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1. INTRODUCTION.

The subject of « Molecular Scattering of Light” whose
foundations were laid by the late Tord Rayleigh, gained a
~ new significance from the experimental work of Cabannes’

‘and the present Lord Rayleigh® on the scattering of light
in dust-free gases. Its importance was further increased
by Prof. Raman’s ® application of Einstein’s investigation
of critical opalescence to the case of scattering in fluids
in general, and his explanation of the blue of the sea as
being caused by molecular scattering of light in water.
Experimental work by the present author® on the

! Oabaunes —Ann, Physique, Tame XV, 1920, pp. 1-150.

2 Rayleigh—Proc. Roy. Soc. A, 1918, p. 453.

3 0. V. Raman—Proc. Roy. Soc. A, Avpril, 1922, 1
of Light,’ Calcutta University Press, 1922.

+ K. R. Ramanathan—Proc. Roy. Soc. A., 1922, p. 151.

65 and, Mulecular Diffraction

Proc. ind. Assn. Cult. Sci. 8, 1-22, 1923.
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2 K. R, RAMANATHAN

scattering of light in ether and by Mr. R. Venkateswaran 3
in normal pentane showed that throughout the range of
temperatures from 85°C to the critical point, both in the
saturated vapour state and in {he liquid state in equili-
brium with the vapour, the intensity of scattering in a
transverse direction is given by the Einstein-Smoluchowski

expression (with a correction for admixture with un-
polarised light).

RT R .
where I is the intensity of the scattered light from a unit
volume at a large distance 7 from the volume.
R, N are the gas-constant and. the number of mo]ecules
respectwely per gram-molecule

T is the absolute temperature

B is the isothermal compressibility of the medium

p is its refractive index, and

A is the wave-length of the incident light.

The above expression was derived by Einstein on the
assuraption that the scattering of light was caused by the
local changes in dielectric displacement consequent upon
the local fluctuations of density to which an otherwise
uniform medium is subject owing to the thermal move-
ments of its parts. In such a case, the light scattered in
a direction transverse to the primary beam should be
completely polarised. The same result may be deduced
when the individual molecules are regarded as sources of
scattered radiation provided that they are supposed to be
spherically symmetrical and their restricted freedom of
movement is taken into account. Actually, however, the
transversely scattered light is in general found to be
imperfectly polarised, much more so in a liquid than in
its vapour. The imperfect polarisation has been explained

¢ R. Venkateswaran—Trans, Chem. Soc., 1922, Vol. 121, p. 2655.
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ELECTROMAGNET.C THEORY 3

by the late Lord Rayleigh,® Born’ and Gans® on the
assumption of molecular anisotropy. The subject has also
" been studied by Sir J. J. Thomson ® from the point of view
of the electron theory. The increase of imperfection of
polarisation in the liquid state is remarkable and an ex-
planation of it has been given by Raman on the idea that
the scattering in a fluid can be considered to be made up
of two parts, a density-scattering and an orientation-
scattering of which the former is given by the Einstein-
Smoluchowski formula while the latter is proportional to
the density of molecules. It is obviously of importance
to make an exact investigation of the connection between
the state of aggregation of a medium and the quality of
the scaltered light, especially in view of the fact that it
promises to throw light on the nature of the liquid state
itself. TIn the following paper, an attempt is made to
~ develop a general theory of scattering in fluids. In
Article 2, the medium is assamed to be continftous as in
Kinstein’s treatment of the subject, but subject to local
fluctuations of density depending upon the laws of
~ statistical - mechanics. - Lorentz’s - electromagnetic treat-
ment of the scattering of light in gases developed in his
book “Tes Theories Statistique en Thermodynamique ”
has been adopted and extended to the general case of a
fluid of any compressibility. In Article 3, the subject is
treated from the molecular standpoint in the case when
the molecules are isotropic and the Tinstein-Smoluchowski
formula for scattering is deduced. In Article 4, the
molecular treatment is extended to the case when the
molecules are anisotropic and expressions are deduced for
thie intensity of the scattered light, its state of polarisa-
tion and the co-efficient of extinction in the medium. In

¢ Rayleigh—Phil. Mag , XXX, 1918, and Bcientific T'upere, Vol. VI, p. 540.

7 Born—Verh. Deatsch. Phys. Gesell., Vol. 19, p. 243, 1917, and Vol. 20, p. 16, 1918.
8 Gans—Anun. der Phystk—10, 1931

% Sir J. J. Thomson—Phil, Mag., XL, 1920, p. 393.
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4 K. R. RAMANATHAN

Article 5, the results are discussed with reference to
experimental data as regards polarisation of the scattered
light in liquids and their vapours. = Article 6 contalns a
synopsis of the prmclpal results of the investigation.

2, “ContiNvous MEepiuMm” THEORY.

Let K, be the value of the dielectric constant when, there is a.

uniform distribution of matter and K, +8K its actual value at a volumel '

element 8v. A
In any actual fluid, owing to thermal movements, the density at any
point undergoes incessant fluctuations and hence the dielectric con- |
stant also. ‘
Using Heaviside units, the dielectric displacement D=K E (1)
where E is the electric intensity. When the density and consequently
the dielectric constant are uniform, there would be no scattering, for
the disturbances from different elements of volume would mutually
cancel each other, except in the direction of primary propagation.
At a place where the dielectric constant is K, 48K, :
D, =(K,+8K) E ' (2)
Here, there is a discontinuity of displacement which could be annulled
by introducing a supplementary electric intensity
K
F=— X, E (3)
For, then

D, would become (K0+_81<)(E—%E) which is equal to K, B if

we neglect (8K/K,)? in comparison with unity. As matters actually
ave, the scattering is identical with the radiation due to a system of

3K

o

constant differs from its mean value K, by 6K.

electric intensities —1I or E at the plac_es 'whew, the dielectric

Suppose we have a volume element dv at the origin: “of co-odinates
at which the dielectric constant is K ,+8K. When the linear dimen
sions of the element are small in comparison with the wave-length, the
amplitude of the disturbance from the element would be proportional to

K Hsv and hence its energy proportional to

(35 "o R
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ELECTROMAGNETIC THEORY: 5}

As a first step, then, we have to calculate the radiation caused by
an extraneous periodic intensity acting throughont a volume element
~ Sv ab a given point in a homogereous isotropic dielectric. The problem
is analogous to that solved by Hertz in the case of the vibrating electric
doublet.

Let E represent the electric intensity

H ' magnetic " o
D ” dielectric displacement

and T the extraneous electric intensity acting throughout the
element of volume dv,

We shall take the magnetic permeability of the medinm to be
unity.

The field equations are

7
Curl H=1 8D
¢ of ! (%)
Curl B=— _iH |
¢ Ot )
where ¢ is the velocity of light in vacuo
Also D=K(E4+TF) (6)
div H=o ‘ '
, | (M)
and div D=0
BEliminating H from (5) and making use of (6), we get
V’E——~K— 8'E_K —a—E-i- grad div E (8)

c* 9t* ¢ Of

To solve (8), following Lorentz,'® we shall introduce a new vector A

given by
K 92A
2 A Y =T 9
v Gz atZ ( )
Tn order that (8) and (9) may simultaneously be true,
. K 9A
B=grad div A— % : (10)
and
K o
== . 11
H - at[cull A} (11)

Equation (9) is of a well-known form and its solution is’
141 ’
= - 1 12
A 1r§ F( t___{_)(lv (12)

r

10 {, A, Lorentz—Les Theories Statistique en Thermodynamique, pp. 42-43.
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6 K. R. RAMANATHEAN

where the integration is taken over the whole space in which F differs

from zero and where u= 5—1—{ is the velocity of electromagnetic waves
in the medium, » is the distance from dv of the point at which A is

required and F( —1) is the value of F at time t——%

When F is a periodic electric intensity F, cos pt in the direction of
the z-axis, confined to a single volume element dv at the origin 6f co-
ordinates.

F,=o, F, =0 and F.=F, cos pt
Hence from (12)

— — __FIJSU __’l‘
A, =0, A, =0, A,__E;;‘ cos p (t E)
From (10),

E,= =04 _0° A~zde oA, 10°A,

Dz0« V= OyOz 02?2 Tt ot?

The magnetic intensities, can, if necessary, be easily deduced from (11).
For distances from the origin large in comparison with the wave-length,

7-1’— and 913 can be neglected in comparison with 1 and hence
: ; , o
B,=—2u B,=—%0, and B, = <_1 —Q 0 (13)
T 7 r 7

where o p4F oS cos p (t—-—->
%2

The intensity of the radiation would be proportional to
E.*+E,2+E,®* which is given by

3.2+y,w‘3"' Sill‘:& ? (14)

where 6 is the angle between the direction of the ray ana the axis of ¢
(the direction of the applied electric intensity).
In the case of scattering by a single volume element 8v,

F,=— —'31%{ E and the ratio of E,*+E,?+E,* to E* the square of the

o

amplitude of the incident wave is given by

sm*ﬂ (217) (SK "‘18(7117:’ (15)

where 2x/\, has been substituted for p/u. A, is the wave-length of
the incident vibration in the medium.



ELECTROMAGNETIC THEORY 7

Let us now consider the scattering produced by the accidental
deviations of density in an extended volume. Let us take the X-axis to
be the direction of the primary beam. The density deviations would
~ change both in magnitude as well as in position in a perfectly arbitrary
manner and there would be no co-ordination of phase between the
vibrations scattered by the various elements. As a conseguence, over
any finite time-interval, the energies and mnot the amplitudes of the
scattered radiations from the different elements of volume would be
additive. If 8p denotes the deviation of density from its uniform value
p, in a volume element Sv then we can easily show'' by applying
Boltzmann’s principle of entropy plobablhty that the mean square of
deviation of density is given by

T -RI2, e an
The relation between density and dielectric constant
is given by Lorentz’s equation
K,—1
(K, +2) Pe =constant,.
_(K,—1) (K,+2)

Hence

Op B 3po o
and ‘
sk=0Ks,
op
gg;('li'rl) H(Ko+2)" 5,0
9o
[e]
_(K,—1)? (K,42)* RTB
- 9 Ndv

Substituting in (15) sx= for sk: we get for the ratio of
the average intensity of the scattered radiation to that of
the incident
x*  RTB
9 NK*A*
and since the 1ddie1ti0ns from different volume elements -
are additive

=* RTB
9 Nt

(K,—1)* (K, +2)* 920 5,
:)-3

(Ko—1)2 (K, +2)2 5111119 per unit volume (17)
;

11 Einstein— Ann. der Physik, Vol. 1910, p. 1276, also C. V. Raman and K. R,
Ramanpthan—Phil, Mag., Jan. 1923,
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8 K. R. RAMANATHAN

where A is the wave-length of the incident vibration in
vacue. The radiation in the direction of the 2z axis is
zero and is a maximum in the 2y plane.

When the incident light is unpolarised, the ratio of
the intensity of the light scattered in a transverse diree-
tion to the intensity of the incident beam is given by

=* RTR

2 2 1
18 WA+ (Ko"l) (KO-{—Z) o

In a direction making an angle ¢ with the incident beam,
this becomes

'1% I%% (Ko—1)* (K,+2)* {Hj‘zszd’} (18)

To get the extinction co-efficient, we have only to find
the total scattering from a stratum of thickness d and
unit area of cross-section. Integrating (18) over the
surface of a sphere of radius 7, the ratio of the energy
scattered by such a stratum to the incident energy is given
by

dl_ 8 RIB e \
=37 N (K,—1)2 (K,+2)de
s I=le s

. 8x3 RT
where =7 F)\_ff_(Ko—l)z (K, +2)
We might substitute #* for Ko in the above expressions
where 1 is the refractive index of the medium for the
particular frequency.

3. Scattering by Isolropic Molecules.

Considering the problem from a molecular standpoint,
the effect of an incident electromagnetic wave on the
molecules of a medium is to produce a displacement of
the electrons in the molecules which is equivalent to
creating an oscillating electric doublet in each ‘molecule
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ELECTROMAGNETIC THEORY 9

with a period the same as that of the wave. When the
molecules are isotropic, the axes of the doublets coincide
in direction with that of electric intensity, but when they
are anisolropic, the displacements of the electrons are not
in general in that direction, but the effect may approxi-
mately be taken to be equivalent to creating three
doublets with their axes along three principal directions
in each molecule. The field to which any molecule is
subject is the resultant of that due to the incident wave
and that due to the polarisation of the neighbouring
molecules. The latter is taken account of in TLorentz’s
well known treatment of - dispersion in homogeneous,
isotropic media. In the case of a gas abt atmospheric
pressure, its effect is negligible. The treatments of the
scattering of light by isotropic molecules by the late Lord
Rayleigh, Natanson, Sir J. J. Thomson and others do not
take into account the influence of the surrounding,ﬂmole-
cules. Einstein’s treatment of the subject does consider
the cffect due to the polarisation of the surrounding
dielectric, but the treatment is non-molecular, and the
results apply only to the case of a medium composed
of isotropic molecules. With a view to extension
to the case when the molecules are anisotropic, a
molecular treatment of the problem is given below,
taking into account the effect of the ncighbouring
molecules. .

Consider a plane polarised wave travelling in the
direction Oz, Tet Z be the electric intensily in the wave
parallel to O: and proportional to cospt. Under the
influence of the wave, each molecule becomes equivalent
to a doublet with its axis parallel to 0,. Let A be the
moment induced in a molecule when it is placed in a
field of unit intensity. If the medium be of uniform
density and if », denotes the number of molecules per
unit volume and M, the electric moment of each doublet,

2
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10 K. R. RAMANATHAN

the actual intensity at any point O in the medium is
given by

Z-%-f};lnoM0
and

MO:A( 7+ %‘-%Mo >

:—_AZ/( 147 A ) (19)

D]

Now K, the square of the refractive index of the medium
for waves of frequency p/2- is given by

K,—1 dn
S0 =T 2
K. 2 BnoA (20)

and hence

M, =AZ (Kngif_‘zl @1)

A vibrating electric doublet radiates out energy.

According to Hertz’s well known solution, the electric

intensity at time ¢ at a point , distant (great in com-
parison with A) from the doublet is

prM, . sinf
b= : (22)

G?/'-
where ¢ is the velocity of light in vacuo, § is the angle between

0: and the direction of the ray and M, stands for the value of

—)

o ”
the moment at time £~ - .
¢

When the molecules of the medium are uniformly
distributed and we consider the effect due to a volume
whose dimensions are large compared with », it vanishes
in all directions except in the direction of primary pro-
pagation where the secondary waves from the different
molecules in the wave-front combine with the original
wave and give rise to a plane wave moving with an
altered velocity. In any actual fluid medium, however,
owing to the thermal movements of the molecules, and
the consequent fluctuations of density at any point, there

89



ELECTROMAGNETIC THEORY 11

is a finite radiation of energy in all directions. If »,
represents the average number of molecules per unit
volame in a volume element 5 and & the mean square
of the deviations of that number, then as before
sut _ RTB- (o3
'n.o_” T Nbév : (42)
Consider a volume element sy ab 0 small in comparison
with a cubic wave-length, but large compared to the
dimensions of a molecule. TLet » be the number of mole-
cules per unit volume in & and let » be cqual to n, + 8.
The electric intensity at P due to scattering by the
molecules contained in & would be given by
2
P” sin 6 Su (Mn—Mn,) (24)

1;.

o

where M is the electrical moment appropriate to the density .
" When we are considering the average effect over finite intervals-of time,
the distinction between M and M (t—1) may be dropped. Now =,

¢ s

= ?’27. sin 6 [(M,,+31\1)(u,,+3n>- Mu,,,"] 5, (24)
= 7)_; sin 6 (MoSn—l—nOSM)Bv (25)

Now, differentiating (19) and applying (20)
SM = (K0~1)é]{0+2) AZSI—Z.

n,

©n,SM4+M, 5= (K_gizz> * AZn

_ (K, =1)(K,+2)  8n | (26)

Let us consider the effect due to (25). If E is the electric intensity
at P due to radiation from dv, the energy is proportional to E*. It 1s
thus

Pi-s“:—n;-g-o(M,,Sn»+n,,3M)' du?
et

:}'ﬂ' sin *6 (I{ﬂ'—'l)’(}ga'}'Q)n Z’vS_')_L’ Sv?

ctr? 1442 .on,?
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12 K. R. RAMANATOAN

Since &n varies from instant to instant according to the laws of chance
the average expectation of E? over a sufficiently long interval of time is

5 _ptsin 20 (K,—1)*(K,+2)* 5, o*

B = L Sw?
c*r? ) 1442 n,? v
By (23),
e :p"’ Sil.l 26 (K,,—-—l)f@[(,,—]—i%)‘“’ ZzR_;I‘LB 5o
cltr* 144 ® N

When we consider the effect due to a volume v whose dimensions are
large in comparison with A, the ratio of the square of the electric vector
in the scattered radiation to that in the incident is

|

B _pt sin 20 (K, —1)*(¥X,4-2)* RTB-V
7,2 ctr? 14dar? N '
_ w2 RT@B

— K — 2(K 9y2 7, Sil:l_‘ze
g Ko bA KRtV

where \ is the wave-length of the light in vacuo.

4.  Secattering by Anisolropic Molecules.

Let 0'¢, O'y, O'C denote the three principal directions in a molecule

whose centre is O'.

Let A, B, C be the moments induced in the molecule when placed .
in a field of unit intensity parallel to 04, O'n, O'¢ respectively.

As before, let O be the direction of the incident polariscd plane
wave and Z the electric intensity along Oz Ina medium composed of
isotropic molecules the axis of the induced doublet in each molecule
would be parallel to Z; there would be no component along Oz or Oy.
Tn a medium composed of anisotropic molecules, however, there would,
in general, be components both along the = and the y axes. But when
the axes of the molecules are oriented at random the components of the
induced moments along the x and y directions would be as much positive
as negative and hence the polarisation fields parallel to the @ and y axis

which may be taken as —%‘—mz,,, M, and %W7L0-My respectively would

. . 4 =
vanish. We would however still have ~§7rno M, because M, can *have

only positive values. The effect of the polarisation of the surrounding
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ELECTROMAGNETIC THEORY i3

molecules is then to produce an additional field of —;;‘Ii mu, M, .  The
resultant electric field at a point in the medium ig therefore

7+ %wn, M., @27)

To calculate M, , we note that if the molecules are oriented at

random,
i, = A0 [y S ot ]
3 <3
_ A+B+C, K, 42
- 3 ' 3
K,—1 4:7rn A+B4-C
; i - 28
and K,,+Z 3 [: 3 :I (28)

Consider a molecule, the direction of whose principal axes is defined
s Y L
by the Eulerian angles 6, ¢, ¢.

In tigure 1, 2, y, » represent
the points where O'w, Oy,
Oz cut a sphere of unib
radius, and &, 9, { the points
where the axes of the
molecule cut the same

sphere.

The moments induced in the molecule parallel to O'¢, O, O are
—AZ (K__,,_th) sin 6 cos ¢

BZ (K" +2Y gin 6 sin ¢ (29)

CzZ <K"—3t2> cos 6

* Lord Rayleigh and Sir J, J. Thomson, loc. cit.

S92



14 K. R. RAMANATHAN

When these are resolved along O, Oy, O: the components are

M,=% (K";'2> [sin 6 cos 6 cos ¢ (C—A cos?¢—B sin?¢)

+(A--B) sin 0 sin y sin ¢ cos 4;]

M, =2 mn.;i) [sin 6 cos 6 sin }/f (C—A cos?¢—B sin’g) |
+(A—B) sin 6 cos ¥ sin ¢ cos ¢]
M, =% (KT“) [o cos 264 B sin 26 sin *é+ A sin %6 cos 2¢] (30) |

which, for shortness, we may write

zK_ﬂ_;"ﬁ)L,, Z<§T+2_)L Z(Iﬁﬂg‘z)Ls

The mean value of M, and M, taken over all orientations is zero,

while that of M, 1s Z (K"3+2> (A+g+0) . At a point on the

y-axis distant » from O, the square of the x-component” of the electric

intensity due to scattering from a molecule at O is

4
P M,®
G‘}’)"'

and from the molecules contained in a volume element 8v the average
expectation of X'? is

s Ry
t=_ M,?% adv
C‘.Er.:

Since M, has positive and negative values equally often at random,
X'® 4s proportional to the number of molecules.

Averaged over all orientations of molecules

X = P g (Iig_z : % (A?+4B? +0?—AB—BC—CA)n,d

chp?

— P 7 (K,._?;'_z)zfnﬁv

P
where

f:il5 (A?4B?40*—AB--BO—CA)
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ELECTROMAGNETIC THEORY 16

and from a volume V
X =L 2 (KL,L))‘tz)" frov (31)

In the case of the Z-component, we note that it can have
only values of the same sign as 7. THence from a small
volume element 8y, the amplitudes of the electric forces
are additive. The Z-component of the electric force
due to a single molecule at 0 is given by

and from the ndv molecules contained in the volume

element 8

o
7= —(%7 M,ndv

= B (B, 48M.) (no +8m)B

7‘)2
c:r

(M .7, +M,8n+ny0M,)dv

"The amplitude due to the first term cancels when the
offect is taken over a finite volume and as in the case of
isotropic molecules, we are left with the second and third
terms ,

zz_ﬂl (_M-:Sn—i—nogﬁ:)’%“

611‘/'.'2

7

4 K 4 J—
(;*1'2Z2 —;) L,? dv? on?
as in (26).
The mean value of L, {aken over all orientations is

g=-s (3A7 +3B? +3C? +2AB+2BC+204A)

S 4 3
VRN Pz (Koﬂ)ifgﬁ_’-b‘v“‘g

T etr? 3
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16 K. R. RAMANATHAN

aud by (23)

K 2 RT
= cp;* Zg( 0;§+ ) '1188” 1%y

and from a volume V, the same quantity

p* K,+2\*RT R
= o*r“Z( 3 ) NBIO'ZQV (32)
and
Xla f ( ;g)
gz = (K 42 :RTR f
-’—“'3—“) N ’)’LO(/ o= ;{7
where
K, +2\2RTB )
- () .

When the incident light is unpolarised, the ratio of
the weak component to the strong in a direction perpendi-
cular to the incident beam is

2f
—— 35

For a gas at ordinary pressure obeying Boyle'’s law,
this becomes

o _
J+g (36)

" in accordance with Rayleigh’s result.

The total intensity of the scattered licht from a unit
volume in a direction perpendicular to the inciden% beam

18

?)2 7,2 (K% ) {3fn, +ygno} (37)

Cl,r
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ELECTROMAGNETIC THEORY 17

To connect g and f with experimentally determinable
quantities, we note that
=(A*+B?+C*—AB—BC—CA)
— 2 (3A? +3B* +3C? +2AB+2BC+2CA)

g—4f=3(A+B+C)*

9 (K,~1)* o
= 1671..27,"02 (KD_*_Z)Q (38)

and from (36) in the case of rare vapour for which Boyle’s
law holds good, the ratio of the weak component to the
strong in the transversely seattered light is

- 2f . _ 3ri(g—4f) ‘
nE frg 1T T (%9)

The quantity under the brackets in (87) can be written
'%’%;

fro(3+4y) +(g—3fnoy

By (89), this reduces to

(944y)
no'g—%f) { __(:_”_y_ }

and (37) becomes

‘ K, +2\s r (9+4y)
el ("’3““) 1o (g—4f) zY+ ~—6‘T’

G-t,l.L

substituting the values of ¥ and g—+f it reduces to

QRTIB A : AR L r(9+4y)
N)\i 71 (K0~1)_2(K0+2),+ ;;_; ,;(:XI (IKON':[)2 6_..77.l

Since the square of the electric intensity ‘in the incident
unpolarised light is Y2 +2*=272=1, say, this becomes

.In ? TB 2 w? ___ﬂ__‘L'_)'_)_
......... { :7{8 N/\"(K ‘““1>’\.K0+2> +W<Ko—-—l)’ (4:0)

3
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18 ‘ K. R. RAMANATHAN

When A=B=C, that is, when the molecules are isotropic,

f=0 and the expression reduces to the Einstein
Smoluchowski formula

I, =» RTB .
s wn (Ko—D)i(K,+2)

In the case of a vapour obeying Boyle’s law, the
expression becomes

w2,

f 13,
2n At

6 —7r \

SO
.2

1 . (
f (Ko—=1)* 7 1+
The quantity outside the square hrackets is the Rayleigh
expression for scattering in gases obeying Boyle’s law and
the multiplying factor is the same as that introduced by
Cabannes.

To obtain the co-efficient of extinction, we shall first
find an expression for the total radiation from a unit
volume when the incident light is polarised with its
electric vector along the z axis. The squares of the
components of the electric intensity in the light scattered
from unit volume, in directions perpendicular to Ouz,
Oy, Oz are (31) and (32)

and

, 7 E Kn+2 Tﬂ

n (,

b
{ 9
= f»’;, 4 ( 5—‘%“) Y9 "o

This can be looked upon as a mixture of unpolarised

light equal to c{-’i:.', 73 (Kﬂ-‘}Q ) 2/, and of polarised light
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ELECTROMAGNETIC THEORY 19
. o 3 .
equal to £- 72 ( g-f’gﬂ:“) ny (yy—f) with  the  vibrations
S ooty
parallel to the z-axis. Integrating over the surface of a
surface of a sphere of radius », the total radiation be-

comes

, .
v, K,+2 8 L
f.)i 7 ( “;: ) g [Srrf-F “:)?: (}’g/-—j):,

2
12875, (K, +2 g
=g Z ( 5 ) 1o (3 +74)

Putting in the values of f; ¢ and v this becomes

s § Sm3 RTB, 4 p 8w 69
) D (K. —1)2 22 L 20 (K. —1)2 "1
Czr e Ko (Ko 4274 3';10/\"'< I

&r3 RTR, .- W Srd
. K, —1)2 (k 292 _— U
g7 xar oD (Ra+2)"+ = WA 6—Tr,

(1+§y>_ . (A1)

Iiven if the incident light is unpolarised, the same ex-
pression holds good. For a gas obeying Boyle’s law, this

reduces to

Qrs (K,—1)? {G+3r1 )i ;

5w 67 ) v ()

We can easily sce that with unpolarised light, since

- the intensity of the light scattered along the y and z-axis
is each

2

- D) -
Pt I\_Qi“z)n,o (3f+v9)

(.'-Ak 7.2 3
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and that along the 2-axis is

2

. Ko+2 .
2 zn (Bt ) g 2reig)

et r 3

the distribution of intensity is given by

2

8rt T, ( K,+2 A ‘ .
bt L (B2 L)+ Gy =) cost]

where ¢ is the angle between the directions of the ineident
and scattered beams.

When the values of f, ¢ and v are substituted this
becomes

I, [=* RT \ _
= [% Nx§'<Ko~1> (Ko+2)? (1+cos™¢)

L (:Ko"_l)2 74 { , Y A 1
+_‘2 noA* 6=7r, 1O+ 4y) + (dy—3) cosquJ-]

I ? RT
= 1o [T RT8 (Ro—1)* (Ko+2)" (1coste)

.L_Ko"'l)z "

¢ 2
oAt 6—-79~1<4Y 3)(1+4cos?q)

772
t g

LT (Ko'—l)a o :]
+12 2 oAt 6—"7r,

5. Comparison with Lxperiment.

We shall calculate the imperfection of polarisation of
the transversely scattered light in a number of liquids
from (85) and (86) from the corresponding values for
their vapours, and compare the results with the values
obtained experimentally. TFor this, we shall use the data
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obtained by Rayleigh' and by Raman and Seshagiri hao
The followmw table summarises the results.

Wrak COMPONENT
A YERT (per cent).
SrronG CoMPONENT
Substance. -
Vanour Ligud at 8 ° | Liquid ot 30
apotit- - (Calc.). (obs.).
Ether 17 20 83
Benzene 6-5 Vb 398
Cs, 12-0 75 70
CHC1, 30 31 15
CClL, 3-1 49 11

The calculated values are uniformly too high. This
seems to show that the hypothesis of random orientations
of molecules in  liquids, which we Lave assumed i lhe
development of the theory does not houd good.

G. Synopsis.

1. An electromagnetic theory of the scattering of
light in fluids has been worked out without assuming a
molecular structure on the basis of Loreniz’s treatment
of the scattering of light in gases and the Einstein-
Smoluchowski formula for scattering derived.

9 The same result is shown to follow if the fluid
medium Dbe supposed to be composed of isotropic mole-
cules.

3 The treatment is extended to the case when the
molecules are anisotropic in which case it is shown that
if the orieniations of the molecules are entirely at random,
the transversely scattered light is imper fectly polarised,
{he ratio of the weak component to the strong being

' Rayleigh : Proc. Roy Soc. A, loc cit.

: ¢ V. Raman and K. Seshagiri Rao: Thil Mag vol. 15, 1923, p. 625 and
“ Molecular Diffraction of Light”
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given by

o=
A7
2
where yz( I{_%‘i‘z) P%B n, and fand g are constants for

the molecule. The intensity of the light scattered in a
direction making an angle ¢ with the incident beam is
shown to be
}_[ T %}\? (Ko—1)* (Kg4+2)* (1+cos?e)
| w (Ke=D? 7,
2 NoA* 6—"7r,

9. ™ (Ko—1)2 T ]
+12 2 NoAt 6—"7r,.

The expression reduces to the appropriate forms when
the medium consists of isolropic molecules and when the
medium is a vapour obeying Boyle’s law.

The co-efficient of extinction is shown to be

8" RIS,
27 Nt

o 8x (K,—1)*  6r 2
—_— 2 2y2 -0 o 1 14 =
(Ko—1)® (Ko+2)"+ 3 oAt 6—77, a1+ 37)

For a vapour obeying Boyle’s law, this becomes

8rt (K,—1)? 6+3r,

-3 MoA* 6—77,

4. 'The observed values of the imperfection of polari-
sation in liquids are compared with the calculated values
and the former are found to be much too small. This
seems to indicate that the assumption of random orienta-
tion of molecules in liquids is not valid.

I wish to express my best thanks to Prof. C. V.
Raman for his kind interest in the work and for his valu-
able suggestions.

101





