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CHAPTER I

INTRODUCTION

For studying the discrete enerqgy levels of a QUantaI‘

system, like a nucleus or an atom, powerful theoretical tedhniqués'liké: ,

~shell model and variational approaches are available. The successful
application of these techniques is restricted to the ground state

domain where the levels are found far apart. In contrast to this, levels
in multitude at high excitation eneigies, which arise out of the exci-
tation of many particles, are spread over a width which is a fraction

of the mean around which the spread occurs. Sueh spectra are complex
for in the extension of shell model techniques to such high excitation
energies one encounters matrices of large dimensionalities. With such

- @ large number of levels spread over a small width one inquires f@r

the statistical properties of these levels wherein the average pzoperties

like the level density and the fluctuations about the averages are




. With the increasing neea)‘witn'incfeaSing excitation energy,

{fbi‘Such a statistical study the techniques of the Random Matrix Theory
”?kMT) and the spectral distribution methods of French and coworkers gain:e'

_ Increasing significance.

In the application of these two techniques one assumes that

the statistical properties of spectra are insensitive to certain features

Of the Hamiltonian like for example the form of the interaction potential.
\The,genesis of an ensemble of‘Hamiltonians finds its root in thiS'aSSUmptien;
fleferent members of the ensemble then correspond to different reallstlc

Jinteractions. In the event of *he ensemble not being erqodlc (when the

fluctuations from member to member are large) the above assumption is

violated.

In tne Random Matrix Theory (RMT) ((1l) & (2)) the Geussian/
Orthogonal Ensemble (GOE) of real symmetric matrlces glves a. semi= .
circular level den51ty when all the matrix elements are chosen to be
‘»statistically independent. But in physical situations one has a
$ GOE\only in Lhe ‘r! partlcle spece correspondlng to random r-body
7:1nteract10n which 1is then proragated to the many partlcles (say 'p’
panticle,) space.. Using the spectral distribution methods to evaluate
the traces of different pewers of the Hamiltonian (without actually

'diagonalising the matrix) Mon and French have shown (3) that the leVeI,-‘

density which is a semi-circle for p-body random interaction in 'p’;

particle space goes over to a Gaussian when the rank of interaction

_becomes much smaller than the particle number. The Gaussian distri-

bution: has also been observed in shell model calculations for levels



of flxed SJmmetrg ((4) & (5)) Iﬁ the second chapteL, tbe effect of
ymmetry con51deratlons on the rate of approach of the level den51tg,
w”’hfpartlcle number, to- normalltg is studied for two-body random
f_interaction. The main part of this chapter is devoted to generatlnq
: énh cnsemble of matrices, starting from purely mathematiCal‘considera—‘

,[tions that would explain the other limit of Gaussian level dehsity.

In this attempt to pull the level density aWag*from~awsemi—éircle and
towards a Gaussian, ensembles of matrices are gene;ated with: dlfferent
ifdharaCteristic level densities. The ergodicity of different ensembles

 is also discussed in detail.

With the sole objective of accounting for the increased
‘departures found (6) in the partial level density of atoms, Chapter III
 investigates the effect of range on the partial level density besides

its effect on the rate of approach of the level density to normality.

Embarking on the fluctuations, one finds that both the
Gaussian Orthogonal Ensemble (GOE) of real symmetric mat;ices and the
Twoqudy Random Bnsembles (TBRE) for random‘two—body interaction exhibit
.identical features, in terms of spécing distributions for near neighbours.
;ﬂ{?) &\(8)). In fact, Dyson suggests (9) that these fluctuation proper-
Jtiég fbr‘é'set of 'n' levels would not depend on the nature of the |
level density under the condition when the matrix dimensionalitg‘N'
(N > .n) goes to infinity. The fluctuétion properties are sensitive
only: to mixing of levels of different symmetries and hence‘the.Onlg
physical 1nformatlon that could be learnt till now from the‘Lluctuatlons

1s about hidden symmetries.
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Chapter Iéf-.in*resfigates the fluctuation pr;pperties of

' the ensembl‘es. generated in Chapf:er IT under conditions when n <« < N and
élso when n ~ N. The fluctuations are studied through *-/:3‘3 and Q (10)
" "‘that measure the long and short range ordering in the level spectra.

The variation of these fluctuation measures with range of interaction

b : mfal--\sow--di—scussed

-Chapter-V-gives-a-detailed account of the results... ...
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CHAPTE‘R' IT

ON LEVEL DENSITY QISTRIBUTIONS

1. Introduction:

)With the advent of shell model and variationa%.techniques, lOW“ 
lying states of atomic and nuclear spectra were accounted for to an‘
appreciable degree of accuracy. In the extension of these techniques

to high excitation energies, the exponential rate of increase of the
~nqmber of levels with excitation energy poses insurmountable technical
difficulties. Choosing, therefore, to ignore thé detailé& structure of
 leVe1s, one adopts statistical-methbds.té iﬁquire into the properties

of such complex spectra. These methods project infbfmation on the
rg;qbal or average properties and the fluctuations about these averages

més;wé@l(



1fefirst‘end'fbremoeﬁ_ef_the_globe1 pere£ties is the level
‘deg51ty that gives the eumber of ieveis per enit energy interval.
~mfhe.h§pothesis that the level density and other statistical proper-
‘~ties'are insensitive to certain features of the Hamiltonian, like
7f fbreekemp1e, the form of interaction potential, facilitates the use

_of an ensemble of Hamiltonians. Incomplete knowledge of the Hamilto-

nian often necessitates an ensemble approach. This concept of an
_ensemble is then founded on the randomisation of the unknown features
e of the Hamiltonian and stands past dispute as long as one is not

_interested in the detailed properties of level spectra.

A review of the level densities of physical;medels‘and the
random matrix theory (RMT) in Section 2 shall be followed by the
effect of symmetry considerations ie Section 3. Section 4 gives a
prescription fbr generating random matrix ensembles that give rise to
different characteristic eigenvalue densities. It gives. there fo a
comparison of the ergodicity of different ensembles. Seetion 5 summa-

rises the results.

2. Fermionic Level Density and Random Matrix Theory:

Consider a system of 'p’ particles distributed among 's’'
'single particle states and interacting via r-body interaction. For an
r-body random interaction, Mon and French ((1) & (2)) have shown that
the ensemble averaged level density EP(E) of the Scr dimensional space;
' both for finite (finite 's' and 'p') and dilutek(p LN O, s «~>§<ﬁ ,

p/s '—> 0) systems is a semi-circle when all the particles interact
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simultaneoﬁslg (r = p). As 'r' decreases there is a transition in the
level déhsitg towards a Gaussian and in the limit when 'r' becomes much

 smaller compared to 'p' (r < < p), it approaches a Gaussian.

The emergence of a Gaussian as a limiting distribution is
Veasily seen in the case of a dilute system of non-interacting particlea.
’xmawdilutewsystem,MPauliﬁprinciple_effects_couldwbe”ignared_and ...... the
.'mang particle level density which is a convolution of the single particle
 k 1evel densities approaches a Gaussian in accordance with the Central

Limit Theorem (CLT).

This analytical investigation of Mon and French was prompted
by the numerical calculations (3) done in the shell model framework for
lévels of fixed symmetry. The level density called the partial level
~density in this case turned out to be a Gaussian for two body random
 interaction. This ensemble is called two body random ensemble (TBRE) .
From now on, the ensemble corresponding to r-~body random interaction

will be called RBRE for r « p and PBRE for r = p.

In the theory of random matrices ((4), (5) & (6)), the
Gaussian Orthogonal Ensemble (GOE) of real symmetric matrices gives
a semi—circle for the eigenvalue density ~S:)(E), in the limit of.
matrix dimensionality N .3 <) . This is Wigner's law of semi-
circle (7).

Rt

O =amn [av- 8 (2.1)

where E is in units of 26’Nﬁ where G~  1is the width of a vast




oF matrlx elements (8) which are stat1stlcally independent.

/ Inrphysical situations, an RBRE is characterised by a fixed e
,sef'bf‘independent matrix elements which are the r-body matrix elementsw

a(RBME) Essentially correspondlng to r-body random 1nteraction there

is a GOE in ‘r' particle space which is then propagated to the many

“rtlcleespacehewThe“number of RBME increases with the rank of inter-

ctign,and’fbr r-= p all the matrix elements are 1ndependent. Thus

‘vhe{randoh.matrix theory (RMT) corresponds to the case_when all the
éafficﬁes interaet simultaneously. This is physieally unrealistic for
}?e‘ﬁﬁewethat realistic interactions are of low-particle rank in charac-
efer.. And it is this feature that gives a Gaussian level density (3).
fiThere are elso examples of TBRE ((9) & (10)) in literature that suggeSt
that symmetry considerations improve the rate of approach of the level |

'deneity to normality. The following section elaboratés on this subject

3 Symmetry Properties and Level Density:

The effect of symmetry on level density is in a sense akin to
?hét of a'reduction in the rank of interaction. ‘JuSt as a reduction in
'r’ ieduces the number of RBME bringing the level density more tewards
Gadssiah, the conservation of quantum numbers corresponding to symmetry
‘properties reduces the nuﬁber of non-vanishing matrix elements in the

”r' particle space.

The level density under different conditions is usually studied

tbrough its shape parameters Sp(p‘> 2) which are given by
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S o .
S, =K,/ )7 o | (2.2)

‘1ﬁhere Kp, the pth cumulant is ﬁbe coefficient of (it}p / p! in

In F(t), where F(t) is the Fourier transform of the level density

F(t) = j exp(itE) SD(E)- dE - (2.3)
~— ol

,KZ is the variance. The odd shape parameters give information on
the aéymmetrg of the distribution. 53 and S4 are the standard
measures of skewness and excess. .All Sp’s vanish for a Gaussiqn.

In the event of higher shape parameters vanishing, a positive excess

would correspond to a peaked distribution while a negative excess to

a flattened one. 54 for a semi-circle is -1.0.

Mon and French evaluated the shape parameters of the level:
density by using the elegant propagation technique. The Hamiltonian

in 'r' particle space is given by

o +

H=y W Z . (r) z, (r) (2.4)

A5 . ) 1t 2 ) )
21’22 lez

The dimensionality of H in 'r’ particle space is given by ¢, where 's’

+.

is the number of single particle states. In equation (2.4)_21 and 22

are the 'r' particle creation and annihilation operators and W's are the
r—quy matrix elements. Since H is rea1~symmetric, the number of W's is
given by Y(Y + 1)/2, where v = scr is the dimensionality of H. The
average'of different powers of H in 'p' particle space 1is then |

evaluated (11) using the relation

'<0(r)/>,P A p"r- {om >F | (2.5)



fii\’
’Qﬁe}e 0(r} is any r~bbdg ébérétor; Thus.fhe‘traces ¢ different pdwers
”Q%QH“are evaluated without actuaily diagonalising the matrix. This
i?bcedﬁre is useful as lohg as one 15 interested only in low order shapeﬁf
‘pé}ameters. Evaluation of traces of higher powers of H though straight-

jfbrward becomes laborious.

The value. of 54_for TBRE for different particle number 'p’ in

‘(sd} shell calculated using this technique is given in Table 1. Since
the number of gingle particle states 's' in (sd) shell is 24, the dimen-
sionality of the two particle space 1s 2402 = 276 and the\number of

independent TBME is (276 x 277)/2 when no symmetry considerations are ,

introducéd.
' TABLE 1
F7 R .
p 4 Sg S4 Sy
{without (with
symmatry symmetry)
4 - -0.8F ~0,58 {.14) for Gaussian :
8 ~0.59 -0,32 (.11) 0.0
12 . =0.56 , -0.22 (.12) for Semi-Circle:
(Ref:1) {Ref:8) ~1.0

TABLE 1: Values 0f S

4_fbr different particle number ‘p’' in (sd) shell

for the two cases without & with symmetry.
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 Potbharé‘has eQaIUated‘(Q) S, for the same configurations by

iihfio&uéing'C§nseiVatIOn bf‘Jand T (totaiAangular momentum‘énd isospin
 féﬁantum numberg) in 2 particle space. The number of TBME redqces to 63
Q %and tbé 2 particle and 'é’ particle matrices break down to block

. _matrices along the diagonal. The values of §, for both these cases

4
 without and with symmetry are in Table 1. With symmetry the values of

-*"f'S;#=ai'e'f-"smazl';lz‘e‘r"""c:ompazfed'_t’d'”"”th'o‘se—When"nb‘“”sgmnet’ry“ ieIntroduced, and =

closer to that of a Gaussian.

PN

For é complete knowledge of the level density distributions in
both céses,vone ﬁeeds to know all the shape parameters, as 53 and 54
alone might not give a correct idea of the nature of distributfon. This
would become clear in the next section. Hence to ascertain the change

in the level density distribution on intzvducing symmetry considerations,

the fbllowing prbcedure is adopted.

Now that the propagation technique stands stripped of 1ts
simplicitg in the evaluation of higher order moments of H, one bas but
one choice of matrix diagomalisation in the ‘p’ particle space. From
the definition of r-body Hamiltonian in equation (2.4), the matrix
elements and the Hamiltbnian in 'p' particle space could be written as

= . - ~ c
Hij Z-:21,22 Wzlzé S <Pi | Z,(x} | (p r) > %
' b ,

-+ R \
{ tp=1) |z, (2] Py (2.6)

“A N
Z Z2 (A.(?l) A (22) + A(ZZ) A (Zl))

H = _ 3
18



¢?}§3T\
’ w£é£e.x'¢ afé (p;f)'parfi?le states aﬁd'A(Z) ﬁbeAmatrix that créates
‘~’p' particle states frbm (p—r)tparticleAstafes through '2'.  Since the
;pumber of (p—r) and 'p' particle states is Sc(pér) (Xl say) and scp
'”(XZ say), A is an (Xé X Xi) matrix; the rows and columns of A’are
'labelledrby Ip’ and (p-r) paiticlé states. Only those elements of A

where: the row and column indices have (p~r) states in common are non-

vanishing. The fact that for fermions one uses determinantal basis

'\states leads to the appropriate sign of the matrix elements in A for
géﬁy permutation of the single particle state indices in many particle
states. Now that the A(Z)%s are built in this fashion the Hamiltonian
in 'p' particle space is known. Thus an ensemble of H's 1sgénerated

for any rank of interaction.

To-'study the effect of symmetry considerations on level
density using the above scheme the case of p = 4, s = 8 and r'= 2
is choséﬂ, The dimenéiohélities of the ¢ particle and‘Z particle
spaces ére'70 and 28 respectiveiy;‘ Withoﬁt symmetry considerations
«’bné;basb(ZQ x 29))2 TBME and an ensemble of H's genérated'énd ’diagnoaf
lised. This is the first case without symmetry. In the sécond.dasé,
éaéhlofvtbe single partiélé states is assignédna quantu@ number ’ﬁ’
corresponding to any additive symmetry (say J%]. Wwith the conserva-
tion bf total 'm' in 2 particle'spaCe, one hasboﬁly 50 non—vanishing
TBME . Again an ensemble of H's is genérated and diagonalised; The
to S

shape parameters S for the two cases along with those for a o

3 8

Gaussian and semi-circle are shown.jn Table 2. It also contains the

1

fluctuations or the RMS deviations Ofvfhe shape parameters. . The shape

parameters go down in magnitude when symmetry considerations are
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TARLE 2
‘T~i§se:biin 53 ’ 54 35 56 57 58,
rnmens b K - .
S1ien (S3RMS) (S ,RMS) (SSRMS) (S (RMS) (S7RMS) (S gRMS)
. _»47
. without 0.01 -0. 84 ~0.02 3.64 0.10 ~=35.79
'ﬂsgmmetry (006) (0706)———(0728)(0:49)—(2:82)(7:00)
50 -
with ~0.08 -0.57 0,29 1.78 -2.14 =13.90
symmetry (0.18) (0.25) (0.67) (1.68) (6.12) (18.56)
Semicircle: 0.0 -1.0 0.0 5.0 0.0 -56.00
Gaussian 0.0 0.0 0.0 0.0 0.0 0.0

TABLE 2: Shape parameters & RMS deviation of level‘density for 70 x,70 _ \
matrices (p = 4; s = 8; r = 2) for the indicated ens_mble dimensionali-

ties.

introduced thus taking theA'p',particle level‘density closer to Gaussian.
What the level dénsity looks like in the second case would become clear
in the next section where thére are disfributions‘with suéh values of
Sp’s. It should be noted at this stage that for the case with sgmmetfy
.tbe RMS deviations of the shape paraméiers are larger than those for

the first case. The discussion on these fluctuation properties: is

deferred for the present and shall be taken up in Section 4a.
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The'cOnclUsiQn‘tben that égmmétry considerations accelerate the
ﬂzate'of approach of the level density to Gaussian is also aided by nume-
 rical examples of shell model studies found in literature (10). One

. finds for example that for 4 particles in (sd) shell, S, is -0.85 (1)

4

. for the level density in 2 C4 dimensional space, while its submatrix of

 dimension 56 for J = 2, T = 0 gives a Gaussian with &,k =~0.54 (10).

4

4. : In Search of Gaussian Level Density:

In the field of real symmetric matrices, a rigorous derivation
for the eigenvalue density has been given only for GOE. In general an
ensemble that is invariant under orthogonal transformation is defined

through

2

P(H)dH = f(tr H,tr H"......... tr H”b dH (2.7)

where P(H) is the probability of finding H in the volume element dH.

f is positive definite and is such that

jP(H)dH =1

Every such function 'f' would .define an ensemblé'with a characteristic

level density. The GOE is a special case defined by

P(H)dH = exp (~(a+b tr H + c tr H2))“ﬂi , dH, (2.8)
_ | igd 43

and owes its simplicity to the physically unrealistic assumption of
statistical independence of matrix elements. Mehta and Gaudin (12) have

derived the eigenvalue density of this ensemble for finite matrix dimen-

sionality (N). The eigenvalue densities fbr‘other forms of 'f' in




16
equation:(2.7) have‘nct-beeh-derivéd rngrOuSIQ because of. the mathema-

tfcalyintraétability.-

Wigner dealt with another kind of ensemble (7) called the
 Random Sign Ensemble (RSE) in which the diagonal matrix elements are zero
__and the off-diagonal matrix elements are the same in magnitude excepting

:,;fOr a difference in phase. These carry a positive or negative phase

with 50% probability. This ensemble also giving a semi-circle in the

limit N —> oL, he suggested that a large variety of ensembles would
yield a semi~circle as long as the matrix elements are statistically

independent.

4

To rephrase Wigner, the eigenvalue density does not depend
\\explicitly'on the nature of 1istribution of the matrix elements. - Truely
enough, the results of RBRE are also independent of the nature of

distribution of the RBME.

The contrast in the nature of level density of GOE and physi-
cal models prompted the need for generating other kinds of randOm matrir
ensembles with different level densities. Balian (13) came up with a
prescription based on information theory for generating an ensemble with
a given level density. Dubener (14) defined another ensemble of matrices
that gives an ensemble averaged Gaussian level density. Both these
ensembles are not invariant under orthogonal transforﬁétion. The
undesirable features of Dubener's and the difficulty one encountérs in
following Balian's way shall be pin-pointed in Section 4a on ergodicity

of ensembles.
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Hence the aim ﬁow is to,genétate anvenSemble‘of'métrides
tqrf)ﬁd;fromvpurelg mathématicallconsideiationﬁ,‘ One begins'by$bﬁiia~‘
1ng these ensembles on fhose fea'vtures that az;e characteristic of RBRE.
:3An,RBRE 1s characterised by a set of independent gariables tbat are the
;RBME and the matrix elements in'many'particle space occur as linear

;combinations of these RBME.

l.e. H,, = Z:
17

[N

k

3 Xk | (2.9)

~ ;where‘Xk's are the RBME and ij's are coefficients that define the
geometry of the space. Unless one follows the physical models the
explicit nature of the correlation between the different matrix elements ’

arising out of ij's is irretrievable.'

With the above factors in mind, the search for the ensemble
~ which gives a Gaussian level density is begun. The dimensionality of
the matrix is chosen to be 50 for all the following ensembles. . That of

the enSemble Is also 50 in each of the cases.

In the first case, 20 independent matrix elements (Xk's) are
. chosen whose positions are fixed at random. The rest of the matrix

\leléments are given by

1

(8

i7 “x ,, (2.10)

where the correlation coefficients ij’s are chosen at randoﬁ and fixed
over the ensemble. The Xk's in this and the following cases are chosén
ﬁo be uniform devyiates around zero meén; " This correlated ensemble
(case I) yields a Semicircﬁlar level denéity despite the fact that the

number of indépendent matrix elements is highly restricted. The shape



 p§iaﬁéféfs’§p (p = 3Atof8) of the 1éVe1.density‘aré shown in Table 3
éloﬁé Witbyfhose for RSE;  Iﬁ‘RSE evenbtheidiagonal matrix elements have
"been‘taken fo be + 1. The RMS devjatiohs of Sp’s for case I are small
and close to those of RSE. These ensemgles are ergodic; the déviation,
_on the average, of the level densities of fhe individual members from

. the ensemble average is small. The merit of RSE or GOE lies in its

ergodicity which is a consequence of its invariance under'orthogonal
transformation. The correlated ensemble (case I) emerges out to be
:equally ergodic,’tbough’in\this case the invariance property is not so.

easily seen.

The equivalence of GOE and RSE in respect of the statistical
independence of matrix elements,‘l;vel density and fhe associated
ergodicity suggests the next natural prescription for producing an
ensemble with a Gaussian level density. In the second caﬁe, 20 inde-

pendent'xés are chosen while the rest of the matrix elements are given

by‘

Hijr--_f_-/ . xk/ (2.11)
20

which is the mean of Xk's except for a difference in phaée. This

ensemble shall be referred to as Random Phase Ensemble T (RPE I, case II).

The ensemble averaged shape parameters (Table 3) upto §, are close to

8
zero. A glimpse of the RMS deviations, also given in Table 3, tells one

that the ensemble is not ergodic. In fact an analysis of the members of

the ensemble shows that the average has sprung out of Gaussians, semi-

circles and other peaked distributions. This ensemble consists of a vast
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ﬁajdrity7of,inadmissible'Hamiltonians, Tt is found that different
level densities'arisé from different values of the ratio

o et S

Hence other ensembles are generated following the same scheme choosing

different values for R.

Case III (RPE II} and case IV (RPE III) correspond to R rangihgw”“
_from 0.494 to 0.506 for fwo different seés of positions of Xk's.

Figures (1) ana:(Z) show that the level densities (Table 3) are close

to Gaussjian. Fof R ranging from 0.85 to 0.95 the level.densify (Figure 3)
is a se@i—circle (case ITIa; RPE IV) and for R ranging from 0.32 to 0;38

(case IIIb; RPE V), the level density is a triple humped distributibh

(Figure 4).

Keeping the mean value of R at 0.5 when the numbér of Xk’s is

increased .to 100 the level density is seen to slide towards a semi-
circle (case V; RPE VI and case VI; RPE VII). These two cases V and VI
(Table 3; Figures 5 and 6) correspond again to two different sets of

positions of Xk’s and the results are identical. For the same ratio

when the number of Xk's is. increased to 500, the level density turns

out to be a semi~circle. This case 1Is not included in Table 3.

Table 3 shows the effect of S6 on the distribution. ’Lookihg :

at 84 for cases III and IITb one would be tempted to conclude that IIIb

is a better Gaussian. Comparison of Figures 1 and 4 reveals that the

former is a better Gaussian though it has a higher value of 545

Similarly, the effect of 36 (greater than 1.0) can be seen from Figures .
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Figs. 1 & 2

The exact level density (histogram) and the
Gaussian level density (continuous curve) for

RPE IT and RPE IIT described in the text.
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Flgs. 3 & 4

°
o

The exact level density (histogram) and
the semicircular/Gaussian level density for

RPE IV/RPE V described in the text.
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Figs. 5 & 6

-
<

The exact level density (histogram) and the
Gaussian level density (continuous curve) for.

RPE VI and RPE VII discussed in the text..
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5 -and 6 where the distribution is a semi-circle with a peak at the

centre.
To conclude then on the level density of Random Phase Ensembles

it is found that each value of the ratio R gives rise to a characteri-

stic level density that goes from a semi-circle to other distributions

when R is decreased from 1.0. Again for the same value of R, when the
number of Iindependent matrix elements 1s increased the level density

goes over to a semi-circle.

4a. Ergodicity of Ensembles:

Any average property ought to be accompanied by ergodicity in
a proper ensemble. It is common knowledge that GOE & RSE are ergodic.'
The correlated ensemble (case I) is also equally ergodic while RPE T

v 1s not ergodic at all.

To examine the ergodicity of the other RPE, the RMS deviations
of Sp’s are given in Table 3. These are small in cases III and ;V\ana
comparable to those found in TBRE. But these ensembles are still not
- as ergodic as GOE; the RMS deviation of 84 is small while that of 56
suggests that distributions of the type corresponding to case V (RPE VI)
are also found in the ensemble. A further decrease in the range of the
ratio might probably lead to better ergodic conditions. In cases IIT b
and IITc ergodic conditions are quite good. The inference is that a
semi~circle always turns out to be more ergodic than any other distri—

butions.
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Shape parameters and RMS deviations for the different classes of

Nsembles as

the text.

indicated in
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These results are'nqtrsuipfisiny; even -in pbgsical models a
Gauééian is never as’good‘é Gauséiaﬁ aé a semi-circle is a semi-circle.
The RMS deviations become lérger as one moves away from a semi-circle.
To recall, a similar trend in the fluctuation properties is found in
TBRE calculations discussed in Section 2, The large fluctuations are

due to the fact that TBRE (RBRE) is invariant under orthogonal trans-

formation only in 2(r) particle space and not in 'p' particle‘space.
Instead of a Goé characterised by N (N+1)/2 (say X) independent matrix
elements in 'r' particle space, if one starts with an orthogonal ensemble
(the traces of all powers of H arg-fixed) characterised by (X-N) inde-

pendent variables, one could probably ensure better ergodic conditions

in the many particle leveI"densify.

It is at this juncture concerning ergodicity that Balian's
approach needs a mention;:ﬁaisfpzescription.(13) for defining an
ensemble of matrices with a-given levelAdensitgxdoes'not accbmpany the
Invariance property of the:ensémble. To include the two togefber'in

his scheme, there is no clue yet available...
Dubener's ensemble for real symmetric case is defined through

L+ o
H=x + 5 x (5 + ) (2.12)

where the matrix dimensionality N = 2M + 1. Xk’s are independent
random variables identically distributed. S is an elementary cyclic :

matrix of order N. The Fourier transform R(w) of the ensemble avera=—

ged level density Sf(E) is given by
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RO = vy T v, taw cos 2T k/N) | (2.13)
' ' k=1

where Vk’s are Fourier transforms of st, with w = 4w cos 2 7 k/N.

Equation (2.13) shows that ~S.'\(E) depends explicitly on the nature of

distribution of'Xk's, turning out to be the Gaussian.

1
/f‘is::quz‘ exp (—E2/2 6”'A2) , (2.14)
N/ 21 67 a
when X, 's are Gaussian with a width (ST
M
2= 6% 1+ L 4cos’ 27 k/W) (2.15)
k=1

This dependence of :SD(E) on the nature of distribution of

Xk's is an undesirable feature. Moreover, this ensemble is accompanied

by large fluctuations as in RPE I. In this case, the pgolation of inva-

riance property can be seen easily as any power of a member H in the

p

ensemble, say H- is given by

M "

' e, v
Wo=x 5+ 3 x, (s + ) (2.16)

k=21

occurs in the ensemble with a non-zero probability since no condition

is imposed on X, °s. Thus Dubener's ensemble violates conditions of

k
ergodicity.
5, Conclusion:

It is found that the introduction of symmetry considerations

accelerates the rate of approach of the level density to normality.



‘ Sémi—circle emerges also from correlated ensembles under
certaiﬁ éonditions. The tiend in the variation of the level density
in Random Phase Ensembles calls for an analytical treatment of the
problem., Since the level density di;tributions of Random Phase
Ensembles, other than semi-circle, are not as ergodic as GOE, the

analytical treatment of RPE would in all probability shed more light

27

on the invariance property and the ergodicity thus paving the way
for generating a class of ensembles of different characteristic

level densities,
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CHAPTER IIT

LEVEL DENSITY WITH RANGE OF INTERACTION

1. '~ Introduction:

For realistic interactions Ehelpartial level densitg in nuclei
could be well approximated bg a Gaussian distribution ((1) & (2)). A
survey of the atomic energy levels (3) indicates relatively larger
departures from Gaussian in the paitial level dénsity of atoms. Clearly,
a major di fference betweén the two systems lies in the range of inter-
action. it is common knowledge that nuciear Interactions are'charagteri—
sed by a short range while the Coulombic interaction between electrons
is of infinite range in character. This chapter is therefore devoted to
the study of effect of range on level density distributions and the aim
is to see if the long range of interaction (potential) accounts for the
increased departures from Gaussian, observed in the partial level dénsitg

of atoms.




| n
_'Since asyMthticéllyv(in_fbé limit Whén thé rank ,Qf/ihtér- 
actioﬁ ;r; becoﬁés*much émaiier.thaﬁ the particlé number 'p') the level
density approaéhes"normality irrespective of any“bther parameters of
the interaction, it fs fo be emphasisédvthat whatever effect one looks
for by Va?ying the range could be observed only in finite spaces . In

addition to the nature of level density distribution, the rate of

approach to normality could also vary with the range of interaction
(potential). With this end in view, the following calculations are

done.

In section 2, the rate of approach of the lével density to
normality is studied for a system ofﬁhon-interacting particles where
the singlé partiéie Spectrum'is one generated by ah infinite range
potential. The effect of range of interaétion on the level densité of
an 1nteract1ng system is studied in section 3 through shell model calcu-
lations and scalar averages. The two body interaction is chosen to be
Yukawa interaction. Section 4 deals with ensemble evaluation of scalar
averages in (sd) shell. This ensemble is a modified TBRE with range
built in as a parameter. In section 5 the effect of range of inter—
action on the distribution of matrix elements in the‘defining space is

studied. Section 6 gives a summary of the results and conclusions.

2, Range of Potential and Level Density in Non-Interacting System:

In the case of a dilute system where the number of single
particle states 's' is much higher than the particle number 'p', Pauli
principle effects could be ignored and the ‘p’ particle level densftg

.Sf‘p(E) is given by the convolutiOn of the single particleulevel
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o L
Sa (E) = j B evnnnnn. .. (dE
1 Y ~1 X
p Yoo o (p~1) |
1(E) SDI(EZ). ..... SJ (E-(E +E + E( 1)“ (3.1){
th , , ,
the ¢ cumulant of which is given by
K =pK (1 : 3.2)
q(p) p q() '
Since the shape parameters
p K (1) , :
g (3.3)

S (p) =
¢ (b k,y(1))%?

vary inversely as 'p', in the limit when P —70Q, all Sq's —7 0

yielding a Gaussian.

French (6) has shown that in a uniform spectrum of six equallg

spaced levels each with a degeneracy two, the six particle level density

is a Gaussian. This is the case with a uniform spectrum. What happens

when the single particle spectrum arises from a long range potential?

To answer this question the spectrum of hydrogen atom is chosen;
. th
This spectrum arises out of an infinite range potential. Its n ~ eligen-

value is given by

En = - Rhc/n2 (3.4)

and the degeneracg_gh for the ntb level including the degeneracy due

to spin 1/2 for the particle is given by
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Because of the infinite range of the potential, there is an infinite
number of bound states. The spacing between the successive levels

decreases monotonically thus making the single particle spectrum non-

could be deduced. For large 'n’,

-

{)

0B = 1 y1-8) */?

(3.6)

where E 1s the excitation energy above the ground state (n = 1) in

units of Rhc, E = O corresponds to the ground state and E = 1 to the
Zeroth energy state. ‘§2(E) diverges at E = 1 indicating that there

is an Infinite number of bound states.

From this single particle spectrum, different stretches

1 ton = N2 are chosen and the rate of

the approach of the level density to normality studied through skewness

of levels running from n = N

(S3) and excess (S4). When )531 and /.5‘4/ are less than or equal
to 0.30, the level density is considered to have approached normality.
Strictly speaking, one has to evaluate other shape parameters as

well.

uniform... From eguations (3.4)-& (3.9ithe single particle level density
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TABLE 1

v, N, p s, s,
10 20 23 . -0.30 0.06
0 40 _ 135 ~0.30 0.11
1 100 200 -21.86 666.9
201 400 19 0,30 0.05
200 800 119 -0.29 0.11

TABLE 1: The quantum numbers Nl and N2 of the levels chosen as limits

of integration together with the skewness S3 and thérexqess Sﬂ

for p number of convolutions.

Table 1. shows the Valués of S3 and 54 for different particle
number 'p’ for the indicated stretches of levels. The particle n@mbei”
also indicates the number of convolutions. When the number of levels is
increased, the rate of approaéh éf the level density to nbrmality goes
down“ahd‘the higher4dp one goes the faster becomes fhe’raté."Whéh the
lowei'region of -the-spectrum is chosen, even aftef'ZOO convolutions
skewﬁess retains a high value. Thus the non-uniformity in the”sihgle

parficle spectrum reduces the rate of approach of the level densifg to

normality in comparison with that found in a uniform spectrum'(6),

3. Effect of Range on an Interacting System:

For studying the effect of range on interacting particles,
numerical calculations were carried out in 2s-1d shell region of nuclei.
The single particle state nsis 2 .

ingle particle states consist of three levels ld5/2, 251/2’ ld3/27

The Hamiltonian is given by



. i

35,

B=H() +H(2) e - (3.7)
where the one-body Hamiltonian H(1l) is given by E(ld5/2), E(Zsl/z)/
E(ld3/2) which give the energies of the three single particle states.

H(2) = 2., ., V.. ’ (3.8)

(2) “~iei Vi
where‘Vi. is a central, attractive potential with Yukawa radial depen-
dence.
= - 3.9

Vij v, exp ( rij/a) / (rij/a) (3.9}

where £ = lri - rj|. v > 0 is the strength of the potential.

The choice of Yukawa interaction is made as in the limit when the
range of interaction 'a' goes to infinity, it reduces down to the
Coulomb form. The single particle wave functions are harmonic oscilla-
tor wave functions and hence 'a' in equation (3.9) is in unifs of the

oscillator size parameter 'b’'.

b= | A/m o (3.10)

In equation (3.10) 'm' is the particle mass and K\ 1s the energy

of one oscillator guantum. The range is deemed short or long with
respect to 'b’, the size of the systemn. Calculations are done for siX‘
different values of 'a’ from 0.04 to 2.0. a = 0.6 corresponds: to the
nuclear range and the corresponding strength is chosen to be 40 MeV.

The strength for the other ranges is calculated from the relation

v a3 = a constant = 40 x (0,6)3 (3.11)



36
which arises from the normalisation of the potential. The calculations

are done for two different sets of single particle energies:

(i) E(ldS/Z) = E(Zsl/Z) = E(ldg/g) = 0.0 {3.12)
(ii) E(ld5/2) = -~ 4,15 MeV

E(251/2) = =3.28 MeV

E(1d3/2) = (0.93 MeV | (3.13)

The first set called without SPE takes all the single particle states

to be degenerate in energy. The second set labelled with SPE corresponds
to-the observed levels in 170 nucleus. It is for this second set the
strengths for different ranges of the potential need to be renormalized
according to equation (3.11). For the first case, the strength of the

interaction is an inessential parameter.

3a. Matrix Calculations and Scalar Averages:

Shell model matrices corresponding to the case p = 8§, total

angular momentum J = 0 and total isospin J = 2 are generated and diago-

nalised for different ranges. The dimensionality of the space béing 287

the results obtained could be taken to be statistically meaningful. The

eigenvalue spectrum provides the partial level density in each case and

from the exact spectrum 53 and 54 are evaluated.

Figure 1 shows the exact distribution function (histogram)

E
F(E) = g Q) ae’ (3.14)

Loy
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Fig, 1 :

The exact cumulative level density (histogram)
and the Gaussian distribution function (of
corresponding mean and variance) depicted by
the continuous curve for the cases Without SPE

and with SPE for the indicated ranges.
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re;ulting from_the exact eigenvalue spectrum for the three different
ranges 0;04,70,6 and 2.0 and for the two different sets of single
particle energies given in equafions (3.12) and (3.13). The continuous
curve gilves the distribution functioa corresponding to a Gaussian fre-
quency defined by the mean energy and the variance of the exact fpef

quency function. In the case Without SPE, there 1s a greater deviation

of the histogram from the normal distribution with increase in range.

With SPE, the fit with Gaussian is best for the range 0,6.

TABLE 2
Range Without SPE With SPE
a s, s, ¥’ s, s, 2
0.04 ~0.57 0.25  12.4 -0.33  -0.21 5.8
0.20 -0.61 0.28  13.4 -0.51  .0.17 5.2
0.60 -0.73  0.45  21.1 -0.18  -0.07 1.0
1.00 -0.76  0.51  24.9 0.03  -0.3 12.6
1.50 ~0.78 0.53  23.8 0.08  -0.11 63.8
2.00 -0.78 0.54  24.1 0.09  -0.11  101.0

90? (critical) = 14.067

TABLE 2. The skewness S3 and the excess 54

Jfor p=8,J =0, T=2 with dimensicnality d = 287.

.for different ranges'a’

Table 2 gives the values of S, and S, of the level density

, 2 . , ,
along with X.° which gives a measure of the goodness of fit of the
exact distribution function with a Gaussian distribution function. For

the case without SPE the values of 53 and 54 increase and saturate with

8
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‘range. The valués"df }C?Vaiéé‘éhow a similar trend. For the case
Wifh SPE:both/ S3Jénd }S4ﬂ'ére <L 0.3'for most of the }éngeé. From the
values of )Q2 it is seen that the best fit i1s for the fange 0.6. ?or
longer ranges 94? values are greatéf than )gz critical. This shows

the effect of higher cumulants on the level density digtribution.

These results obtained for one specific case could be gene-

ralized to other equally large spaces. To improve upon the reliability
of these results one should in principle study a large number of sucb'
cases. Since matrix diagonalisation is very time consuming the alterﬁéui
tive choice of scalar average evaluation is resorted to, for aimore

exhaustive study of the effect of range.

Using the propagation technique ((7) and (8)) the low order

shape parameters 53 and 54 of the level density are evaiuated for diffe-

rent particle number in the 2s-1d shell for different ranges. To recapi-
tulate the principle underlying this technigue, the average of an r-body
operator in 'p' particle space is given in terms of its average in

r-particle space by the relation

- ~. p _ b o ~ r ; ’
\\0(1‘) P ="c, . O(r) (3.15)

Tables 3 and 4 give the values of 53 and 54 for the two

cases Without SPE and With SPE. For the case Without SPE, S., and Sf

3

increase with range for a given particle number. Consistent with the

theories ((4) and (5)) S. and Sd are lowest around mid-shell where the

3

dimensionality of the space is the largest. Since at mid-shell the

values of 53‘and 54 increase with range, it is concluded that the rate



‘TABLE 3

Y

;;\\ka 0.04 0.20 0.60 - 1.00 1.50 2.00
3

9 ~0.531  -0.597 -0.751 -0.793  -0.810  -0.816
10 -0.510 -0.580 ~0.741 -0.784  -0.801  =-0.807
11 -0.499 -0.570 ~-0.735 =0.779  =0.795  =0.801
12 -0.496 -0.568 ~0.733 -0.776  ~0.791  =0.797
13 ~0.500 20.571 ~0.735 -0.775  -0.789  -0.794
14 ~0.513 -0.582 -0.739 -0.777  -0.789  -0.793
15 ~0.534 -0.599 ~0.748 -0.781  -0.790  =0,793

9 0.214 0.308  0.570  0.639 0.664 0.674
10 0.132 0.240  0.530  0.605 0.632 0.642
11 0.087 0.202  0.507  0.584 0.612 0.622
12 0.074 0.191  0.499  0.576 0.602 0.611
13 0.091 0.205  0.505  0.578 0.602 0.610
14 0.140 0.245  0.527  0.592 0.611 0.617
15 0.225 0.316  0.566  0.619 0.631 0.633

TABLE 3. The skewness S 3 and excess 54 for different ranges 'a' for

different particle numbers 'p! for theé case HWithout SPE.



of approach of the level density to normality decreases with range.
It shoqld be noted that in no case 1531 and }34{ are less than 0.30.
It means that with this two bodg interaction).the asymptotic limit
has not been reached. A similar trend is observed in the shell model

results (Table 2).

TABLE 4
P\ ? 0.04 0.20  0.60  1.00 1.50 2.00
%3
9 -0.4%0  -0.474 -0.181 0.023  0.067  0.074
10 -0.473  =0.484 -0.197 0.001  0.043  0.048
11 -0.464  =0.479 -0.211 =-0.021  0.019  0.024
12 -0.461  -0.478 -0.221 =0.040  -0.004  0.000
13 -0.464  -0.480 -0.230 -0.060  -0.027 0.023
14 -0.474  -0.487 -0.237 -0.079  -0.051  0.048
15 -0.492  -0.498 =0.244 -0.099  -0.075  =0.073
%4
9 0.158 0.164 -0.121 =-0.180  ~-0.157  =0,158
10 0.087 0.117 -0.116 =0.172  =0.147  =0.138
11 0.047 0.090  -0.113 -0.177  =-0.142  =0.132
12 0.034 0.081 ~-0,111 =-0.164 ~-0.139 -0.130
13 . 0,048 0.091 -0.110 -0.164 -0.140 -0.131
14 0.089 0.118 -0.110 ~0.164 -0.145 -0.137
15 0.160 0.166 ~0.114 —0.173 ~0.153 ~0.146

TABLE 4. The skewness 53 and excess S, for different ranges 'a’ for

different particle numbers 'p' for the case With SPE.
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Table ¢ shows: that FS3[ and |'S | are ¢ 0.30 for ali’ranges
staiting from 0.60. bhis.is in contrast with the first case revealing’
the dominance of the single pérticle energies over two body interaction.
The distributions for all the ranges greater than 0.2 cannot be taken
for a Gaussian since neither higher shape parameters nor )(,2 valueé are

made available in this procedure.

It is inferred from the above calculations that the level
density departs more and more from Gaussian with range. Its rate of

approach to normality also declines with range.

5. Fixed Range Two Body Random Ensemble (FRTRE) :

To investigate the effect of range for two body random inter-
action, the range of interaction is introduced as a parameter in the
conventional TBRE. The two body matrix elements of this modified

ensemble are generated as follows.

TBME are known to occur as linear combinations of radial
integrals which again are linear combinations of Talmi integrals for a
given interaction. Given the space, the number of Talmi integralsv(N)
that one encounters in the evaluation of TBME is fixed. And given the
radial dependence of the potential in any Ewo bodg interaction that
includes central and non-central parts, the range dependence of TBME .
could be explicitly bﬁilt in through the appropriate Talmi integiais..
What remain to be randomised then are the strengths corresponding

to different parts of the interaction.

Thus the TBME of FRTRE are glven by
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X.= a, T ‘ _ 3.16)

where T,'s are the appcopriate Talmi integrals and ak's are random
numbers chosen to be uniform deviates with zero mean. With this FRTRE,
scalar averages are evaluated in 2s~1d shell for the three different

ranges 0.04, 0.060 and 2.00. The five Talmi integrals required in

(sd} shell calculations are evaluated for Yukawa radial dependence

of two body random interaction. The calculations are done only for. the
case Without SPE. To eliminate the effect of induced single particle
energies, the diagonal two body matrix elements are chosen to be zero.
This gives rise to exact particle-hole symmetry. The results of 50
dimensional ensemble calculations are shown in Table 5 for the three

different ranges 0.04, 0.06 and Z2.00.

For most of the cases S3 and 54 are quite close to those
of a Gaussian for all the ranges. and there 1s no significant change
in the vailues with range. The trend in the fluctuacions of S3 ahd Sd
with 'p' is in accorcd with the analytical exp 2ssions given by Mon &

French (4) for dilute systems. In any ensemble calculation, one

cannot look for non-vanishing values of Sg”s for any odd ’q', since

the matrix elements in the defining space are symmetrically distributed.
So from FRTRE calculations, it is concluded that there is no change in
Sy with range. 53 changes with range as observed in the shell model

and scalar moment calculations in Section 3. Though at the risk of

repetition, it is to be mentioned that one cannot conclude from the

results of FRTRE alone about the dhange in level density with range.

An indubitable conclusion can be drawn only from shell model calcula-

tions of FRTRE.
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5. . Distribution of Matrix Elements:

Porter (9) has'Shown¢that for realistic nuclear inter-
actions, the many particle matrices in general belong to GOE. The dia-
gonal and the off-diagonal matrix elements fall on a Gaussian around

zero mean with the variance of the diagonal matrix element distribution

twice that of the off-diagonal one., In this section, the effect of

range of interaction on the distribution of matrix elements in the

defining space is studied.

In order to have reasonable statistics, the TBME of Yukawa
interaction in equation (3.9) are evaluated in the model space consist—
ing of three (N = 0, 1, 2) major harmonic oscillator shells for the
three different ranges 0.04, 0.6 and 2.0. In this model space, there
are 332 matrix elements - 92 diagonal and 240 dff—diagonal. These fall
under different matrices characterised by different J, T and 77 .
Excluding the elements corresponding to one dimensional matrices.and
alsq those for which the variances are different by orders of magnitude

from those of the rest, the distributions of the matrix elements are

presented in Figs. 2, 3, 4 and Figs. 5, 6 and 7.

The distributions of the diagonal matrix.elements are
highly skewed and show no significant change with range. The off-
diagonal ones are close to Gaussian and there is an lncreasing

asymmetry with range.
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Figs. 2, 3 and 4

The exact frequency function (histogram)

for 68 diagonal matrix elements for the

indicated ranges and the Gaussian
distribution (depicted by the continuous

curve) .
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Figs. 5, 6 &8 7 : The exact frequency function (histogram)

for 208 off-diagonal matrix elements for
the indicated ranges and the Gaussian

distribution (depicted by the continuous

curve) .
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TABLE 6

d 27 27 T 0.04 0.6 2.0

3 0 0o - i.25 1.10 0.90
7 0 2 - 5.43 1.62 0.51
6 0 4 - 1.22 0.61 0.49
3 0 6 - 1.28 0.48 0.30
3 2 0 - 10.21 169.14  150.0

7 2 2 - 0.91 0.54 0.28
6 2 4 - 0.78 0.62 0.35
3 2 6 - 2w 1.55 0.39
11 0 2 + 1.71 1.20 0.79
6 0 4 + 2.94 3.33 2.49
6 0 6 + 3.13 1.96 1.58
7 2 0 + 6.16 2.27 1.23
5 2 2 + 0.99 1.00 0.47
9 2 4 + 3,59 2.14 1.50
3 2 6 + 0.18 0.98 0.78
Average ' | 2.45 1.39 0.86

TABLE 6. The ratio of dispersion of off-diagonal to diagonal matrix
element distributions for the matrices characterised by
quantum numbers J, T and 7Jj with dimensionality 'd' for
the three different ranges 0.04, 0.6 and 2.0. The under-
lined values were excluded for the evaluation of the

average.



“evaluatingthe averagess;

Table 6 gives the dimenéionalities of the different J T 7

ﬁatfiéés fogether with‘the ratio pf diSperéions of off-diagonal to
diagonal matrix element distributions (O.E‘for GOE) for the three
different ranges. The ratio of dispersions fluctuates strongly
but by andvlarge this ratio goes down with range. So does the

average value. The underlined cases in Table 6 are not used 1in
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6. Conclusions:

From the shell model and scalar moment calculations, it

£y

is concluded that with increase in range there is increasing departure

from Gaussian in the partial level density. This urges one to
believe that the infinite range of the Coulombic potential is one
of the factors contributing to increased departures from Gaussian in
the partial level density of atoms. As regards the matrix element

distributions, only the off-diagonal ones change witi range.



REFERENCES

1. J.B. FRENCH and S.S.M. WONG, Phys. Lett. 33B 449 (1970).

2. O. BOHIGAS and J. FLORES, Phgs.vLett. 34B 261 (1971).

3. J.C. PARIKH, J. Phys. B. Atom. Molec. Phys. :Z_:l_ 1881 (1978).

4. K.K. MON, A Dissertation submitted to the Faculty of
Princeton University, May (1973).

5. K.X. MON and J.B. FRENCH, Ann. Phys. 95 90 (1975).

6. J.B. FRENCH .in Dynamic Structure of Nuclear States, ROWE et al
(Ed.), (University of Toronto Press, Toronto) (1971).

7. J.B. FRENCH 1in Nuclear Structure, A. HOSSAIN et al (North
Holland, Amsterdam) (1967).

8. J.C. PARIKH, Group Symmetries in Nuclear Structure (Plenum Press,
New York) (1978} .

9. C.E. PORTER, Statistical Theories of Spectra : Fluctuations

(Academic Press, New York) 255 (1965).



51

CHAPTER IV

FLUCTUATION MEASURES AND RANGE OF INTERACTION

1. Introduction:‘

'Fluctuations shed light on the local features of 1evei spectra

as against the average properties that depict the global features.
Fluctuations about eigenvalue density distributions are related to the
local correlation fUnctioﬁs of 'n' levels in an N (N > n) dimensional
matrix. These are investigated through near neighbour spacing distri-

butions and also through statistics like A and Q(1) that give mea-

3

sures of long and short range ordering in level spectra, Analysis

(¢2) and (3)) of TBRE and GOE suggest that these fluctuation properties

are identical for both these ensémbles.‘ In fact Dyson (4) suggests
that as long as the number of levels 'n' involved in the analysis is.
much smaller than N, the matrix dimensionality,all ensembles of real

symmetric matrices will yield identical fluctuation properties .
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irrespective of the natuie‘of level density. One such example is the
Rigner surmise, for the nearest neighbour spacing distribution which

is valid in the 1imit of large N. All these fluctuations properties

are found to be sensitive only to mixing of levels of different%sgmmew
tries. EQ# example the level repulsion in Wigner surmise is modified

when the level sequence is not pure. Hence the only physical informa-

hidden symmetries,

In this chapter the fluctuation properties of Random Phase

Ensembles (RPE) discussed iIn Chapter II are investigated. Since the
level density is found to depart more and more from Gaussian with
range of interaction (Chapter III) the trend exhibited by the fluctua-

tion measures with range is also analysed.

‘ Section 2 discusses the nature of different fluctuation pro-
perties as derived in random matrix theory and Secfion 3 tﬁose of
Random Phase Ensembles. The effect of range on fluctuations is con-
tained in Section 4 which is followed by a discussion of the outcomes

in Section 5.

2. Fluctuations:

For the nearest neighbour spacing distribution Wigner surmised
the following, based on the theory of Wigner-Von Neumann level repul-
sion (5).

; 2
pex’) = 5’/ 207 exp(- 7 x° sap?) (4.1)

~~tion that could till now be learnt from the fluctuationsis-about
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»whereit‘i:he_'subez‘.s_c")é‘ipt-" 0' of 'x' indicates the probability of finding
’Of Ie&éiﬁ in-én intéivai ’x;; 'This e#preésién was shown to be Vérg
ciose to the éxéct distribution fbr the ceﬁtral region of the infinite
GOE. 'Analytic expressions P(xk) are quilable for more distant
neighbours but the spherpidal fubctions that oécur in these expressions

are tabulated only upto k=4. Hence for more distant neighbours qompé—f”*'

rison with the énalytical form of GOE 1s not feasible.

In addition to spacing distributions there are statistics
defined by Dyson and Mehta (1) thét quantify the fluctuations. "A
statistic is a quantity which can be computed from an observed sequence
of levels alone without further information and for which the average
value and the variance are known from the theoretical model. A suitable
statistic is one which is sensitive to the property to be compared‘and

insensitive to other details”.

The Ck statistic' measures the average correlation coefficient

between (k+l)tb near neighbours. For a run of (ntl) levels CO is

defined by
0 =7 0 0 o
c” = (L, (Si -B} (s l.+l~D)n /.
i=1
o+l 0 2 . ‘
( L (s, =D)"/(n+l1)) (4.2)
i=1 7

Yrom the Coulomb gas model (6), Dyson has given a value of -0.266 for
0 : e |
C . ' The negative sign of Co indicates that a larger than average . .

spacing always tends to be followed by a smaller than averége spacingm !



going to infinity, Q is given by

(— b ’ /
= - A Soipld . 1 E ,~E R/
0 Yy g TEEY n [(8;-E)/

s

. "Besides CO‘-,_ t'here“'-‘_‘i‘s, yet another statistic Q that gi’Veé a
meésure of the short range order in level spectra. For a stretch of ’n”

levels running from =L to +L in the limit of }natri_x dimensionalitgilva

where'R = mD = m(2L)/n (m = 2, 3 or 4)

£(x,y) = 1 for |w~y |< R, Ix/< L, Jyl<L

=0 otherv}'i"se_
F(x) = 1 for |x|<L

= 0 otherwise

v, = (-R/1) + 1/8 (R/D)°
U(x) = ~R/L for |x| < L-R

= =1/2L (R+ (L~ !x/) (1-1n((L- |x|/R))})

for I-R < . [x) < L

' The fact that f(x,y) vanishes for [‘x—y{ ~''mD shows that

* Ly F(By) Uy - 1/2 0, 245 F(Ei) F(B)
+ 1/2 ( Li F(E,)) In(2 77R | 2*‘3‘ F(EJ) /

SrEram)

w3

Q measures the short range ordering in level spectra. The average valuc

of O and its variance (1) are given by
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" <ob =awr/ w0 | (4.4
where U = 0.365.
v, nec? + 1/772M) (4.5)

To measure the long range order Dyson and Mehta have defined

P

the £ 3 statistic Which measures the deviation of the cumulative level
density (staircase graph) from a straight line.
s 2 ' :
£, = min (1/21 § (W (5)-25-5)“dr) e (4.6)
A,B _L
where N(E) is the cumulative level density. In terms of the eigenvalues

A3 can be reduced to the following (3):

n

N o n2iie L v, e 2
£y; = n®/16 - 1/41° (5T _E))
i=1
‘n |
2, n 2
+ 3n/8L°( % 2 4, — 2
. L ygBy) =367 (5 B
i=1
n
+1/20 (Y (n-21 + 1)E,) (4.7)
i=1

The average value of A3 and its varlance are gilven by

A, = 1/ —r2(in n - 0.0687) (4.8)

i y .
"'/_\_33 =1/+57 1.1690 = 0.12 f(;z,,g) |

Equation (4.8) shows that for Ai\3 to reach a value of 1.0 cne should. ;
have about 20,000 levels. Thus the logarithmic dependence of z’i\.‘3 on

'n' shows that the deviation of the staircase graph from a straight line




| e
fis‘én the a&erégé’leSs‘fha#_oﬁé séé&ihgiunitvfbr.a,smallei number of
leveis.' bysén callé‘it‘appfépriatelyvthe crystalline structure of the
éigenvalue lattice. "Even at lérge separations; two eigenvalues feel
the natural periodicity of the latticé ahd have a slight preference for

separations which are an integer multiple of the mean spacing’”.

In the following sections these statistics are evaluated

for finite matrix dimensionalities (N) under conditions when n 7 N, The
speculation is that while C, Q and near neighbour spacing distributions
would be identical for ensembles of different eigenvalue densities,

153 would discriminate between these ensembles.

3. Fluctuations in Random Phase Ensembles:

The ensembles that give a Gaussian, intermediate (semi-
circle with a peak at the centre) and semicircular eigenvalue densities
are chosenAfor the purpose of analysis of fluctuations. These correspond v?
to RPE IT (Fig.l), RPE VI (Fig. 5) and RPE IV (Fig..3). In this chaptér
these will be denoted by Case I, IT and IIT respectively. In the 50 dimen-
sional matrices 46 levels are chosén leaving two on either side to
eliminate end effects. To remove the effects of secﬁlar va:iation in
the level density arising out of the finite»size of the matrix the
spectrum is unfolded - each spacing is expressed in units of the local
‘mean spacihg. In the evaluation of Q local mean spacing is found by
taking'a,couple of spacings on éither side of each spacing, Q is
evaluated using equation (4.5) and the parameter R has been taken to

be 3D in all the cases.
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 TABLE 1
Case No. Q
(RMS)
Case T 12.46
(7.46)
Case II 12.45
4 (5.60) .
Case IIT | 11.90
(5.92)
GOE (Theoretical) 15,24
(3.72)

TABLE 1. Values of Q and RMS deviations for the three Random Phase

Ensembles.

Table 1 gives the values of Q for all the three cases of RPE
together with the RMS deviations. The corresponding theoretical values
as calculated from equations (4.3) and (4.4)‘are also given. There is
not much of a variation in the average value of Q. The fluctuation in
case I 1is larger than that: of the second and conforms with the rela-
tively poorer ergodic conditions in the level density of case T

{(Chapter II).

In the evaluation of £ 3 two different ways of unfolding

have been adopfed.‘ While unfolding the spectrum case should be taken

to see that along wifh'the secular variations, fluctuations are also
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not waéhed Off. If:the fluctuations are washed off too, one would always.

end up with long range order’ ( £33:i 1). An instance of this»will be

seen to crop up later. Hence the unfolding has to be done using an opti-

mum number of spacings to include the largest possible number of levels.

There 1s no unique prescription for this optimum unfolding. For every

spectrum one has to find that out by trial and error methods.

TABLE 2
k NE Case I Case IT Case III . GOE
(Theoretical)
5 42 0.22 0.22 0.21 0.37
(0.03) (0.03) (0.02) (0.12)
11 36 0 0.29 ; 0.40 0.28 0.36
(0.04) (0.07) (0.05) (0.12)
17 30 0.33 0.66 0,33 0.34
: (0.07) (0.20) (0.07) (0.12)
23 24 0.31 0.79 0.34 0.32
(0.06) (0.28) (0.08) o (0.12)
29 18 0.28 .65 0:.30 : 0,29
N (0.07) (0.25) (0.07) (0.12)
35 12 0.22 0.37 0.23 0.25
(0.05) (0.17) (0.07) (0.12)
41 6 0.15 L0017 0.15 0.17
(0.06)" (0.05) (0.05) (0.12)

3

TABLE 2. Values of 2N . and RMS deviations for NE levels for the RPE

corresponding to the first way of unfolding mentioned in-the
/

text..
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Table 2 gives the values of }ﬁhj'corresponding to‘oné’ﬁag of

‘unfolding. In this eaee ldcalymeah-spe&iﬁgiis found by takingz(kél)/z

spacinge ofi either side of each spacingn The values of 'k; aﬁdrfﬁe '
number of levele used for analysis along wifh éﬁé and its RMS deviation
are given ie Table 2 for all the three cases‘of RPE, For k = 5, the
ensemble'averaged L 3 even for a set of_247 randomvlevele 1s less

than 1 (Table 6). Table 6 gives the values of aﬁ53 for higher 'k'

as well for this set of random sequences. k = 5 is herice inadmissible

‘for the evaluation of 243 “To decide the optimum stage of unfbldlng,

3°
firstly one looks for a. mindmum difference in the values of - Al “for
two. consecutive 'k’ values, If this difference increases on either
side then any value of 'k’ in between would be optimum provnded‘agaln, :
correspondlng to a random sequence long range order is wiolated. For

themfhree cases of RPE, the upper limit of 'k' has been underlined in

Table 2. The upper limit of 'k’ turns out to be 23 for all the three

Ml

cases. - But the LQ\3 value for the second case is different frem that

of the first or the third. The violation of long range order ( Ab3j> 1)

eeuld probably be seen in higher dimensional matrices. What is important

is the difference in the values of 453 between case ITI and case I

(case III), correSponding to different level densities.

This way of unfolding has two demerits. The first is asso-
ciated with the fact that the number of levels made available for .
analysis decreases with increasing ‘k' while one actually wents to use
the highest 'k’ for unfolding. This difficulty could be ci;cuﬁvented
ifrthe matrix dimensionality is high. For example while studying the
effect:of renge od £53, this procedure is adopted since the.matrix

dimeneionality is as high as 247 (Section 4).



The second demerit concerns the RMS deviation in 433. To
recall, the RMS deviation in © was largest in case I 1n accordance with
the ergodicity observed in the eigenvalue density (Table 3, Chapter II):

But this procedure gives the largest RMS deviation fbr Case II. ‘Hence

tbe second method for unfolding the spectrum.

In this scheme the whole spectrum under Investigation is-split

into different regions and for each of these regions mean spacing is

calculated. This is tantamount to fitting the cumulative levelfdensity
by more than one straight line. The spa01nqs in each region are expressed :
in units of the mean spa01ngkcorrespond1ne to that region. Howeverp
high be the. ’k"value in each reqlon, the total number of levels is

always kept in tact for analg51s with this method

TABLE 3
K Case I Case IT Case IIT GOE' -
(Theoretical)
5 0.20 0,31 0.29 0.38
(0.05) (0.04) - (0.05) (0.12)
10 0.46 0.61 0.39 ' 0.38
(0.11) (0.18) (0.08) (0.12)
15 1.29 o 0.74 0.54 0.38
(0.39) (0.18) (0.14) (0.12)
20 L 2.54 . 0.97 . 0.38

(0.45) (0.85) (0.26) ' (0.12)

TABLE 3. Values of AS3 and RMS deviations for 46 levels of Random

" 'Phase Ensembles.
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Téble:3k3hows thé valueé bf" {Bg*and‘RMS deviations for the
' RPEAfbf the secénd.Way‘of ﬁﬁfblainé,‘ The éptimum 'k! is decﬁded using
the same criteriéﬂ of winimum difference in 'Zﬁé’values for two con-
seéutive 'k's and the uppei limit for 'k’ underlibed in each case.
k = 5 has been eliminated since Case IIT gives a mUCh'éygller Qalue

compared to the theoretical estimate. In fact an analysis of the

mé‘mbers,ﬁof_CasewIIIWshowswtbatwfbrmsemi;ciztclev_kms,ﬁl,S,mgives‘,tbeﬁtbeof,,,,.w
retical estimates. It is found thét Jﬁ33 value increases from semi-
ci;cie to Gaussian. rn the case of a Gaussian (Case I) lqng range
order is Violated. In accord with the RMS deviations 1in level deggity
and Q values, RMS deviation in AS3 also increasss from semiﬁciiéle‘

to Gaussian. It is concluded from these results that while sbort

‘does indicate the

range correlation properiy Q remains invariant ZiB

difference in the nature of level density distribg;ions when the number
'n" of levels used is comparable to the dimensionality of the matrix.
The RMS deviations in the statistics indicate as to what extent the

ensembles are ergodic in the level density distribution.

4. Fluctuations with Range:

The shell model matrices for the three diffé:ept ranges 0.04;
0.60 and 2.00 discussed in Section 3 of Chapter III are gna;ysed for
their fluctuation properties. From the matrices of dimenéionality 287,
247 levels are chosen from the centre. The speétfum of hgérogen atom
(discussed in Section 2 of Chapter ITI), a uniform spectrﬁm and an
ensemble of random levels are also analysed for their fluctuation

properties.
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The first three nearineiéhbbUf'spaciﬁg distributions for the
shell ﬁédel métrices of différeﬁt réngés are shown in Figures. 1, 2, 3,
4, 5, 6, 7, 8 and 9 respectivelg, The spaéing is expressedAin,units of
the nth order (n =1, 2, 3) local mean spacing. In Figures 1, 2 and 3,
the nearest neighbour distribution is compared to Wigner surmise

(equation 4.1) depicted by the continuous curve. Deviation from Wigner

surmise even for the nuclear range is attributed to inadequate stati-
stics. With range there is not much of a change in the near neighbour

spacing distributions.

o 0
Shell Model Matrix ~0.28 123.90
a= 0.04
Shell. Model Matrix -0,37 100.31
a= 0,60
Shell Model Matrix -0.29 120.40
a = 2.00
Hydrogen Atom 0.71 1.54
Uniform Spectrum : 0,00 5.80
Random Numbers - 195.44 (20.00)
GOE (Theoretical) -0.27 82.50 (8.4)

' TABLE 4. Values of C and O for the shell model matrices and other spectrab
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Figs.

1, 2 & 3 ¢

The nearest neighbour (k = 0) spacihg

distribution (histogram) along with the

Wigner surmise for the indicated ranges.
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The second near neighbour (k = 1) spacing
distribution (histogram) for the indicated -

ranges.
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Figs. 7, 8 & 9

The third near neighbour (k' = 2) spacing
distribution . (histogram). for the indicated:

ranges.
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The values of COvand’Q for all the cases are given in Table 4
fbr'24; levels aféer ﬁnfbiding-in'the same Wag'as was used for the eva=
lﬁéfion of Q0 in RPE. For the unlfbrw soectrum, Q is much smaller than
‘the theoretical estimate (GOE) whereas that of random sequence is much
'hlgher. Q is smallest fbr the nuclear range 0.6 and increases on either

; . . 0
side suggesting increased short range dlsorder. The values of C  are

negative in all the cases excepting for hydrogen atom.

For evaluating ‘433 unfolding has been done using

the first procedure discussed in the earlier section. Table 5

TAELE’ 5 i
k 8 a=0.04 a=0.60 &= 2.00
5 50 0.33 0.31 0.44
- (2.11) (0.93) (2.92)
11 44 0.92 0.52 ~0.69
127 38 ; £;32 0.53 1.22
23 © 32 ~1.85 | 0.55 | 1.60

TABLE 5. Values of 433 for NE levels for the shell model matrices of
different ranges. The theoretical estimate for 50 levels is

0.39 + 0.12.
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giveﬁ the values of .‘~1§3 for 50 levéls’fioﬁ éhé centre of the shell
npdei ﬁatrices. Values of. 433‘witho;t unfblding are given in bran‘
ckets. For the nuclear range, évep witﬁoutvunfblding one finds long
range order. The optimum 'k’ is underlined in each case. Comparison

of 433 for k = 17, shows that as one goes away from the nuclear

range on either side, long range order decreases.

Table 6 gives the values of .533 for 247 levels for
unfolding with respect to 'k’ spacings using the first procedure. For
212 levels even for the nuclear range the long range order is absent.
Again comparing the values of £§3 for a fixed 'k’ shows inc:eased
long range disorder away from the nuélear range. In the spectrum of
hydrogen atom long range order is violated. It is Inferred frqm tbese /
calculations that both short range and long range disorder increase
away froﬁ the nucleaf range on either side. Even for thé nuciéar rahge‘
since 43‘3 is greater than 1, the extension of the long rangé order
or the crystalline structure to ground state region is not valid.

The violation of long range.order for Case I in RPE also confirms
this. This fact is in contradiction with thé results of French et

al (2). In their analysis unfolding has been done using a four moment
function when the level density itself is described exactly by a four
moment function (7). Thus the fluctuations are also washed away in

the unfolding.



' TABLE 6

k NE 0.04 0.60 2.00 Hydrogen  Random

Atom Sequence

5 242 0.76 0.37 0.43 0.14 0.94 (0.27)
11 236 1.10 0.62 0.74 0.43 1.33 (0.34)
17 230 1.60 0.94 1.32 1,12 1.76 (0.34)
23 224 2,30 1.27 1.78 2.04 2,20 (0.46)
29 218 3.01 1.64 ” 2,57 3.15 2.70 (0.55)
35 212 4.02 1.82 3.53 4.42 3.17 (0.73)
41 206 5,11 2.01 4.20 5,77 3.70 (0.89)
47 200 5,95 2.33 4.89 7.15 4.17 (1.04)
53 194 6.68 2.92 5,31 8.52 4.62 (1.19)

4

TABLE 6. Values of 13.3 for NE levels for the shell model matrices
and Hydrogen Atom and random spectrum. The theoretical

estimate for 242 levels is 0.55 + 0.12,



‘5." Conclusion:.

The decoupling between the level density and fluctuation proper-
ties is valid only in the limit when the number of levels 'n' is much
smaller than the dimensionality of the matrix, This is evident in the
variation depicted by P 3 in RPE with level density while the Short

range correlation Q remains invariant. This point is also’ confirmed by

the fact\that'long range order decreases away from the nuclear range

‘on either side. A similar change in Z¥3 values should be observed in
fbésé‘of RBRE for different ranks of interaction when the level density
changes from semi-circle to Gaussian. Since both long rénge and short
range order decrease away from the nuclear range on either side, it i$~
concluded that in addition to hidden symmetries one could learnraboqt_tﬁé;r
range of interaction from the fluctuation measures. For the nﬁclear'raﬁge
the extension of the long range order or the crystalline structqre tq

ground state region is not valid.
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CHAPTER V

SUMMARY

In the hunt for a random matrix ensemble with a Géuséian
level density, more ehsembles with semicircular eigenvalue density
gathered.  The semicircle which emerges under the assumption of statis
=tical independence of matrix elements in the GOE is also found to
emerge when ‘the matrix eiements are fak_en to be lineér co\mb’i\nat’ions\ \
of a fixed sét of independent matrix elements with randbnrweightégé’.

coefficients.

The Random Phase. Ensembles characterised by a small‘set of
independent matrix elements give different characteristic level densi-
ties under different conditions. There emerge semi-circle, Gaussian
and other distributions for eigenvalue density. When one starts with

the conditions that correspond to a Gaussian eigenvalue density and
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iﬁCréasgs éhé number,Qf‘iﬁde?ende;: matrix elements, then‘thé léyél‘\'
density goes’quicklyycver“to é*seﬁiééiréle‘és in RBRE.‘ These Random
Phase Ensembies are as ergodic as RBRE bﬁt still not as ergodic as

GOE ., Whilé,all these Random Phase Ensembles are identical inkéhért‘
range.correlation measure Q, £ 3_doe$ diécriminate between the

different eigenvalue densities, when a large fraction of the levels

is analysed.

The partial level density of TBRE has been shown to
aéproach Gaussian at a faster rate on the introduction of a general
additive symmetry. It also departs more and more from Gaussian with
increasing range of interaction. This‘suggests that the infinite
range of the Coulombic intéraction is one of the factors contributing
to increased departures from Gaussian in the partial level density

of atoms.

With respect to fluctuations, both skort and long'rangef'fl~”
ordering are found to decrease away from the nuclear range on either
side. The change in the short range ordering is not very well under-—
stood as one would expect that short range correlation would be
identical for all matrices. The shell model calculations of FRTRE
would lead to indubitable conclusions on the effect of range. The
violation of long range order even for the nuclear raﬁge and for the
RPE with Gaussian level density show that the extension of the long
range order or the crystalline étrudtuie'to the ground state region

of nuclei 1s not valid.



The vaflatlon ln | gﬁe3.w1th level den51tg 1n RPE undef
cendltlons when the number of levels n’ used is comparable to the
matr;x dumen51ona11ty couples thlS fluctuatlon propertg to the
level deneltg, The decoupling between level den51ty and fluctuatibﬁs
is found only under conditions when n < < N. The RBRE for different

values of the rank of interaction should also exhiblt'the same trend

in the values of ,Jﬁ;3,as.obsépved in RPE.

Fﬁnallg, for an extension of the RPE from'the real to the
complex domain, anfanalytical treatment of these ensembles is called

for. Such an analytical approach would provnde a clue to maklng these

ensembles invariant under the apprOprzate transfbrmatzons thus .V\ \\\3

Improving upon their ergodlclty.




