TN-85-46

SOLUTIONS OF SEVERAL SEARCH PROBLEMS BASED ON THE BACK-TRACKING ALGORITHM

> BY D.P. AHALPARA

July 1985

COMPUTER CENTRE
PHYSICAL RESEARCH LABORATORY
NAVRANGPURA
AHMEDABAD- 380 009

: PRL : TN=85=46 詽喙痠貀瘱砃奜蜫蜫椺瘱ਣ婱荲荲荲荲荲荲荲荲荲荲荲暋腤惃籂竤暋蕸雗荲蒆椺貑篗膌篗篗篗 TITLE AND SUBTITUE : 3, REPORT DATE : July 29, 1985 4. TYPE OF REPORT : Technical "Solutions of Several Search Problems based 5. PAGES: 43 6. PRICE : Unpriced on the Backtracking Algorithm" 7. NO. OF REFERENCES: 19 AUTHORS(S): Dr. D.F. Ahalpara

- 9. a) PURPOSE: The note illustrates the usage of Backtracking—
 Algorithm in carrying out a systematic search
 while solving a variety of search problems of
 diverse nature.
 - b) USEFUL FOR : Provides a guideline for solving any givensearch problem belonging to the GPS (General Problem Solving) category.

· par bids con 17th chai 平子 经长 统治 19th (HS 648) 14th 14th (HS 648) 24th 14th (HS 648) 24th 14th (HS 648) 24th (HS

- 10. ORIGINATING UNITS/DIVISIONS AND ADDRESS:

 Computer Cepter

 Physical Research Laboratory

 Mavrangoura

 Ahmedabad 380 009
- 11. SPONSORING ACENCY : Nil
- 12. ABSTRACT: A suite of programs in PASCAL language have been developed to solve problems that require a tree of nodes to be searched in a systematic way. The common theme used in solving these otherwise diverse looking problems is the Backtracking Algorithm which simulates the "thinking" process.
- 13. KEYWURDS : GPS(General Problem Solving), Popular Puzzles,
 Backtracking, Recursion, Systematic Search
 process, Tree structure.
- 14. DISTRIBUTION STATEMENT : Distribution Unlimited.
- 15. SECURITY CLASSIFICATION : Unclassified

D.P.AHALPARA
Cmputer Centre
Physical Research Laboratory
Ahmedabad

IMDEX A same

Section Number	Page Number	Section ()
क्षेत्र सूत्र शेला धारी राज्य शाल शाल	the first time the and	करने देवते मित काम देवत दशन करने पहले करने करने करने काम काम किया दशन करने काम काम करने क्षेत्र तीन करने
	4)	Abstract
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 m 8	Introduction
	9-12	The Backtracking Algorithm
	e de la companya del companya de la companya del companya de la co	2.1 Finding ONE Solution
		2.2 Finding ALL Solutions
<u></u>		2.3 Finding the OPTIMAL
		Solution
han se transmit in 10 📝	13-38	Applications to some GPS problems
	14	3.1 Permutation
	1.6	3.2 M-Partition and Knapsack
		Problem
A STATE OF THE STA	20	3.3 Shortest Path in a Network
	22	3.4 8 Queen Problem
	25	3.5 Knight's Tour Problem
- 	28	3.6 Problem of 3 Water Jugs
e general relation (1) of the contract of the	3.0	3.7 Finding a path in a Maze
	33	3.8 Magic Square
	135	3.9 Problem of Missionaries and
		connibals
<u> </u>	39 · · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
rudit it	· ·	and the state of t
	A ()	Acknowledgements
NACE OF THE SECOND SECO		
1 - L	4.1	Referrences
	page=1	· · · · · · · · · · · · · · · · · · ·

en in Trent de la companya de la co La financia de la companya de la co

والمساولية ويستقد والخاري فينسخوا البوار يستعددوا الغارات والمواس

ABSTRACT

In the present note we consider a problem solving task GPS (General Problem Solving). These problems ingeneral do not have analytical solutions. Estarting from the given initial state of a problem the task ammounts to finding out the path(s) that lead to either a given goal state or to those goal states distinguished by a predicate. The successive "Moves" which lead to new states from one state to the next form typically into a tree structure which independ would grow quite rapidly with the increase in the deapth of the tree. Rather than following fixed and static pattern of computation, the algorithm which would solve a typical problem belonging to the GPS category expected to employ a RECURSIVE search process that gradually builds up and prunes through the entire tree of subtasks at each level of the task.

We have used the Backtracking algorithm to solve such problems. The algorithm employs a look-ahead strategy at each level in a recursive wav. A variety of otherwise diverse looking problems are solved by this algorithm using the same general problem solving scheme. For each problem an interactive package in PASCAL language is developed employing the backtracking algorithm. It is intersting to note that each package is distinctly separable into following 2 parts:

- 1. The tree search algorithm which prunes through the entire tree in a systematic way.
- 2. The task oriented part which is specific to each problem and ammounts to initializing the problem and specifying the task (i.e. the information about the initial and the goal state).

With small modification in the algorithm (corresponding to part (1) above) it is fossible to selectively generate all or one of the follwoing 3 kinds of solutions:

- 1. Any ONE Solution
- 2. ALL the possible Solutions
- 3. The OPTIMAL Solution having the least path length

A variety of problems and popular puzzles are based on a common theme known as "Gemeral Problem Solving" (GPS) (Ref. 1-3,20). These problems independent defy any analytical method for finding out their solutions. It would therefore be necessary to develop an algorithm which carries out a systematic search process in the 'Move Space' of the problem. (We may note that for many of the problems the search process becomes quite involved one and it is then necessary to look for appropriate heuristic scheme to reasonably cut down the involved search. The word heuristic is derived from the well known Greek word EUREKA. Heuristic independent means a rule of thumb that serves to help discover.)

A well known problem belonging to the GPS category is "8-Queens" problem in which 8 Queens are to be placed on a Chess Board such that no two queens can capture each other. was investigated way back in 1950 by the well known mathmatician C.f.Gauss who gave its partial solution. Another popular example is that of a "Treasure Hunt" in a mesh of raods and walls where the task is to find out the shortest path from initial square to the final one. The "Tower of Hanoi" problem invites to rearrance a stack of disks of varying arranged in a discending order, from one peg to another using one more auxilliary begare The movement of the disks is however restricted in that at no time could you place a bigger disk on top of a smaller disk, (The legend has it that long time ago Indian temple this task was assigned to several monks for a stack of 63 disks and it was believed that our cosmos would end as soon as the monks would accomplish their task 1). The classical "Route Finding problem", i.e. that of finding out route between two given nodes in a network, or of shortest finding out the canonical route which optimally traverses through the nodes of the network (without revisiting any node), also falls under the category of GPS. In the "Knight's tour" - problem considers an n*n Chess Board. Starting from the given initial square the path made up of a knight's successive moves is to be found out such that the entire board would be swept through by visiting each and every square - only once. The well "M-Partition and Knapsack" problems of integer programming look for all possible subsets of integer numbers (from an sot of integer numbers) which satisfy certain given constraints. The popular puzzle of "3 water Jugs" requires to the given 8 litre water (filled initially in an 8 litre jug) into 2 equal narts with the use of 2 other empty jugs capacities of 3 and 5 litres each.

These otherwise diverse looking problems have a common built-in feature that by and large it is rather difficult to look for a fixed strategy of computation which can DIRECTLY lead to the solution one is looking for. In absence of an analytical solution a Computer-Algorithmic-Approach is therefore guite

relevent.

systematic interesting algorithm, which employs a possibly a heuristic) search method through a tree of successive moves, is the Backtracking algorithm (Ref. 1-3). The algorithm known to be quite useful for solving one-person game type of problems falling under the GPS category. Given a GPS problem and goal states are defined, the trial and error initial search process employed in the algorithm goes as follows. of the search the task is decomposed into partial stage subtasks. Each subtask is then recursively scanned through till either the solution is found out or a terminating condition is and prunes the Thus the search dradually builds uvreached. subtasks, in a recursive entire tree. made up of tasks and manner. In most of the problems the search grows quite rapidly and usually exponentially. Unless the tree is not guite deep and the branching ratio to subtrees at each level is not large, the search by adopting some would be necessary to cut down -Reuristic quideline.

The set of problems for which a heuristic search based backtracking Algorithm may be effectively used are defined as 3) : follows (Ref.

Given

- * * An initial state
 - * A set of 'Operators' which allow new states to be generated from a given state
 - * A definition of the desired goal-state

: * The sequence(s) of successive "moves" To Find (forming the solution path) which would lead to the goal state from the given initial state

It may be noted that the above strategy defines essentially one-person game type of structure. In a graph theoretical representation we may denote each state by a node possible moves from a given node would give rise to various branches forming, in a recursive way, into a multibranch tree structure. The strategy mentioned above may equivalenty be posed in the following way with reference to the tree structure :

- Given : * "he root node of a connected tree (representing the initial state)
 - * A set of 'Operators' which generate all possible branches from a given node
 - * The description of node(s) which satisfy a predicate (representing the goal state(s))

To Find :

* The sequence(s) of operators which describe a path starting from the root node to the qual node(s)

This MAPPING of one-person game type of problems to search process in a tree of nodes from the root node to the goal node has been established long back. The mapping has been used extensively in the research studies towards developing algorithms for an intelligent game play on Computers. Some of the refrrences are: Von Neumann and Morgenstern (Ref. 4), Shannon (Ref. 5), Strachev (Ref 6), Samuel (Ref 7,8), Newell, Shaw and Simon (Ref 9), Newell and Simon (Ref 10), Doran and Michie (Ref 11), Hart, Nilsson and Raphael (Ref 12), Moore (Ref 13), Dantzig (Ref 14), Dijkstra (Ref 15), Pohl (Ref 16,17), Quinlan (Ref 18), Michie and Ross (Ref 19) and Michie (Ref 2). Subsequently this area of study has been known as GPS: General Problem Solving.

An interesting outcome of these studies is that given a GPS problem one can clearly establish a distinct separation between two essentially different parts of the program: (1) The general tree search algorithmic part and (2) The task orinted part which is typical of a given problem and specifies the initial and goal states and a repertoir of operators which transforms from one state to another.

Figure 1 snows a typical tree structure which arises in the solution of a GPS problem. The root of the tree represents the initial node. The problem is to find out the path(s) that lead from the initial node to the goal node. The desired solution path is shown in the figure by a dashed line. The tree shown in the figure is a Binary tree where for each node there are at the most 2 branches emerging out.

Since in deneral the size of the tree to be searched may be quite large, it would be an unnecessary overhead to store the entire tree and then make a tree traversal to look for the solution path. The backtracking algorithm avoids such an overhead by generating and storing only the portions of the tree for which search continues and deleting those portions for which the search fails (i.e. typically when a terminal node is reached for which all the neighbouring nodes have been visited before)

For some of the GPS problems instead of the typical tree structure shown in figure 1, a Graph is formed. The essential difference then is that there may exist more than one path connecting the initial node to the goal node. In such cases it would be interesting to look for ALL possible solution paths. For problems related to operation research applications one would also be interested in finding out the OPTIMAL solution path for which the path length is minimum. (An example here is to look for the shortest route between two given nodes in a network). It is interesting to note that with just a minor modification in the backtracking algorithm one would be able to get selectively either all the solution paths or the optimal solution path.

In the present note we outline a number of interesting GPS problems which are solved by developing a suite of programs in Pascal language. (The Pascal language has been used because of its rich data structuring facility). It is interesting to note that although the problems are of diverse nature, the same

general scheme of the backtracking algorithm has been used for carrying out a systematic search process in the look out for the solution paths. Each program is made up of about 100 to 200 pascal statements and requires about 2 to 15K words of core memory at the compile time on DEC-1091 Computer System.

Section 2 describes 3 versions of the algorithm which respectively find ONE solution, ALL the solutions and the OPTIMAL solution. Section 3 discusses 9 different GPS problems and their solutions obtained by the Pascal programs. A brief discussion follwos through in section 4.

A typical RINARY TREE STRUCTURE showing the initial node (node number (1)) which forms the ROUT node of the tree and the GOAL node (node number (20)). The solution path which connects the Initial node to the Goal nide is as follows:

$$(1) \Rightarrow (3) \Rightarrow (6) \Rightarrow (10) \Rightarrow (12) \Rightarrow (14) \Rightarrow (17) \Rightarrow (20)$$

2.1 Finding ONE Solution Path

The algorithm which searches for ONE possible solution path in graph of nodes is shown on the next page as the procedure SEARCH1. The procedure has 3 parameters. The first 2 parameters are value parameters and represent the move number along the path (i.e. the level of depth in a directed graph) and the discription of the state for the present node. 'successful' is a variable parameter and would get the boolean value TRUE or FALSE is successful to depending on whether the search locate a SEARCH1 solution path or not. It may be noted that would called once in the main body of the program. Then onwards it would call itself recursively through the statement SEARCHE1(I+1, The recursive calls are guided through the variable 'found'. At each stage during the recursion the the procedure SEARCH1 is made only if the instantiation of variable 'found' has the current value as FALSE. The final value of the procedure parameter ((i.e. when the solution is found), would correspond to the length of the solution path.

The REPEAT .. UMTIL loop is executed kmax times corresponding to the kmax number of branches emerging from the current (1)th node, The array VISITED is indeperal a multdimensional array of boolean. It keeps track of the states which have been visited so far at each stage during the search process. A new state (out of kmax number of states) is entertained only if it is not visited before. This is an important feature which avoids unnecessary cycles within the solution path, thus giving only the basic solution path for which no state is repeated again. soon as a solution is found out the variable parameter successful gets the value TRUE and correspondingly the recorded solution may be displayed in the main program. If no solution exists then the variable successful holds the value FALSE.

Algorithm 1

The search algorithm to find out ONE possible solution.

```
procedure SEARCH1(i:integer ; state:state_type ;
                var successful:boolean) ;
  var k.kmax:integer ; found:boolean ;
begin
  (* let MAX be the number of all possible new_states which
   can be generated from the given state *)
  k = 0 ;
  repeat
    (* generate the (k)th new_state *) -----
    if (not visitedinew_state) then
      (* Record the (1)th move *)
     visited[new_state]:=true ;
    it (* Reached at the Solution *) then found:=true else
      begin
          SEARCH1(1+1, new_state, found) ;
          if (not found) then
          begin
            (* Frase the (i)th move *)
            visited [new_state]:=false ;
          end
     end
    end
  until (found or (k=kmax)) ;
end ;
```

2.2 Finding ALL the Possible Solution Paths.

The search algorithm which looks for all the possible solution paths is shown as the procedure SFARCH2 below. The basic search procedure is the same as in the algorithm SEARCH1. However modifications which allow for the generation all the paths are as follows. Firstly it may be noted that the variable parameter successful which was used in SEARCH1 is not necessary because as soon as a solution is found out it is displayed. The difference is that the REPFAT .. UNTIL loop is replaced by a FDR DO loop. This allows for scanning all the branches of the graph from a given node even if a solution has been found. (Recall that algorithm SEARCH1 would stop as soon as a solution obtained because of the boolean condition of the REPEAT .. UNTIL loop, namely, (found or (k=kmax)). Thus if there are multiple paths from the starting state-to the goal state then each pasic solution path would be found out by the algorithm SEARCH2.

Algorithm 2

The search algorithm to find out ALL possible solutions.

```
procedure SEARCH2(j:Integer ; state:state_type) ;
  var k.kmax:integer ;
begin
  (* let max be the number of all possible new states
     which can be deperated from the given state *)
  for k:=1 to max do
  begin
    (* record the (k)th new_state *)
    if (not visited Inew_state)) then
    beain
      (* record the (i)th move *)
      visited[new_state];=true ;
      if (* reached at the solution *)
      then (* display the solution *)
      else SEARCH2(1+1, NEW_STATE) ;
      (* erase the (i)th move *)
      visited[new_state]:=false ;
    end #
  endir
end ;
```

2.3 Finding out the OPTIMAL Path

Suppose that for a graph corresponding to a given problem there are multiple paths having the path lengths 11,12,13 ... In, where n is the number of different solution paths. It would then be of interest to locate that path for which the path length is optimal. Such a path would be called an optimal path. The algorithm which looks for the optimal path is shown below as the procedure SEARCH3.

The modification to the procedure SEARCH2 which allows to look for the optimal path is as follws. As soon as a new solution path is encountered, its path length is compared with that of the current optimal path. If the length of the former is less than that of the latter then the optimal path is redefined as the presently found path; otherwise the current optimal path is left unchanged. Thus at the end of searching all the paths the path stored as optimal path would contain that path whose path length is optimal.

Algorithm 3

The algorithm to find out the OPTIMAL solution

(* let MAX be the number of all possible new states which
 can be generated from the given state *)
for k:=1 to max do
begin

(* Generate the (k)th new_state *)
if (not visited[new_state]) then
begin

(* Record the (i)th move *)
visited[new_state]:=true ;

if (* Reached at the solution *) then begin

if (* path length of the current solution is
 the path length of the last solution *) then
 optimal_solution:=current_solution
end else SEARCH3(i+1,new_state) ;
(* Erase the (i)th move *)

visitedinew_state]:=false ;
end

end end ; In this section we consider various well-known problems that belong to the GPS category and solve them using the backtracking Algorithm. For each application the problem is described by specifying the following:

- 1. The INITIAL state
- 2. The set of operators which transform a given state into another state
- 3. The GOAL state(s) defined through a given predicate

The problems include applications to integer programming, an UR (Operation Research) application and several popular puzzles belonging to the one-person dame type of structure.

3.1 Permutation of n Integers

The problem of finding out all n! distinct permutations of n integers 1,2,3, ..., n occurs quite frequently in many diverse applications. Two permutations of n items are said to be distinct if they differ in the order of the n items. We now discuss the program which uses the backtracking algorithm and solves this problem in a general way.

- 1. Problem Definition.
 - 1. Initial State: Initial sequence of n natural integers
 - 2. Operator: Change the given sequence of n integers by swapping any 2 integers
 - 3. Goal state : All n! sequences of the n integers which are distinct to one another according to the order of the integers within sequence
- 2. Pascal Program

Size : 100 Pascal lines Core : 2K words

The Pascal program which generates the n! permutations has the following input/output:

- 1. Input : The value of the integer n (The initial sequence would be :1,2,3, ...,n)
- 2. Output : List of all the ni distinct permutations of the given initial sequence

It may be noted that without using the recursive search construct in the program it would be quite cumboresome to develop an iterative version of the program which would solve the general problem of generating all n! distinct permutations of the given initial sequence.

The recursive method used in the program is as follows. The basic operation to change the sequence of a given permutation is the swapping of two integers. We also develop a procedure PERM3 which generates all 6 permutations of first 3 integers of a given sequence. Consider now the permutation of 4 integers. The 4th integer is initially kept as 4. The above procedure PERM3 is

then called which denerates 6 permutations having the 4th integer as 4. The 4th integer is then swapped with the 3rd integer of the ORIGINAL sequence. The procedure PERM3 is then called to generate 6 new permutations. This method of calling PERM3 is repeated till the 4th element is swapped with the 1st element.

For given number of elements n (4) the above process looks for all the permutations in which the last element is repeatedly swapped with all the rest elements. This method is elegant in the sense that it always generates only the DISTINCT permutations, thus avoiding the overhead on our part to temporarily store the list of nermutations generated at a given stage follwood by the need to check whether the newly generated permutation is distinct or not.

3. Test Runs

Table 1 gives the average CPU time taken by the present program in generating all the distinct permutations of n elements for several different values of n,

It may be noted that the algorithm is quite efficient as far as the CPU time taken to generate the permutations is considered.

However as the number of integers to be permuted increases rapidly: with each increase of an integer the CPU time is increased by a factor of 10.

Table 1

CPU time taken for generating all the n: distinct permutations
of n elements.

	Number of	CPU time
n	permutations	(milli sec)
	क्ति कार की कार कि मार्थ की की मार्थ की	কৰি চাৰে ১০ক কৰা কৰা কৰা কৰা বৰা কৰা কৰা
3	6	< 1
4	24	< 1
5	120	2
£1	720	15
7	5040	-115
- 8	40320	970
9	362880	8790
1.0	3628800	87930
	44 day ann 967 ann 1784 day 268 may 188 day 644 644 1772 Der max	ATT ATT THE TOT THE ATT THE TILL HE ATT THE ATT THE ATT THE

3.2 The 'M-Partition' and Knapsack Problem.

These two problems are closely related to each other and are considered as classical problems in integer programming having a wide range of applications. Having given a set of n integers, both the problems look for all the subsets of integers which follow certain constraints. We now consider the two problems one by one.

3.2.1 The M-Partition Problem

1. Problem Definition
Given a set S of n integers {s(1), s(2), ..., ..., ,s(n)} it is
required to list out all distinct subsets of S whose elements add
up to a given value M.

- 1. Initial state : Mull set {} having no elements
- 2. Operator: Adds up an element from S to the present set.
- 3. Goal state : All the subsets whose members add up to a given value \mathbb{N}_*
- 2. The Pascal program -

Size : 150 Pascal lines Core : 2K words

The recursive Pascal program has been developed which makes an exhaustive search and lists out ALL the desired subsets of integers whose members add up to M. Having given the set S of n integers and the sum value M, the program first locates two optimal numbers, namely, the minimum and the maximum possible sum values. The minimum value is essentially the smallest number of the given integer whereas the maximum number is the sum of all the integers. For the given n integers the search process would then be triggered only if the value of M lies between the above two bounds.

The input/output for the program are as follows:

- Input: * n = number of members of set S
 - * The n members of set S
 - * M = the desired sum value
- Output : * List of ALL subsets of S for which their members add up to sum value M.
- 3. Tets Runs.

```
Example 1
```

Input : n=5 S={8,5,3,6,1} M=9

Output

no	Subset		·Nodes se	arched .
1005 EC16	加 550 000 000 000	100	the cost and the the the test that	医贫寒寒寒寒
. 1	{8,1}			16
2	$\{5,3,1\}$			5
3	{3,6}			5
ಷ್ಟಾಗಿದೆ ಪ್ರಕ್ಷ ರಕ್ಷ ಈ	s met tils man met star man top man niet men m	का केला हैका स्टी कहा शहर ह	医软骨骨合物性骨骨	

Total nodes searched = 31

Average nodes searched for 1 soln; = 10

Rune (#illi sec) = 1

Example 2

Input : n=7 S={7,6,5,4,3,2,1}

Output :

節篇 海阿维斯松林 网络杜斯斯斯斯斯斯斯	المستعددة
There is no seen that we can the west to the seen that the) they are man
1 1 (7,5) 34	
2 (7,4,1)	
3 (7,3,2)	
4 {6,5,1}	
5 (6,4,2)	
6 {6,3,2,1}	
7 {5,4,3}	
8 (5,4,2,1) 2	

Total nodes searched = 76
Average nodes searched for 1 soln, = 9
Rune (π illi sec) = 1

Example 3

Input : n=5

 $S=\{2,1,0,-1,-2\}$ M=0

Output

nφ	Subset	Modes searched
1784 INT	मन तर्व साथ अने क्ष्ट रूप	एक रूप का दिन रेगर क्षेत्र केल केल मेरी का दीन की रहत मान की सीव
1	{2,1,0,=1,=2}	5
2	(2,1,-1,-2)	3

3	. 1	(2	, 0	,2	}			٠					5		
4				2)									3		
5		1	, 0	, ~	1.)								3		
f_{2}	+	(1	p 150	1 }		•				•			2		
7	. •	0.1	}				•						2		
en the el	, man 1000 that #		(#13 etc.)	-	984 15	terpe i	the error	1170 PM	 	A RS 95	***	 e en on	-	NE ARE EST	tips

Total nodes searched = 26 Average nodes searched for 1 soln. = 4 Rune (milli sec) = 1

3,2,2 The Knapsack Problem

1. Problem befinition
Consider a set S of n integers, namely, (s(1), s(2), ... s(n)),
Associated with this set is another set P of n integers, namely,
(p(1), p(2), ... b(n)). The b's are known as profit values.
The Knapsack problem lies in finding out that subset of P which
meets with the following two constraints:

- 1. Its members add up to a maximum possible profit value
- The corresponding subset of S must be such that its members add up to less than or equal to a given sum value M. (For a subset of P , namely, {p(1),p(2),p(5)}, the corresponding subset of S would be {s(1),s(2),s(5)})

The problem is defined by the initial state, the goal state and the operator as defined below:

- 1. INITIAL STATE: The null subset () of P
- 2. OPERATOR : Adds up a member to the present subset from the given set P.
- 3. GOAL STATE: The subset of P whose members add up to a maximum possible value with the constraint that the members of the corresponding associated subset of S must add up to less than or equal to the given sum value M.
- 2. The Pascal Program

Size : 180 Pascal lines

Core : 3K words

The recursive algorithm in the present program finds out a valid

subset of set P (that satisfies 2nd constraint above) and stores it in a puffer. Whenever a new valid subset is found, it is compared for optimality with the subset in the buffer. If the newly found subset is better than that in the buffer then the content of the buffer is replaced by the newly found subset. At the end of the recursive search the buffer would contain the desired optimal subset of P.

The input/output for the program are as follows :

- Input : * set S
 - * * set P
 - * * sum value M
- Output: The optimal subset of P satisfying the constraints mentioned above

Example 1

Input : $8 = \{3,1,9\}$ P = $\{20,10,22\}$

M = 10

Output: Pesired subset of P = {10,22}

Number of nodes searched = 7

Run time (milli sec) = 1

Example 2

Input: $S = \{1, 2, 3, 4, 5, 6, 7\}$ $P = \{12, 10, 20, 100, 80, 90, 50\}$ M = 7

Output: Desired subset of P = {12,10,100} Number of nodes searched = 127 Run time (milli sec) = 71

3.3 The Shortest Path in a Network

This is a classical problem in the operation research area and occurs quite frequently in many practical situations. Consider a network having certain number of nodes which are linked to one another. associated with each linkage between two nodes I and j there is a number d(i,i) representing the 'distance' (in some units) between the two nodes. Given two nodes, nemely, the STARTING node and the GUAL node, the problem is to find out the optimal path having the shortest distance enroute from the initial node to the goal node.

- 1. Problem Definition.
 - 1. Initial State: The starting node
 - 2. Operator: Allows to do to one of the nodes which are linked to the present node
 - 3. Goal state : The goal node
 - 2. Pascal Program

Size : 200 Pascal lines

Core : 4K words

In order to look for the desired optimal path the program prunes through the network. The recursive search process finds out all possible paths that connect the starting node to the goal node.

At the same time whenever a new path is obtained, the program keeps track of the shortest path out of all the paths generated so far. The search becomes quite involved with the increase in the total number of nodes within the network.

Input : * n = The total number of nodes in the network

 $\tilde{\tau}$ The distance matrix d(1,j) for all the pairs of nodes j and j which are linked together

* The starting and the goal node

Output : * wumber of paths found

* The optimal path having the minimum distance

between

initial and doal node

3. Test Runs:

Example 1

Input : * n=6

* The d(1, j) matrix :

```
node j
              214 - 8
         node
                  31
              41
        į
                     11 - 3 - 21
                51 🕶
            * Starting node : 1
Goal node : :6
Output : * Number of paths found : 8
            * The shortest Path : 1 -> 4 -> 5 -> 6 * Optimal Distance : 15 * Nodes searched : 22
    * Run time (milli sec) : 84
S=n * ; * n=8
            * The d(i,j) matrix :
                        node f
                     10 12 -
               21 10 -
         node
               31
                 12 -
                       8 -- -- 18 20
          Ī.
               14 T ...
               51 =
                                    81
               6 1 ---
                       an 18 - m
               7 | 20
                       <del>-</del> 20
                                    51
               81 = =
                                   not i
            * Starting node : 1
             Goal node :-5
         : * Number of paths found : 4
            * The shortest Path : 1 -> 2 -> 4 -> 7 ->
                                  8 => 5
            * Optimal Distance : 52
            * Nodes searched : 22
            * Run time (milli sec) : 46
```

Output

3.4 The 8-Queens Problem

consider a CHESS board having 8*8 cell structure. The essentially is to arrange 8 queens on the board such that no two queens can capture each other. It is clear that for the desired arrangement of queens, we must place only 1 queen on each row, reach column and each diagonal. Thus during the search process we restrict the (i)th queen's movement to the (i)th row only. may Hence no two queens would be on the same row and thus we would only need to verify that no two queens are on the same column or same diagonal. the This would reduce the search considerably.

Let us now consider a more general problem of placing n queens (instead of 8 queens) on an n*n board. The above comment of placing (i)th queen on the (i)th row is still valid.

1. Problem Definition.

- Initial State: The n queens are initially placed on the 1st column of successive n rows
- 2. Operator: One of the queen may be shifted to one square backwards or forwards on its row
- 3. Goal state The list of the arrangement of the n queens such that no two queens can capture each other

2. Pascal Program

Size

: 170 Pascal lines

Core

: 3K words

The successive queens are placed on the board with the constraint that the queen (under consideration for being placed at an (i,j) cell) must not be in a position to capture any of the previously placed queen. We keep track of the squares which can not be occupied by another queen by forming a two dimensional boolean array named boolean. Initially all the elements of the array are assigned to value FALSE. Once a queen is placed on a square, the array elements corresponding to the squares falling on its row, column and the 2 diagonals are assigned to the value TRUE. Thus while recursively placing the queens on the board, it can be checked whether a given square is valid for placing a queen or not. The recursive process generates all the possible solutions for a given number of n queens.

It may be pointed that the book keeping aspect is a subtle one in that it requires an additional overhead. Note that the array DO_NOT_PLACEII,JI is passed as a parameter to the recursive

search procedure. Suppose now that the (1)th queen is successfully placed on the (j)th column. Once all the search for the rest of the queens is carried out, it would be necessary at some stage to backtrack and place the (1)th queen on column in order to again carry out an exhaustive search for the rest of queens. It would then be necessary to update the array DO_NUT_PLACE[1,J] array. The updation process involves 2 steps:

- Make those elements of DO_NOT_PLACE array to 1 .. which were made to TRUE because of the placement of (i)th queen on the (j)th column.
- Make those elements of DO_NOT_PLACE array to 2. which are affected by placing (i)th queen (j+1)th column.

The stpe no (2) is a straightforward one but the step (1) subtle one. It also requires the information of the list of all squares which were made to TRUE while placing the (i)th queen (j)th column. Basically this additional overhead comes about because it is quite possible that a given square is attacked MORE THAN ONE queen placed so far.

Input : * n = Fank of the board Eutput : * List of all solutions. Each solution being represented by n integers corresponding to the column number for the queen placed on---successive rows.

3. Test Runs :

==Example 1

Input : * n=3

Output : * No solution exists

* Modes searched £ 5

* Run time (mil) i sec) : 1

Example 2

Input : * n=5

Cutput : * Number of solutions obtained = 10 (Some solutions are shown below)

No Arrangement	Nodes searched
新性 新性 一种 医二种 医二种 医二种 医二种 医二种 医二种 医二种 医二种 医二种 医二	য়াক জুলা কৰা প্ৰায় প্ৰথম কৰি আৰু আৰু আৰু কৰি কৰে বৈধা কৰি চাৰা কৰি
1 1 3 5 2 4	
6 3 5 2 4 1	4 99
10 5 3 1 4 2	4
Bill the fire that the gas mad bill the fire the the the the fire one part and the	

- * Nodes searched : 53
- * Average nodes searched: 5
- * Run time (milli sec) : 33

Example 3

Input : * n=8

Output : * Number of solutions obtained = 92 (Some solutions are snown below)

NO	Arı	and	зене:	nt			Nodes s	earch	ed
end Acre	1000 to 1000 day	d tens have the	। यह सार स्वतं च	en est t	40 LTP, 20	-	part and the first and that you	क्षा का स्थान करने	लक मुख
1	1 5	8	6 3	7	2	Ą		113	
2	1 6	8	3 7	4	2	5		34	
20-	3 6	2	7 5	1	8	4	the state of the s	4	
81	7 1	3	8 6	4	2	5	1 4 m	60	

- * Nodes searched : 2056
- * Average nodes searched: 22
- * Bun time (milli sec) : 359t

Example 4

Input : * n=10

Output : * Number of solutions obtained = 724 (Some solutions are shown below)

NO	h r	ran	Q Q Fi	ent	<u>.</u>					Ì	Nodes sear	ched
maye	For the	201 425 241	医甲酚	-	क्षा मृत्र स्टब्स	FF 60 75	क्षित्र स्था				त्रक राज्य प्रथम राज्य करता स्थान स्था स्थान	1015 THE REP 1774
1	1	3	6	8	-10	5	9	- 2	4	7	102	
20	1	-5	9	10	- 7	4	2	19 ±	6	3	26	
65	2	4	5	8	10	1	3	5	7	9	201	
111	2	10	7-	4	1	3	9	5	8	5	205	
-250	4	8	. 5	9	1	10	- 7	3	6	2	6	
540	7	9	4	6	1	ĿΟ	2	5	3	8	46	

- * Nodes searched : 35538 ---
- * Average nodes searched: 724
- * Run time (milli sec) : 89802

3.5 The "Knight's Tour" Problem

In this interesting problem a knight is to moved on a CHESS board from a given initial square such that it visits each and every square of the board without repeating its visit to any square. It is clear that the solution path has a length which is same for all possible different solutions and that it is equal to the total number of squares on the board. It may be noted that we do not give any constraint on the location of the last square visited. (In other words it is not necessary that the knight should visit all squares once and finally come back to the starting square).

For the sake of denerality we consider an n*n board rather than the usual 8*8 Chess board.

1. Problem Definition.

Initial State .: A knight placed on a given cell,

The rest of the squares are unvisited so

far

Operator : The knight jumps to one of the square (out

of the maximum 8 possible ones) which has-

not been visited as yet

Goal state - : All the squares of the board are visited by

the knight (only once)

2. Pascal Program

Size : 150 Pascal lines

Core # 2K words

The information recarding whether a square has been visited as yet or not is stored in a boolean array VISITED[I,J]. The backtracking procedure employed in the program continues further till one of the following two conditions is met:

- (1) All squares are visited ...
- (2) The knight can not make a legal move

If condition (1) is met then the problem is solved and the solution is reported. If condition (2) is met then the recursive procedure backtracks in order to look for another solution.

It is obvious that the backtracking algorithm used by the program is very crucial and that a repeatitive procedure would not help at all.

The program does not adopt any Heuristic approach. Thus the search is an exhaustive one.

Input, : * n = Rank of the board

* (x,v) = The coordinates of the Starting square

Output: * All the successful paths of the knight's tour on the board.

3. Test Runs :

Example 1

Input : * n=5 .

*(x,y) = (1,1)

Output : * Number of solutions found: 304

* Number of nodes searched : 1735078

* Run time (mill1 sec) : 316484

(some of the solutions are shown below)

			en	ion			
क्ल, तीवा भीत कोन तीक प्रस्त क्ला क्ला क्ला तीन प्रमु तीक क्ला		1/4; FS 1	PAS PAGE HER E	क्षा नेतर हैंगा	भ्य सब्द क्षेत्र के	S 54 55	
8839		· - 1-	. 6	1.5	10	21	
		14	9	20	5	16	
		19	2	. 9	22	11	
						4	
• .		25	18	3		23	
156223							
. The state of the		- 18	5	20	11	1.6	
and the second second second second	:	13	2	9	22	7	
		43	19	24	15	10.	
		25	14	3	·· 8··	23	."
			٠				
440		1					
		20	15				
		11	2	1.3	- 6		
•		14	19	4	23		
		.3	12	7	1 b	5	
			4 2	4.4		FX 64	
5618							•
		21	14	19	4	23	
		156223	14 19 8 25 156223 1 18 13 4 25 440 1 20 11 14 3	14 9 19 2 8 13 25 18 156223	14 9 20 19 2 7 8 13 24 25 18 3 156223 1 12 17 18 5 20 13 2 9 4 19 24 25 14 3 440 1 10 21 20 15 24 11 2 13 14 19 4 3 12 7 5618 1 16 11 10 7 2 15 20 9 8 3 22	14 9 20 5 19 2 7 22 8 13 24 17 25 18 3 12 156223	14 9 20 5 16 19 2 7 22 11 8 13 24 17 4 25 18 3 12 23 1 12 17 6 21 18 5 20 11 16 13 2 9 22 7 4 19 24 15 10 25 14 3 8 23 440 1 10 21 16 25 20 15 24 9 22 11 2 13 6 17 14 19 4 23 8 3 12 7 16 5 5618 1 16 11 6 25 10 7 2 17 12 15 20 9 24 5 8 3 22 13 18

Example 2

Input : * n=5

*(x,v) = (3,3)

Output : * Number of solutions found: 64

* Number of nodes searched : 641576 * Run time (willi sec) : 116506

٠,	(Some of the solutions are	shown below)	
МО	Nodes searched	Solution	
PT tts)	प्रेक करने होने होने को पाने पाने की की की किया कि कि कि कि	सील पीर्ट निर्देश सामा कीमी जाना किया प्रति होता तथा कीनी लिए उसके पीट निर्देश	
1	9 0 0 8	23 10 15 4 25	
		16 5 24 9 14	
		11 22 1 18 3	
		6 17 20 13 8	
•		21 12 7 2 19	
2.1	62667	23 6 17 12 25	
		16 11 24 7 2	
		5 22 1 18 13	
	$A_{ij} = \frac{1}{2} \left($	10 15 20 3 8	
		21 4 9 14 19	
	the second control of		
50	7	21 6 11 16 23	
		12 17 22 5 10	
		7 20 1 24 15	
	and the second s	2 13 18 9 4	
		19 8 3 14 25	
5 ∄	65072	25 4 15 10 19	
	and the state of t	14 9 18 5 16	
		3 24 - 1 - 20 11	
		8 13 22 17 6	
		23 2 7 12 21 -	
	सके केना प्रसार लेंसे किया करने करने करने करने करने करने करने करने	s was time तथा तथा होता होता होता होता होता होता होता होत	=

3,6 The problem of 3 water Jugs

This popular puzzle provides a good illustration of solving one-person game type of problems in the GPS approach.

Three jugs are provided with the capacities of 8,5 and 3 litres each. Initially the 8 litre jug is filled with water upto its brim. The task of the problem is to divide the water equally into 2 parts, i.e. having 4 litres each. in order to do so it allowed to transfer water from one jug to the other. However no measuring device is provided for finding the ammount of water contained in a given jug. The task is thus to find out that path of moves (each move ammounts to pouring water from jug 1 to jug j) which divides the 8 litre water into 2 equal parts.

In this problem a state would be defined by 3 integers, namely, n1,n2 and n3, Indicating the ammount of water currently contained in the 3 jugs having capacities of 8,5 and 3 litres respectively. Thus for example the state designated by (3,3,2) denotes that currently the ammount of water in the jugs having capacities of 8,5 and 3 litres are 3,3 and 2 litres respectively.

It should also be noted that a partial transfer of water from one jug to another would lead to an unknown state and thus such moves must be avoided.

1. Problem Definition.

Initial State : (8,0,0)

Operator : water can be poured from one jug to another

Goal state : (4,4,0)

2. Pascal Program

Size : 200 Pascal lines

Core : 4K words

In the Pascal program the sequence of moves is stored in an array of the following Record structure :

move = record

n1,n2,n3:0,.8

end :

It would be necessary to avoid looning of moves in the sense that the same state should not be repeated. This is taken care of by maintaining a boolean array VISITED[N1,N2,N3] which stores the information whether a given state has been visited earlier or not. Thus the program is ensured to LOOK AHEAD on the search process and never get lost in a possible looping. (A possible looping would have been: $(8,0,0) \implies (3,5,0) \implies (8,0,0) \implies ($

Input : (No input is required)

untput : * All the possible sequences of moves which would-

lead to the Goal state.

3. Test Runs :

Input : * (No input)

Output: * Number of solutions found: 16
* Number of nodes searched: 152
* Run time (milli sec): 79
(Some of the solutions are shown below)

Nodes Path МО Searched Length Solution 911 193 11 (800) -> (350) -> (053) -> 1 10 $(503) \Rightarrow (233) \Rightarrow (251) \Rightarrow$ $(701) \Rightarrow (710) \Rightarrow (413) \Rightarrow$ (440) 10 16 (800) -> (350) -> (323) -> $(620) \rightarrow (602) \rightarrow (152) \rightarrow$ $(143) \Rightarrow (053) \Rightarrow (503) \Rightarrow$ $(530) \implies (233) \implies (251) \implies$ $(701) \Rightarrow (710) \Rightarrow (413) \Rightarrow$ (440) (800) ~> (350) ~> (323) ~> ~~ $(620) \Rightarrow (602) \Rightarrow (152) \Rightarrow \cdots$ $(143) \Rightarrow (440)$ 15 0 $(800) \longrightarrow (503) \longrightarrow (530) \longrightarrow \cdots$ $(233) \rightarrow (251) \rightarrow (701) \rightarrow$ $(710) \rightarrow (413) \rightarrow (44)$

The second control of the second control of

3.7 Finding out a path in a Maze

Consider a 2-Dimensional Maze having n*n squares, from any given square one can move independ to one of the 4 adjacent squares, namely, lying on left, right, up and down directions relative to the present square. The maze is further initialized by specifying walls between some of the pairs of the adjacent squares. A wall between two adjacent squares would imply that it would not be possible to move from one square to the other. An Initial and a Goal square is also specified. The problem is then to find out all possible paths connecting the initial and the goal squares. It would also be necessary to find out the optimal path having the shortest distance enroute from the initial to the goal square.

1. Problem Definition.

Initial state : Current position is on the initial square

Operator - Bove to one of the adjacent squares

Goal state : To reach at the Goal square

2. The Pascal Drogram

Size : 190 Pascal lines

Core : 13K words

A recursive Pascal program has been developed which makes an exhaustive search and finds out all possible paths connecting the initial and the doal squares. The program keeps track of the squares which have been visited earlier through a 2-dimensional boolean array VISITED[I,J]. Whenever a square is visited, the corresponding array element of VISITED is switched to TRUE. A visit to a new square would be permitted only if the square has not been visited before. Thus starting from the initial square the search proceeds further till the goal square is reached. All the successful paths would be reported. By keeping track of the shortest path found so far, it would be possible to update the shortest path appropriately whenever a new path is found out.

The input/output for the program are as follows :

Input : * n = Rank of the Maze

* Information about possible existance of a wall between all pairs of adjacent squares.

* The coordinates of initial and goal squares.

Output: * All the successful paths which connect the initial and goal squares. Also the shortest path of all the successful paths.

3. Tets Runs.

Example 1

```
# The maze :
             * Initial squares : (2,4)
                Goal squares
                                      £ (3,2)
                Number of paths found
Output
                                                    : 31
               Number of nodes searched
             * Run time (milli sec)
                 (some of the solutions are shown below)
                  Modes
                              Path
                                         Solution
                searched
                              Length
                                            (2,4) \longrightarrow (3,4) \longrightarrow (4,4) \longrightarrow
           1
                                           ~(4,3) ~> (4,2) ~> (3,1) ~>
                                            (3, 2)
                                            (2,4) \Rightarrow (2,3) \Rightarrow (2,2) \Rightarrow
           3
                                            (3,2)
                                            (2,4) \Rightarrow (1,4) \Rightarrow (1,3) \Rightarrow
                                  8
                                            (1,2) \rightarrow (1,1) \rightarrow (2,1) \rightarrow
                                            (3,1) \rightarrow (3,2)
```

The shortest path is the path No 3

Example 2

Input : * n=6 * The mage :

1 2 3 4 5 6

* Initial squares : (2,2) Goal squares : (5,4)

: * Number of paths found : 220 Dutput

* Number of nodes searched : 2367 * Run time (Milli sec) : 464

(Some of the solutions are shown below)

	Nodes	Path			
No	searched	Length	Solution		
१८० संद	may need first this. This time and also	मान रिश्न तेला राज्य राज्य तीव	कान तीन प्रमान तीन तीन तीन तीन महिन	many fort many many first some than your o	र्ति तक मन्त्र तेता वर्णा तक मन्त्र वर्णा तक प्रमान
1	4 4.5 S	6 -	$(2,2) \Rightarrow$	(3,2) =	> (3,3) ->
			(4,3) ->	(4,4) -	(5,4)
10	:. // =	8 .	(2,2) ->	(3,2) =	> (3,3) ->
	er e		(4,3) ->	(5,3) -	>- (6,3)>-
			(6,4) ->	(5,4)	·
35	10	20	(2,2) ->	(3,2) -	· (4,2) · · -> ··
			(5,2) ->	(5,3) = 3	· (4,3) ->
		· ·	$(4,4) \Rightarrow$	(3,4) -2	(2,4) ->
			~ (1,4)~->	$(1,5) \rightarrow$	(2,5) ->
			$(3,5) \Rightarrow$	(4,5) = 3	(4,6)>
			(5,6) ->	(6,6) = 3	(6,5) ->
			(5,5) ->	(5,4)	

The shortest path is the path No 1

3.8 The Magic Square

Consider a 2-Dimensional matrix having n*n number of elements. For a given value of n we consider the natural numbers 1,2,3 ... n*n* we then look for the arrangement of these natural numbers in the matrix such that the follwoing 2 conditions are met:

- 1. Each element gets a unique number
- 2. The individual rows, columns and the 2 major diagonals add up to the same sum value.

As an example, an instance of a magic square for a 3*3 matrix is as follows:

492

3 5 7

8 1 6

The sum value for this magic square is 15.

1. Problem Definition.

Initial state : All the matrix elements are unfilled

Operator : Add a number in one of the unfilled -

matrix elements

Goal state : All the rows, columns and the

2 major diagonals add up to the same

sum value

2. The Pascal program

Size : 200 Pascal lines

Core : 2K-words

The program looks for all possible magic squares with any sumvalue. However it can be checked that the sum value for a given n*n matrix is : 3*(1+n*n)/2

The input/output for the program are as follows : " "

Input : * n = Rank of the Matrix

Output : * All the possible madic squares

3. Tets Runs.

Example 1

Imput : * n=2

: * No solution exists

Example 2

Imput

Output

* * Number of solutions found : 8 * * bumber of nodes searched : 6185

* humber of nodes searched : 6185 * kun time (Milli sec) : 2567

(Some of the Macic squares found are as follows)

	HOOPS						
Μo	searched -		Hagi	C	Sc	juare	2
90 656	क्षा करते काले किया प्रश्ने करण प्रश्ने करत		PD 100 100 50	, CM 25	লেচ ক	3 P3 53 54 54 5	·
1	2287			4	3	8	
				9	5	1	
,					7		
. 3	980			2	7	6	
				Ģ	5	1	
				4		8	
ϵ_{2}	284			8	3	4	
				1	5	9	
				6	7	2	
8	1.70			6	7	2	
					5		
				8	3	4	
सर्वे स्था स्था स्था	**********	Dien en en	1952 mm 1958 mm	1781 HA	## ##	t ein ein mit mit ein	1 (Mar. 1755)

3.9 Problem of Missionaries and Cannibals

Consider that initially 3 Missionaries and 3 Cannibals and a boat are on one side of the river. Their task is essentially to cross the river using the boat and reach on the other side OF Their are however several constraints to their movement as mentioned below :

- 1. The boat would hold at most 2 passangers at a time
- The Cannibals are dangerous guys and would 2. Missionaries provided they outnumber them on any one side of the river

obvious that the Cannibals can not outnumber the Missionaries enroute on the hoat as the boat can hold only 2 passangers. In all other respect the Cannibals would obidiently follow any instructions that they are assigned to : for example, when asked to travel in the boat in company or without company of a missionary etc. The problem is thus to find out the appropriate sequence of travel of one or two passangers at a time the boat back and forth the river sides such that all the 6 people (and ofcourse the boat !) would reach at the other side of the river without any Missionary being eaten up by the Cannibals. There may be more than one solution paths and our task-is-to find all of them.

For the sake of generality we would now onwards consider the problem of in Missionaries and h Cannibals to be transported on the other side of the river.

1. Problem Definition.

Initial state : n Missionaries, n Cannibals and the boat

are on THIS side of the river

Operator : At the most 2 people may be shipped to other side of the river (from the side

where the boat presently is)

: n Missionaries, n Cannibals and the -boat-are on THAT side of the river

The Pascal program

: 240 Pascal lines Size

Core # 8K words

A state in this problem is defined by specifying the distribution of Missionaries and Cannibals on the two sides of the river and the Information as to where the boat presently is (i.e. side of the river). However it sufficient to designate the state by specifying the number of Missionaries and Cannibals any one side of the river (sav THIS side of the river). We thus form a 3-Dimensional array VISITEDINI, N2, BOATSWHEREABOUT] where variables of and n2 are of type integer and stand for the number of Missionaries and Cannibals respectively on THIS side of river and the variable boatswhereabout is of scalar type having

the values (here, there).

At any stage during the search for solution, at the most 5 different moves would be possible corresponding to snipping 2M, 2C, 1M+1C, 1M and 1C people on the boat (where M and C stand for Missionary and Cannibal respectively). The program makes recursive search for all these possibilities (whichever are allowed by the constraints) at each stage of the search process. The boolean array VISITED belos to drive the search process only in the FORWARD direction by allowing to get away with any possible looping within the solution path.

The input/output for the program are as follows:

Input : * n = No of Missionaries (= No of Cannibals)

Output : * The solution path(s) Indicating the people travelling in the boat during each shift from one side to the other

3. Tets Runs.

Example 1

Input : * n=2

Butput : * Number of solutions found : 4 - - - -

* Number of nodes searched : 18

* Run time (Milli sec) : <1

(Some of the solutions are shown below)

Solution No : 1
Nodes searched : 8

	This side				That side				
Mo	Mi	C	Boat		N_i	C	Boat		
ess rad	#1 558 637 638	19 an 00 01:	ह तक इस्ते महे महि हाउ होड ः		सक्त करा क्षेत्र करा	That any past bear or	**************************************		
i	2	2	ves		0	0	no		
2	1	1	no		1	1	yes		
3	2	1	yes		0	1	no		
4	0	1	no ·		2	į	yes		
5	1	1,	yes		1	1	n o		
6	()	0	no		. 2	2	yes		
	0	0	,		5	2			

Solution Mo : 2 Nodes searched : 2

	J'わ	is si	Tha	t si	[de	
Ø O	M.	C	Boat	· · · Pol	C	Boat
TMT Ary	sin two est sin i	Hai ray 1444 Tan 198	1 550 500 007 009 000 000	লভানিত মাধ্যক প্ৰ	क्षेत्र किल करिया	इस्तास्त्रकात्व
1	2	2	yes	O_{-}	0:	no

2	2	0	no	 Ü	2	yes
3	2	1 .	ves	 * O	1	no
4.	()	1	no	2	1	yes
5	· 0	1.2	ves	2	0	no
. 0	()	0	no j	2	2	yes

Example 2

Input: : * n=3

Output : * Number of solutions found : 4

* Number of nodes searched : 29

* Run time (Milli sec) : 1

(Some of the solutions are shown below) -

Solution No Modes searched : 1

: 13

		T \cap	is si	de		Th	at si	ď e
	No	M	.C .	Boat	÷	, Pri	C	Boat
	MEN 494	光江 中线 町井 野洋	海斯斯坦斯	PE for him the tra the		का कुन कर स्था	त्रा एक एक एक स्थ	सम्पनि छक्त सन्दर्भा
	1	3	3	yes	٠.	0	0	no
	2	2	2	no		1	1	yes
	3	.3	2	yes		- ()	1	DO
	4	3	0	no -		0	3	yes
, .	5	3	1	ves		() · ·	2	no
	6	1	1	no -		2	2.	yes
	7	2		ves		1	1	
	8	0	2	n p		3	1	yes
	9	n	. 3 .	yes		3	0	no
	1()	Ģ.	1	no		3	2	yes
	11	1	1	yes		2	2	no
	12 .	0	0	no.		3	3	yes
	r (m) 1 - 151 lcs 185 m	- HTM FEEL 1975	rd es es es	the the per air our en, you wan			81 ma den 82 Det 1	re Me son sor non kei ein e

Solution No Nodes searched : 12

	Thi	ธรโ	de - · · ·	months in the second	Tha	t sid	}e
#6 O	M	C	Boat		'nį	Ç	Boat
Rh es	## EN ## ## ##	भेज स्ता गर्भ क्या । -	one their paint with this man attach		MA PER PERM	600 per 1931 1931 1931 1931	क अंग्रेस का अल्ला व्यक्त व्यक्त
1	3	3	yes		()	0	no
2	3	1	ηO		Ò	2	yes
3	3	2	y e s		O	1	no
Ą	3	O	no		()	3	yes
5	3	1	ves		- ()	- 2	no
6	1	1	no		2	2	yes
7	2	2	ves		1	1	no
8	0	2	no		3	1.	yes
9	. 6	3	yes		3	· O	no
10	O -	1.	no		. 3	3	yes

11	1	1	yes	 2	2	no
1.2	0	· ()-	no.	3	3	yes

Example 3

Input : * n=4

Dutput : * Number of solutions found : 0

* Aumber of nodes searched : 19

* Run time (Milli sec) : 1

No solutions exist.

4.0 DISCUSSION

The present note discusses the BACKTRACKING ALGORITHM and illustrates its usage in solving typical "ONE-PERSON GAME" type of problems. The well known mapping of such problems onto search in a graph of node (from the given Initial node to the Final one) is used. The problems solved are essentially the ones belonging to the GPS (General Problem Solving) category. It is emphasized that the algorithm provides a neat and elegant way to solutions of the following kinds:

- 1% Any ONE solution;
- 2. ALL the solutions.
- 3. The OPTIMAL solution,

The real potential of this approach lies in that the SAME general form of the search algorithm may be used to solve a variety of diverse problems.

It may be pointed out that the "Areadth First" search employed in the present algorithm makes an exhaustive search thereby consuming a substantially heavy computation. In particular the search becomes quite involved and may even reach to unmanageable bounds for graphs which are deep and at the same time have large branching ratios. In such cases appropriate Heuristic approachmust be used which would quide the search favourably in the more promising zones of the underlying graph thereby reducing the search.

ACKNOWLEDGEMENTS

The author is grateful to Professors A.Sen and K.H.Bhatt for the encouragement in the present work.

Her is also grateful to Mr. -H.S.Mazumdar for reading the manuscript and making suggestions for its improvement.

The interest and encouragement provided by Professor S.P.Pandya is acknowledged with deep sense of gratitude.

REFERRENCES

- 1. Wirth W. "Aldorithm + Data Structure = Program", Prentice
 Hall Publication (1976)
- Michie D., "Machine Intelleigence and Related Topics An Information Scientist's weekend Book", Gordon and Breach Science Publishers (1982)
- 3. Ernst G.W. and Newell A., "GPS: A case study in Generality and Problem Solving", Academic Press (1969)
- 4. Von Neumann J. and Morgenstern)., "Theory of Games and Economic Rehaviour", Princeton University Press (1944)
- 5. Shannon C.E., Programming a Computer for Playing Chess, Philosophical Magazine vol.41 p.256 (1950)
- Strachey C.E., Dogical or Mon-Mathematical Programmes, Proc. of ACM meeting p.46, Toronto (1952)
- 7. Samuel A.L., Some studies in Machine Learning using the game of Checkers -2, IRM J. of Res. and Devl. vol.11, p.601 (1967)
- 8. Newell A., Shaw J.C. and Simon H.A., Preliminary Description of General Problem Solving Program 1, CIP working paper no.7, Pittsburg: Carnegie Institute of Technology (1957)
- 9. Newell A. and Simon H.A., GPS : Am Program that Simulates thought, benede Aoutomaten, (Ed. Dilling B.) p.109 (1961)
- 10. Doran J.E. and Michie D., Experiments whith the Graph Traverser Frogram, Proc. of Royal Soc. (A) vol.294, p.235 (1966)
- 11. Hart P., Milsson N. and Raphael B., A formal basis for the Heuristic Determination of Minimum cost Paths, IEEE Trans. on Systems Science and Cybernatics (1980)
- 12. Moore E., The Shortest Path through a Maze, Proc. of Int. Symp. on the theory of Swithing, part.2, p.285, Cambridge: Harvard University Press (1959)
- 13. Dontzig G., Linear Programming and Extensions, Princeton University Press (1963)
- 14. Dijkstra E., A note on two problems in connection with Graphs, Numerische Mathematik vol.1, p.269 (1959)

- 15. Pohl I., First Result on the effect of error in Heuristic Search, Machine Intelligence vol.5, p.219 (1970)
- 16. Pont 1., Heuristic Search viwed as Path Finding in a Graph; Artificial Intelligence vol.1, p.193 (1970)
- 17. Quinian J.R., A task independent experience gathering scheme for a problem solver, Int. Joint Conf. on Artificial Intelligence (Fd. Walker D.E. and Norton L.M.) p.193 (1969)
- 18. Michie D. and Ross R., Experiments with the Adaptive Graph Traverser, Machine Intelligence vol.5, p.301 (1970)
- 19. Slagle James R., "Artificial Intelligence: The Heuristic Programming Approach", McGraw Hill Publication (1971)

INDEX

· · · · · · · · · · · · · · · · · · ·			. The second control of the control
3 Water Jugs	* * * * *	1,	5, 28
8=9ueens	# # # # #	1,	
Backtracking Backtracking Algor	ithm	1,	4, 6 to 8, 13 to 14, 25 4, 6 to 7, 9, 13 to 14, , 39
General Problem 503			7, 39, 41 3 to 8, 13, 28, 39, 41
Heuristic		5	to 6, 25, 39, 41 to 42
Knapsack		3, . 1,	5, 16, 18 5, 25
M-Partition		. 1,	5; 16 33 to 34 6 to 7, 39
Missionaries and Ca	annibals	1,	er er en
Network	* * * *	1,-	5, 7, 20
Optimal Path			6, 13, 28, 39 12, 20, 30 3 to 4, 7 to 8, 12, 39
Permutation	表 身 身 新 表 角 表 身		14 to 15 5, 13, 28
Recursive Search . Route Finding	9 & p s	. 1,	4, 14, 19 to 20, 22, 36
Shortest Path		· · · · · 41	5, 20 to 21, 30 to 32,
Tower of Hanoi Treasure Hunt	# # # # # # # #	· · 1,	5 · · · · · · · · · · · · · · · · · · ·
Tree Structure		1,	4, 6 to 8.