Crafting the core asymmetry to lift the degeneracy of optical vortices

Ashok Kumar,* Pravin Vaity, and R. P. Singh

Theoretical Physics Division, Physical Research Laboratory, Ahmedabad 380 009, India
*ashokk@prl.res.in

Abstract: We introduce an asymmetry in the core of a high charge optical vortex by using an appropriate computer generated hologram. The splitting of a high charge optical vortex core into unit charge vortices has been found to depend on the extent of the asymmetry. For a second order vortex, the trajectories of the split unit charged vortices and their separation have been recorded as a function of change in the asymmetry of the core. We find a good agreement between the experimentally obtained and numerically calculated results.

©2011 Optical Society of America

OCIS codes: (260.6042) Singular optics; (050.4865) Optical vortices.

References and links

1. Introduction

Vortices, which are manifestations of phase singularities, are generic to all the wave fields. Therefore, exploring their properties is important to many branches of physics [1]. In optics, these are called optical vortices or light beams having a helical wavefront [2].–[6]. Therefore, exploring their properties is important to many branches of physics [1]. In optics, these are called optical vortices or light beams having a helical wavefront [2]–[6]. The helical wavefront is characterized by an azimuthal phase term \(\exp(j m \theta) \) that varies in a corkscrew-like manner along the beam’s direction of propagation. Here, the factor \(m \) is known as the topological charge (can have both positive and negative sign depending on the sense of rotation of the corkscrew) or the order of the vortex. In such a beam of light, each photon acquires an orbital angular momentum of \(mh \) [6] and the transverse intensity profile looks like a ring of light with dark core at the centre.

Optical vortices can be found naturally on scattering of light through the rough surfaces. However, they can also be generated in a controlled manner. Diffraction of light through a computer generated hologram (CGH) is one of the most commonly used methods for making optical vortices in the laboratory [7]. Apart from using CGH, vortices can be generated with spiral phase plates, astigmatic mode converters, spatial light modulators [8] as well as interferometric methods [9]. These structures of light find a variety of applications in the fields of optical manipulation [10], optical communication [11], quantum information and computation [12], and astronomy [13].

The stability and the propagation dynamics of a vortex core may be of relevance to the field of optical communication using such beams. Therefore, a great deal of attention has been given to the dynamics and propagation properties of optical vortices in free space and in nonlinear media [14–20]. Ginzburg and Pitaevski [21] pointed out that a vortex with higher charge (say \(m \), where \(m > 1 \)) in a superfluid is energetically unfavorable compared to \(m \) vortices of unit charge. Hence, a vortex with higher charge always has a tendency to break up