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We describe in thiz thesis our study of goodness

of Hartree-Fock states and also the development and

 application of a variational method bagsed on the mini-

mization of  energy variance for obtaining Slater deter-
minants. We also describe here our study of the decompo-
~ sition of fermion operators under unitary groups and
norms of these operators in spectroscopic spaces, our
~wain object here being the investigation of questioﬁs
relating to the efficiency of the HF procedure in genera-
ting an effective one-body operator from the given two-

body interaction.

w§ have studied the 'goodness! of Hartree-Fock (HF)
statesf%valuating thelr widths., The width provides us
with a measure of ‘departure of an approximate'wave
function from the 'exact!' solution of the Hamiltonian
in -the model space, We have done radial Hartree-Fock and
width calculations for some light spherical nucléi in the
model space of first four oscillator major shells using
three different sets of realistic two-body interactions.

We find that the widths are large for the HF solutions of

these nuclei. These large values for widths imply that the



gfound state wave funetionsvof theze nuclel caﬂnot be
‘aescrlbed by single Slater determinants,We have also
,,eVﬁluaLed the second order'perturbation correction to the
’HF energy and algso the intensity of the HF’wave‘function
 in the wave LuﬂCthﬂ corrected to ilrst order We flnd
the correctlono to the energy and Lhe wave functlon to
_be appr601able for the nuclel studlea. This 1mplles that
the cofrelation‘effects are iuportant and hence they
cannot be ignored. We have also studied the’goodness of
déformed’HF wave functions, We present here our results
forkwidths of N=Z even-even nuclei caléulated in ﬁhé‘
0d-Ts majorVShell using é schemdtic interaction, the

Pregdom-Wildenthal and also the K+12FP interactions.

We have also developed a VurldblOﬂal method for
obtalnlng Slater determlnéntal wave functlons by minimi-
21ng the energj'varlance instead of energy as is done
in the conventional HF variational procedure. The equations
,for‘determining the self-consistent set of single
particle orbits using the new variational procedufe have
been derived, Using thése equations Slater’détermihantal
wave’functions having minimum width have been obtained for
- some light spherical nuclei usihg three different sets of

realistic two-body interactions. We have also estimated
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ﬁhé\perturbation corrections for thege new wave functions,
Our results show that a minimum energy variance solution
exists in the neighbourhood éf the HF solution., Further,
the minimum variance obtained is at best only a few
‘percent smaller than the variamée of the HF solution.
 ThiS means that the wave function obtained by the minimi-
zation of variance is not really very different from the
‘HF one. Thus for light spherical nuclei we find that

| HF 'solution nearly minimizes the width in the grouhd'
state region. We have also made a comparative study of the
two different variational procedures from the standpoint

of perturbation corrections and other physical properties.

The second major topié dealt with in this thesis
is about the structure of fermion operators and spaces.
We have studied here the question to what extent the HF
procedure eonverts the two—body interaction into an
effective one-body operator, For this purpose we require
two things. First, we need a proper classification scheme
for operators in which we can carry out an orthogonal
‘decomposition of them. Secondly,we need proper measures
or norms for the sizes of operators so that we can study
their behaviour in spectroscopic spaces and also make a
’comparative study of them. In our study we have used the

'group theoretic clagsification for operators the relevant
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_groups being unitary groups in spectroscopic spaces.
\f_Mofe precisely, we have here a sebt of N single-
particle states in which m particles are distributed.
We have clagsified the two-body interaction according
to the irreducihle symmebtries of the unitary group
U(N) and its direct sum subgroup U(m);U(N—m). The
subgroup here is the one generated by the HF decompo-
sition of s.p. space into w occupied and (N-m) unoccu-
piéd states. We have studied here the question to what
”fextent the irreducible tensor part of the two-body
interaction H(2) under U(N) is converted into an
effective one-body operator under the subgroup
U(m)+U(Nem) supplied by the HF procedure. As already
saild, for our purpose we need also gsuitable norms for
the sizes of operatbrs in m particle spaces., We have
’,_used nere the Buclidean norm as a proper measure for
the size of an operator. We have derived a polynomial
expression for the square of the norm of the effective
one-body operator which results when the two-body
interaction ig classified under the subgroup generated
by the HF procedure. Next a guantity called conversion
ratio is defined in terms of norms of different symmetry
parts of the interaction decomposed according to U(N)

and U(m):kU(N—m)° This ratio tells us to what extent
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the‘two—body interaction has been converted into an
effective orie-body operator when a HF calculation is
~ done. Itkfurther indicates in a global sense how good
yiskthe HE single—particle.basis. This ratio has been
 _§Valuated for the HF solutions of some N=Z even evén
\gpgglei“both in Of-1p and 0d-1s shells using realistic
Qtfwo—body interactions. Our studies reveal that this
_conversion is quite small which implies that a large
 part of the two-body interaction is still irreducible
under the subgroup generated by the HF procedure and

that the HF s.p. basis is not a good universal basis,
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CHAPLER T

. INTRODUCTION

The nucleus is a system of finite number of fermions
interacting through strong, short range forces. The number
’bf nucleéns in a given nucleus may be anywhere from a few
to a few hundred. The internucleon force besides being
sﬁrong and short ranged is also complex in nature having
central, spin-orbit and tensor components and perhaps hag
also many-body character. Yet another aspect of this compli-
cated force is its strong repulsive Qharacter at very short
distances, It is not surprising then that one observes a
«irlch and w1de~rang1ng variety of phenomena in nuclelq,From
the theoretlcal viewpoint the understanding of and predlctlng
the behaviour of a nucleus forms a fascinating,though at
times difficult, study. The problem here 1is that of calcula=-
ting all the properties of a finite many- ~-body system of
fermions interacting through a complicated, as yet not fully
understood force, More precisely, on the one hand one has
‘the problem of dealing with the complicated nuclear forcé'
whose exact nature is not known and on the other, the
problem of solving the finite many-~body Schroedlnger equatlon.
’AWe are concerned in this thesis with approaches to the

approximate solution of the latter problem.



The independent pafticle mbdel (IPM) pro#ides the

' simplest of all the approaéhes towards an approximate

k solution of the nuclear many;body Schroedinger equation.
",The~IPM approach consists in taking the strongly interacting
many-particle system to be a system of non—interacting
particles moving in an average field. Depending upon how
this average fieid is constructed there are many forums of
IPM., A widely-used IPM is the Hartree-Fock (HF) method in
which the average field generated ig a self-consistent

field giving minimum energy for the system. This HF self-
consistent field idea is at the back of all the present-day
ybmicroscopic theories of nuclear structure. These sophisti~
cated theories start from HF as a first approximatioh and
attempt in different ways to include the residual interaction
which is ignored in the HF picture. This thesis is concerned
with the 'goodness' of wave. function and operators obtained

by the HF method,

The approximate wave function used for nucleons in
the IPM'is a Slater determinant which 1s an antisymmetrized
product of independent particle wave functions. In the last
ten years or so, such a determinant has very often been
obtained by the HF 111(—3'@{10(11‘br in which one finds the deter-
minant having the lowest energy. It is generally accepted

that the HF approximation describes many nuclear properties,
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fihcluding the'ground.state energy well..In parﬁicular some
\Jf of the single-particle properties (expectation values of one-
bbody operétors in the HF state) show spectacular agreement |
with experiments. In spite of the agreement one finds with
the experiment it is not clear how 'good' the HF wave
’function is. To be more precise, one does not know how well
this approximate wave function compares with the "exact"
solution of the Hamiltonian in the model space. Often one
also does not know how the calculated properties'would change
with improvement in the wave function. It seems justified
therefore not to strive for "very good" agreement between
the HF results and the experimental ones without a proper
investigation of corrections to the HF. In view of this, we
kmake a modest beginning in chapter II of systematically
studying these questions. A more detailed discussion of

some measures for testing approximate wave anctions'and’

“the related variational principles is given in the same

chapter,

Consider the HF solution‘for the nuclear system and
”'evaluate»its,variances 0“2 = (H2> - {HY 2, The width &
provides us with a measure of departure of the approximate
wave function from the "exact" solution for thé'System. of
course this quantity by itself does not tell us how important

the "correlation" effects are for the nuclear properties.



‘One way »f learning about‘tkese is to improve the wave
’function by the use of perturbation thedry. We have there~
:: fore evaluated the correction to the HF wave fﬁnction and
Kthe HE eﬁergy in perturbation theory. This is described in
chapter II. The width may also be used as a measure for
comparing two approximate wave functions. For example, given
7\,the widths of two determinantal states, one can say that
the one w1th the smaller width is closer to the "exact"
solution of the system. In the same chapter we also dlscuss
how the w1dth%of the HF state changes with a change,ln the
size of the vécﬁor spaces. We also examine the ohanges iﬁ

the ground state energy with this truncation and see how the

width is related to the total energy spectrum span of the
nuclear systém. |

- Begides studying the HF solution we also examine

in chapter III an altefnative variational procedure suggested

earlier6 to.obtain determinantal states. In this we

minimize the variance 6‘2 for the system rather than the
energy. It should be clear that the energy of the new deter—‘
minant " will be higher than that of "Wy but its

width will be smaller, If we therefore use the width as a
measure of "goodness" of a wave function then the state Ws
is an improvement over dD\HF' Moreover, if we Carry out

perturbation theory correctlons for ’q and Q?BF we expect
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smaller 2ph correction for Y} than for . This is
because in the determination of jgg we ére already includ-
ing some excitations to intermediate 2ph states. Of course
as far as the energy criterion is concerned the HF solution
is superior to the corresponding solution obtained by mini-
mizing CT,

The numerical calculation in chapter III are carried
out for light "spherical' nuclei within the spéce of three
and four harmonic oscillator shells, Three différent
effective interactions have been used, It should be pointed
out that the calculations we have carried out are meant
for "internal' comparison of the two variational methods
and for illustrating the various points. It is not onr aim
to compare the results of our calculations with experimental

guantities, Vi /

In chapter IV we extend our study of goodness of
approximate wave functions to the class of deformed HF.
wave functions. Results for widths of N=Z even even nuclel
calculated in the 0d-1s major shell using two differént
‘nealistic two-body interaections are given, We also describe
a schematic interaction in‘Od~1s snell and give results

for this interaction.

Another major topic dealt with in this thesls is

concerned with the properties of fermion operators and
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spaces. This is deséribed in chapter V, Our main object here
is to study the efficiency with which the two-body interact-
ion is converted into an effective one-body operator by

the HF "machinery", This efficiency factor indicates in a
global sense how good is the HF single-particle basis. If

a large part of the two-body interaction gets-converfed/into
a one-body like operator under HF then we can say that the
Hamiltonian behaves esgentially like a (O+1)~body operator
and that the s.p. bagis generated by the HF procedure is

on the whole a good basis. One can also use this criterion
for goodness of s.p. basis to seek the best s.p., basis which
would be the one which optimizes this contribution from
two-body term to an effective one-body term. The formulaticn
and investigation of these and other related questions
involve the use of a mathematical framework in which one
carries out orthogonal decompoéition of Operators. Further,
one needs measures for the sizes of operators so that one
can study their behaviour in many particle spaces. The
framework we use here for the classification of operators

is that png&ided by unitary groups in spectroscopic spaces.
As a measufe for the size of an operator we Make,uée of the

7

Buclidean porm of an operator’.

We all know that for the most part of the current micros- .

copic theories of nuclear structure are attempts to solve



- the finite many-body problem in»truhcated spaces defined by

a finite number N of single-particle states. With the con-
Sideration of unitary transformations in these finite spaces
the unitary group in N-dimensions viz.U(N) automatically
enters into the discussion forming a starting point for

all further group theoretic discussions of nuclear‘structuref'
Thus the unitary group U(N) and also its family of subgroups
provide a natural and convenient mathematical framework for
the study of the structure of fermion operators and s?aces-
and also for investigating other physically relevant questions
about them, We use this framework here to study the goodness’
of HF S.P. basgis., The reléﬁant groups here are the unitany
’group U(N) and its family of direct sum subgroups

U(m)*U(N-m) where N is the total number of s.p.states and m

is the number of particles. Thé subgroup we discuss here is
the one generated by the HF procedure in which one decomposes
via a varlatlonal procedure the N s.p.,states into m occupled

and (- m) unoccupied ones. We decompose the interaction 1nto

its irreducible representations under both the U(N) and

U(m)+U(N-m) groups using the standard techniques for the

unitary group decomposition of a general fermion operator.
. : 8.1
We describe these techniques in‘deta118 O. Further we need

proper measures for the sizes of operators and their symmetry

parts to study their relative importance. The measure we




consider here is the Buclidean norm of an operator, We
derive an expression for the square of the norm of total
(O+1)-unitary rank parﬁ of the interaction when decompogsed
under the group U(m);U(me), In terms of this norm and
also the norms of various irreducible parts of H under U(N)
we define a ratio R which serves as a global measure for
the goodness of the HF s.p.basis9. This ratio tells us how
much of the two-body interaction has been converted‘intov\
an effective one-body operator when a HF calculation is
~done. We present the results of ﬁorms of various parts

of the interaction decomposed under U(N) and U(m)+U(H-m)
along with a discussion of them for N=Z even even nuclei
in Of-1p and 0d-1s shells using realistic two-body inter-
actions. We also evaluate the efficiency ratio R for these

nuclei,

Finally in Chapter VI we present a summary of the

entire work and also some suggestions for future research.
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CHAPTER T1
MEASURES FOR DETERMINANTAL WAVE FUNCTIONS
AND CORRESPONDING VARIATluNAL PROCEDURES

A, THTRODUCTION

We discuss in this section two measures for determining
the ”goodneSf” of an approximate wave function,

First we consider as a measure, the width ¢~ of the
‘ . ' o . . : y 2
approximate state which is defined through the variance ¢,

The variance 5“2 for a state |"Jyis définedqau to be
I"“'qz" PR —— I | 2 A
o) = LB HA P> — [ H LT )

where H is the Hamiltonian of the system. it follows from this
definition that,if |\» is an exact eigénstate of H then
its width 7 is zero, Otherwise, |I¥> will have a non-zero
width wiich will give us a measure of the departure of (">
from an eigemsfate of H. |

In order to get some more understanding of the quéntity
" consider the expansion of ) over the complete set of

eigenstates {@;k/01 our system. We have

‘]7,)"*‘ /F/\bl

z{}!
\ e
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bwhere vaxk are.the coefficients of expansion. A plot of the
intensities |o( | 2 versus energy will then provide a
picture of the way in which the state [T is distributed
over the exact eigenstateéiof H, In practice we seldom know
all the ™ 's and E 's and hence we will not be ablé to
determlne the distribution of |¢ﬂ> Let us suppose however
that we Know the energy and the variance of 0. These

can bhe written as

E=LWIHle) = 2 |t} Ee

2
cf‘mlﬂ)"%z Z\Oftz *(Z\“\‘h }q) I18(2)

We see from these equationé that H is the mean energy and
0”2 the second centrdl moment of the distribution - i,e.
these are the lowest two moments of the distribution, As we
evaluate higher central moments P = <de> \(\H wE)P\@> O: >2,)'
we learn more and more about the distribution. It should be
clear theréfore that after the energy the variance is the ’
next simplest quantity that we can evaluate for a state pgp),‘
Note that the energy of a state by itself giveg no indica-
tion at all about the "goodness" of the wave function but the
width does‘provide some information. In fact it gives the

spreed .of V@b>OVer the exact eigenstates of H,




Further, the width can be used to give both a lower
and an upper bound to an exact eigen energy of the system,

~ More precisely, we have the relation

B0 £ < By o TITA(3)

e

o]

where B and O are the energy and the width of the approxi-

mate state [Poyand is the exact eigen energy closest to

I
o
.E - i.e. gE—EO\ 4,\ELE&\ for all E_. This can be seen as

follows: We have

2 2, 2
a (‘\Lf’) = ZRO\ k (Ex-E) TTA(L)
and _
Y ’1
ZRO(R = 1 TIA(S)

2
Since oy > O, (EK—E)2;7 0, we can replace the factors in
5
 Ba.IIA(K) by their smallest value (EOaE) . Then using
Ba.ITA(5) we get '
2

from which it follows that

B -6 <L E < E+0om
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Thus if F is closest to the exact ground state energy then
the lowest two moments provide bounds to the exact ground
state energy.

“Another possible measure which is often used is the
overlap of the approximate gtate \@Ev>» with the exact ground

state wave function, This measure is generally very difficult

~1f not impossible to evaluate. Thus this measure is available

~only in some restricted problems and hence has limited use~-

fulness.

It is worthwhile recalling at this stage that, amongst
~variational solutions, the one with the lower energy does not
~Necessarily have a smaller width or a larger overlap with
the exact ground state wave function. Furthermore, a_smallef.
width does not imply a larger overlap with the ground state
wave function either, Thus the energy, the width and the
~overlap provide different criteria for -discussing approkimate

wave functions.

Further, corresponding to each of these criteria one
can set up a variational procedure. It should be’evident that
if we allbw for the most general variation in the wave | |
function then each procedure would be equivalent to solving

the Schrodinger eguation, It is when we put restrictions on

 the variational wave functions that we obtain different

variational solutions. For determinantal states, the minimi-
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zation of energy leads to the well-known Hartree-Fock (HF)
method. The minimization of energy variance Cr’2 for Slater
determinants will be discussed in detail in chapter III.
The optimization of overlap has_been considered by Kelson

and ShadmOnS.

In this chapter we consider the HF variational proce-
dure and the @valuation of widths for HF states, This will
be presented in the following six sections. Pirst we
describe the HF method in some detail and then specialize
the method to case of double-closed ghell nuclei and give
the relevant expressions. In section D we discuss thé |
centre of mass Correction and also the perturbation corré—
ctions to the HF energy and wave function, Néxt in
section E we describe in detail a method for evaluating
widths of states énd specialize it to the HF case. Numerical

16O and hoCa are desgcribed and the-

' . . L
calculations for He,
results discussed in section F. Finally in section G a
study of the effect of enlarging the model space is descri-

bed,

B. THE HARTREE-FOCK METHOD

There are already many artic:lesﬁ)"10 on the Hartree-TFock
(HF) approximation and hence in-this section we briefly

discuss the method and give the relevant expressions,
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Ir V@?} is a Slater determinant describing the state
~of an A particle system then we can write it in the occupation

number representation as
A .
!EO:E Qg 10 1IB(1)

where the operator a.

. creates a fermion in the orbit «

and so on. These %; 's-and their corresponding destruction
: 1
operators %xs obey the well-known fermion anticommutation

ruless

K+

[, a
[a; » Bq

In this representation the Hamiltonian H of the system can

IIB(2)

bpq

]+:O: {}p’agh_
.-

be written as

” . + | : ' i/ +* 4 ,
H= %(P\tm)aba%—%ﬁr %{(@%Mm) @y By %y
IIB(3)
Here t is the kinetic energy operator p2/2m, V is the two=-
body interaction operator andx@q‘ V| rs> dis an anti-
symmetrized matrix element of V. The single particle (s.p.)

states p,q,r,s... belong to a complete orthonormal set.
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Beforé e proceed fufthér.WE describe the notation that

will be used throuvghout this thesis. Thevoccupied single
particle states will be denoted by the Greek letters
d/@;Y,SJ N, -ee and the unoccupied states by
i,i,k,lmyaee. Any general s.D. staté will be denoted by

p or g. BHach s.p._state label here stands for the set of

s.p. state quantum ﬁumbers (n,1,j,4,m,T) where n is the
radial guantum number, 1,j are respectively the orbital

and total angular momenﬁum quantum numbers and m is the
projection of j on the z-axis., The '4!' here is the nucleon
isospin and T its third ¢omponent. Henceforth we shall drop
'this 'Lt and keep only T . Further, we shéll compactly
label the set (1,j,k) by the letter s. Thus ®= (1,3,3M

For instance, /3, stands for (1, J, 1) éi(lﬂj,%éé .
Dropping the '3 we shall sometimes writefﬁkz(%x,jx) Ef(llg .

Now in the HF method the wave function rq§>is deter-

mined by first reguiring

S | WD
QAR

=0 IIB(H)

where O denotes the most general variation of {~J).
Then to keep [Py normalized & is limited to first order

variations only by requiring
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5(@\H\’VE>*«:O- | IIB(5)

We can write this variation in | as
oy -+ — |
O!'\M?z*} SRR RN IIB(6)

where 7} is an infinitesimal., Now \q@>.and its complex
conjugate <3¥ﬂ can be varied independently and we choose to
vary {~JP|. Then substituting for H from Eq.IIB(3) in
Eq.IIB(5) and doing some algebra we finally arrive at the

following equations

A
-y S A XN e Ny g :
<F.Lt(o(>+>\z:]<h>\.\\/lo</\>v_o, as/§,¥<>hm(7>

These are the well-known Hartree-Fock equations. Let us

defihe a single particle operator

~ : A ) ) -+

=2 [Cbltlpy+2 riviany | dhay
PC}/ ® =\ —

IIB(8)
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where p,q are arbitrary é.p. states. Then Eq,IIB(7) is
equivalent to the condition that € has no matrix elements
between the occupied single particle states and the

unoccupied ones, i,e,

{k|E]>=0, TIB(9)

o~

This condition allows us to diagonalize & 1in the space
of occupied (or unoécupied)fs.p. states only. This can be
achieved by choosing a suitable linear combination of the
occupied states hx) such that Ef becomes diagonal. Then

Eq.IIB(9) can be written as:

ot )€ | py = é;(@#
Cloy= €1«

IIB(10)

. ‘ ﬂJ
where ';(%,are eigenvalues of €& , In practice, to solve

~ the Hartree-Fock equat:ons one expands the single- part1cle
states <¥> in a convenient orthonormal complete set of
wave functions i> which are usually the harmonic

oscillator wave functions. Thus

=7, ¢
.G

IIB(11)
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where‘Cz are the expansioh coefficiehts.'Using this in
Eq.IIB(10) and also the orthonormality property of the

basis set we get

N

3{_,<Jl€‘b>cj~€&lc'b IIB(12)
whefe

BN f-uoj — : . §~ IIWO/ \/‘L/

GlEND=Lileld + 2 vty

It is clear from Eq.IIB(13) that Eﬁ is a functional of the
occupied orbits h%> . Hence to solve Eq,IIB(12) one has to
choose a trial set of C's, calculate the matrix € in
Eq.IIB(13) and diagonalize it to get a new set of C's.

With this new set one repeats the above procedure and thus
carries on an iterative procedure until the set of Ct'g

after diagonalization is the same as the one before diagona—‘
lization. The set of s.p.wave functions |o() so obtained are
sald to be self-consistent. With these s.p. wave functions

one congtructs the HF determinantal wave function. Also

one computes the HF energy using the following expression:
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TIB(14)

where X | ﬁ now refer to the HF s.p.orbits.

C. THE RADIAL HARTREE-FOCK APPROXIMATION

Since our purpose is to study the goodnegs of HF
states of some light double-closed shell nuclei, it is now
necessary to specialize the general eguations of the previ-

s

ous se. tion to the case of spherical nuclei.

The HF equatibns (see Bqg,IIB(7)) are solved by the
matrix method using a basis of harmonic oscillator wave
functions. The single particlé states ?Lp are expanded in
a finite series of oscillator wave functions éEq: £

®x = 7 S B 116(1)

p

The expansion.coefficientSCg as well as the number of terms

in the expansion and the oscillator length parameter .
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(b2:1ﬁ /- are parameters to be determined by the HF proce-

dure,

When the assumption of spherical symmetry for the
HF state of the nucleus is made, J2 and J, commute Qith e 9
and therefore the Hartree-Fock orbitals ?Cp must be
eigenstates of J2 and J,. Thus the states 7CI)can be chara-
cterized by the set of guantum numbers lnjm> . for 7;p
to be rotationally invariant, all the m states for a given
nj must be'occupied which is the case for the double-closed
shell nuclei we are considering. Further, for these nuclei
the HF s.p. orbitals have timewreversal symmetry, good
parity and charge invariance. With all these invariances
for the HF orbitals the expansion coefficients Cg in
Eq.IIC(1) are diagonal in angular momentum quantum numbers
and are real. Hence the sum in Eq.IIC(1) is over principle

gquantum number only., Thus Eg,IIC(1) becomes
1 j.m = c? j 1 1IC(2
pIp"™p o7 ,th n, mp 1 Tp) ()

where the sum is over the radial guantum number np. (Here
p labels any general s.p,state, not a proton label). In our

notation (see Sec.,IIB) this becomes

‘ Spmp ‘C'p> = ;F Cﬁp )np/‘S P T p7 I1C(3)
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We now give the expression for the matrix elements of t he
HF s.p. Hamiltonian (Eg,IIB(8)) in the spherical harmonic
oscillator basis., Since Ké is spherically syumetric, we

have

~ A
opmp T\ €12t ™ Tpr ) Gpp

_ : A
= (Aprmr Tl App T B

b,\wn\
Tx

t ) {appTe, e "’“A’CA\VV’P'”#' b o fx?%lv'

. TIC(W)
where the delta function Spp,: B/SPAP’ bmbmb‘ 8TPTP’
- .

= Ogg! 6mml Sttl Using Eq,IIC(3) for V:’p D p7 in
Eq.IIC(4) and remembering that the C's are linearly

independent we obtain

{rprpp T, { E;’\"HP )))’MP—CF>

o

= Copprp T (B b AP e )

+g> <hpﬁpw¢tp;mth%h/v%Apmp%>AAmeA>
ATOA
A

IIC(5)
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. Since the matrix-elements'of;gé , t aﬁd V.do not depend on
mp,’Cp we sum them over in Eq.IIC(5) and obtain the express-
ion for the matrix elements of Ef between s.p.harmonic
oscillator orbits differing only in the radial guantum
number, Further, we expand |s, W, T,) using Eq.IIC(3)

and carry out angular momentum coupling for the uneoupledd

matrix elements of V using Clebsch-Gordan algebra. We '

finally obtain
(o \ g |ny sp>'
1
::<Ppsp’ t‘ n gﬁ>

icn +1‘Z AT RTHNeAprw) N (g, ,\%)\»ﬂ,

/

e *
kAN
TIC(6)
Then for each spherical symmetry label s (9 J ) the

p=
N .
€ matrix is set up and diagonalized. This procedure is

repeatedvantil self-consistency in the s.p. wave functions
is achieved. At the end of this iterative cycle the HF

‘energy is computed using the following equatioﬁ: 

MF:<QEYH$ﬁFﬁ>
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- (4;/ ’>+<’ \elmj]

O(
!

)'\
A

TIC(7)

Another quantity which is of interest to us is the root mean

square radius (mass radius). The mean square redius is given

by
L= <r{7f3m~ | “‘A" nC | ®uE)
2(24,

D CArw | R ,<>C Ch/

x:‘\AJ>

pativars

Z

H

TIC(8)

e

where b/@««- ig the oscillator length parameter and A is

the mass number,

D. CENTRE OF MASS MOTION AND PERTURBATION CORRECTIONb

We are concerned here with light spherical nuclel and
therefore centre of mass motion (cmm) cannot be neglected

and its effect on the HF wave function, energy and width.
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have'to be properly taken cuare of.‘For a system of non -
interactingvfermions moving in an arbitréry potential wéll
the problem of seperation of the relative and the centre of
mass mdtions is yet an unsolved one. It is only when the
potential well is of the harmonic type that one can write

- the total wave function as a product of the wave functions
for the relative and the centre of mass motions and thus
separate the spurious excited states from the real excited
states., One does not as yet know how to carry out such a
factorization for the case of HF wave function. However,
one can make a correction in terms of energy if not in terms
of wave function. This is done by subtracting out from

the total Hamiltonian the centre of mass kinetic energy .
operator to get the intrinsic Hamiltonian. It should be
noted that the positive cmm kinetic energy term contributes
‘also to the width of the HF state Whose intrinsic width we
want to evaluate. By using the intrinsic Hamiltonian we

correct for the width also, We write

Hou- b |

= H - 5K ’ILD(1)
A .

_ - 7 . } o

Here'P = ;Z Pi is the total nuclear momentum and maA is

(=1
the mass of the nucleus and 2(‘ is the intrinsic Hamiltonian,

The operator of the cm kinetic energy can be written as a
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sum of one-=body and tko~body operators:

A
3?2 - -y S
=] 52 1 2
2mA 2m ;Z’Pi R ;Eg <Pi"kj) 1ID(2)
=) L’Fo‘/
Therefore we get
. — E?)D
L 1 1 - ( R , ,
I =3 2V ty 2 il IID(3)
: L) zj, 2mA : ,
which is a pure two-body 6perat05. Thug in actual calcula-
. 1 > (By-Fy) N
tions one just adds 5 4 L J , an additional
{y cmd

'potential! to the two-body interaction V. With the cmm
correction made, the interpretation of s.p. energies is not
guite straightforward and soume caution is needed. The cm |
energy can be taken to be the difference betWeen the total
energies with and without the cm term assuming of course
that the wave function does not change much. This method

for the cmm correction was used by Kerman7 et al.

We now proceed.tovconsider another correction‘to the
HF wave function and energy arising from the presence of
residual interactions in the HF representation. As mentioned
earlier, the HF Hamiltonian is an indepéndent particle |
Hémiitonian and one cannot get very far with such én appdei+’
mation to the complex many-body system that a nucleus is,
Residual interaotions cannot be ignored and their,effects

on the HF energy and wave function have to be considered
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in some way. One way of estimating these is via perturbation

theory assuming it to be valid. In the microscopic picture

the effect of residual interactions is to induce particle-

hole excitations in the HF state. One advantageous feature

of the HF picture is that the HF wave function is already

stabilized against one pnrticle-one hole (1ph) excitations.
The second order correction, then involves only 2ph eicitaf
ktions. We consider this here confining ourselves only ﬁo

writing down of a few relevant expressions.

The energy and the wave function corrected respectively

to the 2nd order nnd 1st order are given by

:bEHF"% <"QﬂHF\ Vres (@"HF> +Z ,<F@HF}\/ {’\?‘EDJ

Er — ET
IID(%)
*”\}Z‘Uz:. U+ Z <“1”p». Vs | P ,\37.
E‘ [:PH ”'
IID(5)
where V___ is the residunl interaction and Pl are the

various particle-hole states built over iEﬁHF and Eﬁh their

corresponding energies,

Now the 1st order term <fI?HF( Vresl “gb H€> in

Eq.IID(4+) is zero by virtue of the fact that 'iQiHF is a
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wave fuiction of an independent particle system. Also, the
s over the 1ph states in the third term on the r.h.s. of
BEq, IID(L4) vonishes., This property follows from the HF vari-

ational condition. Thus

<f'lﬂf\ o l(xp\ph;> for all i.

Further, because Vies is a 2-body operator, no more than
2ph states can appear in the sum om the r.h.s. of Eq.IID(4).

Therefore Fd.IID(4) reduces Lo

— +d 2
B = Bt Z? KV Vool Voo | 11D(6)

" i el
L Bpp - 5

This can be shown to be equal to the following expression

in the notation of Sec,ilB.

-

LA pIvIRCRUNV oD TID(7)
ol fRE Egp+€g—Cy—ER

Here Efp refers to HF s,p.energies. Now let us rewrite

E:EHF+E(2):EHF -

Bo,IID(5) as

) - LS cPh o -
M pou un ZZ ‘
T e ~ L TP‘\
L IID(8)
where the factor o( has been introduced so as to normalize
]
A H(1)9 i.e. <§i@< ) (%g = 1 and
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Cph _ <qz)%)h’ Vreg} ;\}Zq_m> - 1TD(9)
1 ph A

B - Tk
T T
For reasons stated before the sum over ph states in Eq,I1ID(8)

is only over 2ph ones. The expression for K ds then

2
s 1 4
1 + Z\Ciphl
L

Further, it can be shown that

2
S 221 7 IKBlyl kD)
: ,

IID(11)

. A METHOD FOR BVALUATING THE WIDTHS OF DETERMINANTAL
WAVE FUNCTIONS

Now we describe in detail a method2 for evaluating the
width defined through Eq.IIA(1). To evaluate it we make
an intermediate state expansion in the complete set of
orthoriormal particle-hole (ph) states built on the wave

function }"@?)a Then Bg.IIA(1) leads to

[A]
i

52 o - Lo ST Chpln e — KL
a. ph
states
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Note that the series on the r.h.s. in Bq.IIE(1) terminates
at two particle-hole states since I being a (1+2)-body
operator, will not connect ph states higher than 2 ph
ates bto - e, I i o [Tt
states to the ground state. Now since \“ noph>”“ ‘\k£> the

first and last terms in BA,IIE(1) are identigal. Thus we get

&2 - %h 1T T H I -JPZKWH ’“Q,F)O)

From Eg.II®(2) we see that the width of the wave function
iqfﬁ;>arise8 from the one particle-hole and two particle-

hole excitations only.

Since we are concerned here with the goodness of HF
states, the Eq,IIE(2) can be fﬁrther simplified if we
remember that the first term on the right vanishes. This is
because the Hamiltonian # cannot connect the HF state with

the 1ph states. Thus we have
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2/ _ N T & T
TPy = 2 <P H ) epn)] II5(3)
zph
We see therefore that the width of the HI' ground state
ariseg purely from the 2ph excitations.

We now give explicit expressions for the variance, 1In
the formalism of second quantization we can write, using the

notation of Sec,l1lB,

1pg> - 1{ q/ 4yj>

and T~ [ S T
\“L 2ph> =8 oy 0 | b
Substituting from Eg,IIE(L4) into HEgs.IIE(2) and IIE(3) and

using Eq,IIB(3) for H we arrive at the following expressionss
‘2«-__, Py ~
() = %<d|6\ LR T
L7 Lo |V RO (REIV]AED
4‘d@R{
ITE(S)

and

D’”Q("EH x%%{{@{b RUPRE]V | P

T1E(6)
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Here the matrix element <O/y€‘}i> of the single-particle
Hamiltonian is given by

N A
Ll E|RY> = L) ETVRY + 7l N v RAD
A=l
' TIR(7)

In the case of double-closed shell spherical nuclel

~

the above expressions for Cr‘d can be simplified., For these
nuclei the HF s.p.states have good orbital and total angular
momenta and hence when they are expanded as a finite series
in the spherical jm basis states, the sum goes over radial

quantum number only (see Sec,IIC). Then Eq,IIE(6) for HF

variance goes over to

2.
o (WyE)

_L S >

'¢%Qﬁ Z

5. PR{’ % }(x @RQ

><<(w&.)m‘“)a( , (mym f)ﬁ V] (e jm O, ngjm Ty *

‘ <<~nfz.;mz>m (D VI egm e, (08T )

ok \ Wk Q
( L C / (//Q { C ( “' | (,
( L) Y IIE(8)
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<

where TZ:J I ~means a summation over the
AT yap ke » |
quantum numbers 1,j,m and T of the orbits o/, p , Kk, 0,

Similarly for ;ZJ . It should be pointed

ity pRe

out that five distinct types of uncoupled matrix elements

of V enter into the calculation of width. These are
Lov| vippy, n|v|my, <p5) v | pp >,
ol v | pn)

and

41;&32 V‘iwﬁﬂ;?

Here p gtands for a proton in a certain state and D a
proton in the time reversed state. Similarly for n and n,
Note that of these five types only the first four enter”
in the ordinary Hartree-Fock calculation. Thus when width
calculations are done in a large space the number oi terms

can easily become astronomical,

We next express the uncoupled matrix elesents of V
in terms of coupled two-body watrix elements VJT having
definite total angular momentum J and total isospin T
using Clebsch-Gordan coefficients. Since VJT and the
expansion coefficients C are independent of m we can use
the sum rules for Clebsch-Gordan coefficients and simplify

, . 2
the expression for & ~. We then get
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. NUMERICAL RESULTS AND DISCUSSION

We degcribe in this section some numerical calculations
and results. As an application of the foregoing, we have
carried out radial Hartree-Fock and width calculations for

. S oL 16 4o,

the double-closed shell nuclei He, ~0 and ~Ca, These
calculations were done in the model space of first four
narmonic oscillator major shellg. Three different sets of
effective two-body interactions were used viz, the Tabakin

13 _ 12 ﬁ
interaction ~, the Sussex interaction ~, and the Kuo bare
. N _ , ) .
interaction ', As is well-known each of these interactions

has a claim for being "realistic", these having been derived

in different ways from the two-nucleon scattering data,
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The correction due to the centre of mass motion was included
as described in Sec,1ID, No correction arising from Couloumb
repulsion has been made, Thus the binding energies presented

here refer to the nuclear energies only.

Firgt let us congider the resultsq of calculations
made using the Tabakin matrix elements (Table II-1). For
the oscillator length parameter b (Sec.IIC) we have used
1.81 fu for both “He and €0 and 2,03 fm for l"'OCaQ The HF
energies for the Tabakin interaction are, as is well~known7?
low compared with the experimental binding energies, Further,
the second-order correction in energy B(2) is approximately
20w of EHF for LFEfie and 160 which is not negligible., This
wag first noted by Kerman et 21’. The widths O are large
for the HF states of all the nuclei shown. In 16O the HF
determinant has a spread of about 24 ileV about the HF
energy. This large spread implies that the ground state
wave function of 160 (and of other nuclei discussed) cannot
be described by a single HF determinant. In fact the HF
intensity shown in column 6 of the table gives us a measure
of the importance of the HF state in the wave function
corrected to first-order (see Eqg.IID(8)).

We see from the values of O(g(see Bg.IIDE8,10)) given

N
in Table II-1 that except for He there is a sizable
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admixture of the 2ph states in the other nuclei, In column 5,
the r.m.s. radius r calculated using the HF determinant

is shown. We have also Studied the effect of the centre of
mass motion (cmm) term on the HF potential energy as well as
the width O (HF), We find for instance in 160 that the

HF energy for the intrinsic Hamiltonian 3%1 (see Bg,IID(1))
1s lower by about 11 eV compared to that for the Hamilto-
nian H, The width O (HF) is also swaller by about 2 MeV
when the cmm term is included. This trend for both EHF and
07 (HF) follows from the positive definite nature of the
cmn term, Finally, recalling the discussion in Sec,IIA about
the bounds on the exact energy we see that the interaction
used here may give an additional binding of about 3 MeV per
particle in LFHe9 1.5 eV per particle in 160 and 0,5 MeV

« ko : .
per particle in “Ca. From Zg,II4(3) we have

+ 0

£
=

-0 & By ig

. 16
For the case of @ 0 we get
- 58 B -2
68.58 é ro \é 0
Using further the second-order correction we have
By { Bp + B
4 ~53.43 MeV,

We get -68.58 fg B, << -53.413
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This tells us that if one does shell medel calculation for
160 with Tabakin potential (b=1.81 fm) in 4 oscillator major
shells, at least one shell model eigenstate lies between
-63,58 eV and -53,43 MeV, The ground state also lies

most probably in this energy interval considering the fact
that E&E‘which is a good approximation to ground state

‘energy is -Wh,29 MeV,

The results of calculations with the Sussex matrix
elemnents (b=1.7 fm) are shown in Table II-2, These results
pertain to the original version of the Sussex matrix elements
(Ref.12). It should be mentioned here that Elliot et al
have recently published a wmodified version of their interact-
ion. We see again that the widths of all three nuclel are

large and that the 2p-2h correction to the HF wave function

is non-negligible except for He,

The recsults of our calculations using the effective
interaction matrix elements of Kuo (oscillator energy para-

—

meter"ﬁh‘: 12,5 ¥MeV) are shown in Table II-3. This inter-
action gives overbinding for all the nuclei shown. Lere also
we find that the widths of the HF determinants of all the
nuclei are large, We also see from the Tables II-2 and II-3
that the widths of the HI' states resulting from Kuo's
matrix elements are much bigger than those for the Sussex

interaction. Also the former interaction gives larger HE



energizs, Next we try to find out which interaction gives

a 'pbettert HF solution, for this purpdse we multiply the
Sussex interaction by an overall factor K so that iR
(modified Sussex) = EHF (Kuo) and compare ¢ (modified
Sussex) with o= (Kuc) (results not shown here), We find

that o (modified Sussex) is slightly smaller than & (Kuo)

and hence we may say that the two interactions are essenti-

ally equally good or bad for determining zero order (HI)

wave function, The guestion which interactions are more
suitable (in the sense of width) rfor carrying out HF calcula-

tions will be discussed separately in detail,

It should be remenbered that both the Sussex and the
ituo matrix elements are G-matrix elements and not V-matrix
elements, Thus there might be some questions raised
regarding the double counting problem while evaluating
widths and perturbation corrections. However, since we

are calculating these quantities within the model subspace
of four oscillator shells only they include unoccupiled
orbitals within the model space only. Furtnermore, for the
"hare" G-matrix elements of Kuo11 the intermediate states
tend to have high energy and therefore they would by and
large lie outgide the model gpace, Thus we may eﬁﬁﬁ@% the
double counting problem not to be very serious, Such an

expectation seems to be verified "a posteriori in view of
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our results for the three interactions.

It should be emphasized again thaﬁ the HF calculations

of energy r.m,s. radius and the perturbation corrections

to EHF and = (HF) are meant basically for making comparison

with the results of the new variational method (see Chap.III).
These quantities have been calculated earlier and in wuch
larger model spaces as well, Hence a detailed discussion of
these quantities in the light of experimental data has not
been made here, Ofcourse the evaluation of o~ (HF) has not
been done before in this model space of four oscillator

major shells which we have used here.

G THE EFFECT OF ENLARGING THE MODEL SPACE

The spectroscopic model space one deals with in
nuclear physics is a finite vector space. In spectroscopic
calculations one tries to simulate the effect of the real
interaction in the infinite Hilbert space by an effective
interaction in the truncated space. Several interesting
problems arise frow this process of reducing the infinite
Hilbert space. Here we ask ourselves the guestion how the
widths are affected by truncating or equivalently by enlarg-
ing the given finite vector space. If a wave function
calculated in a given model space 1is transported into

another larger model space and allowed to spread there, one
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can then study the effect of the enlargement of space on

the width of the wave function., We show in Table II-L4 the
resultsLF of such calculationg done using the three different
interactions already mentioned, These calculations do not
include cmi correction. To start with, we made a sbherical
HF calculation for 160 in the space ol three oscillator
majorkshellsn Then we enlarged this space by opening the
full O0f-1p major shell and allowed the three-shell wave
function to spread. As can be seen from Table II-4, this
width is greater than both the three major shell and four
major shell HE widths, All three interactions exhibit
similar trends. These results show that a proper self-
consistent solution in four shells (column 3) is a definite
improvement over a three shell HF solution considered in
the space of four shells. The difference between the two
cases arises from the wmixing of the Op and 1p oscillator

orbits in the IF case.

We also show in columns 5 and 6 of Table II-4 the

. . ) L 2.

widths for the pure oscillator determinant (os) (op) in
the space of H=3 and N=k oscillator shells. Again we see
that the HF solutions are '"better" in the sense of widths
than the pure oscillator states,

Another feature we observe is that the widths become

larger and larger as we enlarge the space, This would mean
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that as we carry out calculations in increasingly larger
spaces the HF solution gets worse; in other words there
is an increasingly greater departure from the model eigen-

state, We can understand this increase in width with

increase in the size of the space as simply arising frou
the larger number of states the HF state can now mix with.
It should be remembered however that although the HF state
may have a sizable matrix =lenent with a distant state the
rixing of this state (in HI state) will be small because
of the energy denominator which enters in the expression
for the mixing amplitude,

In view of this we have evaluatedu the ratio of the
width with the spectrum span that the model nucleus has
in the space. The spectrum span was determined by assuming
the nuclear states (in a finite space) to have a Gaussian
distribution1 in energy. The parameters1 which define the
Gaussian density are the centroid energy (EC) and the
width, These were e:valuated1 and the ground state energy
B determined by using Ratcliff's1 procedure, The spectrum
span was then taken to be E(EE"Eg)° Although this method
is probably not as accurate as some of the other methods
suggested in ref,71 it provides a reasonable estimate of tihe

gpectrum span.
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This ratio is shown in column 8 of Table II-k, We find
that it is very small and more or less constant implying
thereby that in each case the HF state can mix appreciably
with only those states which lie within this small fraction
of the spectrum span.

Although in our examples the widths of the states
increase with an increase in the size of vector space, it
might be interesting to consider interactions where the
widths "eaturate'" as the space is enlarged. Note that since
the width is a sum of squares of matrix elements, such a
constraint on the interaction is non-perturbative and also

more sévere than demanding convergence in perturbation

theory.
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CHAPTER IIT

A VARTATTONAL METHOD BASED On MINIMIZATION OF
ENERGY VARIANCE

A, INTRODUCT ION

We have so far discussed the concept of width of a
wave function and applied this concept to the study of
goodness of some HF determinantal wave functions. We
discussed in chapter II two different criteria for the
goodness of wavs functions and pointed out that correspond-
ing to each criterion one can set up a variational procedure
for obtaining approximate wave functions. It was also
pointed out that if we allowed for the most general varia-
tion in the wave function then each of these procedures
would be equivalent to solving the Schroedinger equation,
We obtain different variational solutions only when we
put restrictions on the variational wave functions. For
determinantal states, the energy minimization leads to
the well-known Hartree-Fock procedure. This we have dis-
cussed briefly in the previous chapter. Our results of the
calculations described therein showed that the widths of
Hi states of double-closed shell nuclei are large, That is
to say, these HF gtates are far from being the ground state

eigenfunction of the model Hamiltonian although they are
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the tbagt! determinanﬁs in the sense of their energies
being minimum, The guestion then arises whether a single
Slater determinant which has minimum energy variance
instead of wminimum energy provides a better description of
the ground state of the nuﬁleus172° We take up this
guestion in this chapter and study it in great detail. First
we develop thisg alternative variational procedure and then
apply it to double-closed shell nuclei whoge HI' wave
functions and widths we have already obtained as discussed
in chapter II. Iinally, we make a cowmparative study of the
two distinct variational procedures viz, the HF procedure

and the variance minimization procedure,

B. FPORMULATION QF THE MBETHOD

Consider a Slater determinant \izi> (see Ea,IIB(1))
as an approximation to an eigenstate of a nucleus consist-
ing of A nucleons, To determine \i&j}let us require that
its energy variance <T“2(’@?) as defined in Bq.IIA(T) be

stationary when &r@n>> is varied, This means
L

‘\"’fl.f\f\ TS TS ~ N 2
o () _ o CPIWREY — R IR

Ly QER

o
|

I1IB(1)



Here ¢ denotes the most general variation of }i£“>; Ir
we require further that {&F)should be normailized then the
variations in yﬁﬁ> will be restricted to first order

variations only, We can then write BEo,IITB( 1) as
("w ) 7 ) N 2')
G l({@b\¥4 3fﬁf>”“?<*£“)*+f“£f>‘ if:<>* IIIB(2)

Since |"yand its conjugate ()| can be varied indepen-

dently we choose to vary 4?&%1 . Now for a first order

change é§<§@§ in (g%ﬂ{we must have
0 <“¥?}::’r}<fQ?th] TIIB(3)
where 7] dis an infinitesimal and <6£?1ph\ is a one

particle-one . -hole state built on <ﬁ§ﬁ). With this the

Bq.IIIB(2) becomes

EP W Ty~ 2P IH P> (P HIE ) =0.

TI11B(H)

W) =24 | W )T (0 iph | KT = 0.

TIIB(S)

<{Ew!‘:)\7



In order to evaluate the first term in EQQIIIB(S} we carry
out an intermediate state expansion where we choose for

the intermediate states the complete set of particle-hole

. ot oe G xr".\/ B — ) Ty . R A
(ph) states 4 Wnph | (n=0,1,2,..) built on the state |[{)

Then g, I1IB(5) gives

<’\Eﬁ1 Ph\ H \ ’\Eiﬁm> ‘/\\]Z'/O})h\ H ]f\lﬁ>

! Z <A@‘PM H\qﬂ}“ Py‘><’q—ﬁ{l ph | R H./>
ﬂﬁi?h

+ 7 Chpnl T (T | T
Phyph

= 2 {2 [P <Denl i) = 0.

I1IB(6)

TT T A . F B -y q T /
Tn Eq.IIIB(6) terms of the type <f%b1ph{ m{ U npﬁ>’x
X‘f¢%éph) H)7¥f> where n=3,4. .. do not contribute, This
is due to the fact that the Hamiltonian H being a (1+2)-body
operator can connect at most a two particle-hole state to
the state "~ . Further, since VQﬁéphj>25an> , B, IITB(6)

simplifies to



In order to evaluate the first term in Eq,II1IB(5) we carry
out an intermediate state expansion where we choose for

the intermediate states the complete set of particle-hole

. . P ¢ A,‘,,_\/ - L ,.3 v R I T
(ph) states 2 W nph“? (n=0,1,2,..) built on the state }qi>a

Then Bqg,I1I1I5(5) gives

</\Tfu Ph& H SK‘EL]M> <ﬁ(tv}>h\ H l@>
B Zi <qwahlh ?\\&QN:QQDR & >

\l’" tph

Z Tl BTy (T | R T
?‘zp%

=2 (PR pn i) =0,

I1IB(6)

T T 3 T £ Y e o = /
In Eq.IIiIB(6) terms of the type <f%ﬁ1ph{ JA(’g?)nphj>x
/ T .
I 1Y where n=3 L b cribute . This
X‘(%ﬁnph) ﬂ) @§> where n=3,%, ., do not contribute . Thig
is due to the fact that the Hamiltonian H being a (1+2)-body
operator can connect at most a two particle-hole state to
+ - - ETLI = g 'y ’ o T, . T
the state ‘Q? . Further, since t@foph>>:qua> , B, ITIB(6)

simplifies to
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L < \I Yﬂlph> <{£fg/}>h\ H \#\‘E>

Y\Ph

Jrql_ <vz,}7 "’”2 >}q>< q{jl)}}\ W_E\>
A/‘IPH

o <:gﬁ >><tQZ)Ph }Fit\\ =0

IIIB(Y)

Next we briefly describe the evaluation of wvarious terms
in BEq.IIIB(Y), We adopt the notation described in sec,IIB.
: - " T vl T / 4 T T
Consider a term <64£3ph) Li} !2‘11ﬁ$7 <fqz\?ph} H y“/w;>
. , . . o ! . . . To TTIR : e

in the sum over )@, 1ph> states in Bq.IIIB(7). In th

second guantization formalism this becomes

v, 2, occupled

k,1,uncccupied

<\£’\\do< a, o a;: a‘ﬁ\ »£><{_}Z la; a; H

IIIB(SY)
. — S
where we have written <E([\ ‘Iph} = <’ﬁf ‘ a L ay_ and
VQ?1IWQ> a+ a, -@h;>, Substituting for H frow Eg,IIB(3)

we get
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ITIIB(9)

Now we can apply Wick's Theorem to the products of operators
here and simplify., On carrying cut the contractions and

the sums we get

z <"I/1];%‘H\\?/\P\ﬁ><@i;>h1 H){j?
T iph
= LW U] P Y LR|E]aD> + ;mamwaw

“ZLKIEIR)CPIE N = ZCRIE By CBRIVIH

ITIB(10)

Here <p) g:] q>> is a matrix element éf the one-body
Hamiltonian defined as follows:
<1ﬂ 6! §> = <@)‘t}q> + Zi <P)\3V! QJN>
- A occupied
TIIB(CTT)



To evaluate the terms in the sum ov 7! tates
o evaluate the terms in the sum over J gjgph>> states
we write

- . |

<<§E1ph’ - <§{ }%X -

+ _+ .

| 2ph/ = %1 %m a}l B ]q£é;>

Then

IR oy .
< lpn i) P 2ph> <\f 2ph\ EARVAD
) <@ } ac; “x . ai a:Y; a{% Ay )\T{? <?_>kaﬂ:,a; ™y H I\E>

ITIB(12)

We next proceed to evaluate the various terms using Wick's

Theorem and finally arrive at the following expression

E§~ <kﬁb,Pyl¥4 ¥ 2p¥>7<¥§ﬁzP%k’4}A%T
N J,’DH

= T LBIENLRUVIKPD
pr
+5 7 LPRIVIEm) L] o)

pm

DR G IS AR

Y I1TB(13)



Now the last term in Fg,IIIB(7) is just <ﬂ?fH}i@7‘iR}€'kx>
which cancels exactly the first term in Bq,IIIB(10), Substi-
tuting for the various terms in Bg,IIIB(7) from Eqs.ITIB(10)

and IIIB(13) we finally obtain the following equation
D CRIEVEY LRI E ey = 5 R EV Py LPIE]D
: F

7 LR pyLBRIVI LA +% CplE|eyLReIVIdp)

L ;qu I gy L8| N ] R

—t ZQ}:@M N &Y><’b\/l Y ]o(\m>
= fym

. TTIB(1H)

<

It should be recalled that Greel letters o ,p, ¥ N,
etc.refzr to occupied s.p,states and k,1,m, etc. to the

unoccupied s.p.states.,

Next we define a single-particle operator

-7 (o

Pq, Q,

{ri',< PICIE>(PIEI9D

Y RIE ]
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+ 2 LB <PP vm«%}} R AN

*ézZ/< IV G L VB9

=5 7, Ll VP (Y Vg Fad o

By TIIB(15)

where p,q denote arbitrary single particle states, Then from

Bq. IIIB(14) we have

92F0>:O oL LA, k > A IIIB(16)

N2
Bq.ITIB(16) tells us that the single-particle operator -

does not connect the occupied single particle states to
_ . ) ~ 2
the unoc:upied ones. This property of ¢~ allows us to
AN
diagonalize o in the gpace of occupied s,p.states
only to obtain its eigenvalues and eigenfunctions., We can
then write

0;2‘)>§> = Wy [\
TIIB(17)

where A now label the occupied s.p.states and'NA‘ are

. ) Lo 2
the eigenvalues of o . B, IIIB(17) is apparently the
) , _ . ~ 2 .
eligenvalue equation for the operator ¢~ . This wmay be



compared with its HF analogue (Eq.IIB(10)), We see from
T AE 4 N . . N N
Bg.IIIB(15) that g~ © is a functional of occupied s.p.
wave functions., Therefore Eg,IL1IB(17) has to be solved in
a self-consistent way, The procedure here is the same as in
HE (see Sec.IIB) and consists in sebting up an iterative
cycle by starting off with a trial set of s.p. wave functions.,
. ) . M2 o .
Uging this trial set one calculates the ¢ matrix and
diagonalizes it to produce a new set of trial wave functions
for the next iteration ., This cycle ig stopped when the
incoming and the outgoing s.p. wave functions are the sawme
i.e. the s.p. wave functions are self-consistent, With these
wave functions one computes the variance of the determinantal
wave function using the Bg,IIE(5). This then is the deter-

minantal wave function having wminimum variance,

Orce the minimum variance wave function ﬁﬁb- has been
obtained, evaluation of physical quantities like energy
(Bq.IIB(1%)), r.m.s. radius (Bq.IIC(8)) etc. is straight-

forward,

C. PERTURBATTON THEORY CORRECTIONS

Although the wminimum variance wave function has
built into it some particle-hole correlations it is neverthe-

less an approygimate wave function., Hence it is necessary
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to evalu.te the corrections to it arising from the presence
of regidual interactions., It was mentioned in Sec,l1D that
a proper way to take care of the effects of the residual
interactions is to treat them in perturbation theory. For
the HF state the first nonvanishing correction coumes from
the second order terins these consisting of Tph and 2ph
excitations to the HF state. Further, the 1ph terms vanish
by virtue of the HF minimal condition. Thus the second
order correction to the HF consists solely of 2ph correct-
ions, This simplification obtaining in the HF picture is
unfortunately not available in the present wmetnod, In
other words, the zeroth order wave function 'ﬂfgf has non-
vanishing matrix elements with both 1ph and 2ph states.,
This will be clear if we consider the minimal condition
for energy variance viz,

{5V (H= (MDY g )y=0
TIIC(1)

from which it does not follow that

(oF [HI)=0

TITC(2)

which is the condition required for the vanishing of 1 ph

correlations to \J~ .
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Now we give the explicit forims for system energy and
wave function correct upto second and first order respecti-

vely., In the notation of Sec.IIB we get

;'

AR Tl 5 16Tl r] Pap]

E =4{w e A =
<77 ;Zé EU = \ph Zsﬁi Esy— —~ P}
N ) ) &
E’ O\)QJ}Q\>1 I N\O”’E\/}R‘{)>}
= b 1 ;
o s € - € 4 Zi- €, Cp-€p-€y

IIIC(3)

and N (s H h g | R s
a”'(_'i_)w” +Z/ 5" (\Y)sz 7; o :/\{)L[

i:* - tip)w . {ﬁh ED"WE‘?_}?H 2 ph

=T+ 2 - T (epIVIRE  E
o0 o C—€Er !PH %;f %{*és fg«EQQE%

ITIC(N)

In Egs.IIIC(3) and ITIC(H) Py, fﬂfwgph are particle-
5 ETph and ﬁ2ph
the expectation values of the Hamiltonian H taken with

hole states built on iﬂ%r and E
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Vo s igaph and "Q@gph respectively., d, PyR, {, are
the s.p. states in W5 and €, ete. are the expectation
values of the one-body aperator e evaluated in

states o , etc. Tor the definition of € see

1, IIIB(11). To normalize n@é;) we write

1) , -

;Z; Coph ‘Q;zqu

I1IC(5)

where ¢ is the normalization factor and the C's are the
. . . (1) (1)
expansion f ts. Using ) x : =
xpansion coefficients. Using <2§QT' Aiif“ > 1 we
get

= o 2
o= 1+ 7 ‘<o<\%%*%};¥_.+,smz" i<o<HV)Rfe>z‘

ITIC(6)

D. NUMERICAL RTSULTS AWD COMPARISON WITH TiHE HEF METHOD

We consider in this section the application of the
variational method described in Sec,IlIB to some double~
closed shell nuclei1’2. These nuclei are not deformed in
their ground states and hence a good approximation to then

would be Slater determinants which are spherically symmetric.
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The assumption of spherical symmetry reflects itself in the
spherical symmetry of the s.p. wave functions. Thus the
admixture is only in the radial part of theis.pa wave
functions., We have already discussed these points in
connection with radial HF (Sec.lIC). We give in Bg,IIID(1)
expression for the matrix elements of the one-body operator
3;2 (Eq.ITIB(15)) in the harmonic oscillator orbitals

]nlj} using the notation of Sec.IIB., The delta function

in Eq,IIID(1) has the same definition as the one used in

~

P

- etc, are the expansion coefficients

Bq.IIC(4+). The C
(see Eq.IIC(3)).

The high degree of non-linearity of the set of equati-
ong in IIID(1) is evident. Whereas the Hartree-Fock method
gives rise to a set of simultaneous cubic equations in
Cls (see Eg.IIB(12)) the present method yields a set of
simultaneous equations of the seventh degree in C's.
Consequently the numerical solution of Eg,IIID(1) becomes
harder and poses some convergency problems, Another source
of complication is the existence of multiple minima, We
have not studied all the solutions corresponding to different
local minima, but they may provide some interesting infor-
mation about high lying states having J=0 and T=0., Tor

comparison with the HF results we have always chosen the
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solutivn having the lowest energy. We present in Fig.1 a
i 2 1

plot of the variesion of & - for 60 with déterminantal
wave function "ﬁ? . This is a calculation in the first

three harmonic oscillator major shells and therefore there

1s only one variational parameter viz. C(os,). This

>
<

calculation was done with Tabakin (bh=1,81 fm) force with
centre of wmass correction included. It is seen from this

2 . . ,
plot that ¢~ goes to a minimum in the neighbourhood of

the

i

1 minimum, Further, we also see another minimum of

n

aJ- coming at a high energy. We also present in fig,2
a plot of the expectation values ) <ﬁE‘}F%I“¥b>\2J and
L ).

<

<"E?))Alfgff> for %o against the parameter C(os
This 1s also a three shell calculation with Tabakin
(b=1,81 fm) matrix elemnents with cmm correction. It is
evident that the two quantities vary in a similar fashion
with variation in C(os%)o An interesting feature of this
plot is that <&q?}};2}r§h> aiso has a minimum near
the HF energy miniaum, It might be interesting to
investigate whether this feature extends also to the higher
powers of I i,e. whether the expectation values (3@2}14P/§EC>
(py 2) where -J* is a Slater determinant, also become
ninimum near the HF minimum, All these are aspects which

remain to be studied further,



Fig.1

o 2, - . . :
Variation of ¢ (YY) with determinantal wave function
. ) .16 i : N
The nucleus ig O in the first three harmonic oscillator
major shells, Thus there is only one variational barameter
in P Viz., C(nlj)=C(os,) which is the amplitude of the

- E)

}os%\y state in the orbit [s,> . The two-body inter-
action used here is Tabakin force (b=1,81 fm), Y-axis shows

2 . . - . 2

0 11 powers of ten (units MeV®),

1y,

5

Variation of the expectation values ]<w§\}H)f§?>{a
D .
and (ﬁgwﬁf%fﬁb> with determinantal wave function ',
.]/

. , L . . O~
The variational Parameter is C(os,). This plot d1s for 0
5

in three major shells with Tabakin interaction (b=1,81 fu),

Y-axis shows the two quantities in powers of ten (units

M eV2 ).
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We now consider the energy variance minimization
calculations which we have carried out for the double-
closed shell nuclei qu? 160 and LFOCa, These calculations
were done in the model space of first four oscillator
major shells., The three different sets of effective
two-body interactions discussed in Chapter II were uged
here also viz. the Tabakin interaction, the Sussex
interacticn and the Kuo bare interaction., We have included
in these calculations correction due to the centre of mass
motion., The procedure for doing this has already been

discussed in Sec.IID, Coulomb corrections, however, have

not been included in these calculations,

s

We show in Tébles ITI-1, III-2 and III-3 the results'
of calculations made with Tabakin (b=1,81 and 2.03 fm),
Sussex (b=1,7 fin) and Kuo (Rw=12.5 MeV) matrix elements
respectively. In these Tables we show the same quantities
as were shown in Tables II-1, II-2 and II-3 for the HF
solution (see Chapter I1). We see that the energies
obtained by the two different variational procedures (the
HI" and the variance methods) are nearly equal in all the
nuclel studied, This shows that a variance minimum solution
exists in the neighbourhood of the HF solution., The maxilmum
differeice in the energies of about 2,3 peV for Tabalkin,

2,71 vieV for Sussex and 1,9 MeV for Kuo interactions obtained
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. . e
by the two procedures is found in the case of O. Further,

the minimum variance obtained is at besﬁ only a few per
cent smaller than the variance of the HF solution. This
means that the wave function obtained by minimization of

5¢2 is not really very different from the HF one in so
far as these studies indicate., In other words,the HF

solution nearly minimizes the width in the ground state

domain,

We have also calculated using the wminiwmum variance
wave function, second-order perturbation corrections to
the energy arising from 1ph and 2ph excitations (see Sec,
IIIC). The total correction in energy is denoted by E(2)
in Tables I1III-1, III-2 and III-3, It should be emphasized
that unlike the HF solution the state f@?5~ gives non-zZeroc

contribution from 1ph intermediate states,

It is seen that the second-order perturbation correct-

ions E(2) obtained for the two solutions do not differ

very much , However, the 2ph intermediate state contribution
to B(2) calculated for the minimum variance wave function

is found to be lesg than that obtained for the HF wave
functions (these results are not éhown here), The reason

for this ds as follows: in minimizing energy variance we

are winimizing the sum of one particle-hole and two particle-

hole contributionsg to the ground state wave [unction as is
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clear from Bg,IIR(2), Thus the minimum variance wave
function already contains some two pérticle—hole contribu-
tions in contrast to the HF wave function which does not
and cannot contain such a contribution. We find that in
the case of 160 this difference in the 2ph second-order
correction is abcut 1.7 MeV for all the three interactions
used. Thus the present method provides us with a deter-
minantal wave function that has less 2ph second order
perturbation correction than the HF determinant, Let us
next consider the intensity of the state ’§T5~ in tne
wave fTuncticn ﬂfgz (corrected to first order in perturba-
tion theory). If we compare the numbers in colum 6 of
Tables II-1 and III-3, Tables II-2 and IT1I-2, and
Tables II-3 and III-3, we find that in almost every case
the intensity of ’@3@~in.’§ﬁg) is almost the same as the
intensity of iﬁ}w in ﬂgé? .
14 i

We show in column 5 in Tables III-1, III-2 and III-3
the r.m,s. mass radius r obtained by using “ﬂ;« ., 1t 1s
seen that the wminimum variance method gives a smaller

nuclear radius than the HI method.

L Tables II1-4, I[I-5 and I1II-6, we show the single
particle energies for the interactions of Tabakin, Sussex
and Kuo respectively. It is seen from these results thet

the present variational method generates a single-particle
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potential well that is much deeper compared to the HE
potential well, In the case of 160, the lowest occupiled
level (s,) in Ny is about 2-3 eV (considering all
three interactions) below its HF counterpart, Now 1f we
consider the total potential energy of igb~, it is
found to be larger than ﬁEWHF’ But we find that the
total kinetic energy of ”QQT is also larger than !E‘HF
and the net result is that the total energy of “}%— is

smaller than ’@“HF,

Next, it is seen that this variational method gives

[}

rise to larger spin-orbit splittings as compared with the

. . . .16 o g
UF wethod, For example, in the case of 0 calculation

with Tabakin matrix elements the lowest 14 - Dy

3/2 1/2
splitting in ﬂZtﬁis larger by 1.9 leV than its splitting
: AT . amAd e - o o in AP Lo
a1 Y HR and the d5/£ d3/2 E,pl]_tt]_n% in Irzj_ i
larger by about 0.83 MeV, The differences in spin-orbit

16

splittings between P, and Ve calculated for 70

with the Kuo and the Sussex interactions are found to be
smaller hthan their corresponding Tabakin values., These

Ly
observations also hold in the case of He for all the three

Lo
interactions used, In the case of Ca the sin;le particle

structure of the wave function ﬂyb/ ig hardly distingulsh-

able from that of iﬁyﬂv
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Let us now conéider the energy 'gaps' in the two
variational solutions, Thisv'gap‘ is defined as the energy
difference between the lowest unoccupied and the highest
occupled s,p,energy levels, For the case of 160 we find
that with all the three interactions used, the variance
ninimization method produces a gap which is only slightly
larger than the HF gap. The maximum gap difference of
only 0.43 MeV is found in the calculation with the Xuo

matrix elements,

We show in Tables IT1-7, III-8 and IIT-9 the gsingle.
particle wave functions for the interactions of Tabakin,
sussex and Kuo respectively. We have shown only the
lowest 51/2, p3/2 and p1/2 orbits (the others are either
orthiogonal to these or do not contain radial admixtures)
and the expansion coefficients for these orbits in teras
of pure harmonic oscillator (H.0.) basis wave functions
(see B.ITC(3)), We see from the results that the variance
minimization procedure generates s.p.orbitals which contain
more aduixture of H,0, radial wave functions than the HI
procedure, This feature is common %o all the nuclei studied
with the three different interactions. Thig is due, partly,
to the fact that besides Tph, 2ph excitations are also

) o o . . 2
included in the minimnization of O~ 0
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CHAPTER IV

WIDTHS OF DEFORMED HARTREEmFOCK.STATES

A, INTRODUCTION

In this chapter we discuss the application of the
concept of width as a measure for the goodness of Hartree-
Fock states of deformed nuclei. Only those nuclei for
which the assumption of axial symietry seems to work well
are studied here. This study forms a natural extension of
our study of the goodness of HF states of spherical nuglei
which was presented in Chapter II. Work on lines similar
to ours described in this section has been reported by a
few awﬁ:horshl1L earlier, Our purpose here in presenting
this study on widths of deformed nuclei is two fold:
first, for the sake of completeness of our discussion on
widths it is necessary to include in our study a discussion
on the widths of deformed nuclei. Secondly, we would like
to present here some results of constrained HF and proje-
ction calculations for Preedom-Wildenthal and K+12FP
interactions and also for é Schematic interaction which

have not been reported so far in literature.

In section B of this chapter we discuss the concept

of intrinsic wave function and the gquestion what the width
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Ty

of a deformed intrinsic state tells us. W@ point out there
that the concept of width as a measure for goodness (as
discussed in Chapter II) is uéeful only for those approxi-
mate wagve functions which have exactly Lhe same

symmetries as the real eigenstates of the Hamiltonian. As
for the concept of width applied to deformed intrinsic
states it hag a different meaning and use which we discuss
in some detail in the same gsection., In Section C we describe
a schematic interaction for the 0d-~1s shell bullt on
considerations of certain symmetries and energy systematics.
This interaction is so constructed that it 1s exactly
soluble and it gives exact rotational spectrum. By virtue
of these properties this interaction is useful in testing
HE' approximation together with angular momentum projection.
In Section D we describe HF plus angular momentum project-
ion calculations for N=Z even-even nuclei in the 0d-ls
shell using the schematic, the Preedom-Wildenthal and the

K+12 FP interactions. The results of these calculations

are discussed next.

B. DEFORMED HARTREE-FOCK STATES AND WIDTHS

We have already reviewed in Chapter II the Hartree-

Fock method for obtaining approximate states, In this
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section we consider its application to non closed shell
nuclei,

It is well-known that there is a large class of nuclei
which exhibit rotational properties at low excitation
energies, Many attempts have been made to understand this
rotational behaviour of highly deformed nuclei both from
the phenomenological and the microscopic view points. The
phenomenologicél model approach consists in using a
moment of dnertia to describe the states when the spectrum
is rotational., On the other hand, the microscopic theories
are based on the assumption that one can describe the
- states of a rotational band starting from a shell model
single particle well plus a two-body interaction and then
using Hartree-Fock or Hartree-Fock-Bogoliubov theories
to obtain the t'best! approximations to ﬁhe intrinsic wave
function and finally employing a projection technigue
to project out the various good angular momentum states
of the rotational band. It is this latter approach using
the HF prescription that we have used in this section
to study some nuclei in 0d-1s shell under the assuaption

of axial symnetry,

The concept of an intrinsic wave function has proved

to be very useful in the theory of rotational nuclei, The



idea here is that in a highly deformed nucleus the low lying
energy 8t%tates can be considered compositely by a single
deformed wave function called tae intrinsic wave function
and the states of good angular momentum projected from

it describe well the actual eigenstates. Let @?K denote

the intrinsic wave function and \EﬂiK the good angular

momentum states projected from it. Then

Y

. *

yrd - _2drl drn DL (Un) R O(£v) é@_

- MK T C STt MK K
JK ' J

TVB(1)

Here R(SL) is the operator of rotation through Euler
angles (L | DﬂK(JlJ is a representation of R(), J is
the angular momentum and il its projection in the labora-
tory frame, K is the projection of J, on the Z-axis of

the intrinsic frame, and Cyc 18 the normalization constant

such that

TK MK

_ S J ,
5'33 = L_} G 11’/ TVB(2)

b J I Eod e s Flad 4
with §>K and XE“MK normalized, It 1s assumed that the
‘projected states iy*ix are eigenfunctions of the

Hamiltonian Hg
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H WL}4 V=B Tl TVB(3)

|.Ll\.

The HF procedure hag been extensively used to obtain appro-
ximate intringic wave functions, i.e. one approximates

HF . .
w having the lowest

o -
=

égx by a Slater determinant

energy:

5 <BlHIB
<@K $K>

TVB(&)

where 8 denotes first order variations in dﬁKg

general *'z intrinsic wave function é@ %F obtained by

a HF variational calculation, will not be an eigenfunction
of the Hamiltonian H, This is because, first, the HF
determinant being an independent particle wave function

is only an approximation to the correlated intrinsic wave
function supposing that it exists. Secondly, a deformed
intrinsic wave function cannot be used as an approximation
to the eigenfunctions of H which have good J symmetry,

The third reason is that even if Bq.TVB(3) is true, the
eigenvalues EI are in general nondegenerate, Therefore, a
linear combination of the "\~ Mz will not be an eigen-

function of H,
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The eigenvalues can be made degenerate by subtracting
e L . o o2 , T2
from the Hamiltonian H a polynomial operator P(J 7)) of J
where the polynomial P(J(J+1)) gives the dependence of
EJ on J. Under the assumption that the states are rotati-

2 =2 .
onal we have P(J 7)) ~ o J where  is a paraneter. We

. L, 12
can write

A =2 ~
H =H- oJ IVB(5)

tow by a suitable choice of the parameter o we can

make the J-states of the Band degenerate, i.e,
T T~ J I T J -
%X '!£‘M£> = By l@bMK>> IVB(6)
and
SRy = |y > IVB(7)

BEq.IVB(7) follows from the fact that a linear combination
. Jo - 5 PO

oi"@ZMK is also an eigenfunction of H_ . In Eq.IVB(5)

the parameter f is related to the moment of inertia I of

the band according to

vB((8)
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It is not essential that the intrinsic wave function
should be an eigenfunction of H in order that its project-
ions be eigenfunctions of H, But if <§O<is an elgen-
function of H, then we have that if‘%K(O<) are elgen-

functions of H, We can see this as follows: we have

o4
Bxpanding @éK:on the left side we get

< O< £)< . Ry (O< _L_\D< . ,A“‘,\o<
L Crg H V¢ = 4§051< [*LJ“+ XTI+ Y

from which it follows that

— o _ X ' TR
Vo T [""JK * O”(J*“”] 7 gk

The advantage in considering ﬁx instead of H is that it
justifies the use of HF variational procedure to find @%u

since 1n that case Fg,IVB(6) will be satisfied,



To determine the best C{i,amd the be

(o4 .

t value of the

w

parameter « we first define the variance of Qé/ with
_ ol

respect to the Hamiltonian @X H

T F )= <o I L D> = [t [y
CIVB(9)

Then in the ideal situation where ET; EO + o J(J+1) and
the good-J states projected from éi% are the corresponding
>
. [ - .
eigenstates we would have g &E() = 0. In practice,
(o
i N 2
however, the best one can do.is to minimize o ( @L@ SO
as to get the best ¢ and §§O< . The procedure then is as
follows; We choose a certain value for o/ , then carry out
Hi* variational calculation to obtain the intrinsic wave
function @;<and then we evaluate its width (Bq.IVB(9)L We
repeat this procedure varying the parameter o until the
o , 2. _ o _
minimum value of g ké&) is found, Finally we project out
good-J states from this minimum width intrinsic wave funct-
ion (ﬁd . The above method has the further advantage that
it gives bounds for errors of the eigenvalues and thus
indicates whether the assuaption of axial symuetry is good

or not (see Chapter II, Section A, for the discussion on

bounds ).
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The concept of width of an intrinsic state introduced
in  Eq.IVB(9) should be clearly distinguisheﬁ from the
width of an approximate state of the Hamiltonian H introdu-
ced in Chapter II, This latter width is a measure of good-
ness of an approximation to an eigenstate of I and thigs
approximate gstate hasgs all the exact symiaetries of the
actual eigenstate, Only, it is an approximation., This was
the situation with the spherical Hartree-Fock states whose
widths we evaluated and discussed in Chapter II and
further minimized in Chapter III, In this chapter we are
dealing with intrinsic HF states which are deformed and
as such these can never be used as approximations to the
actual elgenstates of the Hamiltonian which have good J.
The width defined in Eq,IVB(9) gives the error we have
made in approximating the deformed intrinsic wave function

d by the determinant &, and to find the best
and éEd , we have to minimize this error, However, we
can apply the concept of width as defined in Chapter II
to the states of good-J projected from the intrinsic wave

function i.e. we may define
2, d T |2 AT T T J %
o~ ( W) = <Y1vu<) H } 4 1~.«uf> - K\If 1\@1«:3 i ] A M‘K>?

IVB(10)
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It is possible to relate these variances for projected J
states to the variance of the intrinsic wave function é@r
N

defined with respect to H:

2,
| 1vB(11)

FCEO = LB T By~ KB )T B

AN
With the variance defined as in Bg,IVB(10) for a projected
J-state it dis then straightforward to consider its appli-
cation to the deformed nuclei in exactly the same way as

was done for spherical nuclei in Chapters II and IIT,

However, these are aspects which we have not considered here,

C. A SCHEMATTIC INTHERACTION FOR Till Od-1g SHELL

We described in the previocus section a method for
obtaining good approximations to the intrinsic wave funct-
ion for highly deformed nuclei. We describe in this

5

section a schematic” Hamiltonian in the 0d-1s shell which
when used in conjunction with the above method yields
very good intrinsic states. This interaction has been so
constructed that it is exactly soluble and gives pure
rotational spectrum for nuclei in 0d-Ts shell, Hence we

can use this dnteraction to illustrate the method we have

discussed in the previous section,
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The interaction part of the schematic Hamiltonian is

chosen to be of the following form:

v, = Z: V= A (g) + B G(SU6)) + C G(8U(3))
1]
=2 - 2 - D - D
+DL "+ B8 +F J° 4 F.T
1 p)
ve(1)

ry

where A, B, C, D, E, F,, F, are coefficients to be deter-
<
mined and n is the number operator. The Casimir operators

G(SU(6)) and G(SU(3)) have the well-known formns:

G(SU(6)) =W = Zi; Pij ; the space-exchange Majorana
1J operator
o -
G(s0(3)) = % £ e+ % Q. Q
ve(2)

,..37
where L is the orbital angular momentum operator and Q

is the quadrupole operator., It is clear that V2 preserves
space symnetry, SU(3) symmetry, and L, &, J, T symnetries.
Now the standard way of labelling the representations

of U(6) and SU(3) is as follows:



Representation of U(§) (r] = [f7°°°°f6]

Representation of SU(3): ()\p)
IVC(3)

I'he expectation values of the Casimir operators in these

representations are given by
[

<@(SU(6))>[f]::%~>§§ fini- 21 +1) TVC (&)
L.’:;

<G(SU(3))25VO:: (A+R) (A+ 1+ 3) . AR TVC(S)

The coefficient A in Eq.IVC(1) represents the average
nucleon nucleon interaction, Coming to the one-body part

of the Hamiltonian thisg has the following form:
tione~body) = 10C+D 1(1+1)+ E-Eﬁqu(j+1)+F2 s(s+1)

IVC(6)
The parameters ¢, D, E, Fy and F, are the same as those
in Eg.IVC(1).

The parameters Ly B,...., F2 in BEq,IVC(1) are chosen

so that,

1) the binding energies of the nuclei come out reaso-

nably well,



ii)

iii)

iv)

(1)

(ii)

and [f]

(iii)

=9l

the centroid spacings of SU(6) representations
correspond to those gilven by a 'realistic! two-
body interaction,

the centroid spacings of SU(3) representations
contained in the lowest 5U(6H) representation is
roughly what one expects from the assignments of

o
TT . - . C_O_’_
SU(3) representations to levels in UNe.

22 =2 22 - 2
the coefficients of L , 5 , J and T are

chosen in such a way that the
(a) states of lower J lie lower in energy
(b) for (kn+2) nuclei the T¢ states in the maximum
space symmnetry representation are lower in
energy by about 2 MeV than T7 states.
We give below several useful numbers for

this interaction:

E(2+)—E(O+):1.5 MeV for all even even N=Z nuclel

Ec(Lf](maX—1))"Ec( e max’ = 72 eV

Here [ ] oy LS the leading SU(6) representation

(max-1) the next lower symmetry.

B (CAP) = (h2)) = B (CAR) = (80)) = 8.k eV

ve(y7)
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from the above menticned considerations it turms out that
the coefficients A, B, .....F, in Eq,IVC(1) have the

following values:

L)
A = «2,00 for ONe
=t gt - 2—Li'

-1,55 for g
-1.35 for 288

B = -1.8

C = -0.,2

D = -0.,35%

E = 1,08

F= 0.6

Fo= 2,67 ' Ve (8)

Since A varies from nucleus to nucleus the first terwm in
Eq.IVC(1) contains many-body effects, Substituting the

values of the coefficients from Bq.IVC(8) we get

R |
V,=A (2) -1.8 G(8U(6))-0,2 G(8U(3))-0.35 L “+1.08 § 2
«0.67 2 + 2,677 ©
IvC(9)

and the one-body energies {Bq.IVC(6) are:
& € )
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%&Odg/z) = 3,96 MeV
0 e VY- L YV I iR ( ] 0 )
@(1u1/2) = 1,26 MeV

/. o @ LM A/
@(Od3/2) 0.96 MeV

s |

Note the queer sequence of d-levels, For a given nuclesus

states from

-
o
Q2

it is easy to calculate the energies of
a knowledge of the representations [f] and (}qk) and

the values of the quantum numbers L, 5, J and T. The

wave functions for the states follow from the representa-

tions used. Thus this interaction is exactly soluble and

yvields J(J+1) spectrum for the nuclei,

D, NUMERICAL RESULTS AND DISCUSSION

In this section we describe some of our HE and
width calculations and results for N=z even even nuclei
in the 0d-1s major shell using the method described in

Section B.

We show in Table IV-1 the results of deformed HF
) . B ! .. 20, 28 .
calculations in 0d-1s shell for the nuciei Ne, Sul
. 36 s _ . SRR .
and Ar., The assumption of axial symaetry has been made.
These calculations have been done using the Schematic

interaction described in the previous section., In Table

IV-1 the second column shows of the moment of inertia



ey

g, ITVB{8)), the third column gives the energy of

{

i

kN -
by L

parameter
the intrinsic state Cﬁm,and the fourth columm the expecta-
tion value of the quadrupole.operator in the state i&d .
The Cr'g in the fifth column is the varisnce of the HE
state with the Hamiltonian Hd (EanVB(Q))QIn the last
column is shown the HIP gap which is defined as the energy
difference between the highest occupied and the lowest

unoccupied levels in the HF single-particle spectruil,

We see that the schematic interaction gives large
values for widths for the nuclei listed when an unmodified
Hamiltonian is used (X = 0)., The HI gaps are twice as
large as what one usually finds (8 MeV) with realistic
interactions in the 0d-1g shell (see Tables IV-2 and IV-3),
We find that the widths and I gaps of 20Ne and 36Ar are
the same which indicates that there is 2 particle-hole
syminetry for widths and HF gaps with the schematic inter-
action. Coming to the discussion on results with the
modified Hamiltonian Hd we observe that the widths of HF
states of all the nuclei shown are zero. Thus we have here
intrinsic states which represent bands of collapsed J-states
and hence these intrinsic states as well as thelr projected
states are eigenstates of the Hamiltonian H, urther we
note that the moment of inertia parameter & is the same

fm

for all the three nuclei. This value of o =0.25 is considerably
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- ; e 20,
larger than the values of & one usvally finds for e
and g1, We show in Table IV-h4 the spectrum of the grow:d

state band of J-states. The second column in Table IV-L

shows the energies of the J-gtates projected frow the

I gsolution and the third, column shows the same for

=)

K =0
o = 0,25 HF solution, The last column gives the exact
spectrum (see the previous section). We gee that the
spectrum projected from « =0 HF intrinsic state is already

clogse to being a J(J+1) spectrum, With the modified Hawmil-
tonian H ( x=0,25) we get a pure J(J+1) spectmum which 1is

identical with the exact spectrum,

Let us now congicder the results of our calculations

‘
A - - O . . T o

done using the Preedom-Wildenthal™ interaction, This two-

' o)

. . . Y s . o, . O

body interaction is a modification of the well-known Kuo

interaction in the 0d-1s shell and giveg zood fit to the
experimental data for nuclei in the mass region A=18-22,
The complete Hamiltonian consists of 63 two-body matrix
elements plus the 3 single particle energies viz,

’ A - N ) = 7 MeV and (0d- ,-) = Me

koug/g) 0.0,(1sq )p) = 0.87 MeV and (0dy ,5) = 5.08 eV,

20,
We show in Table IV-2 results of HF calculations for ON99

28

36 . . . .
51 and ~ Ar. Congidering first the results of unconstra-
ined calculations (= 0) we see that the HFF solutions of

20, 28

Ne, 8i are quite stable ag indicated by their large

HEF gaps, The HIF gap 1in 36Ar is swall, The width in all the



o

cases 1is feirly large., We next invegtigate the contribu-
tion te the widthsg coming frow the non-degeneracy of the
J-levels in the spectrui,

n

Table IV-2 also shows the results of constrained Hi
calculations (A # 0), We find that the widths are consi-
derably reduced when o is varied. But the minimum widths
are not cloge to zero which may be taken as an indication
that the assumption of J(J+1) sequence for the HF projected
spectrum is not good and/or that the Slater determinantal
HF description of the -dntrinsic states is inadequate.

In the case of all the nuclei listed (Table IV-2) the
HF gaps for the two HF solutions i.e. for o« = 0 ande{ # O
turn out to be nearly egual, We next show in Tables IV~5

20 28 36

and IV-6 the J-projected gpectra of Ne, Si and Ar
using the HF solutions gshown in Table IV-2, The absolute
energies of the O+ states are shown in brackets in

Tables IV-5 and IV-6, The energies of the excited states
of the ground state band are shown relative to the O+
state which is taken as zZero. The projected ground state
of 2ONe from the HF solution for o = 0,177 shows a
definite improvement over the one projected from o = 0O
solution, For comparison the experimental nuubers are
shown in the lagt column of Table IV-5, There is a similar

28 36

marked inprovement in the case of 5i and Ar when the
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modified Hamiltonian is used {(Table IV-6),

~

The results of calculstions done using tne
K+120pPY dinteraction are pregented in Tables -3, 1v-Y
and IV-8, The K+12FP Hemiltonian is a modification of
the Kuo effective Hamiltonian for the 0d-1s shell and
has been adjusted to fit the ground state binding ener-
gieg and level excitations in the nuclei A=17-22, The
adjusted parameters in thig Hamiltonian are the three
single particle energies plus nine two-body matbtrix
elements inwvolving only Odq/q and 1s|/3 orbits., All other
o o
- Q
. \ . O
two-body matrix elements are held fixed at the Kuo
- " . 20, -
values, The K+12FP results for Ne are siwmilar to the
results obtained with rfreedom-Wildenthal (PW) interaction.
The moment of inertia is the saue as in the case of
PW interaction but the minimum width is larger than the
. . - . : . 20,
PW width., If we look at the projected spectrum of Ne
(Table IV-7) the o = 0,177 HF projected spectrum is
definitely better than the ordinary (X = 0) HF projected
, o 28,
sbectrum except for the L state, In the case of Si the
lowest HF solution is oblate and hasgs a large width. When
o dis varied the width reduces substantially but the
absolute magnitude of the minimun width still remains
. 28

large. The projected spectrum of “°8i (Table IV-7) obtained

from o = 0,16 HF intrinsic state shows a slight improvement
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over the = O spectrum in that with &= 0,16, the

y,

energy of the 0" state is lowered a liﬁtle, The large

intrinsic width with o = 0.16 and oniy siight dimprove~
ment in the O energy with ¢ = 0.76 essentially imply
that the single determinant assumption does not work

well for 2851 with the K+12FP Hamiltonian., In the case
of 36Ar also (Tables IV-3 and IV-8) we find that o= 0
HF projected ground state ig better than the projected
J = 0 state obtained from the constrained HF solution

(o = 0.23).
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CHAPTER ¥

UNITARY GROUPS AND OFERATOR WORMS

A, INTRODUCTION

Our study so far was centred mainly around wave
functions and in particular with widths of determinantal
wave functions and the variational method bhased on the
minimization of width of a determinantal wave function.

In this chapter we are concerned with fermion operators
and spaces, and with measures for the "gizes" of operators
in these spaces. We study ﬁhese things from a group

theoretic standpoint.

We will always be dealing with shell-model like
spectroscopic spaces, and hence we will have a finite
number N of s.p., bagis states amongst which m nucleons are
distributed., In such spectroscopic spaces it is clear that
the unitary group U(N) is the starting point for discussion
of the transformation properties of operaters as well as
states. Further, the various subgroups of U(N) provide
additional frameworkgfor a more detailed study of these
transformation properties. The subgroup we consider here
ig the direct sum subgroup U(m);U(Nwm) of U(N) resulting

from the decomposition of the N s.p.states into m occupied
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and (N-m) unoccupied ones, Thus the unitary group point

of view provides a natural mathematieal.framework for the
study of the structures of operators and spaces and as

we shall see later also for tackling some other physically
relevant questions, We have therefore classified here the
two-body interaction operator according to its transfor
mation properties under U(N) and its direct sum subgroup

U(m)+U(Nem),

In addition to classifying operators according to
unitary groups it is also necessary for our purpose to be
able to evaluate the sizes of operators in many particle
spaces. As a proper measure for the size of an operator
we consider here its EBuclidean norm1° This is a proper
neasure in the sense that it satisfies all the mathemaQ
tical conditions of a norm and further it is compatible
with unitary norm used for wave functions of a system,

We give the definition and properties of the Fuclidean
norm in Section B and also describe methods for its

evaluation in many particle spaces,

In Section C we describe the classification of fermion
operators under the group U(N), Technj_qglesu”6 for the
U(N) decomposition of a general fermion operator are
discussed here in some detail, These ideas are then

extended in Section D to the case of decomposition of a
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fermion operator under the direct sum subgroup U(m)+J(N-m),

We discuss in Section & the connection between the
unitary groups and the HF approximationG’gg In the same
section we carry out the decomposition of the two~body
interaction into its irreducible tensor parts under the
transformations of the subgroup U(m);U(N—m) generated by
the HI" procedure, Uur main aim in doing this is to find
out how much of the higher unitary rank part of the
interaction gets reduced to its lower rank parts under the
transformations of the subgroup U(m);U(Nnm) when a HF
calculation is done., More Precisely, we want to find out
the effective total one-body operator (i.e. operator of
unitary rank -ZP: (0+1) under U(m);U(N~m)) that is
generated in the HF procedure and evaluate its norm in
m particle spaces. We derive a polynomial expression for
the square of norm of this operator in m particle spaces.,
This norm compared with the norm of the irreducible
V= 2 rank part of the interaction under U(N) tells us to
what extent the HF procedure has converted the U(N) irre-

ducible WV = 2 part of the interaction into an effective one-
.body operator under the subgroup U(m); U(N~m)., For this
purpose we define an efficiency measure 1 as a ratio of norms
of tensor components of interaction under U(N) and its

subgroup., This ratio, as we shall see later, provides



110

us with a measure of the global goodness of the HF SePo
basis. We evaluate this ratio R for N=Z even even nuclei
of Of-1p and 0d-1s shells using realistic interactions,
We describe these calculations in Sections I and ¢ and

also discuss the results of these calculations,

B, NORMS Of OPERATORS

In this section we consider the concept of norm
as a measure of the size of an operator and discussg its

uses and methods of its evaluation in many particle

’}’_3
spaces 7,

Consider a general operator I and a space ¢« 1in

which 1t operates, Then a measure of the size of the

operator F in ¢ can be had by assigning to F a real

s

nunber called norm of F in « which we denote by f!F ‘la°

s

The norm must satisfy the following conditions.

To 1 Fy] > 05 |{F || =0 only for the null operator,

2, ‘]FG}E < HFi]’i!Gii for any two operators I and G,
3. iiF+GII£J’Fif G equality holds only if G=F,

L. | kP []= x| ||| where k is a cbnstamt.

vB(1)
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A further requirement for the norn of an operator to
be a proper measure of its size is that it should be compa-
tible with the unitary norm (vector norim) which one usually

uses for the state vectors of the system, That is,
Hrw 1l s e =]y | .

where the unitary norm is tsken for FA and 7 and the
operator norm for ||F ||, In practice, a prescription is
needed to calculate the norm of an operator in a given
space, A suitable brescription for the measure of the size
of an operator is the Biclidean norm defined by

2

C - i .
Vel ) = frace (F'F)
{ o «

[ VB(2)

where F' is the adjoint of T, Since the trace in Eq.VB(2)

is invariant under all unitary transformations of a given
basis in the space, it follows that the HBuclidean norm is

a property of the operator and the space but not of any
representation therein, It ig easy to see that the Fuclidean
norm satisfies all the mathematical conditions for a norm
listed in Eq,VB(1) together with Hq.VB(1a) by going over to
the representation in which F is diagonal, We have

e, = Z/\AdL

L
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where 7\L are the eigenvalues of F and ZPAﬁ satisfies
all the conditions for the norm, The norm which we use

in this chapter is, however, not the trace (Eq.VB(2)) but
instead the average of ¥ F in the space o i.e. we

define

N2 o
P V7 et L Lj. ) 1 ( t }s‘
%H«’ggj“ <[i>’ “‘d(a z x £>V ~ d(a) g

VB(3)

where d(® ) is the dimensionality of the space ¢« . This

~

is a sllghtly dlf erent definition of the norm but since

. 'R
;/1

>([[ﬂl| . gives the r.,m,s, matrix element of the
a

oper tor ' in the space

P

, 1t 1s a suitable measure

o
L

of Tthe size of F in o .,

The Huclidean norm also defines for us the orthogo-~
nality ol the operator in ¢ . Two operators I' and G

o~

are said to be orthogonal in ¢ if

A

7

a -
(FGy ~ =0, vB(L)
Further, two different symietry components Fv and F_
of the same operator F where v and v are symmetry

labels, are said to be orthonormal in the space « ifl
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NS
e
Ao ,

<F‘L4‘ !_-\4\/> = CV\)I
VB(5)

; 2 - -
It hag been gshown by French™ that the calculation of
the Buclidean norw of an operator, say of the Hamiltonian

H in the m-particle space, need not involve the evaluation

:
' T

of the matrix elenente of H H in m-particle state functions.
This is because the norm (its square, to be precise) being
an average over all wm-particle states, can be expressed as
a polynomial of order u in the particle number m, where

u 1is the maximum particle rank of the operator H$H. This
norm-polynomial is simply a Lagrange interpolation poly-~

1

nomial and can be expressed in the following forum;

_ m u R <
<HﬁH> _ 2?' uﬁﬂ\(m\ <H+H>
el u-s/ s )
U . S
- - 13y8~-u (m-s-1 m e
= 5 D ( - \/ (S> {u'n)
S =
A -

i\
™

§ (ms) LWt hy

VB(6)
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- . , o
Bq.VB(6) expresses the average <ﬂ oy in terns of its
N . . )
averages <H Hy ™ in s=0,1,2,.....u particle spaces which
) . PO ) ot o -+ S
is the defining space of the operator H i, Thege <ﬁ H>
averages are called 'input averages' and (u+l) guch
input pieces of information are required to completely
specify the polynomial since it ig of order u. In Bq.VE(6)
the coefficient Su(ms) is the projection operator for
m=g particle space and it is zero for other m values in
the defining space, In the case when H is a (0+1+2)-body
o . .
operator we have that H' H is of maximum particle rank b,
= th .
Then we get from Eq,VB(6) a 4°% order polynomial for
4 m o . — 2 |
H'Hy " expressed in terms of its values in s=0,1,2 3 4
Particle-spaces. It is clear that this polynomial form
. . . . S . ‘ )
requires input averages of <<d Hy  for s=3 and 4 particle
spaces which are often hard to evaluate, However, we can
avoid this difficulty if we consider input averages in
, . . B N N §
0 and 1 hole gpaces - 1, @, <<d H>> with s=N and s=N-1
instead of the averages in s=3 and U particle spaces. The

advantage here is that it is much easier to obtain these

hole averages than the s=3," particle averages., In short,
. th . .

to fix a 4L order polynomial we should know its values

at (4+1) independent points and it is most economical to

choose these values at the points s=0,1,2 and -1, N,
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similarly in the general case also.one can include hole
spaces in the propagation formula and obtain the EXPY @-
ssion

! . -
N=m Ti -2 S=-U N~s m=-s-1\/ 1 8
Gy = (Th) 7 e () o ) e

o

1%

=0

) z e () () (1) ey

2

VB(7)

with ugtu, = u-1, In Eq.VB(7) the defining space of the
operator H'H consists of S:O?T,E,Q.,,u1 particle spaces

and 5:03192ﬁ5,,,u2 hole spaces.

In the following sections we consider the evaluation
of the norm,bfﬂ(zkthe two-body interaction part of H, in
m-particle spaces, For this purpose and also to study
some questions relating to the HF approximation,_we cqqsider
first the decomposition of H(2) according to the irredu-
- cible symmetries of the group U(N) and also of its sub-

group U(m);U(N-m).
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C, ECOMPOSITION OF OPERATORS ACCORDING TO THE GROUP U(i)

We consider in this section the decomposition of a
general operator according to the symaetries of the group

L
() 0

We consider a set of N single-particle states which
forms a basis in an N—dimensional‘vector space. The set
of all unitary transformations in this space forms a
group viz, the unitary group U(N), The group algebra can
be described coﬁveniently in terms of a set of N2 infi-
nitesimal operators Uij(i,j:17,,,,N) which form alinearly
independent complete set, These operators are closed under

¢

comnutation i.,e,

‘ = N - U (C\ ;

The N2 operators Uij are known as the infinitesimal
operators of the group U(N). In the second quantization
formalism the infinitesimal operators may be expressed in
terms of products of anticomauting fermion creation and
destruction operators A and B for the single-particle
states, lMore precisely, the N2 operators Uij = AiBj’
i,j=1,....N are the infinitesimal generators of U(N) since



U, ,U | = lAB,, AD ] =1 S . - U .
[Uij7ukl\ [AiLj9 kai} Uil o jle Ukj 611

ot

ve(2)

where the last step follows from the anticommutation

relations for A.,B. etc.
L7

We next consider the transformation properties of
operators under U(N), We confine our discussion to the
class of fermion operators and fermion spaces only. The
fundamental operators here are the creation and destruct-
ion operators Ai and Bi respectively for the single-particle
states, Since the vaccum state of no particles and the
closed~shell state of N-particles are both invariants
under unitary transformations, it follows that the crea-
tion operator Ai transforms as a single-particle state
and the degtruction operator Bi as a one-hole state, Thus

in terms of Young shap8312 we have

A

i

iAig o~ [:‘ = El]

. VC(3)
N~V

SN [i )

N




where ~v means "transforms as'", In general, for a k-body
creation operator Z(k) which is a product of k Atg we
obtain, using Littlewood's rules 8 and taking account of the
Pauli prineiple which allows for only the completely

antisymmetrized representation,

Z(k):AXAx..D.XANE‘ "
- v

(k factors) .

Ve (h)
and for the destruction operator Z+(k)
+ . I ]
Z (k) =BXBX,... B~ L
[
(k factors) N-k

Ve(5)

Now, considering general operators F, these are all

contained in the set {Z(k) Z+(kf)} of dimensionality
L

27, where N is the total number of s.p,states. Since our
concern here is with representations of operators under
U(N), we need to consider only the number conserving opera-

i

tors. An operator ¥ is said to be number conserving if
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Lg(n)?F] = 0 | Ve (6)
where g(n) is a function of the number operator
N ‘
n = Z;tAiBi, All number conserving operators are conta-
= -

a1l k + Then to find out

how a k~hody operator F of the above type transforums under

ined in the set %Z(k) Z+(K)j

\

U(KN) we have to consider first how the product Z(k)z+(k)

transforms under T(N), We have

- !
. ‘j(k

Z2(k) 27(k) ~v

~
u

VC(7)

To find all the possible product representations we apply
Littlewood's ruleg and consider only those representations
which are allowed by the Pauli principle. These considera-
tions 1limit us to only two-columned representations, To
see how this process goes in general let us consider the

reductions for one and two-body operators.

T

=[]z




-12h4-

k=2 .
—7 T S S B ] T
s ?\ y (
e o \
Nv—b‘ 3 \{ﬂ \ + "
| 2 jN [?\l~i _— {N“Q

=[] ~x[_ “‘”] [aéjf““4]

Similarly for a k-body operator I'k) we get
F(k)n/[1kl X (TN“K_1
)_ \\)“R f) T
(e [o,0 a} V 1, . Lg g Kl\l}( 51

vC(8a)
_ [@q}%gﬂhgj +L2251N-ﬂ - [gkﬂN 21)( )

VC(8b)

nﬂz

Thus for a k-body operator F(k) we get (k+1) different
representations which we label as [Nad),xi] with
V=0,1,...k and each representation occurs only once. In the
labelling [N;\), vj ) Qﬁ*V> and Y denote the number of
boxes in the first and the second column respectively., Note

o qli-2VT)
9 1

that [y;‘v,v] is equivalent to LF We have then

for I'(k) the following reductions
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Wv

F(l) = (K)

'\)

l t

O

where F"(K),u LN~'V7-v

Ve(9)

The dimensionality of the representation CN“V7VJ

2
\ (H-2V +1) Cwn ,
given by d( [N-v ,V]),= <N~—-—-~—~+H L) - We nave
the useful relationship c{((pqav v]) ( )2

\/"
which provides a check on the dimensionalities. In cases

of interest we usually have only small values of k and
large values of N, Then Eq,VC(8b) applies and the comple-

xity of irreps appearing is limited by k and not by N,

We now consider the properties of the operators F(k)
and. Fnik). In order to find out what spaces support an
irreducible operator i.,e. those in which it has non-
vanishing matrix elements, we first note that any k-body
operator vanishes in m=0,71,....(k~1) particle spaces and
is in general non-zero for myk, We show in the following
diagram the behaviour of a k-body operator F(k) when we

represent it in the various m-particle subspaces:

F(K) =0 defining repn, (k)#0
;,M..__._,___' V\___‘___N,_.*Z /}f',_,-_,‘____,_’_._....__ ety ' "\ ‘
0 1 2 k-1 K N-k N k+1 Nel N

e \,-'*-f" s e i
m —y Faithful Unfaithful

Ve(10)



~126-

Thus every m-particle space with m >k gives a representa-
tion of P(k), However, nct all of these representations

are faithful, For example the m=N subspace is T-dimensgsional

and thus gives didentity representations for all the.

operators thalt the space can support and therefore this

will give an unfaithful representation.

In order to understand the nature of the supporting
spaces let us first consider an operator of the type
. n-v ) o
G = ( )F(‘V} where n is the nuwber operator > A B,
K-V o 11
] O
n- . . ‘ .
(F—%} is simply a polynowmial in the number operator n
and hence it is a U(N) scalar operator. Therefore
1 e / ; 1 - . 3 N g 2 )
G:<K‘3>Fg\/) transforms under U(N) exactly like the
operator F(v)., Further, G is a pure k-body operator. This

1) -

. : - v : .
is because the binomial e v)vﬂnch is equal to

(n—\u)(nmgﬁ:1}3[ (n-k+1) vanishes for v4m <k-1, Also

by definition F(~v ) vanishes for m<v ., Therefore the product

G:(ﬁzz)F(“v) vanishes for m<k-1 and hence its particle

rank can be 2 k, But the maximum particle rank of G is k

, -V
which is just the sum of the ranks of the two factors (E_ v)
and T'(V ), We therefore get that G is a pure k-body

operator with symmetry same as that of F(V), Thus the

n-v
K-V

the particle space in which the latter is defined without

operator ( \> when acting on an V-body operator shifts

changing its unitary character i.e, if (Y ) has the symmetry
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[ﬁ;\)yﬁw then (k )f' ) is a k-body operator with the

same symmebry fﬁsv v \ In this way we can describ

k-body operator in termg of

e a

the set of subspaces which
support it:

R

F(k) = 7 F Y(k) =

Ne V- —Pj) - .
(e23) Fow vC(11)
V=0

O

T Me

where (V) has j

The operator (\)) in Bq.VC(11) is irreducible and fully
1

contracted in which we have factored out the number part

(E_X) . As =n example, we apply these considerations to
one-body and two-body Hamiltonians
1

Z (% wM&’()

wherlt we obtain

i

(1)

B £\ (lJ ~o) + 4& (v )

ve(11a)

Z )
HE) = 2 (37%) KO

V=0

20 4 o) -0 H O W)

ve(12)
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[N—\)yﬁ] then (k ) V) is a k-body operator with the
saie symmetry [; )V \ . In this way we can describe a

k-body operator in termg of the set of subspaces which

support it:

! E» e \/fb Y
F(k) = 7 Y00 = Z (7)o Ve(11)
V=0 N =0

~ _

where %—(V) has particle rank Vv and symmebry LNmWJ,w{] .
Y,

The operator §<\z> in Bg,VC(11) is irreducible and fully

contracted in which we have factored out the number part

n-v /

(k—v)’ S

one-body and two-body Hamiltonians wheii we obtain

1

=2 (1) A

(\J

1 example, we apply these considerations to

= & (1) =o) + ”{\j) (v=1)

Vc(11a)

2’ )
H(@) = Z (270) BV

ﬁ"lﬁl;fi) W (o) =D H O+ H )

ve(12)
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Y
where h

(v) and HV(V) denote respectively the irreducible
and fully contracted parts of h(1) and H(2) having the
gymmetbry [ﬁ~\)gvj and particle rank » ,Comparing

Bas., VC(11a) and VC(12) it is clear that the ' =(0+1)
part of H(2) behaves ag an effective 1-body operator.
Using this orthogonal decowposition for H(2) we get for

the square of norm of H(2) in m-particle space:

W)

= { W REYY

;%) N — Z~<W“
= <{ Z @,»v) HV(V}] /

iaa

= 2 440wl
=) 09 ) S Lo H ) S (] )T

v Ny
In Bq.VC(13) cross terms like <i(4 L{V :> < x>j:»ﬁ;>
do not appear because they vanish due to the orthonormality

of the tensors \4wzﬁ>(586 . VB(5)).

D, DECOMPOSITION OF QPERATORS ACCORDING TO THE SUBGROUP

We described in the preceding section the decomposition
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of a number conserving fermion operator according to the

irreducible representations of the group U(N)., We describe

-
!

in this section the decomvosition’

7

S 1 e S r
of general fermion

operators un@fr the transformations of the direct sum

subgroup T U(N,) of U(N). For this purpose we have t

subgroug /’l ;) of N), & hils purpose we have to
L= i

include into our discussion number non-conserving operators

also. This done,the procedure for decomposition according

to the subgroup is straightforward in that it proceeds

along lineg gimilar to the previous section.

We consider here an arbitrary division of the -
dimensional g,p.space of section C into E-S.pasubspaces
with the ith subgpace having dimensionality Ni‘ Then the
set of all unitary transformations operating within these
independent subspaces considered simultaneously forms a

{
subgroup of U(N), viz, the direct sum subgroup ,Z; U(Ni),
(=
We shall call esach subset of s,p.orbits {Ni% a "Unitary
orbit", The representations of the subgroup are chara-

. o > _ ) -
cterized by a set of numbers uf = (mq,m,,....mp) with

£
“Zami:m where m, is the number of particles in the ith
L=
orbit,
The number conserving operators form only a restricted
class of operators because in generai the interactions
do not preserve the nuwber of particles in a unitary orbit.

For example, the ordinary pairing Hamiltonian destroys
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two particles in one J-orbit and creates two in another.

i

It is therefore necessary to congider nekt the number
non-conserving operators, To simplify the discussion, let
us first consider a single watary orbit and introduce
general operators F(pyq) which make o particles in this
orbit and where p denotes the particle ranik, The operators
R, e | APV B

integral, There are altogether 2 & such operators, The
number conserving operators all have ¢=0, To find the
irreducible tensors contained in the product operator

AP+Q/2 Bp"Q/2 we reduce 1t by applying Littlewocod's rules

and Pauli principle and obtain

vD(1)

where

ZD%w:Z}J V%

e vD(2)



nd % \q\é:ng min(p,l-p) and W +q/2 integer. Here D 7 (q)

8]

<.

denotes an irreducible representation and v and g toge-

-

F=/0 Fp,0) = 2 7 T (p,a) VD(3)
Py pq v

where q and v are group labels, Now we factor out the

) ; . .
nuaber part in I (p,q) as before and get the following

o

decomposition equation for F(p,q):

4 ~ n-v -q/2 %v‘
F(pya) = 2 ey (v,9)
.
VD)

VvV
where the tensor § (V,q) is irreducible and fully contra-
cted, Since g is a group label we have the following ortho-

gonality property for operators:

<F+<M> chf‘,q'>>m = 0 unless g = g vD(5)

We have so far discussed the decowposition of a
general operator I' acting within a single unitary orbit,
We now extend these notionsg to the case of many unitary
orbits., Since the configuration spaces have a direct-
product structure this extension becoues simple, We consider

the division of the HN-~dimensional s.p. space into
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L S. P, subspaces each of dimengion Nio Thus ® = 221 Nj»
= -

I'me labels p,q go over into 4 ~dimensionzl vectors

and the representations of operators under 2 U(Ni) are

=

-3
numbers Vs (V) Vo w... ), SO
. 2

. - % Y .
that F(p,q)=> F(p,q) and D (q)=> DY (4). Then the

labelled by a set of

A . - -2 . .
decomposition eguation for F(p;z) is given by:

—% —) . . ———2s
- =P Voo ~ =Y a2 ;'v7 .
F(p,q) = ZF (P,d) =7 e qf 4 <{7> ?7;)
5 =\ -y )N

VD(5a)

5.8 . .
We discuss now a method” for obtaining explicit forms

)

for the irreducible and fully contracted parts of any
operator when decomposed according to the symmetries of
U(N) and 27 U(ly). (Eqs.VC(11) and VD(5a)). For this
burpose we introduce the notion of 'unitary scalar contra-
ction' of an operator. We denote the operators for carrying
out this contraction process by D+ where D,+ ig for boson
operators and D” for fermion operators. An operator F is

bPoson like if it has even q and feruion like if q is odd,
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The operators D+ are defined ag follows:.

\A}Z !

f

=N

s

f 1
>
[ \
=
- .
——
f
P

—

VD(6)

on the right hand side denotes an anti-

4

In Eq.VD(6)

comnutator and - a comautator, D is a contraction operator

because D acting on F reduces its maximum particlé rank by
N

one., Moreover, 2 Ay B?A 1s a wnitary scalar operator and
A=)

hence it cannot change the symmetry of F. The net result

of D operation on F therefore is to reduce the maximum
particle rank of ¥ by one without changing its symmetry,
It follows then that for a fully contracted, irreducible

BN -/

A . :
operator ft(\)gq))D%i(V ;4) = 0, Thus if we have an irredu-
cible operator Fv(paq we can apply the D operator (p —V)
times on Fv(pgq) and reduce it to its fully contracted
i v
form $~QV7 q).

3 .
We give here a fewy relevont relations involving the
D operator. For any two operators F and G,
- - e — £ g IR =T ‘\ n 3 ey -
1. D,(FG) =(D,(F))G+D ()F S [ap,7) [6,5,]
- - Nt i F

+ —'F',BH], \};,AM] -

VD(7)
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AR

g(n+1)(N~n~1>+q/2) T (a)

I

.
2. D(g(n) £ (q))

i

I oV,
g(n)(u—¢n+q) :9 (q)

~—

VD(8

i

3
g(n-1)(n-v -q/2) ‘ﬁb(q)

where g(n) is any function of the number operator n,

)
3. For the operator F»(p?q) it can be shown that
DFw)( N _ Y . )
Py,q) = (N+T-p-v ) T" (p-1,q) VD(9)
and
p-A
- N 0m V
D" FY(p,g) = r!(”ﬁr P v} F (p-r,q)
. Fe ”‘. 1"
RV Al %
=
VD(10)

Une can invert the expression in Bq,VD(10) to get the
following expression for the irreducible, fully contracted

oV
tensor T (v ,q):

1 bl A
Ay . e ) e \
1 N 2 . . T 1k New Y ¢ A
T (v,q) = (N %Y} S(1)EPr -V ~ptt+]
. ‘x+;;w.(t~p+~v)! t+V-p
J:F:v

Neq/2-p+t)
X

\ t«r\/—p

Dt (p,q)

vD(11)
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Thus, given any operator M(p,q) we can decowmpose it into
ite different unitary gsymmnetry parts by repeated applica-
tion of the D operator and cibtain explicit form for each

1.

irreducible and completely contracted part using BEq,VD(11),

The extension of thege dldeags to the
is dmmediate, Here we have a contraction operator for
each orbit and these operators act independently of each
other, Hence the total contraction operator is just the
product of these independent contraction operators, Also
the various expressions in Hg,VD(9) - Eq,VD(11) go over

to their vectorial form as in Bq.VD(5a),

b, UNITARY GROUP AND HARTREE-FOCK APPROXTMATION

We study in this section the question to what extent
the high unitary rank parts of the interaction under U(N)
get reduced to lower unitary rank parts under ZfU(Ni)g
The particular subgroup we consider here is the direct
sum subgroup U(m)*U(l-m) of U(N) which is generated by
the HF procedure. Our main purpose is to find out the
extent to which the HF procedure converts the two-body
interaction term H(2) in the Hamiltonian into an effective
one-body operator, In order to study this question we make

use of a conversion ratio which provides us with a measure



of the efficiency of the I procedure in converting the
interaction into an effective one-body operator, We
consider f{irst the decomposition of the H(2) term into
its different irreducible tensors according to the
transformations of the subgroup u(w)fu(umm) gerierated
by the HF procedure. Next we derive a polynomial expre-
-
ssion for the square of the norm of the total (0+1 )

unitary rank operator resulting from the HF decomposition

of s.p. states.

We consider a set of N single-particle states in
which m states are occupied. Let H denote the Hamiltonian
of this system of m particles. In the HF picture the
m-particle state is approximated by a Slater determinant
iE"HF and further the m occupied states of @?HF are
such that iQHHF has lower energy than any other m=-pParticle
Slater determinant in the space. Let us refer to the
space of m occupied s,p.states as the first unitary orbhit
and that of (N-m) unoccupied states as the second unitary
orbit., Then the set of all unitary transformations which
act independently and simultaneously in these two sub-
spaces forms a subgroup of U(N) which is the direct sum

subgroup U(m)+U(N~m), Thus we have

U(N) = Ulm) " U(Nem) VE(1)
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|

he I determinantal state is a unit dimensional configura-

tion m_EE(mjgmg):(mgo) wiere i, and i, are the number of

particles in orbits T and £ respectively., The HF procedure
selects, frouw the family of different direct sum subgroups
corresponding to different two-erbit partitioning of the

N s.p. space, that subgroup which gives the lowest energy
for the configuration ul = (m,0), We next proceed to consider

the tensor decomposition ot H(2) under U(N) and also under

its direct sum subgroup U(m)+U(N-m),

Under U(N) (see Eq.VC(9)), H(2) decomposes into the

following irreps:
2s
- .Y,
H(2) = /. H™(2)
V=0

={ V= — .
1 "0(2) + H 1(2> + 1YE2(2) VE(2)

i

Under U(N), the V= (0+1) part of H(2) is the effective
one-body operator (see also Fgs,VC(11a) and VC(12))., The
gquestion how much of the total two-body interaction H(2)

omponents ¥ =0 and v= 1 under

@]

is in its lower unitary rank

0

U(N) has already heen studied , It is found that in Od-Ts
and Of-1p shells with realistic two-body interactions the
norm of HV:2(2) part of the interaction is very much larger
than the norm of ﬁvz1(2) which means that H(2) has a large

irreducible part under U(NN), The same result is borne out by



our calculations which we shall describe later in Sections

" and G, Hence i{ no appreciable reduction of the irreduci-

ble part of H(Z2) is to be found under U(L)

®

ioht
consider a finer analysis of H(2) under the subgroup
UCm)+U(N-m) Lo see whether in that cese it looks essentially
like a one-body operator, We want to find out how wuch of
. V=2 . .

the U(N) irreducible i (2) part gets converted into a
lower unitary rank operator under U(m)+U(N-m) which is the
direct sum subgroup generated by the IF procedure. Now the
V=2, . , . L . pr N L
H (2) which is irreducible under U(N) does not remain
so under the subgroup trangformation but breaks up into
——;) ) E T -

V =(0+1+2) parts under the subgroup, Therefore let us

consider the decowmposition of H(2) into its irreducible

representations under this subgroup:

Z
H(2) = , H5(2)
Vo= v

I

Hs (2) + H j:}(2> + Hj:‘]f‘.2>

V=0

VE(3)

where we denote the irreducible tensors with respect to
the subgroup by subscripts 7? . Under U(m)+U(W-m) the
effective one-body operator is(ﬂj:O(E) + Hp (2)), This is
the total effective one-body operator one obtains when a

HE calculation is done, This one-~body operator receives
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contributions from all the three U(N) syumetry parts of
H(2)., We can depict the decompositions under U(¥) and the

subgroup schematically as follows:

g V=0 L V= o V=2
H(2) H (2 (@) i 7(2) decomposition
! M/jﬁf’ ‘J ,,//i//// ! wnder U(N),
T et e e R TN .
H2):  w YH2)ETT H_ v (2 H V(2) decomposition
V=0 v =1 = under U(m)+U(N-m)
Pig, V-1

4.

It is clear that a given unitary rank operator under U()
breaks up into its lower unitary rank operators under the
subgroup decowmposition. The question we wish to study now
is how much of the high unitary rank (v = 2) part of H(E)
gets converted into lower unitary rank parts 5):(O+1)
under U(m);U(N—m)o This will t ell us how efficient the

HF procedure is in reducing the two-body interaction into
an effective one~body operator. We now define a ratio which

~

will measure for us thiles efficiency fa tor

2 LDn ey oD (Wt )y

<:\.H‘v14<ljjlm>;wv

VE(L)
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m

where in the numerator the first term is the square of

the norm (in the m-particle space) of subgroup W' =(0+1)

part of H(2)., From this term we subtract the souares

I

of nmorms of V=0 and V = 1, U() irreducible symmetry
parts of H(2), Therefore the nuaerator gives us bhe

]

square of the size of subgroup W = (0+1) operator
oy - ] . ¥ v:g'f‘ ] N L] 4 Pl
coming only from I (2). The denominator ig the square

-

, oV =2, ) ] o
of the norm of H (2), Thus the ratio It tells us how

mach of the U(W) irreducible operator i (2) gets
. - .
converted into subgroup VW =(0+1)-rank operator when a

HF calculation is done,

We now congider the decomposition of H(2) under
U(m);U(N—m) which must be done before we can proceed
to evaluate the ratio R, To recall, we have a set of
I single-particle states of which m are occupied., We
refer to the set of wm occupled states as the 1lst orbit

orbit by subscript

,..
-
ct
S
2
o8l

and denote all the operators in

1, The (N-m) unoccupied states will be referred to as

o

the 2nd orbit and all the operators in this orbit will

. We have

no

be subscripted by

H(2) = % ;EJ(ﬁj) v k1> A A BB VE(5)
+ Q}R{. i ] 1k

where the A's and B's are the single-particle crsation
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and destruction operators respactively and obey the well-
kinown dHLICOMmuLPbLOﬂ rules (see Bo,IIB(2))., We rewrite

H(2) as:

i ;_‘)_\ = A A BB o T o A o B
H(2) X1;L1‘_11g1 L111 Bljj FOALAL D B,

A A DB D LA ) - A i DA B T
+ 4.\;,]421;1!*)1 i ,]L211B2 . L] 5858, VE(6)

+ 43.2—’;251 J—J,} -+ J.L).LL"»_J/] Bd “+ ..‘.\.24'1\.2 2 5

__\.

In Eq.VE(6), A1A1 1b1 ;Z /ij)v]kl> AiAjBlBk?
Lk{ €\
A. A D I} ): > \_j}v]l{l> A ZX B b\{ and so on,
(€ ¢ 1
ikeg

Thus we have written H(2) as a sum of nine sets of operators
of which one acts in orbit 1 only and another in orbit 2
only and the rest act between these orbits, We now

rewrite each term in the ¢, VE(6) using a different

notation

5.

ST .
17M/2 Potsn  Po=Uy /o
/= Petaso P o

I ) ' Po=fp /o

VE(7)

We get
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H(2) = H(20500) + #(3/2 1/25 1-1) + @(11;2-2)
+ H(3/2 1/25 =11) + H(11;00) + H(1/2 3/25 1-1)
+ H(11;-22) + H(1/2 3/25 =11) + H(025 00)

M

VE(8)
For instance, the operator AquﬁqBD in Eg.VE(H)

gives Q. . = +q = ., ~0. = 1 and pa=g. =]
gives p, q1/2 1, Py qg/g 1, P, q]/2 and Py 12/2
from which we get p1:1, p2:19 q4=0 and q2:On Thus
A A B B, = H(p a.) = H(11:00). The notati 1se

1A251L2 H(bquy qTLg) H(11:00), The notation used
in EquE(7) ig an extension to the cagse of two unitary
orbits of the notation used in Bq.VD(3) wherein we
congidered only one unitary orbit. We now consider tue
reduction under U(m) + U(l-m) of wvarious terms on the

right side of Bq.,VE(8). Following Eq.VD(3) we write

<7 v,
H(p Pss dqay) = ;EMIi ‘ lﬁpqus g0y

‘L}‘ U:‘.

VE(9)

¥

where Hﬂm—ul(pqugqqq2> denotes an irreducible repre-
sentation with respect to the subgroup U(m)-+J(N-m),

‘vq)vg together with 4y 59p completely specify the represen-
tation, The labels ‘V1 and Vo denote the irreducible
symnetries of the term H\%m&(P1P29q1q2) in the orbits 1

and 2 respectively. Thus this term behaves as a tensor
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of rank VT in orbit 1 and as 2 tensor of rank ‘VZ in orbit

2, urther, for v we have

VE(10)

Now we use the expansion in Iq.VE(9) for all the terms

on the right side of Eq.VE(8). This gives us 20 irreducible
T

representations for H(2).We get

o : ' vy Vo
H(2) = O M (p,0539,4,)

0

170 (20500)+:°0 (11 00)+H"Y (025 00)

1

_ ’ |
+ 1 0(20;00)+ 0(11300)+H01(11;OO)+H01(O2;OO)

11 1r L )
T (3/2 172511 )+H 2 (3/2 1/25=11)+H 2 (1/2 3/2;51-1)

AL
¥HEP(1/2 3/25 <11)

, , ) ‘
#520(20500)+7 1 (1150001 (1132-2)+H' | (115-22)

w102 (02, 00) 43/ % V2372 12,11y 12372 1/05211)

PAYAS - - 2 .
w2 320 2 3 2,11y /2 321 2 32, <11)

VE(T1)
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In Bq.VE(11) the first three terms which have VotV =0
el

are scalar with respect to the sumgroup; behaving respect-

=]

"h i ar SR o
ively as 421) , _11111? and (Ec‘v ; we denote them together

o

L

eight terms having Yyt VY, = T are the

N

by O(L)a The ne:

effective traceless cne-body teras which we label together

-

as H (2). The last 9 terms with W}1+\/q = 2 are irreduci-
fl

ble two-body terms and give zero on contraction, We are
. . o . - ] - .
interested here in the complete v = (0+1) part of H(2)
which is the effective one-body overator coming from the

U(m);U(N~m) decomposition of H(2), We write

Ho (2)+H - (2)

V=0 Vo= |

He(2)

|
-

= 1°%20;00) +1°°(11;00) + 599025 00)

+1'0(20500)+1 0115000+ (11;00)+1°" (02;00)
211 e 11

HHEZE (372 1/2; 1-1)+HT2(3/2 1/25 -11)+HTZ(1/2 3/2; 1-
ALL
HEE(1/2 3/2; <11)

VE(12)

Thus H'(2) is of particle rank 2, and has unitary irredu-
- — 7 ¢ L e oy n e

cible symmetry V' =(0+1) with respect to the group

U(m)+U(N-m), It is the total effective one-body operator

one obtains when a general decowmposition is made of N s.Dp.

into m occupied states and (N-m) unoccupied ones. We now

1)
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proceed to evaluate the norm of HF(Q) in m-particle gpaces
which are defined by the underlying HF s;p, basig., For
thils special case of the HF decomposition of s,.p.states
there is a gimplification in that the underlined terms

in Eg,VE(12) do not contribute to the norm of HiQE)n

-

This comes about because the conbribution of these two
terms to the norm of Hi(2) involves essentially the matrix
eleiments of the Hamiltonian between 0p-Oh and Tp-Th states
and these are zero in the case of HI decowposition., We
digress here a little to show why we have considered

H‘(Z) instead of the HF s,p. Hamiltonian h itself to study
the qguestion about the conversion efficiency of the HF
procedure, I'irst we note that not all the terms of Hi(2)

contribute to the HF s,p. Hamiltonian h. The HF s.7p.

n

Hamiltonian in general is of the form

h = H(1) + D, H(2) VE(13)

1

where H(1) i1s the pure single-particle term and D, H(2)

is the one-body potential derived from the two-body 1H(2)
by contracting H(2) over all the occupired s.p. states
(orbit no.1). The definition of the contraction operator
D1 nere is the same as in Bg.VD(6) but now the contraction
is restricted to occupied states only. turther, in the HI

procedure the occupied states are such that they give
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winimum energy for the systew., It can be shown that the

«

terms of H(2)(see BEq,VE(S)) that survive when the HF

e

procedure and contraction are carried out are H(20;00)

and H(11;00) only. We write these two bterus together as

in(2) = H(20300) + H(11;00)

VE(TL)
Then

h = H(T) + D1HHF(2>

VE(TS)

Decomposing HHF<2) into its dirreducible symmetry parts
L

under U(m)+U(N-m) we get

ars ] (
Hyp(2) = H”O<2o;oo)+ﬂ'o<2O;OO>+H O(2O;OO>

00 1 10, 1
H0(11500)+17 (19500)+8 0(11;00) +H "(11;00)

vE(16)

Since under contraction the unitary rank vV of the operator
does not change, but its particle rank p decreases by
I

unity (see Eq.VD(9)), we find that when D,l acts on H .(2)

only those symmetries v which satisfy v< p are allowed
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in D H 2(2). Hence the underlined terms in Tq.VE(16) do

"Lﬂ|

not contribute to Uqﬂ F(d} Therefore the HI' g, p,

Hamiltonian h takes the following form:

b= H(1) + DyHp(2)

= H(1)+D, H99(20,00) + 1'0(20;00) + 1°0(11;00)

+ HOT(TT;OO?J
VE(17)

The unitary tensor structure of the HF S.p. Hamiltonian

h is now clear, We see that HHF(2) which has the same
unitary structure as the HF s,p, Hamiltonian h forms only
a part of H (2) (Eq.VE(12)) which is the total effective
one-hody operator one can have in the HF decomposition.
Thus there are other termg in H’(Z) which have the same
unitary tensor character as Hthd) and from a mathematical
point of view the norm of HHF(Z) would not be a sound
prescription as a measure, This is because the HF

decomposition
H(2) = HHF(2> + (H(2)~HHF(2))

VE(18)

is not an orthogonal decomposition of H(2) and when norms
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are taken, there is no guarantee that condition no.,3 in
B, VB(1) will always be satisfied, It way therefore lead
to contradictory situations in which the ratio R
(Eq.VE(K)) becomes greater than unity. Hence the norn

of HHFQB) as a measure for our purpose is only of

; " _ ) o . . 1 .
susplcious value, We therefore study the Hamiltonian O (2),

=

To return to Ba.V

B
i

(12), each term on the right side
there is unitarily irreducible but contractible, Now

we write each term as a product of two parts, one part
that is purely a number operator and the other one the
unitarily irreducible, fully contracted part, To do this,
we have only to extend the decomposition equation of
BEq,VD(4) to the case of two unitary orbits remembering
that the group transformations in these two orbits act
independently of each other, We get for each term

T ViVe g o
H (p1Py5049,)

poal) o 1TV 2) [PV g0
(.p»] p2 9 Cl1 QE - R . PeS
P1m Y

g v

\ 132 - Vé

g

Vo
(pqusqqq2>

VE(19)



where n, and I, are nusber operators in orpits 1 and 2
YAVS

respectively., 41‘ ‘(pqu)qlq ) 1s the completely reduced)

fully contracted part of H Vi &pqppgqqqg)u It behaves

as a tensor of rank " in the 1st unitary orbit and of
PR . Y ~. . . e " " . [ \fl\/2

rank VW, in the 2nd orbit. Note that T -(p1p2;q1qg)
§_|VL . . AN e e

= (v1 ; qqqg)o Jsing Bq,VE(19) in BEq.VE(12) we

obtain for H (2)
ro 0o
H'(2) = ( ) %ﬁoo(ao 00)+n,1, 4991 ;oo>+<2% 199 02,00)

10 - ) 1 o1,
+(ny=1) §. (2O;UO)+n2 § O(11;OO)+n1j¥ (11,00)

+( ny-1) £97(02;00) + n, £¥ (172 372

#(ny=T) $32(1/2 3725 11)
VE(20)

In order to obtain explicit forms for the irreducible

PVY,
operators %

(p 1 P55 444 2) appearing in Bg,VE(20)

we make use of expression given in Bg.VD(11) for the
single unitary orbit case. In the case of +two onitary
orbits we have two contraction operators D1 and D2 which

act respectively in orbits 1 and 2 and are independent,

H
We have for H (2)
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T t - l} Y P X AN R -
H(2) = I /) <1J “V k1> AiAj BB,

Y

and we carry out firgt the cdntraetion in orbit 1 (that
ig, the 1st orbit is completely filled with N1 particles
while the 2nd orbit ig empty and the contraction 1s over
the filled 1st orbit), to get the explicit expressions
Tor the fully reduced and contracted tensors in orbit 1.
We show the procedure here by working out in detail the

exnplicit form for ?;00(20300)0 Consider the term
n
T :(J} =£90 (20, 00) VE(21)

which is the first term on the right side of Eg,VE(20).
. [ L o

Wow because of the factor \2 in T, T will be non-zero
only in the 1st orbit and it will be zero in all other

cases. Hence we can write

T = - i3] v ah T
I = ZE/ (ég{ v kL AiAJJlBk

LRtet
VE(22)

where 1,j,k,1 are s,p. states in the Tst orbit only, Now

applying the contraction operator D,I on T we get

n
. ) 00, .,
D, T =D, <2) 1 %% (20;00)



Following 3g.VD(6) we have for D,1T

ME -t
VE(2h )
where W Tuns over the states in Tst orbit only., Using

By, VE(22) for T in Eq,VE(24) we get

After expanding the commutators and using the fermion

anticomnutation rules we obtain

Z LUIVIRYY A3
Lk €

)
M

Eig AtBe
(RET

where

Eir= 2 LU IR
Jel

VE(26)
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Applying again the D, operator in Bq,VE(2%) we obtain

I

PIT=2 €
el

where
= ~
a7 53, £
b e

On the other hand, we have from Tig. VE(23)

(»]
=
i

n,
] ,pOO-f .
. D1 (2 >~7n (aogOO)

: 00 .
NI I L ’)_ @ )
(v, 1>nﬂ,§ (20500)
VE(28)
which follows from EQ.VD(8). Using again Bq.,VD(3) we get

- 2 00, . M‘ N .- . 00,, )
Df T =D, [(N,}—’l) n, J;io“’(zo;oo} | = (y-1) i, £ 77 (20500)

therefore

1 —

290 5000 = et P

VE(29)



In order Lo obtain compact and

ble expressions for the other irreducible fully contracted
tensors we define various single-particle gquantities as
follows:

We have a seb of N s.p. states of whichw?1 ghbates

are in the 18t orbit and Mz ]
the s.p.states of the Tst orbit by A,}hv~-and those of
she 2nd orbit by a,b,c... and arbitrary s.p.states by
i,3,¢.0.. » Then we define with respect to contraction

in the 1st orbit the following single-particle guantities:

For a general one-body operator & its matrix
eleuent between s.p.states 1 and j is defined as

Ny

Eov= 2, LINVIFN
§ ;ff;‘ AP 5030)

A, Average s,p.quantitie

e = = 2, € a

e, = >, Eoa
. Nl 669

B, Traceless s.p.quantities

<!
=]
(W]
A

/ i
2 = €T & VE(33)

physically understanda-

are in the 2nd orbit, “Ye denote



/ ~ A
2 e - —_— . \/ E
€ o — Caa €a. VE(3H)

In terms of these s.p.quantities we obtain the following

expressions:

]
£ 015000 = 7€, VE(36)
1

/ :}:p A
1
VE(37)
01 1 . A ¥, 7 l.
«? 00) T Z <O\b A 5y n , Lo Na
] G+h A B
¢
VE(38)
flere the number operators — My = > AxBn  and
: NG
n, = ;z A,\an ., In order to obtain the explicit forms

& wen

, o V'V ,ﬂ o -
for the remaining 5§ ‘Z{pqugq,q?) in Iq.VE(20) we
have to consider next the contraction with respect to the
end orbit by the operator D,. The situation in this case

ig that the 1st orbit is euwpty and the 2nd orbit of I, SaﬁeStateS
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is now completely filled, We contract the two-body inter-

o e 2 R oty PN AR oy A Yoy A= e
action over the Nz occupied states of the 2nd orbit using

D2 and obtain the following expressions for the irreduci-

ble and fully contracted tensors with respect to orbit 2.

- 1 e
g,oo(Od;O(w = m‘)‘:-}) 5)’ VE(39)
10 1 s = s A
S (11500) = 7”*[?7 SN 4*Zi,tJ1V\hB
£ I, ﬁp/\},\,\p\k}\ 3
1
VE(LO)
4 T i s
- T oagb g2 a -
VE(L4T)
11 1 o~
L 22(1/2 3/251-1) = 1) & AW\%Q
fr VY] N
e
VE(L2)
ot n , 1 S C N B
LE2(1/2 3/25 -11) = T Zij o e P
/ W= &
VE(H3)

In the above expregsions the various s.p.quantities
are defined with respect to contraction in the 2nd
orbit as follows: We consider a general one-body operator

which 1s defined through its matrix elements as follows:
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VE(h)

where i,j are arbitrary s.p.states and the suammation is

over all the filled N2 atates of the 2nd orbit,

A, Average s.p. guantities

~N/

e . \ k )
61 - *T\le Z) C:()»O\
a€a

Traceless s.p. quantities

us}

To obtain the expression for the square of

I ) , . I
of I (2) we have to consider the product H (2)

VE(LS)

VE(L6)

VE(L7)

VE(48)

the norm

!

(2).

FLd

! N . El I .
dince the decomposition of H (2) in Bg,VE(20) is an

erthogonal one we need not consider the cros

L erns
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hetween V= and \?: 1 terms which appear in the product

4 R SN X . - .. B . .
H (2) # (2) as their averages in u-particle spaces vanish

aCCC rdlllb LO

#‘ <}‘23%LV>LL (: 261%2:>MJ6VV‘5v %%'O%%

VE(H9)

1 ST
Using Bo.VE(20) for H (2) and remembering Eq.VE(49)

[ 1 .
we obtain for the product H "(2) H (2) the following

( > (205 OOQ { ) % (205 om}

: +
+ inwnz ;?00(11300)} [Q1n2 OO(TW;OO{]

expressions

1" (2) " (2) =

10, %po<11 oo)] |

—+
1
———
N s
B
-
{
“r
@]
—~
O
)
@]
&
~—
i .
—+
—
=
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+ Sﬁgl} '7600(20;00>J “;) ’Wﬁoo(oz;om}
RN wwt
v [(2&? £00 65, QOJ b] ‘Tgogzo;ooﬂ

i [

-- T
.10 ( (1, - (2
+ L(n,]—ﬂ 3{ (20:00) J { ) 1>§ 20 oo)

U {n,l #i‘” (11500) J

+ [1’1,] ;Fm(H;OO) }
. . R 10,44

+ }:n2 ‘%lom‘l;oo) F Fz# (H?OO)}

+ [(112-—1) jrmmz;oo)T ‘{ (n,-1) 3(.01(0230())}

4

. (nz }:%»—%(1/2 3/251-1 >} Snz j@%(w/z 3/25 11 )J
[(112-1) (35(1 /0 372511 ﬂ‘L [(_ng-ﬂ) ‘f??m/z 3/2;-11)
%\ (ny-1) 3’}10(20 oo)] 1’12 i10(11 oo)]

+ Elg ?O(TI;OO)J LD,] ﬂo (20; Ou)] }

+% [(112'-1) '?OT (OQ;OO)X}W{ 14 -%;01(1’150()) }
| + 01 17T, 015 7
+E111 ¢ m;o@)J &\ng_njy (m;oo)] 3

VE(50)
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N N . 4 A .
H O (2) H (2) in m-parbicie space, We have from Bq.VB(7),

I S m
{u 2y u'@))
Uy

G -
= (ggfj) :Zi (=1) " (N;i{>{mﬁsn1) (§>A<H'+(2)H’(2)>F

Uy
(2 ) Sty fresn o
4 { > 2 /N=g Waalllew G = 1 (I\me R 1 N
\oq ) 411 +1> (uzus > - j <h (2)H'(2)
/n\):u ! ; N ] ’

where u1+u2:u~17 u being the maximum particle rank in
T+ R R . .
H (2) H (2). In the present case u =4, and we take
uwzu/27 uZ:(uuQ)/2 for 'maximum economy' (see Sec.VB),
Then u1:2, u,=1. With this choice the average of
- !”}- ! - . .
M (2) H (2) can be expressed in terms of 1ts averages
Tyt o o »
(Qﬂ (2) H (2)yin s=0,1,2 particle spaces and =0,
s
s R I SRR . ) .-

hole spaces. oince H (2) H (2) has minimum particle
rank 2, itsgaverage obviously vanishes in O and

f

I (2)

i

. 3 ‘,-rj"'}"r
particle spaces. Therefore the average of H™7(2)
. . . PN R ! g
is given in terms of its averages <H (2) H (2§>

in

(€]

=1, N-1, and ¥ particle spaces onty, Thus we geb:
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{
For the explicit form of <?{ ? I 2);> we Tthere-
fore need to obtain the expressions for the averages
of H:+(2) H‘(Z) in 2,10-1, and N particle spaces. This
involves goihg through a mass of algebra but the
procedure 1is straightforward‘ We do not give here these
details but present only the final expression that
results for the square of the norm of H’(E) in

m-particle spaces

If Fras Jm
{HE R
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VE(52)
The various single-particle quantities‘al E; etc, have
already been defined in Bgs.VE(30) - VE(34) and VE(4L)-
VE(H8), Using Ba. VE(52) for the square of the norm of
subgroup {?:(O+1) rank operator we can evaluate the
conversion ratio R in Bq.VE(Y4) for a given HF decomposition
of s.pe.states knowing, of course, also the norms of
VYV =0,1,2 rank parts of H(2) decomposed with respect to

).

I, NUMERICAL RESULTS AND DISCUSSION;Of-1p SHELL

We discuss in this section our calculations and
results for norms of different irreducible unitary tensor

parts of H(2) and also the evaluation of conversion ratio
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R for some Of-1p shell nuclei.

For our calculations we have taken the full O0f-1p
éhell of Of7/29 1p3/27 Of5/2 and 1p1/2 S.p.levels, For
the sake of simplicity we have taken these levels to
be degenerate at zero energy and thus the Hamiltonian
H in our calculations consists of only the two-body
interaction term H(2). The two-body interaction H(Z2)
used here 1s the Kuo-Brown effective interaction in the
0f-1p shell modified by McGrory, Wildenthal and Halbert
(MWH)9 in an attempt to optimize the agreement with the

experimental spectra of Ca isotopes.

First, we congider the norms of the different symmetry
parts of H(2) decomposed according to the U(N) group.
These U(N) norms we have calculated using the computer
code of Chané% We show these results in Table V-1
where in the first column m is the total number of parti-
cles of the nucleus, The next three columns show the
squares of norms of V=0, v=1 and V= 2 rank parts
of H(2) resulting from its decomposition under the group
U(N), We see that the V= 0 part of the iﬁteraction is the
largest of the three sywmetry parts in almost all the
cases, This means interaction is predominantly U(N) scalar,

In the nonscalar part it is largely V= 2, theV = 1 part
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being smaller than V= 2 by orders of magnitude. Consider-
ing the propagation formula of these norms we Tind that

"IV =7

the b (2) part would increase much faster with m

RV
coumpared to H 2

(2). This is because the V=1 and V=2
parts of H(2) propagate in m-particle spaces according to
different polynomials involving the number operator, the
V=1 coefficient increasing much faster than the V=2
coefficient with increase in m. Thus one would expect
that the V =1 part of H(2) will become dominant as m

increases, This does not happen with the MWH interaction

R = Y
because the norm |[H || _4 is very small,

We now discuss the results of norms under the subgroup
decomposition of H(2), We have considered here only the
N=Z even even nuclei in the 0f-1p shell, For each nucleus
tne calculation involves two steps, In the first step, we
carry out a HF calculation for the nucleus under the
assumption of axial symmetry for the‘intrinsic state, We
do this for both prolate and oblate deformations and then
select the lowest of these two HF solutions. In the second
step, we consider the entire set of single-particle wave
functions and energies of the lowest HF solution., Using
these s.p.wave functions and energies we evaluate the
various s.,p.average quantities defined in Eqs.VE(30)-VE(3L4)

and Eqs,VE(HH)-VE(H8), We next evaluate the square of the
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norm of H'(E) using the expression in BEq,VE(52), We show
the results of our calculations in Tables V-1 and V-2,

In Table V-1, the fifth column shows the deformation of

the lowest HF solution the letters F,0,5 denoting respe-
ctively the prolate, the oblate and the spherical solutions.

The last three columns show the squares of the norms of

3y

s

- —3 ) . -
V=0, V=1 and ¥= 2 rank tensors resulting from the

9
decomposition of H(2) according to the irreducible repre-
sentations of the subgroup U(m); U(H-m), From these

results we see that the {?: 0 part of the interaction is
the largest component. The size of the.'v =1 part is stil
very small compared to the sizes of other components.
Comparing the norms of parts of H(2) under U(N) and
U<m);U(N—m) we find that the subgroup norms are only
slightly larger than the U(N) norms. First we observe

that the scalar components dominate the whole scene in

both U(N) and subgroup decompositions. The increase in

the Y= 0 component when we go to the subgroup decomposition
is not much. Wext, the ratio of the squares of norms of

V=1 parts viz, l!Hiéq [[2/ )\H\qu lig is about 9 for

m=t and it decreases to about 1.7 in the widdle of the

shell (m=20), In short, the decomposition picture of

the interaction does not change much when we go from U(N)

to its direct-sum subgroup U(m)+U(N-m) generated by the



HEF method, In Table V-2 we show in colunn 5 the ratio R
(see Bq.VE(H)) evaluated for different nuclei. This

ratio 1s the difference betwégﬂ numbers in columns 2 and
3 divided by the number in column Y%, The norm sguare of
subgroup H 1)(2') (column 2) is seen to be only
"(2)

ey
V= 0+

slightly larger than the norm sgquare of I
with respect to U(N)., The ratio R turns out to be around
5% for most of the nuclei studied . This shows that the
HEF procedure converts apparently only a small part of

the irreducible V =2 part of the two-body interaction

into a one-body like operator, In other words, under

the transformations of the subgroup generated by the HEF
decomposition of s,p.states the two-body interaction term
does not seem to be very much reducible into an effective
one-body operator, Since we do not know the optimum

value of the ratio R that can be achieved for this parti-
cular interaction in this particlar space (by making a
general decowposition of the N sg.p. states into m occupied
states and (N-m) unoccupied ones) we do not know whether
or not this tsmall! value of 5 for R is already near

the optimum value of R, The problem of finding out that
subgroup U(m);U(Nwm) which optimizes the ratio R remains

to be tackled.
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Since the sguare cof norm oi an operator 1s the average
of the square of the operator over the entire m-particle
space, it contains information about the behaviour of the
operator from all regions of the spectrum. Hence the
measure it provides for the size of the operator is always
a ”globz—ll’H one, Therefore the ratio R which is a ratio
of the norms tells us about the goodness of the s,p.basis
from a global standpoint. Thus the ratio in ﬁhé case of
HF decomposition of s.p.states does not tell about the
latter's goodness in any particuler energy region of the
spectrum, The small value we get for R essentially means
that the HF s,p., basisg is not‘uniformly good over the
entireﬂspectrum. It does not say anything about the HF

in the ground state domain.

G, NUMBRICAL RESULTS AND DISCUSSION:O0d-1s SHELL

We now discuss our calculations and results for
norms of different irreducible symmetry parts of H(2) and
algo the evdluation of conversion ratio R for some 0Od-Tls

shell nuclei,
As before the Hamiltonian in our calculations does

not have the pure one-body part and thus we have here a

pure two-body term H(2) for the Hamiltonian and a set of
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s.p.levels consisting of O0dp ,~, 18, ,, and 0d, ,, levels
I [ > 1rg < b/(_]/ 3]/C \,\dj/a _LEVKJ]_J
degenerate at zero energy. For H(2) we have used three
different interactions viz, the Preedom-Wildenthal
e 10 oy e
interaction (FPW) ~, the Schematic interaction (see

G . ; aAATD .
Chapter IV, Section ¢) and the K+12FP interaction 1,

First, let us consider the results of U(H) norm
calculations using the tbree interactions, These are
shown in Tables V-3, V-5 and V-7. We show in these tables
the same quantities as were shown in Table V-1, We see
from these results that in the case of TW and.

2V =0 X L ( B}
(2) is the dominant part, The

K+12FP interactions b
K+12FP V =0 part is much larger than the PW V=0 part
throughout the 0d-1s shell, Next, we see that the V=T
norm in the PW interaction is larger than the V =1 norm
in the K+12FP interaction., This V>:1 component has an
appreciable magnitude (for all m shown) in the case of
PW interaction and in the E+12FP case it ig smaller by
almost an order of magnitude., If we next look at the
square of norms of the WV =2 part of H(2) we find that
it is larger than the V=1 part in both the interactions.
The PW V=2 part has a somewhat larger size than its
K+12FP counterpart. In short, the V=0 strength is domi-
nant in both the interactions and the size of V=1 part

in PW is appreciable and is larger than the K+12FP V=1
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part. In both the interactions there is a large part

which is dirreducible,

The U(N) norms with the schematic interaction are

=

shown in Table V-5, The decomposgition picture here is
sbrikingly different. We notice that the V=0 is not the
dominating component and it has a gize comparable to
that of V=1 part in alwost throughout the shell. As
regards the YV =2 part it ig much larger than V=0 and
V=1 parts in almost every case. Thus this interaction
ig dominantly of the higher unitary syummetry type (v =2)
whereas in the FW and K+12FP interactions the scalar

strength dominates.

We 1ow congsider the norms of H(2) decomposed under

the subgroup U(m)+U(MN-m), These results are shown in
Table V-3 upto Table V-8 for the three different inter-
actions. The same quantities as were shown in Tables V-1
and V-2 are shown here also, From Table V-3 we see that
the V'=0 continues to be the dominant part of the PW
interaction when one goes from U(N) decomposition to the

" A L 7 : :
U(m)+U(N-m) decomposition., The norm of V=1 is still small
although it increases by an order of magnitude when we go
from the beginning to the middle of the shell, If we

— —

compare the norms of the V=0 and V =1 parts with respect

to U(N) and U(m);U(N—m) we find that 4in most caseg under



the subgroup decomposgition each of these parts is only
Slightly larger than what 1t is under U(I), Consequently
the size of the effective one-body operator increases
but slightly when we go from the group U(N) to it sub-
group U(m);U(N-m) (Table V-4, coluans 2 and 3). The
difference in the squares of the norms of this operator
under the two groups seems to attain a maximum in the
middle of the shell (-~ 17 MeVg). Let us consider next
the efficiency ratio H shown in the last column in

Table V-4, This ratio is seen to be small for all m
listed, its value ranging from 6,7% (m=8) to 25%(m=20).
Thig means that there is no substantial reduction of

the higher unitary symmetry part of the interaction i.e,
HW}:2(2) into its lower symmetry parts under the subgroup

U(m)+U(N~m) when a HF calculation is done.

The Tesults of subgroup norms with the K+12FP
interaction are shown in Tables V-7 and V-8, It is clear
from these results that under subgroup dscomposition a
large part of the strength resides in the :? =0 component.
The ;? =1 part is by itself quite small and has net changed
much compared to its U(N) counterpart. The ratio R shown
in Table V-8 is small indeed in all the cases shown, It

is maximum at 9% for m=16., 4 9% reduction of the U(N)
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=2 -3

irreducible H (2) part into V=(0-+1) part under

U(m)+U(N-m) indicates that the HF g,p,basis is by no

means a good basis considered over the entire energy
range, In the case of the results of the subgroup norms
for the Schewmatic interaction (Tables V-5 and V-6) the
t§%:O and ??;1 norms are comparable and are wuch

i .
smaller than the =2 norm which as in U(N) decomposi-
tion, again holds the show. If we next look at the
ratio R in Table V-6 we see that it is quite small in
all the cases,

It is clear from all this discussion that the HF
decomposition is not effective in reducing the higher
unitary symmetry parts of the two-body interaction into
its lower unitary symnetry parts. Further the smallness
of the ratio R essentially means that the HF s,p.basis

as a universal basis is not a good bagis although it

may be good in the ground state region.

The conversion ratio R together with U(N) norms
can be used to serve as a good guide in answering the
question which interactions are suitable for using in
HI* calculations, Given two interactions we can say that
the interaction which has appreciable U(N) irreducible

V=D
part (di.e, H (2)) and which gives a larger value for
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the ratio R on the whole is better suited for using in
HI" calculations than the other one, Of course this is
ot a very precise indicator bub it does serve ags a
gulde in answering the above stated question, From this
point of view, comparing the values of the ratio R

. ] y nT V:2 . . . e E - 3 s -
and norms of H (2) part for the three interactions
in Tables V-4, V-6 and V-8 we gee that the Preedom-

Wildenthal (PW) interaction is marginally better than the

other two interactions.



66/ ZL86 L €°L00%H 0 50°Q érel L 0°L00EH o¢

88°lz  €82L°¢ 9°HSE99¢ 0 g6z SLoRe 6°€5992 c€

€L°05  2hSO'C  Lt2gnSl 0 CL°es  116ete € ogHsL 8z

78°99  ZlgS'e £°94eR d 76°0L  6286° 1L L ° €529 il

86°24  588€°z  0°HL6EE 0 88°9L  960%"1L SLULLEE 0z

| HLTC9  049€°L HTE9SL 0 7G04 REHBTO 2L 0951 91
mw QL7058  CCE6°0 QT hiN d CLES  B896E°0 C6° LR zlL
€0°8z  S$698°0 4758 d 8S"6e  +zElL'o OH6 18 8

69°4 156070 891"+ a $0°3 9210°0 €006° ¢ o

A b= 0= & :pswmw =N L= A 0= a e

(T ()0
IC wmIou J10 aJaenbg

dH

i

(1o Iopun

(2) AH JO mIou Jo aieubg

UOT10BISIUT 1JI8QTEH-TRUIUS PTTM-AIOINON

*TTeUS d|-J0 UT T8TONU USAR-UBAS Z=[] JO0J (¥OO7~889I3JBH) (uw~N)n+(wHn

T-N =14avL

syl 01 Bulpiocooe pssodwooep (g)H IO sqged Lx1sumds LIeaTun




=17

1Z°9 ¢0°g 2 °200¢ Z2°C00¢H of
w46 06762 €°9599¢g 0°96997 c¢
+2° ¢ CL¢s £"28H6 L 4°GgRG L Qz
He 6 +5°0/4 L°6628 8°84z8 +Z
20°6 3887974 G ZLAE H°9L6E 0z
oh° g +S4°07 46°098 1 3°+oL L 9
66§ CLcs €E 2ih 92° G/H ZL
AR 6°6z 290°¢ 119799 3
L€ H 50°9 62L6°¢ 7592 K H
= (L+0)=n (1+0)= a B
(o) (m=p) o+ (myn
! Lo RTI (2)¢ ,m
OT28y Amvxrm saenbg JO mWJIOouU IO saenis
UOTAOBISIUT JJI3CTRH~TRYAUSRTTM ~£I0I1007] H2)HE
TT2Us dL*=I0 UL T8ToNU UD AD-TI0 AP Z=M J0J (300g-88J3I8H) (W-)n+(mw)n pue (I)a
dnoJg? e2yl3 01 SurTploooe pessodmosep

(2)H Jo sjged Lajeumds AreqTun 10 SWJI O}

c~h EIavL



€g°zgl 161 00°5058 0 60°874 197 LS +9 " 68412 gl
L0° 06 02°6C  LE°6L57 0 +2 " 101 zetLE L1°8952 2zl

i

/D//
ﬂ ¢g 2l +6°21 AR 0 60°8Z et bl 12 294 3
T 4 cQ e d 67°92 czTL 22’ L2 H
=L =L 0= & UOT3 =0 L= 0=t m

~ (w=N)n+(m)n -0Tos

o (TR I8 pun
Jepun (g¥H IO mIOU IO 2Jenbg = (¢) FE 0 wmicu jJo

WOTA0BJIS QUL TeUYLUSPTT~WOPIadd = (2)E

RNCEE
§1-pQ UT TATONU Usas-UsAR Z=N IO (K)N puB(¥O04~88 I3I¥H) (m=N)I +\avb sdnoasd
syq 02 BUTPIO0OE posodmodep (g)H I° squsuodwoD AJI30UAS %hmpH:ﬁ I0 STLIOHN

m..). A mﬂ.ﬂ.c Jl



177

éz iz 6R7°92 g hEcle G LRELS 02
€/.°9 60° 84 Gz 158 LG ons8 91
80° L1 12 HE 6662 60192 A
0/,°9 60° 84 Cer°ClR 069° 347 g
+wl" 4 6792 L6 ze 9096 ° 12 #
(%) =& (L0)=A (L0)= L o
: ()0 Tepum MmmmW¢MMw%1
OT3Ed ANV\W mw WIOU JO 8JIENDS JO wIou JO mgmswm

UOTAoRIBFUT TeUlUS R IM-TIOPSSed S(2)H

*TTSUS §{~-pO UL TeTo0U

1y

Ue AB-USAS T=iT IOI ()N DUBR (HO0I-88JI3IEH) (m=1) 0+ (E) 0 sdnos® eua
0n 2uTpIoo0E pesodmoosp (g)E JO queucdmod LIieunis £IeqTUn IO SWJION

"M E AT



00°301L gg°fz  0&°CHL 0 20°GLL  6L6°L2 HH°8CL 0z
6g'GzE  OR'Hz 028759 d CO'6EE 8GBTle EETSS 9L
€etern 097 25 e d CSTeEn  wzETeL S04°oL ozl
i ~ @ 2 a ° — s »
@ 8¢€°92¢ €99  184°¢€L 0 CO°HEE  £094°H 4900°¢ S
i . o o - .
06°60L  L00Z° L OL09 d 206l ROKE'O  1BELTO o
Nu\r Aﬁrs _\H..AN(F) OHb > |.H> _\H.\/ —a o
S - s o]
W-1) (1) J8pum !
A ( ,rv,ﬁ/, ) P -nTes (50 o7
(2)H IO mIou 10 edenbg g1 (z) § 10 mIou Jo sJIenbg
A
UOTA2eI31ULT 9T1BUWBYDG u\ /M
TT2US SL-R0
UT TSTONU USAR-USAS Z=i I0F (M) DPUR (yoog-esraden) (U-i)O+(m)n sdnois
SUl 03 BUTDL000® pesodmoodp (Z)H JO sjueuocdwod Arjewmmds AreqTun JO SwIoy
O =Vl



L1L°9 20°6LL 9C° 091 96£°/9L oz

£8°¢ CO°6EE €Q0°L4 +gece 06 91
66+ €5 6cH 626° 62 Ohzl 05 A
4R €O 6CE 049"/ cclh’oz 2
T H 20" 6L 18970 4108°6 j
A
o~
]
2 =N (L+0)=A (1+0)= m
(%) NV JeTUN () I (m=i)0+(m)n
) (oo v Amﬁr “ Jopun”®
oT3ey JC mIou Jo saenbg (z¥H I0 mIou Jo sgenbg

UOT30BISIUT OTFBWB YOG (7
S

o

U e (f)n pue (¥o0g-98J3del) (wWw-N)N+(u)n sdnoxd
8U1 03 FUTPIOOOR pesoduwodsp (Z2)E I0 sjueuodmod Axjsumlls AJIR1TUN IO SWICH

9—A EIIVE



w9 HZ Q000 £°HALSE ¢ HE* &2 990¢€°4  £°92¢8¢ 0z

68°49 4202l 0°HIEGL 0 69"+l 79824 0°zLEslL 91

£E€°68  BLLGL'G  9°QCH J €896 280 ™H 8" LE9H zl

mw 8 ° 04 9L15°¢ €6°9¢8 0 69° s 89854° 1 69 €Lg 8
| €'tz HLO9M'0 09 6C i nET5Z 128LT0 08E2°8E i
muww;mvbwmwvm mwmwﬁ xmmww =4 — = )

2 q T A0 szbhmﬁqs
(2 H I0 wiou Jo axenbg 1 (21 S5 e 38 anne

UOT30BILGUT JdZ |+ $(2)E
*TT8YS S|~-p0 UT TaTonu
N pue (¥o0g-98.1%JBH) AgiszwAEvD sdnoxg auya

C)H I0 sjusuodwod ArisumAs AreqTun IO SULION

/=N HIavL



O

ON

o

-

\O
,‘:j_
o~

187

29" 8¢t

4" ER9H
GH°6E8

692° 04

O
C\J

(1+0)= A

Jepun
‘o Lhog JO axenbg

Aﬁ+QVMﬁ

)0+ (w0

Joptm
mJIou Jo0 sxenb

131

Q=L ETEYVL

sfeyal

UT TOTONU USAR-URAS 7Z=[] I0I ([)[l PUB (¥007-88J3JBH) Aanﬁv:rafv
UTRI000. pasodmodsp (z2)H

108I09UT J4ZL+¥

Jo squeucdmod AIlowmis hh@pﬂgﬁ JO SuIOoN



9.

10,

11,

~182-

REFERBENCES I'OR CHAPTER V

J.B,French, Physics Letters, 268, 75 (1967).

J.B.French, "Spectral Distributions in Nuclei, Dacca

J.B, French, "Spectral Distributions in Nuclei in
Nuclear Structure', Worth Holland Publishing Coupany,
Amsterdam (1967),

C.M, Vincent, Phys. Rev, 163, 104k (1967),

F.8. Chang, J.B., French and T,H, Thio, Annals of
Physics, 66, 137 (1971),
J.C, Parikh, Article on "Group Symmetries in Nuclear

Structure" to appear in Advances in Nuclear Physics,

J.B, French, Proc. Sumuer Institute of Theoretical
Physics, Chandigarh, May 1971, Vol.IIL,

F.5, Chang, Ph.D, Thesis, University of Rochester
(1970).,

J.B., McGrory, B.H., Wildenthal and E.C, Halbert,
Phys., Rev.C2, 186 (1970),

M, Preedom and B,H, Wildenthal, Phys, Rev., C6,1633
(1272).

E.C, Halbert et al, Advances in Nuclear Physics,

Vol.M? Chapter 6, edited by M, Baranger and E. Vogt,
Plenum Press (1971),
M, Hamermesh

7

1962).

Group Theory (FPergamon Press Ltd, ,London



~183-

CHAPTER VI

SUMMARY AND FUTURE PROSPECTS

To sum up, we have studied in this thesis two
distinet topics., The first topic deals with the goodness
of Hartree-Fock states and also with the variational
method hased on the minimization of energy variance for
obtaining Slater determinants. In the second topic we
have studied the decomposition of ferwion operators
under unitary groups and the norus of these operators

in spectroscopic spaces.

In the first place, we have studied the goodness
of HI' states by evaluating their widths., The width of a
state provides us with a measure of the departure of
the state from an exact eigenstate of the nuclear system
in the model space, We have ecvaluated the widths of HF
states of some light spherical nuclel using realistic
two~body interactions. We find that the HF states have
large widthis which implies that the HI' single Slater

determinantal description is inadequate,

Bezsides studying the goodness of HF states we have
also investigated in detail a new variational method wherein

we minimize the energy variance of a 5later determinant
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instead of its energy as is done in the conventional HAF

method, We have derived the equations for determining the

)

sell-consistent gebt of singlé particle orbits using the
new variational procedure., We have applied this method

to gome light spherical nuclei, We find that the new
procedure yields determinants which are close to the HF
deterninants., We have also calculated perturbation theory

o

corrections for both kinds of determinants viz., the HE
and the wminimumn Variahce determinant to estimate the
correlation effects, A couparative study of the properties
of the Slater determinants obtained from the two variati-
onal procedures has also been made, Further, we have

also studied the goodness of deformed HF states of some

N=Z even even nuclei in the 0d-1g major shell,

The second major topic dealt with in this thesis
is about the structure of fermion operators and spaces.
We pave studied here the question to what extent the HF
procedure gonverts the two-body interaction into an
effective one-body operator., For this purpose we require
two things., First, we need a proper classification scheue
for operators in which we can carry out an orthogonal
decomposition of them, Secondly, we need proper measures
or norms for the sizes of operators so that we can study

thelr behaviour in spectroscopic spaces and also make a



comparative study of them, In cur study we have used the

group bheoretic clagsification for operators tne relevant
groups being unitary groups in gspectroscoplic spaces,
More precisely, we have here & set of N gingle-particle
states in which m particles are distributed, We have
classified the two-body interaction according to the
irreducible symmetries of the unitary group U(N) and

its direct sum subgroup U(m);U(N~m), The subgroup here

ig the one generated by the HF decomposition of s.p.

space into m occupied and (N-m) unoccu@ied gstates,

We have studied here the question to what extent the
irreducible tensor part of the two-body interaction H(2)
under U(N) is converted into an effective one-body operator
under the subgroup U(m);U(N~m) supplied by the HI proce-
dure, As alréady said, for our purpose we need also
suitable norms for the sizes of operators in m particle
spaces. We have used here the Duclidean norn as a proper
measure for the size of an operator, We have derived a
polynomial expression for the square of the noru of the
effective one-body operator which results when the two-
body interaction is classified under the subgroup generated
by the HI' procedure. Wext a quantity called conversion
ratio is defined in terwms of norms of different gymnetry

parts of the interaction decomposed according to U(N) and
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U(m);U(Nmm). This ratio tells us to what extent the two-
body interaction hasg been converted into an effective
one-hody operator when a HF calculation is done, It
furthier indicates in a global gense how good is the HIF
single-particle basic. This ratio has been evaluated for
the HF solutions of some N=Z even even nuclei both in
O0f-1p and 0d-1s shells using realistic two-body inter-
actions. Our studies reveal that this conversion is quite
small which implies that a large part of the two-body
interaction is still irreducible under the subgroup

" 5,.p. basis

ey

generated by the HF procedure and that the

is not a good universal basis,

Finally a few sugrestions for future investigations
which emerge from these studies may be indicated here:

(a) Qur study of widths has shown that single Slater
determinantal description of exact eigenstates of
the Hamiltonian is inadeguate, One way of dmproving
the determinantal energy and wave function 1s to
correct them in perturbation theory by including 1ph
and 2ph correlations as we did in Chapter III. A
better approach whicn is nonperturbative is through
an elementary application of Lanczos algorithum, This
involves the evaluation of moments of the Hamiltonian

i in the determinantal state " . If we restrict



(c)

(d)

ourselves to the model space consisting of Oph, 1ph
and 2ph states then we .can reduce the energy eigen-
value problem to the diagonaltization of a 2x2 matrix

whose elemnents are given in terms of the first three

|

s ., Ihis

o

moments of the Hamiltonian in the state -

|

method provides an exact solution of the system in
the model space,

The energy variance minimization method described
in this thesis may be wmodified to include constra-
ints. If one can wminimize the energy variance of a
deteruwinant at 2 given energy then one has the best
S.P. basis (in the sense of minimpm width) at that
energy., This will be helpful in the study of level

densities etc.

As already mentioned in Chapter III, it will be
interesting to investigste whether the expectation
values <‘£}§Eﬁ)%@f> (p>»2) where P dis a Slater
determinant, also become minimum the neighbourhood

of the HI' mindmum,

The expression for the gsquare of the norm of
effective one-body operator which we have derived
in Chapter V can be easily extended for the general

case by dncluding all those terms which were zero
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for the HI' decompogition, Maxiwization of this norm
may then provide a s,p; baais in which the Hanilto-
nian looks essentially like a (0+1)-body operator.
This is adwittedly hard to carry out but it will be
quite interesting if one can achieve i1t., As a first
step in tackling this problem one can study it in
simple situations where the s,p,basis states are
defined by Jjust one-parameter,as for exauple, in the
Nilsson model where a single deformation parameter

defines the single particle states,





