Ozone absorption coefficients and haze corrections for total ozone measurements with Dobson spectrophotometer*

K. R. RAMANATHAN, P.D. ANGREJI and G.M. SHAH

Physical Research Laboratory, Ahmedabad

(Received 7 May 1965)

ABSTRACT. From laboratory measurements of absorption in an ozone cell with a Dobson spectrophotometer and their comparison with the results of observations made with atmospheric ozone, Dobson has concluded that the absorption coefficients of ozone (from Vigroux' work) for the B and C wave lengths are too high and have to be revised. Observations made at Ahmedabad confirm this. Accepting that the difference of ozone absorption coefficients for A and D is 1·388 and assuming that by using the AD difference method the haze correction is eliminated, we determine the total ozone amount. Combining this with measurements of apparent total ozone with A wave-lengths alone, the haze correction is calculated. With this haze correction and known ozone amount, the absorption coefficients for C and B wave lengths can be calculated. The same absorption coefficients are obtained under varying conditions of haze. They are nearly the same as those obtained by Dobson from his laboratory measurements with an ozone cell.

When the absorption coefficients of ozone as determined by Vigroux are used to calculate the amount of ozone in the atmosphere from measurements with the Dobson spectrophotometer, the ozone values found with the different wave-length pairs A, B, C and D are not identical.

This may be due either to wrong values of the absorption coefficients used or the presence of some other absorbing gas in the atmosphere. In order to test this, Dobson made measurements of ozone absorption in a silica vessel placed immediately above the inlet slit of the standard ozone spectrophotometer, and calculated the relative absorptions of ozone for the different wave-lengths. He also calculated the absorption coefficients for the different wave-length pairs from atmospheric measurements made at Oxford (1957) and at Edmonton (1958) assuming that the difference between the absorption coefficients for A and D wave-lengths was equal to 1.388. The figures in the different rows of Table 1 give respectively the absorption coefficients of A, B, C and D, (1) according to Vigroux as determined from his laboratory measurements, (2) from atmospheric measurements at Oxford (1957) and (3) from atmospheric measurements at Oxford, Edmonton (1958) and Ahmedabad. Dobson suggested that if the absorption coefficients given in row 2 were used to get the ozone values from observations on different wavelengths, the results would be identical.

It had been noticed in Ahmedabad that the ozone values determined from AD, AC and CD were not identical if Vigroux's values for the absorption coefficients of C were used. An attempt was made to use the new absorption coefficients given in row (2) of Table 1 to calculate the ozone amounts. There was much better agreement.

The difference of absorption coefficients $(\alpha-\alpha')_{A}-(\alpha-\alpha')_{D}$ for AD wave-lengths was assumed to be constant at 1.388 and the ozone amount x_{AD} was calculated using the standard difference formula. Assuming

^{*}Presented at the International Ozone Symposiv held at Albuquerque, New Mexico, September 1964

TABLE 1 Differences of absorption coefficients $(\alpha-\alpha)_{\lambda}$ of ozone for different wavelength pairs

•		A	\mathbf{B}^{-1}	. G	\mathbf{D}	A —T
From Vigroux' observations	$1 \cdot 762$	1.214	0.865	0.374	1.388	
As determined from Dobson's laboratory mea ozone cell at Oxford assuming Vigroux' va	1.742	1.142	0.808	0.354	1.388	
From atmospheric observations at (assuming A—D=1·388)		•				
	Oxford	1.741	1.144	0.791	0.353	1.38
	Edmonton	1.743	1.156	0.804	0.355	1.38
	Ahmedabad	1.742	$1 \cdot 143$	0.799	0.353	1.38
	Kodaikanal	1.744		0.806	0.354	1.38
a and a' refer to the following pairs of wave-	lengths used in ozone	_	nents	λ'	· ·	
λ λ'		λ				
$A \qquad 3055\mathring{A} \qquad 3254\mathring{A}$	C	$3114 \mathring{ m A}$		3324Å		
f A = 3055 ar A = 3254 f A			$3176 \mathring{\rm A}$			

 $(\alpha - \alpha')_{\Lambda}$ to be 1.742 which is the mean of the values given in lines (2), (3) and (4) of Table 1, the apparent ozone values x_{Λ} were also calculated using the formula

 $\rho x_{A} (\alpha - \alpha')_{A} = \triangle N_{A} - (\beta - \beta')_{A} (p/p_{0}).m$

in which the correction due to haze has been neglected. Writing $(x_A - x_{AD}) (\alpha - \alpha')_A = (\delta - \delta')_A$, $m (\delta - \delta')_A$ would represent the haze correction to be applied to $\triangle N_A$. Other evidence had shown that the haze correction was practically independent of wave-length when the wave-length difference did not exceed 200 A. The haze correction thus obtained from x_{AD} and x_A , together with the ozone value x_{AD} , was then used to determine the absorption coefficients of A

and D separately.

also used to calculate the absorption coefficients of B and C. Line (5) of Table 1 shows the absorption coefficients of A, B, C and D as determined from the atmospheric measurements at Ahmedabad. The ozone amounts

The same method was

and absorption coefficients on individual days and the corresponding haze corrections are given in Table 2. Table 3 gives the ozone values at Ahmedabad calculated by AD, AC and CD methods, and also the haze corrections to be applied to x_A , x_C and x_D to make them agree with one another and also with x_{AD} , x_{AC} and x_{CD} .

Similar calculations made from observations made at Kodaikanal where the mean atmospheric pressure is 772 mb on A, D and C wave-lengths gave equally good agreement when the differential absorption coefficient for C was taken to be 0.806 and the haze corrections for A, D and C wave-lengths were assumed to be the same.

The good agreement of the calculated values shows that it is possible not only to get consistent values of ozone amounts using observations with different wave-lengths, but also to determine the day-to-day variations of aerosols from Dobson spectrophotometer observations, if we use the new absorption

TABLE 2
Ozone absorption coefficients and haze corrections
Measurements at Ahmedabad (Direct Sun) — A, D and C

Date	μ_{AD}	μ_{σ}	$x_{ m AD}$	x_{Λ}	(δ—δ') _A	$(\alpha - \alpha')_A$	$(\alpha-\alpha')_{D}$	(a-a ') ₀
3-7-63	2.106	2.081	0.260	0.264	+0.007	1.741	0.351	0.809
2-11-63	$2 \cdot 611$	$2 \cdot 653$	0.237	0.244	0.012	$1 \cdot 740$	0.349	0.796
23-1-64	$3 \cdot 173$	$3 \cdot 144$	0.245	0.248	0.005	1.741	0.351	0.799
29-1-64	$1 \cdot 424$	1.416	$0 \cdot 221$	$0 \cdot 223$	0.003	1.743	$0 \cdot 355$	0.799
5-2-64	$2 \cdot 446$	$2 \cdot 374$	$0 \cdot 254$	0.261	0.012	1.743	0.354	0.792
7-3-64	$1 \cdot 925$	1.968	0.236	0.240	0.006	1.744	$0 \cdot 353$	0.798
9-3-64	1.709	$1 \cdot 736$	$0 \cdot 231$	0.235	0.007	$1 \cdot 743$	$0 \cdot 353$	0.800
13-3-64	$2 \cdot 265$	$2 \cdot 210$	$0 \cdot 223$	0.230	0.014	$1 \cdot 742$	0.347	0.793
14-3-64	1.929	1.964	0.221	0.225	0.009	1.743	0.351	0.801
16-3-64	$2 \cdot 141$	$2 \cdot 190$	$0 \cdot 232$	0.237	0.009	$1 \cdot 740$	$0 \cdot 353$	0.796
24-3-64	$2 \cdot 062$	$2 \cdot 026$	$0 \cdot 236$	0.239	0.005	1.741	0.354	0.803
7-4-64	2.051	2.019	0.239	0.241	0.003	1.744	$0 \cdot 356$	0.806
8-4-64	1.896	1.871	$0\ 244$	0.244	0.000	1.744	0.352	0.800
15-4-64	$2 \cdot 098$	$2 \cdot 060$	$0 \cdot 254$	$0 \cdot 253$	-0.002	$1 \cdot 741$	0.351	0.794
16-4-64	1.888	1.915	$0 \cdot 257$	0.257	0.000	1.739	0.352	0.797
18-4-64	$1 \cdot 621$	1.645	0.251	$0 \cdot 253$	0.003	1.743	0.351	0.802
20-4-64	1.960	1.995	0.234	0.233	-0.002	1.743	0.356	0.809
21-4-64	$2 \cdot 053$	$2 \cdot 012$	0.246	0.247	0.002	1.742	0.353	0.803
21-5-64	1.550	1.566	0.259	0.259	0.000	1.744	0.356	0.813
21-5-64	2.067	$2 \cdot 104$	0.265	$0 \cdot 263$	-0.003	1.742	0.352	0.796
21-5-64	2 786	$2 \cdot 835$	0.261	0.261	0.000	1.742	$0 \cdot 352$	0.792
25-5-64	$1 \cdot 166$	$1 \cdot 172$	0.259	$0 \cdot 262$	0.005	1.741	0.354	0.801
25-5-64	$2 \cdot 244$	$2 \cdot 202$	$0 \cdot 269$	$0 \cdot 272$	0.005	$1 \cdot 743$	$0 \cdot 355$	0.801
26-5-64	$1 \cdot 279$	1.288	$0 \cdot 262$	$0 \cdot 264$	0.003	1.741	$0 \cdot 352$	0.793
26-5-64	$2 \cdot 487$	$2 \cdot 537$	0.269	$0 \cdot 272$	0.006	$1 \cdot 740$	0.351	0.790
26-5-64	$2 \cdot 768$	$2 \cdot 721$	0.266	0.270	0.007	$1 \cdot 743$	$0 \cdot 353$	0.791
					Mean	$1 \cdot 742$	0.353	0.799

(Direct Sun) A, D, B and C

Date	μ_{AD}	μ_B	$m{x}_{ ext{AD}}$	$x^{}_{\Delta}$	$(\delta - \delta')_A$	(a-a')	$(\alpha - \alpha')_D$		(a-a') _B
3-10-64	2.842	2.766	0.243	0.248	0.009	1.742	0.352	0.810	1.143
4-10-64	2 · 178	2:163	0.248	0.256	0.013	$1 \cdot 742$	$0 \cdot 352$	0.793 -	1.148
6-10-64	$2 \cdot 259$	2.333	0.254	0.257	0.005	1.742	$0 \cdot 352$	0.798	1.148
7-10-64	2.737	$2 \cdot 842$	0.247	0.252	0.000	$1 \cdot 742$	$0 \cdot 352$	0.799	$1 \cdot 135$
12-10-64	$2 \cdot 045$	$2 \cdot 167$	0.238	0.243	0.000	1.743	$0 \cdot 357$	0.805	1.143
					Mean	$1 \cdot 742$	0.353	0.801	1 · 143

TABLE 8 Ahmedabad

Haze correction $(\delta-\delta')_{\lambda} = (x_{\lambda} - x_{AD}) (\alpha-\alpha')_{\lambda}$

Date		Ozone ar			I	Haze correc	Remarks	
	μ_{AD}	$x_{_{ m AD}}$	<i>x</i> _A ~	$x_{_{ m CD}}$	A	C	D	
3-7-63	2 · 106	260	260	262	7.0	7.2	6.3	
2-11-63	$2 \cdot 611$	237	238	238	$12 \cdot 2$	11.2	10.9	
23-1-64	$3 \cdot 173$	245	246	245	$5\cdot 2$	4.8	4.4	-
29-1-64	$1 \cdot 424$	221	222	220	3.5	2 · 8	3.2	
5-2-64	2.446	254	256	251	$12 \cdot 2$	11.2	12.1	Haze
7-3-64	1.925	236	237	235	$7 \cdot 0$	5.6	5.7	Haze
9 - 3 - 64	1.709	231	232	231	7.0	$7 \cdot 2$	$6 \cdot 7$	Haze
13-3-64	$2 \cdot 265$	223	224	221	$12 \cdot 2$	11.6	12.2	Haze
14-3-64	1.929	221	220	221	7.0	8.4	8 · 1	Haze
16-3-64	$2 \cdot 141$	232	233	230	8.7	8.0	8.7	Haze
24-3-64	$2 \cdot 062$	236	235	237	5.2	5.6	5.0	Haze
7-4-64	$2 \cdot 051$	239	239	240	3.5	4.4	3.5	Thin Ci
8-4-64	1.896	244	244	243	$0 \cdot 0$	0.8	$1 \cdot 2$	Thin Ci
15-4-64	2.098	254	256	252	$1 \cdot 7$	-3.6	-2.8	Low haze
16-4-64	1.888	257	257	256	0.0	-0.8	-0.5	Low haze
18-4-64	1.621	251	251	253	3.5	3.6	$2 \cdot 1$	Haze
20-4-64	1.960	234	233	237	1.7	0.0	-1.6	Low level
21-4-64	$2 \cdot 053$	246	246	248	$1 \cdot 7$	$2 \cdot 8$	1.8	Slight haze
21-5-64	1.550	259	257	265	$0 \cdot 0$	$3 \cdot 2$	0⋅4)	<u>-</u>
	2.067	265	266	263	-3.5	$-4 \cdot 0$	-3.4	Low level
	$2 \cdot 786$	261	263	257	0.0	$-2 \cdot 4$	ل 0·7 <u>-</u>	Ugrze
25-5-64	$1 \cdot 166$	259	259	259	$5 \cdot 2$	$5 \cdot 2$	5٠١٦	Dust haze
	$2 \cdot 244$	269	269	269	$5 \cdot 2$	$5 \cdot 6$	5.3	Dust naze
26.5-64	$1 \cdot 279$	262	264	258	3.5	$1 \cdot 2$	2.57	•
	$2 \cdot 487$	269	272	264	$5 \cdot 2$	3.2	5.0	Dust haze
	2.768	266	269	261	$7 \cdot 0$	4.8	$6 \cdot 7$	

coefficients of ozone. It is interesting to note that low level haze (such as occurred on 15-4-64, 20-4-64 and 21-5-64) tends to reduce the haze correction and even to make it

We are thankful to Dr. M. K. Vainu Bappu, Director of the Astrophysical Observatory, Kodaikanal and his staff for sending us the observations made with the Dobson spectrophotometer at Kodaikanal.

REFERENCES

Dobson, G. M. B.

negative.

Vigroux, E.

Quart. J.R. met. Soc., 89, p. 409. 1963

1953 Ann. Phys., 12, 8, p. 1.