Dependence of the daily ranges of geomagnetic variations on A_p

R. P. Kane
Physical Research Laboratory, Ahmedabad-9, India

(Received 6 August 1971)

Abstract—After applying D_m corrections, the daily range of geomagnetic H variation at Trivandrum (Equator) and Alibag (mid-latitude) is separated into a positive (ΔS^+) and a negative (ΔS^-) component. Correlations of these between themselves as also with geomagnetic activity index A_p are studied. It is found that on a majority of quiet days ($A_p = 0-7$), only the positive component exists and is poorly correlated with A_p as also at different latitudes. For disturbed days, the negative component is large, well correlated at different latitudes and moderately correlated with A_p but poorly correlated with the positive component. Several other details are presented as also evidence to indicate that the negative component may be of magnetospheric origin while the positive component may have magnetospheric as well as ionospheric origins, in different proportions in different seasons and at different latitudes.

1. Introduction

The S_q variation of geomagnetic field is defined as the average solar daily variation for truly quiet days. In practice it is evaluated every month from the 5 international quiet days (Sugiura and Chapman, 1960) or, if the local time (LT) is very much different from universal time (UT), then from 5 local quiet days (Price and Stone, 1964). However, as pointed out by Matsushita and Maeda (1965), the 5 days so chosen may not be equally quiet in all months. The exact dependence of the daily range on geomagnetic activity index (K_p or A_p) does not seem to be precisely known. We propose to examine in this paper the relationship between A_p values and the daily range of the geomagnetic component H, both for quiet as well as disturbed periods during the quiet sun year 1964 when plenty of days of both types are available.

2. Analysis

The data used are for the equatorial station Trivandrum (Geomagnetic latitude $-1\cdot1^\circ$) and the mid-latitude station Alibag ($+9\cdot5^\circ$) both at about 75°E longitude. After correcting for long-term, non-cyclic changes, Fig. 1(a,b) shows plots of the hourly values of H at Alibag (H_{AL}) and Trivandrum (H_{TR}) for a sample period of 9 days (30 December 1963–7 January 1964). The A_p values are also indicated. On days of low A_p, it is easy to estimate the daily range of S_q by the simple definition $H_{\text{max}} - H_{\text{min}}$. However, on disturbed days (e.g. 2 January 1964 when A_p was 53), such a definition would yield faulty estimates of the range, due to pollution due to D_{st} effects. Also, even on days of low A_p, there is no guarantee that the D_{st} effects would be completely negligible. Hence, all data were corrected for D_{st} effects using the hourly D_{st} values given by Sugiura and Cain (1970) for equatorial location and assuming a cos θ dependence for geomagnetic latitude θ. Figure 1(c,d) shows the H values corrected for D_{st} effects. By conventional definition, these represent the disturbance daily variation S_d for disturbed days and S_q for quiet days.
Fig. 1. Plot of H values at (a) Alibag, and (b) Trivandrum for the period 30 December 1963–7 January 1964. In (c) and (d) the same are shown after D_{st} correction. A_p values for every day are also indicated.

An interesting feature of Fig. 1(c,d) is that the minima of H values seem to be on a horizontal line (for both Alibag and Trivandrum) on all days except the very disturbed ones when values dip below this line. Thus, on quiet days, the day-to-day variability is caused mainly by variations of H_{max} while on disturbed days, both H_{max} and H_{min} vary. Hence, assuming the average value of H_{min} on a few successive quiet days ($A_p = 0$–7) as an appropriate base level H_o, the daily variation range for every day for these quiet days as well as the succeeding disturbed days (A_p exceeding 7) was represented by three parameters as follows:

(i) Total range ΔSd given by (H_{max} minus H_{min}) of that day;
(ii) The positive range ΔSd^+ given by (H_{max} of that day minus H_o obtained as average of H_{min} of the preceding quiet days); and
(iii) The negative range ΔSd^- given by (H_{min} of that day minus H_o). Thus, $\Delta Sd = \Delta Sd^+ - \Delta Sd^-$.

For example, for 2 January 1964 for Trivandrum (Fig. 1(d)), H_o (the average of H_{min} for the preceding 3 quiet days) was 458 gamma whereas the values of H_{max} and H_{min} on 2 January were 565 and 398 gamma (zero level arbitrary). Hence, for 2 January $\Delta Sd = 167$ gamma, $\Delta Sd^+ = 107$ gamma and $\Delta Sd^- = -60$ gamma. The value 458 gamma of H_o was used for the period 30 December–5 January when the disturbance ended. For the succeeding quiet and disturbed days, a fresh value of H_o was evaluated from the H_{min} of the quiet days 6–8 January and so on.

The three parameters ΔSd, ΔSd^+ and ΔSd^- were obtained for every day of 1964 for Trivandrum and Alibag separately. Figures 2–4 show a plot of these
parameters vs. A_p for the three conventional seasons D (Jan., Feb., Nov., Dec.), E (Mar., Apr., Sep., Oct.) and J (May., Jun., Jul., Aug.). In each figure, the upper half refers to ΔSd, ΔSd^+ and ΔSd^- for Trivandrum (TR) and the lower half for similar quantities for Alibag (AL). In 1964, more than half the number of days (about 200) were confined to A_p values between 0 and 7. Hence, the abscissa scale is taken logarithmic and $A_p = 7$, indicated by a vertical line lies almost in the middle of the diagram. Since $A_p = 0$ cannot be shown on a logarithmic scale, such a day (only one, 28 March 1964), is included in the $A_p = 1$ group.

To get a measure of the relationship between the various parameters and A_p, correlation coefficients were calculated (i) for $A_p = 0-7$ only, (ii) for $A_p = 8-53$, and (iii) for the whole range of $A_p = 0-53$. These are shown in Table 1.

Following may be noted from Figs. 2-4 and Table 1:

(1) For all values of A_p, ΔSd and ΔSd^+ have a very large scatter. This indicates that the relationship with A_p, if any, is rather loose. However, the characteristics for low and high A_p are somewhat different.
Fig. 3. Same as Fig. 2, for E months.

Fig. 4. Same as Fig. 2, for J months.
Table 1. Correlation coefficients of ΔS_d, ΔS_d^+, ΔS_d^- at Trivandrum and Alibag with A_p values in the 0–7, 8–53 and 0–53 ranges

<table>
<thead>
<tr>
<th>A_p</th>
<th>ΔS_d</th>
<th>ΔS_d^+</th>
<th>ΔS_d^-</th>
<th>ΔS_d</th>
<th>ΔS_d^+</th>
<th>ΔS_d^-</th>
<th>ΔS_d</th>
<th>ΔS_d^+</th>
<th>ΔS_d^-</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Trivandrum</td>
<td></td>
<td></td>
<td>Alibag</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0–7</td>
<td>+0.15</td>
<td>+0.13</td>
<td>-0.09</td>
<td>-0.13</td>
<td>-0.19</td>
<td>+0.07</td>
<td>-0.03</td>
<td>-0.27</td>
<td></td>
</tr>
<tr>
<td>8–53</td>
<td>+0.41</td>
<td>+0.19</td>
<td>-0.47</td>
<td>-0.00</td>
<td>-0.29</td>
<td>+0.23</td>
<td>-0.01</td>
<td>-0.42</td>
<td></td>
</tr>
<tr>
<td>0–53</td>
<td>+0.33</td>
<td>+0.06</td>
<td>-0.56</td>
<td>+0.14</td>
<td>-0.05</td>
<td>-0.42</td>
<td>+0.31</td>
<td>-0.01</td>
<td>-0.61</td>
</tr>
<tr>
<td></td>
<td>Alibag</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0–7</td>
<td>+0.28</td>
<td>+0.13</td>
<td>-0.38</td>
<td>-0.01</td>
<td>-0.14</td>
<td>+0.13</td>
<td>+0.01</td>
<td>-0.34</td>
<td></td>
</tr>
<tr>
<td>8–53</td>
<td>+0.62</td>
<td>+0.38</td>
<td>-0.58</td>
<td>+0.29</td>
<td>-0.03</td>
<td>-0.41</td>
<td>+0.47</td>
<td>+0.30</td>
<td>-0.46</td>
</tr>
<tr>
<td>0–53</td>
<td>+0.69</td>
<td>+0.47</td>
<td>-0.65</td>
<td>+0.35</td>
<td>-0.04</td>
<td>-0.57</td>
<td>+0.53</td>
<td>+0.18</td>
<td>-0.68</td>
</tr>
</tbody>
</table>
The low A_p range (0–7) is characterised by a very small value (within ±10 gamma) of the negative component ΔSd^- at Trivandrum as well as at Alibag. Hence the total range ΔSd is mainly contributed by ΔSd^+. For low A_p, this represents the Sq range and its day-to-day variability (which is quite large, several tens of gamma) seems to be unconnected with the A_p changes. The correlations are very low, in all seasons (see Table 1).

It may be noted, however, that on some of these quiet days, ΔSd^- is not small. Table 2 gives instances when the negative component was 10 gamma or more either at Trivandrum (TR) or at Alibag (AL) on quiet days ($A_p = 0–7$).

Table 2. ΔSd^- in gamma. Asterisk (*) denotes simultaneously high values at Trivandrum (TR) and Alibag (AL)

<table>
<thead>
<tr>
<th>Dates (1964)</th>
<th>A_p</th>
<th>ΔSd^-_{TR}</th>
<th>ΔSd^-_{AL}</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 Jan.</td>
<td>7</td>
<td>-8*</td>
<td>-10*</td>
</tr>
<tr>
<td>14 Jan.</td>
<td>1</td>
<td>-18</td>
<td>+7</td>
</tr>
<tr>
<td>18 Feb.</td>
<td>5</td>
<td>-8*</td>
<td>-10*</td>
</tr>
<tr>
<td>29 Mar.</td>
<td>3</td>
<td>-17</td>
<td>-3</td>
</tr>
<tr>
<td>30 May</td>
<td>6</td>
<td>-17*</td>
<td>-10*</td>
</tr>
<tr>
<td>12 Jul.</td>
<td>6</td>
<td>-19</td>
<td>+4</td>
</tr>
<tr>
<td>24 Jul.</td>
<td>4</td>
<td>-11</td>
<td>0</td>
</tr>
<tr>
<td>31 Jul.</td>
<td>7</td>
<td>-13</td>
<td>+2</td>
</tr>
<tr>
<td>21 Sep.</td>
<td>5</td>
<td>-15</td>
<td>-3</td>
</tr>
<tr>
<td>17 Oct.</td>
<td>0</td>
<td>-15*</td>
<td>-19*</td>
</tr>
</tbody>
</table>

Out of the 10 cases, ΔSd^- is high at Trivandrum and Alibag simultaneously in four cases. On examination of hourly records of several stations, it was found that these were effects occurring at the same UT at different longitudes and latitudes, indicating a non-ionospheric origin. In the other six cases, ΔSd^- is large only at the Equator (Trivandrum) indicating a predominantly equatorial electrojet effect. Such effects have already been reported by Gouin and Mayaud (1967, 1969) who interpret them as indicative of a counter electrojet. Hutton and Oyinloye (1970) have shown that such occurrences are associated with the disappearance of the equatorial sporadic-E, i.e. $E_{\alpha-q}$. It seems, therefore, that this phenomenon as well as the general phenomenon of day-to-day variability of Sq are connected with dynamic processes in the ionospheric regions (Kane, 1972).

It may also be noted, that whereas ΔSd^- at Trivandrum is unconnected with A_p (in 0–7 range), ΔSd^- at Alibag does show a slight correlation (about 0.35 ± 0.12) during D and J months. Thus, developing of ΔSd^- at Alibag does indicate to some extent increasing geomagnetic activity even in the $A_p = 0–7$ range.

(3) For high A_p (8–53), ΔSd^- contributes significantly to the total range ΔSd at both Trivandrum and Alibag. Also ΔSd^- has a moderate correlation
Dependence of the daily ranges of geomagnetic variations on A_p

This indicates that larger values of ΔSd^- are characteristic of increased geomagnetic activity (A_p). However, the correlations are still not very high indicating that at least a part of ΔSd^- has a source unconnected with the source causing high A_p. In fact, as seen from Figs. 2–4, ΔSd^- values for A_p as low as 8–10, are sometimes comparable to ΔSd^+ at much higher A_p, in all seasons.

The positive component ΔSd^+ seems to be rather poorly correlated with A_p for equatorial regions (Trivandrum, correlation 0.20 or less) in all seasons; but for middle latitudes (Alibag), correlations are better (0.30 or more), for D and J months only. Thus, the source of high A_p is almost unconnected with the source of high ΔSd^+ at the Equator and partially connected with the source of high ΔSd^+ at middle latitudes.

Table 3 (a, b) gives the inter-correlations between the three components at the same place.

The following may be noted:

(i) For low A_p (lower triangles of Table 3), since ΔSd^- is negligibly small, ΔSd is mainly composed of ΔSd^+ and hence, is highly correlated with the same, as expected. Whenever ΔSd^- does occur, it is uncorrelated with ΔSd^+, both at Trivandrum and Alibag. Thus, these two parameters seem to have different sources of origin even at the same place, for low A_p.

(ii) For high A_p (upper triangles of Table 3), ΔSd^- is contributing substantially to the total range ΔSd and hence, correlations between ΔSd and ΔSd^- are higher, but the correlation between ΔSd and ΔSd^+ is still high and that between ΔSd^+ and ΔSd^- still low, indicating that ΔSd^+ and ΔSd^- have mostly different sources of origin even during disturbed days.

It is clear from the above evidence that the positive and negative components ΔSd^+ and ΔSd^- of the total range ΔSd show a somewhat different behaviour for high and low A_p and for equatorial and middle latitudes. It would be interesting to study the correlations between these parameters at different latitudes. In an earlier communication (Kane, 1971), it was shown that the daily ranges $\Delta H (= H_{\text{max}} - H_{\text{min}})$ at Trivandrum and Alibag for quiet days in 1964 were poorly correlated and that the correlation improved considerably firstly, when D_s corrections were applied and secondly, when the position of Sq focus was taken into account. In the present analysis, D_s corrections are already applied before obtaining ΔSd, ΔSd^+ and ΔSd^-. Figures 5–7 show plots of these parameters at Trivandrum versus those at Alibag for high and low A_p separately and for the D, E, J months respectively. The correlations coefficients are given in Table 4.

The following may be noted from Table 4 and Figs. 5–7:

(a) For low A_p, the correlations are very low except for ΔSd^- which itself is small in magnitude for low A_p. This means that the day-to-day variability of Sq at equatorial and middle latitudes is poorly correlated. However, whenever the negative component ΔSd^- appears on quiet days, the inter-correlation is moderate, indicating a partly common source for this component.
Table 3. Intercorrelation between ΔS_d, ΔS_d^+ and ΔS_d^- for the three seasons D, E and J for (a) Trivandrum, and (b) Alibag.

Amongst the triangles formed by the diagonal lines, upper triangle is for $A_p = 8.58$ and lower triangle for $A_p = 0.7$.

<table>
<thead>
<tr>
<th></th>
<th>D</th>
<th>E</th>
<th>J</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ΔS_d</td>
<td>ΔS_d^+</td>
<td>ΔS_d^-</td>
</tr>
<tr>
<td>(a) Trivandrum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔS_d</td>
<td>+0.84</td>
<td>-0.58</td>
<td>+0.85</td>
</tr>
<tr>
<td>ΔS_d^+</td>
<td>+0.97</td>
<td>-0.05</td>
<td>+0.97</td>
</tr>
<tr>
<td>ΔS_d^-</td>
<td>-0.30</td>
<td>-0.05</td>
<td>-0.25</td>
</tr>
<tr>
<td>(b) Alibag</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔS_d</td>
<td>+0.71</td>
<td>-0.88</td>
<td>+0.77</td>
</tr>
<tr>
<td>ΔS_d^+</td>
<td>+0.90</td>
<td>-0.28</td>
<td>+0.93</td>
</tr>
<tr>
<td>ΔS_d^-</td>
<td>-0.46</td>
<td>-0.03</td>
<td>-0.29</td>
</tr>
</tbody>
</table>
Dependence of the daily ranges of geomagnetic variations on A_p.

D MONTHS

Fig. 5. Plots of ΔSd, ΔSd^+ and ΔSd^- at Trivandrum (TR) vs. similar quantities at Alibag (AL) for (a) disturbed days ($A_p = 8-53$), and (b) quiet days ($A_p = 0-7$), for D months. Average slopes and correlation coefficients are indicated.

E MONTHS

Fig. 6. Same as Fig. 5, for E months.
Fig. 7. Same as Fig. 5, for J months.

Table 4. Correlations between ΔSd, ΔSd^+ and ΔSd^- at Trivandrum and similar quantities at Alibag

<table>
<thead>
<tr>
<th></th>
<th>$A_p = 0.7$</th>
<th>$A_p = 8.53$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔSd</td>
<td>+0.22</td>
<td>+0.74</td>
</tr>
<tr>
<td>ΔSd^+</td>
<td>+0.07</td>
<td>+0.17</td>
</tr>
<tr>
<td>ΔSd^-</td>
<td>+0.50</td>
<td>+0.54</td>
</tr>
</tbody>
</table>

(b) For higher A_p, the ΔSd^- component is very highly correlated indicating a common origin. However, the correlation for ΔSd^+ is also higher, at least for D months, indicating a common source to some extent. However, for E and J months, correlations are still poor.

(c) For low A_p, dynamical processes are known to play a predominant role (Kane, 1972). This could be so during high A_p also. However, an improvement in correlation is indicative of processes which are more coherent than turbulent. If so, it would be important to know whether these are occurring in the ionosphere or elsewhere. From considerations of the height-integrated conductivities at equatorial and non-equatorial latitudes (Maeda, 1953), the ratio of the observed effects at Trivandrum and Alibag should be about 2.9 (Nair et al., 1970). From the plots shown in Figs. 5–7, regression coefficients could be calculated. However, since the correlations are not always high, the two regression lines obtained by interchanging the dependent and independent variables would not be identical, leaving an ambiguity about the exact value of the slope. A
Dependence of the daily ranges of geomagnetic variations on A_p

better procedure may be to find the centroid for each set and connect the same to the origin. In Figs. 5–7, the centroids and the slope lines are marked and their slopes indicated. These should be compared to the expected number 2.9 if the effects observed are completely ionospheric. Table 5 gives the various slopes.

Table 5. Slopes, i.e. ratios R between ΔSd, ΔSd^+ and ΔSd^- at Trivandrum and Alibag

<table>
<thead>
<tr>
<th></th>
<th>$A_p = 0–7$</th>
<th>$A_p = 8–53$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D</td>
<td>E</td>
</tr>
<tr>
<td>ΔSd</td>
<td>2.10</td>
<td>2.26</td>
</tr>
<tr>
<td>ΔSd^+</td>
<td>2.12</td>
<td>2.26</td>
</tr>
<tr>
<td>ΔSd^-</td>
<td>uncertain</td>
<td>0.93</td>
</tr>
</tbody>
</table>

The following may be noted:

(i) For low A_p (0–7), the slopes are about 2.15 ± 0.10, values for E months being higher. This reflects the well-known equinoctial enhancement of the Sq range at the Equator. However, in no case does the slope approach the value 2.9 expected for a purely ionospheric effect. If there is some non-ionospheric, particularly magnetospheric contribution, it would have roughly a $\cos \theta$ latitude dependence which, for a pair like Trivandrum ($\theta = -1.1^\circ$) and Alibag ($\theta = +9.5^\circ$), gives an expected ratio of about 1.03. If we assume that the ionospheric and magnetospheric contributions at Alibag are x and y respectively, the ranges ΔSd_{TR} and ΔSd_{AL} at Trivandrum and Alibag could be expressed as:

$$\Delta Sd_{AL} = x + y$$
$$\Delta Sd_{TR} = 2.9x + 1.03y.$$

Hence, ratio

$$R = \frac{\Delta Sd_{TR}}{\Delta Sd_{AL}} = 2.90 - 1.87 \text{ K}$$

where

$$K = y/(x + y).$$

Using the ratio $R = 2.15$, the value of K works out to about 40 per cent. Thus, about 40 per cent of the range ΔSd or ΔSd^+ at Alibag would be magnetospheric and about 60 per cent ionospheric. For Trivandrum, the corresponding contributions would be 20 per cent magnetospheric and 80 per cent ionospheric. For ΔSd^-, the magnitudes for low A_p at both Trivandrum and Alibag are small and hence ratios are uncertain.

(ii) For high A_p (8–53), the ratio for ΔSd^+ is as low as about 1.5 for D months and as high as about 2.5 for E months, giving magnetospheric and ionospheric contributions of (75 per cent, 25 per cent) at Alibag and (50 per cent, 50 per cent) at Trivandrum for D months and (20 per cent, 80 per cent) at Alibag and (10 per cent, 90 per cent) at Trivandrum for E months. Values for J months corresponding to a ratio R of about 2.0 would be in-between values for D and E months.
For the ΔSd^- component, the ratio R is less than 1.03 for D and E months, which is baffling. However, considering possible errors in the estimations of these parameters, we are inclined to consider the ratio for ΔSd^- to be about unity for all seasons, and thus indicative of a completely magnetospheric origin for ΔSd^- at both Trivandrum and Alibag.

3. CONCLUSION AND DISCUSSION

The results of the present investigation may be summarised as follows:

(a) The hourly H values at the equatorial station Trivandrum and the mid-latitude station Alibag were corrected for D-effects using values of Sugura and Cain (1970).

(b) A plot of these showed that on successive quiet days ($A_p = 0-7$), the minimum values had an almost constant level. Using the average of these as a H_0 level and subtracting this from the H_{\max} and H_{\min} of each of the above quiet days as well as the succeeding disturbed days, the daily range of geomagnetic H variation on any day was expressed as

(i) the total range $\Delta Sd = H_{\max} - H_{\min}$;

(ii) the positive component $\Delta Sd^+ = H_{\max} - H_0$;

(iii) the negative component $\Delta Sd^- = H_{\min} - H_0$.

(c) Relationships between ΔSd, ΔSd^+ and ΔSd^- at Trivandrum and Alibag between themselves and with A_p were studied. The following was noted:

(i) For low A_p (0-7), ΔSd^- is negligibly small in general. However, whenever it exists at Alibag, it is moderately correlated with A_p, but occurrence at Trivandrum is not correlated with A_p. For low A_p, the major component of ΔSd is ΔSd^+ and represents Sq range and shows a large day-to-day variability unconnected with A_p changes. Also ΔSd^+ at Trivandrum and Alibag are poorly correlated on a day-to-day basis. Also ΔSd^+ and ΔSd^- at the same place are poorly correlated.

(ii) For high A_p (8-53), ΔSd^- forms a considerable fraction of the total range ΔSd. Values of ΔSd^- at Trivandrum and Alibag are highly inter-correlated (especially in D months) but are only moderately correlated (about 0.5) with A_p. The positive component ΔSd^+ is also large and for Trivandrum it is uncorrelated with A_p while for Alibag, it is slightly correlated (about 0.3) with A_p. Values of ΔSd^+ at Trivandrum and Alibag are moderately inter-correlated in D months but poorly correlated in E and J months. Also ΔSd^+ and ΔSd^- at the same place are uncorrelated at Trivandrum and only slightly correlated at Alibag.

(iii) If any one of the parameters ΔSd, ΔSd^+ or ΔSd^- is of ionospheric origin, the height-integrated conductivities in the equatorial and near-by mid-latitude regions are such that a ratio of about 2.9 for values at Trivandrum and Alibag is expected. On the other hand, if the origin is far away from the Earth (say, in the magnetosphere), the expected ratio is about 1.0. Since the day-to-day variability of ΔSd^+ at the two places is poorly correlated, day-to-day ratios vary in a very wide range. However, if this variability is ignored and ratios are obtained
from mean values for the D, E, J seasons separately, the ratios are between 2.9 and 1.0, indicating possibly a part contribution from magnetospheric as well as ionospheric sources for the positive component ΔSd^+ and an exclusively magnetospheric contribution for the negative ΔSd^- component.

It seems, therefore, that the daily range of geomagnetic variation is a very complex affair and has two distinct components positive and negative, which are mostly unrelated to each other and have different latitude dependences. Whereas the negative component seems to be exclusively of magnetospheric origin, the positive component seems to be contributed by both ionospheric and magnetospheric sources in varying proportions in different seasons and at different latitudes. If so, this should prove a powerful tool in studying the processes of interaction of inter-planetary plasma with geomagnetic field. Some relationship between the day-to-day variability of Sq and the inter-planetary magnetic field is already reported (Kane, 1972). Further work is in progress.

Acknowledgements—Thanks are due to the Department of Atomic Energy, Government of India for financial support.

References

Maeda H. 1953 J. Geomagn. Geoelect. 5, 94.

Reference is also made to the following unpublished material: