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ABSTRACT

The existence of colour singlet bound state of gluons
called the glueball is an unique prediction of quantum
chromo  dynamics. Their theoretical as well as the
experimental study 1s very crucial to the validity of this
theory. Confinement of colour is an empirical result of
QCD. There are confinement models for quarks to predict
various properties of hadrons. Similar confinement schemes
are extended for the confinement of gluons for the study of
glueballs. This study aims at formulating a unified
confinement basis for both guarks and gluons. Two different
schemes for the confinement of coloured gluons are studied.
A probable link from the basic theory of @CD to these
phenomenological descriptions 1¢ obtained heuristically.
The gluons in this phenomenology are considered as
quasi-Maxwellian fields. This reduction from the nonlinear
theory to a linear theory is the basis of all

rhenomenological confinement models.

In the first case a colour current confinement model
(CCM) is formulated. In this formalism +the nonlinear
current of the gluon field is approximated to a colour super
current in analogy with Ginzberg-Landau’s theory of super
conductivity. A particular choice of +this gluon super
current led +to a consistent confinement scheme for the

gluons in a general frame of Lorentz gauge with a secondary



gauge condition named as oscillator gauge. The two
transverse modes of the confined gluons are obtained in this
gauge. The gluon fields are second quantized and their

energies are calculated in terms of the model parameter.

An alternate confinement scheme for the gluons 1is +the
dielectric confinement model (DCM), An inhomogeneous
non-local dielectric function is obtained from the CCM Dby
treating the CCM current as a self-induced polarization
current. As the dynamical dependence is néglected the CCM
dielectric function reduces to that of a simple
inhomogeneous dielectric medium. Similar function 1s also
obtained from the analogy of the Dirac Spinor equations, in
the case of a confinement potential with Lorents scalar plus
vector part, with the Maxwell s equation for a dielectric
medium written in spin notations. Then a confinement model
of the coloureaed gluons in a harmonilecally varying
asympotically free dielectric medium 1is studied. In the
choice of the gauge, we met with the difficulty which 1=
similar to the bag model boundary conditions. With a
restricted confinement bhoundary the confined gluon modes are
obtained in the usual Coulomb gauge. These flelds are
quantized and the energiles of the gluons in this model are

expressed in terms of a single model parameter.

The lowest gluon modes obtained in both the schemes are
characterized by £ = 0, JF& = |77 (E=gluon) and A =

1
ZTPC= /T (M-gluon). However, theilr energy expressions

b



in +the +two schemes are quite different. Coupling these
lowest gluon modes colour singlet di-gluon and tri-gluon
low-lying glueball states are constructed and their energies
are calculated. The lightest glueballs are expected to have
mass ranging from 1-3 GeV and have spin parities O+*] 0-¥
and 2%%.  Experimental status of such states as the glueball
candidates is discussed. Using a di-gluon glueball
candidate the model parameter in both the schemes are fixed
and the energies of all other glueball states are predicted.
The spurious motion of the centre of the multi-gluon state
{5 exactly taken intoe account in both the cases and the
glueball energy states are corrected for the szeropoint
motion, The resulting values for the di-gluon and tri-gluon
avatems are compared with the experimental candidates and

zimilar nailve bag model results.

The =uccess of the CCM scheme for the gluons provided a
harmonious confinement baszis for treating both quarks and
gluons together. the essential requirement here is then to
obhtain +the confined gluon propagator., A translationally
invariant ansatz has been made to develop the theory
further. We obtained closed analytical expression for the
relevant propagator. 1t 1s different from the usual
oscillator Green’s function which is not translationally
invariant. We generalize this derivation for m-dimensional
case, This closed analytical expression for the propagator

has wider applications in the development of the bound state

perturbation theory involving quarks and gluons.
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. GENERAL INTRODUCT ION

In recent yearé, the understanding of the most
fundamental interaoﬁions among elementary particles has
undergone substantial changes in its experimental as well as
theoretical aspects. As it stands +today, the leptons
(e,fL,I',ue, L%J-Ut) and quarks (u,d,s,c,b,t) are the nost
fundamental constituents of matter. The hadrons, i.e. the
baryonse and mesons are composites[1-3] and they are made up
of three quarks and gquark-antiquark pairs respectively. The
electromagnetic, weak and strong Interactions CAT be
understood by knowing the exact dynamics of these leptons
and guarks. Leptons carry integral electric charges, i.e.
O or + e, where as the quarks carry fractional electric
charges, i.e. 1/3 or 2/3 e (see Table 1.1) [4]. Leptons
undergo electromagnetic and weak interactions while quarks
undergo strong interactions also. But unlike the leptons,
quarks are not found free in mnature. The experimental
evidences are that they are permanently confined
objects([5,6]. This leads to the confinement theory [7-9],

which will be discussed in subsequent chapters.

The difficulty in the simple quark model for Dbaryons
[1,10] 1led to +the introduction of a new degree of freedom
for quarks. This is called the colour degree of freedom of
the quarks [7,8]. Accordingly by the Pauli'é principle, to

construct a completely antisymmetric wavefunction for the
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baryons, each guark must exlist in three colours. The theory
describing the dynamics of this colour 1s called the Quantum
Chromo Dynamiecs (QCD) [11,12].

Like the photon in Quantum Electrodynamics (QED) gluons
are the gauge bosons in QCD [9]. But QCD is a non-abelian
gauge theory [11,12] unlike QED which is abelian. The
salient features of QCD are: (1) Colour-colour interactions
are very weak at very high momentum transfexs or at very
short distances (asymptotic freedom) [13], and (2) these
interactions grow strong at low momentum transfer or at very
large distances (infra red slavery) [14]. The latter
presumably 1s giving rise to confinement [15]. While the
@CD  (Yang-Mills) +theory 1is shown to exhibit asymptotic
freedom, the confinement is more of an empirical necessity,
i1.e., only colour singlet states are seen free. The gluons
which are the quanta of the colour field carry colour
charges and they interact among themselves. One of the
evidences for QCD is then the existence of glueballs which
are the colour singlet bound states of multigluons [16].
Thus the study of glueballs and their experimental
confirmation 1is very crucial to the validity of quantum
chromodynamics. Since these coloured gluons are many 1in
number (SU3-colour octet) the coupled nonlinear equations
obeved by them are too complex to solve. Hence to
understand the nature of glueball states, the strong
interactions and the properties of hadrons from their

Perememnio structurs, one has to go for phenomenological



Page 3

models incorporating confinement. This 1s the spirit in
which  various models 1like bag models [17-19], potential
models [20-22], etc., for confinement are developed to study
various aspects of hadrons and its properties. One of the
very successful models 1is the relativistic confinement
potential model for gquarks using Lorentz scalar plus vector
harmonic oscillator potential (RHM) (231, for the
predictions of the diverse aspects of hadronic properties.

uccesses of this simple model (RHM) motivatéd us to 1look

[43]

for a similar confinement model for the QCD colour fields
(i.e., gluons) for the prediction of the glueball states and
thus to formulate a unified harmonic confinement basis for

both quarks and gluons.

The gauge theory of fundamental interactions of
elementary particles is reviewed in the first chapter. QED
is described to illustrate the abelian gauge theory and the
QACD is described to illustrate the nonabelian gauge theory.
The general properties of QCD and some of the
phencomenological colour confinement model for QCD are

discussed in chapter two.

New confinement models for the coloured gluons
motivated from +the RHM for quarks [23] are proposed in
chapter three. A Colour Confinement Model (CCM) and a
Dielectric Confinement Model (DCM) for the gluons satisfying
the ‘quasi-Maxwellian® type of field equations are

developed,
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We construct in the fourth chapter the colour singlet
multi-gluon glueball states using the confined gluon modes
in both CCM and DCM. We discuss, in this chapter, the
experimental status of such exotic states and their
identification as glueball candidates. We calculate the
low-lying di-gluon and tri-gluon glueball energies by
fitting some of the experimental candidates for glueballs.
The spurious motion of the centre of a multi-gluon state is
taken into account as in the Caée of RHM and\the results are

presented in this chapter.

Having developed a harmonic theory for the confinement
of gluons for +the study of glueballs, in chapter five, we
calculate the confined gluon propagator corresponding to the
CCM gluons for +the future application of +the unified
confinement theory of quarks and gluons. We are able to
obtain an analytical closed expression for the m-dimensional
harmonic oscillator propagator in a translationally

invariant ansatz.

In the last chapter the conclusions and future

applications of this study are discussed.



CHAPTER I

A REVIEW OF GAUGE THEORY FOR FUNDAMENTAL INTERACTIONS

1.1, Introduction

In this chapter, a general description of fundamental
interaction among the elementary particles is reviewed. The
gauge theory of fundamental interaction 1is discussed in
little detail. The Quantum Electro Dynamics (QED) and QCD
are described as examples of abelian and non-abelian gauge

theory respectively.

Classically, interaction at a distance 1is commonly
described in terms of a potential or field due to one
particle acting on another. In quantum field theory, it is
viewed in terms of the exchange of specific quanta
associated with the particular type of interaction[24,25]7.
For example, charged particles in QED interact through the
exchange of virtual photons. Similarly, the coloured quarks
interact +through the exchange of virtual coloured photons
called gluons. Thus QCD 1is +the theory describing the
dynamics of quarks and gluons. And  now 1t 1s well
established that QCD is the underlying theory for strong
interaotions[26,27]. The theory describing the weak

interactions among quarks is then called the Quantum Flavour
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Dynamics (QFD) [277].

1.2. Gauge Principle and Gauge Filelds

A natural way to reveal the secrets of nature is the
correct identification of various symmetries in nature. And
the exlstence of a symmetry implies that some variable 1is
unmeasureable and the corresponding conjugate variable is
conserved. Fach symmetry is followed by some invariance and
that implies some conservation laws. For example, the
translational invariance means that we cannot determine the
absolute position in space and the +total momentum is
conserved. Generalizing this concept that physical
measurements are relative, Weyl [29] proposed that absolute
magnitude or norm of a physical vector is also not absolute
but should depend on space time points. A new connection
would then be necessary in order to relate the length of
vectors at different positions. This idea became known as
scale or gauge invariance. With the development of quantum
mechanics the Weyl s original gauge theory was given a new
meaning by realising that the phase of a wave function could
be a new local variable. Thus the gauge transformation was
reinterpreted as a change in the phase of the wave function
[(30].

1.2.1. Global and Local Gauge Invariance:
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The inspection of the Lagrangian for a charge particle

shows that 1t is invariant under the phase transformation,
Apexd = RICxD = et apeao

where o€ 18 a constant. This phase invariance implies that
the phase 1s dnmeasureable, it has no physical meaning and
can be chosen arbitrarily. If we choose this as a constant,
ie fix for all space and time, then we call this as a global
gauge invariance [31]. But 1if oC could make space time
dependent 1.e. locally varying and theg to construct a
locally gauge invariant theory automatically brings in new
fields which are called gauge fields [31]. The gauge fields
can mediate both long range and short range interactions.
They are massless (for long range) when the Lagrangian and

the vacuum state are invariant under a given symmetry group

[321]. Introduction of a mass term can only shorten the
range of the interaction due to gauge field. However, such
a term violates gauge invariance. If the Lagrangian is

invariant, while the vacuum state is non invariant (i.e.
spontaneous symmetry hreak down) the gauge fields acquire
mass thus can mediate the short range interactions such as
weak interaction [33-35]. And the theory remains

renormalizable [36].

For a local gauge transformation the wave function of

the matter field transforms as

AP ) = ) = g APE)
(1.2.1)
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And the gauge principle insists the invariance of the matter
Lagranglan, under +this transformation. For example, for a

Dirac particle

= LB Du — P A
Jﬂ i M (1.2.2)

Thus under local phase transformation,

L =2 = i R —

(1.2.3)
_ 2 — B (o) #

(1.2.4)
Thus here zﬂ%tﬂi i.e. the Lagrangian is no longer invariant
under such local phase transformations. To restore this
invariance a new field say Q#is introduced to cancel this
unwanted extra term. These newly introduced fields are
called the gauge fields [35,37]. These gauge fields are

added to the derivative terms to define a new derivative

such that 1t transforms as

y; (o)

'(9",*&)—% .4 = e G4
(1.2.5)
Thus defining

. 6)

o

(1.
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and
/ . ’
_ —_ 9 5
R
(1.2.7)
Where Af;?‘A;L so as to cancel the extra term which breaks
the invariance. Thus the new Lagrangian which is invariant

under local phase transformation can be written as

o

35 = (‘%; ﬁ? X%u.&? - ZO{; 4P

}

(1.2.8)

The invariance of this Lagrangian can be verified as

2 = (PR R) N — PR (gamy

(1.2.9)
Thus for the invariance of (1.2.8)
o L 9 A )
G Bl Bt g |

(1.2.10)

Substituting back in (1.2.9) '

/ R ) ) 'CKCXJ

71' = (,4f’§1 ( %u Lz fax L‘%L )‘éP

— Jp )//ig/qqcx),g» e et o (1.2.11)

o l /g; ;1 Z%x ép - ?77jp gl

(1.2.12)
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Hence the local invariant Lagrangian;.is obtained by
replacing +the ordinary deriQative by 'another derivative
called the covariant derivative. The new gauge field AfLis
interacting with Dirac field exactly the same way as the
photon field interacting with matter i.e,  the additional
term 1in the new Lagrangian in this cas% is nothing but the
interaction of the matter fiéld ;ith an external
‘electromagnetic’” field of the form{@;JQfﬂnmre z; is the
matter current. Thus the mere requirement of local phase
invariance has generated an interaction term between the
matter field and the gauge field. This is +the essence of
the gauge principle for generating the dynamical theories
[35,371].

1.2.2. Gauge Group:

‘x
The family of phase transformations U(a) = € = where
the single parameter« depends on space and time Fform &
unitary abelian group U(1l). Abelian just records the

property that the group multiplication is commutative,

c-e. JC,) UCO(L> = U(_O(ZDUCO('/) :
(1.2.13)

But in ggneral the family of such transformation exists

which transforms the field such that

' _ Kk
S tx) = 7 KD 4 (x0

(1.2.14)

The group of such local transformations is called the local
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or gauge group [35]. Depending upon the dimension of such

groups say U(N) the number of the gauge fields need to

introddce are (Nz’ ). As the matter fields transforms as

(1.2.14) the gauge fields also transforms as [30]

| Qmk f
s p~ = £ A ﬁfdc:¢)+ D, aScn)
22 7+ fan
(1.2.15)
And the general covariant derivative gu becomes
O, e w Qe - QT A
~ 4 4 (1.2.18)

For the dynamics of the gauge field one has to add a
separate term to the matter Lagrangian involving its
derivatives. And each term in the Lagrangian must also be
gauge invariant. Such terms are expressed in terms of the

covariant derivative Bu .

Let us define a hermetian quantity

FE = —c [ )‘9//]‘

py
~ (1.2.17)

= Guh, T & A+ (gLAn, A ]

(1.2.18)

In a general gauge group U(N)



F | ‘ ' Page 12

- B, T
o =
. (1.2.19)
where
(1.2.20)
andel is the corresponding transformation matrix. Now the

simplest gauge invariant term which is bilinear in its field

with a minimum coupling is given by

Lo =-rTELFMY
_ lw
¢ * (1.2.21)

Thus the full gauge invariant Lagrangian now becdmes,

- T — AP + Z "
7 :L,g/f}j{,@ﬂ;w A 9
(1.2.22)
Thus the gauge theory provides a complete knowledge about

the dynamics of matter, gauge field and its interactions

[35].
1.2.3. Geometrical Description of Gauge Theory:

The geometrical picture provides a common area for
discussing electromagnetic, the strong‘ and weak nuclear
forces, and gravity. It depends only on very general
properties of gauge principle. Any particle or system which
carries an internal quantum number like charge, 1sospin,
colour etc. is considered to have a direction in its
internal symmetry space. In this picture a particle is
identified with its space time co-ordinate and the

orientation in its internal space. Thus as the particle
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moves through space time, -1t +traces out a path in its
,ihternal space above the space time trajectory [30]. In
~order to compare this internal space directions at different
space time points we need, to define a connection. This
connection must be capable of relating all possible
directions and orientations in the internal space to each
other. The set of all such rotations form a symmetry group,
and the group transformations lead to a copneotion which

will be ildentified with a gauge potential field.

A general form of a local symmetry transformation from

an arbitrary group can then be written as [30]

Uy = exp[-c@"%ekcx)’f"]&’

(1.2.23)
Here g 1s a general coupling constant for the gauge group.
For example (q = e) the electric charge for the
eleotromagnétic U(1l) gauge group, Th's are the generators
of the internal symmetry group ahd satisfy the commutation

relations

Crto7d] = ccRTE

: (1.2.24)
| Cc‘fk are called the structure constants pertaining to the
Lie group defined by +the commutation relations. Let a
particle’s wavefunction be split into external and internal

parts corresponding to the space time co-ordinate and the

internal space co-ordinate as:
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() = P D
¢z ,%"i’“ . X (1.2.25)

Here C{cform a set of basis vectors in the 1internal space,
@%x) is a component of 4P (%) ip the basis of U%. And they

transform like

Yo 7 Upa Ha

(1.2.26)

- When this particle moves from x to x + dx 'through an

S

external potential field, AP (x) changes by

oL = P+ don) — Kpix)

= ; Cg/q ’g)ar) szﬂad +/§_uq0€(‘4¥

Theciaatcan be calculated from an infinitesimal internal

(1.2.27)

rotation associated with an external displacement dx. Thus

from eqn (1.2.23)

. kK
OoCdr) = epc/b[—agz AB*~T ]
k
(1.2.28)
k A
where &09&3 2,87~ which rotates the internal Tbhasis
/b\
by an infinitesimal amount oLty

Ul ) w, = wy+ didg }
c2.

0o
[<¢e}
S

.
(S =9 5 9,0%"7" Tea
—[Kl[3 ?/k ” 7 (1&2.30)
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Thus S L
' . dAdx.
Ay = é‘i,‘c:c-gﬂg Tap “p
(1.2.30)
Now defining a new connection
A K
- 5.6 7T
(A.) = L% lap
e Txp k.
(1.2.32)
Such that eaqn. (1.2.27) becomes e
- M
B L R
L,
(1.2.33)

Thus defining

=5 452 “‘“L(Aﬂ)x,s}jfﬂ'
O ¥ <@
fat 1

p (1.2.34)
This new derivative is called the gauge covariant derivative
[30] which describes +the changes 1in both external and
internal parts of A (x). For electromagnetic U(1l) gauge
group the internal space 1s one dimensional so that eqn.

(1.2.34) reduces to

O = (2 —gAu) W

(1.

[sN]
W
i
~

and A, transforms as

/U(,

‘¢ ~l . L}“[
A = OB U= £(5,U) U7

(1.2.36)
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The field tensor @uy also can be derived geometrically
using Stoke "s theorem. For example - in classical
electrodynamics the line integral over +the potential A;
#A.dx) can be interpreted geometrically as the net change in
the internal directions of a test particle which has Theen
moved around a closed path. This expression therefore is a
rhase change of the particle’'s wave function. Consider a
test particle moving with a successive displacements dx and
dy around a closed path. And the net change "in iﬁs internal

direction in a two different path can be calculated [30].

The gauge transformation for the 2+ by 3. x+dﬂ%d&
displacement x — x + dx along
rath (1) can be written as ne "D
O
x 7 2+d
O, (dx) = 1- 94 (x> o™
z M (1.2.37)

Then along path (2) 1i.e. X + dx->x + dx + dy

¢ Ct) - /,.[Z éuﬂfx+rlx) o%?".

Xt x | (1.2.38)
Using the Taylor expansion and keeping only lower order
terms in dx and dy. One gets

U’)deCd/;) O tdx) = 1-¢g //?M[x) ol x M- L‘Z@f")dyﬂ

—2* 9,00 B0 A y? s

....L\Z S,a A, Cx) dgydlﬂ‘
(1.2.39)
Similarly for the path (3) and (4),

%%05743{) U;(,C ”L(;%) - [ 52’9//0‘)47{‘ &7 ﬁf”[x)qgﬂ
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— g OuAult) dxedn? (12 40)
Thus the net change in its internal orientation;
()Cdyv) U ) —Uteda) U Ldry)
N A T SANCRRYNY }Jx’“c{g"

(1.2.41)
Where éhand A,, (x) do not commute because they are different
combinations of the internal group generators T® . Thus the
derivatives 2%.Aw and éL,eﬁ are also ' notv equal in
general.  Thus the gauge transformation for the two
different paths does not produce the same phase. Now

comparing with the Stokes theorem, dx dy is the surface area
enclosed by the path, then one identifies the non abelian

version of the field tensor defined as [30,31]

F

P R A A 2

(1.2.42)
1.3, Abelian Gauge Flelds

Here the quantum electro dynamics 1is discussed to
illustrate the abelian gauge theory. In the case of abelian
fields, the gauge group generators commute each other.
Consequently, the last term in egn. (1.2.42) vanishes.

Thus for an abelian case the field tensor is simply,
541 = 9/“'%_9”"3“ )

The components of this gauge field tensor can be identified

as  the u=ual electric and magnetic fields in the Maxwell’s
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electromagnetic theory. The +time components are the
electric fields and the space components are the magnetic

fields [38]. Then the QED Lagrangian density is now written

as
z’C?ED = PR

A

G

(1.3.2)
where the electric charge e here 1is +the gauge coupling
constant. By the variational principle ghe equations of
motion for the photon field Aftand the charge fleld 4P are

obtained as,

<

%u 6; = -89, = —e gaﬁf
(1.3.3)

and
ﬁz C¢aq.-a'ez?/,)-§k + v = O

(1.3.4)

The canonical momentum conjugate to the potential %M is

given by
2% - F
T, = =%
2 (5% Bu) r
(1.3.5)
Since EMH is anti-symmetric,
T, = © .
(1.3.6)

This constraint on ﬂ; require another constraint on its
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conjugate variablefﬁ% such that the fundamental commutation
relations between them at equal times do not have any
problem. The constraint on 7o 1is called the primary
constraint, and then A, becomes a dependent variable.
Considering now only the pure gauge fields, the

corresponding Hamiltonian density is given by

ﬂ = 77'#206%‘"1{'
(1.3.7)

and
.. - 13
_ 1L+ A 3”77J]
b o= (x| 7%
(1;3.8)

The fact that Z@ = 0 means that the change of variable from
velocity Sp e to momentum 7w is  singular. And the
definition of H is not unique [39]. Consider now the change

in 77 i.e. from the Hamiltonian

Zt = ~_é%-zf[

(1.3.9)
But 77, is zero for all times by the canonical procedure,

hence we obtain ancther conatraint,

2%'275 = O
(1.3.10)
This is called the saecondary constraint [407. Now there are
more constraints on momenta. And 1t looks like one is
mapping four velocities into two independent 77 “s. To

consider this arbitrariness an extra term is added to H.



Thus the new Hamiltonian becomes

H = Xd:;t s Eu“:tj— é:”iTTH“GDC“C]

NQwW
(1.3.11)

where A, term in (1.3.8) is also absorbed in G. The time
variation of any physiecal aquantity now containa this
arbitrary element due to the d¢ IT¢ term. But a true
physical quantity should not be arbitrayy in its time
variation. Thus the physical quantity must hot depend on
the variable conjJugate to 25775. In other words a physical
quantity must be defined only on some surface in the

(A ¢ , 7T,) plane; which is characterized by a condition,

say,
3‘C,9[, ﬂﬂ:) - O
(1.3.12)
provided the change df variable between g and the variable

conjugate to Bgﬂ[is non singular [39], 1.e.,

ek [Cg,2cmi]| F 0
(1.3.13)
i.e., Jacoblian for the transformation 1s non =zero. Thus
d¢ W%.ganerates a gauge transformation and g must be able to
fix the gauge. There are various choices for g. Since the
theory 18 gauge 1invariant, any choilce of the gauge should
lead to the same physical results.

a) Coulombh gauge:

It 1is defined by taking
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g‘,: QLAL

. (1.3.14)
and this satisfies the criterion to be a good gauge (edqn.
1.3.13) ), and a¢ ”1:: 0 is the codition whose conjugate is
given by equation (1.3.14). Thus these conditions give the

transversality conditions on A 's and T ‘s such that
ST .
9(.:”(’ - Q‘IALT - O
(1.3.15)
where ’
[ T
A‘L' = AL + P"\
(1.3.16)
and
L. T
-/TL- = TTL- -+ 77,_'
(1.3.17)

Then the coulomb gauge reads

-~ O
, A (1.3.18)
and the constraint (1.3.10) leads to
L.
T, = © (1.3.19)

Thus in this gauge the Hamiltonian 1is a function of the

independent varliables AT and 7 alone:

3 AT AT T T
e [ [p g Ay AR Ty e ]
(1.3.20)
Thus the quantization procedure in the coulomb gauge can be

carried out directly using the canonical formalism.
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\b) Arnowitt-Fickler gauge:
The other choice of the gauge is
? e Az -~ O

This is called the Arnowitt-Fickler gauge [39]. Here also

(1.3.21)

the determinant conditicon for +the Jacobian is satisfied.
Thiz cholce gives Ty in terms of 7T, and TT1 . Thus
from (1.3.10)

2
Ty Coana) = - [ 42 €8, 48,1
-» (1.3.22)

where the system is now described in terms of the canonical

variables Ay AL 77, and ﬂz . The Hamiltonian becomes,

2 2
Ho= o1 S‘d‘gx[[z’;—r Bi+ Bl 1 Tt T (7, 70
2

(1.3.23)
where
g, - _"EG’QZ
CENE 33;}/
Bz - Q,AZ—-SZAI
(1.3.24)

It 1s now easy to do the quantization procedure.

1.4, Non Abelian Gauge Fields
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In 1954 C.N. Yang and R. Mills constructed a field

theory for +the strong interactions [41] Jjust 1like the
electromagnetic theory, which is exactly gauge invariant.

They postulated the local gauge group as SU(Z2)-isotopic spin

group. A new isotopic spin potential was therefore
postulated by them in analogy with electromagnetic
potential. However the greater complexity of +the SU(2)
compared ‘to U(l) makes the Yang Mill’'s potential quite
different from that of +the electromagne€ic. The most
general form of the Yang-Mill’s potential is a linear
combination of the generators of the SU(2) group similar to

the angular momentum operators. Thus
[C’ = Z: A : - ¢
ﬂ' L. f{

This explicitly displays the dual act of Yang-Mills

(1.4. 1)

potential as both the field in space time and an operator in
the isotoplc spin. - The potential has three charge
components corresponding to the three independent “angular
momentum” components., In +this description a neutron is

transformed into a proton by absorbing a unit of isospin

from the Yang Mill’'s gauge field Aﬂ' This shows the Yang
Mill's gauge field AfL mast itself carry an ‘electric
charge’” unlike the electromagnetic potential. However, the
gauge 1nvariance demands them to be massless. Thus the
short range nuclear force could not be explained by this.
But Yang Mills theory established a foundation for the

modern gauge theory and provides a new insight into the
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newly discovered internal quantum numbers to determine the
fundamental form of the interactions. As a result of the
subsequent developments in particle physics [42] especlally
the introduction of quarks [1,8] and its colour degrees of
freedom, the Yang Mill s theory was revived to describe the

SU(3) colour dynamics [261]. In this SU((3) local gauge

symmetry the gauge potential Af&, carries eight charges
corresponding to the three colours for quarks and this field

is represented as

A =9/f7'£
(1.4.2)
and then the field tensor derived earlier becomes,
4 £
s 7 e 7

where Tfl' are the generators of SU(3) group and are related

to the Gell Mann A-matrices as [43]

£ )] £
7 = = )
2 (1.4.3)
and they are given as
0 1 0 0 -1 0
A= [to0 o), AFE 00
0 0 0 0 0 0
1 0 0 0 0 1
A.o=0 -1 0); X= |0 0 o
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0 0 -i o 0 0
Asz=lo o o] >\£: o 0 1
i 0 0 o 1 0
0O 0 0 1 0 0
No=lo o -1{; A= lo 1 o 4
# g V3
0 i 0 0 0

-2 (1.4.4)

and they satisfy the commutation relation

[(7¢,77] = ¢£7777

(1.4.5)
Then the colour field tensor
) 5 -2 p —af A
o = v Td 2
(1.4.6)
where f£h7n is the fine structure constant. From the

expression for F it is evident that these colour gauge

Y
fields interact among themselves. Thus this theory Dbecomes
a non linear field theory unlike the electromagnetic U(1)
gauge theory. The colour electric and colour magnetic field

component of this field tensor can be obtained as

L L £ Lror
E” = -28 _ g~ a SHR KPS
ot 0 & (1.4.7)
g V4 .fxv;?
8 = Zxgt =gt aRs -
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Because of these non linear interactions of Yang-Mills
potentials among themselves the quantum chromodynamics
become almost impossible to solve exactly [43]. Also the
dynamics of +these fields possesses peculiar properties
compared to the electro magnetic case. Like in QED the
~gauge potential corresponds to the photon, here in QCD,
ﬁhese non linear gauge ©potential corresponds to ‘colour
photons” called gluons, And the coloured quarks interact
through the exchange of these coloured gluons. The
interactions of these colour gluons among themselves are the
ones which cause the theory to become nonlinear unlike the

QED.

Ruantization

As in the abelian case, the Lagrangian for +the colour

fields can be written as

2

Fhe
®CD (1.4.9)

It does not contain the time derivative of the fourth
component of the colour field /ﬁi; thus the corresponding

momenta

L

77; - 0 i
(1.4.10)
And in the canonical quantization procedure we identify /y?
and its conjugate ;7;4 as operators and postulates the

commutation relations bhetween them. Apart from the primary



Page 27

constraint given by equation (1.4.10), the equation of
motion ©provides one more constraint on the canonical

momenta, 1i.e.

(OT)E = 0w v AT 1o
(1.4.11)

where the Hamiltonian H is glven a=s

Ho- (a2 (At aed ginA:‘“(/Sﬁnt)yj.

(1.4.12)
As in the abelian case it can be seen that this extra term
in the Hamiltonian generates the gauge transformation [39]
with gauge pafameter /ﬁ?. Thus for Azﬁ and 7Zj£ to be

physical quantity, it must satisfy the two conditions;

(’@[ 77[)4 = ©

(1.4.13)

o Ny

gjc (Qiﬁ‘)j =0
PR PB

. (1.4.14)
that 13 to say the physical quantity must not depend on the
variable that 1is conjugate to ( Qg 7¢ )4 These
f conditions restrict the functional space spanned by A[ﬁ and
ﬂ:l to a functional space spanned by A% ) A;' and?ﬁq,
7&1 in an appropriately chosen basis. This sub space is in

another way written as [39]
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?Q(A?U.T&ﬁ)

which is the gauge choice. The necessary condition for it

(1.4.15)

to: be a desirable gauge is that

[§ g7, (D)7} # o

(1.4.16)
~ Consider a canonical transformation
¢ 4 ( L=
CAc T ) = (AT
(1.4.17)
and let
alt Lene,n
3 = ?. C Lo )[)
(1.4.18)
then the constraint 1.4.15 reads
\/\\
et | & BT
ST + 0
3 (1.4.19)
I L
Thus for 3 = sz = 0 +then to make sense of the
commutation rigationa between A;’ and 77, . iz that to
express Zglzﬁk fﬂl , %z% ) and then. the Hamiltonian
3
becomes
. “ m
£ 774 (7} + 881
» L[5 [ Gl Bo) &L
(1.4.20)

The choice of the usual Coulomb gauge,

QKAL:Q = O

(1.4.21)
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is shown to be not a well defined gauge for the Yang-Mill’'s
Ctheories[447]. It docs not allow  for an  unamblguons
extraétion of the independent canonical variables. That 1is

the contraint on the gauge condition here shows

Lok §0:A) )] < RSO g AL
t
FR

(1.4.22)
which has no nontrivial zero eigenvalues. Gribqv pointed
out that +there exist nontrivial solutions\to the operator

equation [39]

(927650 tmTply )8 =@

(1.4.23)
This is known as the Gribov ambiguity [37,39]. Whereas in
the axial gauge choilce
')’\(_' ﬂ% =0
(1.4.24)
there iz no Gribov problem [38]. But the Hamiltonian here
becomes messy. It is still not <clear that the Gribov

ambiguity is really there in the case of the Coulomb gauge
for the Yang-Mill’'s fields. According to I. Singer [39] if
one does the quantization through the path integral methods
then the Gribov problem 1s endemic to the Yang-Mill s fields
and its cause lies in the fact that it is not possible to

get away with +the same gauge condition over all of

in

pace-time points. However, in the perturbative evaluation

of +the Yang-Mill's path integral one lignores the Gribov



problem.

In the gauge theories the four vector massless gauge
field AP actually represents only two independent dynamical
degrees of freedom [37]. The canonical commutation
relations between these transverse fields have to be
formulated so that they are consistent with their
constraints. But in such formulations one sacrifies the
Lorentz covariance. A physically sensible theory is
recovered only after restricting the admissible states to

those satisfying the Lorentz gauge

9/“/?’“ /FA/:?‘?/LC}\'L} = 0 .

(1.4.25)
The key point in all these formulations 1s that one must
remove the redundant degrees of freedom (resulting from
gauge invariance) of the theory by some acceptable gauge
fixing conditions. A consistent implementation of such
constraints for non abelian theories is highly nontrivial.
These difficulties for the quantization of gauge theories
was dealt by Feynman (1963) [45], Dewitt (19867) [4617,
Faddeev and Popov (1967) [47], Mandelstam (1968) [48],
t"Hooft (1971) ([36].



Table 1.1. List of leptons and quarks

Leptons Guarks
Flavour Charge in Mass Flavour Charge Mass
units of e MeV units of e MeV




CHAPTER II

PROPERTIES AND PHENOMENOLOGICAL MODELS OF QCD

2. 1. Introduction

In this chapter the salient features of QCD are
described from the theoretical as well as experimental
?oints of view. The +two major properties 1i.e., (1)
asymptotic freedom and (2) confinement property, are
discussed in sections 2.2 and 2.3 respectively. The chiral
symmetry 1is very briefly mentioned in section 2.4 since its
detailed discussion 1is not relevant for the further
development of +the thesis. Finally the various properties
are summarised and listed in comparison with GED 1n section

2.5,

The rest of the chapter is devoted to explain the pros
and cons of some of the popular phenomenological models of
QCD in explaining the properties of Thadrons. Bag models,
potential models, soliton models, etc. for the quark
confinement in section 2.6 and their extension for the
confinement of gluons are discussed in section 2.7. This
chapter provides the philosophy Dbehind phenomenological
confinement models for studying the bound states of quarks

as well as gluons in QCD.
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0.2, Asymptotic Freedom

The Bjorken scaling observed in deep inelastic

lepton-hadron scattering [49,50] clearly suggests that the
theory of strong interaction shouid be asymptotically free;
i.e. the quarks interact very weakly at very short
distances or at very high momentum transfer [11,51].
Yang-Mill“s free field theory exhibits this property and
\\hence the Yang-Mill’'s theory becomes the theory for the
~quantum chromodynamics and the quantumﬁ chromodynamics
becomes the best candidate for the theory of strong
interactions [26,27]. The fact that the quarks exist in
colour triplet state [7,8] the symmetry involved here is the

SU(3) colour symmetry.

The renormalization of the non-abelian Yang-Mill's
fields shows that the strong interaction running coupling

constant <X5(Q2) as [37] is given by

ATT
z : z ’
(s (&) (u-—}_n};)ﬂn%
3 A (2.2.1)
From +this expression one can see that for small

momenta, GQS(QZ‘ ) increases and even diverges when the
momentum transfer squared Q:L = ﬁ? . Here /\ 15 the
fundamental momentum scale of the theory called the QCD
scale parameter and ng is the number of quark flavours.
As Ql - increases OQS((QI) decreases when nf < 17, i.e.

the quarks interact very weakly at very high momentum
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transfer or at very short distances. This is the meaning of
asymptotic freedom. This expression is derived
perturbatively and it may fail in large coupling regimes in
infra red.. As compared to QED derivations, here the factor
11, coming out of the pure gluonic nonlinear contributions,
dominates and it gives the increase of MS(QZ ) at low
momentum regimes making the theory nonperturbative. In QED
the decrease of effective coupling constant %t long distance
is associated with the dielectric screening by the cloud of
virtual electron-positron pairs. Rut here for non-abelian
case one has to understand the increase of the coupling
constant at long dilstance as antiscreening due to the
virtual gauge particles carrying the colour charge. Thus
the asymptotic freedom means the Yang-Mill“s vacuum
’antishields the charges. That 1is, 1t acts as a colour

dielectric medium with a dielectric constant

S (2.2.2)
The relativistic invariance of the vacuum gives the magnetic
permiability
e > 1. o
(2.2.3)
so that

&)
—~—

€ .
/* (z.2.4)

Thus the Yang-Mill‘ s vacuum acts like a colour paramagnetic

medium, This dielectric picture of the QCD vacuum is the
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basis of the dielectric confinement schemes [b2,53].

Although QCD is asymptotically free it is still
‘difficult to use perturbation theory for many of the high
energy processes because the quarks and gluons are not found
as physically asymptotic states like electrons or photons in
QED. Also because of the increasing trend of the coupling
constant, the higher order terms cannot be neglected.
’However the perturbative QCD results hold better in high
energy deep inelastic scattering pfocesses. When ne
becomes 3 17, the vacuum polarization might produce very

heavy fermion pairs that change the QCD vacuum from

dielectric to paraelectric (i.e., =creening instead of

antiscreening) at a length scale < 10 % cms, In the
-~ -{s .

10 " -10 ¢ reglon, one can ignore such ultra heavies and

in the present energy range QCD possesses the asymptotic
freedom. 5o far there are only six flavours of quarks (see

Table 1.1).

2.3, Confinement

The increase in the effective coupling shows +that the
quarks interact very strongly as they move apart. This is
supported by the experimental result that no free quarks or

gluons are seen or detected in any of the brilliant efforts

made to discover them [6,547. Thus the empirical
requirement is that only colour neutral objects are
asymptotically free in nature. That is to say the coloured

objects are permanently confined inside the hadrons. But it
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is not at all clear how confinement can be proven from the
‘Yang—Mill’s theory for the long distances. And it cannot be
explained within the frame work of perturbation theory as
its breaks in this regime. Thus whether confinement occurs
or not can only be known through non perturbative
calculations. That 1s to say the contributions from the
higher and higher orders of colour interactions between the
quarks and gluons become more and more important (see figure

2.1).

A general approach to this problem is the KLN theorem,
named after the classic work of Kinoshita [565] and of Lee
and Nauenberg [56] originally done for GED but later adapted
to QCD [43]. This theorem applies to the cross section,
which is finite at lowest order, and becomes divergent when
‘higher orders are included. Unlike in QED, in QCD two types
of divergences are to be taken into account. One 1s the
emission of soft gluons by coloured quarks and second due to
the decay of massless gluons into hard massless particles.
The main problem in QCD is associated with these kinds of
divergences. According to. KLN theorem, any transition
probability in a theory involving massless particles is
finite, provided summation over all degenerate states 1is
rerformed. Thus the initial and final degenerate states to
be considered here are the collections of the infinite set
of massless colinear quanta of gluons. Though the
confinement can be understood as a result of the nonlinear

interactions of +the exchanged gluons among themselves. A
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qualitative way of understanding the confinement mechanism
is the squeezing of colour electric flux due to the
nonlinear interactions of the colour fields between the
quarks making the quark permanently bound. A possible
,method to study this long distance property is the formalism
of lattice gauge theory for QCD proposed by Wilson in 1874
[57]. For a heavy system of quark-antiquark separated by a
distance R, the confinement means, the energy of the system

grows without bound, i.e.,

E(R) —¥% as R—» -

(2.3.1)
And if there is no confinement one expect
FE(RY — 27 as R —»»

(2.83.2)

where m 1is the quark mass. Using the Wilson loop [567] it is

possible to study the question of colour confinement in a
pure gluon theory without guark fields. In this descretised
theory even though the results seem to lead towards
confinement, it doesn’'t show +that the Yang-Mill's ‘theory
possesses thisx property [58,59], since the two Lagrangians
are different in the long range reglmes. And the strong
coupling result 1s obtained without the non-abelian nature
of the theory. The problem is that the strong and weak
coupling regimes may bhe separated by one or more
discontinuous phase transitions. In the abelian case it has
been proved whereas similar analytic proof that QCD does not

undergo a phase transition at some finite coupling has not
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been obtained so far. Thus as it stands today the origin of

[37]

the confinement 1is still & mystery. Hence 1t  seem
imperative to incorporate confinement in the models for
k‘dynamics of quarks and gluons and then study the properties

of hadrons and glueballs.

2. 4. Chiral Symmetry

Another property that @CD might possess is the chiral

invariance of the QCD Lagrangian [60,61] in the limit when

~ guark masses Dbecomne negligible and when the partial

conservation of axial current (PCAC) is assumed. But in the
quark models the quarks acquire an effective constituent
mass and it breaks this invariance. It is implemented then
in the Goldstone mode with pions as massless particles(60].
Thus one must assume the dynamics such that the QCD vacuum
- breaks the chiral symmetry. This is a difficult dynamical
problem which 1is not completely settled and the discussion

of this is beyond the scope of the thesis.

2.5. QED and QCD - A Comparison

Here all +the properties of QCD are summarised in

comparison with that of QED.



The charged particles
(electrons) and photons
exlst as asymptotic

free states in nature.

They do not carry
colour charges.

It is a U(1l) gauge
theory.

The gauge field 1i.e.
photon does not carry
any charge.

Fhotons do not
interact themselves
It is an abelian
gauge theory.

The electric flux
lines spread out

(see fig.2.2a)

The Coulomb potential
persists to large
separation gilving
rise to a potential

V(r) = q/r

oV

n
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Quarks and gluons do not
axist as asymptotic free
states in nature (i.e.
they are permanently
confined objects).

They carry colour
charges.

It is SU(3) colour
gauge thegry.

The gauge field 1i.e.
gluons carry colour
charges.

Gluons interact

among themselves

It is a non-abelian
gauge theory.

The colour electric
squeeze to form narrow
flux tubes

(see fig.2.2Db).

The gluon fragmentation
and recombihation
contribute to generate
non-Coulombic potential
form (linear or
oscillator) with no

ionizsation of gquarks
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occeurring. V(r) = ar
or brk.
The running coupling 9. The running coupling
constant increases at constant increases at
short. distances long distances
(ultra-violet (infra red slavery).
divergences).
.QED vacuum is 10.QCD vacuumn is perfect
perfect diamagnetic dielectric i.e.,
i.e. € > 1 and p< 1 €< 1 and pe> 1.

Phenomenological Models of QCD

It is now well known that QCD is the underlying theory
for strong interactions [26,27]. This non-abelian gauge
theory describes the dynamics of coloured quarks and gluons
[7,8]. In the absence of a satisfactory proof for the
colour confinement and the empirical fact that only colour
neutrals are seen free, sensible physical results will be
vobtained by considering the coloured quarks and gluons as
permanently confined objects [15]. Hence to understand the
Properties of ©physical observables like hadrons (bound
states of quarks and or quark-antiquarks) and glueballs
(bound states of pure gluons - a unique prediction of QCD)
[(62] one has to go for phenomenological models incorporating

the confinement. This section describes some of the
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guccessful phenomendlogical -models i.e., bag model,

;potential model and colour dielectric model for confinement.

_0.6.1. Bag Model:

Tt is the simplest form of the confinement, where the
:hadrons are considered as a spherical bag of finite radius
,équal to that of the hadron size. The quarks and gluons are
freely moving inside the bag. This naive model wWas
introduced by Bogolioubov in 1967 [63]. But such & bag 1is
unstable due to the pressure exerted by the freely moving
quarks and gluons at the surface of the bag. To combensate
‘this internal pressure, in the MIT bag model, an external
pfessure is introduced to prevent the expansion [17]. The
_bag ‘potential’ acts on the mass of the quark or gluon which
becomes very heavy at the surface of +the Dbag and hence

cannot escape.

The Lagrangian density for such a bag can be written as

[64]
Z - {’z"[?f Pra,q - 3 rP-alegn —13tas
(2.6.1)
é where
5 ev = 9</Q’”Y)
(2.6.2)

and @, = 1 inside the bag r & R and By = 0 outside the bag
r > R, FATE. §(R=D 15 the surface delta function. E

is the inward vacuum pressure at the surface to balance the
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outward pressure of the gquarks inside. This pressure is
isotropic only in the ground state. In the excited state
the bag would be deformed. In this simplest model the
nonlinear confinement effects of QCD are imposed through a

boundary condition

Tﬁ* q gl U = 0

(2.6.3)
“1.e., the normal component of the quark currént at the bag
surface 1is equal to zero. These are the basic features of
the bag model. The Hamiltonian of the N quark system in the

bag may be deduced from the Lagrangian. For the massless

quarks in the ground state, the mass of the N-quark system

is obtained as [64]

3
m(z) - 2:04-N ..\.H_:IYRB
R 3

If one takes into account the one gluon exchange interaction

(2.6.4)

between the quarks, perturbatively, it gives the mass of the

baryvon where N=3 as

- - P
M (R) :3x2'0H-+ﬁ:BR"38+3_’19.M5+%.

(2.6.5)
Here the first term is just the kinetic energy of the three
quarks in a sperical bag of radius R. The second term may
be interpreted as the extra energy reguired to keep the bag

atable, +the third term is the hyperfine interaction due to
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the one gluon exchange between the quarks. The last term is
5upposed to take care of all effects which are difficult to
baloulate - like centre of mass correction, =zero point
energy, colour magnetic self-energy, ete. For the

equilibrium radius R = R

R R=R
° h (2.6.8)
‘gives the hadron mass
M = LETYBQi = 4 Qy
h 3 3 —“‘k
(2.6.7)
where
Q, = (Z'OL}- 01+ A + 2o )N
N
(2.6.8)

and N is the number of quarks constituting the hadron. Thus

for the nucleonic case,

=3
= Wb BR = 4 A~
MN ‘37}— ~N “3_—/5_;/
(2.6.9)

Incorporating the mass of the strange quarks and taking
B'/“t~ -~ |46 MmeV , Z, = — "84
X g - 2.2 and. Mg = 2.F4 ™M eV

(2.6.10)

This model could fit the masses of the lowest haryvon octet
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and decuplet as well as the lowest meson octets reasonably

well except the pion mass [65,66].

Though bag model gives beautiful description of the
hadronic systems, there is no derivation of such models from
the fundamental theory of QCD. But there are qualitative
arguments for the bag formation. One among them is the
formation of bubbles in the QCD vacuum. These bubbles may
then be called "bags® [17]. Such bubbles are accounted for
the antiscreening property of the QCD vacuum. A detailed
descussion on this topic is given by Lee [43]. He has shown
a bag like state as solitons in a relativistic, local <field
theory containing Jjust quarks and a phenomenological spin
zero field 0~ which depends upon the polarizability of the

medium. The coupling of this field with the quarks

restricts the motion of the quark inside the hadron. This
description is known as the soliton model. Inside the

soliton the ¢ field is zero and the quarks are free. This

enables one to do the expansion of any physical observables
like hadron mass in terms of the quark gluon coupling "g°.

The mass relation upto the order of gl is'[43]

. 2 5
M = NG | TR P+ ATRS
o} 3
(2.6.11)
2
where C4 = Co ©(9") 1is a constant independent of N,

the number of gquarks and/or antigquarks inside the hadron, P

is the pressure energy per unit volume and S5 is the surface

energy due to the surface tension per unit surface. The
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first term is the thermodynamical energy of the bubble which
prevents the collapsing of the bubble.The second term 1s the
pressure energy and the last is the surface energy term.
'The above mass expression is not far from the bag model mass
formula. In the case of MIT bag [17] the surface energy
term was missing and for the SLAC bag model [67] the
pressure energy term was missing. Thus the soliton
structure of +the hadrons 1in the QCD vacuum provides a

physical basis for all possible bag like models.

Eventhough the phenomenology of bag models are
successful in explaining the properties of Ilow-lying
hadrons, there are a couple of serious drawbacks in this
model. The unnatural sharp boundary of the bag makes the
‘physics at the boundary or surface of the bag more
\éomplicated and 1s least understood from the basic theory.
The other problem is the size of the bag - it 1s too Dbig.
For R = 1.1 fm the bhags would already touch each other at
normal nuclear density. The calculation of the excited
state 1& rather difficult 4in this model. The spurious
motion of the centre of confinement 1is véry difficult to
eliminate. And finally 1t does not preserve the chiral

‘  @ symmetry But an attempt has been made to regain the chiral
’ symmetry by diffusing the bag surface using pion clouds
surrounding it. Here the pions are treated as a fundamental
”Goldstone boson. This leads to the phenomenology of cloudy
bag model. The details of this model are given elsewhere

[687.




6.2, Potential Models:

Another very popular confinement scheme is the
potential model. Here one assumes a nonrelativistic

confinement potential of the type, in general,

) 2
V(r) = % + bt or ar” .

(2.6.12)

The constituent mass of the quarks heré‘ is taken as
one-third of the hadronic mass. The nonrelativistic
potential models give a better description for the heavier
quark aystems [20,21,64]. But the results are not reliable
in the case of lighter quarks (i.e. for u,d and s). Since
the average kinetic energy of these aquarks 1s larger than
thelr masses, the better description of +the hadrons (with
u,d and s quarks) will be obtained from its relativistic

treatment.

The potential in which a Dirac particle is moving <can,
in general, have +two forms. They are the Lorentz scalar

like the bag “potential’” and Lorentz vector analogous to the

bag pressure. The Dirac equation with a general potential

. is written as [69]
(P + B+ Sc) + Ve J#p = aa‘f.
(2.6.13)
where S(r) is the scalar potential and V(r) 1is +the fourth

S Component  of the vector potential . This can be rewritten




in a covariant form as

fir® ou +royv ~maS)) oy =0

(2.6.14)
where o o ' 1
<235 ()
” o< O % o -1
and
O G_. ¢
o= .
(z.6.15)

_In these models the scalar part‘is assoclated with the mass

and itz effective mass (i.e. m+8) grows as 1t moves away

from each other and finally, leads to its confinement. In a
pure vector potential case one would have the problem of
Klein paradox [70]. It is because, when the potential
becomes too strong, the Dirac theory starts accommodating
solutions with E < mc?* which are oscillatory and can
penetrate the potential barrier, providing a finite
~ probability of free quarks outside the oonfinement boundary.
" This will be prevented by the scalar part of the potential.
Another qualitative argument for scalar  plus vector

potential 1is that it provides a consistent picture for the

bound states for both mesons (q-§ systems) and the baryons
(3a systems) [71]. The pure vector potential would produce
only % bhound states whereas the scalar potential provides

qa-4
an  attractive force for hoth qdq and qq states. Since there
i
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is no di-quark states, the qg interaction must be weaker.
This is provided by the ‘repulsive nature of the vector
potential. Again the three pair interaction of the quarks
in the baryons makes it moré strong. Thus for the
confinement of quarks, a scalar plus vector potential is the
more appropriate choice. The choice of such a potential in
the relativistic scheme for the quark confinement has been
eminently successful in the predictions of the hadronic
~ properties [23]. In this relativistic harmonic oscillator
potential model (RHM) [23] Dboth the Lorents scalar and
Lorentz vector parts are taken as oscilllator type. Thus the

confinement potential in RHM is

VEv) =(1+p) M.
(2.6.16)

The corresponding Lagrangian density can be written as

= prta e — B re)dTien) R
(2.6.17)

Z

RHM

and the energy expression obtained as [23].

E = 1}42 + (17"+\)£1n]vz

ke
(2.6.18)

where the size parameter

1/1

0, =(E,tn)«

(2.6.19)
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Here n > 1.

The total energy or mass of the hadron is then obtained
by adding individual contributions of the quarks but for the
spurious centre of mass motion. This model is found to be
"very successful in explaining very diverse aspects of hadron
spectroscopy, magnetic moments, nucleon polarizability,
ndbleon-antinucleon annihilation, etc. [23,72,73]. BSuccess
of this model is closely linked with the accounting for ‘the
spurious centre of motion. The results are 1in better
agreement with the experimental results than any of the bag

model or nonrelativistic oscillator potential model results.

2.6.3. Colour Dielectric Model:

In a QCD vacuum the gluons can produce virtual qQq
pairs, leading to the screening of the interaction and
should make it diamagnetic as in the case of QED. However,
since the gluons carry colour charges unlike the photon in
QED, they can cause colour magnetisation of the medium and

make the medium paramagnetic. This effect overcomes the

diamagnetic property of the qq pairs. Thus for the QCD
vacuum the colour magnetilc permeability fAc 7. Then it

follows, from the Lorentz invariance , the colour dielectric

constant € ,.<V . That is +to say the colour electric
interaction between the charged objects becomes stronger for
larger distances. Thus the mediam shows an antiscreening
property. So, &s briefly mentioned in the earlier sections,

as  r > O,/A(: and €. = | and the interaction becomes
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weaker showing asymptbtic freedom. At the same ‘time, for
large I, f*c77' or €.<<1 giving rise to the confinement
of colour charge. It has been shown by T.D. Lee [52] for a
‘medium whose dielectric constant is less than unity ( € <
1), the work required to separate two charges to infinity is
infinite. Thus the colour dielectric picture gives a better
physical understanding for the colour confinement.

Accordingly, 1in a bag picture hadrons are embedded in a QCD

vacuum where fic;=m’and €. =6 , while inside the hadron
fAfc=€c=1 . Consequently the colour fields are completely
confined within the hadron. Following this, Nielson and

Patkos [53] have made an attempt to derive a colour
dielectric model from QCD. They suggest the following
effective Lagrangian [53]
£~y
_ s + SN AP
£ = k(B (L + 2 9
K EL PP 4 209)

-
4%
(2.6.20)

where K and be are related to averages .of the original

gauge fields. The field tensor F&Y s

A pw i _ (8", B
e 2 os - 2t -2 £].
(2.6.21)

~Here one can 1identify KA' with the colour dielectric

constant,
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c = x't . (2.6.22)
By the manifestation of the confinement through the

vanishing of € 1in the vacuum, gives

<K>\!ac =© ’

(2.6.23)
Thus the dielectric model provides a mechanism to construact
. models which lead to confinement without explicitly

introducing a bag. Hence the problems associated with a

sharp, non-dynamical bag would be eliminated [74].

For systems wihout the colour octet fields, the

Lagrangian reduces to [74]

I —
s - Lk P )= g A + 2R,
: (2.6.24)

. Here the field canonically conjugate to A’ is not L ﬁ?+'but

\\rr + v
1K & In an effective mean field theory, one introduces a

field L related to K and 7nq‘as

')’_ -:_0.<...K
r
9
(2.6.25)
such that
o> —
- _ ot P *) .
L o= LI T = L)

(2.6.26)
Here now the % field 1 considered as a dynamical fieldUel,34],

An attempt has been made to connect this field with a colour




Page 51

and chiral singlets ot ¥ glueball fileld coupled to quarks
[74,75]7. '

Now if one compares this Lagrangian with the Lagrangian
corresponding to the RHM without the 13('%) part, the Y

function would be equivalent to

= o = 2 X
% (7D - K = MG
9 (+p)arr2my
(2.6.27)
Thus
Kem) a0
bi 7‘2'-%-"”‘1,
L (2.6.28)
 Thus as r—> 0; K(r)—=>1 and as T=>% , K(r)-> 0. Hence

~the colour dielectric model provides some physical arguments
for both the bag models and potential models.
2.7, Confinement Models for Gluons

Confinement of coloured particles implies the

confinement of gluons also. There exist confinement schemes

for gluons similar to that of quarks [22,76,77]. For
example, a dielectric bag model [78] provides the
confinement of gluons by assuming € = 1 inside the bag and
€ = 0 outside the bag surface. Inside this bag, gluons are

free and are described by the Maxwell s equations. Here the

gluon field confinement is implemented by the boundary



Page 52

conditions [78]

Mm-E = O

N xB = O | (2.7.1)
at the surface, where E and B are +the gluon electric and
magnetic fields respectively. The +two transverse cavity
elgenmodes are obtained in multipole form in terms of the
spherical Bessel functions [78]. The transverse magnetic
(TM) eigenmode satlsfies

r 'IBTN1= o

(2.7.2)

The frequency and the spin parity of the lowest TM mode in

unitas of the cavity radius, given by

Xo CTM) :4“4J73-TP:IM
(2.7.3)

And the transverse electric (TE) eigenmode satisfies

TE&
Y. & - O .

(2.7.4)
The frequency and the spin parity of the lowest TE mode is

given as

X (TE) = 274 7=

(2.7.5)
Using these spherical eigenmodes, the gluon potential ;A#

ls  expanded and second quantized form of the Hamiltonian is
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written in terms of the frequency of the eigenmodes [78]. A
naive calculation of the gluonium (glueball spectrum) is
also produced by them. It should be noted that not only
kthese models suffer from the difficulties of bag models but

the implementation of gauge condition is not satisfactory.

. There are also other models, like potential models for
‘the gluon confinement and have predicted the glueball
spectra. In these models they assume the gluons as massive

and the motion of the gluons inside the glueball 1is

described by a nonrelativistic Schrodinger equation [79].

In the next chapter, new relativistic confinement
schemes {801 for +the massless gluons will be discussed in
the llght of the success of the relativistic harmonic
oscillator scalar plus vector potential (RHM) for quarks in
the description of hadronic properties [23]. The
formulation of +this scheme aims at a unified confinement

theory for the study of quark-gluon bound systems.
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CHAPTER III
CONFINEMENT SCHEME FOR GLUONG

3. 1. Introduction

This chapter describes a new confinement scheme for the
/gluons in line with the relativistic confinement model with
scalar plus vector potential (RHM) for quarks. It contains
a description of a colour confinement current which is
motivated from the pure glue-field equations. This current
in analogy with Ginzberg-Landau’s theory of
“superconductivity [81] 1s introduced as a colour super
current. Further the general expression for this current is
reduced to that corresponding to the London equation [81] in
super conductivity. The gluon-gluon palr interaction is
considered as the cause for such an effective colour super
current. In this formalism the gluons satisfy the
quasi-Maxwellian fields with a source current satisfying the
continuity equation. ©Section 3.2 describes the reduction of
the colour gluon field to a pseudo-Maxwellian quasi-gluon
field. . With an appropriate choice, the above current leads
to a confinement scheme for the qua5i~gluon5 similar to that
of RHM. This scheme will ©be referred to as the current
confinement model (CCHM). The confined quasi-gluon modes are

- obtained in a general frame of Lorentz gauge condition. The
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secondary gauge condition combined with the Lorentz gauge
leads to a new gaugé called the oscillator gauge [T72]. In
 this gauge, transverse modes are obtained. The gluon field
is expanded in these bases and the field is second quantized
using the usual canonical procedure. The details are given

in section 3.3.

An attempt has been made to get an equivalent
dielectric picture for the current confinement model. The
dielectric function thus obtained in section 3.4 is
inhomogeneous and momentum dependent (non-local). A
dielectric function is dedued from the usual Maxwell "s
equations written in spin notation [38] in similarity with
the Dirac spinor equations for RHM. This dielectric
' function is found to be identical with that obtained for CCH
neglecting the dynamical momentum dependent part. Thus &
new dielectric confinement model with an inhomégeneous
dielectric function can be constructed. Such & dielectric
confinement model (DCM) is discussed in section 3.5.
However, there are difficulties for the choice of a proper
gauge. With some approximations similar to that of the
boundary conditions in the bag dielectric model [52,781, the
physical transverse gluon modes are obtained. The second
quantization of these gluons is carried out 1in & similar

fashion as that in CCM.
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Thus in this chaﬁter two different confinement models
for the colour gluons are described. The energies of the
physical transverse modes of these gluons in both the models

are calculated and the essential features of these two

models are compared.

3.2. Gluons as Quasi-Maxwellian Fields

In this section +the pure . colour Yang-Mill’'s field
equations are linearized. The resultant fields then obey

‘quasi-Maxwell’s equations.

Recalling the Lagrangian density for the colour

Yang-Mill s fields,

L
- -/
g: - b ﬁiu éiu
(3.2.1)
where the colour fileld tensor fz;? can be written as
£
YA L
= = fl + G )
Yt /e / (3,2.2)
where
i £
jﬁ = 2 fgl—* Sb/%%
/o ~
(3.2.3)
and ﬁ ﬁ
)
G,E mn?j{: /9/:0‘9/;7
e :
(3.2.4)

Here 1,m,n are the colour indices, g is the coupling
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bron
constant and :F is the colour SU(3) structure constant.
(Note: Here and in the following, repeated indices are
summed over). From the variational principle the equation

satisfying the field variable can be obtained

2
(8.f) =0

. (3.2.5)
By expanding é%u the equation becomes
E,cc’,f_:u +gf Y
(3.2.8)

_ Separating the linear and nonlinear parts using equation

(3.2.2):

yi bmorn L » 5 ¥/
nd =Y T 2
(3.2.7)
Lrrr 7 ”
. +9F [(9/3‘:”)@ + BL0,A
' TPL oM pb f
FFrE A AL A,
(3.2.8)
The r.h.s. of this equation now can be formally represented
by a current. Such that
¥ £

adar = T L
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£

where J,7 is a ‘nonlinear. field current, In the
Ginzberg-Landau’s theory of superconductivity {(81], +the
super‘current of the electron palr condensates 1s written

as: Z
F =-e (éu*m)—-/ymgv*/—-g*/w/%

A 2m*L

(3.2.10)
where AP iz a complex order parameter corresponding to the

* are the éffeotive charge

electron palir condensate, e* and m
 and mass of such a pailr, and A 1is an external field
potential. Generalising this super current to a four vector
notation and taking the analogy with the current expression
from equations (3.2.8) and (3.2.9), one can consider the

L
current Q; as a colour gluon super current. Such an

analogy has been taken by other [82] in the description of
gluon condensate in QCD wvacuum. Further the super current

expression in (3.2.10) is reduced +to that of the London

equation as [81]

2.
TCx) = —er it plxD

"
7 (3.2.11)

with assuming an uniform order parameter AY . Similar
approximation oan be Eone in the case of the colour gluon
3uper current, Agsuming an uniform gluon potential field
within +the confinement regime, the colour gluon super
current expression can be reduced to that similar to the

London equation given in (3.2.11). Thus the colour gluon
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super current is reduced to

¥ gfﬂmwjg”/bz /;f»,az

Ju pe i

‘In this expression a summation over all the repeated indices

(3.2.12)

\ has to be carried out. One can contract the colour indices
in this expression. Here p and g cannot Dbe contracted,
while the possible contractions are those fields with
indices (m,p) and (m,q). Thus the r.h.s. of° the eguation
(3.2.12) can be written in a contracted form,

"§L§:. S}mnv\ ﬂvﬂq,c A )’\

mmn,q,

—q = &Qm" PG AT A Al
= "32{}:[?: fmn ™ 0 I
Z{ Q/u F} (3.2.13)

where

and

1 = (?FQ;? /X:?J>
(3.2.14)

Using the properties of the structure function § ™mm
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- aee

§ﬁo7fﬂ1 §fLrn79

(3.2.15)

Taking the summation over all possible m,n with non-zero
value of the structure constants for the SU(3) colour group

:[43], one gets

AN O Yoy

(222 8% 8!
(3.2.186)
{see Appendix A}.
Thus 0
i 2 Lo A
T = 39 Lol T ]
(3.2.17)

Absorbing Bgl in é&u,and allowing 2 L indices free, the

current can be written in a more general form as

¥4 £
o - 9/’“’ A/“' (3.2.18)
"The é&u;here appears in a similar way as /ﬁP/l appearing
in the London equation of the super conducting theory. Thus
E%Lu can be consldered as the probability density of the

gluon pailr condensates. This expression in another way is

similarhié the Harﬂggé;Fock approximation in which the gluon
moves 1in. an average background field provided by all other
gluons in the medium. There are studlies for the colour
confinement by considering the QCD vacuum as filled with
gluon condensates_[BZ]. In this respect, the 6&u/can also
"be considered as representing +the structue of the QCD

vacuum.




3. A Current Confinement Model for Gluons (CCM)

A new confinement model for the gluons is described in

‘this section. Confinement is assumed due to a colour super
current described in the previous section. In this
mean—-field approach the gluons are described by
- quasi-Maxwell s equation. The nonlinear interaction effects

:ére partially taken into account in the super current %u;

o

?;_ = eup'ALf '
. (3.3.1)
:The colour index is suppressed since ;‘and %Mcarry the same
colour index. The é&&p' is chosen as an inhomogeneous

function of apace. This indicates a varying field strength
due to the ‘cracking” of the medium. In this respect it is
not different from the spirit of bag model but is closer to
- potential or dilelectric approach. In_ analogy with the
harmonic potential model for quarks (REM),  There 6&x£/ is

chosen as

(3.3.2

and

2
/2 = o('T’-——lOC’J/u_,O G5 3
where o is a constant parameter in this model and r is the
distance from the confinement centre. This particular
choice has the following advantages. (1) The Lorentz gauge

condition can be used for solving the quasi-Maxwell s



Page 62

equation, (2) the four vector current is conserved, and (3)
The equation for +the quasi-gluon field is similar to the
cquation satisfied by the quark field in RHM,

3,3.1. Equations of Motion of the Quasi-Gluon Field:

The phenomenoclogical Lagrangian density for the current

_confinement model can be written as

A, AL

— A
,i: = Zf;ﬁﬂ/c_ “;f‘"g/uu,a

(3.3.4)

 Where

(3.3.95)

The metric chosen here is

the vector (
oA = (%) A, T

~ - rd o~
S = (&%), 2%=(&Y)

The scalar product

~ 2 .
x, X = t— XX
/U.
2 2
ot*

(3.3.6)
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(3.3.7)
By variational principle,
5oL =0
| (3.3.8)
From the lagrangian given in equation (3.3.4),
- =1 —
got ';Zﬁug}: Bpuﬁ//&g C
‘ (3.3.9)
Since E;‘J = - E;ﬁt
A pd A, A,
(3.3.10)

Substituting in egn. (3.3.8) and the partial integration

leads to

(3.3.10)

Thus the equation of motion satisfied by the components of

ﬁax are

2 2
(__f_g__ _—VZ‘—/—P('?"I)‘IS = O
ot % ,
(3.3.11)

L.and
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(.@-z V3¢ o2 )P = O
ot * ’ 4
(3.3.12)
where ¢ 1is the scalar component of fa“. Here the Lorentsz
gauge condition
5> pM = O L VA =0
~ ot
(3.3.13)

iS assumed. The time variation of the field 1s taken as
—rwt
é

, then the equations for é‘and ¢> becope
2 22 2
(—v +«77) 8 = @&
(3.3.14)
and
' 2 12 2
(-v raTE) P o= (Wrax)p
(3.3.15)
The above equations can be identified as that of an
_oscillator equation with the oscillator eigen value as

2
and (wWT+ 2« ) respectively.

2 3.3.2. The Hamiltonian Formalism:

The Lagrangian density given in equatibn (3.3.4) can be
rewritten, incorporating the Lorentsz condition, as:
4 et £ ERY 0, pY + L (3 A5
Y fadaditon Z
(3.3.16)

The canonical momentum conjugate to f&; is given by
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_ 95{' : = Ty )
Ty = 93,0/ - (3.3.17)
Thus
~ _ - 3P, 9
7TL - —‘}g( B.t T ¢
(3.3.18)
d
fén o = 3/4/9/‘4 = 0
(3.3.19)

where Af; and W}L satisfy the fundamental Polsson Dbracket

'brelations at equal times 1.e.
3
= - A=Y
[aucar e = - g, S0
and '
o) - w19
{3.3.20)
The Hamiltonian density is given by
= 77/‘/9‘ —
A %0 =&
e, —o,p)=L 7.7 +/;: FY
:z-é%-ﬁ%v9‘ —-5.(9095
. . 2
R

— 7T 9P - (3.3.21)
Thus the total Hamiltonian H

fd™x A

i

[t

(3.3.20



grating by parts,

dx[lﬂﬂ + L 9LAA
RS

fter inte

] \9431‘_\,
H = Tz

purely dependent on

Thus the Hamiltonian is

But tho is

Hamiltonian

#ariables
gate toc}) , 1.e.,

_variable canonically conju

>Thus as discussed in the chapter one,
proportional to T, 1is added to H. Thus
2
(TT ﬁ-@ A 90¢))

g = R
<p3ﬂ -\—FTY]

4 F, the Poisson s bracket

- 29
(0,1} = 2

In order to fin

i 54om 0% 2H o 27
5e o7, 07, 2% Dt
[-e o gsb
4 5%

Thus the time evolution of ¢
F; i.e., ¢ 1is a non-

Considering now the Hamilton's equat

function

7%0 = %'ﬂQD, H }

the
not unique

7o

an %dditional term

is determined by an ar
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(3.3.23)
canonical
since the

is =zero.

(3.3.24)

(3.3.25)

y (3.326)

bitrary

physical degree of freedom.

ion for TTO,

(3.3.27)
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= “*5[ T Qbﬁb .
, (3.3.28)

But ﬁ; is zero for all times by the canonical procedure.

'Hence ﬁ; also must be eaqual to zero,

(
O T° — Bop =0 -
(3.3.29)
This is a secondary constraint equation. This gives 4> as a

dependent variable in terms of Jr¢.

pemis = T .
Co (3.3.30)

Eliminating ¢ from the Hamiltonian,

: ; CA 2
_ (L [T SRR BT +(92:7)]

H

£ (3.3.31)
: J
_where Lt = e‘iikl F is the magnetic

component of fF 49,

This Hamiltonian has got yet another arbitrariness due
to the secondary condition given by equation (3.3.29). But
a true physical quantity should not have any arbitrariness.
To make sure of this, the physical space is restricted such
that any physical quantity in this theofy must not depend on
the wvariable +that is conjugate to the secondary condition
“obtained in equation (3.3.29). Mathematically it is

expressed as [39]
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(3.3.32)

‘This gives the freedom. to choose yet another gauge condition
restricting the space spanned by Ag’s and Ty 's. As
discussed in the first chapter for the QED case, there are
- gauge conditions 1like Coulomb gauge, axial gauge, etc.,
called the secondary gauge conditions. Here in this
phenomencological study, a different gauge condition is
reguired which will be discussed in the next section.
Before that, equations satisfied by the fieldé A and T can
be obtained from the above Hamiltonlan, expressed in terms

of the vector fields,

2 2
L [d p[TAHET) 08 HTx2) |
= 4 ,Zg—

H
(3.3.33)
and after some partial integration
2 v (VT) A%
H f£ £ o
+20-V(0B)—22VE] .
(3.3.34)
The Hamilton’'s equations of motion give
28 - Eiff = zz'” Ef(rg:Jg')
5¢  ar Bo
(3.3.35)

and

(3.3.36)
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Taking the time derivative of the equation (3.3.35),

2%8 377 _v(y 3%)
ot > 5t Bo (3.3.37)
Substituting QZT from the second Hamilton’'s equation,
ot

2
2°F - vA-6p —v(VA) -

2
7t VCV (V2 —-88 — v(méyl7

e

(90
e — 05— V(T B) + V(L 68
. vA-08-Y g
2 -V-6h+ 6,7
= V@ 9"‘ ‘Yo[-“

(3.3.38)

"But from the equation 3.3.11 the vector potential A

N

satisfies

2°A . VA - 638

™

ot * (3.3.39)

This together with equation (3.3.38) gives:

v-8AH — &, v 2 = 0
v - (3.3.40)
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3.3.3. The Oscillator Gauge:

In the phenomenclogical current confinement model for
gluons described in the above section, the consistency
?demands a condition given by equation (3.3.40). This
,ébndition on the gluon potential é is quite different from
the usual Coulomb gauge condition. Making use of the
gsecondary gauge condition given by equation (3.3.29) it can
be shown that the Lorentz gauge reduces to ~that ~given by

;équation (3.3.40).

The Lorentz gauge condition is written as

v-A + O P - O .
~ ot
(3.3.41)
But from the secondary condition
p = XU
b
B (3.3.42)
Thus eliminatingcp , equation (3.3.41) reduces to
o
EZIQ + f‘ a—g - O
Go (3.3.43)

Now using the Hamilton's equation for Q' given by equation

(3.3.36), the Lorentz condition can be further reduced to

2
v-A 4 [V B) T -7 (r-5)] =0
a © (3.3.44)
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Multiplying throughout by 6%, it becomes

V.QB —n@o Z'@ ':.O ’

(VN

(3.3.45)

Thus in this phenomenological confinement scheme with a
general choice of & and &,,instead of the Coulomb gauge
_one comes across to a non-trivial condition given by
equation (3.3.45). With the particular choice of & and S,

in this model given by equation (3.3.3), the above'condition
- becomes
2 > 2 2
V-Arh —(r=22)V7-3 =0
(3.3.48)
zoc[V-@ +0(2”'@j =0
(3.3.47)
In terms of the oscillator annihilation operator notation it
a - <? - O

(3.3.48)

where a is the oscillator annihilation operator given as
& :

/ A
a = x(Z**“,)
2 (3.3.49)
This 1s called the oscillator gauge [72,80]7. In the
oscillator representation a. A = 0 can be treated in a

fimilar fashion as V .A = 0 in the usual coordinate /momentumn
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representation.

It can be seen that +the conditon given by equation
(3.3.45) provides the conservation of the four vector model
current J® consistent with the fact +that +the nonlinear
field current in the exact Yang-Mills" theory is a conserved
;quantity. The components of the current J here in +this

- model is given by

J = 64
b (3.3.50)
and
3 = 9075
(3.3.681)
But from the Lorentz gauge condition
VA = —‘Eljé
ol 2t
(3.3.52)
Then
v.y +95 = V-8 ~ %78
(3.3.583)

By equation (3.3.45), the r.h.s. of equation (3.3.53) is
Zero,

v-7+ 9 =0
T ot

(3.3.54)
1. e, the four vector current defined in equations (3.3. 1)

to (3.3.3) is also conservead.,
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.3.4. Oscillator Transverse Gluon Modes:

The oscillator gauge obtained in equation (3.3.48)
helps one to define the two physical transverse modes of the

quasi-gluon field in this confinement model. The transverse
k polarisation vectors here can be written in terms of the
oscillator basis vectors (the annihilation and creation

operators)

o = - (v rxr)

and qu

+ l _V.+mY)
Q. = — MN -~ )
e 4‘97&( (3.3.55)

 The equation satisfied by the vector potential A (equation

.

(3.3.4) now becomes

(gt +gha)s = &
(3.3.56)
The solution for é then in general can be written as
A
g = e (3.3.57)

where & is the unit polarization vector and AP is the usual

oscillator wave function given as [83]

+
w, = A ] o

e
(3. 3.

w
o
~—

Where




. | 3/ _ , .
2 age T4
M=o, [:~“'”-]
- ol Texp[- X
A ,
o . (3.3.59)
1d
71-
| =h |
Bl —— :
Nond. anll (2myr2 )l
(3.3.60)
The energy eigenvalue of the oscillator
2 X °
W (2N +3)
E s =
(3.3.61)
where
N = 2n+L |
3.3.62
,fCaf) ( )
RV 13 the so0lid spherical harmoniecs and is related to

he usual spherical harmonics as [83]

gt = a1ty e
™ (3.3.63)

he unit vectors in the polarization direction can be chosen

h the form
(3.3.864)

(3.3.65)



W
NT

The electric

 Now the gauge condition a.

As in the case of cavity

mode

£,

)
3 < '

é = 0 implies

B3 = O

g-&T:O N

elgen modes for the
gluons [78] +the "magnetic’™ and ’electrig'
{defined as
+
a’™ A7 = oo
and
-+ E
(a"xa)-p = ©
respectively. The solution for AM can then Dbe
as
— (Wt
. + g
N ) LA €= = - U,

o .o 71'“/2
[:JC_:T”H) 2 X CZ./\J"/LB_)

3]

1}

solution is  provided by
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(3.3.68)

(3.3.87)

and the two transverse modes of the confined gluons satisfy

(3.3.68)

transverse

modes can be

(3.3.69)

(3.3.70)

expressed

(3.3.72)
the
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',polarization vector in which the overlap of the €?3 vector
_ defined above in equation (3.3.36) has to be subtracted.

Then the solution for {ﬂE can be written as

LuJ‘t
I VR el
- NTIM™M NT Q- N*mm
(3.3.73)
where 5 /l
'\/OE - 'U"LU'H) \ = UCU+\) 'iQ_Q( 1(2.'\’*‘3)]
NT ~N ) (N+3) (N
(3.3.74)

The above solutions for the "magnetic’” and ‘electric’ modes
of the confined gluons can be expressed in terms of the
usual vector spherical harmonics. The detailed derivation
fis given in the Appendix B. The final expressions for these

modes are obtained as:

) (m) — (W%
(_' )
A7 = [7(7*/)7"( CZN”)] ’Q 7 Yrre ‘

w NI
(3.3.75)
and
S e - (+3)(Wrad =T T Jox Yanes) j A

L

\..5
(N~ ’r+1):r] R CAD Gy +
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27 ¥ NJ3-)

.‘-
(3.3.76)

The canonical conjugate momenta TI given by equation

- (3.3.18) and (3.3.30)
T - 208 + v(¥ 1)
ot 90 (3.3.77)
|
T = ) LA \ |
i - . (3.3.78)
Using the oscillator gauge condition
o AT = a7’ = o0
(3.3.79)

Thus the longitudinal component depends upon the transverse

component

(3.83.80)
where
-
-
7T = E 5?
ot (3.3.81)
By the construction of ‘97l ZZ depends on the canonical

momenta corresponding to the “electric’” mode only. Thus,

i £
L ) v.77
7 - ‘”V[”VZ-/‘&OW a ]



The explicit solutions of TTW-ean now be written as

-~ .

" . ™My
7 =M tlaxahy @
“—NTM NT NI m
(3.3.83)
_and - \ é*déz
& a - Q-2
TT - ~lerqq “~ CA-CR+ N3\ \Twmn
“w NI™M oo
(3.3.84)
where the normalisation constants are
) ' 'Q_
My, = (et
NT 2T+
(3.3.85)
y'
1 } Z
\/VZIE O(IZCZA/f'j)/ZC’\/‘H)(l - TLTH)
NT h 2 LT+ N+ (1)
(3.3.886)

.3.5. Quantization:

The confined gluon fields can be auantized using the
canonical procedure. For quantization - all +the field
Variables are treated as operators and the Poisson bracket
Satisfy by +the canonical conjugate variables é and T are
replaced by the commutation relations. The commutation

relations between A and Tl here in the oscillator gauge can
a2 !

begwritten as
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En‘cp,A(;C‘&—ﬂ = _L(& <. @)J@«‘
. —
| a-a’ (3.3.87)
Here the factor (J"J — aL /a_ a_"L) is  Just to
ensure the oscillator gauge condition
a B [Prys)
(3.3.88)
’Acoordingly the solutions given by equation (3.3.687) for
3,
A~ is
[PHYS > =0
(3.3.89)
Thus
a ,97/PH.9‘5) a- 777 /[PHYsS =
(3.3.90)
and
—-7( )} PHY§> =0
{77 "‘Vz+<9
(3.3.91)
Now the gluon field strength A can be expanded in the
ogcillator elgen basis.
1 p
_ C AA (x> + C. 6,\]()()
RCx) = z:; NTImY ~NTm NTm A T™
- NTMA (3.3.92
where A refers to the type of modes (E or M). And the
summation 1s over all the oscillator eigenvalues. Here
CﬁJaqu and (ftvgrn,a are the annihilation and creation

operators for the gluon quanta respectively.

From the
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commutation relations between A’s and T ‘s, it can be shown

—‘vn ¥ 3
that Cpugwa@nd  C g satisfy the following commutation

e¢lationships.
: N s
ECN’JM) ’ CN"J‘W\‘)'] = SNN’ g:)’U’ 'W‘W"SP\A‘

o ) é}
' C ] ::{?— > g e ;] = 0
;ECNmm> > NI N NTmA T NI '(3.3.93)
The Hamiltonian operator can be obtained from equation

1(3.3.33) using the expansion of (3.3.92)

1+
F* = z:; UJAJ(.C%hrwmh(aﬁvvnﬂ *~é% )
NI

, N (3.3.94)
Here C"“Uhﬂ) quaqy\) is the number operator. The zero

"point fluctuation of the gluon field is to be removed, since
this leads to an unohzservable infinity. It 1s taken care by
writing the Hamiltonian as the normal product:
| + c .
H = -Z;tﬂucNTm>“WWO ' |
NT v (3.3.95)

-

where

%
(2mw+3) o2

}]

N
(3.3.986)

The spectroscopic implications of these gluon  energy

Spectra will be discussed in the next chapter.
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4. An BEquivalent Dielectric Function Corresponding

to the Current in CCM

Based on the colour dielectric picture proposed by T.D.

Lee [52] an equivalent description can be obtained from the

_current confinement model. The colour super current Q“
 assumed in CCM can be considered as a self induced

polarization colour current in the gluon field described by

é. In this case the usual Maxwell’ s displacement current D

can be written as

D = E+P
- ~ (3.4.1)

'~§ is the colour electric field causing the polarization and

;g is the field due to polarization. In the absence of any
external source D satisfies
V'D = Sina
(3.4.2)
and
22 = VxQ
¢t o7 (3.4.3)
where 5 is the external magnetic field
g = ¥x2 (3.4.4)
and
£ = -92 _yp¢
ot (3.4.5)

From equations (3.4.1) and (3.4.2), the induced charge can

be written as
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- . P

ine (3.4.6)
As 'Y .§:O in absence of a source. And the induced
polarization current density
T - -28
ot (3.4.7)
Thus the four vector current
2P v P L.
T}A = (g@ Y FP)
(3.4.8°

From the current expressions in CCM the polarisation vector

is given by

P = —¢@a
= 7V)
(3.4.9)
and from the expression for E from equation (3.4.95),
2
V.E = cwV.A-VS
- = (3.4.10)
and
E+ V¢
’ﬁ = ~— -
¢ e (3.4.11)

Using the Lorentz condition A can be eliminated from the

| above equation .

2 2.
‘V.é —;~—-qume¢

(3.4.12)




FPage 83

.__—-—-—-‘"M w.
PR (3.4.13)

Uy
i
{
Ny
™
™
4
d
|-
g

cJ? (3.4.14)

and finally, substituting for SZQ‘ using 3.4.13,

_ 6 - ! Z-]E

p = [1-5 0¥ g
(3.4.16)
(3.4.17)

where the dielectric function is given by the non local

operator expression

6, v N <9 (- 7 Z-)
) (3.4.18)
With +the particular cholce of & , it hecomes an
inhomogeneous non local function with both the asymptotic

freedom and the confinement built in 1t

7).

N'#"Vz' (3.4.19)

€Cx,y) = /=22 7“ “(1-x
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hus, to get an equivalent dielectric confinement scheme to
he CCM for gluong a dielectric function obtained in

gquation (3.4.19) is required.

.5, Maxwell s Equation 1in a Dielectric Medium versus

Dirac Equation in RHM

In this section, a romparative study of the Dirac
equation for quarks in RHM with the Maxwell’'s equation in a
‘dielectric medium is made. This helps us to obtain the form
;of the dielectric function similar to the potential used in
RHM. The Dirac equations are written in the spinor two
component form and the Maxwell s equations are written in
the spin matrix form. Here the spin matrix for a vector
field is used to represent the curl operator into 5.F.
form. Where § is the spin matrix for the vector field given

by [38],

S P Su “l e oo |5 Si =l o O
o ¢ O —-L 00 : o o O
(3.5.1)
and
P =-tY¥
- -/V)
(3.5.2)

Thus the curl operator becomes d.FE.

[




The Maxwell ‘s equations in a dielectric medium

vxE = =98 . vxB = ecr) &
— ~— B—E D o~ -~ ?E
(3.5.3)
,éan he rewritten in the form
| (S-P)E = (w8
and
(s-P)& = -uEME
- 7 ’ (3.5.4)

where the time variation of +the fields are taken as
exp (-iwt). Similarly the +two component Dirac spinor

equation for quarks in RHM is given by [23]

(e P)HX - (E+™MDY¥
(- P« - (E -&T=m) Y

; (3.5.5)
”,By comparing these two set of equations (3.5.4) and (3.5.5),

it would be possible to associate formally,

P —> 8
r — &
) - E+ M . (3.5.6)
\Then ' 2 2
6 Er) — E-= AT
(3.5.7)

or
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2.
Eem _ ot

—
RS »

€ErI) — =5 7 E+m (3.5.8)

his analogy gives the form of a dielectric function

2 2.
re - b-—a
SHE (3.5.9)
5ﬁhere b and a can be assoclated to
%
b = E- 7 . Cf‘ “w X
T g Eam g Ex+ ™M
(3.5.10)

For a massless gluon case b is unity. Thus %he dieleotric
function for the confinement of gluons could be in the form

2 .2
€Cr) S -ar (3.5.11)
Such that the dynamical equations satisfied by the gluons
and the. guarks in RHM become similar. Here, as
r=> 0, E(r)-» 1 corresponds to the asymptotic free region;
and as Y=t L , ECY)—O corresponds to the
confinement region. From the dielectric function obtained

in sesction 3.4, equation (3.4.22), it can be seen that the

similar expression for €(r) can be deduced i.e.,

i
{
R
‘\l
-3

€ C?f)ﬁl:) - € cr) VER

(3.5.12)

after neglecting the momentum dependent part.

3.6, A Colour Dielectric Confinement Model for Gluons

(DCM)
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Here the gluons are considered as moving 1in a medium
hose colour—dieleotric property is defined by a simple

inhomogeneous dielectric function given by equation (3.5.11)

z_2
€ = |I-aT
(3.6.1)

where a is the parameter in this model, and r is the spatial

cordinate. For any value of r # 0,

cr) < |
€ (3.8.2)

This corresponds to the asymptotic freedom. As r goes to

the confinement regime, say r -» 1/a,

te. _ ,
@ ) —7§Zﬂﬂb®ﬂ
(3.6.3)
where
ccr) = O .
(3.6.4)
This makes the medium a perfect dielectric. In this case,

the aqolour electriec fileld is pushed inside the region,
leading to colour confinement [43,56217. Thus this model is
very colose to the bag model, described earlier. In that
case the dielectric function €(r) is a step function with
€(r) = 1 inside the bag and € (r) = 0 outside the bag. Here
With a smoothly varying form of E&(r) avoids the difficulty

arising out of the sharpness of the boundary.
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As in the case of CCM, the gluons are considered here

obey the quasi-Maxwell s equations. With the

to
colour-dielectric constant €(r):

gxE ~Llw8

v 8 o

vV x83 = =1 D

7D =9 (3.6.5)

where

(3.6.6)
£ - LA "J?qb
(3.6.7)
and
g = ©x4
- (3.6.8)

Thus the equation for the gluon vector potential é_ can Dbe

obtained as

_v% - €GOS = -Y(TA) F (DECITE

(3.6.9)
As  the dielectric constant is a radially varying
inhomogeneous function, a homogeneous equation for é is
possible only 1if the r.h.s. of the eguation (3.6.9) is

chozen to be zero.
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=

V(7 BR) —(WECGDITP = O .
-~ 7 : . (3.6.10)

This 1s quite different from the wusual Lorentz gauge
condition
z.@,éwgb =0 .

(3.6.11)
;But in the regions where € (r)-» 1, the equation (3.6.10)
 féduCes to that of equation (3.6.11) and as €(r)-—¥ 0, the

 equation reduces to the choilce of
- (3.6.12)

‘to find the elgen modes of A within the choice of Coulomb

gauge condltion. Here

qb = EZ'(?
[N
(3.6.13)
Substituting ¢ in equation (3.6.9), we get
Ve —dem)h = - v (DB FQET(YR)
- - C el
. (3.8.14)
:[60%)*1_]12’(2'@) .
(3.6.15)

:‘Further the choice of Coulomb gauge gives

Z 2
-7 LA - €A = O
B (3.6.16)

e S
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Using the expression for € (r)

k3 . 2 .2 2
—Vp +aNTA =B

- (3.6.17)
The solution for A now can be wrltten as
B (MeP) = R EfCQ;CS’)
; - (3.6.18)
iﬂmre 57C9z9”’ is the vector spherical harmoniecs [123] and
x(r) satisfies the radial equation
AR L 2 dR +[¢Jécm — UH!)]/Q ~ 0
ZZ?T& Fd c{r

(3.6.19)

the radial solution iz the usual 3-dimensional oscillator

}ﬁave function (see Appendix C);

2 2 1*‘-,:
P (o) expl-In") L Cﬂ“’”
~ AN
N4 1 * :z,,
(3.6.20)
where Jﬂvqthe size parameter is
12
SLy = Cl"*’nl) 4
(3.6.21)
and the frequency .
0\)/\! = (2_/\]7"3_)@ '
(3.6.22)
~ Here the quanta
(3.6.23)

and
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W,y Nz X _—

ATr Y;;;{;@T (3.6.24)
.
The two transverse gluon modes are defined by
f'é = 0 for TE or M mode (3.6.25)
and
E.é = 0 for TM or E mode (3.6.26)

Then the transverse electric or magnetic and the transverse

magnetic or electric solutions are obtained as

) _ @
B = LR, A%
(3.6.27)
ﬁi—lm = ‘2_)( L: R'\’l\jlw‘)qp)
(3.6.28)

. respectively. In terms of the vector spherical harmonics

1231, these solutions can be written as

I T A ot
m _ (3] TR (;v*)qjC"J gt
% - NT JTm
Swam  fraEen
(3.6.29)
With parity
-
Po- (-0
(3.6.30)

and £ / r T RCW‘DKH#Q%) ¥



_with parity

T+
P o= (=1
where the vector spherical harmonics satisfy
fwm«m g AL = 844 g S
wnd
T 55 (H) - T (T+) ﬁaﬂcw
LTm™
—
I ) _ CRAD
%Nm S S

'3.6.1. Quantisation

£ = 2[ecmiart—vxal”]

The canonically conjugate momentum is given by:

T = ?LE% - égchjféiﬁ .

-~ 3 A

Then the Hamiltonian density is given by:

The Lagrangian density for the DCM can be written
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(3.6.31)

(3.6.32)

(3.6.33)

(3.6.34)

(3.6.35)

i)
n

(3.6.36)

(3.6.37)

(3.6.38)
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:L{ec—w){ﬁ\ +\2x§] } .
S : (3.6.39)
Using the vector identity
vo(uxy) =V uxdd - YXY
(3.6.40)

and after doing the partial integration, the Hamiltonian

s 12 . #
H o= i..gd%[ecwml + A~ (Tx(gxh ))]

(A .Ha 400

3 -2 t
: _LJ'dr'[écﬂ)//q/—-F!'V/Q*+/9'VUZ‘@*) .
2_ -~ Pal L ad -~ o~
(3.6.41)
’Using the Coulomb gauge and the dynamical equation for é

given by equation (3.6.16), we obtain,

< 2
Ho- 5"‘3’” crrd 12/
(3.6.42)
For second quantization A and {1 are treated as independent

coordinates and they are expanded 1in the basis of two

transverse elgen modes. Thus as in the case of ccH,
p Al A%
— A
’QS - Z_ CNIM}‘HNGMS al ng'm> WT ™S

NI ™) (3.6.43)
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AR K DY . (3.6.44)
\A5 and ‘ﬂg are the components of the canonical conjugate
field variables satisfying the commutation relationships
CA‘SCY‘D > WS'G‘“)} = Ldgg 8 =)

and

EP‘SS$J , AS’C&')‘B - LTTS C‘?"),TTS,CW')]
(3.6.45)

It can now bhe found that the g-numbers (the annihilation and

‘creation operators) C and C'+ satisfy
-+ 3.
C T N 2 CN{J(TK)’Al] - &b\)wl gyjl S’)—ﬂml ))l

+
_,ch7mh >ngm/) .7 [C""V””h )C“"m)j (3 6.46)

The Hamiltonlan operator becomes

: 3 SRS
H o= Zi' ﬁ%~90(19w¢3yn)ciwvyn)4. WTmn W)
W2 (3.6.47)
Using the commutation relations given by equation (3.6.46),

it becomes

Vg + .
H = Z: u)[cymwn> wvwﬂ”\

WIm A (3.6.48)
Where ¢ 1= given by the eigenvalue W= (2N+3)a  from
gquation  (3.6.28). It ia to bhe noted that even though the
- DCM is very much analogous to RHM, the energy expression in

DCM  differs from that of RHM and that of CCM, while the CCM
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and RHM have similar energy spectra.

3.7. Summary

In this chapter two different confinement models for
gluons (1) the current confinement model (CCM) and (2) the
~ dielectric confinement model (DCM) are described. A
probable connection between these models and the Yang-Mill's
dynamics are shown. The CCM is itself characterised by a
_nonlocal dielectric function. Finally, the essential

features of CCHM and DCM are compared in the following.

Features CcCM DCM
Confinement through Colour super Inhomogeneous colour
current dielectric medium
L L 2,
- L.
Explicit form _{ "“7;% Ecr)=1—aa?
P = (xT=20)P

" 2.
o [e%8%TA-5%] ‘%EE‘D“BJ

Lagrangian

. , . LR — LD =D
Primary gauge choice Ve —LWP =0 v-A P

2
2 L 2. Z Ch W EMA =0
~ Dynamical equation VP +R& 7P A= A -7 A (r)A

becondary gauge (V4mcxv‘)-ﬂ ) 7. A - o




choice

The energy of the

gluon quanta

The transverse

mode defined by
The lowest trans-
_Qerse gluon modes
1) Magnetic

2) Electric

The size parameter
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(Coulomb gauge)
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Appendix A
, Let ' :
E:_ _%lgvvn_gqvmvx :; )
Here flmn's are the SU(3) colour structure constant. It is

antisymmetric in its colour permutations. Using the non zero

ffmn,

values of s given [43]

Imn f
123 1
147 1/2
166 -1/2
246 1/2
257 1/2
345 1/2
367 -1/2
458 1/2 3
678 1/2 3
(A.2)
Since fﬁnm's are antisymmetric,
Z S_—Q'fﬂn 5_‘3?,7‘?’777 _ . E__m .g.'QTﬂﬂ %%Mﬂ |
m,n ras Ry :
(A.3)

Thus for particular choice of 1=1, g=1

C,)' T )
=l _

- - 1
PO 1\‘: 7 HI Li‘ \
/

2 z g
i‘ (121, fl?.u . -C}ét ’(,- T
2.5 f

BV

(A. 4)
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From (Az):
SV/ = 3
(A.5)
For 1=1, q=2,
2% 223 [g-F  2.4-7F
5/7 = 2 S_ % - g j§ -+
} LS
%— S“‘L‘) _g. .
(A.6)
Using (A.2), '
gil - O '3
(A.7)
&imilarly it can be seen that
| - - ... S, =3
S, = Q = 5“4,_ - 5%
2 2. 32 (A.8)

and all other lg combinations vanish. Thus

IR Ty
77 (A.9)
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" Appendix B

Normalized CCM Solutions in terms of the Vector

Spherical Harmonics

The oscillatof state in three dimension can be written

as [83]

L :
CO\)
[nTwm) = (c«o\ RN AR [

(B. 1)
where g% is the oscillator creatlon operator, iO} is the
ground state given as

3/)2

b exp[- &
o) = é
[0} ="

(B.2)

the normalizsation coefficient ’lny ig gilven by [83]
H
2
e /
N5 = (=0 {_ﬁjlf#f-m~”]
27!l (270 +27+0!! (B.3)

X
and the Gztfi: D, is the solid spherical harmonic given by
oy = (o)t Y9
s 22
am (B. 4)

Here n is the radial quantum number, which is related to the

cgcillator quanta N by

/\/ = ?,Y?'/*/Q

(B.

e
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vHére the normalization PJmEis* obtained by computing the

scalar product of \VV3~w> with itself i.e.

LnTm | mTImy =] = ’\]vr; 40\‘53@\*)@\ o) (a*o?”)
CO$)
Doy,

| +
Here it can be seen that (a.a) operate on Um 2 ) ﬁjcv‘)

is the same way as the Laplacian 'V operatlng on (r r)Gv(v)
Ty

[831.

Using  this correspondence Gﬁ[ — 5%} the
polarization of the gluons in CCM can be expreséed in terms
of the wvector spherical harmonics. The three possible

polarization in CCM are taken as

A’ - W, (@t x a) |nTm)
- (B.7)
2 - a ] YFTVW
A -, [a-2 \ >
- (B.8)
and 3
A v«[; A 17’3-77f>
(B.9)
It can be shown that [83]
a"x o = (L
- - (B. 10)
where [ 1s the angular momentum operator. Thus
/,')l - \/U, l:: IMTM>
- (B.11)

where 1 is absorbed in JV, . Since L operates only on the
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angular part of the state |nJm >, one has [123],

- a0 M
L Yy, F 3 1D f__rb\"ptjzrm
(B. 12)
/U. .
L‘/’“ (jtf'm = (=) "J7ca+D CEIT;-p ‘m+/4-> o
(B. 13)

where {;L s are the spin component of the wave function

and C(JIJ; - ,m +A) is the CG coefficient for the spin and

angular momentum coupling. Thus

LY on = TG ;Z;_("'fC@':U ’L/ujg_)u Tmip

(B. 14)
-J‘JL:H') '.T'SW\
0 (B. 15)
. where GE%TKhﬂiS the vector spherical harmonics defined by
- [123]
~A [ > )f
G’Lj = 5 (1) C(TIT 5 —p>72HM =
TTvn -+ Y
ps
(B. 16)

Thus the normslized "A' =solution 1z given as

Y~
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T G+

(B. 17)
where
: —y
- o cotd o
(B. 18)
where the solid vector spherical harmonilc
N
cot) o ()T A )
TIm IIm
- R ’ (B. 19)
‘and the vector spherical harmonie‘ﬂﬁ (n) satisfy the
following equations : JIm 1
ILW\ I’i‘m, M
(B.20)
-,
2
¥ A ) R L GELD
Ny o
' (B.21)
~n - N
j S R = %2R Ly\> v
ES LT L3
(B.22)
Extending the gradient formula the second gluon mode can
also be expressed in terms of the vector sphellcal hazmonlcq
: ~
v[ﬁbcw‘j Cx»o [ _ _ |3tl —“"”3 NES

-3
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R EXEY JEAm (B.23)

since The oscillator operators a and a® satisfy

~

X
Cat, @i ] - & - Loyl =Tar,05] -0

(B.24)
From this one concludes that aj, when acting on a polynomial

in the creation operators o% can be interpreted as the

¢ 2
_operator g%ﬂ: , for the same reason that %~ ='""§3j
3 o :
[83]. Thug a operating on any polynomial of gf’z is the
same way as ¥ operating on the polynomial in r. Thus the

gradient formula can be used directly in evaluating the a
operation on the oscillator state. Thus from (B.23), (B.25)

and (B, 19),
+ +)"’ Y Cai®
q}‘[:@} & Im :]

+ 2+ T-1 37 2
_T7x1 [y_n+7—-tf] o | 6y ()
ZU““ UJ+’M
Nt -1 =

o[ [rmezon 1ot T Hens

—
Lo
N
3]

~

M

e
m,gil om (a7 o) fya
= 2T+1 TIrim

+
+J_—_/j_j (zn+zr+/)[aﬁ% a )" ey e
2.T+1 TJ7=1m (B.2Z26)



Page 104

—3 AW ‘ ,
™3
Yad (o) T D
TIxnim T I
(B.27)
AR =
o 1 NT=/ ’
G\vj ) = (Q ) JBC”)
JT-1 T I=l7
(B.28)
- I+ N -~
Thws 9 \'Y\U"W\> = 4o "T om \W\ \U'J“r\m>
~
n-\Tx\
A r T NmwmT L’Z’Y)-PZT‘H)/” 77 m>
2.7+ -
N - (B.29)
where
U \
N 7"
2y (2m+2T+)! (B.30)
T+l AT . |
Nyga = (M‘){’\ | _X -
(2m-2) 11 (2n+27+3) ) (B.31)

and

N, Ty = G’f—"t[_____._ﬂw-m ],/2"

o !l (2n+2Tei=2)!]
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fFinally

o) ln’J'm> - ZJUCEI’HD lw—\‘:l‘:n—\'W\>

— EmrzT+)T )n:r:r—/m> ‘
2mt2Itl)J
2 T+
| (B.33)

Another useful result 1z [123]

0D =3 69(“90
fy Ry - TN [T .
T v 274V TTrm JI-tm

(B. 34)
Making use of this formula,
+J+1
+, + IMycad YA L G A
Q(@~Q) (j_h;) :CO\) af/jm
(B. 35)
2Nt THI —
2 T3\ T Tx\m
-_; A
S = 5\JLV\3
23x I3
N . (B.36)
—e " +
T (of.oF) ] oy eE)
= T~ 27T TR
Nyl =>  y (B.37)
=7 ¥ C) , -
Then E:’T:\ QO\ 0\:) d:j

TT-A

a+]mtrm> - ,r% NPT\ T3y

N g




Page 106

N -2:-53—}\ A I VR Yy
, Mg -1 (B. 38)

2. T+

= C2n+2) [w+lvv‘~/w> .
— | g CzrnTL 2
2 Tt (B.39)

Also one can have the a.a operation which leads to [83]

= BRI ETEID |n s

G + -1y
a-a Cq\—+’ ~ (j;fr(rf ) = 27 (anrzan (e oY) 162

(B. 40)
F ) Y < emane 270t ) e

27 —2 +T+3

(B.41)

_ Then by using equation (B.39),

! 1'~ntrm> iz"" C7~‘”7"7~U+D J(Zmz:fr/z&:m)

a-oj‘ (zm+T+ D* z v+l
| =17 74170 — | 227 [ ng7-m)
2J+1
(B.42)

Using (B.33) and (B.42),

[@“ a %@]\vﬂwﬁ

[ amresn | [EEE w7y 4
TN Zmaoa 27l
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(B.43)

N LAY 27T ]ﬂ—ztrv+}m>
B (zn+:7+l)z" 23!

y [2ntzarnErl) \Y)‘IU—~\M> .
2 T+
(B. 44)

From (B.8) for the second polarization of the gluon mode

n* = Lm-@ + ]lem?
: (B.45)
The normalization factor fqmj is such that
A z - S ‘
< 6 MNT v \ &. 'Y{'J'W\‘> B CS’Y\""\‘ S—Ja, Mthad
(B.46)

Using (B.44) and (B.45) i.e.

Wl ZEX2 L2077 o (enrest D@t

| = o . —_—
1 M3 (27)-{-71" )2 2. 2 T+
(B.47)

2 ]7" T
m3J 27+ T+ ' 5. a8)

2 2m+ Tt
Wy = {5570 '
nyg TJ(T+1)
Thus the normalised second gluon mode is

Az . gfml”’mwm>
~TT T jﬁ;;:rgi/ A

Thus

1)

e

i
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Enr2 T+ JLTHD }%:fzmm }
MAEARI A
2.7+ (B.50)

..1.
Similarly from (B.39), the normalized solution for the 3rd

component of the gluon field 1s given by

i

H3 | , gJ@w+zyt§N7+D]w77+nﬁ>
Sz +7+3 27!
BT |77y

2. T+ / (B.51)

=
2 3 B \
To have the same quanta for A and A one has chosen for

—— \ v\‘ N \
2 \/\')2 oA : A A ( \'Y)o(- - A >
(B.52)

Thus the equation (B.50) becomes,

A?. - ) Wf Zy) 73+[m>
7T ™ —_— 27+ 1
NEErEEy
%%gzzgiggiiip}n+17mqg>}
2 741



.Appendig C
The Radial Solution of the Oscillator Eaquation
in CCM and DCM

The radial part of the field in CCM satisfies the

differential equation;

SR L2 dR _ AUIDR —aTR v R =0

EE 7T d7 e
Ar* (C. 1)
Let
P - “‘/LT
(C.2)
| '
Thus o ) %—g .ﬂ.. < & 'i"g
dv T gv 48
(C.3)
2
qu" . o
A El S
(C. 4)
Thus (C.1) becomes
Z
X 4R L2 AR _atlrDg L 2 PR ydR - o
d4p* Poode P
(C.5)
allfe 2. od R ,‘M'H’)r@ PR +8 KR =0
Ape T3 e Pz
(C.86)
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w3
o (C.7)
Then ' ’ 2
AR Lz AR LD S0 Lo
Ap= s 4f L £
3 (C.8)
Let Lo = gg g3 £
(C.9)
Then £( S ) satisfies the equation
§' 2[5 =T 2 (- 3- 21)5- = ©
(C.10)
. Let X
v f _ ¢
A2 - 20 Zg’/z (C.11)
§
y 4 (C.12)
d - 27"
—3 A
oA§ 5 (C. 13)
2 d
4 _ o( + 2
T ¢ I T4 |
(C. 14)

Then equation (C.10) becomes

2 g - ”‘°C+L A3-21)%:-0.
g d°SF +E(l+_£)+t f];l’f = ( )
df*
(C. 15)
MCQmParing this differential aguation with +the standard

confluent hypergeometric differential equation,
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L ' : :
P e (Q-§>C_£..(i‘)_. — oW =09
AS* _dg (C.16)
whose solution is given by [116]
(,\) - \F; LO\,C,%)
‘ (C.17)

~ The solution is convergent only when a is negative integer.

Thus the solution of (C.15) can be obtained as

S(5> = FC=m, 4+3 ,8)

(C. 18
where n = 1/4 (3~B—21) and n = 0,1,2..... Thus thé radial

solution 1s obtained as

2
e L — a7y, _ 2
,Q”ICr) = 0(7:7‘) é ZIEC Y),l-?-}z)qr)'
(C. 19)

Let \{7_ - b

(C.20)

Then 0 : Zyz ‘ -
Ry = (b7)" &% F (7,473,677

It is related with the associated Lagurre polynomial [119]

A
L_y)C%) = @ ,F,[’”)/*/'L)%)

7! /(’/:;7—:)

P e
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o va)q 277 I D3k \ Tty raee 112
182
{???I;éi (C.23)

) T’I'/*?_i uﬂ)g ")’7’ L Q b))
(1434

(C.24)

ormalizing the radial solution using the orthogonality of

T

the Lagurre polynomials: ' e

0 P+ 9% =7 i
J dx 7&£+7'_. -éx[L_ o _ ’C”‘Llh%) ;:
k) " 77!
, (C.25)
Thus defining
/N A 1Y) I
Koy 0 = L 3 (4 A U s
»

f?;if?;g G 26) |
and % 1 4 ‘
SO | R (I A7 =) |

- Then

z SERLL L 2
Y13/, rb a 2)| o
RN W”T;/)} by & [y,
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) Tor+1¥56) b7 dlbr)
(C.29)
Let
BEAE - %
(C.30)
Lo ALb7) = dn
2 z bo .
q_ﬂ /N‘ﬂl_/ 'Y\’ ] 11'3/7_ :E | g 14._\2:"‘_.% . (C.31)
ln+ 4+ 3, 2b3 ks e x
|
L u)] dx
"
(C.32)
Using (C.25),
2
MF\NM]LU{ IL+3/1}_,_3, [+ 123/ )
!'n‘)-l-rjh 2b !
(C.33)
2 2
[ [T P LLTERA)
)77'1‘1_*3/2. 243 (C.34)

2. . 12 mfj/,_>

= m))z (C.35)
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(C.36)
Thus
(+) - 3 \ e
IQ-'nl b ///‘z*/“ /) ) 7’1:3/1
243 "
) ey
“57’/1 §x 'l ;
(bt g5 L e
o ! 4
3 / a z,2
b § b g
- sy | (b7) € F I_i*b/{‘?“z)
277 [ +1+3) (
72
(C. 38)
From (C. 18),
A= zmnt+2zld+ 3
(C.39) |
NS etz 3
= (C.40)
2.
) = @: (zm+ 1) +3]°< (C.41)
Let A
2wyl = A
(C.42)
then /.
78] = (ZI\/*.?)) LA
(C.43)

Where N = 0,1,8,...... In the DCM case the radial function




satisfies '
. l
0L R L2 GUE +[€c~>«)w ——lu‘i)]R = 0
(C.44)
where
e
£ = lmaT (C.45)
Then
AR oz AR [wz“... N UZ-H)]/?
FEE RN R
(C. 48)

This differs from the CCM radial differential equation only

in its constants 1i.e. 0(z in CCM is identified here as

2 A A
= @ cJ
x (C.47)
Then the rest of the calculation goes exactly i1dentical.

- Where the parameter b in CCM here becomes

'/2.
b = (aw
( ) (C.48)
and
2, 1,
N = —
A = =5
b a
(C.49)
where the eigen value
o = <4~>7le+3)0\
(C.50)
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REOR A ! 2 lz 41
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CHAPTER IV
GLUEBALLS

4.1, Introduction

The QCD is a highly non-linear theory and the resulting
gluon-gluon interactions are the fundamental characteristics
of gquantum chromodynamics [62]. The various properties of
QGCD such as antiscreening nature of QCD vacu&m or ésymptotic
freedom, the infrared slavery or confinement, are due to
this colour-colour interactions. This also leads to the
prediction of exotic colour singlet bound states of gluons.
~Such  a state is called glueball or gluonium. A theoretical
description of purely gluonic matter from its free state to
a highly interacting state producing massive glue state
against temperature is shown in figure 4.1. The critical
temperature T for +this  hadronization 1s shown. The
smallest units of such exotic matter 1i.e. glueballs are
then a necessary consequence of the theory of QCD. Their
existence and experimental confirmation are very crucial for
the wvalidity of QCD and any other theory where the SU(3)

colour gauge invariance is utilized.

All the phenomenclogical confinement models and lattice
calculations predicted +the existence of the pure gluonic
colour singlet bound states in the energy range 1-3 GeV

[84-87]. And a couple of very strong glueball candidates
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exists experimentally [88-80].

In this chapter the low 1lying digluon and trigluon
glueball energies and their quantum numbers are calculated
using the current confinement model and the dielectric
confinement model for gluons described in Chapter 3. Before
going to the calculations the construction of the colour
.singlet multigluon states are described and the various
possible combinations of the spatial, angular momentum, spin
and colour symmetries are discussed in section 4.2. The
question one asks now is how to identify a glueball state or
how to distinguish glue balls from qq mesons. With the help
of Okubo-Zweig-Iisuka (OZi) rule for mesonic decays [91-83],
the modus operandl of identification of a glueball state and
the decay processes favouring the glueball intermediate
states are described in section 4.3. The experiments,
particularly in the J/a decays and m P-r7#% processes - both
. the O0ZI forbidden processes - give very strong evidence for
the detection of iota (1440 MeV) [887, (1700 MeV) [94,95]
and 5#32300 MeV) [90] as glueball candidates. The
experimental results of these decay processes are reviewed
and discussed in section 4.4.

Considering the lota (1440 MeV gP¢ - %y as a digluon

glueball state +the parameter in CCM as well as in DCM are
calculated to predict all other low lying digluon and
trigluon glueball statesx. The construction and the

calculations are shown in section 4.0. As in the case of
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quérk bound states the spﬁrious motion of the centre of the
multigluon bound system is alsé removed exactly in CCM and
DCM models. The details are given in section 4.6. Finally
in section 4.7 the corrected digluon and trigluon gluebhall
energies are calculated by fitting the same iota (1440) as a
digluon state. The results are then tabulated in comparison
with similar results from bag model calculations and

experimental candidates and discussed,

4.2. Construction of Colour Singlet Multigluon State

As mesons are colour singlet bound states of
quark-antiquark systems, glueballs are the colour singlet

bound states of multigluons [94] i.e.

L
ST T B D

es 4
IM m> ﬁ K =\ « (4.2.1) ‘

and

| gtnabalt = L i | %% 7807 Comn

m’ni-v e

<

@

(4.2.2)
where /‘Z,( >‘ is the quark state and \'ci'-« Y is the
corresponding antiquark state. Similarly, 1g£> represents

the gluon state. Here o = 1,2,3 represent the aolour index

of the quarks, £ = 1,2,...8 correspond to the colour charge
of the gluons and m is the number of gluons constituting the
glueball state. For example, m=2 is a digluon glueball

State and m=3 iz a triglucn glueball state. The wave




function which corresponds to the multi-gluon state must be
totally symmetric under the interchange of space, spin and

colour quantum numbers,

The colour part of the multi-gluon wave function 1is
_governed by the combination of the Gell Mannn’'s A -matrices

[(43]

[; Aﬁ-’-)”v‘l = 2¢ gﬁwmw« )‘4

o

(4.2.3)
{7‘1 7)%43 = %élx«n—\"z‘j(imn)‘“‘
(4.2.4)
Here 1,m,n are +the colour indices, fbnon are the

antisymmetric in the permutations of their indices while

dgsmn are the symmetric in the permutations of their

indices. For digluon systems the colour charge coupling is
of the form éln, giving rise to the colour charge
conjugation gquantum number C = +1, whereas in the case of a

tri-gluon state the colour symmetric coupling of the type
Afrmn Zives the colour charge conjugation gquantum number ¢ =
-1 and that of the colour antisymmetric coupling of the type
Jihma givea C = +1. Thus the colour singlet glueball states
with orbital spin and colour symmetries can have the

fGllowing combinations.

QI;Q.L‘DQL opin Colour
IS S S

o A A
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A 5 A
A A 5
(MS /MA" MS /MA)g S
(MA/MS M3 /MA)A A

The abbreviations, S i1s for symmetric, A for antisymmetric,
M5 and MA are the mixed symmetric and mixed antisymmetric
respectively. Accordingly, the various possible digluon and
trigluon glueball states are calculated using
phenomenological confinement models. Here Table 4.1 shows
7 the ordering of the digluon states and Table 4.2 shows the
various combinations of +the orbital, spin and colour
symmetries 1n the construction of trigluon glueball states.
The underlined states in both the tables are those states
which do not occur in models where gluons are considered as
massless vector particles. This is explained using the
theorem by Yang [96] that two on-shell massless vector
particles (1i.e. transverse gluons) do not couple to 1+F op
(odd) -+ states. Phenomenological models like the potential
models, by caleulating the eilgenvalues of massive gluons
[79]1 the bag models, by calculating the eigen modes of the
transverse colour electric and magnetic fields [76], the
lattice gauge theories, by computing the Plaquette-Plaquette
correlation length in the pure gluonic sector [84], the
string models and from the effective Lagrangian models [97];
all have predicted the lowest lying glueball states in the

energy range 1-3 GeV with specific J£¢ values. The general
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characteristics of these exotic states are described in the

next seaction.

4.3. Characteristics of Glueball States

The primary property that characterises the glueball
states 1s that they are flavour singlets. They should have
'»flavour symmetric decays. The annihilation of
quark-antiquark produces an intermediate .glueball state
which +then decays into quark-antiquark pairs of new
flavours. The quark-antiquark annihilations are forbidden
in mesonic decays by Okubo, Zweig, Iisuka (0ZI) rule
[91-83]. The other propérties which can reliably be used to
identify a glueball state are, firstly glueballs do not fit

4

et
I

in the gg multiplets of the quark models, and second ,
glueballs are produced in hard gluon channels. But the
difficulty is that these are not easy to apply, because to
~know a particle which does not belong to a aqaq meson, a
complete understanding of the qq spectra is required. The
hardness depends on the ratio of @°/A* and A~ 1is not well
known. But quark-antiquark annihilation  occurs at very
small distances and so they must emit hard gluons. Thus so
far 0ZI forbidden decays are the most fruitful channels to

look for glueballs.
4.3.1. OZI Allowed and Forbidden Decays:




The OZI rule for 'meson decays states that the +two
quarks (g,d) in a meson state do not annihilate, instead the
decay 1s given by the connected quark diagrams. Figure 4.2
shows some of the 0ZI allowed decay processes and reactions
by the connected quark diagrams. Each line here corresponds
to a particular flavour quark. The forward and backward
-arrows represent quark and antiquark respectively. In 02721
forbidden processes the quark lines are not connected and
the diagram looks like a hairpin. Here the heavier gquarks
annihilate to produce new lighter quarks. These represent

the flavour symmetric decays. Figures 4.3 show some of the

decay processes which are 021 forbidden.

In the 0ZI allowed processes without violating the
‘colour confinement one gluon exchange between the guarks is
allowed. On the other hand disjoint or hairpin diagrams
requires maltigluon exchange. Two gluon exchange 1is
required if the meson is a scalar or three gluon exchange is
required if the meson is a vector. Thus in an 0ZI forbidden
reaction the intermediate state which connects the two
disconnected parts must be a multigluon state [64]. Figure
4.4 describes such processes where the multigluon exchanges
are shown. Because of the colour confinement property each
of these multigluon intermediate states forms a glueball

resonance which further decays to either a pair of gluon

Y

Sresonances or Into a palr of excited hadrons. Thus the 0271

rule extended to glueball decay is shown in figure 4.5,
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According to this generalization of O0ZI rule one

expects a relatively narrow gluon resonance abhove 1 GeV,
where the quark-gluon coupling may be very small (981]. Thus
the gluon resonances above 1 GeV do not mix strongly with qgq
~resonances. Likewise the production cross section of the
glueballs 1is also expected to be small due to the smallness
of the gluon-gluon coupling at the relevant energy. This
- may be attributed to the reason that the hadronic sector is
not dominated by the glueballs as expectedc from 'the QCD
/:theory. In the absence of heavier quarks then probably
immediately above 1 GeV the gluonic sector may dominate. In
conclusion, a flavourless particle qualifies as a gluonic
meson if it does not fit into any available meson nonet with
the. appropriate gquantum numbers in the energy range. For
thisz reason it 12 very important to obtain as much
information as possible particularly from the 0ZI forbidden
processes where the hard gluons are produced. Together with
the precise obzervation of masses, apins and decay widths
one will be able to ascertain the gluonic nature of any new

oblects being found.

4.4. The Experimental Status of Glueballs

Since the theoretically predicted low-lying glueball
energy 1s 1in the range of 1-3 GeV, the decay of J/mp (3097
“Mev, JP€ = 177) discovered by SPEAR and BNL-MIT group)
(99,100] is the process to look for the glueball production.

It is a CC bound aystem whose decays containing one charmed
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quark are energetically prohibited and the main decay

mechanism proceeds via annihilation of the charmed
_quark-antiquark into gluons. All the J/Ay decays are then
- 0ZI suppressed. The study of Jmy spectroscopy is the

current field of interest in experimental particle physics.
The radiative decays of the JAQ: provide few potential
candidates for the glueball states. The present
experimental status of the radiative decays of J/w is
reported by K. Konigsmann in 1986 [101] and latest by Usha
Mallik in 1987 [1027. The principal decay mechanisms of the
J/ip are shown in figure 4.6. The strong decay proceeds
through atleast three gluon exchange. The two gluon
exchange alone is forbidden by the charge conjugation for a

colour singlet. The decay strength is given by [101-1037

- b rptays 3 | ap )]t
G = 883) = K=« i
' T (4.4, 1)

AP(0) is the value of the radial wave function of the J/g
at  the origin. /My/y is the mass of the J/A and XA¢ is the
strong coupling constant. This is around 62% of +the total
J/AY branching ratios. Thus the decay proceeds mainly by
the emission of the three gluons which fragment into lighter
hadrons. The electromagnetic decay through a virtual photon
exchange is reported to be around 29% and the radiative
decay into a photon and two gluons as shown by figure 4.6c¢c

1s around 7% [1027. Its decay strength is determined by
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Here & is the electromagnetic coupling constant, Q. 1is the
charge of the charmed quark (2/3 e). Since the photon in
the final state does not carry colour, the two gluons could
form a colour singlet bound state. This is then an
intermediate step that makes the radiative decay the hunting
ground for the glueballs. The J/ can decay
electromagnetically inte 7, through a npagnetic dipole
transition before the CC annihlate. This is shown in figure
4.6e. This is around 1% of the total JAp branching ratio.

The spin parity analysis of the two gluon system in the gg
emiszions have been carried out by others [104,105] and
found a strong presence of Jpc = O++,O"4 and 277
contributions in accordance with the theoretical predictions
from the confinement models. Unfortunately, +the QCD
predictions on masses, widths and decay channels for
glueballs are not very precise,. This makes it difficult to
distinguish these states from normal mesons. Two candidates
for +the glueballs are observed in the radiative decays of
J/A . The details of the experimental results of these
States are given in the following sub-sections.

4.4.1. I/ = T+ iota (1440):

As per the prediction, the first experimental candidate

a glueball state was found in J/a radiative decay mode
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Thy = V'L 4 K;kt T o
with the energy 1440 + 10 MeV in Mark II and width 50 + 30
 MeV from around 85 events recorded. In 1982 Crystal ball
group recorded around 170 events of the iota decay
- o7 O

£ = K+K T (4.4.4)
The energy estimation was 1440 £ 20 MeV and its width 55 +
20 MeV [89]. The spin parity analysis in both cases
g = o |

asslgned as and the branching ratio

1

3
K /100 = 4+3% 17
/38(3/4)-9?’%; l*é/{kﬂ)x g(;n/;.‘z&_{/')

= A o2
Celrystal BAce ) (4.4.5)
give identical results. Speculation on a glueball
hypothesis was nourished by +the very large radiative
branching ratio. The latest experimental results with

higher statistics from MARK III and DM2 [106] fix the mass
of the iota as 1459 + 5 MeV and 1456 + 6 MeV respectively.
The width was 99 + 11 and 98 + 13 MeV respectively. A
complete Dalitz plot analysis was performed' (1061 and the
gpin  parity was determined to be 07 in consistent with the

earlier identification. The measured branching ratios were

/216(7/,«7»-—% )’7.6(/44?—0)) -[é(/wo)__\_, ,e;'tﬁjo 77;:)

= gepp o-bx/0  (4.4.6)

and
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(4.4.7)
With all the data put together the average mass, width and

the branching ratio for the iota is assigned to be

M, = 1455 Eta meV
(4.4.8)
I - g9rg MoV
(4.4.9)
and
. — IC;E7TJ
RR (T =1L BR (L _
- q__.q__,to.q,K/O .
(4.4.10)

The mass and spin parity are well suited for iota to be a
| glueball candidate. The additional information on the
| nature of the 1iota 1s provided by its electromagnetic
decays. For pure gluonic mesons these decays which are
expected to be suppressed as gluons do not couple to

rhotons. The decay

ARENC o

(4.4.11)
is then an additional test for its true nature. The
experimental signal from the proceses  [1077 1a also

found to be compatible with the glueball interpretation for
the dota. S5tilll there are difficulties like more than one
resonance contributing to the main peak and more and more

s3tatistics 1is required for the unambligous identification of




this peak at 1460 MeV. Till then this state remains to be a
strong candidate only for the3glueballvstate.
4z I = Y+ 0 (1700):

~

The other strong candidate for the glueball state is

==
X

L

_the theta resonance observed in the radiative decay of J/w

(891, in the channel

T 4 .
I 17 . C(4.4.12)

The analysis shows its spin parity to be o+ and the measured

branching ratio by summing over all known decay modes is

QR (71 >1V0) = (1=3%02) xi5° .

(4.4.13)
The average mass and width from all other experimental

results [101] yield

m - | 7(0E5 Ml
< (4.4.14)

and

o0~ = IS3ti0 (el |

(4.4.158)
The mass and width predictions qualify it to be a glueball
suppressing all other possibilities such as qg or hybrids.
The various groups analysed the possible nature of the
,9(1700) JF)C 22**'[108,109] and 1t 1is almost certainly
concluded, being a non-qg state, it as a glueball candidate.
‘The various decay patterns of this state have to be studied

hore precisely before conclusively assigning it as a pure
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glueball state.
4.4.3. W™ P—> nep<p

This is another beautiful channel for the production of
glueballs. As - shown in figure 4.7, it is an 0ZI forbidden
process. The T P reactions give O0ZI allowed reactlons

also such as 77P=y K KKK  and

- + —
TI"P= PKkTKk™ . (4.4.18)

as shown in figure 4.8. But the reaction channel

7P — »Pd
. (4.4.17)

is a double hairpin diagram (figure 4.7) where two or three
gluons are produced connecting the disconnected parts. The
‘exchanged multigluons to form q5¢ system, 1in the absence of
glueballs, would lead to only Zweig suppressed P9

"production. But at the mass range of <¢”¢ production the
- multigluons form an intermediate glueball state with charge
conjugation quantum number, C = +, The Zwelg suppression
- will be Dbroken down and the $¢ system will contain the
glueball resonance parameters and guantum numbers. Thus the
PP system in this reaction acts as a filter passing glueball
- 3tates and rejecting the other qd states. In the experiment
done by BNL/CCNY group [807, theqﬁ¢ signal was found out to
be around ten times greater than the background from the K
“dnduced ¢ production shown by figure 4.8b. In the analysis
of around 4,000 events three prominent resonance peaks

5;2120), g(2220) and g(2360) having identical spin parity
T! T




Page 131

VPC = 2**'were observed [90,98]. The energy range and the
JPC value matches it to be the glueball states from the
various QCD motivated models [76,87,1107. T.D. Lee has

analytically calculated J=2 glueballs in the strong coupling
limit and obtained three glueball states [97] which are in
agreement with the obseryed three g,resonances. Thus if QCD
is correct and if the 0ZI rule 1is universal for weakly
coupled gluons 1in Zweig disconnected diagrams, the

resonance state with an average energy ‘of 2238 MeV

represents a pure glueball state [e8].

iy Model Caleulation of the Glueball States

Using the bound states of gluons in the current
confinement model as well as in the dielectric confinement
model the low lying digluen and trigluon glueball states are
calculated [80]7. The energy eigenvalues of these confined

gluons are (from equation 3.3.61 and 3.6.22)

o\)AfUO = (2/\/+3)/26
| (4.5.1)
and
Dem |
N = (2~+43)
(4.5.2)

The constant b and = are the model parameters in CCM and
DCHM respectively. The quantum number N takes values

0,1,2,. .. The lowest gluon modes in  both the models are
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7FP¢ = 177 (the "E’ gluon) and JP€ = 17~ (the ‘M’ gluon) as
defined in Chapter 3.

The low lying digluon glueball states are obtained by
coupling the two gluons. The spin composition of the two

J=1 states is given by the Young diagram

1 1
0 ® 0 :'[:ED—\—H

(4.5.3)
Here the 17 and 1~ are the spurious states and are not
allowed as the two massless gluons do not couple to 1% or
(odd)“* states by Yang's theorem [96]. The possible
low-1lying digluon states using the various combinations of
the E-gluon and M-gluon are shown in Table 4. 3. the wave
functions corresponding to these states are written

symbolically,

T=0,2
19 %) ° Z:MCL Crr Cah’) @i'%ll s [cg‘cg"]s

(4.5.4)

Here A , K and C¢ are the spin, orbital and colour
wave functions respectively. The subscripts (1,2)
j correspond to E or M-gluons. The colour coupling is the
élvo tvpe, For example, the MM-glueball wave function can

be written as
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Similarly the trigluon low-lying states are calculated
by coupling three E-gluons or two E-gluons and one M-gluon
or one E-gluon and two M-gluons or three M-gluons. The spin

compozsition of the three J=1 states is
! 1 ! 0, ) ! !
OO0 =CIIZ7®D+EZ®C7

2,1 IR

3 °
P+
(4.5.8)

Thus for three M-gluon coupling case,

+
1'® ’+® l+ = 3+ (symmetric) ® 2x2+ (mixed symmetric)

@)I*(symmetrio)() 2x1¥ (mixed symmetric)

® 0T (antisymmetric)
(4.5.7)

Using the various combinations of the space and the
colour symmetries so many trigluon colour singlet glueball
states are posszible as shown in Table 4.2, The wave
functions corresponding to some of these states can be

written symbolically,

=D
199%), , = L Gtala S mn ) (o ns)
= Lrmo,m (4.5.8)




I=13 FPage 134

\%%‘5‘% -7:‘% C., X’_fv'ﬁ"‘*] Qwﬂ?

1,3 )M)V\

2

glueball state the parity 1is even
[t

In the case of M
since +the Jlowest M-gluon is in the :TFZ = state. In
this state, +the space part of the wave function is
symmetric. The colour part of the wave function is either
totally symmetric (d-coupling) or totally antisymmetric
(f-coupling). Then the mixed symmetric state 1in the
spin-space is forbldden by Bose statistics [1117. The
antisymmetric state 1in the spin space combines with the
f-type colour singlet state to lead to JFC - otT state,
and the symmetric state combine with the d-type colour
singlet state to lead to the 77 2 and 1*+ 7~ states.
The other The states are not allowed as the low-lying nﬂi

glueball states.

. o ,
In the case of low-lying M E glueball state the parity

is negative since the parity of E-gluon is odd. The space

part of the colour singlet wave function can be symmetric or

mixed symmetric. Then +the symmetric spin state combines

with the symmetric colour coupling which leads to the

/e - '
J =3 ;1

combines with the antisymmetric colour coupling which leads

and with the antisymmetric spin state

to the JPC = O"+. The wave functions of these ztates are

then written symbolically

180,80, = LoasGd e ] G

m'
Lmm (4.5.10)
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~and
CyCC 6
| 34 Z_ 150G lwm{: [m e:]
m M%E>O—+ ,)’Y\I'Y) S
(4.5.11)
correspond to  the symmetric space wave functions.

Similarly, corresponding to the mixed space symmetric state

combinations yield JPC =1 177,277 with the colour coupling
gfe - =% p-t

of the type dlwﬂh and with colour coupling

of tye type fivnr: . Theilr wave functions oén be written as

|8 dmde V. "ZLQ dﬂm,{ =12

MImE ) M(‘“E)s

,‘M,’h
T=L:2 (4.5.12)
and u ‘)LMLME)A QMWE)A‘X
)81\/\ %m%e> yom+ Z.Ci ﬂw\ T=12
I~ L,m,m i) \r— m@G)A mCmS)s
— -\T'—{)
mﬁw&)g hﬂ@v&)ﬁ:] . (4.5.13)

Thus there are seven low-lying MZE glueball states possible.
Same 1is the case for E glueball states whose parity is

negative. But in the CCM and DCM models the lowest E-gluon

moede 1is  the one whose orbital angular momentum is zero and
f hence only the space symmetric combinations are possible,
This vields the possible JPQ astates as
aPe = 0"t,17" and 3-~. In the case of Elm—glueball, the
parity 1s positive and the space part of the colour singlet

wavefunction can be symmetric or mixed symmetric. Then the
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PC 3+" l-\"‘ O-\-—\-

— +—
allowed states are J = , , 1¥ 2 1YY, ey

The allowed trigluon low-lying glueball states in the CCM or
DCM models are given in Table 4.4 with various symmetry

combinations.

The lowest E-gluon energy in CCM and DCM is

T (Ge) T J36

(4.5. 14)
_and
tJ ( 3e =
(4.5.15)
respectively, And the lowest M-gluon energy is
ccrmd
eJ C%,) = #S—A
(4.5.186)
and
pem
(4.5.17)
where the CCM parameter & 18 related to b as
b =
(4.5.18)

The constant unknown parameter a and b in DCM and CCM
respectively are obtained by fitting the first glueball
candidate iota (1440 MeV) 0~% as a digluon state [807. This

_State is accessible in the EM coupled modes. Thus



({3 +5)6 = e w5 19)

and (3 + 5‘) oL = /czd}—o»

(4.5.20)
cheld the values of a and b as 180 MeV and v363 MeV
;respectively. using these values for the parameters the
:confined gluon energies are calculated for various N-values.
1The results are shown 1in Table 4.5. The lowest E-gluon and
’M—gluon energy lies v 600 and w 800 MeV ﬁespectively in
CCM calculations and 550 and w900 MeV respectively in
DCM calculations. The energy levels of the confined gluon

‘are drawn in figure 4.9.

Using the energy of Ee and g, -gluons the energles of
the digluon and trigluon glueballs are calculated. The
results are shown in Table 4.6. The calculations are
‘updated by fitting the recent experimental value on the iota

energy as iota (1460 MeV). The results are found to be

insensitive. The éhergy levels are shown in fig. 4,10 in

comparison with the bag model results and the experimental

candidates.

4.6. The Spurious Motion of the Centre of Multi-Gluon State

In the construction of the multigluon bound states the
centre 1s quite arbitrary. Thus as in the case of any shell
model like calculations the spurious motion of the centre of

the glueball state should also be taken into account. Such
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calculations in the shell model for nuclear structure was
found to have appreciable contributions [112]. Such
corrections in the quark model (RHM) was also found to Dbe
crucial for its successful predictions [23]. These
calculations are extended here in +the multigluon bound
systems containing m-number of gluons. The difficulty in
accounting the spurious motion of the centre is one of the
major problems in bag like models. Whereas the CCM and DCHM
have got the advantage that the spurious Dm@tion of the

centre can be treated exactly.

Let R be the centre of mass position of a multigluon

system containing m-number of gluons. Then

T

R = 55 L %S
=1
(4.6.1)
and the relative position of the gluon
T = ?&C"&
(4.6.2)
where x: is the position vector of the i-th gluon. The

motion of the gluons in the bound state is described by the

equation, fer example, in the CCM case,

.
<f_—-vcz . %ﬂ_mlx'i-) ~ <_—vz+£é‘) o= IR
(=1

=) .
t ‘ (4.6,

[@N]
—

The internal motion of the gluong around the centre R i

32

given by the equation



' , = Page 139
2 2 2
E;—Ya- + X7 ;){Eé = & ¢
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where €& 1is the intrinsic energy of the gluon, and A "s are
the relative wave functions. The motion of the centre is
given by
2 & 2 c
(f% +dR)&%ﬁ7 = E- g R)
(4.6.5)
where c
E%d pd QLA/+3j)K
(4.6.6)

Now a=z has been done in the case of RHM for auarks [23]1, the
centre 1s fixed at the lowest possible eigen state, i.e.,

the centre 1s at an energy

Eo = 3« . (4.6.7)

and an equal contribution from all the m-gluons to the

centre 1s assumed. Equation (4.6.3) then reduces to

G 17(.24—0(2';(5‘) x,li,Cx;) = (ez+ %Q) &)L.Lu)
(4.6.8)

where

<2N+3)0(
m (4.6.9)
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hus the intrinsic energy of the .gluon in m~-gluon system is

cem) Ya.
= -2 )
| €, (2w+3- % b (4.6.11)
and
DCro
- +3-32 Y
éi\/ - QZA/ ’3’0) N
(4.6.12)
in CCM and DCM respectively. In +the case of a digluon

gYstem, m=2 and that of a trigluon system, m=3. Thse
intrinsic energy expressions in the digluon systems and

trigluon systems are shown in Table 4.7.

The corrected low-1lying glueball energies are
éaloulated using the intrinsic gluon energies of digluon
systems and of trigluon systems. The possible linear
combinations of +the low-lying states are taken to ensure
that the centre of the multigluon bound system remains at
the ground state. It is shown 1in Table 4.8, how these

_combinations are done in the case of low-lying digluon and

 trigluon systems,

The parameters a and b are calculated by fitting 1iota
(144010~ T as a]ggg”,> digluon colour singlet state and all

other low-lying glueball energy states are predicted. The

results obtained in CCM are in excellent agreement with the

other experimental candidates. The calculated energies are
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ﬁabulated in Table 4.9 with the naive bag model results [78]
and for comparison the energy levels are shown 1in figure

4.12.

Using the recent experimental result on the energy of
fhe iota (07F) as 1460 MeV the results are recalculated and
are listed in Table 4. 10. It is noted that there is not any
appreciable change from the earlier predictions. Also

considering the g resonasnces st the average energy of 2233

e}

MeV (perhaps the strongest glueball candidate [80] as a
ﬁrigluon glueball state, the parameters are calculated and
the digluoﬁ glueball energies and the other +trigluon
energies are calculated. The results are shown in Table

4.11. The results do not change appreciably.

.7. Discussions

The results obtained from the DCM calculations are, in
general, poor agreement with the experimental candidates.
The CCM results show an excellent agreement with the
experimental candidates (see Table 4.9) when the spurious
{motion of the centre is taken into account The predicted
‘results by fitting iota (1440 MeV) as a di-gluon glueball
state gives excellent agreement with the & (1700 MeVH?**
state. The - predicted E1M~glueball energy is also found in
good agreement with the experimentally observed =g
jresonances. The DCM result for this state 13 close to the

15#2360)2+4'5tate and that of the CCHM result is close to  the
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57(2220)2+*' state, The predicted lowest trigluon glueball
state is in the energy range 1.7 to 2 GeV and the lowest
glueball energy in the case of DCM is very close to the
value of 750 MeV as predicted by the Lattice calculations,
whereas the CCM result in this case is close to the probable
glueball candidate Eg (1240 MeV)0%*™, But 1its glueball
candidature is more ambiguous than the other candidates.
Overall the lowest glueball energy is aroundbl GeV . . Also
from Table 4.5 the lowest E-gluon to‘M—gluon’energy ratio is
0.6 in DCM and 0.78 in CCM as compared to the ratio of 1.6
in the bag model. The reason is that in the case of bag
model the lowest gluon energy state 1s the magnetic mode
with orbital angular momentum L= 1, JP = 1+, while in the
CCM or DCM case it is the electric mode with orbital angular
momentum £ = 0, JP: 17. Most of the other potential models
also neglect the £ = 0 solution for massless spin one
fields. But it will be incorrect to neglect such solutions
in phenemenological models like CCM or DCM for gluons, where
the inhomogeneous medium provides a dynamical gluon mass for
transverse gluon modes through Schwinger mechanism [1137].
This is unlike the usual Higg’'s mechanism whose action leads
to massive vector bosons with physical longitudinal
components. Overall the current confinement model (CCM) 1is
found to be more successful and is in  close similarity to

the RHM for quarks theoretically.



Table 4. 1. Ordering of digluon glueball states

"""""""""""""""""""" PC
L J
++ b+
0 0 2
~+ =+ -~ +
1 0 1 2
++ 4+ ++ ++ ++ ++
2 2 o , 1 , 2 y 3 , 4
-+ -+ -+




Configura- Spatial Orbital Spin Spin Colour J
tion symm. ang. symm. ang. symm.
momen- momen-
tum tum
3 - - -
(12 a 0 o 1,3 d 1, 3
2 -+
(153) (1P) S 0 A 0 0
2 + ~ + - + - + -
(13) (1P) ) 1 o 1,3 d 0,1,2 , Z ! , 4
++
1 0
- +_
1 1,2 0,1,2 y 1,2, 8
1 1,2 0,1,2++,
1,2,3
2 -
(15) (1P S 0,2 S 1,3 d 1,3 .
1,2,3 -.
1 443
1,2
-+ 4+
5 0,2 0 0 , o
M 0,2 1,2 1 , 2-
1,2,3-
0, 4
2 -+ -4
(15) (1) M 0,2 M 1,2 £ 1 l,oz _—
1,4
M 1 M 1,2 d 0,1,2--
1,2,3
-+
M 1 M 1,2 £ 0,1,2-4
1,2,3
-+
1 5 1,3 f 0,1,2-4
2,3,4
A 1 A 0] d (_..




Table 4.3. Allowed low-lying digluon
glue ball states

_______________________ b e
Coupled J
Models
++ ++
EE o , 2
-+ -+
EM o , 2
+ o+ ++



Table 4.4, Allowed trigluon low-lying gluebsall states

Coupled Space Spin Colour
modes symmetry l symmetry symmetry
EEE S {i 2
M M {S
A
; {i ;
M M S
{2
EM S {2 i
M S
{a
4 .

o W e O e O

Pt

+ +
+ 1

1o + +
+ 1

+ 1

LI
+




Table 4.5, Calculated gluon energies for various N-values

Guanta Gluon energy Calculated

N expressions energy

DCM CEMz DCM CCM

W = (2N+3)a W = (2N+3) b

0 3a 3b 540 629
1 5a [5b 900 811
2 Ta 7o 1260 960
3 9a Job 1620 1089
4 11a Ji1p 1980 1204



Table 4.8.

Coupled
Modes

EMM

MMM

Low-lying digluon and t

as a

> .
gEgM state
peC
J

+ + ++
0 . e

-+
0 , 2=+

++ ++
0 , 8

_+ - — - -
0 .1 , 3

+ - + - ++

bl )

+ - + - + 4
1 , 2 1

+ +
2

- - - - -+
3 , 1 , 0

- - -~ -+
1 2 , 1 ,

-+
2

O + -
0 , 1 , 3

Using iota (1440
DCH

1440
1800
1620

1980

2340

Calg?lated glueball energles

Me
CCM

1440
1623
1886

2069

rigluon glueball energy states calculated us

ing iota

Using iota (1460 MeV)
CM

1460
1825
1643

2008

2373

CCM

2097

2283



Table 4.7. Intrinsic energy expressions of the confined gluons in digluon
and trigluon systems

Guanta Intrinsic Energy Expressions
DcH 1,2CCM
%:(2N+3~3/m)a GN:(2N+3—3/m) b
N m= 2 m = 3 m = 2 m= 3
1/2 1/2
0 3a/2 2a (3/2) b 2 b
1/2
1 Ta/2 4a (7/2) b 2b
1/2 1/2
e 11a/2 6a (11/2) b 6 b
1/2 : 1/2
3 15a/2 8a (15/2) b 8 b
. / 1/2




Table 4.8.

Coupled
Modes

EE(00)
EM(01)
MM(11,02)
EEE (000)
EEM(01)
EMM( 11)

Energy expressions of the low-lying digluon
and trigluon glueballs ensuring its centre at

the lowest elgen state.

Combinations of the gluon
intrinsic energies

€:0+El
(26 + € +€ ) /2
J&
0
2¢€ +€
0 1

€O+(2§1+&%+€:2 ) /2

(3¢ +e+E,+€6+
., 1 0 7 2
?604@35 /3

Final energy of the glueballs in
Bgﬁms of the parameter

3a 2.44949b
S5a 3.005574b
Ta 3.8558060b

Ba 4.242641b
8a 4.828427b
10& 0.346066D0
12a 5.840186b




Table 4.9,

Correcteq glueball energie

S in DCM and CCM.

-4

PC
Coupled J
Modes
++
EE 0
-+
EM 0
++
MM 0
-+
EEE 0
++
EEM 0
4 -
1
++
EMM 3
1.
-+
2
++
MMM 0

2880

2487

Experiment
Energy

1440 (¢)
1700 (g)

2120 (g )
2220 (g )
2360 (g_,)




Table 4.10. Low-lyings+glueball energies by fitting iota
’ (1460, 0°*) as =& [gﬁgm> state,

Coupled %8éculated gluebgéé energles Experimental Qetails
EE 876 11656 1240

EM 1460 1460 1455 + 4

MM 2044 1724 1710 + &5

EEE 1752 2001 -

EEM 2336 2277 (2120,2220,2360)

EMM 2360 2521 -

MMM 3504 2754 -



Table 4.11. Low-lying glueball energies by fitting <g > 2233 MeV as the
fg g g > state.

ggggéed %géculated glueb%éé energies Experimental details
EE 837 1133 1240 + 10

EM 1396 1432 1455 £ 4

MM 1954 1691 1710 + 5

EEE 1875 1962 -

EEM ‘ 2233 2233 (2120,2220,2360)

EMHM 2791 24
MMM 3350 270
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CHAPTER V

THE CONFINED GLUON PROPAGATOR IN A TRANSLATIONALLY
INVARIANT OSCILLATOR BAGIG

5.1. Introduction

The success of the gluon confinement model particularly
the CCM provides a consistent confinement basis for the
gluons in an identical manner to that of the quarks in RHHM
[23]. The essential requirement in the céﬁstruction of a
unified scheme with quarks and gluons together including

their interaction is to obtain the confined gluon

propagator.

In this unified confinement theory the RHM-auarks
interact via the exchange of the CCM-gluons. Thus as in the
case of electron-electron interaction wvia the photon [121]
the scattering amplitude of the guark-quark interaction can
be written as

— a — b
e = 8RR 9 B (G050
' (5.1.1)
where g is the quark-gluon coupling constant, g;’s are the
confined solutions of gquarks, Aﬁ; are the colour matrices

(a=1,2,3) and D, 1s the confined gluon propagator. In the

/(A
case of CCM gluons, from equations (3.3.14) and (3.3.158),

the relevant propagators are given by,
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Lo

' . 3 N F

O,y = Al der) .

0O P aR e (W2 (65.1.2)
corresponding to the "Coulombic” interaction, and

+ -
) il e A Ay
,QL.J.CV,W) - _fzt;’,{zwz [JLJ Ay QJ%{

— P4 Q. a

(65.1.3)
in the oscillator gauge for the transverse glucn exchange.
Since they are in a confined bound system the propagator has
to be chosen suoh that the spurious motion of the centre of
confinement is taken into account. Thus as in the case of
the glueball energy calculations in section 4.6 of Chapter
4, a translationally invariant ansatz for the confined gluon
propagator has been made by choosing the centre of
confinement at +the origin (corresponding to R=0). In the
case of CCM gluons the propagator 1s the harmonic ozcillator
propagator as given by equations (5.1.2) and (56.1.3). In
this chapter, a closed analytical expression for the
relevant propagator 1s derived. It i1s different from the
nsual oscillator Green’s function obtained through path
integral formalism (1147 which 1s not translationally
invariant. Section 5.2 Jjustifies the translationally
invariant ansatzs by fixing the centre of éonfinement at the
origin. In Section 5.3, the propagator in the
three-dimensional spherical polar coordinate 1is formally

derived. It can be generalized to the m-dimensional case

(see Appendix D).
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5.2. The Translationally Invariant Ansatz for the

Propagator
The propagator in a bound state oscillator system
satisfies
pA R | ) !
(*“V—r”r’——?\)G\(Z-yZ') = 8(x-1')
(6.2.1)
since G(r,r") and. Jkr—r’) are symmetric functions,
2 2 ; !
(v + v =2)Gesr) = ST
(5.2.2)

on adding these two equations,

2 F ot (7)) = Saent)
{_il,.(_v-y)-fr_gj,;‘}& >717) .

(5.2.3)
Defining now
g = Y"T,
v 7 . (5.2.4)
and
R = 2+
~~ [ P .
2 : (5.2.5)

then the above equation (5.2.3) becomes,

e 9% 4 gP- 25 4 F- 2GRS = 51D
QR*

2.
af (5.2.6)

Now decomposing the R, § coordinates,

—
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"“.?Z% RIZ-‘"‘ oZ—.o = O
[ OR* +, >£]GCWD (5.2.7)
and
.z 2 0
[Q.. + JD —_ 7_1"]6’(”’0) = 5(2{)
DFP* (5.2.8)
= L 88
2 R
(5.2.9)

Thus the translationally invariant part of tﬂe propagator is

defined as

/%,(5,03 = 2G6(8)

(5.2.10)
such that it satisfies the equation
2h ‘ 8,0) = S(%)
— L. X g - 7“3 é} ( > ) - -~
287
(5.2.11)
Here the centre of the bound system is fixed at E = 0 (the

origin) with the spurious energy corresponding to the lowest
oscillator mode. In the case of CCM gluon propagator the

')f corresponds to the gluon intrinsic.energy square as
defined in section 4.6 of Chapter 4. The propagator which

corresponds to the centre of the bound system is written as

0
G (0:0,2) = Lo Hpte
Ao 2 (5.2.12
and the propagator in the relative coordinate system (which

is translationally invariant) is written as
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4 (8,00) }“_‘; (3 8 Ce)

e N (6.2.13)

5.3. The 3-dimensional Harmonic Oscillator Propagator

in Spherical Polar Co«ordinate

The propagator expression in 3-dimensional spherical

polar coordinate is given by [115]

G (2,¥52) = z,r,awi@“‘7glh' 252)

/
3 %Cﬂsé?Cmog“‘i%o@ﬁhﬂ9Cﬁdé797%3
(6.3. 1)
where GL(r,r',) ) satisfies the equation
ol
Gy + (O -r- J@uw))@u = —o(¥=7").
A Tz
(6.3.2)
It 1z the inhomogensous radial equation for the
3-dimensional Tharmonic oscillator. The spectral expression
for Qﬂ(r,r A) can be written as;
R ! Z
G, (72 = }: (L4 )
277y -0 N= 2n+Q ‘“*1*3/2.
7 V., J RS IY
2+ L+ ——C')‘—\«Y“ 1.'*'/2. e
i (:T_____ii—- é 2 ) L»ﬂLY‘L) L'ﬂ ) X

A2
Zm@ Covo &' — %@Ma'wcc’a-cjo/)} )

(5.3.3)
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Making use of the translationally invariant ansatz, the
origin 1is chosen at the centre of mass of the bound system
and the propagator in the relative coordinate system is
obtained by shifting the coordinate r-%» r-r' and r'—s 0.
By this tfanslation of the coordinate, it can be seen that
the only non-vanishing terms are those for which l.: 0.
Thus the expression for +the +translationally invariant

propagator corresponds to those terms with ‘Q:Q, and 1is

= /.7_ 0
3 Z - )\f’«/f

N=2N=0

written as

%{365,%)

2.

S/2

(!

L{_ ) CO)

Awwz—?' (5.3.4)
where
2 +3
ey o e
™ Mirs,
(5.3.5)
Thus,
- -3 ﬂPL ¥ /2. z)
/\ggcg,z) = AT exp(L) ) (gD
7=06 ANtTI—)
(5.3.6)

This expression can be generalized for m-dimensional case as
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done in Appendix D and in the m-dimensional hyper spherical

case the propagator expression is obtained as

— 2 X Tﬂ%? o
GLE0n0 =T exp-g ) LELED
rn - E =0 —
7ALV\ (5.3.7)

The above expression is further simplified to a compact form
- by computing the infinite summation of the Lagaurre
polynomial analytically. The simple poles are avolded Dby
the choice of A . The final expressioﬁ is obtained in

Appendix E. For the m-dimensional case it i1s obtained as

é (£, n) = 'T:""’) ’“TQL\} €s*)

P

(no 2)

(5.3.8)
Here chf éﬂ -z) 1s the Whittacker’s function. Thus the

compaot expre551on in the three-dimensional case is obtained

as

4 800 = B2 e,
3 %

4~ 3
(5.3.9)
and 2
i 3 =S8/
4 (gomn) = 2 g 2
(5.3.10)

and
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5(;' ((3=2) &

(ig'”% 0o, }:) = (\1£,> g

3 L. , -;;;Ft? (5.3.11)

The propagator for §-» 0 is independent of the choice

of A . The expressions are plotted with the various choices

of A corresponding to the CCM gluon solutions (see figure

5.1).

5.6. Conclusion

Compact expressions for the pfopagatbr for
3-dimensional harmonic oscillator in a +translationally
invariant ansatz have been obtained. This propagator which
corresponds to the confined gluons in the current
confinement scheme will be used +to calculate the colour
Coulombic interactions and the modified Fermi-Breit like
interactions among quarks due to the exchange of confined
gluons. The derivation 1is generalized +to +the case of
m-dimensional harmonic oscillator case. The higher
dimensional forms can be used in various situations such as
four-dimensional form in relativistic oscillator model of

Feynmann-Kisslinger and Ravndal [120].
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Appendix D
A General Construction for m-dimensional

Oscillator Propagator

The Hamiltonian for the m-dimensional harmonic

oscillator is given by

(D. 1)

in a suitable unit where +the corresponding constants are
absorbed. The elgen function ng which corresponds to H

can be written in the form

o
- 7T 200D
N U e
(D. 2)

where Qﬁb (Xﬁ)’s satisfy the one-dimensional oscillator
) -

equation
_ 8t (-2 ) (XD =0
XS (D. 3)

where >“jis the corresponding oscillator eigenvalue

')L o= ‘2.?’7("71“/ .
(D.4)

The eigen function <f (¢) in cartesian coordinate is given
7.

by [1158]
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=Nf2f s ‘
. = e lm) € H, ()
C_P’,)L.(Xc) ( ¢ ) ¢ (D. 5)
Here FﬂoiﬁXJD is the Hermite polynomial of order 77¢ . Thus
the m-dimensional eigen value equation is written as
I"{o - - O
( A 7 CJDM (D.8B)
where eigen value,
¥ (2me +)
-) = 271 ¢ !\
N T=1
(D.7)
= C'Z—’\I'*”m) (D.8)
m (i el
@ (AR ) = AEREs (mgﬂ € X
~ L=\
H Cx;) k
A
(D.9)

If r is defined as the position vector in m-dimensional

space, then

7. ) 2
0 :z 2%
¢ =1
(D. 10)
: and the general propagator expression  can be written as
"0 . 2 A
[116] e _Kw—m _l'{\ :2:7’)(, é(xwx{-)
G (rria) T T L e T
o STo 2ih g
jnit ~J ’W(_—'
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.XHw(j{)Hm(l ]5 Eﬁ

Y(D.11)
Expressing the delta function in terms of a contour
integral:
70 - ...—-————-——-¢ ) .
N E i 3 el
(=1 (D.12)
helps to carry out the summation over each »7; s
independently. Thus, equation (D.11) becomes
y3 2,
G, (nna) = K7 g TR
2—7t ¢ 'm ,>O .
20 -N
. § 2 . X
;X nJ+4 "
~ = 0 -y)L:.D
/ L
H., (2:) Hy,ptd 2, ]
(D. 13)

Using the generating function for the Hermite polynomials

[1177:

__1/ 2 B 2,
z:- 57 R, ij’4WC3>é? - 0.{%) l€>q9[3~.ﬁf Eizj

-2

(D. 14)
the summation over n 's in equation (D.13) can be carried

out, resulting, 2 Z
s (27" )%
P / = ?
GMC“‘)ZJH) ] %””
~

27T L
S S )'““"”/z

%r\/*f"
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T-22 ‘ (D. 15)

d 2

NI +¥' 22?Z¢%27.
[ %A/-H 67475[@ Qz—-l
(D. 16)

Making use of +the generating function of +the Lagaurre

rolynomial [1177,

o0
—x -1 o 2 C?L) %
( %) Xib'}'f} Z::o

(D.17)
and choosing the contour in such a way that [z]< 1, the

m~-dimensional full propagator reduces to

— ) 2% 2
GMC'T;T‘%RD = _‘Z,V;;? 7(7D—(‘?‘+74/)

m=2 _ L, 2N
Z: M #E %,\W' Eﬁ%‘vﬁ“ﬁ‘)%
exqb(%,‘i*_l‘,’a‘ ]

[ = 2%
(D. 18)
Now making use of the translationally invariant ansats

the propagator defined in equation (6.2.11) can formally be

written in the m-dimensional case, 2 %)

G g,00) = A2 &) L)
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"

- ~ e ,
N':.D‘?N AT 7 (D. 19)

After performing the contour integration the only terms

which survive are +those for which N = 2n. Thus equation

(D. 19) reduces to
| o 2.
> L= (6D
7= 0 >\____2
| (D.20)
From equation (D.8) '%Lﬂ value is substituted to get the

- L

A (5,0,2) = K eaplp)

final expression for the translationally invariant part of

the m-dimensional harmonic oscillator propagator

G (2.00) = 7T empbe) I Ll

20 Am#Err—)

(D.21)
The final summation is carried out in Appendix E.
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Appendix E

Compact Expression for g(€ ., )
m/\

The translationally invariant part of the propagator
for +the m-dimensional harmonic oscillator obtained in the
above sections can further be simplified to a compact form
by computing the infinite summation of the Lagaurre
polynomial analytically. The simple poles are avoided Dby
the choice of ). The expression for %mq(i ,A) is

rewritten formally:

4 (8,2) = s expE) SR

(E. 1)
where
= 00 & (A
| s
SC“M%> ::7:.¥:szf
=D Q—“"+ p
(E. 2)
The variables & and }3 are
- M2z
A < (E. 3)
and /6 _ =)
2
(E. 4)

It will be easy to perform the summation if the denominator
could be expressed 1in terms of a finite integral. Thus

replacing,
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fd%% ?
D

F n+2/3 Z (E.5)
with
27+ B
(E.B)
Then S(«,FS) becomes,
! a2 27
5 / 2 5= O
R (E.7)
The upper limit of the integration is changed

infinitesimally to make use of the generating function of

the Lagaurre polynomial. Thus by equaticn (D.17),

*

4 :;qc‘x)/Bl) = [ _im L Jﬁ 6(275% (f/ iﬁjﬂ';

>0 Z

exp i,
Defining a new variable
2.
|— 27 = € (5. 9)
N z a'l ”?/t
- trg L g \S‘dé‘ (- t)
Sty BD = éi>o

(E. 10)

This integral is evaluated using the standard integral given

in terms of the Whittacker s function [1187],
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& FCHEED

for Rel. f& > 0; Rel & » 0; u » 0.

Now the expression for S(o<,/%) reduces to

f/z — o~ v
- ()
SCO()/QJ es € S }/\/[— f‘“}«-%

(E. 12)
for Rel. [2/2 > 0.
By substituting o« and /3 in terms of m and’ A , a closed
analytical expression for,ﬁ (@_, )\) can be written:
. =
= ?) IR,
(8-2) = ALK
™ 2= (m= )
< TV + 2 (E. 13)

for all values of m » N

Using the asymptotic expressions for +the Whittacker s

function [119], the corresponding asymptotic expression for

T

the propagator can be obtained. Thus, as ¢-> % i.

the particles are well separated then the general form of

2
— - m w——
’EE%;E) S;Afif e S[L

a7’

the propagator is

‘%( (£->%,2)

(E. 14)

and if they are very close to each other, i.e., as P—> 0
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/KU(HLS’%O,%) = [ § Fage 159
R Tan

(E. 15)
for m » 2.
For example, in the three-dimensional case,
) .y
77 45"k
& AR (E. 16)
and 2
r@ A= =S/
44 (8=»%)= 1% §F ¢
% 473
(E. 17)
and de |
4 ($»e02) = = ¢
3 Q=
(E. 18)
Special Cases:
Table E.1 gives +the final expressions for the

propagator with the special choices of the value of A in
different dimensions. The asymptotlc expressions are also

written.
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| 1
Choice of ) : l |
Cem (£.2) | (g% |

- O - '
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__________________ [ |
| LT T
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CHAPTER VI

CONCLUSION

One of the evidences for Quantum Chromo Dynamics  (QCD)
is +the existence of the glueballs [85-90]. The study of
glueballs and their experimental confirmation 1is very
cerucial to the validity of @CD. In this thesis 1t has been
our aim to study the confinement scheme for glueballs. Two
different theoretical models are being studied for the
confinement of gluons. They are (1) the eurrent confinement
model or CCM, and (2) the dielectric confinement.model or
DCM. A plausible link from the Yang-Mill's theory to these
models 1is shown heuristically. The difficulty of the sharp
boundary in bag-like models [76,78] is eliminated 1in these
two models. The confined solutions of the gluons in CCM or
DCM are very similar to the confined solutions of the quarks
in RHM [23]. Thus a unified confinement basis for both the

quarks and gluons is achieved though the present study.

Any massless vector particle exists only in two
transverse physical modes [121]. Here the two physical
transverse gluons are obtained in & general frame of Lorente
gauge. The secondary gauge condition which satisfies the
two transverse solutions is the Coulomb gauge in DCM while
that in CCM it is the oscillator gauge [(7Z,80]. The choice

of this oscillator gauge condition is a new feature of the
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present study which " enables -one to obtain the transverse
gluon modes in the oscillator basis. The lowest confined
gluon modes obtained in both the models are characterised by
g€ - 1 (named as 'M’-gluon) and JP = 17 (named . as
‘E’-gluon). The gluon fields are second quantized and the

energies of the confined gluons are obtained.

Using these confined gluon modes the colour singlet
di-gluon and tri-gluon bound states are‘constructed. The
energies of these glueball states are calculated in both the
models. The confinement model parameter 1is obtained by
fitting iota (1440 MeV) 0™F state as a di—gluon glueball
state [88]. The results are gquite encouraging. The
spurious motion of the centre of the multi-gluon state in
this study is taken into account exactly. The revised
calculations for the low-lying glueball state shows
excellent agreement with the existing experimental results.
The CCM results are found to be more close to the
experimental results than the DCM results. Thus as in the
case of RHM (for quarks) [23,72] the success of CCM is also
closely. linked with the accounting for spurious motion of

the centre of mass.

Having obtained the successful confinement scheme for
glueballs, we have aimed at harmonizing the confinement
schemes of quarks (RHM) and gluons (CCM). For this purpose
we have obtained the confined gluon propagator. In CCM, the

propagator 1s that of an oscillator propagator. A
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translationally invariant ansatz has been used to derive the
relevant propagator in a closed analytical form. It 1is
different from the oscillator. Green’'s function obtained by
path integral formalism [114]. Derivation for such a
propagator is generallized to m-dimensional case, the
relevant propagator 1s 1in the Coulombic form when the
particles are very close to each other and it falls in a
Gaussian manner when the particles are away from each other.
This behaviour of +the confined gluon przpagator is very
promising in developing a bound state perturbation theory

for quarks and gluons inside the hadrons.

The present study thus has laid a foundation by
harmonising the confinement scheme of quarks and gluons to
study the various properties of +their bound systems like
hadrons glueballs, meiktons etc. This study has got various
applications. For example, calculation of Fermi-Breit 1like
interactions between the confined quarks due to the exchange
of the confined gluons will be an important result which has
to be incorporated in the calculations of the
nucleon-nucleon interaction using these models, The
calculations of the 3-gluon and 4-gluon vertices can he done
and may be important in the hyperfine splitting in glueball
apectrogsaopy. It zhould be noted, however, that a certain
amount of double counting may result in such calculations.
In view of the excellent agreement with the naive confined
models such corrections are expected to become negligible.

It 1= very important to distinguish o, adg, gg and ggg
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states among the vast experimental data of the exotic states
in the energy range 1-3 GeV for the identification of a true

glueball state,

The momentum dependent inhomogeneous dielectric mediumn
obtained in Chapter 3 has to be studied carefully when both
the quarks and gluons are presented in such a medium. A
perturbative analysis of the fields, 1its growth and
propagation in such a medium is of importance from GCD point
of view. Thus a detailed wave mode analysis of quark-gluon
plasma [122] in such a medium might lead to the
understanding of the QCD dynamics that 1leads to the
deconfinement or phase transition. The effect of mnonlinear
interactions to the medium and the medium effects on the
dynamics of the particles are to be studied to understand
the phenomenological confinement models from the fundamental

theory.

In the following, we list the various applications of

the theory to highlight the future prospects.

1. The derivation of one gluon exéhange potential

using the confined gluons between the gquarks.

[ae]

The harmonious basis for +the guarks (RHMY =
gluons (CCM) can be exploited to develop the

hadron-hadron interactions.
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The three gluon and four gluon vertices of the
confined gluons can be calculated to study the
hyperfine splitting of the low-lying di-gluon and

tri-gluon gluseball states.

The spectroscopy of the hybrid 1i.e. gqdg (or

meiktons) can be studied.

The various decay processes of these exotic states
(glueballs) tco the lighter thadrons, 1its decay
widths and the branching ratios have to be

calculated.

In the light of current confinement for gluons the
nonlinear QCD fields can be studied perturbatively
by treatiﬁg the confinement current in CCM as a
part of the nonlinear interaction current averaged
over all orders. The remaining portion of this
nonlinear current can be treated perturbatively.
This may lead one in obtaining the relationship
between the model confinement parameter and the

strong coupling constant.
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