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Abstract:

In astronomicél observations we often encounter
spectra which are a result of superposition‘oF?individual
contributions from phenomena of similar kind. We describe
here a method togeﬁher with its algorithm by which one
can decompose a.qiven set of data inte a number of non-
linear functions and apply thé same to a couple of astro-
‘nomical data-setsk We discuss the modifications to be made
in the algorithm, appropriate to the particular problem
in order tob arrive at a solution. This method can be used
in high-resclution spectrdscopic and photometric data on
.astronomioal objects to extract valuable information which

otherwise is not apparent.



1. Introduction:

A

In many 801entlflc problems, the data

obtelned represent the resultant of supsrposltlon of a

' -number of” functions of a 81mllar type, but of different

parametrlc values. The type or form of Lhese Functlons’
depends upon the physical nature of the source. ThereFore,
the problem that we address ourselves to in this paper, is
to resolve or decompose into individual functions (ulth
different parameters) from a given set of data- ~Assuming

the Functional Form.

One often encounters spectra in astrenomlcal obeervea
tions, which are a result of superp051tlon of several
individual profiles which are not resolved unambiguously
either due to a poor signal-noise ratie or to closeness |
of the profiles making the resolving power of the instrument
insufficient. For instance, in the case of Seyfert galaxies,
spectroscopic observations (of Wilson as referred tooby
Burbidge et al, 1959) shoued:partislly resolved structured
profile For several forbidden emission llnes and the
hydrogen - recombination line Hel o These structures are
thaught to represent the turbulent motions of severel
individual gas clouds. By resolving these structures into

inuiuidual Qaussian profiles, one can obtain the density

in esch aas cloud from the peak intensity of each of



tﬁese Drofiiéé‘and the turbuleﬁt Qelocitiéé from the.
width of each of these pfo?ilés, In thehéase of a plane-
tary nebula (Milsong 19503 Dsferbroék'et al, T966) one
expects‘the emission lines tq-giue a;double;peaked-profile
indicating an expanding shell-uith respect to the central
star‘in the nebula. Houeu;r, in certain cases, esven fhe
high-resolution Spectroscopic technique may not be able
to resolve the dbdblé~péakgd’st}u¢£ure'dﬁa to the‘rgasoné
he%tibhéd earlierX*FhrtHefmofe, in the case of near - and
far-infrared photometric data sometimes, one needs to fit
a two = or multiple -~ temperature model;(i;e.Planck's
function with different temperatures.éndremiésivitiES)

representing different physical conditions of the emitting

regions.

We describe here a numerical method using uhiéh ve
can resolve or decompose a setrﬁf'data into a number of
non-linear (or linear) functions of assumed form. Ue
consider two specific astronomical data-sets and apply

the method to resolve the unresolved features,

v

2. : MethDQ_ﬁ’_\_

" Mathematically, the problem under investiga-
tion is to fit the data with a model Function which is a

sum of a number of non-linear functions of similar nature



having physically'meanianul parameters of different
magnitudes. The individual functions may be Gaussian,

Lorentzian, exponential, Fourier or Planckian.,

The model function F(X) which should represent the

‘giVen data-set P (Xi) is written as

il
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where fga(Xi? Qj-) repfesent the individuél Fﬁnctions that
-sum up to, give F(Xi);;v Qj are the physical parameters
in each function that need be fixed so as to obtain a
gobd fit; N is the number of data points and, M is the
number of functions required to fit the data; and 1 is the

number of  parameters( 9j>'

The deviation of Ehe modél from the data at each

data point is defined as

D (X;) =F (x,) - P (x;) vesol2)

then the residual sum of sguares »d)'can be written as.

CP‘(@als 629 LI @L)=:1N‘

M=
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where -L =»1xlm,vreprésents'the total number of parameters

that need be evaluated,

Now the next step is to Minimise the Function with
respect to €9p (p =1,2, vo.L) for a good fit. Assuming
that (b ls differentiable, one can uwrite these conditions

as,

) $(b)
28,

= 0 p=1929o-o-wol- ‘04""'(4)

(1) These equations may be linear or nonlinear in 9
depending upon the functional form. So,-the Problem
reduces to determining the parameter set AQD by solving

these equations.

In solvinq subh.problems (nonlinearvleéét'squafés and .
optimisation) the éeneraliséd Newton-Raphson method (Po@ell
1964, 1965) can be used very efficiently provided the
initial approximations are chosen properly. The method
“essentially is an iterative procedure based on a Taylor
Series expansion about the current approxihétion to the
-required Solution. In case the function to be minimised is
a sum oF squares and ;F each term in the sum of squares is
' relatlvely small at the minimum, Further approx1mat10n can
be made and the procedure gains substantlally because
there is no need to evaluate the second derivatives

explicitly,



Applying Taylor's series expahsion in the neighbour-

hood of E}g‘(Presenﬁ approximation) and assuming that

9 h = 9;3 + 8Fﬂ is a later~apprdkimation,'onevcan

uritévK. 4 as

fo?_v'bQS +§. D"

L | ¢ 2
>6p 26% P qz‘=1_‘ 00,20 oloy) =0
for P=1,2,...L eeses(5)

Substituting equation (3) in equation (5), and neglect-

ing 0 ( 8p2) terms,

N Y (D, 2 L N “ (.2 |
> ,'—a'i-lo) + %:;1 : % 0 i) gp = 0,
i=1 = = ‘ s A
26, | 20, 20, |
P=1425asel"
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- Ngar the minimum, if Dy ( epﬁ-CD)A_AD, then‘Di( p)

is of the brder af 8?; thus the:second derivative in the

above cequation turns out to be the order of 5 g and can -

therefore be neglected. The eqﬁ. (6). then reduces'td,

£ 2] Lk [ 2 2oy 5

i=| °6p 1 1) i=1 200 ﬂ?{%q P
b8 R 0-6
ceeo(7)
Defining, the matrices,
N O 0.
= e ) : = 1,2;00al
6 i2=1 00 * Dp |
b-9
D. D.
205 2 0 ‘ ..l (8)

one can write (7) as

S'A= - [3_1 . ﬁ .. ——)

which gives the solution for Ep. and the next



o . :
approximation 9? = E}p s %'p can be calculated.

3.  Algorithms

The following are the steps Qe follouw

in solving the equation (9)

(i) Depending upon the nature of the sourceifromf
vhich the data are obtained, we define the functional form
of £, in equation (1) and the number M of such functiors

which together will represent the data-set.

(ii) Then we choose a set of initial values for e;

based upon apriori knouledge of the source of the data.

We shall comment on this aspect later in thisfpapér.

(iii) We compute the deviations,

0
D, (98) =P, - E% fig € 095 05, o B2 v 07)

(iv) then the column matrix elements

0 D,
1 BGp

(B°) o, (0°  p=1,2,...L

1

are determined.



(v) Ué determine,Thebmatrix~elements,

Bg = | X 9 D, 2 0, : 5 Pp=1,2,...L
. i=1 = '
| o0 0P

p . _q__’QTB.. g=T425e L

(vi) we then solve the equations

o, |«
(vii) Then we check whether MSX 5o > 71~:

wh@TEYI is a pre~assigned accuracy limit If this 1nequallty
is satisfied then we qo to the following step, or else we

start all over again From the step (iii) above.
(viii) UWe then calculate & (= % 2; D, ),
1=1
o
+
Qp 5P

and check whether € < Y | a limit given to the standard

—

the r951dual sum of squares, with the neuw 'va

deviation based on the amplltude of the errors in the data.
If this 1nequallty is satlsﬁled then we stop the iteration

or else ue.start,ﬁrom step (iii) above with new 9;

The following remarks on the nature of the solution
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are in order. Iﬁ general, the solution to the problem
discussed here is not unique because of its non—linearify.
Theréfo;e, care should be faken'in accepting a particular
solutibp and rejecting éeveral others. The method that

we adopted here searches for a solution in the neighbour-
hood of the initial choice E}S « Thus, unless the initial
choice is properly made, the méthod either diverges

giving no solution, or even if it converges, it does so

to a solution which may be numerically correct but has

no physical significance or meaning. The first two steps
in the algorithm as given above, namely, (i) choosingl
the functional form and the number of suchlfunctibns,

and (ii) assuming a set of initial values 698 , Tequire

a prior knowledge as to the nature 'of the source from

which the data have been observed,

Even after choosing the Fdnctioﬁal form and the
number of functions, one needs enough prior knowledge
regarding the object in Draef to judge whether or ﬁot
a SDthion is meaningful. Sometimes the stability of
the parameters also causes problems in convergence of
the method. In such a case the iteration need not be
done simultaneously for all the parameters. One can

estimate a subset of parameters which are stable, and
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1

substituting these, the othér parameteis can be estimated.
The whole iteration process is repeated once or twice to
get the full set oF'pa:ameteré. The matrix G which consists
of partial.deriuatives at dafa points qivés an indication

of the order in which the parameters to be iterated.

We have used Gauss=-Seidel iterative method for solving
the matrix equation given in (vi) above. In general, we have
found that the method leads td fairly fast Convergénce,

provided that the matrix G is well-conditioned.

4. Examples:

“We give in this section two examples of
the type of functions that we have used for tuo data sets

obtained from astronomical observations.

(a) Gaussian decomposition of spectroscopic datas

It is fairly feasonable to assume that the
emission-lines from astronomical sources have profiles
OF'Gaussian shape. Tﬁis is because in hostAoF such cases,
the line brﬁadenihg is caused by the moiion of particleé in
thermodynamic equilibrium or by the random turbulent
motion of the gas. In such a situation, the respiting
spectral line intensity distribution can be best approx-

imated by a Gaussian. The data we have used for the
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decomposition are the Hydrogen Balmer-alpha llne obser-
vatlons made by Anandarac et al (1985) on the peculiar
Mira variable star R Agqr by using a high-resolution
Fabry Perot Spectrometer. The model function F in

equatlon (1) is

1929'...6{\'

M
Fi%kzﬂ Fki(ej);‘i

j = 192»;&;-::1

(A - A2

Pki = A exp - 7

=~

The parameters Ak . ;Xok and Crk, febréséht the
maximum amplitude, the wavelength of maximum amplituda
and the width of tHe profile number K respectively. Ue
have chosen M=4 sb that the observed profile represents
two expandinq shells with respect- to the central star -
each sheli represented by tuwo GaUSéian profiles one

approaching edge and the other receding edge.

In figure 1, we have given the emission-line profile
data alonguith the model-fit with 4 Gaussians . One can
“see that the fit was remarkably good giving physically

meaningful parameters. We have found that a model with
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3 GaUSsiéns élso Fitsvuell enougn with ‘the data. However,
the case of SIéaussians is féther loss meaningful because
if there were to be 2 expanding éhells, then, these should
neceésariiy be represenﬁed by 4 profiles. Supposing that |
there was only one shell then it should be représéntéd

by 2 profiles. We tried to fit two profiles to the data,
_Houever, the result was not satisfactory and the asynmetry
seen an the right—hand-side of the observed profile could
nly be accounted by assuming that theipfdfile uith.the
maximum amplitude in the data was actually Compbsed of two

profiles representing a single shell,

We have solved the equation (9) by taking a set of
similar parameters each time. That is,.For examples we
first keep widths and positions of the Gaussians Fixed;
and find out the amplitudes; then keep amplitudes and
widths fixed and compute the positioné; and finally, keep
amplitudes and positioné fixed and obtain widths. In
doing this, it is ofcourse necessary that uwe first keep
the best~knoun and étable parameters fixed and vary the
least known ones. Thus the solutions depend upon the.
initial values to a considerable extent. We had to do
this kind of piece-wise computation, as we can see; in
the matrices [.G i}pq - and [:g. ] b’ the elementg

corresponding to different parameters are different
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by orders of magnitude° It is felt thet this way of solviné
the problem‘in a pieée—uise manner,'reduces the riéks
invelved in uild;goosé hunt: because, when we know apriori
lthe values of cértain parameters, it is better to fix them
first and solve for the unknown parametersy in the end
ﬁaking only slight changes in the parameters assumed

apriori.

(b) Multiple Source model for far-infrared data on

astronomical ogbjects:

There are a number of
sources in the sky which are very strong emitters of far-
infrared radiation: mblecular cloudsvin our galaxy, ektqrnal
galaxies, protostars, stars with circumstellar shells‘and
SO on. Ih general, each of these sources can he approx—
imated to be emitting like a blackbody, at a certaln
temperature with emissivity characteristic to the nature
of the source. However, there are a number‘of sources for
which we cannot make this simple approximation. Most often,
'~ the far~infrared emission results in as a rerédiation from
dust grains heated by energetic photans from a hot source
embedded in a dusty molecularvcloud; The same is the case
of a star with a circumstellar envelope, In such cases
the far-infrared emission comes from two or more sources,

namely, one stellar component and ohe (or more)dust
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componént” Uhat we observe is the sum of the rndlntlon
from those sources. The problem, therefnre, is to decompose
the observod far-~ 1nFr1red Flux into the fluxes from tuwo

or more individual sources,

Let us assume that P( Q\i) is the observed data
from a source, We use here a simplified vefsion of radia-
tive transfer problem (Jonos and Merrill, 1976), We write

down the FollOulng equation for the model F( A, )

‘ |
F (/\i) =a B (A, T « é B( ?\l,T ) { 1-exp (= 2de (A, )}

where a, bk are constants which physically represent the

source size in steradiansy; 8 ( A T) is the well-knoun
, .

Planck's functien For'biackbody radiation given by

B( N, T) = 2o 1

A { hC/KT}k % '
e oo=~1

dk is a constant

Q) (‘Q\i) are ‘the far—infraredvabsorption efficiencies
of a particular type of grains that we assume; T, is
the effective temperature of the central hot source

i.2.a star.

The dﬂta used here were obtained by the Infrared

Astronomlcal Satelllte (IRAS) on the Mira yariable star
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U 0ri and were made available to us‘Ey ﬁrofessor S.R.Pottasch.
In table 1 we haue:given'thé flukes obtainéd by IRAS detect-
ors in four far-infrared bands centréd at wavelengths of
12,25,60 and 100 microns. We know from the type of the star
that its effective temperature is- ~ 3000 K (typical for
M-type stars). We can find readily that the far-IR fluxes
given in taﬁle 17 cannot be accounted for by the star alone.
We also knouw From the nature of Mira variables that these
~stars are surrounded by Clrcumstellar dust shells which

if‘orm dué to the sheddlnq oF the material from the star during
its later stage. With this prior knouledge regarding the
object we could explain tﬁe observed fluxes very well, in
terms of a two temperature model - (i) The star with
temperature T,=2900 K and (ii) a dust shell at tempenature

Td = 80 K with an assumed silicate grain model. (The detalls‘
of these results will be published elseuhere).»ln Table 1

we have given the model fluxes with the above parameters
alonquith the source sizes obtained by the model, One

can see that the fit is very good.

5. Canclusions:

We have developed a method and its algorithm
to decompose observational data into a given number of non-

linear (or lineaf) functions. We havé shown that physically
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meanithulAéolutioné for the functional parameters can be
obtained by giving tuo exambles of data—sefs from astrono-
mical observations. In exampleé where prior knowledge of |
‘the‘sourée is available; our method yields a bettef-physical
insight into the nafure of the séufce as shoun;in the tﬁo
examples. Though the mathematical method described here 1is
2 standardised one, the details of the usage of its
algorithm depends very much on the particulars of the

given data. Thus the algorithm is data;depéndént.
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Table 1,

Results on U Ori from IRAS compared with a

two ~ temperature model.
*
Photometric Flux in Model
band: Effect- Janskys flux in
ive wavelength From Janskys
in micrometer IRAS
12 635 635
25 273 273
60 42 43,1
100 14 10.2

* The Physical Parameters determined by the Model are

as follows:

(1) T = 2900 K3 a=1.5 x 10714 steradians.
(1) T, =80 K ; b = 8.2 x 107" steradians.

(iii) silicate grains of size 1 micrometer are assumed

to constitute the dust shell o = 2.
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