
PRL-TN-2011-100

Microcontroller based

1-Wire temperature sensor network

PRL-TN-2011-100

Microcontroller based

1-Wire temperature sensor network

Microcontroller based 1-Wire temperature sensor network

1 Introduction 1

2 1-Wire Bus system 1

3 1-Wire temperature sensor DS18B20 1

4 Microcontroller – ATmega32 3

5 System Hardware 5

6 System Software - functions & processes 5

7 Application – Temperature monitoring of the Aerosol sample line 6

8 Summary 7

9 Acknowledgements 7

10 Bibliography 7

11 Appendix A: Flowcharts 8

12 Appendix B: GUI Screen shots 9

13 Appendix C: Bascom code 10

14 Appendix D: Visual Basic 6.0 code 12

Microcontroller based 1-Wire temperature sensor network

Microcontroller based 1-Wire temperature sensor network

Abstract:
is built using 8-bit microcontroller ATmega32 from AVR. The
microcontroller application program is complied in Bascom basic
cross compiler, PonyProg2000 is used to program and configure the
microcontroller and Visual basic (VB6.0) is used for the development
of the graphical user interface (GUI). The microcontroller is
programmed to detect and read maximum 20 DS18B20sensors. As
an application case study the system is used in the Aerosol
monitoring laboratory to read and log temperature at six points of the
aerosol sampling line.

1. Introduction

process control. Temperature sensors come in a wide variety
and they all measure temperature by sensing some change in a
physical characteristic. There are many types of temperature
sensors that will use various technologies and have different
shapes. These sensors are used in many fields in the industry
and in household equipment. When selecting which type of
sensor to uses there are various considerations that must be
made depending specifically on the application. When
selecting a sensor it is important to consider the temperature
range, the required accuracy and response time as these will
vary with different measuring methods.

The various types of temperature sensors are
thermocouples, resistive temperature devices (RTDs),
thermistors, Infra-red and thermal radiation sensors,
bimetallic devices, Integrated circuit temperature sensor
(LM35), solid state temperature sensor (AD590), digital
temperature sensors (DS1820, LM92, LM32) etc [1]. A
conventional temperature sensor gives a change in
temperature as a change in resistance, current or voltage. A
digital temperature sensor gives the measured temperature in
a serial data stream. It comes with the following interfaces;

2Inter-Integrated Circuit (I C) interface, Serial Peripheral
Interface (SPI), 1-Wire interface and Pulse Width Modulation
(PWM) [2].

This note discusses, in details, about the work carried
out by the author on a 1-Wire digital temperature sensor
DS18B20 and its networking with 8-bit microcontroller
ATmega32. The DS18B20 is a low cost, low power and accurate
sensor, ideal for portable and distributed measurement
applications. The microcontroller interface allows to integrate
a large number of sensors – theoretically the number is
unlimited, but practically depends on the microcontroller and
its memory resources. The range is 750 meters without the use
of any repeaters; topology is distributed i.e. the sensors are
attached in parallel with each other.

2. 1-Wire Bus system

The 1-Wire bus system consists of a master controller
which is connected to one or more slave devices [3]. The
master communicates with slave devices using the 1-Wire
protocol developed by Dallas Semiconductor, receiving and

The 1-Wire DS18B20 digital temperature sensor network

Temperature is one of the important parameters in any

sending signals over a single data line with respect to ground.
It has by definition only a single data line for communication.
It uses conventional CMOS/TTL logic levels (maximum 0.8V
for logic “zero” and minimum 2.2V for logic “one”). Both
master and slaves are configured as transceivers allowing bit
sequential data to flow in either direction in half duplex mode.
It synchronizes the slave devices to the master. The master
initiates and controls all communications on the 1-Wire bus.

Each 1-Wire slave has a unique 64-Bit serial code stored
in an on-board ROM that acts as its node address. The 1-Wire
device interfaces to the data line via an open drain or 3-state
port. This allows each device to release the data line when it is
not transmitting data so the bus is available for use by another
device. It requires an external pull-up resistor of
approximately 5kΩ; thus, the idle state for the 1-Wire bus is
high. All communications on the 1-Wire bus begin with an
initialization sequence.

3. 1-wire temperature sensor: DS18B20
The DS18B20 from Dallas Semiconductors is an

integrated solid state temperature sensor, an “analog-to-
digital” convertor with 1-Wire network interface [4]. It
communicates over a 1-Wire bus with a microprocessor or
microcontroller. It measures temperature from -55°C to

°+125 C. The resolution of the sensor is user configurable to 9,
10, 11 or 12 bits corresponding to temperature increments of

° ° ° °0.5 C, 0.25 C, 0.125 C and 0.0625 C, respectively. The default
resolution at the power on state is 12 bit and the output
temperature data is calibrated in degrees centigrade.

Figure 1 shows a block diagram of the DS18B20
temperature sensor. It measures temperature through the use
of an on board proprietary temperature measurement
technique. It counts the number of clock cycles that an
oscillator with a low temperature coefficient goes through
during a gate period determined by a high temperature
coefficient oscillator as illustrated in Figure 2. The slope
accumulator is used to compensate the non-linear behavior of
the oscillators over temperature.

Fig.1: DS18B20 Block Diagram

DQ

Gnd

VDD

DS18B20

Source Dallas semiconductor Corporation

Scratchpad

Memory
Control
Logic

Temperature Sensor

T EEPROMH

T EEPROML

Configuration Register
EEPROM

8-bit CRC Generator

64-bit
ROM

&
1-Wire

Port

Power
supply
sense

Fig.2: DS18B20 temperature measuring circuitry

Slope Accumulator

Preset Compare

Counter Preset
Low Temperature

Coefficient Oscillator

=0

=0

INC
Temperature Register

High Temperature
Coefficient Oscillator

Counter

Stop

Source Dallas semiconductor Corporation

Each DS18B20 has a unique 64 bit serial code, which
allows multiple DS18B20s to communicate on the same 1-Wire
bus. The 64 bit ROM stores the serial code. Table 1 shows the
scratchpad memory map. The memory consists of a static
random access memory (SRAM) scratchpad and a nonvolatile
electrically erasable programmable read only memory
(EEPROM) storage for upper and lower alarm trigger registers
(T and T) and the 1 byte configuration register. Byte 0 and H L

byte 1 contains the least significant byte (LSB) and most
significant byte (MSB) of the temperature register, respectively
which stores the temperature sensor's digital output. The byte
2 and byte 3 provides access to the T and T registers. Byte 4 H L

contains the 1 byte configuration register data; it allows setting
the resolution of the temperature to digital conversion to 9, 10,
11 or 12 bits. Bytes 5, 6 and 7 are reserved for internal use by the
device. The byte 8 contains the cyclic redundancy check (CRC)
code for the bytes 0 through 7 of the scratchpad memory and is
used for the data validation when data is read from the
DS18B20. Data is written to bytes 2, 3 and 4 of the scratchpad
using the ROM command. Bit 7 and bits 0 to 4 in the
configuration register are reserved for internal use by the
device as illustrated in Figure 3. Bit 6 and bit 5 (R0 and R1) are
user programmable in order to set the conversion resolution of
the DS18B20 as shown in Table 2.

Figure 4 shows the pin description of the DS18B20, TO-
92 package temperature sensor. The DS18B20 can operate in
two mode; 1) Parasite power mode and 2) external power
supply mode. The parasite power mode allows the DS18B20 to
operate without any local external power supply. This mode
takes the power from the 1-Wire bus via the Data In/out pin
when the bus is high. When the DS18B20 is performing
temperature conversions or copying data from the scratchpad
memory to EEPROM, the operating current goes up to 1.5mA.
The significant voltage drop across the 4.7k pull-up resistor
occurs due to this high current. Hence a strong pull-up on the
1-Wire bus is accomplished by using a MOSFET as shown in
Figure 5. The advantages of parasite power modes are; 1) no
local power source is required for remote sensing of
temperature and 2) the ROM can be read in absence of normal
power. The DS18B20 can also be powered by an external
power supply as illustrated in Figure 6. The transaction
sequence for accessing the DS18B20 is initialization, issue of
ROM commands and issue of DS18B20 function commands.
Initially a reset pulse is transmitted by the master followed by
presence pulse(s) transmitted by the slave(s). The presence
pulse lets the master know that slave devices are on the bus
and are ready to operate. The master then issues a ROM
command, as shown in Table 3. There are five ROM
commands and each is 8-bit long. The SEARCH ROM
command allows determining the number and types of
devices on the bus. The master should issue the appropriate
ROM command before issuing a DS18B20 function command.
There are six Ds18B20 function commands and these
commands allow the master to read from and write to the
DS18B20 scratchpad memory as shown in Table 4.

1

0

Byte

2

3

4

5

6

7

8

DS18B20 Memory map Scratchpad

Content Startup value

Temperature LSB

Temperature MSB

TH Register / User Byte 1

TL Register / User Byte 2

Configuration register

Reserved (FFh)

Reserved (0Ch)

Reserved (10h)

CRC

0x5005
0(+85 C)

Content stored
in EEPROM

–

–

–

–

Table 1: DS18B20 memory map

0

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

R1 R0 1 1 1 1 1

Fig.3: Configuration register

R1 R0 Resolution bits Decimal steps
Conversion time
(ms)

0

0

1

1

0

1

0

1

9

10

11

12

0.5

0.25

0.125

0.0625

93.75

187.5

375

750

Table 2: DS18B20 resolution configuration

Fig.4: DS18B20 Pin description

Source Dallas semiconductor Corporation

TO-92 package
Bottom view

Pin Description

1.
2.
3.

Ground
Data In/Out
VDD

DALLAS
DS18B20

1 2 3

1 2 3

Microcontroller based 1-Wire temperature sensor network

DS18B20 DS18B20 DS18B20
1 2 n

1 1 12 2 23 3 3

Gnd

vcc

vcc

M
O

S
FB

T
1-Wire
Bus

4.
7

k
W

m
co

n
tr

o
ll

er

Fig.5: Parasite powered DS18B20

1-Wire

Bus

DS18B20
1

1 2 3

DS18B20
2

1 2 3

DS18B20
3

1 2 3

DS18B20
n

1 2 3

Gnd

vcc

4.7kWm
co

n
tr

o
ll

er

Fig.6: External supply powered DS18B20

This command is used to identify the
ROM codes of the available slaves in the
bus and also the total number of slaves
devices.

This command is used when there is one
slave on the bus. It has the same effect as
SEARCH ROM.

This command is followed by a 64-bit
ROM code sequence allows the bus
master to address a specific slave on a
multidrop or single-drop bus.

This command is used to address all
devices on the bus simultaneously
without sending out any ROM code.

This command allows to determine if any
D S 1 8 B 2 0 s e x p e r i e n c e d a n a l a r m
condition during the most recent
temperature conversion.

No. Command Code Description

DS18B20 ROM Commands

1

2

3

4

5

SEARCH
ROM

READ
ROM

MATCH
ROM

SKIP
ROM

ALARM
SEARCH

F0h

33h

55h

CCh

ECh

Table 3: DS18B20 ROM Commands

Table 4: DS18B20 Function Commands

This command is used to start a temperature
conversion, that is stored in the first two
bytes of the scratchpad.

No. Command Code Description

DS18B20 FUNCTION Commands

1

2

3

4

5

6

CONVERT
T

WRITE
SCRATCHPAD

READ
SCRATCHPAD

COPY
SCRATCHPAD

2RECALL E

READ
POWER
SUPPLY

44h

4Eh

BEh

48h

B8h

B4h

This command writes data into scratchpad
bytes T , T and configuration registers.H L

This command reads the entire scratchpad
including the CRC byte.

This command copies he content of T , T H L

and configuration registers from the
scratchpad to EEPROM.

This command recalls the alarm trigger
values (T and T) and configuration H L

registers from EEPROM to scratchpad.

This command is used to determine if a
slave is externally powered or uses parasite
power.

4. Microcontroller – ATmega32
The ATmega32 i s 8 -b i t low power CMOS

microcontroller based on RISC architecture from ATMEL [5]. It
uses Harvard architecture with separate memories and buses
for data and program, in order to maximize the performance
and parallelism. Figure 7 shows the block diagram of
ATmega32 [6]. It has the following specifications

1. Program flash memory: 32K bytes
2. EEPROM: 1K bytes
3. SRAM: 2K bytes
4. 32 8-bit general purpose registers
5. Up to 16MIPS throughput at 16MHz
6. 32 General purpose I/O lines
7. 8 channels 10-bit Internal ADC
8. 2 Internal 8-bit Timer/Counters
9. 1 Internal 16-bit Timer/Counter
10. 1 Programmable serial USART
11. 4 PWM channels
12. 1 Internal Analog Comparator
13. Master/slave SPI serial interface

214. Serial interface: 1-Wire and I C

ATmega32 microcontroller board from Sunrom
Technologies (http://www.sunrom.com) has been used in the
present work, as shown in Figure 8. The technical features of
the controller board are Crystal: 16.000MHz, On-board RS232
port for PC interface, RS232 port for In-circuit serial
programmer, On-board ADC adjustable reference voltage,
On-board reset switch and operates over a wide range of
supply voltage: 7 to 15V. The microcontroller can be
programmed and configured for the necessary read, write,
lock, and fuse functions using the freeware serial device
programmer PonyProg2000 software version 2.07a
(http://ponyprog.sourceforge.net) and an ezAVR in-circuit
serial programmer from SUNROM Technologies as shown in
figure 8.

Microcontroller based 1-Wire temperature sensor network

Instruction
Register

Instruction
Decoder

Program Counter

32 x 8
General
 Purpose
Registers

In
d

ir
ec

t
A

d
d

re
ss

in
g

D
ir

ec
t

A
d

d
re

ss
in

g

Analog Comparator

Flash
Program
Memory

Control Lines

Status &
Control

ALU

Data SRAM

EEPROM

I/O Lines

D
at

a
B

 u
s

8-
b

it

Interrupt Unit

SPI Unit

Watchdog Timer

I/O Module 1

I/O Module 2

I/O Module n

Source : ATMEL

Fig.7: Block diagram of ATmega32 microcontroller

Fig.8: ATmega32 microcontroller board

Atmega32 Controller Board

ezAVR In-Circut
Serial Programmer

Microcontroller based 1-Wire temperature sensor network

5. System Hardware
The overall schematic design is shown in figure 9. The

System design is based around ATmega32 microcontroller
connected through Port B data bus to the 16 characters × 2
lines alphanumeric LCD display, PortC.0 data bit to the
DS18B20 1-wire temperature sensor and RS232 serial port to
the PC.
The system uses the smart LCD display to output visual
information. Hitachi's LCD HD44780U module is inexpensive
and easy to use. The LCD is using 7 IO lines for
communication, the four data lines and three control ones. It
uses 4-bit data bus for LCD display and the data lines are in tri-
state when it is not enabled. The LCD is interfaced with
microcontroller as shown in figure 10.

The DS18B20 sensors are configured in the externally
powered mode with a pull up resistor of 4.7k to +5VDC. It is
connected to the microcontroller board PortC.0 bit, which is
configured as 1-Wire interface. The present hardware uses six
DS18B20 sensors, but the number can be as per user
requirement. The data acquisition program running on a PC is
connected to the microcontroller board via RS232 port.

W

Fig.9: Schematic diagram

DS18B20

1

DS18B20

2

DS18B20

20

AT mega32 mC

16X2 LCD

Fig.10: Hardware circuit diagram

DS18B20
1

1 2 3

DS18B20
2

1 2 3

DS18B20
3

1 2 3

DS18B20
6

1 2 3

+5VDC GND

16 X 2 LCD
Vcc

LED+

D7 D6 D5 D4 E RS

Vss
Vee

R/W

LED-

PB5 PB4 PB3 PB2 PB1 PB0

ATmega32

Microcontroller Board

PC0

RS232

PC

GND

+5VDC

4.7k
W

6. System software - functions and processes
The BASCOM BASIC cross compiler is used to write the

application program for the microcontroller ATmega32. The
BASCOM-AVR (1.11.9.2) from MCS Electronics is the
Windows BASIC Compiler for the AVR microcontroller family
[7]. It compiles BASIC programs into a binary and/or
hexadecimal file. These files can be programmed into the AVR
microcontrollers that have unique Flash ROM. It supports

2special commands for LCD displays, I C interface, 1Wire
interface, SPI, UART, matrix keyboard and PC keyboard. On
the successful compilation of the BASCOM code it generates
the respective hexadecimal file of the same.

The hexadecimal file of the program code is written into
the ATmega32 microcontroller using PonyProg2000 software
and ezAVR serial programmer. It is serial device programmer
software with user friendly GUI framework. It supports I²C
Bus, Microwire, SPI eeprom, the Atmel AVR and Microchip
PIC micro. It is designed to support the following AVR
microcontrollers; ATmega103/161/ 163/ 323/ 128/8/ 16/ 64/ 32/
162/ 169/ 8515/ 8535/ 44/ 88/ 168/ 164/ 324/ 644/ 640/ 1280/ 1281/
2560, AT90can32/64, ATtiny12/ 15/ 26/ 2313/ 13/ 25/ 45/ 85/ 261/
461/ 86 and AT89S8252/53 micro. It writes lock bits to protect
the microcontroller from reading.

The front end microcontroller data acquisition program
“1-Wire Temperature Sensor DAS” is written in Visual Basic 6.0
(VB). It is an event-driven programming language and
integrated development environment (IDE) from Microsoft
for its Component object programming model. It enables the
rapid application development (RAD) of graphical user
interface (GUI) applications [8 & 9].

The flowcharts of the microcontroller and GUI program
are illustrated in appendix A. When the program is loaded and
executed for the first time, it is mandatory to configure the
application through 'Setup' menu. Under the 'Setup' menu the

Microcontroller based 1-Wire temperature sensor network

user is supposed to enter the following field; Lab, Station,
Sensor, Instantaneous Log, Directory, COM port and the COM
Port setting. When 'Fetch Sensor Data' command button is
executed the program will request to reset the microcontroller
board. The program will scan for the number of DS18B20
sensors interfaced with the microcontroller board and its
ROM ID and the result is displayed on the 'No. of Sensors' field
and the ROM-ID field respectively as illustrated in appendix
B. The ROM ID of each sensor is noted individually by
running the program with the individual sensor. In the Label
field the respective location of the sensors are labeled for the
user reference. The setup data is saved on an ascii file setup.txt
through the 'Save' command button. Quit the Setup frame
using 'Back' command button. Start the data acquisition
process through 'Start' menu. The screen displays the
instantaneous temperature data from all the sensors and the
data are logged in an ascii file with date and time stamped
sensor temperature data. The data acquisition can be stopped
through 'Stop' menu. The microcontroller and the GUI
software are configured and programmed to handle
maximum 20 DS18B20 sensors (as per our requirement). The
GUI display screen adjusts its size as per the number of sensors
used in the network.

7. Application – Temperature monitoring of the
Aerosol sample line
In order to study the effect of aerosol optical (scattering)

properties on the metrological parameters (temperature and
humidity), it is required to measure the temperature and
humidity along the sampling line and at the ambient.

The '1-Wire Temperature Sensor DAS' application
software with the hardware is used in the Aerosol Monitoring
Laboratory (670-b) for monitoring the temperature of the
Aerosol sample line at multiple points. As illustrated in figure
11, we have used 6 DS18B20 sensors for monitoring the
ambient temperature (S1), Stainless steel manifold outlet
temperature (S2), mid of conductive sample line temperature
(S3), room/lab temperature (S4), Nephelometer inlet
temperature (S5) and Nephelometer sample temperature (S6).
The six sensors are compared with the Hewlett Packard 5890
Gas chromatography temperature sensor and the correlation

2coefficient (r) is better than 0.9 for all the six sensors. The five
minutes averaged multi points temperature diurnal plots for
14 July 2010 are shown in figure 12.

S1 – Ambient Temperature

S2 – SS Manifold Outlet Temperature

S3 – Mid of Sample Line Temperature

S4 – Room Temperature

S5 – Nephelometer Inlet Temperature

S6 – Nephelometer sample Temperature

SL – silicon Conductive Sample Line

 – DS18B20 Sensor

PC

Aerosol Monitoring Lab (670-b)

Nephelometer

S6

S5 S4 S3 SL S2

S1S
S

 M
an

if
o

ld

Fig.11: DS18B20 arrangement in aerosol sample

Microcontroller based 1-Wire temperature sensor network6

AT mega32 mC

System

Room Temperature

3563 Inlet Temperature

3563 Sample Temperature

Ambient Temperature

SSM Temperature

MSL Temperature

44

40

36

32

28

24

20

Te
m

p
e

ra
tu

re
 (

C
)

Time (hrs)

0:00 4:00 8:00 12:00 16:00 20:00 0:00

Fig.12: Diurnal aerosol sample line temperature variation

8. Summary
The present note discusses about the ATmega32 8-bit

microcontroller based 1-Wire temperature sensor DS18B20
network. All the sensors, used for the multipoint temperature,
are connected with microcontroller through 1-Wire interface.
The system conceptually developed here, allows investigating
some problems related to the distributed temperature
measurements applications and the possible solutions. The
Microcontroller and front end GUI software are programmed
to work with maximum 20 DS18B20 sensors. The GUI is a user
friendly windows application package to be used with the
microcontroller unit described in this note. The program in the
distribution form is available with the author for any
interested user.

9. Acknowledgements
I acknowledge Mr. Pranav Adyarau of Planetry

GeoSciences Division (PGSD) PRL for providing BASCOM-
AVR Compiler. I am thankful to the members of the Space and
Atmospheric Sciences Division of PRL who helped in this
work.

10. Bibliography
[1] Dogan Ibrahim, 2002, Microcontroller based

temperature monitoring and control, Elsevier science
and technology Books, USA.

[2] Goes F, 1996, Low-cost smart sensor interfacing, Delft
University Press, Delft.

[3] www.1wire.org

[4] www.datasheetcatalog.org/datasheet/maxim/DS1820-
DS1820S.pdf

[5] Dhananjay V Garade, 2001, Programming and
Customizing the AVR Microcontroller, McGraw-Hill
Publishers, USA.

[6] www.atmel.com/dyn/resources/prod_documents/
doc2503.pdf

[7] Claus Kuhnel, 2001, BASCOM Programming of
Microcontrollers with Ease, Universal Publishers, USA.

[8] Curland Mathew, 2000, Advanced Visual Basic 6,
Addison Welsey Publications, UK.

[9] Holzner Steven, 2005, Visual Basic Programming Black
Book, Coriolis Publications, Chennai.

Microcontroller based 1-Wire temperature sensor network 7

Appendix: A – Flowchart

Start Start

Send reset pulse

Gather ROM ID

Send reset pulse

Send Match ROM command

Send 64-bit ROM code

Send Skip ROM command

Send Convert Temperature command

Wait for conversion

Read Scratchpad

Display Temperature

Flowchart for Microcontroller – DS18B20 data
acquisition system

N

Y

If all data finished
being read

Stop

Stop

Y

N

fetch Sensor data

Label the sensor Location

Start data acquisition

Read the data from serial port

Save the data with time stamp in a file

Display Temperature

Stop data acquisition

Input Parameters (Station, Sensor,
File path, COM port, port setting)

Flowchart for GUI – Microcontroller data acquisition
system

Microcontroller based 1-Wire temperature sensor network8

Appendix: B – GUI Screen shots

Microcontroller based 1-Wire temperature sensor network 9

Appendix C: Bascom Code ' Program initialization

$regfile = "m32def.dat"
$crystal = 16000000 ' crystal frequency
$baud = 9600

' Variable declaration
Declare Sub Convallt
Declare Sub Meas_to_cel(offset As Byte)
Declare Sub To_decicel
Declare Sub Monitor
Declare Sub Disp_temp(cnt As Byte , Offset As Byte)
' Up to 20 devices - each having an ' 8 byte ROMID
Const Max1wire = 20
Dim Dsid(160) As Byte

' Temperature measurement
Dim Cel As Integer
Dim Cel_frac_bit As Byte
Dim Subzero As Bit
Dim Decicel As Integer
Dim Sc(9) As Byte
Dim Cnt1wire As Byte

'Temp variables
Dim B As Byte
Dim C As Byte
Dim B1 As Byte
Dim B2 As Byte
Dim I As Byte
Dim W As Word

Const 750ms = 42098
Config Timer1 = Timer , Prescale = 256
On Timer1 Timer1_int

Dim Time1_count As Byte
Dim Time1_ok As Bit

Const Ds18b20_conf_reg = 4

' constant to convert the fraction
Const Ds18x20_fracconv = 625

' DS18x20 ROM ID
Const Ds18s20_id = &H10
Const Ds18b20_id = &H28

' DS18B20 ROM COMMANDS
Const Ds18x20_convert_t = &H44
Const Ds18x20_read = &HBE
Const Ds18x20_write = &H4E
Const Ds18x20_ee_write = &H48
Const Ds18x20_ee_recall = &HB8
Const Ds18x20_read_power_supply = &HB4

'LCD config
Config Lcdpin = Pin , Db4 = Portb.2 , Db5 = Portb.3 , Db6 =
Portb.4 , Db7 = Portb.5 , E = Portb.1 , Rs = Portb.0
Config Lcd = 16 * 2

' DS1820 on Port C.0
Config 1wire = Portc.0

Cursor Off
Cls

Lcd "Initialising..."
Print "<Initialising...>"

For I = 1 To 10
Lcd "<" ; I
Print "<" ; I
Wait 1
Next I
Cls

' Gather ROM ID for all 1-wire
' devices
Cnt1wire = 1wirecount()
Lcd Cnt1wire
Print "#No. of DS18B20," ; Cnt1wire
If Cnt1wire > Max1wire Then
 Cnt1wire = Max1wire
End If

B = 1
Dsid(b) = 1wsearchfirst()
For I = 1 To Cnt1wire
B = B + 8
Dsid(b) = 1wsearchnext()
Next

' Show the result on the bus
B1 = 1
B2 = 8
For I = 1 To Cnt1wire
Cls
If Dsid(b2) = Crc8(dsid(b1) , 7) Then
Lcd "CRC OK sensor " ; I
Print "#CRC OK sensor," ; "SID" ; "," ; I ; ",";
Waitms 500
Cls
Lcd "ROM ID "
Print "ROM ID,";

For B = B1 To B2
Lcd Hex(dsid(b))
Print Hex(dsid(b));
Next
Print
Else
Lcd "CRC BAD sensor " ; I
Print ">CRC BAD sensor " ; I
End If
Wait 1
B1 = B1 + 8
B2 = B2 + 8
Next

' Monitor temperature sensors
Time1_count = 0 : Timer1 = 750ms : Time1_ok = 0
Enable Timer1
Enable Interrupts
Start Timer1
Do
If Time1_ok = 1 Then
Stop Timer1
If Time1_count = 0 Then
Convallt
Elseif Time1_count = 1 Then
Monitor
End If

Microcontroller based 1-Wire temperature sensor network10

Reset Time1_ok
Start Timer1
End If
Loop

' Timer interrupt
Timer1_int:
Timer1 = 750ms
Set Time1_ok
Incr Time1_count
If Time1_count > 1 Then Time1_count = 0
Return
End

Sub Monitor
B = 1
For I = 1 To Cnt1wire
If Dsid(b) = Ds18s20_id Or Dsid(b) = Ds18b20_id Then
' Only process TEMP sensors
1wverify Dsid(b)
If Err = 1 Then
Lcd "18B20 not on bus"
Print ">DS18B20 not on bus"
Elseif Err = 0 Then
1wwrite Ds18x20_read
Sc(1) = 1wread(9)
If Sc(9) = Crc8(sc(1) , 8) Then
Call Disp_temp(i , B)
If I < Cnt1wire Then
Wait 1
End If
End If
End If
End If
B = B + 8
Next
End Sub

Sub Convallt
1wreset
' reset the bus
1wwrite &HCC
1wwrite Ds18x20_convert_t
End Sub

Sub Meas_to_cel(offset As Byte)
Dim Meas As Word
Meas = 0
Meas = Makeint(sc(1) , Sc(2))

' 18S20 is only 9bit upscale to 12bit
If Dsid(offset) = Ds18s20_id Then
Meas = Meas And &HFFFE
Shift Meas , Left , 3
B1 = 16 - Sc(6)
B1 = B1 - 4
Meas = Meas + B1
End If

W = Meas And &H8000
If W = &H8000 Then
Set Subzero

‘ positive
Meas = Meas Xor &HFFFF
Incr Meas
Else
Reset Subzero
End If

If Dsid(offset) = Ds18b20_id Then
B1 = Sc(ds18b20_conf_reg)

If B1.5 = 1 And B1.6 = 1 Then ' 12
Elseif B1.6 = 1 Then ' 11
Meas = Meas And &HFFFE
Elseif B1.5 = 1 Then '10
Meas = Meas And &HFFFC
Else ' 9
Meas = Meas And &HFFF8
End If
End If

Cel = Meas
Shift Cel , Right , 4
Cel_frac_bit = Meas And &HF
End Sub

Sub To_decicel
Decicel = Cel_frac_bit * Ds18x20_fracconv
Decicel = Decicel / 1000
Cel = Cel * 10
Decicel = Decicel + Cel
If Subzero = 1 Then
Restore Rounding
For B1 = 1 To 8
Read B2
If Cel_frac_bit = B2 Then
Incr Decicel
Exit For
End If
Next
End If
End Sub

' Display the temperature
Sub Disp_temp(cnt As Byte , Offset As Byte)
Call Meas_to_cel(offset)
Call To_decicel
Cls
Lcd "Temp: " ; Cnt ; " "
Print "$Temperature SID," ; Cnt ; ",";
If Subzero = 1 Then
Lcd "-"
Print "-";
Else
Lcd "+"
Print "+";
End If
W = Decicel / 10
B1 = Decicel Mod 10
Lcd W ; "." ; B1
Print W ; "." ; B1;
Lcd " C"
Print "C"
End Sub

Microcontroller based 1-Wire temperature sensor network 11

Appendix D: VB 6.0 Source Code

 ' variable declaration
Dim i As Integer
Dim j As Integer
Dim k As Integer
Dim l As Integer
Dim sdata As String
Dim start_time As Long
Dim words() As String
Dim words1() As String
Dim hfile As Long
Dim hfile1 As Long
Dim fdata As String
Dim filename As String
Dim filename1 As String
Dim tmp(1 To 20) As Integer
Dim n(1 To 20) As Integer
Dim avg(1 To 20) As Double

Private Sub Combo1_Click()
For j = 1 To 20
Text1(j).Enabled = False
Next j
For j = 1 To Val(Trim(Combo1.Text)) - 1
Text1(j).Enabled = True
Next j
End Sub

Private Sub a1_Click() 'About
msg = "1-Wire Temperature Sensor Data Acquisition System" +
Chr$(13)
msg = msg + "Ver : 11.01A" + Chr$(13) + Chr$(13)
msg = msg + "Developed @ AML, PRL Ahmedabad"
MsgBox msg, vbInformation, "1-WTSDAS"
End Sub

Private Sub Command10_Click() ' back
Frame3.Visible = False
Frame1.Visible = True
Frame2.Visible = True
s2.Enabled = True
e1.Enabled = True
r1.Enabled = True
Call read_file
If l = 1 Then
MSComm1.PortOpen = False
End If
End Sub

' Save the configuration
Private Sub Command4_Click() 'save
hfile = FreeFile
Open "c:\TLog\setup.txt" For Output As hfile
Print #hfile, "0"; ","; Text1(26).Text; ","; Text1(21).Text; ",";
Text1(22).Text; ","; Text1(23).Text; ","; Text1(25).Text; ",";
Check1.Value; ","; Combo1.Text
For i = 1 To Val(Trim(Text1(23).Text))
Print #hfile, Trim(Str(i)); ","; Label3(21 + i).Caption; ",";
Label14(i - 1).Caption; ","; Text1(i - 1).Text
Next i
Close hfile
End Sub

' DS18B20 ROM ID fetch function
Private Sub Command9_Click() 'fetch
msg = "1-Wire Temperature Sensor Data Acquisition System" +
Chr$(13)
msg = msg + "Ver : 10.01A" + Chr$(13) + Chr$(13)
msg = msg + "Restart the Microcontroller unit"
MsgBox msg, vbInformation, "1-WTSDAS"
MSComm1.PortOpen = True
l = 1
End Sub

Private Sub e1_Click()
End
End Sub

' Load form
Private Sub Form_Load()
Call load_setup
End Sub

Private Sub load_setup()
For i = 1 To 20
tmp(i) = 0
Label14(i - 1).Caption = vbNullString
Text1(i - 1).Text = vbNullString
Label4(i - 1).Caption = vbNullString
Label6(i - 1).Caption = vbNullString
Next i
Text1(26).Text = vbNullString
Text1(21).Text = vbNullString
Text1(23).Text = vbNullString
Text1(22).Text = vbNullString
Combo1.Text = vbNullString
Label12(0).Caption = vbNullString
Label12(1).Caption = vbNullString
Label12(4).Caption = vbNullString
Label12(5).Caption = vbNullString
Label12(6).Caption = vbNullString
Label12(8).Caption = vbNullString
Label12(7).Caption = vbNullString
Frame1.Height = 8415 '1215 + Val(Trim(words1(4))) * 360
Label13.Top = 8040 ' + Val(Trim(words1(4))) * 360
Label7.Top = 10920 '3720 + Val(Trim(words1(4))) * 360
Form1.Height = 12045 '4845 + Val(Trim(words1(4))) * 360
k = 0
Frame3.Visible = False
i = 0
l = 0

s3.Visible = False
Combo2.Enabled = False
Text1(25).Enabled = False
Combo1.AddItem "1"
Combo1.AddItem "2"
Combo1.AddItem "3"
Combo1.AddItem "4"
Combo1.AddItem "5"
Combo1.AddItem "6"
Combo1.AddItem "7"
Combo1.AddItem "8"
Combo1.AddItem "9"
Combo1.AddItem "10"
Combo1.AddItem "11"
Combo1.AddItem "12"

Microcontroller based 1-Wire temperature sensor network12

Combo2.AddItem "1200,N,8,1"
Combo2.AddItem "2400,N,8,1"
Combo2.AddItem "4800,N,8,1"
Combo2.AddItem "9600,N,8,1"
Combo2.AddItem "19200,N,8,1"
Call read_file
Call config_mscomm
End Sub

' Read file subroutine
Private Sub read_file()
hfile = FreeFile
Open "c:\TLog\setup.txt" For Input As hfile
Do While Not EOF(hfile) 'Check for end of file.
Line Input #hfile, fdata 'Read line of data.
words1() = Split(fdata, ",")
Label12(0).Caption = words1(1)
Text1(26).Text = words1(1)
Label12(1).Caption = words1(2)
Text1(21).Text = words1(2)
Label12(4).Caption = words1(3)
Text1(22).Text = words1(3)
Label12(5).Caption = words1(4)
Text1(23).Text = words1(4)
Label12(8).Caption = words1(6)
Check1.Value = words1(6)
Label12(6).Caption = words1(7)
Combo1.Text = words1(7)
Label12(2).Caption = Format(Date, "DD-MM-YYYY")
For i = Val(Trim(words1(4))) + 1 To 20
Label3(i - 1).Visible = False
Label4(i - 1).Visible = False
Label5(i - 1).Visible = False
Label6(i - 1).Visible = False
Next i
Frame1.Height = 1215 + Val(Trim(words1(4))) * 360
Label13.Top = 840 + Val(Trim(words1(4))) * 360
Label7.Top = 3720 + Val(Trim(words1(4))) * 360
Form1.Height = 4845 + Val(Trim(words1(4))) * 360

Close hfile
End Sub

' interrupt serial comminucation
Private Sub MSComm1_OnComm()
filename = Trim(Label12(0).Caption) + "_" +
Mid(Trim(Label12(1).Caption), 1, 3) + "_" + Format(Date, "DD")
+ Format(Date, "MMM") + Format(Date, "YYYY") + "_" +
Trim(Label12(4).Caption) + "." + "dat"
sdata = vbNullString
start_time = Timer
Label12(3).Caption = Format(Time, "HH:MM:SS")
Label12(7).Caption = filename
Do
sdata = sdata & MSComm1.Input
On Error Resume Next
Loop Until InStr(sdata, vbCr) 'Or Timer - start_time > 0.5
If Len(Trim(sdata)) <> 0 Then
Call extract(Trim(sdata))
End If
Label15.Caption = Trim(sdata)
If Trim(Label12(8).Caption) = "1" Then
hfile = FreeFile
Open "C:\TLog\Data\" + filename For Append As hfile

Print #hfile, Format(Date, "DD-MMM-YYYY"); ","; Format(Time,
"HH:MM:SS"); ","; Mid(Trim(sdata), 1, 24); ","; "C"; ",";
Trim(Label6(Val(Trim(words(1))) - 1).Caption)
Close hfile
'Call print_clog
End If
End Sub

, Check time subroutine
Private Sub check_time()
hh = Val(Format(Time, "HH"))
mm = Val(Format(Time, "MM"))
ss = Val(Format(Time, "SS"))
tt = hh * 3600 + mm * 60 + ss
If tt Mod 10 = 0 Then
'Print Time
'Print Val(Trim(Label12(5).Caption))
 filename1 = Trim(Label12(0).Caption) + "_" +
Mid(Trim(Label12(1).Caption), 1, 3) + "_" + Format(Date, "DD")
+ Format(Date, "MMM") + Format(Date, "YYYY") + "_" +
Trim(Label12(4).Caption) + "." + "avg"

hfile1 = FreeFile
Open "C:\TLog\Data\" + filename1 For Append As hfile1
For i = 1 To Val(Trim(Label12(5).Caption))
avg(i) = tmp(i) / n(i)
Next i
For i = 1 To Val(Trim(Label12(5).Caption))
Print #hfile1, Format(Date, "DD-MMM-YYYY"); ",";
Format(Time, "HH:MM:SS"); ","; i; Format(avg(i), "##.0"), n(i)
Next i
For i = 1 To 20
avg(i) = 0
tmp(i) = 0
n(i) = 0
Next i
Close hfile1
End If
End Sub

' Print the data in file
Private Sub print_clog()
hfile = FreeFile
Open "C:\TLog\Data\" + filename For Append As hfile
Print #hfile, Format(Date, "DD-MMM-YYYY"); ",";
Format(Time, "HH:MM:SS"); ","; Mid(Trim(sdata), 1, 24); ","; "C";
","; Trim(Label6(Val(Trim(words(1))) - 1).Caption)
Close hfile
End Sub

' Extract the info from the string
Private Sub extract(a As String)
'Print Len(a)
words() = Split(a, ",")
Label13.Caption = a
Select Case Len(Trim(a))

Case 19
Text1(22).Text = Mid(Trim(words(0)), 9, 7)
Text1(23).Text = Mid(Trim(words(1)), 1, Len(Trim(words(1))) - 2)
For i = Val(Trim(Text1(23).Text)) + 1 To 20
Label3(21 + i).Visible = False
Label14(i - 1).Visible = False
Text1(i - 1).Visible = False

Microcontroller based 1-Wire temperature sensor network 13

Label3(i - 1).Visible = False
Label4(i - 1).Visible = False
Label5(i - 1).Visible = False
Label6(i - 1).Visible = False
Next i

Case 27
Label4(Val(Trim(words(1))) - 1).Caption = Mid(Trim(words(2)), 1,
5)
tmp(Val(Trim(words(1)))) = tmp(Val(Trim(words(1)))) +
Val(Mid(Trim(words(2)), 1, 5))
n(Val(Trim(words(1)))) = n(Val(Trim(words(1)))) + 1

Case 28
Label4(Val(Trim(words(1))) - 1).Caption = Mid(Trim(words(2)), 1,
5)
tmp(Val(Trim(words(1)))) = tmp(Val(Trim(words(1)))) +
Val(Mid(Trim(words(2)), 1, 5))
n(Val(Trim(words(1)))) = n(Val(Trim(words(1)))) + 1

Case 45
Label14(Val(Trim(words(2))) - 1).Caption = Mid(Trim(words(4)),
1, 16)

Case 46
Label14(Val(Trim(words(2))) - 1).Caption = Mid(Trim(words(4)),
1, 16)

Case 47
Label14(Val(Trim(words(2))) - 1).Caption = Mid(Trim(words(4)),
1, 16)
End Select
End Sub

Private Sub config_mscomm()
With MSComm1
.CommPort = Val(Trim(Label12(6).Caption))
.Settings = "9600,N,8,1" 'Trim(setup_data3)
.InputLen = 0
.RThreshold = 1
.DTREnable = False
End With
End Sub

' refresh menu
Private Sub r1_Click() 'refresh
Call load_setup
End Sub

Private Sub s1_Click()
Frame3.Visible = True
Frame1.Visible = False
Frame2.Visible = False
r1.Enabled = False
s2.Enabled = False
e1.Enabled = False
Call read_file
Frame1.Height = 8415 '1215 + Val(Trim(words1(4))) * 360
Label13.Top = 8040 ' + Val(Trim(words1(4))) * 360
Label7.Top = 10920 '3720 + Val(Trim(words1(4))) * 360
Form1.Height = 12045 '4845 + Val(Trim(words1(4))) * 360
End Sub

Private Sub s2_Click()
r1.Enabled = False
s3.Visible = True
s2.Visible = False
s1.Enabled = False
e1.Enabled = False
MSComm1.PortOpen = True
End Sub

Private Sub s3_Click()
r1.Enabled = True
s2.Visible = True
s3.Visible = False
s1.Enabled = True
e1.Enabled = True
MSComm1.PortOpen = False
End Sub

Microcontroller based 1-Wire temperature sensor network14

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22

