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On Fluctuations of Dielectric Constant in Liquids
and Theories of Molecular Scattering of Light.

BY

i

Dr. K. R. RamavaraaN, M.A.,, D.Sc.
| 1. Introduction. |

In two previous papers,! the electromagnetic theory
of the scattering of light in fluids was dealt with by the
present writer from the molecular point of view. ~ Binstein’s
expression for scattering was derived for liquids composed
of isotropic molecules ; for liquids composed of anisotropic
molecules, it was shown that just as in the case of gases,
there would in addition be an unpolarised scattering and
expressions for the intensity and polarisation of the scattered
light were derived. Gans® has, in the meanwhile, developed
the phenomenological theory so as to include the case when
the transversely scattered light is partially polarised by
assuming that the fluctuations of dielectric constant which
on Einstein’s theory are responsible for the scattering of
light, are in general anisofropic, these deviations from isotropy
being also responsible for the phenomenon of electric double
refraction. Some differences between the expressions for
scattering put forward by Gans, by L. V. King ® and by the
present writer have shown the necessity for a re-examination
of the question of fluctuations of dielectric constant in a
liguid.

i ¥, R. Ramanathan, Proc. Ind, Assoo. for Cult. of Science, Vol. VIII, Part I, pp. 1-22
and Vol. VIII, Part 11T, pp. 181198 (1923). Thess will be veferred to in the sequel as
papers A and B respectively.

¢ R, Gams, Zeit, fir Physik, xvii, p, 353 (1923),
L, V, King; Nebure, oxi, p, 867 (1928), See alao paper B,

Ind. Journ, Phys. 1, 413-436, 1926-27.
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414 : K. R. RAMANATHAN

2 Fluctuations of dielectric constant in o small
' volume element.

The relation between the dielectric constant and the
molecular density and polarisability which is usually used
in deriving the fluctuations of dlelectrlc constant in a hqmd
is the Lorentz-Mosotti formula

K—1 _ 4= )

Kyz =g "4 )
where K is the dielectric constant of the liquid, # is the mean
density of the molecules contained in it and A’ the average
- polarisability of the molecules. By differentiation,

_(R—=1) (K42)( dn _ dA’
K 3 { i A’ } : ()

While there is no doubt that the above relation will be
'perfectlyk valid if the medium as a whole undergoes the
change denoted by dn and dA’, the validity is questionable
if the particular changes are confined to a very small volume
element. To see this clearly, it is necessary to recollect how
the factor (K+42)/ 8 arises. The total field acting or a mole-
cule within a liquid is obtained as follows. Consider a long
cylindrical cavity described round the molecule, the axis of
the cylinder being along the direction of the external field.
The length of the cylinder should be very great compared
with its radius and the radius, though small in the physical
sense, should be many times the diameter of a molecule.
The intensity at the molecule will now be Z, that of the
external field. If the cavity is now filled with the molecules
that have been removed, an additional intensity will be
caused, The filling can be done in two steps, (1) up to the
boundary of a sphere surrounding the molecule, the cylinder
being tangential to the sphere and (2) within the sphere.
The first of these will cause a field $wnM at P, where M
is the mean induced moment of the molecules outside the
sphere. The molecules within the sphere will cause no
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FLUCTUATIONS OF DIELECTRIC CONSTANT 415

effect at the centre provided they are arranged in cubical order
with the central molecule at one of the cube corners or, on
the average, when the surrounding molecules can take up
continuously-varying positions and orientations as in a liquid.

The resultant field will therefore be Z--swnM or Z(K +2)/3,
where X is the dielectric constant-of the matter outside the
imaginary sphere.

If there is any local deviation of = or M in the region
surrounding the molecule, it would cause an additional field
whose sign may be positive or negative according to the
sign of the deviation and its position with respect to the
molecule. Even though the deviation is positive, it would
cause a negative field if, for example, it iz located in a
direction at right angles to the field. When there are many
such local deviations of # or M distributed at random round
the molecule, the extra addition to the local field need not
necessarily be proportioned to the change of {nM in a small

volume element round the molecule.

In obtaining the intensity of scattering from a finite
volume of the liquid, we divide it into small volume elements

and consider the waves scattered from the parts of each
volumse element to be coherent. The only restrictions on
the size of these volume elements are that their linear dimen-
-gions should be small compared with the wave-length and
that they should be sufficiently large for the fluctuations of
density in one to be independent of those in another. There
must be a minimum limit to the size of the volume element
of a liquid under definite conditions of pressure and tempera-
ture so that the latter condition may be satisfied, This
limiting volume is not easy to determine, but some idea about
its magnitude can be obtained from the following considera-
tions. TLiquid benzene, for example, at 30°C. has & com-
pressibility of 103 10—6 per atmosphers, which is about
1/35 of that of a perfect gas of the same molecular concentra-
tion, Since the mean square of -the deviations of density
28
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416 " R. B, RAMANATHAN

in a volume element is proportional to the compressibility
and since the fluctuations in a perfect gas are determined by
the circumstance that the position of one molecule is uncorre-
lated with the positions of other molecules, we may take it
that the fluctuations of density in a volume element in liquid
benzene at 30°C. are uncorrelated with those in other volume
elements if it contains on the average not less than 85 mole-
cules. If the volume elements are so small as to contain fewer
molecules than this and one of them has at a certain instant
more than the average density of molecules, then other volume
elements in the immediate neighbourhood will have fewer
molecules, that is, the correlation between the deviations of
density in neighbouring volume elements would be negative.
To take another example, liquid CO, at 30°C. in equilibrium
with its vapour has a compressibility nearly 20 times that of a
perfect gas of the same molecular concentration. Here as
before, the minimum size of the volume element required to
juetify the assumption of independence of density-fluctuations
will be that it should contain not fewer than 20 molecules,
but in neighbouring volume elements of smaller size than

this, the fluctuations of concentration will be positively
correlated. Except in the immediate neighbourhood of the
eritical point, we may safely take that the fluctuations of
density in different volume elements are independent if they
contain not less than 50 molecules.

Now, the amplitude of the scattered waves from each
volume element will be proportional to the number of mole-
cules contained in it without any regard to how they are
distributed inside, and to the average field at the molecules.
The value of the latter depends on the dielectric constant
outside the imaginary sphere described round it. KEven if
we take the sphere so small that its radius is only three times
the average distance between two molecules, it will contain
more than 110 molecules and hence the fluctuations of density

inside the sphere will have very liftle correlation with those
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FLUCTUATIONS OF DIELECTRIC CONSTANT 417

outside. The volume of polarlsed matter responsuble for the
extra local field at the molecules of a volume element is thus
 not only larger than the volume element itself, but the
fluctuations of density in it are independent of those in the
element. Hence, the fluctuations of local field at the molecules
- of a volume element will be uncorrelated with those of density
in the element. Thus, in equation (1), which may also be
written in the form

K~1 :(15;_;2 )wx,

the K'’s on the two sides of the equation are not identical ;
while the K on the left hand side changes with the fluctua-
tions of density in the volume element, the K on the right
hand side does not. “If the latter be treated as constant,

dK = (K~ 1){ dn dA'}' | - . . (3)

It has been tacitly assumed in the above that the fluc-
tuations of local field caused by the variations of molecular
polamsablhty are’ altogether negligible.. “When a liquid is
not subjected to veleetuc or magnetic fields, the latter arise
mainly from the varying orientations of anisotropic molecules,
If we assume that the orientations of different molecules are
uncorrelated with each obher, the mean devmtlon of polamsa-
Dility in a small volume element Wlll ‘also be uncorrelated
with the average local field at the molecules since it depends

mainly on the polarlsatlon of the surloundmc' medium beyond =

the bounds of the volume element

8. M olecular‘ theory of scattering.

- We may thus consider equation: (3) as more correctly
representing the relation between the deviations in dielectric -

constant, molecular concentration and molecular polarisa-

bility than equation (2). It was shown in paper A that in
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418 K. R. RAMANATHAN

~ a medium composed of isotropic molecules, ‘the electric in-
tensity at a distant point P due to scattering from ov is
, g%l gin 6' dv. Mn

where p/2x is the frequency of the incident radiation, ¢ is
the velocity of light in vacuo, ¢ the angle between the
scattered wave and the direction of the electric vector in
the incident radiation, M the moment induced in a mole-
cule and » the density of molecules contained in the volume
element.  Subtracting the part common to all volume
elements which would destroy each other by interference,
the excess electric intensity in the scattered wave will be

P* gin 0'(Mn—M,n,)b
c?d oo

_where M, and #, are the mean values of the moment and
density respectively.

It was assumed in paper A that M is the moment
appropriate to density n», but since as we have seen, its
value is not apprecmbly affected by the fluctuations of
density, M can be equated to M, and the above expression
will reduce to

P on g
<5 sin 6'M ,0n.8v RN C))

and the square of the eleetmc intensity at P due to scattering
~ from 8?) will be |
P gint ¢ Ko—1)* 72 3% 5

———

c*d? 167® g}
The mean value of this quantity is

i _p*sin?d (K,—-1)* Z’é\ﬁiavf

c*d?® 162 o
. g
—_ T RTB (Ko""l)' 512’ S . (5)

TNt

213



FLUCTUATIONS OF DIELECTRIC CONSTANT 419

When the incident light is unpolarised, the intensity cf the
transversely scattered light from a finite volume V is

_ I,V -«*RTB
R INA*

1 (KO""']‘)2 e (6)
where T, is the intensity of the incident light. This differs
from the expression given in paper A by the suppression of
the factor (XK,-+2)%/9."

Turning now to the case of a liquid composed of aniso-
tropic molecules, the Z component of the electric intensity in
the light scattered from dv at P is, as shown in page 184 of
paper B

r 7 (K__———'gz ) L név o (1)

c*d
where '
L,=0C cos*6+B sin’f sin?¢+ A sin?f cos? ¢
A, B and C being the polarisabilities of each molecule along
three principal directions and 0, ¢, y being the Eulerian
angles defining the directions of the molecular axes with
respect to the co-ordinate axes. The above can be written

N

2 K42 A4+B+C A
P <*_3'5_L){ 3+— (Ls—-—__i_gj_g.> }nav v. (7a)

k]
=L 7 ( ;2 ){ A+%+O nodut é-j-—?ii&ﬁu
. /

+ ( Ljy— éi___?‘lg ndv } we  7(b)
in which n, -+ 8n is substituted for =,

1 M. Born in hig paper on fcattering in Phys. Zeit. Nr. 1/4 p. 16 (1918) and L. 'V,
King in his letter to Nature (cxi, p. 667, 1028) have both omitted this factor, but without
giving reasons.
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420 K. R, RAMANATHAN

Of the three terms in the last expression, the firat is
~ constant for every equal volume element and the third varies
from molecule to molecule. When finite volume elements
are considered, the first term cancels by interference, the
second is summed by adding together the squares of the
electric vector from the different volume elements and the
third by adding together the squares of the electric vector
from the different molecules. The last term is the one intro-
duced owing to the anisotropy of the molecules. If the K in
(K-4-2)/8 is taken to be the mean dielectric constant of the
liquid, it can easily be shown that the total value of Z” from
a volume V is

778 = o*p;’ 7, (K?;-Z)’nov {( A+33+C )’ RTgno +§f}

where
f=1s(A*+4B*4-C? —AB--BC—-CA)

As was shown in paper B (equation 1)

i P g (Kog‘z)ﬁfnov

Hence

g J
‘z‘ﬁz( A+%+G)s B, 4

N

If the incident light is unpolarised, the ratio of the
weak component to the strong in the transversely scattered

light is

2f
"=A+B+GC Y RTfn, 4
( 3 ) N 3
63
:—""—_———_—_—‘—‘ e (8)
SRTfn,
Nt

here
W 8.—:.(A’+B’+O’—-—AB»BG--—OA)/(A+B+C*)
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FLUCTUATIONS OF DIELECTRIC CONSTANT 421

. And the intensity of the light scattered in ‘the trans-
verse direction expressed in terms of r is

I,V RTB  _1ys SL+D |
4 ame e 1)'. 6—"7r- - )

The value of the co-efficient of attenuation can easily be
shown to be

_ 8 RTB g _qyp4 570 —1)* 28
h= T e oD gy, (S

= 8 (k, —1) {ET.@’EQ +95 } | .. (10)
DY/2 N

4. Gans's theory of scattering.

Lord Rayleigh’s expression for the scattering of light by
a particle whose linear dimensions are small in comparison
with the wave-length, when its dielectric constant differs by
only a small amount from that of the surrounding medium,
takes the form' |
- L CONN LY . QD
where A is the deviation in dielectric constant of the particle,
x is the angle between the incident and scattered beams, and
Su is the volume of the particle. When we substitute for A?
the mean value of the square of the fluctuations of dielectric
constant taking place in a volume element Sv of a pure liquid
and assume that these are solely caused by the fluctuations
of density, we have

r=(5)

| __=(§_152 RIS ,
- T\&) TP

} Lord Rayleigh. Scientifle papers, Vol, i, p. 526,
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4929 K. R. RAMANATHAN

and .eqliation (11) becomes

I _ =RTB , (3K \2 ‘
= N p('é;,) Sv (1 4 cos®y) v (12)

which can easily be seen to be identical with REinstein’s
expression.

If now.we consider the deviations of dielectric constant
~of a volume element Sv to be anisotropic, the intensity of
scattering will be increased and the transversely scattered
light will also appear partially polarised. Let A;, A, A, be
the deviations of optical dielectric constant of a volume ele-
ment Sv along three principal directions of anisotropy
and let A=A\, A=A, Ag=A N, X XK
being equal to zero. Then A is the purely isotropic part of
the deviations and A;, Ny, Ay the purely anisotropic part. A»
is identified with the (6K/8p)® 3* of Einstein’s theory. Gans
showed that the imperfection of polarisation of the scattered
lightin a direction at right angles to the incident unpolarised
beam, which is measured by the ratio of the intensity of the
weak component that of the strong is given by

(/\1’ + N, + /\B’) -2 (/\1/\3 + A, + /\s/\_;_)
= 4A T A At (AA T AA T ALAY

(8 )g 6+67’ . (14)

This differs from the expression on the right-hand side
of (11) (with x=m/2) by the introduction of the factor
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TLUCTUATIONS OF DIELECTRIC CONSTANT - 4923

6(1+47)/(6~T7r)., The co-efficient of attenuation was obtained
by Gans o be
B /\12 - /\ﬁ'ﬁ s Asﬁ 81)

-9

h =

SN
. J— ____.P .% ’
— g%%( o +h12 - )‘wg;“}" As_) Sv Lo (1)

Gians next connects the anisotropic part of the fluctuations
of dielectric constant with the Kerr constant of electric double
refraction somewhat on the same lines as in Langevin’s work
connecting molecular anisotropy with electric double refrac-
tion. It may be useful to give a summary of Gans’s treat-
ment. If anisotropic fluctuations of dielectric constant occur
in a liquid, there will also be similar fluctuations of electro-
static dielectric constant. In an isotropic liquid, the fluctua-
tions will be in random directions, bub when an electrostatic
field is put on, the directions will no longer be random, but
there will be a tendency for the largest of the three principal
dielectric constants to set themselves along the direction of the
field, so that when a beam of light is passed through the medium
perpendicular to the field, the velocities of the components
parallel and perpendicular to it will be unequal, that is, the
medium will become doubly refracting. If A%, A, A be
the three principal deviations of electrostatic dielectric
constant of a volume element and they make angles whose
cosines are vy, v, and y; with the applied electrostatic field
E, (parallel to OZ), then the difference of potential energy
of the volume element from that of an isotropic volume
element containing the same mass but having the mean
dielectric constant of the ligquid is

S

. E—S%; Sv(Aloylg"{“Aaoyag”}'/\so'ysa) v (16)
By Boltzmann’s theorem, the probability that one of the
principal axes of a volume element has its direction between

29
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424 K. B. RAMANATHAN

¢ and 0-+d0, ¢ and ¢--dg, and y and x}z«%ﬁda/;, where 4 ig the
angle between the direction of the field and the axis under
consideration and ¢ and s have their usual significance, is

S(AL 7’19"’*‘/\%0%%"}“/\30739) sinfdédody

where \
Q=8N 8/8+RT
By the usual method of obtaining mean values

5_.. ﬁ-ju 5, Q(/"\107A2+A207a24‘/\3752) sin 8 db d‘;{) (‘Zl//

sin 0 d6 de dy

[If e GIA LY 2+ AsO7,% + Ay 07,%)

Reducing, we get

5 - 1 2Q o _ AL FALHFALO
Y1 gt 3y (/\1 3

— 6.3 0 0
Ya? = i 15 (/\g AT ”1"/2\39 A
and
'.)7;?:: 5 A (/\ o ,/\10+/}3£0+A80 e (17)

Gans takes the change of dielectric constant of the medium
as a whole in the direction of the Z-axis to be the average
change of dielectric constant of the volume elements COmpos-=
ing it, in that dlrectwn Thus

KomBo=(As 9+ Asy,t A ) w18

Bubstituting the value for y.% y.% v, and remembering that

E+Az"§“A3m

K,~K, = &

oD
N-"\

(ALPALHRASCCA, +ALA,)

m(/\lo%‘,/‘\ao,_?_/\sﬁ) (A1“§”AQ+A3.) } (19)

R
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FLUCTUATIONS OF DIELECTRIC CONSTANT 425

Similarly, evaluating ai , a: “i where a,, as a; are the

angles made by the directions of A, AL, A, with OX
he gots |

— 1 0.4 0 0
a,? =-—3——-%(A10.__A1 +§\e + A, )

with similar expressions for «’ and o;.

K ‘—“K =A ‘11 + A, an + /\saa

:‘:_—( AIOA +/\ A +/\3 /\g

_(/\1°+/\g°+/\33°)(/\1+/\s+/\8) v (20)

1f we write », and v, for the refractive indices for vibrations
* parallel and perpendicular to the field (v: being equal to K, )
ete., and v for the mean refractive index,

= S SRR, AR A AR,
_(A1°+A,°+(\§°)(A1+A.+A,) . @D
Assuming that

where ¢ is the electrostatic dieleetric constant, equation (21)
becomes

v,-—-v, Név (e—1)(e+2) {7\—-—5+
~80mRT (v*—1)(»*+2)

__(/\1+/\,+/\s)’}

’l+/—\T! 8

=)

+

_ Ndv (e—~D)(e+2) (A Faxs
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496 K. R. RAMANATHAN
Since the Kerr constant |
| B=(v, —v,)/AB,*

N T = 80mvBTIABY (v —1) (44 4 2) )
RSN Ag? =
1 + 2 + 3 NSU(E——I)(€+2) - (23)

Substituting this value in (15) and writing

A ~(*=1)2(*+2)* RIS
9 Ndv

(ans obtains the co-efficient of attenuation to be

A= 813 RT ﬁ(vz-—l)"’(vz-{—,?,)z_}_ 80mAB! (v2—-1) (v? 42)
3 N+ 9 3 (e=1)(e+2) S

(24)

5. Discussion of Gans’s theory,
Y

The quantity
AN AR
which is determined in (23) differs, however, in an important

way from the same expression in (15). Gans's assumption in
(22) that

. o (e=D)(e+2)
/\1 //\1 etc‘”“'(vz_l)(vz+2)

is equivalent to assuming
A0/, ete = (e—=1)(e+2)/(v? —1) (v +2),

as can easily be seen by reducing (21) in terms of A° A and
Ao A, ete. Ina liquid under ordinary conditions, the aniso-
tropic fluctuations of dielectric constant of different volume
elements (even when they are very small and contain only a
few molecules) are entirely uncorrelated with each other, but
when the liquid is placed in an electrostatic field, the axis of
largest dielectric constant in each volume element tends to
place itself parallel to the field. The resulting change in
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FLUCTUATIONS OF DIELECTRIC CONSTANT 497

dielectric constant is conditioned not only by the turning of
the anisotropic volume elements, but also by the change in
local field produced by such general turning. The potential
energy of an anisotropic volume element when the medium is
placed in an electrostatic field E, is written by Gans to be

- EOZ

o (/\107124"/\20722”}'/\80732)8”9 o (29)

‘This may also be written

— B 28

w

{A°-+=<>»1°y12+/\a°y22+xs°vs*>} o (26)

Now, *,°7,%+A:07,%+)%,* is the anisotropic deviation in
dielectric constant in the divection of the field if the change
duoe to the field is confined to the particular volume element
so thab the local polarisation field is not affected. But since
a correlated change of dielectric constant is suffered by every
volume element, the actual anisotropic deviation in dielectric
constant will be

2
( 54‘3 )(M"W-i—?u‘% +Ag%y,%)

[compare equations (2) and (3)] and the second term in
expression (26) for the potential energy will become

B,*8 -2
MBOWU{ €’3 }(Alonz“i")\zoygz'i'hao‘Ysg) N YD,

This term alone is of importance in determining electric double

refraction. &_f will therefore become equal to

1, 2Q ( et+2 AOAHNOFA 0
e () (bt

and 92 and vy, will also get similarly altered.
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498 K. B. RAMANATHAN

Expression (18) will also get changed to

K’“K":(V = )("1‘71“ Fhiy,? Fhey, )

AL+ As+A, being equal to zero.

Therefore,

K. m__- Nﬁv(emi«z)( +2))\° f 7
o> 40sRT M b

_ ~()>1+g2+>\9_)2} . (28)

1f the average field acting on the molecules of a small "volume
element in the absence of an electrostatic field is unaffected
by the anisotropic fluctuations of dielectric constant and if we
assume that the directions of the principal electrostatic and
optical polarisabilities in each molecule are the same and their
magnitudes are proportional to each other,

and

Vy—v, . Név g1 e+2 22

(R T )

H,* ~80mRT v2—-1 3 3
. Név (e=1){(e+2) p2 2\ 2 (__9 — T)
T 80mRT (D +2) ?‘) MP AR A

80mRT AB:. (2—1)(»*+2)

(N2 AT M) = , . A
(a® 0" 4% Nov (e—1) (e+2) (v?42)*

(29)

Tf at the same time for reasons discussed in section I, we take

TEF . (P1)PRTB
1 — Nav ]
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Gang’s expression (24) for 1 will get transformed into

_ 8rt a1y 80mAB  (v,—1).8 7
h""?i NM {B( —1) (i +2) T (e=1)(e+2) (80)

6. Aunisotropic fluctuations of dielectric constant
in terms of molecular constants.

It can easily be seen that anisotropic fluctuations of
dielectric constants of small volume elements are a necessary
consequence of the anisotropy of the individual molecules.
Consider a small volume element of an isotropic liquid com-
posed of anisotropic molecules. Since the molecular axes are
by hypothesis oriented at random, the number of molecules
pointing in directions included within any small solid angle
will not, in general, be exactly the same as the number point-
ing in directions included within another equal solid angle
pointing in some other direction. Thence will arise a residual
anisotropy of the volume element whose magnitude and
direction will vary from instant to instant. The smaller the
number of molecules, the greater will be the fluctuations from
igotropy.

We have already seen that in a small volume element of
of an isotropic liquid under normal conditions

SK = (Ko-—l)( . Sﬁ‘,)

K= (K, — ){n, Sﬁ‘,;’; v (31)

where it is assumed that é» and 6A are independent of each
other. The first term of the above equation can be identified

with A® and the second with

i X740 7)/8.
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430 K. R. RAMANATHAN

It sufﬁces now to evaluate

SATT/A’®,

When a unit field parallel to the axis of Z is applied to the
medium, the mean value of the square of the sum of the
induced moments of the molecules is [See 7(a) and 7(5)
above]

{A+B+O

A +B4+C ) ®
3 3

} gn"b‘v’ +2 { Lig— 3

=( _f}i%_i’ﬂ >* 0280 +( A+3{3+O ) 512008 4ngdv. &f
Of these, only the last term contributes to 6A’2. The mean

value of the squares of the moments induced parallel to the
X and Y axis will each be

400, f. : - (Paper B, Eq, 1)
SAT = M3/ +2f) 10 32
oAT= n@dvt 3f/n°80' - (89)

and

Pra——

ATNTHAT g _qye ¥ 2s(A?+B?+0'—AB—BC~CA)
8 ° ( A+B+0 )
3

1,00

_2(K,~—1)*(A*+B*+0?—AB—BC0—CA)
(A+B+C)*nyov

_ 2(Ky—1)%8 _ 2(v*—1)*

M0V )

(33)
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FLUCTUATIONS OF DIELEOTRIC CONSTANT 431

Identifying this x74x7 X7 derived from a priori considera-
tions with the same quantity expressed in terms of the Kerr
constant in (29), we can express B! in terms of §

i (=D (2 4 2) (e1) (e} 2)NS .
Bl= 120aRTn yvA O

on the assumption that the principal axes of dielectric
and optical constants are parallel and proportional to each
other. This is the same expression as is obtained on Lange-
vin’s theory of electrical double refraction.’

In terms of molecular constants,

""’“,—_-8# iy AP R AR+ }\F o
b= { Al 3 ' } Ov
.. 8w RTBn, } s .
"37'&OM { N +23% (K,—1) T e (35)

which is identical with (10).
- The expression for the intensity in a transverse direction
also hecomes the same as (9).

7. Comparison of prenomenological and molecular
theories.

We see from the above that both the phenomenological
and molecular theories lead exactly to the same result, and
this is what is to be expected. Strictly, the phenomenological
theory itself is partly molecular, since in developing it, we
have to use the Lorentz formula of refraction which is based
on molecular considerations., As regards the theory of

1 P, Debye, Handbuch der Radiologie, Band VI, p. 768, Also K. 8. Krighnan,

Proc, Ind. Assoc. Cult, of Science, Vol, IX, Part LV, p. 251,
0
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489 K. R. RAMANATHAN |

electric double refraction, the advantage lies with the mole-
cular way of treatment. It is more direct and simple and is
capable of extension to the case when the molecules possess
a permanent electric moment.! And since we know for a
certainty from the partial polarisation of the transversely
scattered light in gases and vapouirs that molecules are in
general optically anisotropic, there is nothing to be gained by
avoiding that assumption and preferring instead the assump-
tion of aamsotrppm dielectric constants of small elements of
volume.

In a recen‘t paper, Mr. K, 8. Krishnan? has compared
the available experimental data on light-scattering in liquids
with different formules that have been proposed from time to
time and shown that so far as comparative values of intensi-
ties are concernéd, relation (9) is in better agreement with
experiment than the formule involving (K+2)Y9 as a
factor. As regards absolute measurements, the data are not
decisive, but it is hoped that results of critical measurements
of intensity in a few selected liguids will soon be available
to decide the question. Measurements near the -eritical
temperature are mnot of much help in this respect,
as the values of (K--2)%/9 in that region generally differ
very little from unity.

Mr. Krishnan has utilized the data about polarisation to
calculate the values of § which gives a measure of the optical
anisotropy of the molecule and compared them with the
values calculated from the Kerr constant of electric double
refraction according to (84). Here again, he finds that values
of 8 given by the revised expressions are in better agreement
with the values calculated from the Kerr constant. It may
be mentioned that liquids containing polar molecules are
excluded from consideration.

1 ¢, V. Raman snd K. 8. Krishnan, Nature, Vol. 118, p. 802, 1926 ; also same

authors Phil. Mag,, Vol. 8, pp. 713-723 and pp. 724.785, April 1927
¢ K, 8, Krishnan, loc. ¢it,
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8. Binary Liquid Miztures.

The arguments discussed in Sections 1 and 2 should also
be applicable to the fuctuations of concentration in a binary
liquid mixture, Ina detailed paper' on the Opalescence
of binary liquid mixtures,” Dr. J. 0. K. Rav has obtained the
following expression for the intensity of the transversely
scattered light from a volume V

P70 o [ 13 ( K+2 \° | (K—1)*(K+2)* RTB
Gq,da v { 3 * 3 ) (flrn1+f2n'2)+ 14!4171_3 * ”‘N_'

)M, (8K/0R* ) o (36)

G Nm, O logp,/0Fk

(See equation 41 on p. 45) where f,, f, are the values of f
which is equal to

2 (A®4B*+C0* ~AB—BC—CA)

for the first and second components respectively, #, m, are the
numbers of molecules of the two components per unit of
volume, M, is the molecular weight in the gaseous phase and
p, the partial vapour pressure, of the second component,
and s, ave the masses of the first and second components in
unit volume of the mixture and % is the fraction ma/m,. The
factor (K--2)¥/9 in the second term is introduced in the same
manner as in the previous treatments of liquids with isotropic

1 7.0, E. Rav, Proc. Ind. Assoc. for Cult, of Secience, Vol, IX, Part I, p. 19
(1924).
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molecules, that is, assuming that the local field in a small
volume element changes with the changes of density in the
eloment. According to section 2, this factor should be
omitted. ~

OK/0% in the third term is obtained by measuring the
tangent at desired points from a graph showing the variation
of K with k. These values are appropriate to the case where
similar changes of concentration occur throughout the liquid,
When the deviations of concentration from normal in different
volume elements are uncorrelated with each other, the

- changes of dielectric constant in them will be due solely to
these changes of concentration and the local field will remain
unaffected. The values of 8K/8% which we should adopt
are therefore not those obtaining when similar changes of
concentration occur throughout the liquid, but these values
divided by a factor (K+2)/3. Making these changes,
expression (36) will become

: —1)
%;:?ZZ; v {:%% (K+2)2(f1’”'1+fa”a)+ LIS‘J?) RIS

9 1672 N

4t M(8K/ok)* 9 }

167* N, ® log p,/O & (K+42)2 @7)

and equation (40) of Dr. Rav’s paper for the depolarisation
of the transversely scattered light will be changed to

2 2)9
EEED oy fim)
I(E+2)2 ) .. (K—1)* RTB 9  TTM,(8K/8he
3( 3 (fl'n1+f2'nz)+ 167‘.3 N 167!'2(1{+2)9 N')nla log_pglak
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The available experimental data are nob sufficiently
accurate to decide whether these or Dr. Rav’s expressions
better represent the facts.

9. Swmmary.

In this paper, the question of fluctuations of dielectric
constant of a small volume element of a liquid is discussed
with veference to the theories of molecular scattering of light.
Reasons are given for concluding that the fluctuations of
dielectric constant responsible for scattering cannot be
determined by differentiating Lorentz’s relation between
dielectric constant and density but that the factor (K+2)/3
must be omitted from the expression for JK. Revised
expressions for the intensity and polarisation of the scabtered
light are given in terms of the molecular theory.

Gans’s phenomenological method of treatment is outlined
and discussed and the assumptions underlying it pointed out,
If the omission of the (K-2)/3 factor of the expression for
SK be accepted, Gans’s theory and molecular theory lead to
identical results,

It is shewn that if the molecules of a liquid are aniso-
tropic, small volume elements must necessarily possess acci-
dental deviations from isotropy ; the relation between them,
the constants of molecular anisotropy and the Kerr constant
of electric double refraction is worked out.

Myr. Krishnan has shown that results of eﬁperiments are
favourable to the omission of the factor (v*+2)*/8.

It is pointed out that similar arguments should hold in
the case of binary liquid mixtures and that the fluctuations
of concentration accidentally occurring in such a mixture
cannot be assumed to be identical with the changes of
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dielectric constant with concentration obtained from experi-
ments on liquids in mass. Revised expressions for scattering
‘are given. |

I wish to express my thanks to Prof. C. V. Raman for
his kind interest in the work.
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