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£ numerical methoed Fav deconvrluting cne=-

s

dimensional optical imaning is dmsnriﬁed alenn with

its algorithm. This mzthod can vary successfully

e vsacd feor echievinn imane mnhancemcn‘ and vestoration
with minimised noise, spuricus ze well as systenatic,
in thz case of aspactroscopic and photemstric data in
optical or infrared astroncmy. An example has been
niven to illustrate the importance of Lho smeothinn

and resteoration parameters in the mathod.
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1¢ Introduction:

In mgst,of thn astronemical photanetric

b

and c"pfc:t*‘oscn'nc work, tha ohsorved imzne of a celestiasl
abject under study is inevit hly modifisd by what is known
2¢ instrumental function uﬁich is essentizlly defined by

(1) apsrture function of the instrumant or the polnt-spread
function, {ii) Filter response, {(iii} the response time of
the detactor used and many other lirmitaticne in tﬁn pxperi-
mentel and chsarvational prnceqs.,lz zll these cases, it
hacomes necossary to retrieve the actual siﬁnel dueg tn the
phject without the mndlflrwtlnno iﬁ ~rocduced by the extransous

'm tha anisy imeqe chservad, niven a orio

toas’

mm~gncies fr ri the

)

nozrest aguivalent of the instrumental profile.

Lat us supnaso that we ghserved an cbject with 2 certailn

€

instrument under certain concditions perlainins to variocus
extraneous Factors which influence ths data. Then, in ieneral,
the mnesuced functinn s(t) cdoss net truly represent the

shiect function p(t); but, on the other hand, it repressnts

3

the convnlution of the chiect Ffunction with a modulsation o

transfer functions a{t). Tris can he vritten down as,

af{t) = ple) * = (t) ceeoall)



whare, the symhol ¥ represents the convaiution nperation.

We can write the above equation also in the 7eollouinn way,

s(t) = b('r.*) @ (t.- £r) at? | e (2)

whare the intearal on the risht-side represents. the convo-

lution intenctal. Knowing s(t) and a(t), it is indeed

nossible to retrievs ths ohject p(t) provided the chscrva-

-

‘tions ars noise-free, by direct methods.

For instance, one can take %hé Fourier transform on
both sides of the equation (1) and then a simpleidiwisiun
followed by an inverse Fourier tfananrmation would nive
the desirer obiject functiocn p(t), in terms of the observed
image s(t) and the instrumental function a{t) which is
also cailad as the goint~5préed.€unctimn (p.a.f).'Homeuer,

‘the b.s.F in many zeplications has domipnant values in the
central part aof the data and falls off steeply to near=-zero
values on eithar side of cantral maximum.mfhis may'lead to
practical di"ficultios in-ohtainid@ the discrete Fourie;

transforme.

Alternatively, we can write the integrel sguation (2)

as a sst of linear equeticns and can, in principle, solve



for the unknown function p(t) by matrix inversion. As stated
already, the matrix elements formed by the function a(t) are
usually very small and this fact renders the matrix ill-
conditioned. Therefore, sventhough, the errors (or noise)

are negligibly small in s(t), they will contribute to large

errors in p(t). Thus, it is desirable to approach the problem

as if s(t) has errors (however small they may be) and minimise

these errors in obtaining p(t).

In this note, ue describe a method and its algorithm
to find a solution to the problem addressed here using the

above mentioned approach.

2, Mathematics of the Method.

Writing doun the convolution integral and adding the

noise term n(t), the eqn. 2 becomes,
o0
s(tm) = | Vp(t ) a (tm*t_) dt + n(tm) ceees(3)

— 0

where m = 1,2;3,es0.N, N being the number of data points.
Approximating the integral as a finite sum and assuming
that there are closely spaced data—points, eqn.(E) can

be written. as,




_ s(tm) = %E% P(ti) a<tm“ti);ui +;nm | | »IOpro(A) f

m = 1,29..,11N01 . ' ) ﬁ

¥ ) Co N

where Ws are the weightage factors for the:numerical

method used for integration,'ui = ki_ﬂ £t with ki some

constant and A\t, the step - size in t. The summation

approximafioﬁ in eqgn (4)'is valid when a ( |t [) is a
fast decreasing function of t..This property is satisfied

in most of the applications.

From the egn. (4) the variance in noise is written as,

2
2 1 N 2 9 N N ' '
~ =7 zm=1 (n2) = g3 zm:q s(t )~ <f:‘ pty)alt ~t;)uy

cer (5)

Now the“pondition for minimisation of @HQ is,

N

B. P

.= D for i =‘1';2‘9-o'..)N o "'O;OO'O'I(,6)

Substituting egn. (5) in sqn (6), we obtain the following




set of linear equations,
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and Bi = % 'EZ W a(tm - ti) s o Caeeee(B)

the object function Pj can now be obtained by solving the

eqno(T)e =~ ., - ST

7, Smoothing:

The solution obtained by solying the
eqn.(7), is known ﬁdube:contaminéted; in general, by
spurious ripples (Phillips, 1962). This is because of the
ill-conditioning of the matrix [;A]‘ inuolving-fhe p;s.F;-‘
a{t).tToAavoidatheée épurious‘ribples, in addition to.the
minimisation of the variance of the noise, we seek to impose

smoothness constraints on the solution in which we choose .

¢




an operator C together ulth a parameter’ﬁf and mlnlmlse

2 o
\& ap -8 }t + ’Y’\&cp (\ . In this method
Kkhown as regularlzatlon (Phllllps,1962),‘the operator
C can be I, Qm or d2 and, so om. A proper selection of ¥
: dt dt2

removes the ill-posed nature of the problem.

. . iy . 2
Here in our present discussion, wWe Uuse C as d

at?

. and use the numerically squivalent second differences for

minimisation.

Let us now define

(Nﬁ1; : i=%

—

B - - 2
o N '
¢? = z &“‘p(ti%q) -2 p(t;) + p(ti—miw

teeesesa(9)

Then the condition for minima in. eqgn. (6) becomes,

‘a:(d«2+ €2) | -
' o .

1

o : ‘.....,.(1q)

This leads to the following equation,




R.. + C,. P. =Bi 9 i=192,o-oaN nnon(11)

which is a modified version of eqn.(7) with Aij and

Bj having the same definitions”aé before, and with,

1 . -2 1 D D N c s 9 @
-2 5 ~l 1 0 O ..
—— 1 — L
ClJ = N""\ 1 4 6 4 1 ] e
0 1 -4 6 ~4 1 0

- The parameter’}r is to be so chosen as to give importance

to both the obserued data and the regularlzatlon or smoothing
‘réquired. In other words, there will be a partlcular value

of ,r, say ﬂro’ above which the smoothing process dominates
and we start sacrlflclnq the information or the self-
consistency, while belou the value of A{ the ripples

will dominate the solution. In general the value of ”FE

has to be chosen in accordance ulth the signal - to - noise
ratio and after a few trials we can fix the ‘value of ]/

for the desired and meaningful solution p(t).




4., Algorithm:

The algorithm of the method described above

is as follous: -

(1)  Ue have the observed data set s(t) at

...lt.

b=ty ty N

(ii) We assume the point-spread-function

a(t) at t = t,, & .

10 “27 N

(ii1) Then we form the constant matrix C ‘ :
(iv) We choose the weightage factors Ws

(i = 1,25+0..N) depending upon the;numerioal

method of integration. And we fix the step-

SiZeA tn

(v) The column matrix elements

1
B; = N

3

ug alty-tyleg 5 121,250l

avE

1
are computed and the matrix B is formed.

(vi) Then the matrix elements

N
Aij = §£< ui a(tm—ti)uj a(tm—tj)

m=1

21—

FDr i=19 ,29 B’DCCCN'and j = 1’29.-0.,\' are

Qomputed and the matrix A is formed.
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(vii) We assign a certain value for ¥

(viii)  Then the solution P;(i=1,2,....N) is initialized
by assuming, for instance,
o -10
Pi = 10 for all i

(ix)  The matrix equation
(h+YC) P = B
is éolved for ﬁ
(x) - The error, thgn is Computed‘bQ
.E = - Y BF

- and check uhether'ﬁl =max \ Ei \ < Y\
i o

8 constant value representing the variance of the noise
Dfiginaiiy present in the data~set. If this inequality

is satimfied then the deconvolufion'procedure ends. If

not then we start from the step (vii) all over again by
Changihg the yalue of «Y'. Sometimes, one may use the
value af 71 for Y and.go to step (vii) -lin each iteration

substituting the new value of Wl for Y .

We have used Gauss-Seidel iterative method for
solving the matrix equation above, and found that a

reasonably fast convergence to a solution is achieved,
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5, egxeﬁéle:

\ o Ue have used the above discussgd deconvolutlon
-method to Far -infrared photometrlc data succeesfully The -
date were obtained by a Far-lnfrared photometer at the Casse~-
qreln focus of a 32.5 em telescope on board a Caravelle
alrcraFt The sp901F1c data used wsre on the planet Uenus in
100 micron photometrlc band. The planet was observed in a
esaannlng mode with a-fimsld aperture of 1.4 arc minutes.

Slnce the planet's anqular-size ie about B arc seconds one
can consider this as a point-source and use it to aobtain the
instrumental profile or the point~spread function. In order
to check this, we have used the actual observations on Venus
end‘deoonvolved these with a point-spread function of Gauss-
ian shape uith e,Full—uidth at half-maximum inteneity,of'i.é
arc minutes. The result is shown in the figure 1, One can

see that there is almost a perfect agreemeet betueen the
actual data and the deconvolved profile, This‘proves that

a point-spurce like a planet can be used to obtain the
point-spread function even in case of Fer—infraredvuaVe;

lengths (Van der Wal et al, 1985),

6. Conclusions:

The following conclusions are in order

regarding the application of the method:

(1)  while approximating the convolution integral
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as a finite sum, in many cases, the Simpsan's
tule is adeguates if the data points are suffi=-
ciently closely spaced, even the trapezoidal

rule may be used..

-(ii) . The operator C can, in general, he taken as a
second-order difference; however s if necessary,
in some cases one may have to go to higher

order differences.

(iii)  Choosing of the critical parameter Y, is
dependent on the observational errors and

usually it can be determined by trial basis,
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