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ABSTRACT

Optical vortices, whirlpools of light, are phase singularities in the light field. These vortex

beams have helical wave front and their Poynting vector rotates around the propagation axis.

They carry an orbital angular momentum of m~, m being the topological charge or order

defined as the number of helices in one wave length. Such beams have an azimuthal phase

dependence of exp(imφ), where φ = tan−1 (y/x) is the azimuthal angle. Vortex beams can be

generated by a number of methods. Few of them are an astigmatic mode converter, computer

generated holography and spiral phase plates. However, vortices of first order naturally exist

in the speckles that can be formed by the scattering of a coherent light beam through a

rough surface. Speckles are due to the mutual interference of a number of scattered wave

fronts from inhomogeneities of the random medium. It would be very interesting to study

the speckles generated by the optical vortices as they themselves contain vortices. This thesis

concerns with the study of optical vortices and their scattering through random media.

The spatial intensity profile of optical vortices has been studied using two novel and

measurable parameters, inner and outer radii along with their propagation through free space.

We show that the propagation characteristics depend only on width of the host Gaussian

beam and its intensity profile at the source plane. We have also studied the divergence

of vortex beams, considering it as the rate of change of inner and outer radii with the

propagation distance (z), and found that it varies with the order in the same way as that of

the inner and outer radii at z = 0. The corresponding experimental and theoretical results

have been presented.

We have embedded a pair of vortices with different topological charges in a Gaussian

beam and studied their evolution through an astigmatic optical system, a tilted lens. The

propagation dynamics is explained by a closed-form analytical expression. Furthermore, we

show that a careful examination of the intensity distribution at a predicted position, past

the lens, can determine the charge present in the beam. To the best of our knowledge, our

method is the first non-interferometric technique to measure the charge of an arbitrary vortex

pair. Our theoretical results are well supported by experimental observations.

We have experimentally generated higher order optical vortices and scattered them through

a ground glass plate resulting in speckle formation. Intensity autocorrelation measurements

of speckles show that their size decreases with increase in the order of the vortex. It implies

increase in angular diameter of the vortices with their order. The characterization of vor-

tices in terms of the annular bright ring also helps us to understand these observations. We
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have generated the ring shaped beams from the speckles generated by the scattering of LG

and BG beams. We also show that these ring-shaped beams have the same vorticity as the

incident beam falling on the rough scattering surface. The vorticity is measured through a

novel method that uses a non separable state of polarization and orbital angular momentum

of light. The observed vorticity is found to be independent of the amount of scattered light

collected. Therefore, vortices can be used as information carriers even in the presence of

scattering media. The experimental results are well supported by the theoretical results.

We have generated perfect optical vortices (POV), whose intensity distribution are in-

dependent of the order, using Fourier transform of Bessel–Gauss (BG) beams and scatter

them through a rough surface. We show that the size of produced speckles is independent of

the order and their Fourier transform gives the random non-diffracting fields. The invariant

size of speckles over the free space propagation verifies their non-diffracting or non-diverging

nature. The size of speckles can be easily controlled by changing the axicon parameter, used

to generate the BG beams.

Keywords : Optical vortices, Scattering, Random media, Speckles, Astigmatic system,

Perfect optical vortices.
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[141] M. Gecevičius, R. Drevinskas, M. Beresna, and P. G. Kazansky, Single beam optical

vortex tweezers with tunable orbital angular momentum, Applied Physics Letters 104,

231110 (2014).

[142] R. Fickler, R. Lapkiewicz, M. Huber, M. P. Lavery, M. J. Padgett, and A. Zeilinger, In-

terface between path and orbital angular momentum entanglement for high-dimensional

photonic quantum information, Nature Communications 5, 4502 (2014).

[143] M. Krenn, R. Fickler, M. Fink, J. Handsteiner, M. Malik, T. Scheidl, R. Ursin, and

A. Zeilinger, Communication with spatially modulated light through turbulent air across

Vienna, New Journal of Physics 16, 113028 (2014).

[144] G. Gbur and R. K. Tyson, Vortex beam propagation through atmospheric turbulence

and topological charge conservation, Journal of the Optical Society of America A 25,

225–230 (2008).

[145] B. Simon, S. Simon, F. Gori, M. Santarsiero, R. Borghi, N. Mukunda, and R. Simon,

Nonquantum entanglement resolves a basic issue in polarization optics, Physical Review

Letters 104, 023901 (2010).



BIBLIOGRAPHY 97

[146] L. Chen and W. She, Single-photon spin-orbit entanglement violating a Bell-like in-

equality, Journal of the Optical Society of America B 27, A7–A10 (2010).

[147] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Quantum entanglement,

Reviews of Modern Physics 81, 865 (2009).

[148] L. Neves, G. Lima, A. Delgado, and C. Saavedra, Hybrid photonic entanglement: Re-

alization, characterization, and applications, Physical Review A 80, 042322 (2009).

[149] Q. Zhan, Cylindrical vector beams: from mathematical concepts to applications, Ad-

vances in Optics and Photonics 1, 1–57 (2009).

[150] R. J. Spreeuw, A classical analogy of entanglement, Foundations of Physics 28, 361–374

(1998).

[151] B. Simon, S. Simon, N. Mukunda, F. Gori, M. Santarsiero, R. Borghi, and R. Simon, A

complete characterization of pre-Mueller and Mueller matrices in polarization optics,

Journal of the Optical Society of America A 27, 188–199 (2010).

[152] P. Ghose and A. Mukherjee, Entanglement in classical optics, Reviews in Theoretical

Science 2, 274–288 (2014).

[153] A. Luis, Coherence, polarization, and entanglement for classical light fields, Optics

Communications 282, 3665–3670 (2009).

[154] C. Borges, M. Hor-Meyll, J. Huguenin, and A. Khoury, Bell-like inequality for the

spin-orbit separability of a laser beam, Physical Review A 82, 033833 (2010).

[155] E. Karimi, J. Leach, S. Slussarenko, B. Piccirillo, L. Marrucci, L. Chen, W. She,

S. Franke-Arnold, M. J. Padgett, and E. Santamato, Spin-orbit hybrid entanglement of

photons and quantum contextuality, Physical Review A 82, 022115 (2010).
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