
Studies in Topics Going Beyond The Standard Electroweak Model 

THESIS 

SUBMITTED T O  THE 

Gujarat University 
IN PARTIAL FULFILMENT OF 

THE REQUIREMENTS FOR T H E  

DEGREE OF 
Doctor of Philosophy 

IN 

Physics 

BY 
Vempati Sudhir Kumar 

Physical Research Laboratory 

November 2000 



Most of this thesis is based on work I had done with Prof. Anjan Joshipura. In addition 
to  his insights in physics, his nice and kind nature made me cherish every moment of my 
interaction with him. I feel fortunate to  have been able t o  work with him. 
Prof. Saurabh Rindani had been extremely supportive and encouraging through out my 
thesis period. I would like t o  thank him for his concern and constant encouragement. Dr. 
Subhendra Mohanty's influence on me extends not only on physics but also in several other 
spheres of life. I feel greatly indebted to  him. 
I would also like to  thank Prof. J .  C. Parikh, Prof. A. C. Das, Prof. A. R. Prasanna, Dr. 
D. R. Kulkarni and Dr. Sai Iyer who taught us several courses over the years. Discussions 
with Prof. U. Sarkar, Dr. R. Rangarajan and Dr. H. Misra have been highly educative 
and I would like to  thank them for their patience. I would also like t o  thank Prof. V. B. 
Sheorey and Prof. D. P. Dewangan for their constant support. My discussions with Prof. 
D. P. Roy, Prof. P. N. Pandita, Prof. M. Drees and Prof. S. I?. King have taught me several 
new things during my collaborations with them. I am thankful t o  them. 
It is a pleasure to  thank Dr. V. Ravindran, Dr. G. Dut ta ,  Dr. S. Sahu, Dr. M. S. 
Santhanam, Dr. A. Gupta, Dr. P. Stockinger, Dr. S. Goswami, Dr. S. Pandit, Mr. K. V. 
Shajesh and Mr. R. Vaidya from whom I have learnt several things. 
The staff of computer center and the library have been extremely helpful t o  me. I am very 
t l ~ . ~ ~ k f i ~ l  t ~ )  t l ~ ( ' ~ i ~ .  
I enjoyed every moment of my stay with my 'batchmates', Ads,  Alok, Dipu, Esfan, Jitti ,  
Koushik, Mittu, Muthu, Nanda, Rajesh, Rajneesh, Sankar, Som, Sunish and Vinay. My sin- 
cere gratitude lies with them. I would also like to  thank Arun, Jayendra, Sarika, Chandan, 
Tarak, Jay and R P  for making the seventh floor lively. 
I am also greatful t o  my parents, sisters, babai, aunts, cousins and friends a t  home, who 
have been patient, supportive and caring. 
Sudhir Vempati 



CERTIFICATE 

I hereby declare that  the work presented in this thesis is original and has not formed 
the basis for the award of any degree or diploma by any University or Institution. Any 
material which has been obtained from other sources has been duly acknowledged in this 
thesis. 

Vempati ~ u d h i r  Kumar 

(Author) 

Theoretical Physics Division 
Physical Research Laboratory 

Navrangpura 
Ahmedabad - 380 009 (India) 

CERTIFIED BY 

Prof. S. D. Rindani 

(Thesis Supervisor) 

Theoretical Physics Division 
Physical Research Laboratory 
Navrangpura 
Ahmedabad - 380 009 (India) 



Contents 

1 Introduct ion 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.1 The Standard Model 

. . . . . . . . . . . . . . . .  1.2 The Minimal Supersymmetric Standard Model 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.3 R-parity 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.4 Supersymmetry breaking 
1.4.1 Universality and CMSSM . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . .  1.4.2 Gauge Mediated Supersymmetry breaking 
. . . . . . . . . . . . . . . . . . . . . . . . .  1.4.3 SU(2) x U(1) breaking 

. . . . . . . . . . . . . . . . . . . . . . . .  1.5 Motivation and Outline of thesis 

2 Neutr ino Anomalies a n d  Mass Models 
. . . . . . . . . .  2.1 Neutrinos from the Sun and the Solar Neutrino Anomaly 

2.2 Neutrinos from the Skies and the Atmospheric Neutrino Anomaly . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.3 Neutrino Oscillations 

. . . . . . . . . . . . . . . . . . . .  2.3.1 Evidence for neutrino oscillations 
. . . . . . . . . . . . . . . . . . .  2.4 Mechanisms of Neutrino Mass Generation 

. . . . . . . . . . . . . . . . . . . . . . . . . . .  2.4.1 See-saw Mechanism 
. . . . . . . . . . . . . . . . . . . . . . . . . .  2.4.2 Radiative Mechanisms 

3 RG scaling a n d  R violation 
. . . . . . . . . . . . . . . . . . . . . . .  3.1 Renormalisation Group and MSSM 

. . . . . . . . . . . . . . . .  3.1.1 Analytical and semi-analytical solutions 
. . . . . . . . . . . . . . . . . . . . . . . . . .  3.2 R violation and RG evolution 

. . . . . . . . . . . .  3.3 RG scaling of dimensionless L-violation and soft sector 
. . . . . . . . . . . . . . . . . . . . . . . . .  3.3.1 Semi-analytical solutions 

. . . . . . . . . . . . . . . . . . . . . . . . . . .  3.3.2 Numerical Methods 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.3.3 Appendix 

4 Bilinear R violation a n d  Neutr ino Anomalies 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.1 Introduction: 

. . . . . . . . . . . . . . . . . . . . . . . . . .  4.2 Structure of Neutrino Masses: 
. . . . . . . . . . .  4.2.1 Sneutrino vevs. neutrino masses and RG scaling 

4.2.2 1-loop mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . .  4.3 Gauge mediated models and neutrino masses 



4.4 Neutrinomasses: Phenomenology . . . . . . . . . . . . . . . . . . . . . . . .  63 
4.4.1 MSW and atmospheric neutrino problem in MMM . . . . . . . . . .  64 
4.4.2 Vacuum oscillations and atmospheric neutrino problem in MMM . . 65 

4.5 Non-minimal model and neutrino anomalies . . . . . . . . . . . . . . . . . .  66 
4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  68 

4.6.1 RG equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  68 
4.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  69 

5 Trilinear R violation and Neutrino Masses 7 3 
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  73 
5.2 Sneutrino vevs and Neutrino Masses . . . . . . . . . . . . . . . . . . . . . .  74 

. . . . . . . . . . . . . . . . . . . . . .  5.2.1 RG induced Tree Level Mass: 74 
5.2.2 Loop Level Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  76 

5.3 Neutrino Masses and Mixing . . . . . . . . . . . . . . . . . . . . . . . . . .  76 
5.4 Neutrino Masses : Phenomenology: . . . . . . . . . . . . . . . . . . . . . . .  78 
5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  81 

6 Neutrino Mass constraints on  R violation and HERA anomaly 83 
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  83 
6.2 Basis choice and definition of X i j k  : . . . . . . . . . . . . . . . . . . . . . .  84 
6.3 Bounds on trilinear couplings : . . . . . . . . . . . . . . . . . . . . . . . . .  86 
6.4 HERA anomalies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  89 

7 Conclusions 98 



Chapter 1 

Introduction 

"What lies bcyol~cl the Staticlard Motlcl ?" is the question which intrigues many particle 
physicists today, It is surprising that such a question should arise when most of the existing 
data agree very well with the predictions of the Standard Model. However, there are strong 
theoretical arguments suggesting existence of new physics beyond the Standard Model. 
Independent of these arguments, there are some recent experimental results which may be 
considered as the first indications of some new physics. Put together, these arguments 
constitute a 'strong evidence' for the presence of physics beyond the Standard Model and 
thus the above question. 

At present, the question has not been answered. Future experiments like LHC (Large 
Hadron Collider) are likely to provide an answer. To satisfy some of the theoretical ar- 
guments against it ,  the Standard Model is usually extended by assuming an additional 
symmetry called supersymmetry. One of the most popular of such models is the Minimal 
Supersymmetric Standard Model (MSSM). The popularity of this model lies in the fact that 
it not only satisfies one of the major theoretical prejudices, namely the hierarchy problem, 
but is also testable in the future colliders. On the other hand, the experimental 'evidence' 
for physics beyond the Standard Model comes from the recent results of the atmospheric 
neutrino experiments which indicate that the neutrinos may have small masses and non-zero 
mixing among them. The Standard Model which has no provision for neutrino masses thus 
has to be extended in some sector viz., with additional symmetries, additional particles etc. 
These extensions are achieved in many cases, independent of the theoretical prejudices, thus 
leading to a different set of extensions of the Standard Model. 

In this thesis, we assume supersymmetry as the physics beyond the standard model. We 
then study the generation of neutrino masses within supersymmetric standard models and 
implications from the results of the solar and atmospheric neutrino experiments on these 
models. But, before proceeding further, we try to motivate our work in this chapter, along 
with a summary of salient features of the MSSM. 

1.1 The Standard Model 

As a starting point, we here briefly review the salient features of the Standard Model. 
The Standard Model (SM) [I] is a spontaneously broken Yang-Mills quantum field theory 
describing the strong and electroweak interactions. The theoretical assumption on which 
the Standard Model rests on is the principle of local gauge invariance with the gauge group 
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given by, 
GsM z SU(3)c x SU(2)L x U(1)y (1.1) 

The particle spectrum and their transformation properties under these gauge groups are 
given as, 

In the above i = 1,2,3 stands for the generation index. Qi represents the left handed quark 
doublets, Li represents left handed lepton doublet, Ui, D;, Ei represent right handed u p  
quark, down-quark and charged lepton singlets respectively. The numbers in the parenthesis 
represent the transformation properties of the particles under GSM in the order given in 
eq.(l.l). In addition to the fermion spectra represented above, there is also a fundamental 
scalar called Higgs whose transformation properties are given as, 

There are also gauge boson fields which enter the spectrum through the requirement of 
local gauge invariance. The total lagrangian with the above particle spectrum and gauge 
group can be represented as, 

CSM = CI' + CY M + CS + Cyuk 

The fermion part, CF is given as, 

with * = (Qi uii Di, Li, Ei) (1.6) 
where Z), represents the covariant derivative of the field given as, 

Here A = 1, .., 8 with G: representing the SU(3), gauge bosons, I = 1,2 ,3  with W: 
representing the SU(2)L gauge bosons. The U(l)y gauge field is represented by B,. The 
self interactions of the gauge fields are given by, 
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stocks by foreign investors which in turn has implications for extending the 
CAPM to a multi-country context. 

The purpose of this paper is to investigate the inter-relationship between the 
volatilities of the Indian stock market and the rupee-dollar exchange rate. It also 
addresses the question of whether this spillover effect is asymmetric, i.e. 
whether "good" and "bad" news from the stock market has differential impact on 
the exchange rate and vice-versa. In keeping with the current literature it of 
course includes ARCH-GARCH effects within each market. In Section 11, we 
describe the data used for the empirical analysis. Section I11 reports the results 
of a cointegration analysis of stock prices and exchange rates.6 In Section IV the 
model which incorporates volatility spillovers between stock and foreign 
exchange markets is specified. Section V presents the results of estimation of 
this model and section VI contains the concluding remarks. 

Section I1 
The Data 

The study uses daily closing data on two stock market indices, viz. BSE-30 
(SENSEX), and the NIFTY-50 and the daily closing USDIINR exchange rate. 
The period covered by the data is from January 2, 1991 to April 24, 2000. 
The main limitation of the data is the fact that during the early part of the 
data series, there are sometimes long gaps due to the stock markets having 
been closed for several days at a stretch. 

Foreign institutional investors were permitted to directly invest in the Indian 
stock market only after 1997. Since this can be expected to have significant 
implications for the inter-relationship between the stock and forex markets, we 
have carried out a separate estimation exercise for the sub-sample covering the 
period March 1998 to April 2000. The stock market data were obtained from the 
respective exchanges - BSE and NSE - while the historical exchange rate data 
were supplied by HDFC Bank. 

Section 111 
Preliminary Data Analysis 

Table 1 presents some descriptive statistic. for the two stock indices and the USD/INR 
exchange rate. Table 2 presents the same statistics for the stock returns and exchange 
rate returns series. In all the cases datly returns are computed as log Merences of 
successive observations, viz. tlnXt - lnXt-1). Because of the data gaps mentioned 
above, these are not always "daily" returns and hence may impoundinformation which 
may have arrived during the interval between two successive trading days.7 

6. As usual, the variables are taken in log form. 
7. To the extent such information affected both the fore. and the stock market and only one of them 

was closed while the other was open, this would distort the estimated volatility linkages between 
the two. 
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related to  the masses of the quarks and leptons ( nine fermion masses, three mixing angles 
and one phase of the CKM matrix). All these masses which are generated by the Yukawa 
part of the lagrangian, CWk (eq. 1.12) are hierarchical in nature in the generation space. 
At present, we have no understanding of the origin of this hierarchical nature. Similarly, we 
have no understanding of why there are only three generations within the SM. All these are 
collectively known as the 'flavour problem' of the SM. As a solution t o  this problem, one 
typically extends the SM with an additional 'flavour symmetry'. The quantum numbers of 
the SM fields under this symmetry would now decide the magnitude of the masses these 
particles take. 

Whereas the above arguments require an extension of the SM for a deeper understanding 
of the Standard Model, recent results from the atmospheric neutrino experiments make 
this requirement almost a necessity. The atmospheric neutrino experiments measure the 
flux of the electron and muon neutrinos produced in the atmosphere due t o  cosmic ray 
collisions with the air molecules. These flux measurements (or rather the ratio of the 
fluxes ) are anomalous with respect t o  the predicted flux from various calculations. This 
reduction of the measured flux is generally understood in terms of 'neutrino oscillations', 
which require neutrinos t o  have small masses. Recently, super-Kamiolcande experiment 
has reported evidence for the existence of neutrino oscillations [lo]. If taken seriously, 
these results would imply existence of neutrino masses. In addition t o  these signals from 
the atmospheric neutrinos, there are other neutrino experiments like the solar neutrino 
experiments which also suggest neutrinos to  have small masses. As we have seen earlier, the 
SM does not have right handed neutrinos in its spectrum eq.(1.2), thus denying neutrinos 
any mass through Cyuk 2.  Thus one has t o  extend the SM in some sector (symmetries, 
particles or both) to  generate mass for the neutrinos. One of the most standard metnods to  
generate neutrino mass is to  add right-handed neutrinos in t o  the Standard Model particle 
spectrum. Gauge invariance would allow not only Dirac mass terms but also Majorana mass 
terms for the right handed neutrino fields. The interplay between these terms gives rise t o  
a 'see-saw' mechanism, in which the left handed neutrinos attain small majorana masses. 

Thus we have seen that  the SM has to  be extended in order t o  satisfy requirements 
coming from neutrino experiments as well as for a deeper theoretical understanding. There 
is also a search for a Grand Unified Theory (GUT) [ l l ]  which would unify the strong and 
the electroweak forces with a single coupling constant. I t  is interesting t o  note that  in- 
addition to  unification of forces, neutrino masses can also be naturally incorporated within 
the Grand Unified theories [12] through the 'see-saw' mechanism discussed above. The 
Standard Model would then be an effective theory valid up t o  some scale relevant t o  the 
weak scale. The scale at which the GUT theories would take over from the SM is estimated 
from the life time of proton and 'Renormalisation Group' running of the three coupling 
constants t o  be N loi6 GeV [13] 3. Inclusion of the gravitational forces would push this 
scale further up t o  the Planck scale, Mdonck N lo1' GeV. This would imply that  the SM 
has to  be valid right from the weak scale up t o  the GUT-scale typically, fourteen orders 
of magnitude. This would create a conceptual problem within these theories called the 

'Neutrinos cannot attain majorana masses either, as lepton number is 'accidentally' conserved in the SM. 
"V-scale neutrino masses in some GUT theories would also require a scale of same order. 
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hierarchy problem. 
The hierarchy problem arises due t o  the existence of a fundamental scalar within the 

Standard Model [14]. A typical Grand Unified Theory uses a single gauge group and a 
single coupling constant to  describe the physics at the GUT scale, MGUT N 1016 GeV. This 
symmetry is then spontaneously broken at those scales t o  the symmetry of the Standard 
Model, GSM given in eq.(l.l). As a consequence of this breaking, the gauge bosons medi- 
ating the grand unified interactions acquire heavy masses of the order of MGUT and thus 
would not be relevant for the physics at the weak scale. The gauge bosons of the Standard 
Model remain massless as GSM remains unbroken. The fermion masses also would not be 
affected by this breaking as they are protected by chiral symmetries. But, the scalar mass is 
unprotected by any symmetry. There is no reason t o  assume the scalar would not gain mass 
of the order of MGUT due to  the spontaneous breaking of GGuT + GSM [14]. Such a large 
mass for the scalar is disastrous phenomenologically as the observed masses of the gauge 
bosons typically require a scalar mass of O(100) GeV. To solve this 'hierarchy' problem, one 
can either bring down the scale of the unification or introduce an extra symmetry t o  protect 
the Higgs mass. The former would require introduction of extra space time dimensions [15] 
whereas the symmetries which would protect the Higgs mass are called supersymmetries. 
There is also one more approach in the literature which assumes that  the Higgs boson is a 
composite particle of fermions thus ruling out the existence of a fundamental scalar in the 
theory [16]. 

In the present thesis, we follow the approach of supersymmetry. Supersymmetry in ad- 
dition t o  protecting the Higgs mass from attaining large values has other attractive features. 
A minimal supersymmetric version of the standard model can be built which is predictable 
and testable at present and future colliders. The unification of gauge coupling constants a t  
high scales is exact in this case and so, Grand Unified Theories also prefer tKe existence of 
supersymmetry. More fundamental theories like string theories may also require supersym- 
metry to  be present as low energy effective theories [17]. Thus supersymmetric standard 
models make an attractive framework as the physics beyond the Standard Model. Below, 
we review some salient features of the supersymmetric version of the Standard Model. 

1.2 The Minimal Supersymmetric Standard Model 

Supersymmetry is a symmetry that  transforms a fermion in t o  a boson and vice versa. 
To understand how it  protects the Higgs mass, let us consider the hierarchy problem once 
again. The Higgs mass enters as a bare mass parameter in the Standard Model lagrangian, 
eq.(l.lO). Contributions from the self energy diagrams of the Higgs are quadratically di- 
vergent pushing the Higgs mass up to  cut-off scale [18]. In the absence of any other new 
physics a t  intermediate energies, the cut-off scale is typically MGUT or Mplonck. Cancella- 
tion of these divergences with the bare mass parameter would require fine-tuning of order 
one part in rendering the theory 'unnatural' [19]. On the other hand, if one has an 
additional contribution from a fermionic loop, with the fermion carrying the same mass as 
the scalar, the contribution from this diagram would now cancel the quadratically diver- 
gent part, with the total contribution now being only logarithmically divergent [20]. This 
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would require a symmetry which would relate a fermion and a boson with same mass. Such 
symmetries are known as supersymmetries. 

Supersymmetries were first introduced in the context of string theories by Ramond 
[21]. In quantum field theories, this symmetry is realised through fermionic generators [22] 
thus escaping the no-go theorems of Coleman and Mandula [23]. The simplest Lagrangian 
realising this symmetry in four dimensions was built by Wess and Zumino [24] which contains 
a spin fermion and a scalar. To build interaction lagrangians one normally resorts to 
the superfield formalism of Salam and Strathdee [25], as superfields simplify addition and 
multiplication of the representations [26]. It should be noted however that the component 
fields may always be recovered from superfields by a power series expansion in grassman 
variable. 

A chiral superfield contains a weyl fermion, a scalar and and an auxiliary scalar field 
generally denoted by F. A vector superfield contains a spin 1 boson, a spin 1/2 fermion 
and an auxiliary scalar field called D. A minimal supersymmetric extension of the Standard 
Model 1271 is built by replacing every standard model matter field by a chiral superfield 
and every vector field by a vector superfield. Thus the existing particle spectrum of the 
Standard Model is doubled. The particle spectrum of the MSSM and their transformation 
properties under GSM is given by, 

The scalar partners of the quarks and the leptons are typically named as 's'quarks and 
's'leptons. For example, the scalar partner of the top quark is known as the 'stop'. In the 
above, these are represented by a 'tilde' on their standard counterparts. A distinct feature 
of thc supersymmetric standard models is that they require two Higgs fields with opposite 
hypercharges to cancel the anomalies and to give mass to both uptype and the down-type 
quarks These transform as 

'The same notation is followed in the entire thesis. 
'The hermitian conjugate of the superfield is not allowed into the superpotential due to its holomorphic 

nature. 
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The fermionic parts of the Higgs superfields are known as Higgsinos. The gauge bosons and 
their fermionic partners, gauginos are represented as, 

v : ( G ' ~  GA ) 
v : ( w.1 w z  ) 
v . :  ( B .  B )  

In the above, the fermionic (susy) counter parts of the Higgs and the gauge bosons have 
been represented by a 'tilde' on their bosonic notations. The total Lagrangian of the MSSM 
is of the form : 

In the above, W ( @ )  is a function of the chiral superfields called the superpotential, Qj 

representing a generic superfield. The renormalisable superpotential is of dimension three 
or less. For the MSSM, the superpotential invariant under GSM is given as, 

where 

The second term in the RHS of eq.(1.16) represents the matter-gauge boson coupling, 
with V = (v:, Vi,  v,), with the appropriate coupling constants. The last term in the 
RHS of the eq.(1.16) represents the self interaction of the gauge fields. The Lagrangian 
in component form can be found by expanding the superfields as noted above. The scalar 
potential can be derived by eliminating the auxiliary fields D and F which appear in the 
definitions of the vector superfield and chiral superfield respectively. 

In the above, we have seen the minimal supersymmetric version of the Standard Model. 
Comparing eq.(1.17) with the Standard Model Lagrangian, we see that in additional to 
doubling of the particle spectrum, new interactions which violate baryon number and in- 
dividual lepton number are now allowed in the lagrangian. This is because the Higgs 
superfield, H1 and the lepton superfields Li have the same quantum numbers under GSM. 
Though they carry the same quantum numbers in the SM also, these interactions are not 
possible as  the fermions and the Higgs transform as different representations under Lorentz 
Group. Within the MSSM the distinction is lost since the superfields corresponding to the 
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leptons and the Higgs transform identically under supersymmetry and gauge symmetry and 
these interactions appear as they are gauge invariant. 

The first three terms of the second part of the superpotential W2 (eq.(1.19)), are lepton 
number violating whereas the last term is baryon number violating. The simultaneous 
presence of both these interactions can lead to  proton decay for example, through a squark 
exchange. Stringent limits can be placed on the products of these couplings from the life 
time of proton [28]. To avoid proton decay, one can either remove both these couplings or 
assume one set (either baryon number violating or lepton number violating couplings) to  be 
zero. The former is normally arrived at by imposing a discrete symmetry on the lagrangian 
called R-parity. R-parity has been originally introduced as a discrete R-symmetry by 
Ferrar and Fayet [29] and t l~cn later rcalised to  be of the following form by Ferrar and 
Weinberg 1301: 

R, = ( 4 ) 3 ( 8 4 ) + F  (1.20) 

where B and L represent the Baryon and Lepton number respectively and F represents the 
Fermion parity given as -1 for fermions and + 1 for bosons. Under R-parity the transfor- 
mation properties of various superfields can be summarised as: 

Imposing R-parity has an advantage that  it provides a natural candidate for dark matter. 
This can be seen by observing that  R-parity distinguishes a particle from its superpartner. 
Thus the lightest supersymmetric particle (LSP),cannot decay and remains stable [31]. R- 
parity has also been motivated as a remnant symmetry in a large class of supersymmetric 
theories, especially in theories with an additional U(1) symmetry. I t  has also been pointed 
out that  though R-parity constraints baryon and lepton number violating couplings of 
dimension four, dim 6 operators which violate baryon and lepton numbers are still allowed 
by R-parity [32]. 

1.4 Supersymmetry breaking 

The MSSM lagrangian built so far is invariant under supersymmetry. Supersymmetry 
breaking has to  be incorporated in the MSSM t o  make i t  realistic. In a general lagrangian, 
supersymmetry can be broken spontaneously if the auxiliary fields D or F appearing in 
the definitions of the chiral and vector superfields respectively attain a vacuum expectation 
value (vev). Incorporation of this kind of breaking in MSSM using the MSSM superfields 
leads t o  phenomenologically inconsistent scenarios, like for example existence of a very 

6R-symmetries are symmetries under which the B parameter transform non-trivially. 
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light scalar 7. An alternative approach to incorporate supersy~nmetry breaking is using the 
' hidden-sector ' scenarios. 

The hidden-sector is a sector of superfields which do not carry any quantum numbers 
under ordinary gauge interactions, i.e, GSM. The only interactions they share with the 
visible (MSSM) sector superfields is through gravity. Supersymmetry can then be broken 
spontaneously in the hidden-sector and this information is then passed on t o  the MSSM 
sector through gravitational interactions. Since gravitational interactions play an important 
role only at very high energies, Mp - 0(1019) GeV, the breaking information is passed on 
t o  the visible sector only at those scales. The end effect of this mechanism is that  explicitly 
supersymmetry breaking terms are now added in t o  the lagrangian. These 'soft' terms 
do not reintroduce quadratic divergences back into the theory. The strength of the soft 
terms is characterised by, M:/Mdawk, where Ms is the typical scale of supersymmetry 
breaking. These masses can be comparable to  weak scale for Ms - 10'' GeV [34]. The 'soft' 
supersymmetric breaking part of the lagrangian can be classified t o  contain the following 
terms [35]: 

0 a)  Mass terms for the gauginos, MI, M2, M34 

b) Mass terms for the scalar particles, rn& with @, representing the scalar partner of 
chiral superfields of the MSSM. 

0 c) Trilinear scalar interactions, A ; j k ~ i 4 j 4 k  correspondirlg to  the cubic terms in the 
superpotential. 

d)  Bilinear scalar interactions, Bij4,4j corresponding t o  the bilinear terms in the 
superpotential. 

The total MSSM lagrangian is thus equal to  

with CMSSM given in eq.(1.16). 

1.4.1 Universality and CMSSM 

The above mechanism of supersymmetry breaking is called minimal supergravity (mSUGRA) 
inspired supersymmetry breaking. As we have seen above this type of breaking introduces 
several new soft parameters in t o  the theory. Typically the number of these parameters is 
large N 105. Moreover, large flavour changing neutral currents (FCNC) are also introduced 
by this kind of breaking [36]. To reduce the number of parameters as well as remove the 
large FCNC contributing terms, an ansatz is usually followed at the high scale where the 
soft terms are introduced in to  the theory. This ansatz is called universality and it assumes 
the following: 

 his can be seen from the mass sum rules which appear as a consequence of spontaneous supemymmetry 
breaking [33]. 
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a All the gaugino mass terms are equal a t  the high scale. 

All the scalar mass terms a t  the high scale are equal. 

All the trilinear scalar interactions are equal at the high scale. 

All bilinear scalar interactions are equal a t  the high scale. 

It is possible t o  construct supergravity models which can give rise t o  such kind of strong 
universality [37]. This approximation now drastically reduces the number of parameters of 
the theory t o  about five, mo, M (or equivalently M2), ratio of the vevs of the two Higgs, 
tanp,  A, B. Thus, these models are aLso known as 'Constrained' MSSM [38] in literature. 
The low energy mass spectrum of the soft terms is now determined by the Renormalisation 
Group scaling of those parameters. The supersymmetric mass spectrum of these models has 
been extensively studied in literature [39]. The Lightest Supersymmetric Particle (LSP) is 
mostly a neutralino in this case. 

1.4.2 Gauge Mediated Supersymmetry breaking 

In the above we have seen that  supersymmetry is broken a t  a high scale and is communicated 
through gravity t o  the normal particle sector. It induces large FCNC's and a hrge  number 
of parameters which can be corrected by assuming a 'strong' universality at the MGUT. 
An alternative mechanism has been proposed which tries t o  avoid these problems in a 
natural way. The key idea is to  use gauge interactions instead of gravity to  mediate the 
supersymmetry breaking from the hidden (also called secluded sector sometimes) t o  the 
visible MSSM sector [40]. In this case supersymmetry breaking can be communicated at 
much lower energies N 100 TeV. 

A typical model would contain a susy breaking sector called 'messenger sector' which 
contains a set of superfields transforming under a gauge group which 'contains' GSM. Su- 
persymmetry is broken spontaneously in this sector and this breaking information is passed 
on t o  the ordinary sector through gauge bosons and their fermionic partners in loops. The 
end-effect of this mechanism also is to  add the soft terms in t o  the lagrangian. But now 
these soft terms are flavour diagonal as they are generated by gauge interactions. The  soft 
terms a t  the messenger scale also have simple expressions in terms of the susy breaking 
parameters. In addition, in some models of gauge mediated supersymmetry breaking, only 
one parameter can essentially determine the entire soft spectrum. 
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In a similar manner as in the above, the low energy susy spectrum is determined by 
the RG scaling of the soft parameters. But now the high scale is around 100 TeV instead 
of MGUT as in the previous case. The mass spectrum of these models has been studied in 
many papers [41]. The lightest supersymmetric particle in this case is mostly the gravitino 
in contrast to the mSUGRA case. 

1.4.3 SU(2) x U(1) breaking 

As wc 11avc socn oarlior, t,hc supcrsyrnmctric version of thc Standard Model is a two Higgs 
doublet model. A consistent incorporation of the S I Y ( ~ ) ~  x U(l)y breaking puts constraints 
relating various parameters of the model. To see this, consider the neutral Higgs part of 
the scalar potential. It is given as 

where H:, Hi stand for the neutral Higgs scalars and we have parameterised the bilinear 
soft term B = Bpp. The existence of a minima for the above potentid would require 
a t  least one of the Higgs mass squared to be negative. In both gravity mediated as well 
as gauge mediated supersymmetry breaking models, such a condition a t  low energies can 
be naturally incorporated. The soft parameters which appear in the above potential are 
generally positive at  the high scale. But radiative corrections significantly modify the low 
scale values of these parameters, making one of the Higgs mass to be negative at the weak 
scale. This mechanism is called radiative electroweak symmetry breaking. In addition to 
ensuring the existence of a minima, one would also require that the minima should be able 
to reproduce the standard model relations i.e, correct gauge boson masses. This would 
give rise to constraints on the parameters known as the minimisation conditions. These are 
given a s  

where tan p = u2/ul is the ratio of the vacuum expectation values of H: and H: respec- 
tively In addition to the above conditions care should also be taken such that charge and 
color breaking minima are absent. 

"The above minimisation conditions are given for the 'tree level' potential only. The minimidion con- 
ditions for the one-loop effective potential are given in [42]. 
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1.5 Motivation a n d  O u t l i n e  of thesis 

So far in this chapter we have seen the reasons for believing in the existence of physics 
beyond the Standard Model. A strong sign4 comes from the recent neutrino oscillation 
experiments. On the other hand, extension scenarios with unification ideas are generally 
plagued by the hierarchy problem. A solution t o  this problem is assuming supersymmetry 
just above the wcnk scale. Supersyin~netric standard models are built which can incorporate 
SU(2) x U(1) breaking naturally. The question then remains is whether one can incorporate 
neutrino masses and mixing within these theories in a natural way. 

Supersymmetric Standard Model, unlike the Standard electroweak model has a natural 
source of lepton number violation. Since, there is also baryon number violation in these 
theories, one imposes R-parity to  remove both these set of couplings. But R-parity is 
ad-hoc. One can always assume symmetries other than R-parity like for example baryon 
parity [43] which can remove the baryon number violating couplings, leaving us with lepton 
number violating couplings only. In the presence of these lepton number violating couplings, 
neutrinos attain majorana masses '. The generation of the neutrino masses in these theories 
and whether they are of the correct order t o  satisfy the solar and atmospheric neutrino 
masses is the main subject of this thesis. In addition t o  neutrino masses R-parity violating 
theories have a different set of experimental signatures in complete contrast t o  the standard 
MSSM signatures [44]. We also study some such experimental signatures in the context of 
some recent experimeii tal results of HERA detector. 

The outline of the thesis is as follows. In chapter 2, we discuss the various neutrino 
experiments and some standard neutrino mass models. In chapter 3, we study the standard 
Renormalisation group analysis of the MSSM and then try t o  understand the effect of 
RG analysis on the neutrino mass spectrum. In chapter 4, we discuss a specific model of 
R-violation namely bilinear R-violation within the framework of gauge mediated models 
supersymmetry breaking. In chapter 5, we discuss models with trilinear lepton number 
violation and the feasibility of simultaneous solutions t o  solar and atmospheric neutrino 
problems. In chapter 6, we derive bounds on the trilinear X i j k  couplings from neutrino 
mass and study its implications for the HERA anomalies. We end with conclusions and 
future outlook in chapter 7. 

'Even with R-conservation, higher dimensional R-parity violating operators would give rise to small 
neutrino masses [32]. 
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Chapter 2 

Neutrino Anomalies and Mass Models 

Neiltrinos a r ~  onc of the most abundant Standard Model particles in the universe. In 
addition to  the various natural radioactive sources, neutrinos are produced in the hydrogen 
burning process in the stars as well as when a star  dies in supernova explosions. They are 
also produced wlten eiiergetic cosi~lic rays collide with the air molecules. There is also a 
cosmic neutrino background. Though neutrinos are abundant in the universe, it is an irony 
that  they are the least understood. In the Standard Model, neutrinos have no mass, spin 
4 and carry no electric charge. They take part only in weak interactions, which makes 
them extremely difficult to  detect as their cross-sections are much smaller compared t o  
clcctro-inagiietic cross-sections [I]. 

Of the above properties of the neutrinos, the spin and charge of the neutrinos are ex- 
perimentally well known. The mass of the neutrino is relatively unknown. Experiments 
which put kinematic limits on the neutrino mass directly are difficult t o  conduct and put 
weak limits [2]. However, the abundant sources of neutrinos, the stars and the atmosphere 
help us in understanding the properties of neutrinos further. As mentioned earlier, neutrino 
cross-sections are extremely small. Thus t o  detect them one would need in addition t o  large 
fluxes (which are naturally provided by these sources), large detectors too. These detec- 
tors measure the number of neutrinos produced for example, in the cosmic ray showers in 
the atmosphere. The results from these experiments over the years consistently pointed to- 
wards the phenomena of 'neutrino oscillations', which in turn indicates existence of neutrino 
masses. 

The above neutrino oscillation experiments can be broadly divided as a )  solar neutrino 
experiments, b) atmospheric neutrino experiments and c) laboratory experiments, depend- 
ing on the source of neutrinos. Below, we consider some details of these experiments and 
how they determine the pattern of the neutrino mass matrix. 

2.1 Neutrinos from the Sun and the Solar Neutrino Anomaly 

As we have seen above, neutrino are produced in the stars which burn hydrogen fuel. In 
the Sun, this process produces as a byproduct electron neutrinos, u,. Since the u, inter- 
act weakly with the solar atmosphere, they can escape the Sun without much changes in 
their flux or energy and thus making it possible t o  measure their flux and energy on the 
earth. For over thirty years starting from 1967 [3], this flux of u, has been measured on the 
earth. It is found that  the measured flux is only about one-third of the standard expecta- 
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tion. This discrepancy constitutes the solar neutrino problem. Several other experiments 
like Kamiokande, SAGE, GALLEX and super-Kamiokande have since then confirmed the 
existence of this problem, the last one with very high statistics. 

Source Flux Average Neutrino Maximum Neutrino 
(crn-"s-l) Energy (MeV) Energy (MeV) 

Table 2.1 In the above, we present the total fiuz of the neutrinos coming from various 
interactions along with their average and maximum energies [5]. 

In the Sun, the main reactions which produce the energy can be grouped as the pp cycle 
and the CNO cycle. The final outcome of both these cycles can be given as, 

Here Q = 26.72 MeV represents the energy released in this process. A major part of the 
energy is in the form of photons. A small part (- 2%) is taken by the neutrinos. Neutrinos 
are produced in various intermediate reactions within the pp and the CNO cycles. In the 
pp cycle, these intermediate reactions are named ( after their reactants ) as pp, pep, ?Be, 
8B ,  hep. In the CNO cycle the corresponding reactions involve 13N1 150,17F. The cross- 
sections of these reactions are determined by the standard model weak interaction physics. 
But the total flux of the neutrinos emanating from these reactions depends on the chemical 
abundances in the solar interior which in turn is dependent on the solar physics. 

These total fluxes are determined by a Standard Solar Model (SSM) developed by J. 
Bahcall and his collaborators [4]. The model assumes that a) the Sun is in Hydrostatic 
equilibrium, b) Energy transport happens in Sun by photons or by convective motions, c) 
energy generation is done by nuclear reactions and d) changes in the chemical abundances 
are solely due to nuclear reactions. With these assumptions, the model then predicts the 
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flux of the neutrinos to be observed at various experiments. It should be however noted 
that the flux of the neutrinos also changes with the neutrino energy. Infact, neutrinos 
produced from different reactions would have a different energy spectrum. In the Table 
2.1 we present, the total fluxes of the neutrinos from various reactions as predicted by the 
SSM and their corresponding average and maximum energies. 

Experiment Result Theory Result Theory 

Table 2.2: The results of solar neutrino experiments confronted with the corresponding 
theoretical predictions. The results of Homestake, GALLEX and SAGE experiments are 
expressed in t e r n  of event rates in SNU units (1  SNU events  atom"^"), whereas 
the results of the Kamiokande and Super-Kamiokande are expressed in terms of the 8~ 

neutrino flux in the units of 10~cm-*s-' .  The first experimental error is statistical and the 
second is systematic [5, 61. 

The first experiment to measure the flux of the neutrinos coming from the Sun was the 
chlorine HOMESTAKE experiment which measured about one-third of the standard expecta- 
tion [3]. This experiment has a high threshold (- MeV) and hence was able to  measure flux 
of neutrinos coming from 8B and ' ~ e  only. It reported a deficit of about one-third of the 
SSM prediction. In 1988, the KAMIOKANDE experiment using a real time water cherenkov 
detector could point out the directionality of the incoming neutrinos and confirmed that 
neutrinos are indeed coming from the Sun. This experiment too had a high threshold (- 6.5 
MeV) and hence was able to see only the 8B neutrino flux. This experiment reported a 
deficit about one-half of the SSM prediction. In 1992, GALLEX and SAGE with thresholds 
of order N 200 KeV were able to measure neutrinos coming from the pp reactions also, con- 
firming that the source of Sun's energy is indeed through thermonuclear fusion reactions. 
They too measured a deficit of about one-half. Recently, SUPER-KAMIOKANDE experiment 
announced results with very high statistics a deficit of one-half in the Boron neutrino flux to 
which the experiment is sensitive. In Table 2.2 we have listed the latest results from vari- 
ous experiments along with the corresponding SSM predictions. It should be however noted 
that the SSM is also being constantly updated over the years with latest inputs from various 
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experimental results and computational techniques. The theoretical predictions presented 
in Table 2.2 are based on the latest version of the model called BP98 [7]. An independent 
confirmation of the Standard Solar Model was recently achieved by the helioseismological 
data  which confirms the predictions of the SSM for sound velocities in the solar interior t o  
a very high accuracy [8]. 

In the above, we have seen that  the measured solar neutrino flux is about half the 
expectations based on the Standard Solar Model (SSM). One of the possible reasons for this 
deficit could be the expectations themselves which are based on a model. However, it can be 
shown that  independent of the SSM, one still faces problem t o  explain the da ta  from various 
experimental results. Also model independent constraints like luminosity constraint etc, 
which when used in conjunction with the experimental da ta  would lead to  scenarios of the 
Sun which are unphysical or severely constrained by other observations like helioseismology. 
For example, using the luminosity constraint one can show that  d a t a  from GALLEX or SAGE 
would fit well if all the neutrinos are coming from pp reactions only. Such a scenario which 
suppresses other sources of the neutrinos is severely constrained by helioseismological data. 
Similarly, a simultaneous fit for SUPER-KAMIOKANDE da ta  and HOMESTAKE da ta  would 
leave no room for the flux of neutrinos coming from 'Be.  This result is again severely 
constrained by helioseismological da ta  [5, 91. Thus it looks like independent of Standard 
Solar Model, one still has a problem in explaining the da ta  coming from solar neutrino 
experiments. In the present thesis, we believe that  the SSM is correct and there exists a 
solar neutrino problem with respect to the expectations based on the SSM. 

2.2 Neutrinos from the Skies and the Atmospheric Neutrino Anomaly 

The other natural source of neutrinos comes from the cosmic rays. Cosmic rays which 
have led to  many fundamental discoveries in particle physics early this century, have now 
contributed t o  our knowledge of neutrinos significantly. Neutrinos are produced when in- 
tergalactic cosmic rays interact with the air molecules in the atmosphere. The production 
mechanism can be summarised as follows: 
(1). Primary cosmic rays interact with the air molecules producing kaons (I(*) and pions 

(~9. 
(-1 (2).  These pions then decay to  form a part of the neutrino (up)  flux and muons 

(-1 (-1 (3). Lastly muons decay to  give rest of the neutrino (v,) flux and the (v,) flux. 

The actual flux which reaches the surface of the earth depends on a number of other 
factors like the properties and composition of the primary cosmic rays, modulations due t o  
Solar wind and the geomagnetic field cut-off. These fluxes can be calculated within some 
uncertainties. Whereas the modulations due t o  Solar wind iLnd the earth's geomagnetic 
field can be incorporated within these calculations, the major uncertainties comes from the 
large errors in primary cosmic ray flux measurements [lo]. However, one can still make 
strong predictions of the neutrino flux which can be summarised as follows : 

(a) Both v,, v, and Ce, fi,, are produced in these showers. 
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(b). One can also predict with very less uncertainties the ratio of up to ue in these fluxes. 
This is typically of order: 

UP + f i ~  Eii 2 
ve + oe 

However, this would vary from place to place due to the geomagnetic cut-off and with energy 
of the neutrinos. 

(c). Flux of neutrinos with energy greater than 5 GeV is not affected either by geomagnetic 
cut-off or by solar modulation. 

(d). One can also predict fairly well the angular dependence of the neutrino flux a t  a given 
experimental site. Taking the direction of the neutrino to be the direction of the incoming 
cosmic ray ', the angular dependence of the neutrino flux is characterised by two angles, the 
zenith angle (8) and the azimuth angle (4). The zenith angle dependence is caused by the 
increase in the length of the air column (more probability of decay and thus enhanced flux) 
a t  angles 8 N t .  But since this dependence is symmetric over n + n - 8, this dependence is 
characterised only by lcos8l and would not induce an updown asymmetry. The geomagnetic 
field can induce both zenith and azimuth angle dependence on the neutrino flux. But, as we 
have seen earlier for neutrino energies 2 5 GeV, this effect is negligible. Thus these effects 
would not be able to induce an updown asymmetry in the neutrino flux. 

Though neutrinos from the atmosphere have been detected long time ago a t  experiments a t  
Kolar Gold Fields, India and in South Africa, detailed measurements of these fluxes have 
started only about a decade ago. At the energies of the atmospheric neutrinos, the typical 
detection process is through DIS (Deep Inelastic Scattering): 

where 1 is the corresponding charged lepton, N is the nucleon and X is the remnant of the 
scattering. The,lepton is then detected either through water cherenkov detectors as in IMB, 
Kamiokande, super-Kamiokande or through iron calorimeters like Baksan and MACRO. As 
we have seen earlier that even though there are large uncertainties in the primary cosmic 
ray fluxes (N 20%), the predictions for the ratio, eq.(2.2) are free from such uncertainties. 
Thus the experimental results are usually presented in the form of 'ratio of ratios' given as, 

where 

One would expect this ratio to be one. In the following Table, we present the results 
from various experiments. 

'This is a good approximation for neutrinos with energy 2 100 KeV. 
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Experiment Ratio Energy 

Kamiokande 0.602:g f 0.05 sub-GeV 

Kamiokande 0.57::::; f 0.07 multi-GeV 

IMB 0.54 f 0.05 f 0.11 

Table 2.3 In the above we present results from the various atmospheric neutrino experi- 
ments [5,  111. 
From the above we see that  the measured ratios are much different from unity. This con- 
stitutes the atmospheric neutrino anomaly. 

2.3 Neutrino Oscillations 

In the above we have seen that both solar and atmospheric neutrino experiments measure a 
deficit in the neutrino flux. This deficit can be understood in terms of neutrino oscillations, 
requiring neutrinos to have small masses. The main idea is that  similar to  K O  - R0 oscil- 
lations, the current eigenstates of neutrinos are not its mass eigenstates. This is expressed 
as, 

where v; are the mass eigenstates and U is the mixing matrix. The neutrinos are produced 
and detected in their current basis, but they propagate in the physical mass basis. Thus 
a neutrino produced can now change its flavour as i t  propagates a distance L where i t  
is detected. Making simplifying assumptions about relativistic nature of the neutrino, a 
simple survival probability formula can be derived using the schriidinger equation [12]. For 
example, for the electron neutrino survival probability, this is given as 2,  

where the LHS represents the survival probability. Am:, represents the mass squared 
difference between i, j neutrino mass eigenvalues and L represents the distance traveled. 
If there are only two generations involved, this formula reduces to, 

'For intricacies involving the neutrino oscillation formula, please see [13]. 
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where now the mixing matrix is represented as a rotation by an angle 8. The solar and 
atmospheric neutrino anomalies can be understood in terms of neutrino oscillations, if the 
mass squared differences of the neutrinos and the mixing angles are of the right order. The 
experimental da ta  now constraints regions in the parameter space of the neutrino oscillation 
formula. The deficit in the data  of a particular anomaly can be caused either by oscillations 
in two generations or in three generations. Another possibility is that  the neutrinos oscillate 
in to  a sterile neutrino. 

CHOOZ and simultaneous solutions 

In thc prcscut thesis, we consider that  there are only three active neutrinos and the 
solar and atmospheric neutrino anomalies have solutions through oscillations among these 
neutrinos. This would generally need a three flavour analysis of the entire solar and atmo- 
spheric neutrino data. However, assuming a hierarchical pattern for the neutrino masses 3, 
an important constraint on the neutrino mixing matrix comes from the CHOOZ experiment 
which simplifies such an analysis [15]. 

The standard two flavour oscillation solutions for the solar and atmospheric neutrino 
da ta  show an hierarchy in Am2. Assuming neutrino masses also have an hierarchy the 
general three flavour oscillation formulae for the solar and the atmospheric neutrino prob- 
lems decouple and reduce t o  two flavour oscillation formulae as the mass squared differences 
are not linearly independent 5. These are given as, 

The mixing matrix element Ue3 is constrained by the CHOOZ experiment t o  be smali. 
The CHOOZ experiment which falls in the category of laboratory neutrino experiments 
[16], rules out oscillations for the electron neutrino in the mass squared difference range, 
Am2 2 with a large mixing 1. For hierarchical pattern of neutrino masses, this in 
turn constraints Ue3 5 0.22. The above formulae are identical t o  the Zflavour oscillation 
formula, eq.(2.8), in the limit of small Ue3. In this case, we can concentrate only on two 
flavour solutions to  the neutrino anomalies. 

The standard solutions for the the solar neutrino anomaly comprise of three 'regions' ia 
the oscillation parameter space of Am2 and Sin228. One of the regions is called the 'Vacuum 

'For a discussion on the patterns of neutrino mass matrix allowed by the experiments, including degen- 
crohc spccLrrr plccwc scc [14]. 

'Either m,, - m,, 9: m,, or m,, < m,, < m,,. 
s Am$ + Am:, + AmfS = 0. 
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Oscillations' or 'just so'. The Am2 required is very small N 1 0 ' " e ~ ~  and the mixing angle 
N = 4 '  The other two solutions require a much larger Am2, typically of 0 (10 '~eV~) .  These 
two solutions consider matter effects on neutrino propagation whilst the neutrino traverses 
the distance between the core of the Sun and its surface. They allow for matter enhanced 
resonant conversion (MSW mechanism) [I?] of the neutrinos from electron species to another 
in specific density regions of the Sun. One of the solutions allows for a large mixing angle, 
9 N 2 - Large Angle MSW. The other region allows for a small mixing angle 9 N and 
is called Small Angle MSW [18]. In the case of atmospheric neutrino anomaly, the results 
are much more constrained. The analysis of super-Kamiokande results [19] allow solutions 
for regions in Am2 - and Sin228 - 1. These results are summarised in the table 
below: 

Anomaly Solution Am2 Sin228 

Solar SAMSW (4 - 12) 10" (3 - 11) 10'~ 

LAMSW (0.8 - 3) 0.7-1. 

Atmosphere (4 - 6) 10'~ 1 

Table 2.4 In the above we present constraints on 2 flavour oscillation solutions for solar 
and atmospheric neutrino anomalies. 

Whereas the above results have been valid during the period where much of the thesis 
work has been done, recent results from the super-Kamiokande experiment do not favour 
some regions of the parameter space presented above. These results have been systematically 
analysed recently by [20] and we summarise them in the following table 6: 

Anomaly Solution Am2 tan2@ 

eV2 

Solar SAMSW (1 - 10) x lo-6 (1  - 20) x lo4 
LAMSW 2 x - 10" 0.2 - 3. 

LOW-QVO 6 x 10" - 5 x 10'1° 0.1 - 7. 

Atmosphere 

CHOOZ 

Table 2.5 Constraints on oscillation parameters in the light of recent super-Kamiokande 
data are presented above [20]. 

'These results are presented in terms of tan2@ as a convenience for the 'dark side' of the parameter space 
P11. 
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As we have see from the above Table, the vacuum oscillation solution is no longer 
favoured by the latest solar neutrino data. This is because of an independent observable 
called day-night spectrum which aids in distinguishing different possible oscillation scenarios 
for the solar neutrinos. A 'flat' day-night spectrum as such observed would be difficult to  
reconcile with the vacuum oscillation solutions. However, there are other solutions of the 
type 'Quasi-Vacuum Oscillations (QVO)' which contain small matter effects are allowed by 
the recent data. Most of the work in this thesis was done much before the recent results 
from super-Kamiokande were announced. We will comment on the implications due to the 
new data at  relevant places. 

2.3.1 Evidence for neutrino oscillations 

Till now we have been assuming neutrino oscillations as a solution to the solar and at- 
mospheric neutrino anomalies. This assumption can be verified in the experiments both 
with laboratory sources as well as natural sources. One of the first indirect experimental 
observation of neutrino oscillations has been reported by the super-Kamiokande experiment 
recently [22]. As we have seen earlier, the incoming atmospheric neutrino flux is indepen- 
dent of the zenith angle, for energies 2 5 GeV. This is because the geomagnetic field would 
not affect the primary cosmic ray fluxes a t  these energies. Zenith angle dependence can 
also be detected if the involved neutrinos are undergoing oscillations. From eq.(2.7), we 
see that oscillatioll probability varies with the distance traveled by the neutrino L and the 
energy of the neutrino E. Neutrinos coming from the atmosphere to the detector in the 
super-Kamiokande experiment travel distances within a range of 15 Kms - 13,000 Kms. The 
first number is for the neutrinos which are entering the detector vertically ( ze~ i th  angle N 0 
) whereas the latter number is for neutrinos which travel vertically upwards (zenith angle 

n). If there are no neutrino oscillations, the number of neutrinos entering the detector 
vertically downwards should be equal to the number of neutrinos traveling upwards. This 
is quantified by the updown asymmetry given as 

U - D  
A, = - 

U + D 1  
where U represents the number of upward moving neutrinos and D the number of downward 
neutrinos. Super-Kamiokande experiment has measured this number for the case of muon 
neutrinos and found it significantly different from zero. The actual experimental number is 
P211 

A, = -0.296 f 0.048 f 0.01 (2.12) 

The non-zero updown asymmetry provides first indirect evidence for the existence of neu- 
trino oscillations. 

At present, we do not have a strong experimental signature for the existence of neu- 
trino oscillations for solar neutrino experiments. The major reason being that different 
experiments measure different regions in energy of the solar neutrino spectrum. While 
SUPER-KAMIOKANDE has had extremely high statistics, it has been sensitive only to  high 
energy neutrinos from ' B  and hep neutrinos only, Most of the neutrinos (- 97%) from 
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the Sun are at very low energies (pp neutrinos ) which have not been measured with high 
statistics. While efforts are on for the measurement of such neutrinos, results are awaited 
from the neutrino experiments like S N O  and BOREXINO which would help us t o  point at a 
single oscillation solution to  the solar neutrino problem and clear the ambiguities [23]. The 
S N O  experiment has a facility t o  accurately measure the neutral current interactions of the 
neutrinos also. Thus, if the electron neutrinos from the Sun are converted to some other 
type of neutrinos (active), then the flux of the other type of neutrinos can be detected by 
neutral current interactions. This way, we would get a measurement of the total 8B neutrino 
flux and of course a clear signal of neutrino oscillations. The  BOREXINO experiment would 
be able t o  measure ' ~ e  flux accurately. This would help t o  conduct a model independent 
analysis of the solar neutrino flux. Thus, in the next few years we hope t o  have a single 
solution to the solar neutrino problem with accurate values of Am2 and Sin228. 

LSND and KARMEN 

Till now we have concentrated only on solar and atmospheric neutrino anomalies. In ad- 
dition to  these anomalies, there also has been an laboratory experiment called the Liquid 
Scintillator Neutrino Detector (LSND) which has reported evidence for neutrino oscillations. 
One characteristic feature which differentiates the LSND from the experiments discussed so 
far is tha t  i t  is an 'appearance' experiment. The LSND has reported evidence for Dp + De 
transitions by observing an excess of v, events [24] and thus a direct evidence for the ev- 
idence of neutrino oscillations. In terms of oscillation parameters, these results require 
Am2 - l e v 2 ,  Sin228 w Whereas the above results have been from experiments with 
p decay a t  rest, later experinleiits with p decay in flight have been consistent with tlieir 
earlier results. Incorporation of the LSND results would require an additional neutrino 
species ', as it  has a characteristically different mass-squared difference which cannot be 
incorporated within three neutrino species which allow only two mass-squared differences. 

The KARMEN experiment was originally built t o  verify the LSND results. The KAR- 
MEN experiment found negative results for the some of the allowed parameter space of the 
LSND results. However, i t  was realised that  the KARMEN experiment would not be able 
to  verify the entire parameter space allowed by the LSND experiment 151. In this thesis 
where we consider only three active neutrino species, we do  not consider the results from 
LSND. 

2.4 Mechanisms of Neutrino Mass Generation 

We have seen that  neutrino anomalies can be understood in terms of neutrino oscillations 
if the neutrinos have masses 8.  In the hierarchical scenario, typically there are two distinct 
mass scales needed for simultaneous solutions of solar and atmospheric neutrino anomalies. 
The atmospheric mass scale is - 0.1 eV, whereas the solar scale, as can be either - CV or - eV. The mixing matrix has atleast one large mixing in the 2-3 sector. 

'See however, Barenboim and Scheck [25] for scheme involving only three neutrinos. 
'Alternative scenarios are also considered in literature 1261. We do not consider them here. 
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Thus we see that  neutrino mass spectrum is characteristically different from the quark mass 
spectrum. 

As we have seen in Chapter 1, the Standard Model has t o  be extended in some sector 
to  incorporate neutrino masses. In addition t o  explaining the smallness of the neutrino 
masses, these models should also incorporate large mixing as required by the solutions to  
the neutrino anomalies. Some of the extensions may also have experimental signatures which 
may be stringently constrained. Thus a consistent model of neutrino masses should be able 
satisfy all the above requirements. Many such models have been proposed in literature 1271. 
Here instead of considering specific models, we consider two of the most popular mechanisms 
which are often used in literature to  build models. 

2.4.1 See-saw Mechanism 

Tlw ~l~ost, ~ ~ ; t . t t ~ r i r . l  w ;~y  of gwwri~tiug licutrirlo llliwcs iu the Stancli~rd Moclcl is to iulcl riglit 
handed neutrinos in to the model and demand neutrinos attain Dirac masses in the same 
spirit as other fermions of the SM. But, iu this case, i t  becomes difficult to justify the 
smallness of the neutrino mass. A natural way of generating small neutrino masses in this 
manner was proposed by Gellman, Ramond, Slansky [28] and Mohapatra, Senjanovic [29] 
and is called the see-saw mechanism. The key idea in t o  use t o  the majorana masses for 
the right handed neutrinos, which are naturally allowed by the gauge symmetry to  suppress 
the masses for the neutrinos. 

Representing the three left handed fields by a column vector vl; and the three right 
handed fields by v ~ ,  the Dirac mass terms are given by, 

where M~ represents the Dirac mass matrix. The majorana masses for the right handed 
neutrinos are given by, 

The total mass matrix is given as, 

where the column vector up is given as, 

The matrix M is given as, 

Diagonalising the above matrix, one sees that  the left handed neutrinos attain m a p r a n a  
masses of order, 

M' = - ~ g  M,'MD (2.18) 
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This is called the seesaw mechanism. Choosing for example the Dirac mass of the neutrinos 
to  be typically of the order of charged lepton masses or down quark masses, we see that  for a 
heavy right handed neutrino mass scale, (left handed) neutrinos masses are suppressed. This 
way the smallness of the neutrino masses can be explained naturally in this mechanism. The 
see-saw mechanism can be naturally incorporated in Grand Unified Theories like SO(10) and 
also in left-right symmetric models [29]. Though the actual scenarios are model dependent, 
broadly for a range of MR lo5 - 1015 GeV, one attains light neutrinos in these models. 
Large mixing [30] and degenerate spectra [31] can also be realised in these models. Recently 
an extensive analysis has been reported which studies proton decay and neutrino masses in 
SO(10) GUT theories [32]. 

2.4.2 Radiative Mechanisms 

In the above we have introduced additional fermions with a heavy mass scale t o  generate 
small neutrino masses. One can instead modify the scalar sector of the model, which is 
anyway not well understood. Neutrino masses are now generated radiatively and thus are 
naturally small. This model is called the Zee model after A. Zee who first proposed i t  [33]. 

Within the Standard Model neutrinos can attain majorana masses by modifying the 
scalar sector. This can be seen by considering the operator, cabL? C ~ f ,  where C is the 
charge conjugation matrix and a, b are the SU(2) indices and i, j are the generation indices. 
This can couple t o  a field transforming either as a singlet or a triplet under S U P ) .  Models 
with triplet Higgs are considered unattractive as they contribute t o p  parameter [34]. Instead 
here we consider models with a singlet field h+. The coupling of the lepton fields to  this 
field is given as, f a b r a b ~ f  C ~ : h + .  

Though the above coupling violates lepton number one can always conserve i t  by defining 
h+ to  have a lepton number of -2, However if one introduces an additional scalar 4!9 (in- 
addition t o  the already existing 41), a new coupling of the form M,p&q5ph+ is possible 
which violates lepton number exactly by two units as required for neutrino mass generation. 
In this model which is named as {&&h) model, neutrino attain masses at the one-loop 
level and thus are naturally suppressed. One interesting fact about this model is that  the 
couplings fab are antisymmetric due t o  the SU(2)  metric. This would lead t o  an interesting 
texture of the neutrino mass matrix whose diagonal elements are zero. Instead of adding an 
additional doublet one can as well add a doubly charged singlet in t o  the model, k++. In 
this case, neutrinos attain masses a t  the two-loop level. This is popularly known as Babu 
model in literature [35]. Including both the additional doublet as well as the doubly charged 
singlet would lead t o  neutrino masses both at the 1-loop level as well as at the 2-loop level. 
Such a scenario may be required t o  understand neutrino anomalies in these models with 
discrete symmetries like L, - L, - L, [36]. 

In this thesis, we consider an alternative method t o  generate neutrino masses. In these 
models neutrinos attain masses employing both the 'see-saw type' mechanism as well a s  
radiative mechanisms. We will discuss them in detail in further chapters. 
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Chapter 3 

RG scaling and R violation 

Renormalisation Group (RG) Methods have been introduced by Gellman and Low [I] to 
tackle the limitations of perturbation theory in calculating processes at high momenta. 
Since then they have been applied widely in particle physics and in statistical mechanics 
[2]. The main idea is that a change in the renormalised 1PI function I?, ' due to a change 
in scale of momentum can be compensated by an appropriate change in the value of the 
coupling constant [3]. This would require the coupling constants to be scale dependent. 
In a general regularisation process one introduces an arbitrary mass scale p. Using this 
scale, the coupling constants are now defined on a 'sliding renormalisation scale'. But, 
the unrenormalised function I? is still independent of this arbitrary mass parameter p [4, 51. 
Requiring the renormalised I?, to be invariant under a change of scale (in momenta) and the 
anrenormalisd I? to bc invaria.nt under s change of /L would lead to a differential eqr~ation 
called tlic '12c1iorlui~lis~~tiw Group E c ~ u ~ L ~ ~ u u ' [ ~ ] .  This cqu i~ t io~~  IIOW depicts tlic fact that 
a change in scale can be compensated with a change in the coupling constant. The end 
product of this analysis are differential equations for the coupling constants with respect to 
the momentum scale which are typically of the form: 

where t represents the scale change in momenta. The functions /3 are known as the beta 
functions of the theory. Thus, knowing the coupling constant a t  one particular scale, the 
value of the coupling constant at another scale can be known by integrating the above 
equation. 

Renormalisation group methods are used in field theory to study the asymptotic limits 
of the theory. For example, asymptotically free field theories are those theories for which the 
P-function vanishes at a high-scale (E + oo). Various other features of the renormalisation 
group equations (RGE) like fixed points, singularities, sign of the /?-functions would help to 
understand the nature of the theory at high energies. In particle physics, renormalisation 
group studies have been used to mainly probe the nature of physics beyond the Standard 
Model. Used in conjunction with the Grand Unified models, renormalisation group equa- 
tions can probe coupling constant unification a t  high energies [6]. The renormalisation 

'We denote the renormalised function by rr(E, x,g, p )  where E is the scale of energy of the process, x 
collectively denotes the various momenta, ratios of momenta etc, g are the coupling constants involved and 
p is the arbitrary scale introduced during regularisation like dimensional regularisation. 
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group studies of the Standard Model have been recently described in [7]. In the present 
thesis, we concentrate on Renormalisation Group Studies in the context of supersymmetric 
Standard Model (MSSM) [8] with and without R-parity violation. 

3.1 Renormalisation Group and MSSM 

As we have seen renormalisation group studies allow us to probe the scale of grand unifi- 
cation. Assuming only Standard Model fields to be present up to MewT, detailed analysis 
have shown that the gauge couplings do not 'meet' at  the same point in the momentum 
scale, where the new theory can take over [7]. The MSSM doubles the particle spectrum 
of the SM. This siguificautly uiodifies the evolution of the gauge couplings leacling to uai- 
fication of the gauge couplings a t  a scale, MeUT M lo1' GeV. This can be easily verified 
from the renormalisation group equations of the gauge couplings which are presented in 
Appendix for the MSSM case. The solutions of these equations are given as, 

where the parameters appearing in the above are defined in the Appendix. Choosing ap- 
proximate values for the gauge couplings at  MZ as, 

A simple algebra leads us to see that 2 ,  

for MGUT = 3 x  lo1' GeV. The actual analysis, including two loop RGE and threshold effects 
predicts 03(t t )  = 0.129 which is slightly higher than the observed value. The couplings meet 
at  the value Mx = 2 x lo1' GeV [9]. The 'exact' unification of the gauge couplings within 
the MSSM may or may not be an accident. But it provides enough reasons to consider 
supersymmetric standard models seriously as it links supersymmetry and grand unification 
in an inseparable manner [lo]. 

Along with the gauge coupling unification, some grand unified theories also predict 
bottom quark Yukawa Yb and tau lepton Yukawa, Y, unification a t  McuT. Renormahsation 
Group studies of the MSSM Yukawa couplings show - Y, unification [ l l ]  for large ranges 
in tan@. In the Appendix, we have given the RGE for K ,  Yb and Y,. We have not presented 
here the RGE for the first two generation Yukawa couplings. Since the masses of these 
particles are small, the effect of their Yukawa couplings in the RG studies is generally smdl  
compared to the third generation Yukawa couplings. We have neglected them in most of 
the analyses presented in this thesis except in the chapter 5 (chapter 6) where the second 
(first) generation Yukawa couplings play an important role. 

'The factor is required for normalisation of the U(1) group. See [lo]. 
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Renormalisation Group studies also play an important role in determining the weak scale 
spectra of the MSSM soft sector. As we have seen in chapter 1, supersymmetry is generally 
broken in a hidden sector. The breaking information is then transferred to the visible 
sector through gravitational interactions (mSUGRA). The result of this mechanism is that 
supersymmetry breaking soft terms are added in to the Lagrangian a t  a high scale - MGUT. 
At thc high scale 'strong' univcrsdity is assumed with the respective soft parameters being 
equal. The weak scale sp&trum is modified due to radiative corrections involving Yukawa 
couplings and gauge parameters. The corresponding renormalisation group equations of 
the parameters reflect this phenomena. Using the RGE, one can determine the entire weak 
scale spectrum in terms of the five basic parameters of the model, tan P ,  mo, M, A and B. 
Solll(* ~ i l . l k l l t  f('i~tllr('S Of tSh('M! ~(?11Orllli~~i~i~ti011 gl'OUI) ~'~lllkltiOl1~ ill'(? : 

(a). The gaugino masses evolve in the same manner as the gauge couplings. Thus the 
relation : 

holds true for most of the scales up to small two-loop effects [12]. 

(b). The superpotential parameters are constrained by non-renormalisable theorems and 
thus the RGE of these parameters are proportional to themselves [12]. 

(c). The soft parameters are unconstrained unlike the superpotential parameters. Thus, 
even if the soft parameters are small or zero at  the high scale, they can acquire large values 
at  the weak scale due to RG scaling. 

Radiative electroweak symmetry breaking: 

As we have seen in Chapter 1, the MSSM weak scale scalar potential requires at-least 
one of the Higgs mass squared to be negative to generate vacuum expectation values to the 
Higgs. Starting with a positive mass squared for the Higgs at  the high scale, large radiative 
corrections from the top quark Yukawa can turn the Higgs mass squared negative a t  the 
weak scale. This call be seen from the solution to the RGE for the rnL2 which can be 
approximately written as 3, 

3hZ 
mk, (tz) a rnk (0) - - - I M & ~ ~  ln 

4n2 

where the weak scale is characterised by the mass of the Z boson and Msusy characterises 
the typical SUSY breaking mass scale w 1 TeV which appears in the equations ( for example, 
squark masses ) . This scale together with the large logarithmic factor GZ. 66 appears with 
a negative sign in the above solution. Thus even with a positive mass squared a t  the 
high energies, the Higgs mass squared can turn negative a t  low energies. This mechanism is 
called radiative electroweak symmetry breaking [13]. Within the mSUGRA inspired MSSM, 
with universal boundary conditions, radiative SU(2) x U(1) breaking helps in reducing the 

' t = 0 characterises the high scale in our notation, 
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number of parameters of the theory. Consider the minimisation conditions which we have 
already seen in chapter 1: 

The parameters mL2, m& are determined at the weak scale by tan@, mo, M (or equiv- 
alently M2) A. Using the above equations one can determine p and B,, at the weak scale. 
Only Sign(p) remains as a free parameter. On the other hand, one can trade B, t o  deter- 
mine tan @ or p to  determine mo etc. In the analyses presented in the thesis we have used 
both the sets of parameters. This mechanism is effective for large ranges in tan P and other 
MSSM parameters. Radiative electroweak symmetry breaking can also be incorporated in 
models with gauge mediated supersymmetry breaking. In this case, the smallness of the 
logarithmic factor is compensated by the largeness of the squark masses 1141. 

3.1.1 Analytical and semi-analytical solutions 

In a typical model of supersymmetry breaking, the soft terms are added a t  a high scale. 
The soft masses and the couplings a t  the high scale are the input parameters of the model. 
RG evolution would change these masses and couplings a t  the weak scaledgnificantly. 
However, one would like to  express the weak scale soft masses and couplings also in terms 
of the basic input parameters of the model. This would require t o  have solutions for the 
RGE for the soft parameters analytically. From the RGE given in the appendix we see that  
except for the third generation sfermion masses, rest of the differential equations can be 
solved analytically. The third generation sfermion masses are in general coupled and have 
t o  be solved numerically. However, Ibanez and Lopez 1153 have shown that  the solutions 
of these equations can be expressed in terms of 'semi-analytical' formulae, thus making 
the dependence on the basic parameters transparent. For example, in mSUGRA inspired 
MSSM with universality a t  a high scale, the solutions for the sfermion masses would be 
typically of the form: 

where mo, M, A, stand for the standard mSUGRA inspired MSSM parameters. The 
coefficients D's are given in terms integrals which can be solved numerically. In this section, 
we present the solutions of the RGE systematically. 
As we have seen earlier, the RG equations for the gauge coupling constants can be solved 
analytically. Since the gauginos also follow similar type of equations, their evolution can 
also be represented with analytical solutions of the RGE. These solutions are given as 
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where z; (t) is defined as: 
'I 
1 

= (1 + bi Bi(0) t) 

with i = 1,2 ,3  over the generations and bi are defined in the Appendix. Similarly, in the 
limit where the first two generation Yukawa couplings are neglected, the equations for the 
corresponding soft masses, eqs.(3.55), depend only the gauge couplings and the gauginos. 
The general solutions of these equations can be represented as: 

where j = ((J l t2 ,  UFP2, DiS2, Llt2, E;,~) and C: are the coefficients appearing in the RHS 
of the respective differential equations. The functions ki appearing in the above solutions 
are given as, 

As an example, the solution for the RGE of the first two generation left-handed squark 
masses is given as, 

Similarly, the solutions for the rest of the first two generation soft masses can be read 
off from their RGE. Thus we see that the RGE for the first two generati* soft masses 
have analytical solutions as the corresponding Yukawa couplings are small and thus can 
be neglected. But as mentioned above, such an approximation is not valid for the third 
generation Yukawa couplings as they are large and can induce large corrections to the soft 
masses through RG evolution. This makes the set of equations coupled and in general has 
to be solved numerically. However, one can still find semi-analytical formulae for the set 
of equations when tan /3 is small [15]. In this limit, Yb and Y, are small compared to the 
Top quark Yukawa and thus can be neglected. Neglecting the Yb and Y, couplings in the 
equation for the third generation Yukawa couplings, eq.(3.47), we can arrive a t  the following 
solution [16] for Yt : 

where the function El( t )  is given as, 

with the functions zi(t) defined above. The function Yden(t) is given as, 

where 
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x ( 0 )  is the Top quark Yukawa a t  the high scale which is determined in-terms of the Top 
quark mass a t  mt [17]. Defining tmt = 2 In ($), &(O) is given as, 

- r, (tmt) 
'(O) - El (tmt) - 6 (tmt) Fl (tmt) 

In this approximation, the solutions of Yb and Y, are given as, 

With Yb(0) and Y,(O) determined in a similar manner as &(O) in terms of Yb(tmb) and 
Y,(tmtau) with tmb and tmtau having analogous definitions of tmt. The functions E2(t)  
and E3(t) are given as, 

E2 (t) = (t)llSbl El (t) , 
E3 (t) = z2 (t)-3/b? zl (t)-9/5b1 . 

The integral Fl is generally solved numerically. Thus, we call these solutions as semi- 
analytical solutions. In a similar manner, in deriving the solutions for the rest of the 
parameters we completely neglect the effects of bottom and tau-lepton Yuk%wa couplings. 
This scheme is sometimes known as 'top Yukawa dominance' approximation. In this case, 
we neglect the bottom and tau-lepton Yukawas appearing in the equations for the soft A- 
parameters, eqs.(3.50), p and B, terms, eqs.(3.53), the third generation squark and slepton 
masses, eqs.( 3.60) and the Higgs mass terms, eqs.(3.65). Since Ab and A, are always 
accompanied by their respective Yukawa couplings in these equations, we will not worry 
ahoilt thcir solutions here. The solution for At is given as, 

where the function K is given as, 

The integral on the RHS of the above formula is solved numerically. In the case of third 
generation sfermion masses, the observation that  only m&, m$ and mL2 depend on the 
top quark Yukawa, reduces the task significantly. The RGE for m&, m i s  and m& now 
have the same form as those for the first two generation sfermion masses. Thus their 
solutions too have the same form as given in eq.(s.ll).  The coefficients on the RHS of these 
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equations would now form the constants C:. mk, evolves in the same manner as mi, in 
this approximation and thus has the same solution. 

To find the solutions for the remaining third generation sfermion masses, ie, mLZ ( t ) ,  m%, ( t )  
and m& ( t )  we observe that though independently they cannot be solved analytically, there 
are combinations of these masses which can be solved analytically. These combinations do 
not contain the top quark Yukawa *. 

m:(t) = m& ( t )  - 2m& ( t )  

mi ( t )  = m k  ( t )  - 3m& ( t )  

2 m$(t) = 2 mLz ( t )  - 3m& ( t )  (3.23) 

Using the RGE for these three mass parameters, eqs. (3.60), on the RHS of the above, these 
functions are determined as, 

16 
2 mi(t)  = 2 rnh (0) - 3m& ( 0 )  - 1 6 ~ :  ( 0 )  k3(t) - - M : ( O ) ~ ~  ( t )  5 

(3.24) 

Using the above relations the differential equations for mL2 ( t ) ,  ma, ( t ) ,  m& ( t )  parameters 
can be rewritten in the approximation of top Yukawa dominance as, 

dm2 t  
Q" ) + 6Yc(t)mb, ( t )  = Ll ( t )  dt 

dm2 t  
" ( ) + 6% ( t )  m& ( t )  = L2 ( t )  
dt 

dm2 t  
H Z (  ) + 6~ , ( t ) rn&~  ( t )  = L3(t) 
dt 

with the functions Li are given by, 

'Please see Ibanez-Lopez [15] for a different set of combinations which are valid when all the three third 
generation Yukawa couplings are considered. 
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Solving any one of the equations in eqs.(3.25), one can get the solutions of the other 
parameters from the relations given in eqs.(3.23,3.24). For example, the solution for the 
equation for m h  is given as, 

The integral appearing on the RHS of the above equation can be solved numerically. 
Expanding the function L3(t) as given in eqs.(3.26), we see that the solution, m?H,(t) has 
the desired form of eq.(3.9). Using this solution and the solutions in eqs.(3.24), we can 
derive the solutions for m i s  (t) and m& (t) as per the combinations given in eqs.(3.23). 
Analogously, we can start with solutions of either m i s  or m& and arrive at the other two 
solutions using the combinations listed above. 

The parameters p and B, are generally determined at the weak scale. Using the values 
at the weak scale, one finds the values of these parameters at the MGUT. The solutions for 
these parameters at any scale t using weak scale boundary conditions are given as, 

The functions z; and Yden have been defined earlier. In the same notation the equation for 
B, takes the form: 

t 
B,, ( t )  = Bp (tz) - 3 lz (t1)% (tl)dt' - 3= ( ~ 2  (tr) - 1 2  (t ) ) 

b2 

- -- M1 (O) (zl ( t l )  - 21 (t)) 
5 bl  

As mentioned earlier, in deriving the above solutions, we have followed the approach 
of Ibanez and Lopez [15]. An alternative approach has been followed by Barbieri et al 
[18]. Recently, these formulae were also given by Carena et a1 [19]. All the above solutions 
hold good only in the topquark Yukawa dominance approximation. This I corresponds to 
regions in the tan p parameter space around 2 - 20 approximately. For larger values of 
tan p Yukawa couplings of bottom and the tau leptons would also become comparable and 
subsequently would have to be taken in to account. Recently, Kazakov and collaborators 
have presented analytical solutions to these RGE even in the limit of large tan 0 [20]. 

3.2 R violation and RG evolution 

As we have seen in chapter 1, R-violating schemes in supersymmetric theories have a rich 
phenomenology of their own. In these models, additional couplings which violate lepton and 
baryon number are present in the superpotential. The RGE presented earlier for the case of 
MSSM would be significantly modified to take in to consideration these additional couplings. 
The presence of these couplings leads in general to processes which are constrained severely 
by experiments. These experimental limits can be converted into bounds on lepton number 
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and baryon number violating couplings a t  the low scale. Using the RGE the bounds a t  the 
low scales can be converted to bounds a t  the high scale [21]. Moreover, since these couplings 
also contain flavour violation, the presence of these couplings a t  the high scale can generate 
additional flavour violating contributions through RG scaling [22, 231. Recently, infrared 
fixed point studies have also been conducted in the presence of these couplings [24]. 

In this thesis, we concentrate our studies to neutrino mass structure in the presence of 
these couplings. As we will see later, the typical magnitude of the R-violating parameters 
required in this case is very small, for example, - for 'the dimensionless A' couplings. 
The presence of such small R-violating parameter would not modify the RG evolution of the 
MSSM parameters significaiitly [25]. Thus in this thesis, we consider that the RG evolution 
of standard MSSM parameters would not be effected by the presence of R-parity violating 
couplings. 

However the RG evolution of these couplings can significantly affect the neutrino mass 
spectrum in these models. To study the effect of RG evolution on neutrino mass spectrum, 
we divide the R-parity violating couplings as, 
(a). Bilinear lepton number violation (dimensionful e, terms) 
(b). Trilinear lepton number violation (dimensionless A:jk, Xijk terms). 
We study the structure of neutrino mass spectrum in both of these cases separately. As- 
suming only one set of the parameters to be present a t  a time i.e either only bilinear or 
only trilinear couplings, we derive the RGE for the R-parity violating parameters present 
both in the superpotential and the soft potential. To derive these equations, we have used 
general formulae given by Falck [26]. In this work, the general formulae were derived by 
using effective potential method. Martin and Vaughn [27] presented general formulae up 
to 2-loop order. They used both diagrammatic and effective potential method to arrive a t  
their results. We have used their results in chap.4 where we have derived (40 loop RGE 
for R-violating parameters. The equations for the R-violating superpotential and soft po- 
tential parameters are presented in the Appendix for each case separately. The equations 
presented here agree with those presented by Carlos and White [22]. We have also checked 
our equations with the equations presented in other papers [28]. 

3.3 RG scaling of dimensionless L-violation and soft sector 

As we have seen earlier, one of the important characteristics of the RG evolution of the soft 
sector is that, even though these parameters are small a t  the high scale, they can acquire 
large values a t  the weak scale. This characteristic plays an important role in supersym- 
metry breaking models like Minimal Messenger Model of Gauge Mediated Supersymmetry 
Brc*nking, wlictrc tlic soft paraincters B, and A vanish a t  the high scale. However, these 
parameters acquire non-zero values at  the weak scale due to RG scaling thus facilitating 
electroweak symmetry breaking [14]. This can be clearly seen from the RG equation for 
the B, parameter, eq.(3.53). In the presence of non-zero gaugino masses and Yukawa cou- 
plings, a non-zero B, can be generated a t  the weak scale. Similarly even if the bilinear 
lepton number violating soft parameters are absent a t  the high scale, they can be generated 
at the weak scale through RG scaling. This would require non-zero lepton number violating 
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trilinear couplings at the high scale [22, 29, 301. 
As mentioned earlier, we would divide the R-violation studies interms of dimensionful e; 

terms and dimensionless At, X couplings. Consider an R-violating model with only dimen- 
sionless trilinear A' or X couplings. In this case, the soft potehtid at the high scale would 
not contain any bilinear lepton number violating couplings. However, these couplings can 
be generated at the weak scale due to RG scaling. To see this consider the RG evolution 
of the bilinear lepton number violating soft terms. These are represented as BCi and mEHI. 
The corresponding equations for these terms in the presence of only A' or X couplings are 
given in eqs.(3.69,3.73). From these equations we can see that even if these couplings van- 
ish at the high scale, non-zero values can be acquired at the weak scale in the presence of 
non-zero A' or X couplings. 

The above generation of bilinear soft lepton number violating terms a t  the weak scale 
has important consequences for neutrino phenomenology. In general, the presence of di- 
mensionless A', X couplings in the superpotential is believed to give rise to neutrino masses 
only at the 1-loop level. But, RG scaling can generate additional contribution to neutrino 
masses which is much larger. This happens as follows. The bilinear soft lepton number 
violating terms generated at the weak scale lead to generation of vevs for the sneutrinos. 
This in-turn leads to a non-zero mixing between neutrinos and neutralinos leading to a 'tree 
level' mass for the neutrino. Thus, RG scaling can induce a 'tree level' mass to the neutrino 
which could be significantly larger than the 1-loop level mass. The effect of this RG scaling 
in a realistic supersymmetric breaking model and its consequences for the neutrino mass 
spectrum have been worked out in chapters 5 and 6. 

3.3.1 Semi-analytical solutions 

I11 t h  ~.;I.sP of MSSM witllout R-violi~tio~~, wc Ilavc seen that tllc weak scale soft spcctrulll 
can be expressed as semi-analytical formulae in terms of the four basic parameters of the 
mSUGRA model, mo, M2, A and tan P.  The coefficients of these parameters involve simple 
integral which can be solved numerically in the limit of low tan P where only the top quark 
Yukawa dominates. A similar analysis can be done for the R-parity violating couplings 
discussed so far. As an example, we present here analytical and semi-analytical solutions 
for the case where only trilinear Xijk couplings are present in the superpotential. Moreover, 
we choose there is only one coupling of the form Xijk present in the superpotential. The 
analysis can be extended for the presence of additional couplings but would be cumbersome. 

In this limit of neglecting 6,  Y,., the solutions for the A' parameters take the following 
simple form, 

jk (t) = .\:jk (0) r2 (t)-31h Zl (t) -7/30b1 (3.32) 

As mentioned above the soft bilinear lepton number violating parameters, BCi and rn;iH, 
are generated due to RG scaling in the presence of trilinear A' couplings. The solutions for 
the RGE for these parameters have the generic form of that of the soft masses. The solution 
for the RGE for Bei in this case is given by, 
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The functions p ( t )  and q i j ( t )  are given as,  

For the mkHl , the RGE leads to  the following solution: 

The function r i j ( t )  is given by, 

The solution for the trilinear lepton number violating coupling, which appears in 
the above solutions is given as, 

The functions [ ( t )  are given as,  

Using the solutions for the various soft parameters in the above, one can determine the 
weak scale values of these parameters in terms of the supersymmetry breaking soft parame- 
ters at the high scale which are input parameters of the model. Using these expressions the 
entire neutrino spectrum can now be expressed in terms of the few supersymmetry breaking 
parameters. In all the analyses in this thesis, we have solved these integrals numerically 
using MATHEMATICA@ software. 

3.3.2 Numerical Methods 

The above semi-analytical formulae hold true only in the limit of small tan P. In calculations 
involving models which allow large tan P, the RGE have t o  be solved numerically. This 
set of first order differential equations is coupled and non-linear and thus have t o  be solved 
simultaneously. We have used the standard Rung-Kutta algorithm [31, 321 which is 
generally recommended for this purpose. 

'We ltuve e~nployed fourth order R1< method. Sometimes we have also en~ployed standard RK routines 
provided by IMSL. 
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Figure 3.1: Flow chart for numerical analysis of RG equations. 

+ 

The methodology employed for the numerical analysis is presented in a pitorial manner 
in Fig.(3.3.2). Masses of the top quark, bottom quark and the tau-lepton determine the 
input parameters for the third generation Yukawa couplings a t  the weak scale (characterised 
by the Z boson mass ) for a given tan p. These will be then used to determine the Yukawas 
a t  the high scale. At the high scale, the masses and the scalar couplings are given as input 
parameters. Running them down along with the Yukawas determine the weak scale values 
of those parameters. Using the weak scale values of m i ,  and mL2 one can determine the p 
and B, parameters at  the weak scale. In turn we use these parameters to determine their 
high scale values. The R-parity violating soft terms contain p and B,, in their RGE. The 
values of these parameters are known a t  MGUT. Running down the entire set of RGE to 
the weak scale one finds the weak scale values of the R-parity violating terms. These are 
then used to find out the neutrino masses. 

3.3.3 Appendix 

Standard MSSM Equations: The MSSM RGE are presented in many papers [33]. In 
writiug dowu tltc below set of RGE we follow 2341. 

Here we use the notation t = 2 l n ( p )  where Mx corresponds to the high scale and Q 
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corresponds to the low scale. In mSUGRA inspired MSSM M x  is taken to be MGUT z 
3 x 1016 GeV in our calculations of chapters 5 and 6 whereas Mx varies with A in Gauge 
Mediated Models discussed in chapter 4. tr always corresponds to 2 1 n ( g ) ,  where Mz is 
the Z boson mass. 

Definitions 
We also use the following definitions with g; representing the gauge coupling and h j  repre- 
senting the Yukawa coupling of the fermion f .  

Gauge couplings 

Gauainos 

d h l  ( t )  - -  - 33 
d t 

--Gl ( t )  
5 

Yukawa couplings 
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p and B, parameters 

dB,, (4  - -  3 - -3G2(t) M2(t)  - -al Ml ( t )  - Ar Yr - 3Ab Yb - 3At & 
dt 5 

First two generation squark and slepton masses 

16 1 dmb1s2(t) = -&(t) M:(t)+3a2(t)  ~ ; ( t ) + ~ B l ( t )  M:(t) 
dt 3 

dm& ,, ( t )  16 16 
dt 

= --a3@) + % b l ( t )  ~ ? ( t )  
3 

dm$ , ,  ( t )  16 4 
dt = -G3(t) + igGl ( t )  M?( t )  

3 
dm;, ,, ( t )  3 = 3&(t) n/f;(t)  -/- - f i t  ( t )  ~ : ( t )  

11 t 5 

T h i d  generation sfermion masses 

d?l& ( t )  1 G 1 
= -&(t) ~ i ( t ) - t 3 & ( t )  ~ ~ ( t ) + ~ ~ i ( t )  M:(t) 

dt 3 

- Yt ( t )  ( m i ,  ( t )  + m2, ( t )  + 97% ( t )  + At w2) 
- ~b ( t )  ( m i ,  ( t )  + mb,  ( t )  + m& ( t )  + (t)  ') (3.60) 

16 16 = -h3(t) ~ : ( t )  + i5al ( t )  M:(t) 
dt 3 

- ~ ~ l ( t )  (mi ,  ( t )  + m& ( t )  + m& ( t )  + ~ t ( t ) l )  (3.61) 

16 4 dm& = -B3(t) M; ( t )  + i 5B l  ( t )  M:(t) 
dt 3 

- 2 W t )  (mi ,  ( t )  + m b  (9  + 7 4 1 ,  ( t )  + Ab(O2) (3.62) 

3 
= 3G2(t) ~ : ( t )  + 3&l(t)  ~ ? ( t )  

dt 

- Yr (4, ( t )  + m& ( t )  f ( t )  + A:@)) (3.63) 

dm;, ( t )  12 
dt 

= -a1 ( t )  M: ( t )  - Y, ( t )  ( m i ,  ( t )  + m;, ( t )  + m& ( t )  + A%)) (3.64) 
5 
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Higgs mass pammeters 

Additional RGE for MSSM with lepton number violation 
Below we present RGE for the lepton number violating superpotential and soft potential 
parameters. These are presented separately for the case of dimensionful and dimensionless 
parameters. In writing them, we have neglected terms higher order in the L-violating 
parameter. This is permissible as we are interested only in small L-violation as required by 
neutrino masses. 

c k ;  ( t )  - - 3 1 3 - ( : a , ( t )  + --li,(t) - 2 ~ ~ ( t )  - -w) dt 10 2 

'Prilinear R-violation (A') 

dXi j k  ( t )  8 
dt 

= ~ : ~ * ( t )  ( - K f ( t )  - q y ( t )  - ~ $ ( t )  - 2 ~ & ( t )  - 3y:(t)djt + @ t t )  
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+ m i i ( t )  + 2m&,(t)  + 2 A f  (t)A;(f)  + 2 m b p ( t ) )  (3.71) 

dASj ( t )  9 3  
dt 

= - - A $ ( t ) y D j j ( t ) -  z ~ $ j ( t ) q y ( t )  - ~ % ( t ) q y ( t )  
2  

7 16 - A ; ( t ) l f ( t )  - -MI ( t )&(t)  - 2M2( t )b2( t )  - TM3(t )&( t )  (3.72) 
30 

%linear R-violation ( A )  
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Chapter 4 

Bilinear R violation and Neutrino Anomalies 

4.1 Introduction: 

Among the Standard Model fermions, neutrinos are the only ones which do not carry any 
electric charge. This leads to the possibility that these particles may be of majorana na- 
ture. Majorana masses to the neutrinos would violate lepton number by two units. To 
gcucratc i~~ajorrturt 1i1;tsucs to tlic ucutrinos within the Standard Modcl, one has to modify 
significantly its scalar sector. On the other hand, Supersymmetric Standard Model natu- 
rally allows for lepton number violation. However, these couplings are generally removed 
by imposing R-parity. To allow the lepton number violating couplings back in to the super- 
potential, one can discard R-parity and impose other symmetries like baryon parity. The 
R-breaking couplings now present in the superpotential would give rise to neutrino masses 
[I]. Another approach is to assume R-parity is spontaneously broken [2]. This approach 
however leads to a low scale massless mode called majoron [3] which can be cured [4]. In 
this thesis, we follow the earlier approach where explicit lepton number violating couplings 
are present in the superpotential. 

In the present chapter, we look a t  a specific model of R-parity violation and study 
the neutrino mass spectrum in these models. As has been noted earlier, lepton number 
violation is characterised either by dimensionful c; terms or the dimensionless A, A' terms in 
the superpotential. In the present chapter, we consider that only dimensionful r; terms are 
the source of lepton number violation in the superpotential. Such a scenario is so~netimes 
known as bilinear R-parity violation in the literature. 

There are several theoretical motivations to consider such a scenario. Theories with 
spontaneous breaking of lepton number can be closely identified with these models if one 
assumes c = hvR where h is the Yukawa coupling of the gauge singlet and the singlet 
field is represented by v~ [4]. The r couplings can be identified as the vevs of the singlet 
fields setting the scale of the lepton number violation. Alternatively one could imagine a 
generalised Peccei-Quinn symmetry whose spontaneous breaking leads to  p and e; terms 
a t  the weak scale through dim 5 operators [5]. Moreover, it is possible to choose the P Q  
charges of the different fields in such a way that the generation of the effective trilinear 
operators is suppressed but bilinear terms are allowed [7]. A study of neutrino masses in 
bilinear R violating models is thus theoretically well motivated. Several works have been 
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done t o  this extent in the recent past [I, 7, 8, 91. 
As we have seen in chapter 2, with the advent of super-Kamiokande results on the at- 

mospheric neutrinos with very high statistics, a definitive and clear indication for neutrino 
masses and mixing has been achieved. Though there are still ambiguities associated with 
the solar neutrino experiments, the structure of neutrino mass matrix has achieved more 
clarity with one large mixing as a necessary ingredient if one would like to  have simultaneous 
solutious for solar and atiiiospheric u e u t r i ~ ~ o  probleuis with three active neutriuos. I t  has: 
been known for sometime that  neutrino mass matrix and mixing are completely calculable 
in terms of standard supersymmetry breaking parameters and R violating parameters in 
supersymmetry models with R violation. The question then arises is, whether it is possible 
to 11;~vc a iio~it~riuo r~~ass matrix wl~ich wo111d be able to  provide sirnulta~tcous solutious to 
both solar and atmospheric neutrino problems within bilinear R violating models which 
have a minimality of only three R violating couplings. Solutions t o  neutrino anomalies have 
been extensively studied by Hempfling [8] and Joshipura and Babu [7] within these models 
though they had not concentrated on simultaneous solutions. These studies have been done 
within the framework of standard supergravity inspired MSSM with universal boundary 
conditions a t  the high scale M G u ~ .  In the present work we extend the analysis and look 
for simultaneous solutions t o  solar and atmospheric neutrino problems. We also confine our 
study to  models where supersymmetry breaking is communicated through gauge interac- 
tions, in particular to  the popular Minimal Messenger Model (MMM) [lo]. We conduct our 
study [6] within the framework of Joshipura and Babu [7] which is more analytical. 

4.2 Structure of Neutrino Masses: 

The bilinear lepton number violating couplings have a unique feature associated with them. 
By a simple redefinition of the fields one can remove these dimensionful couplings from 
the superpotential. This is possible because the superfields Li,  HI carry the same quantum 
numbers under SU(2)L x U(l )y  and such a redefinition would leave the action invariant 
[ l l] .  For example, considering only one dimensionful coupling in the superpotential €3, a 
suitable redefinition of the type: 

would lead to  absence of dimensionful lepton number violation in the superpotential. It 
should be however noted that  such a redefinition is not possible in the Standard Model as 
the leptonic fields and the Higgs fields transform as  two different representations under the 
Lorentz group. This distinction is removed in the MSSM. 

The above feature of bilinear R violation had led t o  the general belief that  these couplings 
would not be of interest as, by a general redefinition one can transform the dimensionful 
lepton number violation to  the dimensionless lepton number violation in the superpotential. 
A crucial feature which works against the above arguments is the presence of supersymmetry 
breaking soft terms. These terms do not preserve the above redefinition in general [I]. This 
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coniplicatiou can co~upletely cl~airge the phenomenology of the supersymmetry spectruni 
and neutrino masses in particular. To understand these issues in a better manner we follow 
the framework given by Joshipura and Babu. In this framework most of the features of the 
bilinear R parity violating models are transparent unlike the other studies which were more 
n\iir~crical. 

The framework: 

Here we consider a redefinition of the fields at  the weak scale. A similar redefinition of the 
fields can be done a t  the high scale. In models with universal soft terms a t  the high scale, 
such a redefinition would rotate away the soft bilinear terms too. The superpotential with 
bilinear R-violation is written as : 

W = hiLiEfH[ + p1H[H2 + ~i L:H2 + hf Q ~ D ~ H ;  + X&Q~U;H~ 9 (4.3) 
where i, j = 1 ,2 ,3  represents the generation index. A specific choice of the basis is also made 
such that these fields denote the mass eigenstates of the charged lepton (down quarks) in 
the absence of the e,  terms. We now redefine the leptonic and the Higgs fields in such a way 
that the superpotential (4.3) does not contain bilinear ci-dependent terms. The redefinition 
is an orthogonal transformation which we define as follows in the unprimed basis: 

where 

and p z (pI2 + C: + C; + ~ : ) l / ~ .  The consequences of the above redefinition are two fold : 
a) The lepton number violation now reappears as trilinear lepton number violation in the 
superpotential. b)The originally diagonal charged lepton mass matrix MI now acquires [7] 
non-diagonal parts given by ': 

We denote the mass basis for the charged leptons in the presence of non-zero 6; as 
a = e, p, T and are defined as: 

Li = (0;)ia ~ a ,  = (0g)i&, (4.7) 

'Note that we have neglected here a sub-dominant contribution to Mt arising due to sneutrino vevs. 
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where 
O ~ M ~ O ~  = diagonal. 

Note that the parameters Xi which denote charged lepton masses when c; = 0 still need 
to be hierarchical if MI in (4.6) is to reproduce the charged lepton masses 2. One can 
determine [7] OL by assuming XI (9: X2 (9: X3 and neglecting XI: 

-81 N2 0 0 0 
O cosOz3 - sin 823 . (4.9) c 1 c 2 N 1  - C N N  ) ( ) ~ 1 . ~ 2 ~ 3  c~s~c~N; '  CZN;' N;' 0 sin ez3 cos023 

where 

823 is small even for Sl,2,3 N O(1). We shall therefore neglect it. The trilinear terms 
generated in the superpotential due to rotation (4.4) assume the following form [7] in the 
physical nlass eigenstate basis of charged leptons: 

It should be noted here that the trilinear lepton number violating interactions generated 
by a rotation of bilinear couplings form only a part of the most general s& of trilinear 
couplings, especially these couplings are flavour diagonal [7]. The above trilinear terms lead 
to neutrino masses at  1-loop [12]. The other contribution to neutrino mass is generated by 
the soft supersymmetry breaking terms in a manner discussed below. 

4.2.1 Sneutrino vevs, neutrino masses and RG scaling 

The soft supersymmetry breaking part of the scalar potential can be 
the primed basis: 

VLjr = mxplHP12 + mx;IH:12 + m,q lY12 
- [H~($B ,HP+~ ;B~~ ; '~ )  +H.c.]. 

written as follows in 

(4.12) 

The above soft potential contains bilineax lepton number violating terms which are linear 
in the sneutrino field. The presence of such terms can lead to  the generation of vacuum 
expectation values for the sneutrinos. The generation of the sneutrino vev in these models 
should be however contrasted with models where lepton number is broken spontaneously 

'This is because MI is still diagonal even in the presence of non-zero ei .  
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[2]. The generation of sneutrino vev in these models is a consequence of the explicit lepton 
number violating terms present in the superpotential. In the limit these couplings tend to 
zero there are no sneutrino vevs in these models. Hence these theories are not plagued by 
majoron problems. 

Once the sneutrinos attain ueus, neutrinos mix with neutralinos through the kinetic 
terms in the kahler potential leading to  a tree level neutrino mass. The neutrino mass so 
generated is proportional to  the soft lepton number violating coupling, BCi which can be 
N 0(M8, ,By) .  Thus very large neutrino masses can be generated within these models which 
can be problematic phenomenologically. I t  has been found that  a natural way of suppress- 
ing the neutrino mass would be to  incorporate the theory in models where supersymmetry 
is broken a t  a high scale and the low energy supersymmetry spectrum is determined by 
renormalisation group evolution. As we have seen earlier, in these cases, universality be- 
tween various soft parameters a t  the high scale is achievable like for example in supergravity 
inspired models. One can extend this universality t o  the lepton number violating soft terms 
which can lead t o  a suppressed sneutrino veu at the weak scale. 

The above can be more transparently seen by observing that  it is always possible t o  
choose a minimum with zero sneutrino vev if B, = Bi and mx: = m?,. These equalities "i 
can be imposed a t  the high scale through universal conditions. But these are not generally 
satisfied a t  the weak scale. This is due t o  the presence of Yukawa couplings which distinguish 
between Higgs and leptons. Thus the RG equations which determine the low scale values 
of these parameters depend on the Yukawa couplings. If one neglects the Yukawa couplings 
of the first two generations then the soft mass parameters related t o  the first two leptonic 
generations evolve in the same way. Thus, one would have the following non-zero differences 
among low energy parameters: 

These differences would now determine the sneutrino ueu. The latter are obtained by 
minimizing the scalar potential expressed in the redefined basis of e q ~ ~ ( 4 . 4 ) .  In this basis, 
one fiuds: 

2 H O  2 
V = (m& +p2)lH:12+ (mL2 + r  ) I  +mftlL'3I2 +mi;lc2J2+ m$ll~1l2 

- [ ~ H , o  (BH: + c3s3&(ABx - S:ABL) - C ~ S ~ S ~ ~ A B L )  + H.c.] 

+ [ - e 2 s 2 ~ m L ( s 3 H ;  + e363)Gl + S ~ C & H ; * ( A ~ ~ H  - s:AmL) + H.c.] 

where 
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The additional terms do not significantly affect the veu for the standard Higgs since the 
sneutrino vevs and ArnH,L, ABH,L are suppressed compared to  miUSy.  This remains true 
even for 83 - O(1). The effect of these terms is to  induce vevs for the sneutrinos. These 
can be determined by the stationary value conditions of the above potential as: 

We have neglected terms higher order in AmL,H, ABHIL while writing the above equations. 
Note that one of the sneutrino field (r t;;l) does not acquire a ueu in this basis. This uev 
would arise if Yukawa couplings of the first two generations neglected here are turned on. 
It should be noted however that the above sneutrino vevs have been derived from the RG 
improved 'tree level' scalar potential. Minimisation of the full one-loop effective potential 
can significantly modify these values [13]. For the sneutrino veus, one loop corrections have 
been presented recently by Chun et. a1 [14] and Hirsch et a1 1151. Chun et. d use effective 
potential method whereas, Hirsch et. a1 use diagrammatic method. In the limit of small 
R violation, as is in our case, Chun et. a1 have found that the one-loop corrections are 
sigilificant only in the regions of parameter space where the tree level mass is suppressed 
and the loop mass to the neutrinos dominates. We do not consider these corrections here. 
However, as we will see below, the effect of these corrections would be negligible on our 
results as in the present model, we do not encounter such a scenario in the parameter space. 

The sneutrino veus are zero a t  the boundary scale Mx corresponding to tke universal 
masses. Their weak scale values are determined by solving the relevant RG equations. 
These RG equations can be determined by the general set of RGE presented in chapter 3. 
Tlrey are give11 as, 

.A2 
where we follow the same notation as earlier with Yi r &, m j is the mass of the sfermion 
concerned, A j  are the trilinear soft susy breaking terms and t = 2 l n ( M x / Q ) .  

The tree level mass matrix generated due to these ueu [17] can be written in the 

'In the Appendix we present the details of this derivation 
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physical basis v, as: 
0 0 

where 

OL is defined by eqs.(4.8) and, 

< y i >  
tan 4 = ---- . < I73 > 

wit11 M2 now representing the weak scale value of the gaugino mass and c = 0.49 4 .  

4.2.2 1-loop mass 

The trilinear interactions in eq. (4.11) lead to diagrams involving squarks and sleptons in the 
loop and generate the neutrino masses at the 1-loop level[12]. These contributions depend 
upon the masses as well as mixing between the left and the right handed squarks as well as 
the sleptons. These are however fixed in terms of the basic parameters of supersymmetry 
brcakiug. 111 the yrmcut cue ,  the trili~icar coupli~lgs arc uot ir~clcpct~dcut a~ld  arc coutrollcd 
by the fermion masses. As a consequence, the dominant contribution arises when the b- 
quark or T slepton are exchanged in the loop. We shall retain only this contribution. 

Let us define: 

6 = & ~ o s 4 ~ + i ~ s i n 4 b  , 
C' = i2 cos +b - il sin +b . 

Where, &,2 are the mass eigenstates with masses Mb,,g, respectively. The mixing angles 
+, and masses M,,,  are defined analogously in case of the tau slepton. The exchange of 
b-squark produces the following mass matrix for the neutrinos: 

Due to the antisymmetry of the leptonic couplings in eq. (4.11), the exchange of the T 

slepton leads to the following contribution: 

4 M, = cM2 is used in deriving the above [MI. 
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The mixing induced by these contributions is completely fixed by the matrix OL while the 
overall scale of both these contributions is set by, 

where N, = 3 , l  for the 6 and ? contribution respectively. 
In the above we have *considered one loop corrections t o  be present only through the 

combinations of X A,  A' A' couplings. But, t o  derive the one loop neutrino masses, one has 
to  consider the complete 1-loop corrections t o  the 7 x 7 neutrino-neutralino mass matrix 

. This approwli lms I)ccn followed by [8] and recently by M. Hirsch et.al [15] where the 
complete 1-loop mass matrix is written in the tree level mass basis and re-diagonalised. 
However, the approximation we have made in this work can be justified following the work 
of Chun and collaborators 1141. This analysis is based on effective mixing matrix approach. 
Using this method, one can analytically understand the dominant contributions t o  the 
neutrino sector. The 1-loop corrections to  the neutraliuo sector are of order 6% and thus 
can be neglected. The corrections t o  the neutrino-neutralino mixing (Dirac-type) part are 
subdominant to  the corrections induced in the neutrino mass matrix. 1-loop corrections t o  
the neutrino mass matrix are through combinations of the couplings X A, A' A', h, h,, h, X 
[14]. However the most dominant contribution is through the combination of couplings X A, 
A' A' . 

The total mass matrix including the 1-loop corrections is given by, 

We stress that  the above Mu is in the physical basis with diagonal charged lepton 
masses. This matrix assumes particularly simple form when rotated by the matrix OL: 

This explicitly shows that  one of the neutrinos is massless in our approximation of neglecting 
Yukawa couplings of the first two generations. The full mixing matrix analogous t o  the KM 
matrix is given by, 

U = 0r;o:. (4.27) 

where 0, is the matrix diagonalising the RHS of eq.(4.26). As we will show the mixing - 
angle appearing in 0, is small due t o  hierarchy in neutrino masses while, the Or, can contain 
large mixing. Hence, the neutrino masses are determined by the matrix (4.26) and mixing 
among neutrinos is essentially fixed by eq.(4.9). 

'Please see the appendix. 
'Recently an additional diagram has been reported in the literature [16]. We do not consider it here. 
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The above formalism shows that  the neutrino masses are greatly suppressed compared 
t o  the typical supersymmetry breaking scale if AmHIL, A B H , ~  vanish at some scale X. 
The weak scale d u e s  of sneutrino vev and hence neutrino masses follow from evolution of 
tltcve para~neters. It is clear from cq.(4.17) that  the L arid T Yukawa couplings co~itrol tlie 
evolution of sneutrino vev. Similarly, the 1-loop masses following from eq. (4.24) are also 
controlled by the same couplings. As a result, all the effects of lepton number violating 
parameters c, can be rotated away from the full Lagrangian when the down quark and the 
charged lepton Yukawa couplings vanish. Neutrino massas also vanish in this limit. 

This formalism has been applied t o  the case of MSSM with universal boundary con- 
ditions in [7, 81. Before studying this model in the case of gauge mediated models which 
is the work of this thesis, we here review the main results of the works of Hempfling and 
Joshipura-Babu. 

Review of results from MSSM 

As mentioned earlier, universality a t  the high scale for the soft parameters leads naturally 
to  small neutrino masses a t  the weak scale. Constrained MSSM i.e, minimal Supergravity 
with universal boundary conditions a t  MGuT provides an appropriate framework from this 
point of view. The total parameters of the above model in the CMSSM framework are the 
standard CMSSM parameters in, M2, t a n p ,  A and the sign(p) along with the R-parity 
violating parameters e; or the three angles sl, sz, s3. 

It is found that  the loop mass n z l ,  contributes negligibly to  the neutrino mass spectrum, 
through out the CMSSM parameter space [7, 81. In the limit ml, < mlb, mo approximate 
expressions for the neutrino masses can be given as [7] 

where the approximation s$ < 1 is used in obtaining the second line of the above. One of 
the neutrinos remains massless in this approximation. The main features of the neutrino 
mass spectrum in this framework can be summarized as follows : 

For most of the CMSSM parameter space, the tree level contribution dominates over 
the loop contribution giving rise to  the hierarchical pattern in the mass spectrum 
[7, 81. 

But, there also exist regions in the CMSSM parameter space, where the two contri- 
butions to  the sneutrino vevs, eq.(4.16) cancel each other for one particular sign of 
p. In these regions, the loop contribution, mtb can become comparable to  the tree 
level mass, mo and cancellations among mo and mlb can take place. Here, the two 
neutrinos form a pseudo-Dirac pair with a common mass mos4 relevant for solutions 
of the neutrino anomalies [7]. 
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The mixing matrix is given by the product 0~0:. Even in the case where 0, allows 
only small mixing, large mixing can be generated from OL, as i t  depends only on the 
ratios of the R-parity violating parameters [7]. 

Even though the neutrino masses are suppressed in these scenarios, they are typically 
of the O(MeV). Thus, the R-parity violating parameters have t o  be chosen t o  be 
much suppressed compared t o  the typical order of the supersymmetry breaking scale 
if neutrino masses are t o  be of the right order t o  solve the neutrino anomalies [7, 81. 

0 Numerical results from Hempfling [8] show that  solutions for solar (either with MSW 
conversion or vacuum oscillations) and the atmospheric neutrino anomalies can be 
accoluluodated ~iaturally witliiu these ~liodels. 

Recently an extensive analysis has been reported by M. Hirsch a1 within the framework 
IuSUGRA inspired MSSM. They have reported to  have found no solutions for the bi- 
maximal mixing scenarios within these models with universal boundary conditions. 
However, with non-universal boundary conditions one can achieve the required [15]. 

4.3 Gauge mediated models and neutrino masses 

The suppression of neutrino masses due to  universality of the supersymmetry breaking 
parameters a t  some scale not only happens in the MSSM with universal boundary conditions 
(CMSSM), but also in models where supersymmetry breaking is mediated through ordinary 
gauge interactions, which have been introduced in cha*pter 1. To understand how it  happens, 
we consider here in some detail the minimal version of gauge mediated supersymmetry 
breaking [19]. In this case the messenger sector contains only one pair of superfields Q,  & 
transforming as 5+5 representation of the SU(5) group. They couple t o  a field S which 

S- 
is a gauge singlet. Both the scalar and the auxiliary components of S attain vevs, thus 
introducing a supersymmetric mass scale X r X < S > as well as a SUSY breaking (mass)2 
differences of order Fs. Models with minimal messenger sector are thus characterized by 

A two parameters A I 9 and x I X. 
All the soft parameters related to  MSSM fields are fixed a t  X in terms of A, x and the 

gauge couplings. The gauginos attain their masses at the l-loop level whereas the sparticles 
attain their masses a t  the two-loop level. These masses have the following simple form f20) 

wlwro in :  reprcscnts the scalar 11i;tsscs with i running over all the scalars, whereas, MJ 
represents the gaugino masses with j representing the three gauge couplings. The functions 
f (x) and g(x) have been derived in 1211. Here, 
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C3 = 4/3,0 for triplets and singlets of SU(3)c, C2 = 3/4,0 for doublets and singlets of 
SU(2)L and Y = Q - T3 is the hypercharge. Since the Higgs field HI and the lepton fields 
Li carry the same quantum numbers, rnk, (X)  = m:(X). The minimal messenger model 
(MMM) is fnrt,ltcr ch;tri~tc&d hy t,lw axw~nption of thc vanishing hili~tcar (I)) and trilinear 
(A) soft parameters a t  scale X, 

The phenomenology of the Minimal Messenger Model has been extensively studied in 
various payers [lo, 21, 22, 23, 20, 241. In this thesis, we follow the work of Borzumati [24]. 
The salient features of this model would not change much even in the presence of the non- 
zero q. These can be summarised as follows: Only one parameter essentially determines the 
entire soft spectrum as the dependence of the boundary conditions in eq.(4.29) on x is very 
~ l t i l t l .  111 tlrc* prcwst ;~11;1Jysis wc8 cltoose x = $ following [24]. Thc MMM is attractive ia view 
of the very restricted structure it offers. But as we will show it turns out to be too restrictive 
if one wants to solve the solar and atmospheric neutrino problems simultaneously. We shall 
thus consider an alternative version on phenomenological grounds in which the boundary 
conditions (4.29) are still imposed but the value of B, a t  A is not taken to be zero. This 
we call as non-minimal model of Gauge Mediated SUSY breaking. 

Fhmework for gauge mediated models: 

The neutrino mass framework developed in the earlier section holds good for the Gauge 
Mediated Models too except that the boundary conditions are now defined a t  the low scale, 
X. The formulae for the neutrino mass matrix remain unchanged. The value of the B, 
parameter a t  the weak scale gets fixed through its running. This in turn determines both 
p as well as tan@ through the minimisation equations presented in chapter 1: 

The presence of e,  induces corrections to these equations, but they are very small as discussed 
below eq.(4.15). The eq.(4.31) therefore holds to a very good approximation. 

In spite of the restricted structure, it is possible to  self consistently solve the above 
equations [22,20,24] and implement breaking of the SU(2) x U(1) symmetry a t  low energy. 
Vanishing of the soft B, parameter at  X makes the analysis of this breaking little more 
involved than in the case of the supergravity induced breaking. One needs to  include two 
loop corrections to the evolution of the Bp parameter and also needs to use fully one loop 
corrected effective potential. Details of this analysis are presented in [22, 20, 241. We follow 
the treatment given in [24]. The smallness of the B, a t  the weak scale results in this scheme, 
in relatively large value of tan@ and its sign fixes the sign of p to be positive. The full 1- 
loop corrected potential was employed in the analysis of [24] but it was found that working 
with RG improved tree level potential also gives similar results provided one evolves soft 
parameters of the supersymmetric partners up to a scale Qi K ( r n $ ( ~ ) m $ ( ~ ) ) f .  We prefer 
to follow this approach and use the RG improved tree level potential of eq.(4.14) in order to 
determine the low energy parameters at  the minimum. We have however included two loop 
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corrections to the RG equations [25] for B, and A B L , , ~  in determining their values a t  the 
weak scale. Use of RG improved tree level potential allows us to analytically understand 
the structure of neutrino masses and mixing in a transparent way. 

Neutrino Mass structure: 

The three mass parameters mo,lb,l+, eqs.(4.20,4.24) with appropriate definitions control the 
neutrino masses. mo is determined by solving RG equations (4.17) along with similar ones 
for parameters occurring in them. We have numerically solved them imposing eq.(4.29) as 
boundary conditions a t  X. We evolved these equations self consistently up to  the scale Qo 
defined above. The mo determined in this manner depends upon p as well as tan@, both 
of which are fixed in terms of A. 

Fig. 1. The variations of -+,, %,% are shown here with respect to A. mo mildly 
( GeV% 1 

depends upon s2 and the displayed curve is for s 2  = 0.8. 
Fig. 2.The function s$ is plotted here with respect to sz. 

The loop contributions are fixed in terms of the q u a r k  and slepton masses and mixings 
defined in eq. (4.21). These are determined from the standard 2 x 2 matrices involving left 
and right quarks  and slepton mixing. The elements in these matrices are also completely 
fixed in terms of A. All the three parameters mo, mlb, mir depend upon an overall scale s3 
of the R breaking. For small s$ they roughly scale as s$. The ratios mo/s$, mlb/si, mlr/s] 
are thus determined by A alone '. We have displayed in Fig. 1 variations of ,*;, % and 

with A. One clearly sees hierarchy in the loop and sneutrino vev induced contributions. 
mo 

This hierarchy gets reflected in the neutrino masses and one obtains hierarchical neutrino 
masses independent of the overall strength of the R violating parameter ss. The mass ratio 

'mo also depends on sl very mildly through the uev (4) which is greatly suppressed compared to (h). 
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and hence the hierarchy among neutrino masses are seen t o  be less sensitive t o  A. The  rno 
roughly scales linearly with A. But since the over all scale of mo is set by si which is also 
unknown, a change in A is equivalent to  changing s3. Thus, we may use one specific value of 
A and neutrino mass spectrum is then completely fixed by three angles ~ 1 , 2 , 3  or equivalently 
by the three R violating parameters c i s  

The AmHtL, A B H , ~  entering mo are determined from the RG equations (4.17) and are fixed 
in terms of A. For example, 

p w 397.0 GeV , t a n p  - 46.39 , 
AmH N 192661.23 Gev2 , AmL - -2392.35 Gev2  , 

ABH N -14.07 GeV , ABL - 0.12 GeV, (4.32) 

when A = 100 TeV. The suppression in AmI,, ABL is due to  color factors and larger squnrk 
masses compared to  the slept011 rliasses in the model. I t  follows that  the ratio tan q5 of the 
sneutrino vev, eq. (4.19) gets considerably suppressed even when the angle s2 is large. We 
show in Fig 2. the value of s$ as function of s2 for A = 100 TeV. Note that  this ratio is 
independent of the values of the other R violating parameters when $3 is small. The small 
value of sd leads t o  very simple expression for neutrino masses. The  neutrino mass matrix 
in eq.(4.26) is almost diagonal and one finds: 

The masses are fixed in terms of mo,lb,l, which are determined in terms of A and s3. The 
mass ratio is fixed in terms of s2. The range indicated on the RHS in above equation corre- 
sponds to  variation in A from (51 TeV- 150 TeV) and 9i3 represents the angle diagonalising 
the matrix in eq,(4.26). 

4.4 Neutrino masses: Phenomenology 

As discussed in the last section, the model considered here implies hierarchical masses and 
large mixing without any fine tuning of the parameters. We now t ry  t o  see if the predicted 
spectrum can be used to  simultaneously reconcile both the solar and the atmospheric neu- 
trino anomalies. The model is quite constrained. Three neutrino masses and three mixing 
angles get completely determined in the model in terms of four parameters namely, A and 
three R violating angles ~ 1 , 2 , 3 .  In particular, the angle sl characterizing the electron num- 
ber violation does not enter the muon and tau neutrino masses, see eq.(4.26). The  mixing 
between neutrinos is largely fixed by the matrix OL with a small correction coming from 
the angle q3 in eq.(4.33). Thus one has approximately, 
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v,, a Nl(-s1N2vI + c ~ c ~ N F ~ ~ ~  + c ~ s ~ c ~ N ~ ~ u ~ )  

vr % N:' N;' ( - S ~ C ~ U ~ S ~  + c2v3) (4.34) 

Note that sl (s2) determines v, - v,, (v, - v,) mixing. We must thus require 62  to  be large 
in order to account for the atmospheric muon neutrino deficit. The sl should be small for 
the small angle MSW solution and large for the vacuum oscillation solution to the solar 
neutrino problem. As we now demonstrate these constraints are too tight and one does not 
obtain parameter space in case of the MMM, allowing simultaneous solution for both these 
problems. 

FO a 

Fig. 3a. The effective v,-v, mixing angle is plotted here with respect to si for A = 
100 TeV in the case of minimal messenger model. Fig. 3b. Contours of Am2 are plotted in 
MMM case, for A = 70 TeV (continuous lines) and A = 150 TeV (dash-dot). For AA, the 
upper (lower) lines correspond to 3 x e v 2  (0.3 x .  10'~ eV2). For As, the upper(1ower) 
lines correspond to 12 x 10 '~  eVa (3 x 10'~ eVa). 

4.4.1 MSW and atmospheric neutrino problem in MMM 

The angle sl can be appropriately chosen to fix the required mixing for the small angle 
MSW conversion, The angle SJ which determines the overall scale of neutrino masses is 
also required to be small. In such a case, the survival probability for the atmospheric v,, 
assumes two generation form and one can take the restrictions on relevant parameters from 
the standard analysis as reported in chapter 2. We have determined the effective v, - v, 
mixing and neutrino masses following from eq.(4.27) by the procedure outlined in the last 
section. We show this mixing in Fig.(Sa). In Fig.(3b), we show the masses for two values 
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of A = 70TeV, 150TeV. As seen from Fig.(3a), the $2 = 0.3 - 0.75 leads to the required 
sin2 28,, = 0.8- 1. Fig.(3b) displays the contours corresponding to As N (3.- 12.) e v 2  
and AA = (0.3 - 3.) eV2 in the s2 - s3 plane. It is seen that hierarchy among neutrino 
masses obtained in the required region is stronger than needed for a simultaneous solution 
of the solar and atmospheric neutrino problems and there is no overlapping region in the 
s 2  - sg plane for a combined solution. It is of course possible t o  solve each of this problem 
separatdy a.nd get the required amount of mixing as well. 

Fig. 4a. Contours of Am2 in MMM are plotted for A = 100 TeV. For AA, the upper 
(lower) line corresponds to 3 x 10'~ e v 2  (0.3 x ev2).  For As, the upper (lower) line 
corresponds to 3 x 1 0 ' ' ~ e V ~  (0.5 x 1 0 - ' ~ e V ~ ) ) .  Fig. 4b. The effective Sin220s and 
Sin22dA are plotted in the case of the minimal messenger model. The inner lines represent 
contours for 0.9 in both the cases whereas, the outer lines correspond to contours for 0.5 
(0.8) for Sin22ds (Sin22dA). 

4.4.2 Vacuum oscillations and atmospheric neutrino problem in MMM 

Unlike in the case of the MSW interpretation, the model can nicely account for the hi- 
erarchies required for solving the solar and atmospheric neutrino problems through vac- 
uum oscillations. This is displayed in Fig.(4a) where we show contours corresponding to 
As = (0.5 - 3) 10-lo e v 2  and AA = (0.3 - 3) e v 2  in the $2 - s3 plane. Unlike in case 
of the MSW conversion, here there is a large overlap region in s 2  - s3 plane which leads 
to the required values for AqA. Despite this one unfortunately cannot explain both the 
problems simultaneously in a phenomenologically consistent way. This is due to  the very 
restricted mixing structure displayed in eqs.(4.27). As discussed in chapter 2, the vacuum 
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oscillation probability in the present case is given by, 

where the last term comes from the averaged oscillations corresponding to the atmospheric 
neutrino scale. Likewise, the muon neutrino survival probability which determines the 
atmospheric neutrino flux is given by, 

The amplitude of oscillations is controlled by two effective angles: 

The matrix U appearing above is given by eq.(4.27). Restrictions on these angles required 
for a combined solution of the solar and atmospheric anomaly are worked out in [26] for 
different values of Ue3. Independent of the chosen values for Ue3 one requires, 

It is possible to choose these angles independently and satisfy above equations in a generic 
three gclieratiou case. In our case, the niixings are also determined in terms of s1,2 through 
eq.(4.9). We have plotted the contours corresponding to restrictions in eq.(4.38) in Fig. 4b. 
It is seen that there is no region in sl -s2 plane for which the solar and vacuum mixing angles 
can be simultaneously large ruling out the possibility of reconciling atmospheriaanomaly with 
vacuum solution in the case of the MMM . 

4.5 Non-minimal model and neutrino anomalies 

We had restricted our analysis so far to the MMM which is characterized by eq.(4.29) 
and the vanishing of the B and A parameters a t  A. Apart from predictivity, there are no 
strong theoretical arguments in favour of this minimal choice. Such a choice would lead to 
positive B, at the weak scale which in turn assures p to be positive as noted above. One 
could consider variations of the MMM which in general result in introduction of additional 
low energy parameters. A class of non-minimal models could contain more complicated 
messenger sector which would influence boundary conditions in eq. (4.29). Alternatively, one 
may keep the same messenger sector but introduce some direct coupling between messenger 
and matter fields. This could result in non-zero B, values a t  X. In fact, B, gets generated 
[19, 271 in models which try to understand origin of p term in gauge mediated scenario 
[28]. B, may be generated in the absence of messenger-matter coupling if MSSM itseIf is 
extended. 
Fig. 5. Contours of Am2 are plotted in Non- MMM case with p < 0, for tan ,f3 = 50 
(continuous lines) and tan p = 40 (dash-dot) with A = 100TeV. For AA, the upper 
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(lower) lines correspond to 3 x 1 0 ' ~ e v ~  (0.3 x 1 0 - ~ e V ~ ) .  For As, the upper (lower) 
lines correspond to 12 x (3 x 1 0 ' ~ e ~ ~ ) .  

We shall not consider any specific model here, but would adopt a purely phenomenolog- 
ical attitude to point out possible ways which can allow simultaneous solutions of the solar 
and atmospheric neutrino anomalies. It turns out that prediction of rno is quite sensitive to 
the sign of p term which is fixed to be positive in MMM. This follows from eq.(4,16) which 
shows that two contributions to (fi) add or cancel depending on the sign of p% We may thus 
consider a slightly less restrictive form of the MMM in which we regard the value and sign 
of B, as  independent parameters to be determined phenomenologically. Typically, the B, 
value remains positive due to the strong Yukawa sector coming from the higher loop terms 
in the RGE for B,. One should thus generate B, sufficiently negative at the A scale, so 
that, it remains negative even at the weak scale. The typical value of B, at the A scale 
should be around, 

where, the magnitude of RHS denotes the dominant positive contribution to B, with 
Y, dcnotiug tlrv t.op Yi~kiwa roiq~ling. A rregativc B,, of this order a t  tlrc X ,scale car now 
gelrerate a uegative 11 at the weak scale. We still assume that the mechanism responsible for 
generation of B parameters does not distinguish between leptonic arid the Higgs doublet HI  
and hence B,, and B; coincide at the scale X. Due to this, sneutrino ueus are still charac- 
terized by the differences in eq.(4.13) and hence are suppressed. The boundary conditions 
on soft masses are still assumed to be given by eq.(4.29). This particular scenario is now 
characterized by parameters A and B,. As follows from the minimum equation, (4.31), one 
may regard the value of tan P and sign of p as independent parameters instead of B,. The 
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magnitude of fi is determined in terms of these parameters by eq.(4.31). I t  is now possible t o  
simultaneously account for the atmospheric neutrino deficit and have the MSW conversion 
for the solar neutrinos. This is depicted in Fig. (5) in which we show contours (in s 2  - $3 
plane) corresponding t o  As = 3-12 10'~ e v 2 ,  AA = 0.3-3 10'~ e v 2  for negative p and two 
representative values of tan p = 40,50. The magnitude of p gets fixed by eq. (4.31) t o  379.28 
GeV and 382.03 GeV in the respective cases. The corresponding B, value at the X scale is 
approximately given as B,(X) z -13.10 GeV ( t a n p  = 40); - 7.06 GeV ( t a n p  = 50). I t  
is seen that  now there is a considerable overlap where two mass scales arise simultaneously. 
As mentioned before, these masses are independent of the value of sl which can be chosen 
in the required range namely, 

S ,  = 0.0225 - 0.071 
to  allow MSW conversion. The angle BA relevant for the atmospheric anomaly coincides 
roriglrly with s2 and as follows from Fig.(5), one can sim~iltancously account for mixiug as 
well as  masses needed to  solve the atmospheric and the solar neutrino problems. 

4.6 Conclusions 

The supersymmetric standard model contams natural source of lepton number violation and 
hence of neutrino masses. The resulting neutrino mass pattern is quite constrained if source 
of leptou iwulber violatioil is provided by soft biliuear operators and if the SUSY Ireakiug: 
is introduced through gauge mediated interactions. This scenario has the virtue that  one 
can obtain hierarchical masses and large mixing in the neutrino sector. The hierarchy in 
masses results from hierarchy in the two different sources of neutrino masses while large 
mixing can be linked to  ratio of R violating parameters ei. Overall scale of neutrino mass 
is set by s3 and by the Yukawa couplings of the b and T . Neutrino masses are thus 
naturally suppressed and hierarchical. One however needs t o  assume relatively suppressed 
R violation, i.e. s g  - in order t o  obtain the mass scale relevant for the atmospheric 
neutrino anomaly. This requires that  €2 - €3 N 1 GeV when p - 1 TeV. 

In case of the minimal gauge mediated model, the three neutrino masses and three 
mixing angles are controlled by five parameters A, x and s1,2,3. This proves t o  be quite 
constraining and does not allow one to  obtain simultaneous solution of the solar and atmo- 
spheric neutrino anomalies. In the actual analysis, we chose x = 4. A smaller value of x 
would not change this conclusion in view of the mild dependence of the boundary condi- 
tions, eq.(4.29) on x. However, a non-minimal version which allows negative p parameter is 
capable of accommodating the MSW effect and atmospheric neutrino anomaly. The number 
of parameters needed are still less than in the models based on the minimal supergravity 
scenario. 

4.6.1 RG equations 

In this sdbsection we present the two-loop parts of the RGE for the parameters B,, ABH, ADL 
used in the calculations in the MMM model. 
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g a l  (t) MI (t)K(t) + 16~3( t )M3( t ) s ( t )  1663(t)M~(t)K(t) + 15 

d~ B;-~W 
dt 

= 3YT (t)Yb(t) (AT (t) + Asp)) - 1 8 ~ 2  ( t ) ~ b ( t )  

4.7 Appendix 

We present here the derivation of the tree level mass matrix, eq.(4.18). In the presence 
of R-violating couplings neutrinos mix with neutralinos. In the bilinear R-parity violating 
scenarios, this mixing takes place with ~i couplings and the sneutrino vevs. In the Weyl 
basis, the Lagrangian describing the neutrino-neutralino mass matrix is given by, 

1 
c,,,,, = - - @ M ~ s ~  + H.C 2 

(4.43) 

where in the two component notation, !Po is a column vector of neutrinos and neutralinos, 

%y = (ye, up, ur, -ihl,-iX3, @Il7 +$) (4.44) 

The mass matrix has the following general structure which is of see-saw type: 
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Here the sub-matrix 111 is of di1uwsio11 3 x 4 a d  lras the followil~g structure: 

with the o; representing the sneutrino vevs. Mq is the standard 4 x 4 neutralino mass matrix 
of the MSSM which has the following form: 

The effective 3 x  3  neutrino mass matrix is obtained by block diagonalising the above matrix. 
It has the form : 

The vector is defined as, -. 
A = d -  v1Z 

D is given by, 
D = 2( -P  M I  M;r i- 2 + M2 tnn2eW)).  (4.50) 

Here, the matrix m e f f  is written in the basis where ei are not rotated away from the 
superpotential. The rotated form of this matrix is given in the text and takes the form Mo, 
eq.(4.18), in the charged lepton mass basis. From m,jf we can easily see that  i t  has only 
one eigenvalue, even in the presence of the first generation sneutrino vev. This is a generic 
result of all the R-parity violating models [17, 291. 



References 

[I] L. J.  Hall and M. Suzuki, Nucl. Phys. B 231 (1984) 419. 

[2] A. Masiero and J .  W. F. Valle, Phys. Lett. B 251  (1990) 273. 

[3] A. Santamaria and J .  W. F. Valle, Phys. Rev. Lett. 60 (1988) 397; Phys. Rev. D3Y 
(1989) 1780. 

[4] J.  C. Romao and J.  W. F. Valle, Nucl. Phys. B381 (1992) 87. 

[5] K. Tamvakis, Phys. Lett. B 383 (1996) 307. 

[6] This chapter is based on our work : A. S. Joshipura and S. K. Vempati, Phys. Rev. 
D60 (1999) 095009. 

[7] K. S. Babu and A. S. Joshipura, Talks at Trieste Conf., Oct. 1996 and Oct. 1997. 

[8] R. Hempfling, Nucl. Phys. B 478 (1997) 3 

[9] F. de Campos et. al, Nucl. Phys. B451 (1995) 3; H. P. Nilles and N. Pelonsky, Nucl. 
Phys. B 484 (1997) 33; A. Yu. Smirnov and F. Vissani, Nucl. Phys. B 460 (1996) 
3427; T. Banks et. al, Phys. Rev. D 52  (1995) 5319; S. Roy and B. Mukhopadhyaya 
Phys. Rev. D55 (1997) 7020; M. A. Diaz, J.  C. Romao and J. W. F. Valle, Nucl. Phys. 
B 524 (1998) 23; E. J.  Chun, S. K. Kang, C. W. Kim and U. W. Lee, Nucl. Phys. B 
544 (1999) 89; A. E. Nelson and D. E. Kaplan, bepph/9901254. 

[lo] See, for a review and original references, G.CTiudice and R.Rattazi, hepph/9801271. 

[ l l ]  S. Weinberg, The Quantum Theory 01 r.ields Cambridge University Press (l995), Vol. 
I, Chapter 7. 

[12] K. S. Babu and R. N. Mohapatra, Phgs. Rev. D 42 (1990) 3778; R. Barbieri et. all 
Phys. Lett. B 252 (1990) 251; E. Roulet and D. Tommasini, Phys. Lett. B 256 (1991) 
218. 

[13] G. Gamberini, G. Ridolfi and F. Zwirner, Nucl. Phys. B331  (1990) 331. 

[14] E. J .  Chun and S. K. Kang, Phys. RevD61(2000) 075012. 



References 72 

[I53 M. Hirsch, M. A. Diaz, W. Porod, J. C. Romao and J. W. F. Valle, hepph/0004115; 
M. Hirsch et.al Phys. Rev D61(2000) 071703. 

[16] Please see S. Davidson and M. Losada, JHEP 021 (2000) 0005: hepph/0010325 and 
references there in. 

[17] A. S. Joshipura and M. Nowakowski, Phys. Rev. D 51 (1995) 2421. 

[18] H. E. Haber and G. L. Kane, Phys. Rep. 117 (1985) 75. 

[19] M. Diw, Y. Nir aud Y. Sliirluau, Pkys. Rev. D 55 (1997) 1501, T.Gherglietta, G. 
Jungman and E. Poppitz, hepph/9511317. 

[20] R. Rattazzi and U. Sarid Nucl. Phys. B 501 (1997) 297. 

[21] S. P. Martin, Phys. Rev. D 55 (1997) 3177; S. Dimopoulos, G. F. Giudice and 
A.Pomaro1, Phys. Lett. B 380 (1996) 37. 

[22] K. S.Babu, C. Kolda and F. Wilczek, Phys. Rev. Lett. 77 (1996) 3070. 

[23] S. Dimopoulos, S. Thomas and J.  D. Wells, Nucl. Phys. B 488 (1997) 39; J. A. Bagger, 
K. Matchev, D. M. Pierce and R. Zhang, Phys. Rev. D 55 (1997) 3188. 

[24] F. Borzumati, hepph/9702307. 

[25] S. P. Martin and M. T. Vaughn, Phys. Rev. D 50 (1994) 2282. 

[26] P. Osland and G. Vigdel, Phys. Lett. B438 (1998) 129. 

[27] G. Dvali, G. F. Giudice and A. Pomarol, Nucl. Phys. B 478 (1996) 31. 

[28] A. de Gouvba, A. Friedland and H. Murayama, Phys. Rev. D 57  (1998) 5676.This 
paper contains summary of the attempts to understand the p problem. 

[29] M. Nowakowski and A. Pilaftsis, Nucl. Phys. B461 (1996) 19. 



Chapter 5 

Trilinear R violation and Neutrino Masses 

5.1 Introduction 

In the previous chapter we have been concerned with neutrino masses in the presence of 
only bilinear R-parity violating couplings. As we have seen bilinear R violation provides 
a very constrained framework t o  accommodate simultaneous solutions for both solar and 
atmospheric neutrino problems. In this chapter we pursue an alternative framework where 
we consider trilinear R parity violation in the superpotential. We will study the structure 
of neutrino mass matrix in this framework and the existence of simultaneous solutions for 
the solar and atmospheric neutrino problems within these models. 

One can immediately see that  these models definitely allow more freedom compared t o  
the bilinear case as the A' and X are large in number. The A' couplings are 27 in number 
whereas the X couplings are 9 in number. Thus due to  the large freedom they offer we would 
expect that  simultaneous solutions for solar and atmospheric neutrino problems could be 
accommodated in these models for some definite choice of the parameters. But, in addition 
to bringiug in larger freed0111 tlicsc models also bring in large amount of arbitrariness with 
them which would make calculations cumbersome. To overcome this arbitrariness and make 
thwc modcds prcvlirtivc, tho following choices are generally made in literatrirc: 
1). Assuri~e A', X couplings to be hierarchical. This choice is generally n ~ a d e  by uiotivating 
that  A' couplings if present in the superpotential are likely to  have the same pattern as the 
standard Yukawa couplings which give masses t o  the fermions [I]. 
2). Assume only a subse t  of the A', X couplings is non-zero. Fix the values of these couplings 
numerically, requiring that  the neutrino mass matrix determined by this sub-set of couplings 
would give rise to  the required pattern. This analysis can then be extended t o  all possible 
sub-sets [2]. 
In this thesis we do not make any of the above choices. We instead make the assumption 
that  all the trilinear couplings are present in the superpotential are free parameters, but they 
are typically of the same magnitude. This is a valid assumption as the R-parity violating 
couplings are required to  be suppressed compared to  the regular Yukawa couplings t o  give 
correct order of neutrino masses t o  understand neutrino anomalies. This assumption has 
been earlier followed by Drees et.al 131 in the same context. In their work, neutrinos attain 
masses a t  the 1-loop level due to  the presence of trilinear interactions, But, as we have 
seen in chapter 3, in any realistic model of supersymmetry breaking, trilinear interactions 
would also modify the weak scale soft potential through RG scaling. This would give 
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additional 'tree level' mass t o  the neutrinos. In this chapter [4], we reanalyse the neutrino 
mass spectrum in these models taking in t o  consideration the  'tree level' contribution t o  
the neutrino masses also. This would significantly modify the neutrino mass spectrum as 
we will see below. 

5.2 Sneutrino vevs and Neutrino Masses 

For definiteness, we would consider only trilinear A' couplings t o  be present in the superpo- 
tential. Such an assumption is made for simplicity and we would comment on the inclusion 
of X couplings later on. The superpotential in this case is given as, 

where we have used the standard notation specified in chapter 1. As we have mentioned 
earlier, the presence of non-zero A' couplings would induce two separate contributions to  the 
neutrino mass. One contribution arises due t o  a soft term linear in the sneutrino vev. This 
soft term gets generated through the loops but leads t o  a sneutrino vev in the 'tree level' 
of the renormalisation group improved low energy effective potential. This contribution 
indirectly generates neutrino masses through their mixing with the gauginos. A majorana 
mass term for the light neutrinos is also generated directly by the loop diagrams involving 
squarks and sleptoas [5, 61. We sltall refer to  these two coiitributioris as RG induccd trcw 
level (or simply tree level) and loop level masses respectively. 

The framework 

In the present chapter, we choose to  work in the mSUGRA inspired MSSM. In this case 
the soft terms are added at the high scale N MGUT. In the limit all A' couplings are chosen 
t o  be similar in magnitude, the analysis of the neutrino mass matrix would become simpler. 
I t  is now possible t o  study the neutrino mass matrix analytically. The  two contributions to  
the neutrino Inass matrix are given as below. 

5.2.1 RG induced Tree Level Mass: 

In the mSUGRA inspired MSSM framework, the structure of the superpotential dictates 
the structure of the soft SUSY breaking terms. Thus, with only trilinear L-violating inter- 
actions, the soft terms do not contain bilinear terms at a high scale. But as we have seen in 
chapter 3, they are nevertheless generated at the weak scale and should be retained in the 
scalar potential a t  this scale. The relevant part of the soft scalar potential is now given as: 

where, we have retained only neutral fields and used standard ilotation with B,, and 
mEiH, representing the bilinear lepton number violating soft terms. The weak scale value 
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of the lepton number violating soft parameters is determined by the RGE given in chapter 
3. We reproduce them here: 

a ~ i d  tlic sta~idard MSSM RGE for thc parameters on the RHS '. In the above, wc have 
confined ourselves with the same notation as in chapter 3. Since we allow only trilinear 
interactions in W4, maHl = Bci = 0 a t  high scale. In the presence of non-zero 
and with the above boundary conditions, the parameters mEiH1 and B,, have low energy 
solutions of the form given in chapter 3. Using the solutions for Xi j j  and h g ,  it is convenient 
to parameterise these solutions as *, 

Here p is summed over generations. The parameters K and K' represent the running of the 
parameters present in the RGE's from the high scale to the weak scale. 

The above soft potential would now give rise to sneutrino vevs, which are described by 
the stationary value conditions for the above soft potential. These are given as, 

where v l  and v2 stand for the vevs of the Higgs fields Hf and Hi respectively. The sneutrino 
vevs so generated will now mix the neutrinos with the neutralinos thus giving rise to a tree 
level neutrino mass matrix as has been descAbed in the previous chapter. This matrix has 
the structure: 

where c = $ and g ( g l )  denotes SU ( 2 ) ( U ( l ) )  gauge coupling. 

'The standard RGE for the soft parameters appearing on the RHS of the above equations do get modified 
in the presence of the A' couplings. But as mentioned in chapter 3, in the limit of very emall A' coupling, 
as will be required by our model, the presence of these coupling would not modify the running of the soft 
parameters appreciably. 

'The assumption that all A' couplings are similar in magnitude is made at the weak scale. Such an 
assumption at the high scale would in general lead to hierarchical A' at the weak scale. 
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5.2.2 Loop Level Mass 

As we have seen earlier, the trilinear couplings in the superpotential would also give rise to 
a loop induced neutrino mass with the down squark and anti-squark pairs being exchanged 
in the loops along with their ordinary partners [5, 71. This mass can be written as, 

In the above, sin+p cos$ determines the mixing of the squark-antisquark pairs and Mfp 
and Mip represent the eigenvalues of the standard 2x 2 mass matrix of the down squark 
s y s t m ~  [S] .  Tlw iidiws 1) irwl A: ;vrt s~iiurncd over. The mixing sind,, cos~ , ,  is proportional 
to h: and thus one can write the loop mass as, 

3 VI ~ i n q 5 ~  cos+ ~i~ 3 y: 
Explicitly, mroop - 1,- N - 1 

167r2 h," M& 167r2 MsUsy1 (5.9) 

with Msusy N 1 TeV referring to the typical scale of SUSY breaking. Note that miwp 
defined above is independent of the R violating couplings and is solely determined by the 
parameters of the minimal supersymmetric standard model (MSSM). 

5.3 Neutrino Masses and Mixing 

We now make a simplifying approximation which allows us to discuss neutrino masses 
and mixing analytically. It is seen from the RG eqs.(5.3) that the parawters  ~ ; k ,  K : ~ ,  

defined in eq. (5.4) are independent of generation structure in the limit in which generation 
dependence of the scalar masses mii ,  m i i  and soft parameters and is neglected. 
Since we are assuming the universal boundary conditions, this is true in the leading order 
in which the Q2 dependence of the parameters multiplying ~ : ~ ~ h f '  in eq.(5.3) is neglected. 
Q2 dependence in these parameters generated through the gauge couplings will also be 
flavour blind though Yukawa couplings will lead to some generation dependent corrections. 
But their impact on the the conclusions based on the analytic approximation below is not 
expected to  be significant 3. The neglect of the generation dependence of 6 i k l  tcik allows us 
to rewrite eq.(5.6) as, 

M!, moaiaj (5.10) 

where a; z Xikk hf' and mo is now completely determined by the standard MSSM parame- 
ters and the dependence of the R-violating parameters gets factored out as in eq.(5.8). mo 
can be determined by solving the relevant RGE. Roughly, is given by, 

'A rough estimate gives .- 20% variation in the parameter space due to this approximation. 
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where MCUT = 3 10" GeV. 
Let us rewrite the loop induced mass matrix as, 

where Aij = X:23X132 + X&2323 - X:22X>33 - Neglecting O ( h f  ,hf ') corrections 
to the loop induced mass matrix, the total mass matrix is given by, 

The matrix MI can be easily diagonalised using a unitary transformation, 

uT/tllu = diag (0,0,m3) , (5.14) 

(az+az)k with s2 = and s 3  = --rn . 
a +a a1+a2+a 

The total mass matrix is now given by, 

U ~ M " U  a m 3  ( diag (O,0, 1) + €A1) (5.17) 

where 
At = U ~ A  U and e A:, a % h f  hQ A t  FZ % 5 . (5.18) 

The last equality follows under the assumption that  Xijl, are similar in magnitude and 
mlmp mo. 
If U' is a rotation in the 12 plane with an angle 4 defined by tan 201 = s- , then, 

A22 -4 1 

where 61 and 6 2  are parameters generically of 0 ( X I 2 )  if all X i j k  are assumed t o  be similar in 
magnitude. The off-diagonal elements will generate additional mixing in the model. But, as 
eA1 << 1 ,  we can neglect these off-diagonal elements. The eigenvalues in this approximation 
are given as, 

my N E m3 ; my N 6 m 3  6 2  ; myS N m3 , (5.20) 
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As a consequence, 

The last factor in the above is of O(1) and the remaining part is controlled completely by 
the standard parameters of the MSSM. Eq.(5.21) may be regarded as a generic prediction 
of the model. It is seen from eqs. (5.9,5.11) that typically, 

Thus the neutrino mass ratio in eq.(5.21) is suppressed considerably compared to the hi- 
erarchy obtained when sneutrino vev contribution is completely neglected. As we have 
mentioned earlier, the authors of [3] have not considered the tree level contribution to  the 
neutrinos and thus have achieved a hierarchy of neutrino masses proportional to the Yukawa 
couplings: 

where m.(mb) represents the strange(bottom) quark mass. But, as we have seen in the 
above, the RG induced tree level mass alters the hierarchy drastically as the tree level mass 
is almost thousand times larger than the loop mass for most of the parameter space. The 
exact value of the additional suppression factor due to the tree level mass is dependent on 
MSSM parameters and we will calculate it in the next section. 

The mixing among neutrinos is governed by IC = U U'. The angles appearing in IC are 
determined by the ratios of the trilinear couplings and hence can be naturally large. Thus, 
as in supersymmetric model with purely bilinear R violation which we haveatudied in the 
previous chapter, one gets hierarchical masses and large mixing without fine tuning in any 
parameters, 

5.4 Neutrino Masses : Phenomenology: 

We now discuss the phenomenological implications of neutrino masses, eq.(5.20) and mixing. 
Due to hierarchy in masses, one could simultaneously solve the solar and atmospheric u 
problems provided, m, - m, - eV and m, - 10-I - 10'~ eV, 

In order to determine these masses exactly, we have numerically integrated the RGE 
eq.(5.3) along with similar equations for the parameters appearing in them. We have im- 
posed the standard universal boundary condition and required radiative breaking of the 
S U ( 2 )  x U(1) symmetry. Solution of the RGE determines both mjWp (eq.(5.8)) and IJZO 

(eq.(5.10)). We display these in Fig.1 as a function of p for positive (negative) p and 
t anp  = 2.1, M2 =400 GeV ( M2 =200 GeV ). The ratio is quite sensitive to the sign 
of p.  For p > 0, this ratio is found to be rather small, typically - - while it can 
be much larger for p < 0. There exists a region with negative p in which % 2 1. In this 



%linear R violation and Neutrino Masses 79 

region, two contributions to the sneutrino veu in eq. (5.5) cancel and mo gets suppressed. 
Barring this region, the h seen to be around - 10-I - for negative p leading to 

For I I L , ,  N 10-I -'1W2 cV, OIIC t l~us obtains my N in,, - 2 ( loq4  - eV whic11 is in 
the right range required to solve the solar neutrino problem through vacuum oscillations. 
The typical value of mo N GeV found in Fig.1 implies through eq.(5.15), A' - Thus, 
one needs to choose all A:jk of this order. Once this is done, one automatically obtains solar 
neutrino scale for some range in the MSSM parameters. 

While, hierarchy uecded for the vacuu~u solution follows more ~raturally, oue could also 
obtain scales relevant to the MSW conversion. This happens for very specific region of 
parameters with negative p in which two contributions to sneutrino veu, eq. (5.5), cancel. 
As already mentioned, 2 can be in large this region. One then recovers the result of [3], 
namely, eq.(5.21) which allows MSW solution for the solar neutrino problem. 

Fig. la.The absolute values of tree level contribution, mo, the loop level contribution, 
ml, and their ratio % are plotted with respect to  p (positive) for M2 = 200 GeV, A=O 
and tanP = 2.1 . The mo and mi, are defined in the text. 
Figure 1b.Same as in Fig. (la) but for M2 = 400 GeV and p (negative). 

We showed in Figures la, l b  neutrino mass ratio for specific values of M2 and tanp. 
Qualitatively similar results follow for other values of these parameters. We have displayed 
in Table.1 values for the MSSM parameters and what they imply for $. We have shown 
illustrative values of the parameters which lead to the vacuum as  well as MSW solution. 
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The latter arise only for limited parameter range corresponding to cancellations in eq.(5.5). 
The former is a more generic pwibility which arise for larger region with both poaitive and 
negative values of p. The MSW solution in the  present context will have t o  be restricted 
to  the large angle solution if one does not want t o  impose any discrete symmetries or 
fine tune X's. I t  should be noted that  this solution is preferred by the present da ta  from 
super-Kamiokande experiments as we have seen chapter 2. 

Tablel: The values of mo, ml,, and ratio of the eigenvdues, 3 for various values of the 
standard MSSM parameters m, M2 and p for tan P = 2.1 , A=O. 

m 

GeV 

1312 

The constraints on mixing matrix K, implied by the experimental results are also easy 
t o  satisfy keeping all the Xijc, similar in magnitude. As we have seen in chapter 2, the solar 
and atmospheric neutrino problems can be approximately treated in terms of mixing among 
two generations (12) and (23) respectively as long as I(e3 is small (as implie% by CHOOZ) 
and m, and m, are hierarchical. The constraint on relevant mixing following from the 
experiments can then be translated t o  constraints on elements of K and are given as follows: 

It is possible to  satisfy all these constraints by choosing for example, 

M2 
GeV 

200 

The relative smallness of s2 required here does not imply significant fine tuning and can be 
easily obtained, e.g. by choosing, 

P 
GeV 

1225 

It is t o  be emphasized that  much smaller value of I(e3 than at the present level will force 
fine tuning and cannot be accommodated in the model naturally. 

mo 
GeV 

-16.94 

m100p 

GeV 

-0.1689 

ratio 

3 m,, 

1.8 10'~ 
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We have so far concentrated on the couplings alone. The analogous discussion can 
be carried out for Xi lk  couplings appearing in the eq.(5.1). Here also, the tree level contri- 
bution to  neutrino masses will dominate over the loop contribution although the structure 
of mixing matrix will differ slightly due t o  the anti-symmetry of the couplings X i j k  in indices 
i and j. 

We have discussed in detail the structure of neutrino masses and mixing in MSSM in the 
presence of trilinear R-violating couplings, specifically X i j k .  Noteworthy feature of the 
present analysis is that  it is possible to  obtain the required neutrino mass pattern under 
fairly general assumption of all the X i j k  being of equal magnitudes. I t  is quite interesting 
that  hierarchy among neutrino masses is controlled by few parameters in MSSM and is 
largely independent of the trilinear R violating couplings under the assumption that  all the 
trilinear couplings are equal in magnitude. Thus one could understand the required neutrino 
mass ratio without being specific about the exact values of large number of the trilinear 
couplings. This 'model-independence' is an attractive feature of the scenario discussed here. 

The key difference of the present work compared to  many of the other works is proper 
inclusion of the sneutrino vev contribution. While we had t o  resort t o  specific case of the 
minimal supergravity model for calculational purpose, the sneutrino vev contribution would 
arise in any other scheme with # 0 a t  a high scale such as  MGUT. Such contribution 
thus cannot be neglected a priori. On the contrary, the inclusion of this contribution makes 
the model more interesting and fairly predictive in spite of the presence of b rge  number 
of unknown couplings. The model prefers simultaneous solutions for solar and atmospheric 
neutrino problems with vacuum oscillations for the solar neutrino problem. However, Large 
Angle MSW also can be accommodated in regions of the parameter space where sneutrino 
vev is suppressed. 
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Chapter 6 

Neutrino Mass constraints on R violation and HERA 
anomaly 

In the last two chapters we were interested in studying the structure of neutrino mass matrix 
in the presence of explicit lepton number violation and the possibilities of having simulta- 
neous solutions to  solar and atmospheric neutrino anomalies. We have motivated such a 
study by claiming that  since lepton number violation naturally occurs in a supersymmetric 
extension of Standard Model ', i t  would be the riqht framework to  generate neutrino masses, 
as required for solutions of neutrino anomalies. But lepton number violation has not been 
observed in nature ( except for a possible neutrino mass ), whereas the presence of lepton 
number violating couplings can lead t o  various interesting processes like I<+ + w + v ~ ,  the 
violation of weak universality, neutrinoless double beta decay etc. Most of these processes 
have not been observed yet in nature and there exist stringent experimental limits on these 
processes [I]. These experimental limits can be converted into limits on lepton number vio- 
lating couplings themselves. The limits on various couplings so obtained have been reviewed 
in [I, 21. 

The limits discussed above also have an interesting feature associated with them, which 
is the so called 'single coupling scheme'. In obtaining the limit on a particular coupling, 
one usually assumes that the particular coupling is the most dominant one compared t o  the 
other lepton number violating couplings [3]. This is to  facilitate a meaningful analysis. But 
tile siuglc couplir~g sc1~111e has its ow11 drawbacks. Tltc single couplirrg scl~cnlc titakes the 
analysis basis dependent [4]. This basis dependence comes due to  the CKM matrix in the 
quark sector. In such a case, o w  coupling in one basis may correspond t o  several couplings 
in another basis. 

We have also seen that  the presence of trilinear lepton number violating couplings in 
the superpotential would also lead to  majorana masses for the neutrinos. The neutrino 
masses are themselves constrained by kinematic limits on them. These limits can be used 
to  constrain the lepton number violating couplings present in the superpotential. Thus in 
the present chapter, we do a sort of 'reverse analysis' t o  what has been done so far in this 
thesis. We choose Xiij couplings for our analysis and study the limits on these couplings 
from neutrino mass constraints . 

'When we say natural here, we mean it is not disallowed by gauge symmetries as in SM. 
'This is because the electron neutrino mass is most stringently constrained compared to other neutrino 
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As has been mentioned in the earlier chapter, neutrinos attain mass both a t  the tree 
level as well as at the 1-loop level in models with trilinear R violation. The present analysis 
in the literature [5, 61 of the constraints arriving from neutrino masses has neglected the 
important and dominant tree level contribution to  the neutrino masses which would occur 
wl~cn il.liy of thc. lcptou ~ t t ~ n l b c ~  violi~tiug terul is prescut in the superpotential. But as 
we have seen in chapter 5, in any realistic model where supersymmetry is broken a t  a 
high scale, RG evolution strongly modifies the neutrino mass by giving rise t o  a tree level 
mass t o  the neutrino, which we call 'RG induced tree level mass'. Incorporation of this 
additional cotrtributiou can clrauge the already obtained [5,  61 limits significantly. The a i t r i  
of this chapter is t o  systematically derive these constraints and discuss its implications. 
The restriction to only X i i j  couplings is also interesting because these couplings have been 
relevant in attempts t o  understand the HERA anomalous results, which we will discuss 
later in the chapter. . 

6.2 Basis choice and definition of Xijk : 

Siuce we consider only trilinear R-violation, the lepton number violating part of the super- 
potential is given as follows: 

The above is written in the current basis of the quarks. But, as has been mentioned above, 
in order t o  meaningfully constrain the trilinear coupling, it is usually assumed that  only 
a single coupling is non-zero a t  a time. While the physics implied by these couplings is 
basis independent, the said assumption makes the constraints on Xijk basis dependent since 
a non-zero A' in one basis correspond to  several non-zero X"s in the other. *The trilinear 
couplings in eq. (6.1) can be rewritten [4] in the quark mass basis as follows: 

where the above terms are now in the quark mass basis and IS denotes the Kobayashi- 
Maskawa matrix. Even in the mass basis one could choose a different definition for the 
trilinear couplings: 

Ayjk ICjlX:lk (6.3) 

and rewrite (6.2) as, 
t Wp = Xrjk(-~idj + eiISl j~l )di  

With the first choice, a single non-zero Xijk can lead t o  tree level flavour violations in the 
neutral sector [4] while this is not so if only one X5k ( j  # k) is non-zero. Clearly, there 
are ot.her equivalent definitions of trilinear couplings which are between the two extreme 
cases given in eqs.(6.2) and (6.4). The basis dependence can be clearly seen here as the first 
coupling X i 2 ,  is constrained severely by the neutrino mass but the coupling X711 is not. 
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The geitcratioll of RG iuduccd t rw level niass iw the presence of tri l i~~car lepton num- 
ber violating couplings has already been discussed in chapter 5. However, for the sake of 
completeness we repeat it here again. The crucial terms to our analysis are the soft su- 
persymmetry breaking terms in the scalar potential. The lepton number violating parts of 
these terms can be written as: 

where we have explicitly written only those terms which are responsible for generating the 
electron neutrino (y 3 V )  mass and Xyj r Note that the presence of only trilinear 
terms in the superpotential generate only the first terhs  in eq.(6.5) a t  the high scale in 
conventional supergravity based scenario. The remaining terms are however generated a t  
the weak scale and should therefore be retained. In this basis, the general RGE presented 
in Chapter 3 become, 

The rest of the parameters carry the same meaning as in chapter 3. We have kept only 
leading order terms in X i k  in writing eqs.(6.6). The other parameters appearing in eqs.(6.6) 
satisfy the standard RG equations to this order in A;. The second terms in eqs. (6.6) 
generate non-zero B, and m'H? a t  QO. These terms in eq.(6.5) generate a non-zero vtw (fi) 
which can be determined by minimizing the full scalar potential. These are given by, 

m2 is the soft SUSY breaking sneutrino mass. This in turn leads to  the following neutrino 
mass: 

where c zz 5g12/3g2, g2 and g'2 are gauge couplings and t anP  = ( H i ) / ( H : )  = u2/uI. It 
follows from the eqs. (6.6,6.10) that the (m,)t,, involves the combination ( ~ i ~ h f ) ~ .  The 
trilinear interactions in eq.(6.2) lead also to the following m, a t  the one-loop level: 
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where we have implicitly assumed that only one Xi ik  is non-zero a t  a time. 4k and Mia1 

respectively denote the mixing among squarks dk, 4 and their masses. The mixing is 
proportional to m:. As a result just like the tree level mass, the (m,)[, also scales as 
( ~ i ~ h f ) ~ .  m, therefore provides a bound on X i k  which can be converted to a bound on 
Xi lk  from eq.(6.3). The resulting bounds become stronger with increase in tan P due to the 
fact that B,, mtx, involve hf = mf/vcos/3 . For the same reason, bounds display strong 
hierarchy, typically, 

(Xik)maz mf (6.13) 
(X;)rnoz " ;;;f ' 

It also follows from eq.(6.3) that, 

It is seen from last two equations that the Xi33r (Xi31) is constrained most (least) by m,. 

Figure la. FCNC constraints on X i z l  for a) m = 200 GeV and b) m = 50 GeV for 
tan@ = 40. Neutrino mass constraints on X i z l  for c) m = 50 GeV, tanP = 15; d)  m = 200 
GeV, tanP = 40 and e) m = 50GeV, tan0 = 40. f )  X i l l  from neutrino less pp decay 
g) Xi, ,  from neutrino mass constraints for m = 50 GeV and tan@ = 40. Figure lb. Same 
as of Figure la) but with p < 0 

6.3 Bounds on trilinear couplings : 

We now present bounds on the couplings X i j k  obtained from the experimental limit on the 
neutrino mass m,. In the present framework, the neutrino obtains a majorana mass and 
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hence stringent constraint on rn, would follow from the non-observation of neutrinoless 
/3/3 decay. We shall use somewhat conservative value of m ,  < 2.0 eV in numerically 
discussing the bounds on different couplings which lead to m,. In order to obtain bound 
on the relevant coupling, we have numerically solved eqs.(6.6) along with the other standard 
equations for the parameters appearing on the RHS of eqs. (6.6) as discussed in Chapter 3. 

We work with R violatiug versioa of the MSSM with a standard set of soft supersym- 
metry breaking terms specified a t  a high scale near M C U ~  = 3 x 1016 GeV. We confine 
ourselves to  the scenario with radiative breaking of the SU(2) x U(1) symmetry. All pa- 
rameters in eq.(6.10) are specified a t  a low scale Qo . We have chosen Qo to be Mz 3. The 
parameters Bw, mtH, are assumed to be zero a t  M c u ~  . Their values a t  Qo depend upon 
the standard parameters of MSSM which we take to be gaugino (gravitino) mass, M2 (m), 
tan p and universal trilinear strength A. Bw and mtH, determine in terms of these 
parameters and Ab(tr),  where, t r  = 2 in(*). The 1-loop contribution also gets fixed 
in terms of these parameters since 4k and Mi., appearing in eq.(12) are determined using 

the standard 2 x 2 mixing matrix for dk, 6 system. 

Previous limits 

m = 50 GeV 
M2 = 150 GeV 

m = 50 GeV 
M2 = 175 GeV 

Table 1, Limits on single Xijk following from the electron neutrino mass for A = 0, 
tan /3 = 30 and p > 0. The limits become stronger for larger tan P and weaker for negative 
p.  The existing limits mentioned in the table are for the relevant q u a r k  mass - 500 GeV 
and gluino mass M3 = 500 GeV in case of Xil,. 

The bounds on different couplings are displayed in Figs. 1 and 2. Apart from being 
dependent on SUSY parameters, these bounds are quite sensitive to the chosen sign of - 

the p parameter. This is due to the fact that for one (namely negative) sign of p, two 
terms appearing in the sneutrino ueu, eq.(6.10) cancel while they add for positive sign. 
The suppression in sneutrino ueu occurring in the first case weakens the bound on A'. Fig. 

'Note that change in QQ can alter some of the bounds obtained by minimization of the tree level potential 
and more detailed treatment should include 1-loop corrected potential, see G. Gamberini, G. Ridolfi and F. 
Zwirner, Nucl. Phys. BS31 (1990) 331 



1 displays bounds on couplings X i l l  and A',,, obtained by demanding m, (m,)r,,, + 
(mue)rOOP 5 2.0eV. Curves for three representative values of tan /3 and u n i v e d  gravitino 
mass m are shown. For comparison, we also display in the same figure the existing bounds 
on these couplings. The most stringent bound on X i l l  is derived from neutrinoless double 
beta decay [7] and on X i 2 ,  from the process I<+ + 1r+v0 [4] . These are shown as function 
of M2 in the same figure using MSSM expressions for the relevant squark masses. It  is seen 
that the bounds derived here are comparable or better (in case of larger values of M2 ) than 
the already existing ones. 

Figure 2. Neutrino mass constraints on for a) tanP = 5 and b) tanP = 25; on A;,, 
for tanP = 5 c) considering only loop contributions and d) loop as well as sneutrino vev 
contributions are shown for m = 50 GeV. 

Fig 2 shows the bounds on X i 3 ,  and for p > 0. The X i m  is constrained most and is 
required to be as low as 3 x even for tan /3 = 5. For comparison we also show the limit 
on X i 3 ,  which would follow if sneutrino vev is completely neglected as in previous works 
[5, 63. It is clear that inclusion of this vev drastically alters the bound. We also display limit 
on which was poorly constrained in the previous analysis [9]. The bounds on other 
couplings X i j , ,  not explicitly displayed in above figures can be read off from eq.(6.14). These 
constraints are listed in a table for two representative values m = 50 GeV, M2 = 150 GeV 
and m = 50 GeV, M2 = 175 GeV and tan /3 = 30. These respectively correspond in MSSM 
to m,i, - 474,553 GeV. It is seen that the neutrino mass considerably improves on the 
existing constraints. This table is given to illustrate the importance of the bounds following 
from the neutrino mass. It should however be kept in mind that these bounds are sensitive 
to the choice of the MSSM parameters a fact which becomes evident through figures (1-2). 

Thus, we have investigated the restrictions on the R parity violating trilinear couplings, 
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specifically the X i j k  implied by neutrino mass. These restrictions have been discussed earlier 
[5,6] but earlier discussions either neglected very important and dominant contribution due 
to the induced sneutrino vev or did not incorporate the effect of the quark mixing. We have 
attempted here a complete analysis which incorporates these and also pays careful attention 
to the dependence of the bounds on the choice of basis. Unlike the earlier works, we have 
also numerically discussed the bounds in terms of parameters of the MSSM. 

Many of the discussions and in particular the generation of sneutrino vev in the presence 
of a single trilinear coupling would be true in a more general set up, e.g. in case when soft 
terms arise from the gauge mediated supersymmetry breaking. The main point following 
from our analysis is that the electron neutrino m& provides much stronger constraints on 
R violatiou aid associated plici~oi~~cuology than 11w bee11 hitllerto realized. 

6.4 HERA anomalies 

The HERA experiments a t  DESY, collide electrons (or positrons) with protons. The elec- 
trons typically carry an energy of - 30 GeV, whereas the protons carry an energy of around - 820(920) GeV. In addition to measuring the structure functions of the protons through 
the DIS (Deep Inelastic Process), these experiments are also ideal to verify R-violating inter- 
actions. The experiment consists of two general purpose detectors, H1 and ZEUS. In 1997, 
anomalous events have been reported by the H 1  and the ZEUS detectors [lo] a t  HERA in 
the deep inelastic e+p  scattering. They claimed to have found a resonance for a leptoquark 
of mass - 200 GeV. This has generated considerable excitement within the community [ l l ]  
as, if substantiated these results could form strong evidence for physics beyond the SM 
and may be for supersymmetry. The work presented here is based on ref.[l2] which was 
motivated from the results discussed above. However, this evidence for the leptoquark did 
not stand the test of time and the subsequent data from HERA [13] were cogsistent with 
the Standard Model expectations. We describe here the work in ref.[l2] for the sake of 
completeness, though it is now only of academic interest. To this extent, we consider here 
data reported by HERA in 1997. 

The available data when taken seriously allowed for two possible interpretations: ( a )  
Tlre prescIlce of sollie lepton number violating contact interaction [14] or ( i i )  productiol~ 
of a resonance in the e+q channel. MSSM with R-violation 111, 15, 161 provides a natural 
theoretical framework to incorporate the second possibility although an alternative in terms 
of a scalar leptoquark [17] is open. 

The supersymmetric interpretation of the HERA events assumes that the excess events 
seen a t  HERA are due to resonant production and subsequent decay of the q u a r k  to e+q.  
Three possibilities have been considered in this context[ll, 15, 161: e;dR + EL, ekdR 3 
fL, eftsR + fL. In analyzing these scenarios [ l l ,  15, 161 it has been implicitly assumed that 
the squark masses are free parameters of the model. While this would be true in the most 
general situation, specific model dependence can alter some of the conclusions. Our aim 
is to show that the very minimal model dependent assumption on the charm squark mass 
necessarily requires large Xi21  to understand HERA events and this large coupling by itself 
is ruled out from other constraints like neutrino mass bounds which we have obtained in 
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the previous section. 
The specific assumption that we make and which leads to the above conclusion is that 

the charm squark mass squared is positive a t  the unification scale. This assumption is true 
in the radiative electro-weak breaking scenario with universal boundary conditions a t  the 
GUT scale, but it can also be true in a much more general context. We shall first assume 
that the gaugino masses are unified a t  MGuT but demonstrate later that the removal of 
this assumption does not significantly change the basic conclusion. The argument leading 
to the above conclusion is largely insensitive to the details of the radiative SU(2) x U(1) 
breaking in the MSSM and runs as follows. 

Consider the following R violating couplings: 

The above terms are defined in the quark mass basis and I< denotes the Kobayashi-Maskawa 
matrix. The charm squark interpretation of the HERA anomaly requires A',,, to be non- 
zero. The HERA data can be explained provided 

The number in the numerator of eq.(2) is indicative of the required range and depends upon 
the weightage given to the different experiments as well as on the next to leading order QCD 
corrections [HI. In the following, we shall take the value 0.025 for the numerator in the 
RHS of eq.(2). B refers to the branching ratio for the squark decay to  qe+. This decay would 
take place through the coupling in eq.(l) itself. B is also influenced by the R conserving 
decays of the charm squark to an s (c) and a chargino (neutralino) . The X i 2 ,  and the 
parameters p,  M2, tan p determine B in the MSSM. HERA data can be recomciled if for a 
region in these parameters (a) eq. (2) is satisfied, (ii) Xi2 ,  is consistent with other constraints 
[4, 7, 191 due to R breaking and (iii) charm squark has a mass around 180- 220 GeV. 

In supergravity based models, the charm squark mass a t  the weak scale is governed by 
the gauge couplings and the gaugino masses. Its value a t  Qo = 200GeV is given in the 
limit of neglecting Kobayashi-Maskawa and EL - 2~ mixing by 

mlL (QO) % m:, (MGUT) + 8 . 8 3 ~ :  + 112 M; cos 2/3 (1 - 413 sin2 Ow) (6.17) 

where we have assumed that the gauge couplings and the gaugino masses are unified a t  the 
GUT scale, MGUT = 3 x 1016GeV and chosen cr,(Mz) = 0.12. The M2 in eq.(3) is the 
value of the wino mass a t  the weak scale identified here with Mz. The last term in the 

'The lower limit is obtained when H1 and ZEUS data from 1997 run are also included while the upper 
limit corresponds to inclusion of H1 data alone. In both cases, 30% increase in the relevant cross section 
due to next to leading order corrections [IS] is assumed. 

5We also neglect the effect of additional trilinear R violating couplings on the running of the charm 
squark mass. Their inclusion does not significantly alter the charm squark mass even when they are large, 
see e.g. IS. Cheung, D. Dicus and B. Dutta [20]. 



Neutrino Mass constmints on R violation and HERA anomaly 91 

above equation is a (-ve ) contribution from the D-term. It follows that the charm squark 
mass provides strong upper bound on M2 as long as m2, (MCLrT) > 0: 

220 GeV 1 / 2  

M2 5 74.04 GeV ( mci ) (1 - 0.06 cos2P ( ) ' )  220 GeV 
(6.18) 

mc; 

The brai~cl~ii~g ratio B is determined in the MSSM by the following widths 1211: 

GL = 

GR = 

We have adopted the 

mc Nil," 
2  mw sinew sinp '  

same notation as in [21]. From the expression for B in terms of 
the above decay widths, and the HERA constraint, eq.(2), one can solve for the allowed 
Xi21. The contours in the p - M2 plane for different values of X i z 1  are displayed in fig l a  
(tan @=l) and fig l b  (tan /3 = 40). The horizontal lines in these figures show the upper 
bound on Mz, eq.(4). We also display, the curves corresponding to two representative values 
of the chargino masses namely 45 and 85 GeV. The later is the present experimental bound 
obtained assuming R conservation. This need not hold in the presence of R violation. It 
is seeit froin fig.lb that for c11argi:to 1 1 1 ~  around 85 GeV, the bound on M2 by itself rules 
out charm squark interpretation for large tan P independent of the value of X i z 1  6 .  But 
irrespective of the value of t a n 0  and the chargino mass one needs very large X i 2 l  2 0.13 
in order to satisfy the bound on M2 coming from the charm squark mass. This strong 
bound on X i 2 ,  arises because of the following reason. For M2 L 74GeV, a t  least one of 
the charginos is sufficiently light and contributes dominantly to the EL decay. This reduces 
B ' and results in large value for X i a l  due to eq.(2). In contrast, the chargino decay is 

"Specifically, the upper bound on Mz can be reconciled with the chargino mass of 85 GeV or more only 
if tan@ 5 2.5. 

'Reduction in the branching ratio for charm squark decay in case of the minimal model was also noticed 
in [16]. 
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suppressed kinematically for tan@ - 1 if M2 > 200 GeV. This results in smaller allowed 
value as seen from the figure. But these are in conflict with the charm squark mass. 

Let us now see if one could make large consistent with other constraints. The 
strong constraints come from atomic parity violation [19], the decay I<+ + nvi? [4] aad the 
electron neutrino mass which we have derived above. The data  from Cs on the relevant 
weak charge have been argued Ell, 221 to imply 

a t  20 level in conflict with the large value required here. In principle, the extra contribution 
due to charm squark to atomic parity violation can be canceled by a similar contribution 
from the scalar bottom or strange squark but the existing constraints on the relevant cou- 
plings make this cancelation difficult [22]. Thus, one cannot easily avoid the atomic parity 
violation constraint strictly in the MSSM but this can be done by postulating new physics, 
e.g. the presence of an extra Z 1221. 

Fig 1 a: The contours (continuous lines ) of constant Xi2 ,  obtained by imposing HERA 
constraint, eq.(2). The contours are for values 0.05, 0.08, 0.12, and 0.13. The horizontal 
dashed line represents the bound on M2 coming from requiring mc, = 220 GeV. The vertical 
dash-dot lines represent the bounds on the chargino mass, the upper one for a mass of 85 
GeVand the lower one for a mass of 45 GeV. All the above are computed for tanP = 1. 
Fig 1 b: Same as fig l a  but for tanP = 40 and X~2,=0.05, 0.08, 0.12, and 0.135. 

The other significant constraint comes from the decay K+ + nu0 which implies [4] 
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The electron neutrino mass also gives similar constraint in the same parameter range. The 
question of choice of the basis becomes relevant in the discussion of these constraints. This 
is particularly so when one assumes only one X i j k  to be non-zero. For X i 2 ,  defined in the 
mass basis a s  in eq.(l) the above constraint is unavoidable if rest of the couplings are zero. 
This basis choice is natural from the point of view of interpreting HERA results but is not 
unique. One may redefine the couplings as 

and rewrite eq.(l) as follows: 

HERA result would now require to be large. If this is the only non-zero then 
there will not be any constraint on itlzl from the neutrino mass or from the I<+ + KVV 
decay [4]. But eq.(lO) will now generate a contribution to the neutrinoless double beta 
decay which is also severely constrained. Specifically, one has [7] 

This clearly does not allow itlzl of O(0.1). Thus, notwithstanding basis dependence one 
has problem in accommodating large value for the relevant coupling. An alternative is to 
allow more than one non-zero itijk. It is seen from eq.(lO) that P l j l  (j=1,2,3) contribute 
to the neutrinoless pp decay and simultaneous presence of these may lead to cancellations. 
Eq.(ll)  now gets replaced by P 

With itlzl - 0.13, cancellation between the last two terms is unlikely as it requires itlsl - 2. 
The first two terms can cancel but the itlll is independently constrained from the neutrino 
mass. Its presence generates a large contribution to the electron neutrino mass induced 
through neutrino-gaugino mixing which can be given as, 

The value of the induced sneutrino vev is sensitive to the MSSM parameters as we have 
seen above, but can be approximately written as, 

Requiring m, 5 2eV leads for msusy - 100 GeV to 
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It is seen that cancellations between the first two terms in eq.(12) are feasible and can 
allow X121 N 0.13 if this fine tuning is accepted. It must be added that the bound in the 
previous equation is quite sensitive to the MSSM parameters and for a large range in these 
parameters, the actual bound can be stronger than the generic bound displayed above. 

While wino and zino control the decay of the charm squark, its mass is mainly controlled 
hy t h  Ii~rgcn r;uli;t.tivc* corrtr'tiot~s cirivon by the gluino masu. Thc unification of tho gaugino 
mass parameters relates the two and leads to the above difficulty. Thus giving up this 
unification may open up a possibility of reconciling HERA events . Let us treat the gaugino 
niwes MI,2,3 at Mz as i~irlcpelrdcnt paranwteru. The11 iiltegratiou of the RG eyuatiou for 
the charm-squark from McuT to Qo = 200 GeV leads to 

+ 1/2 M; cos 2P (1 - 4/3 sin2 Ow) (6.29) 

If gaugino masses were to be unified at MGUT then M3 N 3.25M2 and Ml - 0.5M2. Even 
in the absence of such unification, the physical gluino mass mp N (1 + 4.2%)M3 must be 
greater than the charm squark mass if large X i z l  is to be avoided. This follows since in 
the converse case, the charm quark would predominantly decay to a gluino and a quark. 
This decay being governed by strong coupling, would dominate the other decays and would 
reduce B. The later is given in case of m;, >> mg by 

Such a tiny value of B would need unacceptably large Xi,,. It therefore follows that one 
must suppress the squark decay to gluino kinematically by requiring mg > m?,. Given this 
bound on M3 it follows from eq.(15) that 

M2 5 170 GeV 

if m,-, - 220 GeV. This bound on M2 is weaker than the one in the case of the gaugino mass 
unification, eq.(4). But it nevertheless cannot suppress the decay of quarks to chargino 
kinematically. It follows from Fig, 1 that one now approximately needs A',,, 2 0.08. This 
value is close to the 2a limit coming from the atomic parity violation but one would still 
need some cancellations to satisfy other constraints as discussed above. Thus giving up 
unification helps only partially. 

An alternative possibility is to allow for a -ve (mass)2 for the charm squark at the uni- 
fication scale. In view of the large positive contribution induced by the gluino mass such 
negative (mass)2 need not lead to colour breaking and may be consistent phenomenologi- 
cally. In fact a -ve (mass)2 for top quark has been considered in the literature in a different 
context. The universality is a simplifying feature of MSSM but it does not follow from any 
general principle. It does not hold in a large class of string based models which may allow 

'Note that fig.1 is based on the assumption of MI = 0.5Mz but does not use any relation between Mz 
and Ms. 
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negative (mass)2 for some sfermions as well [24]. Such masses can also arise when SUSY is 
broken by an anomalous U(1) [25] with some of the sparticles having -ve charge under this 
U(1). 

The large radiative corrections induced through the running in squark masses from a high - MGUT to  the weak scale has  played an important role in this analysis. In contrast to  the 
supergravity based models, this running is over a much smaller range in models with gauge 
mediated supersymmetric breaking. But in these models, the initial value of the charm 
squark (mass)2 is positive and large with the result that  these models are incompatible with 
the charm squark interpretation of HERA anomaly even without the radiative corrections 
9 

The interpretation of HERA events in terms of stop may not suffer from the above 
mentioned difficulty encountered for the charm interpretation for two reasons. Firstly, the 
stop mass is reduced compared t o  the charm squark mass due to  the possible large ir, - iR 
mixing as well due t o  the large top coupling. Secondly, this mass also involves one more 
parameter (the trilinear couplings A) compared t o  the charm squark mass. Thus while this 
is a less constrained possibility, imposition of the requirement that  mi - 200 GeV would 
certainly lead to  more a constrained parameter space than considered in model independent 
studies [15]. 

In summary, we have shown that  the charm squark interpretation of HERA events is 
possible only for large X i 2 ,  - O(0.1) in a large class of supersymmetric standard models 
cltari~tcrixcd by a. positive c l i i~ru~ squnrk (111ass)~ a t  the GUT scale. The si~uplcst iutd 
the most popular minimal supergravity model with universal boundary condition falls in 
this class. The required large value of R violating parameter is difficult t o  admit without 
postulating new physics and /or fine tuned cancellations due t o  constraints coming from the 
R-violating processes like neutrino mass, I<+ + d v f i  etc. However, the later da ta  from 
H E M  experiments did not substantiate their claim for a resonance. Treating Che deviations 
at 200 GeV as statistical fluctuations, the HERA collaborations have now put constraints 
on the mass and generic couplings of leptoquarks. These bounds are now compatible with 
the results obtained from Tevatron [13]. 

'See,  K .  Cheung, D. Dicus and B. Dutta [20]. 
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Chapter 7 

Conclusions 

The highly successful Standard Model has t o  be incorporated in larger theories t o  have a 
deeper understanding of Nature. Supersymmetric Standard Models have been built to  solve 
the hierarchy problem which is encountered whenever Standard Model is being incorporated 
into a larger theory. Experimentally, one of the first signals for physics beyond Standard 
Model is provided by the atmospheric neutrino experiments which indicate the existence 
of atleast one non-zero neutrino mass. An interpretation of both solar and atmospheric 
neutrino anomalies interms of neutrino oscillations would lead t o  a specific pattern of the 
neutrino mass matrix. In this thesis, we studied the possibilities of generating such a pattern 
within the context of Supersymmetric Standard Models. 

Neutrino masses can be generated in the Supersymmetric Standard Model as it natu- 
rally allows for lepton number violation. Models which violate lepton number are classified 
into bilinear and trilinear lepton number violating models based on the dimensionality of 
the couplings in the superpotential. Firstly, we studied in detail models which violate l e p  
ton number only through bilinear (dimensionful) couplings. In these models, only three 
R-parity violating couplings determine the scale of the neutrino masses. The masses are 
naturally small due to  Yukawa suppression if universal boundary conditions are assumed a t  
the high scale. After presenting a general analytical structure of the neutrino mass matrix 
in these models, we have studied them in detail in the framework the Minimal Messen- 
gcr Model (MMM) of gnugc mediated supersymmetry breaking. The bilinear R-violatiug 
model within MMM, is very economical with essentially only four parameters, the three R- 
parity violating couplings and the supersymmetry breaking scale A, determining the three 
masses and three mixing angles of the neutrinos. We have shown that  these models are 
too restrictive t o  provide simultaneous solutions for solar and atmospheric neutrino p r o b  
lems. For simultaneous solutions with MSW conversion, we have numerically shown that  
these models do not provide the required mass hierarchy in the neutrino mass eigenvalues. 
On the other hand, for simultaneous solutions with vacuum oscillations, we have shown 
that these models cannot accommodate the two large mixings required. Thus, extensions 
of the minimal messenger model are inevitable for existence of simultaneous solutions for 
solar and atmospheric neutrino anomalies within these models. A simple extension which 
would allow for a negative p parameter would be able t o  provide the required framework 
for simultaneous solutions. 

The other class of models we have considered are models with trilinear lepton number 
violation. These models, unlike the bilinear case, offer much larger freedom due t o  the 



larger number of parameters present. One of the major results of this thesis is the effect of 
Renormalisation Group Evolution on the' neutrino mass spectrum in the presence of only 
trilinear (dimensionless) lepton number violating couplings in the model. RG evolution 
generates non-zero soft bilineat lepton number violating couplings at the weak scale though 
these couplings are absent at the high scale. These would generate vacuum expectation val- 
ues (vevs) to  the sneutrinos leading t o  non-zero mixing between neutralinos and neutrinos. 
A 'tree level' neutrino mass is thus generated, which we call the 'RG induced tree level' 
mass. Analyses of the neutrino mass matrix in these models presented in the literature 
have been neglecting this important contribution which can drastically alter the neutrino 
mass spectrum in these models. We have analysed the neutrino mass spectrum taking into 
consideration RG induced tree level mass contribution in addition to  the standard 1-loop 
induced masses within the framework of mSUGR+ inspired MSSM. Our results show tha t  
the model favours vacuum solution t o  the solar neutrino problem while simultaneously al- 
lowing solutions for the atmospheric neutrino problem. However, there exist regions in the 
parameter space where the hierarchy in the neutrino mass eigenvalues is reduced due t o  a 
suppression of the tree level mass. In these regions, Large Angle MSW solution is preferred 
which is favoured by the latest data  from super-Kamiokande. 

In addition to  studying the neutrino mass spectrum in the R-parity violating scenarios, 
one can instead consider bounds on the lepton number violating couplings due to  direct 
experimental limits on the neutrino masses. Since neutrinos attain majorana masses in 
this case, the most stringent limit on them comes from the non-observation of neutrinoless 
double beta decay. Using this experimental limit, bounds on the R-parity violating couplings 
can be derived. The existing limits do not consider the RG effects on the neutrino mass. 
But, as we mentioned above, the RG induced tree level mass would alter the neutrino mass 
spectrum drastically. We have included this effect and re-derived bounds on the lepton 
number violating couplings. In addition t o  this, we have also considered the H e c t  of CKM 
matrix and discussed the basis dependence of these bounds. We have subsequently used 
these bounds in our discussion of the charm squark interpretation of the now defunct HERA 
anomalies. However, our analysis is of general nature and can be redone if a relevant case 
arises in the future colliders. 

So far, in this thesis, we have concentrated on specific models of R-violation and super- 
symmetry breaking to  study the structure of neutrino mass matrix. Though some of the 
properties of the neutrinb mass matrix (essentially related t o  solutions of solar and atmo- 
spheric neutrino problems) depend on specific models of R-violation and type of supersym- 
metry breaking, most of the properties hold true in any of the R-violating scenarios. We 
summarise them as follows. 

(i) R -violating couplings 

Majorana masses for the neutrinos are produced in these models due t o  the presence of 
lepton nu~ribcr violating couplings. The neutrino masses are proportional to  the square of 
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these couplings. In the limit R-violating couplings are set t o  zero, there are no neutrino 
masses in these models and they represent the standard MSSM with R-parity. 

(ii) Hiemrchical masses 

Neutrinos attain masses both a t  the tree level as well as at the 1-loop level. The tree 
level mass is generated indirectly through the bilinear soft L violating terms in the scalar 
potential. They are either present 'originally' in the scalar potential or generated at the 
weak scale through RG scaling. The total neutrino mass matrix is sum of the tree level 
and 1-loop contributions. At the tree level only one combination of the neutrinos attains 
mass. The other combinations attain mass at the 1-loop level only. The tree level mass is 
much larger compared to  the 1-loop contribution for most of the R-violating theories. The 
hierarchy in the neutrino mass spectrum is typically characterised by m ~ ~ f C ~ .  Since this 
factor is much smaller than one, large hierarchy in the neutrino mass spectrum is natural 
in these models. In some theories it is possible t o  find regions in parameter space where 
the tree level mass is suppressed and becomes comparable t o  the 1-loop level mass. 

(iii) Large Mixing 

In most of these models, by suitable analytical approximations one can decouple the neutrino 
mass matrix into R-violation dependent part and R-violation independent part. The R- 
violation dependent part determines the mixing in most of the cases. The mixing angles 
are dependent on ratios of the R-violating parameters. When R-violating parameters are 
equal in magnitude large mixing is natural in the model '. But this does not guarantee us 
that  two large mixing angles can be simultaneously accommodated in these models. 

(iv) Role of Yukawas 

The R-violating parameters which determine the neutrino masses are always accompanied 
by down quark or charged lepton Yukawa couplings. Thus in the limit of vanishing charged 
lepton and down quark Yukawa couplings, neutrino masses also vanish in these theories (In 
~r~odels  with only dimensionful R violation this is true only in the case of universal boundary 
conditions a t  the high scale). This dependence on the Yukawa couplings can be understood 
in tcrms of a U(1) symmetry. In the absence of down quark, charged lepton Yukawas and 
the p term, the superpotential is invariant under the U(1) with charges for the superfields: 

and the rest of the superfields carry zero charge. 1 is an integer. The neutrino remains 
massless in this case. The Yukawas and the p term break this symmetry and thus accompany 
the R-violating terms in the neutrino mass formulae. 

(v) Small R violation 

- - 

'This may not hold true in some models with only X couplings. 
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Neutrinos are the only standard model fermions which attain mass through the soft 
sector in these theories. Whereas the loop induced masses are suppressed by the Yukawa 
couplings and are small, the tree level neutrino mass can be in general very large - O(MaUav) 
in these models. These large neutrino masses have to be suppressed to  be phenomenologi- 
ridly 11w;wi11gf111. TII(w III;IN+(W ( * i b l i  lw wpprwwl  ( 4 t h r  i t1  ;L ~ ~ i ~ t i ~ r d  wi1.y or by i L  c11oiw o f  
suppressioll of the parameters: 
(a) By a suitable choice of the boundary conditions for bilinear lepton number violating soft 
terms a t  the high scale where supersymmetry is broken, one can bring down the neutrino 
masses to O(100 MeV) in these models 2. For example, by choosing these terms to be zero 
a t  the high scale (as naturally happens in models with only dimensionless lepton number 
violation) or to be of the same magnitude as the other bilinear terms like B, at the high 
scale (as happens in models with universal boundary conditions) leads to bilinear lepton 
number violating soft terms which are only Yukawa suppressed a t  the weak scale due to 
RG scaling. This kind of suppression can generally lead to  O(100 MeV) neutrino masses. 
(b) One can always 'choose' the two contributions to the sneutrino vev to cancel each other. 
This naturally happens for some parameter space in mSUGRA inspired MSSM. But, in 
model independent analyses, which we discuss below the two parameters which contribute 
to  the sneutrino veu or the sneutrino vev in general itself are free parameters of the model. 
In these cases, there is no natural choice of the sneutrino vev and it has to be chosen small 
in order to have a small neutrino mass. 

Both the above methods would not be able to suppress the neutrino mass sufficiently 
to give the right scale of - O(eV). Thus one has to choose extremely small R-violation to 
generate O(eV) neutrino masses in these models. This is possible as the neutrino masses are 
directly proportional to the R-violating couplings in these models. For example, to accom- 
modate solutions of solar and atmospheric neutrino problems, bilinear R-parity violating 
paratmeters are squired to be 0(10-~) x Ma,,,,. Similarly the dimcnsionlcss A' couplings arc. 
typically required to be of 0( loe4)  in these models. Some models have been explored in 
literature where a natural way of such small R-violation can be achieved [I, 2, 3, 41. 

(vi) Experimental Signatures 

R-violating theories allow for completely different experimental signatures in comparison 
to the standard MSSM. The additional L violating couplings have characteristic signatures 
some of which we have already seen in chapter 6. A comprehensive study of experimental 
signatures of R-violating theories has been recently presented in [5]. The models presented 
in this thesis have restricted the R-violating parameter space as well as the standard super- 
symmetry soft parameters so as to provide simultaneous solutions to solar and atmospheric 
neutrino problems. Thus these models would have different mass spectrum and decay signa- 
tures. An analysis of this type combining neutrino masses and experimental signatures have 
been done in case of some models recently [6, 71. The other most important consequence of 
R-violation is that the LSP is no longer stable. One has to look for a new cold dark matter 

'This may not generally hold true for some models with only trilinear X couplings. 



candidate in these models. 
Thus we see that R-parity violating theories provide a natural framework where small 

neutrino masses can be reaiised. In these models neutrino masses are calculable in terms 
of few basic parameters and thus can predict the existence of solutions for solar and atmo- 
spheric neutrino masses within specific modeis of supersymmetry breaking. Both bilinear 
and trilinear R-violating models have various interesting features associated with them 
making studies within these theories important and essential. 
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