Accurate determination of black-body radiation shift, magic and tune-out wavelengths for the $6S_{1/2} \rightarrow 5D_{3/2}$ clock transition in Yb$^+$

A Roy1,2, S De1,2, Bindiya Arora3 and B K Sahoo4,5

1 CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi-110012, India
2 Academy of Scientific and Innovative Research, CSIR- National Physical Laboratory Campus, New Delhi, India
3Department of physics, Guru Nanak Dev university, Amritsar, Punjab-143005, India
4Atomic, Molecular and Optical Physics Division, Physical Research Laboratory, Navrangpura, Ahmedabad-380009, India
5State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, People’s Republic of China

E-mail: royatish8@gmail.com

Received 30 May 2017, revised 27 July 2017
Accepted for publication 11 September 2017
Published 29 September 2017

Abstract

We present precise values of the dipole polarizabilities (α) of the ground $[4f^{14}6s] \, ^3S_{1/2}$ and metastable $[4f^{14}5d] \, ^3D_{3/2}$ states of Yb$^+$, that are important in reducing systematics in the clock frequency of the $[4f^{14}6s] \, ^3S_{1/2} \rightarrow [4f^{14}5d] \, ^3D_{3/2}$ transition. The static values of α for the ground and metastable $[4f^{14}5d] \, ^3D_{3/2}$ states are estimated to be $9.8(1) \times 10^{-40} \text{ J m}^2 \text{ V}^{-2}$ and $17.6(5) \times 10^{-40} \text{ J m}^2 \text{ V}^{-2}$, respectively, while the tensor contribution to the metastable $[4f^{14}5d] \, ^3D_{3/2}$ state as $-1.2(3) \times 10^{-40} \text{ J m}^2 \text{ V}^{-2}$ compared to the experimental value $-13.6(22) \times 10^{-40} \text{ J m}^2 \text{ V}^{-2}$. This corresponds to the differential scalar polarizability value of the above transition as $-7.8(5) \times 10^{-40} \text{ J m}^2 \text{ V}^{-2}$ in contrast to the available experimental value $-6.9(1.4) \times 10^{-40} \text{ J m}^2 \text{ V}^{-2}$. This results in the black-body radiation shift of the clock transition as $-0.44(3) \text{ Hz}$ at the room temperature, which is large as compared to the previously estimated values. Using the dynamic α values, we report the tune-out and magic wavelengths that could be of interest to subdue systematics due to the Stark shifts and for constructing lattice optical clock using Yb$^+$.

Keywords: Yb$^+$ ion clocks, magic wavelengths, black body radiation shifts, dipole polarizabilities

(Some figures may appear in colour only in the online journal)