved Rhenium in the Yamuna River System: Black shale weathering and its role on riverine trace metal budgets

5.1 Introduction 135

5.2 Results and discussion 137

5.2.1 Sources of dissolved Re in the YRS 141

(i) Re contribution from crystallines 141

(ii) Re contribution from Precambrian Carbonates 144

(iii) Re contribution from organic rich sediments 147

5.2.2 Re flux from the Yamuna and the Ganga basins 155

5.2.3 Black shale weathering: Implications to riverine trace metal budgets and carbon cycle 157

5.3 Conclusions 161

Chapter 6 Synthesis and scope of future research 163-169

6.1 Stable isotopes in the YRS 164

6.2 Major ions, Sr, Ba, and 87Sr/86Sr in the YRS 165

6.3 Dissolved Re in the YRS 167

6.4 Scope of future research 168

References 170-181

List of publications 182
For Fulltext Please Contact:

library@prl.res.in