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Chapter 1

Introduction

1.1 Particle Physics: A Paradigm in Reductionist Approach

The physics curriculum in the 1898-99, University of Chicago catalogue begins with a

very Victorian preface [1]:

“While it is never safe to affirm that the future of the Physical Sciences has no
marvels in store even more astonishing than those of the past, it seems probable
that most of the grand underlying principles have been firmly established and
that further advances are to be sought chiefly in rigorous applications of these
principles to all the phenomena which come under our notice ... An eminent
physicist has remarked that the future truths of the Physical Sciences are to be
looked for in the sizth place of decimals.”

Perhaps today, a century after it was written, we are closer to the truth of this quote.
Looking at the complexity and vastness of the Universe, both in time and space, it is
indeed remarkable how well we have understood its nature at the smallest and the largest
possible space-time scales. This speaks for the power of reductionist approach, which
aims to understand the most complex, in terms of the properties and inter-relations of the
simplest basic units. The methodology of Science is a paradigm in reductionist approach
and Particle Physics claims to be the science of ultimate reduction: the basic building
blocks, their properties, inter-relations and interactions which bind them to give complex
structures such as observed in nature.

It is interesting to note how our conception of the basic building blocks of universe
has changed over the period of last few centuries. Newton thought that both matter and
light have particle nature. Young’s famous double slit interference experiment established
that Light possesses wave nature. Birth of Quantum Mechanics erased the mutually
exclusive wave or particle nature in favour of wave-particle duality. The era of Quantum
Field Theory introduced ‘fields’ as basic entities and defined particles as quanta of field
excitations. Impressive contact of Quantum Field Theories (in the garb of Standard

Model) with experiments dominated Particle Physics for last more than half a century.

1



Introduction 2

In spite of its resounding success in predicting experimental results with high accuracy,
Standard Model (SM) is not palatable to theorists as a complete fundamental theory of
particles and interactions. Among other reasons (to be discussed in section 1.3), it has a
large number of unexplained free parameters and does not incorporate gravity. The reason
being, gravitational coupling has a negative (mass)? dimension and hence does not satisfy
the criterion of renormalizability. A way out to this problem, is to cure the root of ultra-
violet infinities which are intrinsic to interacting quantum field theories when excitations
are point particles and interactions are local. With the neglect of gravity we had luckily
encountered theories without negative mass dimension couplings, where these infinities
can be absorbed into bare parameters by finite number of redefinitions. But in theories
with negative mass dimension couplings, the degree of divergence grows with each loop and
one needs infinite number of redefinitions and thus theory loses predictivity. This disease
was remedied by the theory where fundamental objects are extended excitations called
strings (generalized to encompass even more extended structures like membranes and so
on), which is the first finite theory of quantum gravity. So from Newton’s corpuscles to
strings and membranes, the quest for fundamental entities is still far from being resolved.
Nevertheless, we can justifiably subscribe to a pragmatic phenomenologist approach based
on the quantum fields paradigm which has served us so well in the last century. We shall
treat SM as an ‘effective field theory” which is a low energy approximation to some deeper
theory which may not even be a field theory. The reason that it describes physics so
well at accessible energies is that the Quantum Field Theory is the only way to reconcile

with the principles of quantum mechanics and relativity at sufficiently low energies (say

around 100 GeV) [2].

1.2 The Standard Model: A Dictation of Symmetries and Vio-

lations

The Standard Model of Particle Physics summarizes our current understanding of funda-
mental particles and their interactions. It’s beauty lies in the economy of a few symmetry
principles which completely dictate the Lagrangian of SM'. The rudimentary classification
of the fundamental particles is in terms of their kinematic properties, mass and spin(a
purely quantum attribute). Being kinematic properties these should follow as invariants
of space-time symmetries. Indeed mass and spin turn out to be two quadratic Casimir

invariants of rank two Poincare Group ? [4] . If Poincare Group were the only group of

To this one should also add the requirement of renormalizability.
2To be precise, all physical states in Quantum Field Theory can be labeled by the eigenvalues of
two Casimir operators (Pj, Wj), where P, is the momentum four vector and W), is the Pauli-Lubanski
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symmetries, it would make a very dull kinematic universe of free streaming massive /mass-
less scalars, spinors and vector particles devoid of any dynamics. For dynamics to set in
the particles must interact. It turns out that interactions follow naturally as a conse-
quence of certain internal symmetry groups which allow you to transform at your will at
different space-time points. The sole purpose of dynamics (interactions) is to ‘undo’ the
effects of these space-time dependent transformations of internal symmetry groups and
hence maintain the invariance of the lagrangian. Identification of such internal symmetry
groups operative in nature, completely dictates the nature of interactions and assignment
of particles to specific representations of internal and space-time symmetry groups. Sym-
metries, along with the requirement of renormalizability then complete the prescription
for the Lagrangian. A fundamental particle is then defined as the one whose field appears

in the Lagrangian.

1.2.1 Space-time Symmetries: Building the Blocks

If at all there are some space-time symmetry groups operative in nature, then the funda-
mental particles necessarily exist as specific irreducible representations of these groups,

3. The question is: Once

labeled by invariant kinematic attributes like mass and spin
they exist, what are they supposed to do? In the absence of any internal symmetries,
space-time symmmetries require them to blindly follow the initial conditions, irrespective
of place, time, direction or the choice of inertial frame for measurement. So the existence
of space-time symmetries in the absence of internal symmetries (dynamics) completely
determines the kinematics. But such a purely kinematic Universe would be dull and un-
interesting and we won’t be here to comprehend it if complex structures were not to form.
The very existence of complexity compels us to look for symmetries which make dynamics

possible.

1.2.2 Internal Symmetries: Gluing the Blocks

Having got the basic building blocks from space-time symmetries, let us look for the recipe

by which the building blocks communicate with each other via the well known strong,

pseudovector

31n trying to build the argument from the first principles, we propound a point of view that particles
follow as a consequence of symmetry principles. One can turn the entire argument around: In the vacuous
Universe devoid of particles, do symmetry principles make any sense 7 The question of primacy between
particles and principles properly belongs to the realm of metaphysics and hence any epistemological
answer cannot unambiguously settle the question of premises. The point of view of author is that con-
ceptualization proceeds its actualization and hence the guiding principles (group symmetries) necessarily
precede over the building blocks (group representations). We stress the ‘independence of principles’ from
our ‘cognition of principles’ which follows empirical observations.
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weak and elecromagnetic interactions. Note that the quantal description of elementary
particles makes use of complex numbers. But physical quantities are real so complex
phases can be changed at will without affecting the physical content. This invariance
under phase redefinition, called the gauge symmetry leads to charge conservation and is
the reason behind the existence of interactions [5]. Every fundamental interaction in the

nature follows a gauge symmetry principle.
§ Gauge Theory: An Abelian Example

The lagrangian describing free fermion of mass m is £ jpee = (i § —m)ep. It is invariant
under the global phase change ¢ — exp(ia)i. Now consider independent phase changes

at each space-time point x:

v — Y = expliax)]i. (1.1)
Because of the derivative, the Lagrangian then acquires an additional phase change at
each space-time point: §L = ¥iy*[id,a(z)]). The free Lagrangian is not invariant under
such changes of phase, known as local gauge transformations. Local gauge invariance

can be restored if we make the replacement 9, — D, = 0, + 1eA,, in the free fermion

Lagrangian, which now is

L= (i D—m)p =i §—m)b—eip Ale). (1.2)

Here A, is a vector field. The effect of a local phase in ¥ can be compensated if we
allow the wvector potential A, to change by a total divergence, which does not change the

electromagnectic field strength
F. =0,A,—0,A,. (1.3)

Indeed, under the transformation » — ¢’ and with A — A’ with A’ yet to be determined,

we have
L= §—m)p — e’ A% = (i §—m)p — ¢ Do) — ep A", (1.4)

This will be same as £ if .
A;(:n) = Au(z) — gaua(x). (1.5)

The derivative D, is known as covariant derivative. It is easy to check that under the
local gauge transformation, D,y — eia(z)DH;/). Thus we see that interaction term ey /A
naturally comes from an imposition of local internal symmetry. In a similar manner one
can understand Strong, and Weak interactions as following from imposition of certain local
non-abelian internal symmetries. The nature of interaction is dictated by the structure

of the symmetry group. The salient features of gauge theories are:
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e Interactions follow naturally when we require invariance under local transformations

of internal symmetry groups.

o Interactions among matter particles are understood as being mediated by vector
gauge particles. They transform as adjoint representation of the gauge group. Thus

vector particles naturally emerge as mediators of Interactions.

e Last but the not the least. Quite independent of experimental indications, one can
ask: Is there any compelling theoretical argument which makes gauge invariance
an inevitable requirement? Yes. Gauge invariance is the only way of reconciling

unitarity with renormalizability in theories with vector particles [6].

1.2.3 The Standard Model Lagrangian

It 1s clear that space-time and internal symmetry groups completely dictate the classifi-
cation and interactions of the fundamental particles. Electromagnetic interaction is the
result of invariance under the Unitary symmetry group U(1)ga. The so called Weak in-
teraction follows from the invariance under Unitary Symmetry Group SU(2)r,, which also
satisfies a special condition that its determinant is unity. The subscript ‘L’ stands for the
fact that it acts only on the left handed components of a four component Dirac spinor.
All too familiar nuclear force responsible for holding nucleons inside a nucleus, is actu-
ally a residual strong interaction among the constituents of nucleons called quarks. Such
a strong interaction is a consequence of the invariance under SU(3)¢ symmetry group.
Subscript ‘C’ implies that it acts only on those particles which carry strong charge called
the ‘colour charge’. The Standard Model of particle interactions is built upon the gauge
group Go = SU(3)c @ SU(2), @ U(1)y. Here U(1)y corresponds to an abelian symmetry
group acting over particles carrying non-zero hypercharge Y. The symmetry group Gy is

not exact and is spontaneously broken down to the invariant subgroups SU(3). @ U(1)gm
[3].

§ Dramatis Personae

All elementary fermions neatly classify into two broad categories ‘quarks’ and ‘leptons’ .
They transform under the SM gauge group Gy as shown in the table 1.2.3. The assignment
in the table 1.2.3 must be repeated three times since we know of the existence of three
families of quarks and leptons. Such a variety of quarks and leptons is called flavour.
Apart from the matter particles, there are force carrier gauge bosons, which are massless
in the limit of exact gauge symmetry. Strong force is mediated by 8 gluons, whereas weak

force is mediated by massive charged W+ and W~ bosons (linear combinations of W;
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SU®3)c 3 3 3 1 1
SU(2); 2 11 2 1
U(l)y 1/6 2/3 1/3 -1/2 1

Table 1.1: Classification of elementary fermions under SM gauge group

and W) and a neutral massive Z° boson (a linear combination of W3 and B, -the gauge
boson corresponding to U(1l)y). They are massive because they correspond to broken
symmetries. The familiar electrically neutral and massless Photon (A,), is then obtained
as an another linear combination of W5 and B,,, corresponding to the unbroken generator
@ of an invariant subgroup U(1)ga. But how does one account for the mass of fermions
and gauge bosons, as these mass-terms violate gauge invariance and also render the theory
non-renormalizable 7 Higgs mechanism is a way out to this problem. It uses the concept of
spontaneous symmetry breaking by introducing a complex scalar doublet ‘Higgs’, whereby
the Lagrangian retains the gauge symmetry but the vacuum does not. When the real
component of neutral scalar Higgs acquires ‘vacuum expectation value’ (vev), it gives
mass to the fermions and gauge bosons corresponding to the broken symmetry generators

without affecting the renormalizability.
§ The Weinberg-Salam Lagrangian
Having known the dramatis personae, the final Lagrangian can be written as:
Lsm=Lr~+Lym+ Ls~+ Lyur - (1.6)
The fermion part, L is given as,
Lr=1Uy"D, T, (1.7)

with
¥ = (Qi (ur)i, (dr)i, Li, (er):) , (1.8)
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where @); and L; represent quark and lepton iso-doublets and (ug);, (dr); and (eg); are
the up type, down type quark and charged lepton iso-singlets respectively. D,, represents

the covariant derivative of the field and is given as:
D, = 0, — ig.GAA — @'gwj I _i¢B,Y. (1.9)

Here A = 1,...,8 with Gf} representing the SU(3)¢ gauge bosons, I = 1,2,3 with W;{
representing the SU(2);, gauge bosons and B, representing U(1)y gauge boson. The self

interactions of the gauge fields are given as:
1 uvA ~A 1 pvlyrrl 1 uv
£YM - _ZG Guu - ZW WMV - ZB BMV) (110)
with

Gﬁy = aqu - al/Gﬁ —I' gs fABCGEGS
w!, = oW —-0W.+g fuxWW;
B, = 0,B,—9,B,, (1.11)

where f4pc(r7K) represent the structure constants of the SU(3)(SU(2)) group. The scalar

part of the Lagrangian is given as:

Ls=(D,H)'D,H - V(H), (1.12)
where
V(H)=m}yH'H + X (H'H)' (1.13)
and
H* 1
H= ~ (1, 2, —) . (1.14)
H° 2

The numbers in braces represent the transformation properties of Higgs under SM gauge

group. Finally the Yukawa part is given by,
Lyuk = h"QurH + hQdrH + h*LerH + h.c, (1.15)

where H = io?H*. Here we have suppressed the generation indices.

Symmetry breaking is induced by:

0
HY = ) 1.16
(H”) W (1.16)
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After symmetry breaking, the fields W¢ and B, recombine and re-emerge as physical
photon field A,, a neutral massive vector particle Z,, and a charged doublet of massive

vector particles Wﬂi:

gW2+¢B :
Z, = W = cosbw W, + sinfw B,
—g' W3+ ¢gB .
A = g = s W+ cosb B,
1
WE = — (W) +iW?), (1.17)

V2
where the Weinberg angle 8y is defined as tané,, = ¢’'/g. By examining the mass sector

one can read off the masses of the resulting vector particles.

1.3 SM: Vices and Virtues

Having discussed the basic tenets of SM, let us probe a little further into what it actually
achieved for us and where it fell short as a complete theory of fundamental particles [7].

On a positive note let us first list successes of SM.

o With the identification of a few symmetry principles and requirement of renormal-
izability, all particle types and interactions are rigidly determined. The spectrum

and the assignment of the fermions under Gy, renders the theory anomaly free [8].
e SM is renormalizable * [9].

e The most striking aspect of SM is its exceptional agreement with all the charged
and neutral current data. With the recent discovery of v, all the particles of SM
except Higgs boson have been experimentally detected. Also one can fit all the low

energy neutral current (NC) data just in terms of two parameters, sin® 6y and p

defined as:
My
 MPZcos by

Taking all the NC data into account, p is required to be close to unity. This is

p (1.18)

guaranteed by SM.

o In SM weak and electromagnetic interactions are mixed up together, although it is

incorrect to speak of a true unified picture of these two interactions.

4This virtue of SM is due the happy coincidence that interactions treated by SM do not have couplings
with negative mass dimensions.



Introduction 9

e Extremely economical prescription of a single Higgs doublet correctly accounts for
the symmetry breaking and masses for all the fermions and gauge bosons, without

affecting the renormalizability.

e At the tree level, no flavour changing neutral currents (FCNCs) arise (GIM mecha-
nism). With atleast three generations CP violation is predicted. The recent discov-
ery of CP violation in B system by the BaBar [10] and Belle [11] in accordance with
the predictions of KM theory is a triumph of the SM. Also It is possible to arrange
the parameters in the Yukawa sector in order to get phenomenologically acceptable

values of the mixing angle in the KM matrix.

e Baryon(B) and Lepton(L) numbers are accidental global symmetries, atleast at the
purturbative level. This is in concordance with extremely strong bounds on B and

L violating processes.

At present SM is extraordinary successful. The achieved accuracy of its predictions cor-
responds to the experimental data within 5% [12]. In spite of its stupendous success,
there are strong indications from theory as well as experiments, which require exten-
sions/modifications of SM [13]. We shall enlist a few of them and then discuss at length

only those which are central to our work.

§ Theoretical Shortcomings

e The major shortcoming of the SM is the so called hierarchy problem [4]. Higgs
particle gives mass to the entire spectrum of SM particles without affecting the
renormalizability of SM. The introduction of scalar Higgs being ad hoc, its mass
is not protected by any symmetry against quadratically divergent quantum correc-
tions. This drives the Higgs mass to the highest possible mass scale (Mx), where
new physics sets in. This can spoil the entire SM spectrum which critically depends

on the stability of Higgs mass.
e The SM cannot explain quantization of electric charge.

e The SM does not represent a unified description of the fundamental interactions.
Apart from the fact that gravity is completely left out of picture, strong force is not
unified with the weak and the electromagnetic forces. Strictly speaking, not even
weak and electromagnetic forces are unified in SM. The couplings g,, g and ¢’ have
quite different values whilst in a unified picture we would have expected an equality

of the strength of different forces.
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e The SM contains 21 a priori free parameters (3 coupling constants, 12 fermion
masses, 4 fermion mixing parameters, 1 Higgs mass, 1 independent gauge boson
mass). Any fundamental theory should be able to explain experiments in terms of

a few basic parameters.

e What is usually referred to as ‘fermion mass problem’ remains a complete mystery.
Why is there a replication of families for atleast three times? Why do fermion
masses show a strange geometrical hierarchy among families, when the mass ratios
are expressed as powers of cabibo angle 7 Fermion masses even within a family are
completely unpredictable. Also the parameters of the KM matrix are inputs of the
theory, instead of being predicted by the model.

e The SM cannot explain the generation of matter-antimatter asymmetry. Also it

cannot provide a candidate for the dark matter.
§ Experimental Indication

e Within SM, neutrinos are massless by design which does not allow for the right
handed neutrinos or the triplet Higgs. Recent experiments at Kamiokande, Super-
Kamiokande and Sudbury which measure neutrino flux from Atmosphere and Sun,
have reported a deficit in the neutrino flux as due to neutrino flavour oscillations the
[1, 2, 30, 30, 32]. Neutrino oscillations are considered to be unambiguous signatures
of non-degenerate neutrino masses. This calls for a drastic revision of SM to incor-
porate massive neutrinos [27]. At present, positive evidence for massive neutrinos

is the only experimental indication for Physics beyond SM.

It is clear that even if one ignores aesthetic quest for unification, the above mentioned
experimental result provides compelling reasons, to look for Physics beyond the Standard
Model. Models of Physics beyond SM tend to fall into two broad categories. (a) Models
which radically differ from SM in their basic premises like the nature of fundamental
entities (Strings, branes etc) and/or the dimensionality of space-time (models with large
extra dimensions). (b) Models which retain the basic premises of SM but augment the
space-time and/or internal symmetries of SM. Grand Unified Theories, left-right symmet-
ric theories and supersymmetry are examples of the latter class of models. It should be
noted that models in class (a) and (b) are not mutually exclusive and indeed there exists
attractive variants which combine the properties of class (a) and (b) both. As already
mentioned in section 1.1, all these models are severely constrained by the requirement of
reproducing SM as a low energy limit which is vindicated brilliantly by the experiments.
Since the problems addressed in this thesis are the so called low energy phenomena acces-

sible to present and future experiments, we shall retain the basic premises of SM and make
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extensions only in the symmetry principles of SM. One such attractive possibility is the
existence of supersymmetry (SUSY). Though invented as an exercise in group theory, it
has the potential of solving the infamous hierarchy problem, the quest for Unification and
the dark matter puzzle. More importantly it contains natural solutions to the above men-
tioned discrepancy in theory and experiments, namely Solar and Atmospheric neutrino
deficits.

1.3.1 Naturalness: An Excuse for Supersymmetry ?

The guiding philosophy behind ‘naturalness’ is as follows: the effective interactions at a
large length scale, corresponding to a low energy scale p, should follow from the properties
at a much smaller length scale, or higher energy scale p5, without the requirement that
various different parameters at the energy scale py match with an accuracy of the order
of p11/p2. That would be unnatural[4]. On the other hand, if at the energy scale yy some
parameters would be very small, say a(uz) = O(ui/p2) then this may still be natural
provided that this property would not be spoilt by any higher order effects. That is,
at any energy scale p, a physical parameter or a set of parameters o;(u) is allowed to
be very small only if the replacement o;(p) = 0 would increase the symmetry of the
system. For instance, at a mass scale ¢ = 50 GeV, the electron mass m, is 107° GeV.
This is a small parameter and is acceptable because m, = 0 would imply an additional
chiral symmetry corresponding to separate conservation of left-right chiral electron like
leptons. This guarantees that all renormalizations of m. are proportional to m, itself.
Similarly gauge coupling constants and other sets of interaction parameters may be small
because putting them equal to zero would turn the gauge bosons or other particles into
free particles so that they are separately conserved.

The difficulties with unnatural mass parameters only occur in theories with funda-
mental scalar fields and hence SM with adhoc scalar Higgs is plagued with the problem of
“naturalness”. The Higgs mass-squared, m%, is small at energy scale u > mpy. Is there

an approximate symmetry if mgy — 0 7 One might consider a Goldstone type symmetry:
H(z) — H(z)+ const. (1.19)
However we also have the local gauge transformations:
H(z) — Q(x)H(x). (1.20)
Above transformations only form a closed group if we also have invariance under

H(z) — H(z) 4+ c(z). (1.21)
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But then it becomes possible to transform Higgs away completely which makes Higgs
unphysical. Alternatively, we could have that eq.(1.19) is an approximate symmetry only,
and it is broken by all interactions that have to do with the eq.(1.20) which are the gauge
field interactions that have the strength of O(1/137). So at best we can have that the
symmetry is broken by O(1/137) effects. Therefore,

miy
? > 0(1/137). (1.22)
Also the self interaction term of Higgs field breaks this symmetry. Therefore,
2
m
Tf > 0(\) > 0(1/137). (1.23)

Now m% ~ O(Mv?) where v = 174 GeV is the vev of Higgs. This implies
p < O(v) = O(174GeV). (1.24)

This means that at energy scales much beyond v, our model becomes more and more
unnatural. This is reflected in the instability of Higgs mass under quantum corrections

which diverge quadratically. The renormalized Higgs mass is given as,

1
2 ~mi A? 1.25
Myen. Mpare + 1672 ’ ( )

for all dimensionless couplings of order one. A is the cut off scale for the quadratically
divergent integral, where new Physics sets in to alter the high energy behaviour. Thus
in SM, the Higgs mass gets driven to the highest possible scale such as Mpaner. For
correct electroweak (EW) breaking we require m?,,, ~ (100GeV)%. This can be achieved
by cancellations between mj, _ and the quantum corrections, which is of the order of one
part in A?/(100GeV)2. For A = Mpjancr this calls for enormous fine tuning in the bare
Higgs mass parameter and the quantum corrections, which is unnatural. Such a problem
does not occur for dimensionless couplings, since the quantum corrections are proportional
to the logarithm of the cut-off scale or for the fermions masses which are protected by
chiral symmetries. Supersymmetry (SUSY) provides a solution to the gauge hierarchy
problem as it relates fermions and bosons, by putting them in the same representations
of SUSY transformation. Now the Higgs mass gets self energy corrections from fermionic
and bosonic loops which have a relative negative sign and hence give rise to cancellations

required to maintain the correct hierarchy between the EW scale and the Planck scale.

1.4 Supersymmetry

The generators of space-time and internal symmetries commute with each other and

hence internal symmetries relate particles with same mass and spin. Supersymmetric
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field theories are based on the supersymmetry algebra, a graded extension of the Poincare
algebra, obtained from the latter by adding generators of fermionic character, obeying
anti-commutation relations [21]. The basic anti-commutation relations of the supersym-

metry algebra are, in two component notation:

{Qu.Qa} =208 P . {Qu,Qs} = {Q0. @3} = 0. (1.26)

The most convenient way to classify the representations of SUSY and to construct
actions invariant under the SUSY is to make use of superfields formalism given by Salam
and stathdee [22]. Superspace is defined via the generalized coordinates z = (z,6,6),
where z are the usual space-time coordinates, and 6, 8 are the two component anti-
commuting coordinates. A superfield is a function in superspace, and can be expanded

in ordinary fields as follows:

¢(z) = fx)+Ox(x) + 0x(z) + 68m(z) + 66n(z) +
+ 85" 8v,(x) + 000X(z) + 608 () + 6006d(x). (1.27)

To obtain irreducible linear representations of supersymmetry, suitable constraints
must be imposed on the generic superfields. The two types of supermultiplets used in the
construction of globally supersymmetric extensions of the SM, are the chiral and vector
superfields. In a convenient basis for the superspace coordinates (y = x + i#o”f) , chiral

superfields have the following simple expansion:

O(y,0) = ¢(y) + V200 (y) + 66F (y), (1.28)

where ¢ is a complex spin-0 field, ¢ is a left handed two component spinor and F a
complex scalar, corresponding to an auxiliary non-propagating field. In the Wess-Zumino

gauge, vector superfields can be expanded as
- ~ - - 1
V(z,0,0) = —00"80V,(x) + 1000 (z) — 1000X(x) + 599991)(:1;) , (1.29)

where V,, is a real spin-1 field, A and X are two component spinors of opposite chiralities,

and D is a real scalar auxiliary field.

1.4.1 Minimal Supersymmetric Standard Model (MSSM)

The construction of chiral and vector superfield then provides a simple recipe for super-
symmetrization of SM: promote all fermionic fields to chiral superfields and all gauge
fields to vector superfields . This implies a fermionic (bosonic) degree of freedom for

every SM bosonic (fermion) degree of freedom. What about the Higgs field 7 It turns
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Table 1.2: Dramatis Super-personae: In this table we list the spectrum of SM particles
along with their superpartners. Here a = 1,2,...,8 and k = 1,2,3 are SU(3) and SU(2)

indices, respectively, and ¢ = 1,2, 3 is the generation index.

Superfield Bosons Fermions SU.(3) SUL(2) Uy(1)
Gauge
G*? gluon g° gluino g° 8 0
Vk Weak Wk (W2, Z) wino, zino w* (0¥, 2) 1 3
\'A Hypercharge B (v) bino b(%) 1 1
Matter
L; Li=(v,¢ L = (v, 1 2 —1
sleptons . (NV ) leptons (v,€)r
Q Qi = (i1, d) Qi=(u.d)p 3 2 1/3
Us squarks { Uf = u% quarks ¢ Uf = u$ 3* 1 —4/3
Df DS = d5 DS = d5 3* 1 2/3
Higgs
H, . H, _ H, 1 -1
Higgses higgsinos N
H, H, H, 1

out that in the framework of supersymmetry, we need two Higgs doublets instead of one
Higgs doublet of SM. There are two reasons for this. The super-potential is a holomorphic
function of chiral superfields and hence one Higgs doublet cannot give masses to both up
and down type of quarks. Moreover there exist triangle anomalies which miraculously
canceled within SM owing to its particle content. So with the enlarged particle content of
supersymmetry, we need two Higgs doublet with opposite hypercharge for these triangle
anomalies to cancel. With this the particle content of the MSSM is as given in the table
1.2.

If supersymmetry is exact, superpartners of ordinary particles should have the same
mass as their ordinary partners and should have been observed in accelerators by now.
The fact that they have not been observed till now, implies that they are much heavy and
hence SUSY must be a broken symmetry. Thus it is clear that the complete Lagrangian

must contain SUSY conserving as well as SUSY breaking parts.
§ The MSSM Lagrangian

The Lagrangian of the MSSM consists of two parts, the first part is SUSY generalization
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of the Standard Model, while the second part represents SUSY breaking as mentioned

above.
L = Lsusy + Lot (1.30)
where,
Lsusy = Lcauge + Ly ukawas (1.31)
and
Loage = ) i ( / &6 TrIVew, + / 26 TrWde)
SU(3),5U(2),U(1)
+ ¥ /d29d2§ ple(sVs oVt ali)g, (1.32)
Matter
Ly ukawa = /d29 (Wr +Wpg) + h.c.. (1.33)

Here W, is the field strength tensor which is needed to construct gauge invariant La-
grangian. The index R in a superpotential refers to the so-called R-parity symmetry

“_»

which assigns a “+” charge to all the ordinary particles and a charge to their super-

partners [23]. The first part of W is R-symmetric, given as:
Wr =y, Q:USHs + yQ:DSH, + y-L;ESHy + pHi Hy, (1.34)

where i,7 = 1,2,3 are are the generation indices. We have suppressed the SU(2) indices.
This part of the Lagrangian almost exactly repeats that of the SM, except that the fields
are now superfields rather than the ordinary fields of the SM. The only difference is the
last term which describes the Higgs mixing. It is absent in the SM since we have only one

Higgs field there.

The second part is R-nonsymmetric
Wpg = A LiL B + M LiQ; Dy + €;LiHy + A2, U DS D5, (1.35)

These terms are absent in the SM. The reason is very simple: one can not replace the
superfields in eq.(1.35) by the ordinary fields like in eq.(1.34) because of the Lorentz
invariance. These terms violate either lepton (the first line in eq.(1.35)) or baryon number
(the second line). Since both effects are not observed in Nature, these terms must be
suppressed or be excluded. In the minimal version of the MSSM these terms are not

included, they are forbidden by R-parity conservation.
§ Breaking it Softly

Since superpartners are not yet found in accelerators, SUSY must be a broken symmetry.

How supersymmetry is actually broken is still debated, but it certainly cannot happen
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in the standard manner of spontaneous symmetry breaking within MSSM, due to certain
phenomenological problems. The standard lore is that SUSY is broken spontaneously, but
in some hidden sector, which contains a set of fields that do not interact with the MSSM
fields (which is also called observable sector). The SUSY breaking in the hidden sector is
then communicated to the observable sector via a messenger sector, which contains fields
interacting with both the sectors. One possibility is that gravity serves as a messenger
sector (as it is a universal interaction). This generates SUSY breaking terms in the po-
tential at a high scale such as Grand Unification scale (GUT). These terms are called
“soft terms” as they do not (re)introduce quadratic divergences in the theory [24]. These
soft terms are basically (i) the mass terms for scalars, (ii) the mass terms for the super-
partners of gauge bosons (gauginos) and (iii) the bilinear and trilinear scalar couplings.
Addition of these terms not only introduces many new parameters in the theory but can
also lead to dangerously fast FCNCs (Flavour Changing Neutral Currents) which have
stringent constraints from experiments. The following assumptions are made at the high
unification scale, so as to have phenomenologically acceptable spectrum of sparticles at
the weak scale. These assumptions also drastically reduce the number of free parameters.
a). All the scalar masses (m) are equal at the GUT scale .
b). All the gaugino masses (M) are equal at the GUT scale.
c). All the trilinear couplings (A) are equal at the GUT scale.

A typical phenomenological approach parameterizes the ignorance of mode of SUSY
breaking in the form of L, by adding it explicitly to the total Lagrangian, which is
now given by,

L = Lsusy + Lsoft - (1.36)

Any underlying theory of SUSY breaking should naturally give the terms in L5 and
explain their ‘universality’. Indeed it is possible to obtain these terms via super-gravity
mechanism (mSUGRA) and are usually introduced at the GUTscale [25].

Another attractive alternative for mediation of SUSY breaking is via gauge interac-
tions; the so called gauge mediated SUSY breaking (GMSB) [26]. The basic idea is to
introduce some new chiral supermultiplets , called messengers, which couple to ultimate
source of SUSY breaking, and which also couple indirectly to MSSM fields through the
ordinary gauge interactions. The soft terms obtained in this manner will be flavour di-
agonal as they are generated by flavour blind gauge interactions. The minimal version
of this model, also known as Minimal Messenger Model (MMM), has the advantage of
economy as the entire soft spectrum gets determined in terms of essentially one parameter
(characterizing the messenger scale). SUSY breaking scale in GMSB models can be as
low as 100 TeV. In both, mSUGRA as well as GMSB case, the low energy parameters get
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determined by Renormalization Group (RG) scaling of soft parameters which are evolved

from high scale boundary conditions.

§ When SU(2) ® U(1) must break

Within SM, the breaking of SU(2) ® U(1) is somewhat ad hoc by putting a -ve sign for
the scalar mass term. In MSSM, the evolution of the up type Higgs mass term from high
GUT scale is such that it attains -ve value around EW scale. Thus it naturally leads
to the breaking of electroweak symmetry radiatively. Imposing the condition that the
electroweak symmetry is broken at the correct scale would lead to minimization condi-
tions for 1 and B,. B, is the soft term corresponding to the bilinear coupling 4 in the
superpotential. The conditions are given as:

le _ qul — tanzﬁm%b o

277 tan?p — 1 a

2B,y

n23 = . 1.37
sin2f3 mh ml 12 ( )

The remaining parameters of the MSSM are given by m, M, A the sign of y and the ratio

of vacuum expectation values of the up and down type Higgs, given as tang.

1.5 Motivation and Outline of Thesis

In the wake of recent experimental evidence for massive neutrinos, SM needs drastic revi-
sions/extensions in its frame-work which is based on the assumption of massless neutrinos.
These indications have come from the measurement of the flux of Atmospheric and Solar
neutrinos, which not only have reported the deficit in the flux but also have reported
possibility of neutrino oscillations. Neutrino oscillations are an unambiguous signature
of massive (non-degenerate) neutrinos. In this thesis we have focused on the problem
of neutrino masses and mixing. The distinctive traits of neutrinos are: extremely tiny
masses and large mixing angles, in contrast with the quarks which have large masses
and small mixing in the family space. This hints towards a different origin for neutrino
masses. Supersymmetry without R-parity is an extension of SM, which can naturally
accommodate small neutrino masses and large mixing. We work in such a frame-work
and give simultaneous solutions for Atmospheric and Solar neutrino anomalies [12, 13].
In models with R-violation, neutrino mixing is largely determined by ratios of various
R-violating parameters whereas the scale of neutrino masses and hierarchy is determined
by SUSY breaking soft parameters. This immediately relates the important question of

universality in soft sector, to the various possible solutions to the solar and atmospheric



Introduction 18

neutrino anomalies. We make a model independent investigation of departure from uni-
versality, required to obtain the experimentally favoured, two large mixing angle solutions
to neutrino anomalies [13].

Having discussed the implications of R-violating couplings for neutrino anomalies, it
is important to understand the origin of these couplings which have been treated as free
parameters in the problem of neutrino anomalies. In another investigation, we systemat-
ically study the structure and magnitude of these couplings, following an abelian family
symmetry, which is spontaneously broken at high (Planck) scale. Such a symmetry has
proved to be an attractive way of understanding the geometrical hierarchy and small
mixing in the quark sector. We study its implications for R-violation, complying with
necessary phenomenological constraints [29].

The organization of the thesis is as follows: In chapter 2 we briefly discuss the Renor-
malization Group Equations in MSSM with R-parity Violation. In chapter 3 we briefly
discuss the physics of massive neutrinos and the experimental status of neutrino oscilla-
tions. In chapter 4 we very briefly describe the introduction of R-parity and its connection
with R-symmetries. In chapters 5, 6 and 7 we discuss the problems addressed in thesis
work. In chapter 5, we address the possibility of two large mixing angle solution to at-
mospheric and solar neutrino anomalies in the framework of bilinear R-parity violation.
In Chapter 6, we describe the simultaneous solution to neutrino anomalies with trilinear
R violating couplings, in the framework of Gauge Mediated Supersymmetry breaking. In
chapter 7 we discuss the patterns and magnitude of R-violation following, from a sponta-

neously broken Abelian Family symmetry. Chapter 8 summarizes the thesis.
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Chapter 2

Renomalization Group Equation

2.1 The basic idea

Any classical field theory, in the limit of vanishing particle masses (more generally, vanish-
ing dimensionful couplings) will be invariant under scale transformations or dilatations.
This could mean that at sufficiently high energies, particle masses do not play an impor-
tant role, and by studying these approximate symmetries one can infer about the asymp-
totic regime where generally perturbative techniques fail in theories like QED, which are
not asymptotically free. It turns out that such innocent scaling behaviour of classical
theory becomes complicated, when one studies the corresponding quantum theory even
in the massless limit [1]. This is because scale invariance is anomalous at quantum level,
due to the fact that any regularization scheme necessarily introduces a mass scale into
the theory, thereby violating scale invariance .

The momentum scale p at which we define renormalized masses and couplings, is called
the subtraction point or the renormalization point. The subtraction point p is introduced
purely as a mathematical device, to begin the process of renormalization, and that no
physical consequences could emerge from it. If we change the subtraction point u, other
parameters, such as masses and coupling constants must also change in order to compen-
sate for this effect. This can be very easily seen from the point of view of multiplicative
renormalization, which expresses a multiplicative relation between the vertex functions

(n)

of unrenormalized theory Ty, and the vertex functions of the renormalized theory T,
However, since the unrenormalized vertex function Fén) is totally independent of the sub-
traction point yp (since subtractions are computed only for the renormalized vertex); we

have,
0
%Fg”) = 0. (2.1)
(n)

Thus, in order to keep the unrenormalized vertex function Iy’ independent of u, there

exists a nontrivial relation between the renormalized '™ and Z (the wavefunction renor-

IExistence of anomalies is not peculiar to quantum field theory but can also be seen in elementary
quantum mechanics as beautifully demonstrated in [2].

22
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malization ), which is expressed mathematically as Renormalization Group (RG) equa-
tions. This can be easily seen from the following relation between an) and T'™ in ¢*
theory.

5" (piy go, mo) = Z;"ﬂl“(”) (piy g, m, 1), (2.2)

where p; are the momenta of the external lines, g(go), m(mg) are the renormalized (un-
renormalized) coupling constant and mass. We assume that the theory has been regulated
using dimensional regularization by working in d dimensions (d = 4 — €). We choose as
our independent variables p, g, m and differentiate with respect to dimensionless derivative

p(d/dp). This gives (in the limit e — 0):

0 0 o
(F‘@ +Bl9) 5, ~ o)+ mvm(g)a—m> T (py, gym, 1) = 0, (2.3)
where,
Blg) = @ ; (9) = ilo\/? (2.4)
_ Om
MmYm(g) = Hon (2.5)

These are the Renormalization Group equations and they express how the renormalized
vertex function changes, when we make a change in the subtraction point p. Our goal,
however, is to analyze the behaviour of the theory at high energies, so let us make the
following scale transformation to obtain a slightly different constraint on the vertex func-
tions. If we scale the momenta as p; — tp;, then using the dimensional arguments one

can show that the vertex function behaves as:

t2p?
L") (tp;, g, m,p) = p’ F (9, ) : (2.6)
my

where D is the mass dimension of the vertex function. This in turn implies that the vertex

function obeys the following equation:

0 d 0
9. ..,.9 _plrt —
(tat + mam + Ma,u D) r 0. (2.7)

Now eliminating the term p(d/0u)T from this equation using eq. (2.3). we find:
—tg+/9’( )ﬁ— (g) + m( ()—1)i+D Tt )=0 (2.8)
ot g ag ny\g m(yYm\g om p,g,m,u) = U. .

Note that if 3(g) = 7(¢9) = Ym(g) = 0, the scaling of ™ is simply given by canonical
dimension D, as would be expected from naive scaling argument. It is the effects of inter-

actions which give rise to need for renormalization and therefore non-vanishing functions
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B(g),7(9), vm(g) and hence departure from pure scaling behaviour of vertex functions. If
we start with a massless theory, the Lagrangian is scale invariant, but the vertex func-
tions are not, because 3(g) and 7y(g) are non-vanishing. They contribute to so called

” 2. Hence their origin lies in renormalization, which inevitably

“anomalous dimensions
introduces a scale, in the shape of an arbitrary mass p in dimensional regularization, or
in the shape of momentum cut-off A in a cut-off regularization, so even a scale invariant
classical theory does not give rise to scale invariant quantum theory.

We now wish to find the solution of eq. (2.8). The equation expresses the fact that a
change in ¢t may be compensated by a change in m and ¢, and an overall factor. So we

expect that there should be functions g(¢), m(¢), and f(¢) such that,

I (tp,m, g, 1) = FTT (p,m(t), g(t), ). (2.9)

Differentiating with respect to ¢ and comparing with eq. (2.8), the coefficient of 9/dm is

given as:

20 _ ) (210)

where g(t) is called the running coupling constant. Knowledge of the function 3(g) enables
us to find ¢(t); and of particular interest is the asymptotic limit of ¢g(¢) as t — oo. Just

like eq. (2.10), one can obtain the differential equation for m and f as:

1 = () ~ 11, .11
%% =D —ny(g). (2.12)

This equation can be integrated to give

£(t) = 7 exp [— /Ot M] , (2.13)

t

which on substitution into (2.9) gives (using (2.3) and taking the limit e — 0)

0t =1+ | [ LD 00 ) 00,0 (20

This is the solution to the RG equation (2.8), in terms of running coupling constant g(t)

and running mass m(t). The exponential term is the ‘anomalous dimension’. The physics

2Tt is interesting to note that when one naively derives the ward identities for broken scale invariance
in renormalized perturbation theory it leads to disastrous behavior for renormalized vertex functions in
deep Euclidean region (absence of logarithmic factors in every order of perturbation theory), due to the
bounds on the behaviour of vertex functions derived by Weinberg [3]. Coleman and Jackiw [1] could repair
the damage by changing the scale dimensions of the fields (hence the term “anomalous dimension”), but
the method failed at higher orders. Eq. (2.8) clearly demonstrates that ad hoc change of scale dimensions
cannot solve the problem and that one needs to know the form of g and ~.
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at large momentum is governed by m(¢) and ¢(¢), and a particular use of the RG equation
is to study the large (or even the small) momentum behaviour of quantum field theories.
These equations were first derived in the context of QED by Gellman and Low in [4] (for
a pedagogic derivation please see [5, 6]). For the RG study of the standard model, see [7].

Almost all extensions of SM (such as unification models, supersymmetry, large extra
dimension) probe physics at higher energy scale, and hence RG equations are an inevitable
tool to extrapolate physics at higher energy scale using experimental inputs at the weak
scale. In this thesis, we are interested in the study of neutrino masses and mixing as
implied by R-parity violating SUSY. We will see in chapter 5 and 6, that the typical scale
for neutrino masses is determined by SUSY breaking soft parameters (at weak scale),
whereas the mixing among neutrinos is determined by ratios of various R-violating cou-
plings. Thus we need to know the values of these parameters at the weak scale. Typically,
these parameters are specified as boundary conditions at the GUT scale, and from there
they are evolved to the weak scale using Renormalization Group Equations. These are
coupled differential equations and can be solved semi-analytically only in the limit of
low tan 3. Our study is largely confined to models with gauge mediated SUSY breaking
which tends to favour large tan 3 values. So our analysis will be completely numerical
and we will not discuss analytical and semi-analytical solutions, which are discussed in
detail in [8]. Semi-analytical solutions involving R-violation are discussed at length in [9].
For numerical evaluation we will broadly follow the algorithm developed in [9] with some
modifications.

In the next section, we compile the necessary RG equations for the various coupling

constants and masses ,in a supersymmetric theory with or without R-parity (see, [9, 10,

11, 12)).

2.2 RG Flow in MSSM

The MSSM RG equations are given in Refs [13, 35, 15]; they are now known for the gauge
couplings and superpotential parameters up to 3-loop order, and for the soft parameters

at 2-loop order. However for many purposes it suffices to work at 1-loop order.
§ Gauge Couplings: The (Non)supersymmetric (Non)unification
Consider the RG equations for the gauge couplings in SM.

a; = bidi, (2.15)

where a; = 1Z§r2 and t = ZZn(%) Mx corresponds to high scale (could be a GUT scale

for mSUGRA models and as low as ~ 100 T'eV for Gauge mediated SUSY breaking) and
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() corresponds to weak scale. Here ‘dot’ represents a derivative with respect to ‘t’. The
SM (3 functions b; are (=7, —19/6, 41/10). These equations can be trivially integrated
and one finds the values at the high scale, in terms of experimentally measured inputs at
weak scale. The solutions can be written as:

a;(ts)
(1 —b;a;(t.))’

where t. is the value of ¢ at the weak scale, defined as the mass of Z boson M;. Now

a;(0) = (2.16)

from the deep inelastic scattering of electron from proton, we know that gauge couplings
for non-abelian theories exclusively enjoy the property of asymptotic freedom, in contrast
to the abelian theories, which are not asymptotically free. This is amply suggestive of a
possible unification of the three couplings at high scale, as shown by the classic work of
Weinberg, Georgi and Quinn [16]. This opens an interesting possibility where the three
different gauge groups (G; for i = 1,2,3) at weak scale correspond to three different
branches, embedded into a simple unifying gauge group (G) when extrapolated to high
scale. So at the unification scale(t = 0) one should expect equality of the gauge couplings,
(ie., 2a1(0) = a2(0) = a5(0)) 3. The gauge couplings though come fairly close to each
other at the GUT scale, meeting at a single point is impossible. It is excluded by more
than 8 standard deviations [17]. This means that unification can be achieved only if new
physics enters between the electroweak and Planck scale. Introduction of supersymmetry
(and hence superpartners) drastically changes the SM 3 functions and hence the evolution
of gauge couplings in such a way, that they actually meet at a point. Thus, unification of

gauge couplings provides strong reasons to take supersymmetric models seriously.
§ Yukawa Couplings

Along with the gauge coupling unification, certain grand unified theories also predict
bottom and tau Yukawa coupling unification at the GUT scale. Renormalization Group
studies of MSSM Yukawa couplings show Y — Y, unification for large range of tan3. Here
Yir = i

that only third generation Yukawa couplings are significant. Then the RG equations for

and hp , etc. are the Yukawa couplings. Here, we will use the approximation

Yukawa couplings are given as:

Yit) = Y (13—60:3(t)+3oz2(t)+§oz1(t)—614@)—61@@)) (2.17)
Vit) = Yilt) (5 aslt) +360) + 12 ()~ Vilt) —6%i() ~Vo())  (2.18)

3Since at the unification scale all different gauge groups must merge into a simple unification gauge
group, all the low energy generators (T,) must be normalized in the same way, satisfying the condition,
Tr(ToTy) = 204p. The factor of (5/3) for the U(1) gauge group is this normalization factor [16].
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Y, = Y.(t) <3a”2(t)—|-%o?l(t)—?)l/g(t)—éﬂ/;(t)). (2.19)

Note that the [ functions for each superpotential parameter are proportional to it-
self. This is actually a consequence of a general and powerful supersymmetric non-
renormalization theorem[18]. This theorem implies that the logarithmically divergent
contributions to a given process can always be written in the form of wave-function renor-
malization, without any vertex renormalization. This is true for any supersymmetric
theory, not just the MSSM and holds to all orders in perturbation theory.

§ Soft Parameters

In chapter 1 we saw that SUSY must be broken softly in order that the breaking does
not reintroduce quadratic divergences. We also briefly discussed the nature of soft terms.

The soft terms in the Lagrangian are given as:

1 . - L
Lopt = 5 (Msgg + MyWW + MyBB + c.c.) (2.20)

(ALY UQH, + AgYaDeQH, + AY.E°LH, + c.c.)

Q‘Lmz(? + D\m%i + (jcm%](jct + ﬁcm%ﬁct + Ecm%E‘CT

—|—m?'{2H;H2 + qul HTHI — (BMHle + C.C.)

+ANLQDe + AN LLE® — (BEin + c.c.) .
Here we have suppressed the generation indices for simplicity. In the above, first line
corresponds to gaugino masses, second line corresponds to trilinear soft terms, third and
fourth line are the soft scalar masses and the last line corresponds to the lepton number
violating trilinear and bilinear soft terms.

The 1-loop RG equations for gaugino mass parameters in the MSSM are determined

by the same 3 functions, which appear in the gauge coupling RG equations:
M; = b;a;M; (b = 33/5, 1, —3), (2.21)

for i = 1,2,3. Tt is easy to see show that the three ratios M;/g? are a constant upto small

two loop corrections. In mSUGRA models we can therefore write:

M;(Q) = ;2((30))7”1/27

(where my/, is the common gaugino mass parameter at the high scale) at any RG scale

(2.22)

Q < Qo, where Qg is the input scale which is presumably nearly equal to Planck scale
Mp = 10"GeV. Since the gauge couplings are observed to unify at My = 0.01Mp, one
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expects that all gauge couplings are equal at that scale. Therefore, one finds that
M _ My My (2.23)
g1 92 g3
at any RG scale, up to small two loop corrections. The common value in eq. (2.23) is also
equal to (mq/2)/gf in mSUGRA models, where gy is the unified gauge coupling at the
input scale. Interestingly, eq. (2.23) is also the solution to the 1-loop RG equations in the
case of gauge mediated boundary conditions, applied at the messenger scale. This is true
even though there is no such thing as unified gaugino mass m;,, in the gauge mediated
case, because of the fact that the gaugino masses at the high scale are proportional
to g2 times a constant. Thus eq. (2.23) is theoretically well motivated in both the
frameworks of SUSY breaking. The prediction of eq. (2.23) is particularly useful since
the gauge couplings g? are already quite well known at the electroweak scale from the
experiment. Therefore, they can be extrapolated upto at least My, assuming that the
apparent unification of gauge couplings is not a fake. The gaugino mass parameters feed
into the RG equations for all other soft parameters as we will see.
The trilinear soft parameters A,, A4, Ac are matrices in generation space. In the ap-
proximation of neglecting first and second generation Yukawa couplings, one can therefore

write, at any RG scale,

0 0 O 0 0 O 0 0 O
A, 00 0 |, Aam| 00 0 |, A= 00 0 [, (2.24)
0 0 A 0 0 A 0 0 A,

which defines running parameters A;, Ay and A,. The RG equations for these parameters

and the bilinear parameter B are given as:

Ay = —(GA) —6AY; — ALY,

Ay = —(GA) —64Y, — AY, — A.Y,

A, = —(GA), —4A.Y, —3A4Y;

. 3 /1\?

B, = -4 {02022% 42 (5) dlMl} — (ALY, 434 +34Y),  (2.25)
9}

where, C5 = 4/3,0 for triplets and singlets of SU(3)¢, C; = 3/4,0 for doublets and
singlets of SU(2)r, and C) = (13/36),(7/36),(3/4) for i = ¢,b, 7. GA; are given as:

3

Note that the 3 function for each parameter is not proportional to the parameter itself; as

these couplings violate supersymmetry and hence are not protected by supersymmetric
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non-renormalization theorem. In particular, if they vanish at the input scale (as for
example in the gauge mediated supersymmetry breaking), the RG corrections proportional
to the gaugino masses appearing in the eq. (2.25) ensure that they will still be non-zero

at the electroweak scale.
§ Scalar Masses and the Radiative Electroweak Symmetry Breaking

Let us now consider the RG equations for the scalar masses in the MSSM. In the ap-
proximation of neglecting first two families yukawa couplings and eq. (2.24), the squarks
and sleptons of first two families have only gauge interactions. Now as discussed in the
chapter 1, scalar masses are constrained to be universal at input scale so that they do
not produce large contributions FCNCs at electroweak scale which are already severely
restricted. This means that if scalar masses are universal at input scale, then when renor-

malized to any other RG scale, they will still be almost diagonal, with the approximate

form
mh 00 mbe 0 0
mga | 0 mdy 0 |i mpem| 0 mp 0 |; (2.27)
0 0 md 0 0 mi

etc. The first and second family squarks and sleptons with given gauge quantum numbers
remain very nearly degenerate, but the third family squarks and sleptons feel the effect
of larger yukawa couplings and so get renormalized differently. The 1-loop RG equations

of first and second family squarks and sleptons squared masses can be written as:

3
ngoZle} : (2.28)

(m?)i1,00 = 4 {03073M32 + Cody M3 +

where i = Q,U¢, D¢, L, E. The 1-loop RG equations for the third generation sfermions

and up and down type Higgs mass are given as:

(m3)11.22 = Yi(5S): = Yo(SS)y
)33 (M2 )11.22 — 2Y:(SS),
(m%c)ss = (m%. )22 — 2Y5(SS)
%)33 = (M) — Y;(SS),

) (

(

(

Ue
2,..
De
2
L
m2E~c)11 22 — 2Y (SS)
2
L
2
L

(m3)ss =

2

(m[jc

11,22 — 3Y3(59)p — Y7(S9)-
11,22 — 3Y:(SS):, (2.29)

m)
m3)
where,

(88)e = (mg+mpe)ss + mpy, + A/
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(SS) = (mg+mp)as +mpy, + A
($5). = (m% + m%c)SS + qud + A2, (2.30)

One can see that (S5),,- are always positive, so their effect is always to decrease the Higgs
masses as one evolves the RG equations downwards from the input scale to the electroweak
scale. Top quark being heavier than other quarks and leptons, it can cause the RG evolved
mj. to run to negative value near the electroweak scale, thus generating a nonzero Higgs
vev resulting in the electroweak symmetry breaking. Thus in supersymmetric theories,
electroweak symmetry is broken naturally in a radiative manner by RG evolution.
Before discussing the RG equations for R-violating parameters, we give below the RG

equation for the supersymmetric y parameter.
12 L3 1\ 9
(i) = |4 ( Caa + (5) &) = (3Y; 4 3% + Y3)| 2. (2.31)

The low energy parameter p is obtained from the minimization conditions of the scalar
Higgs potential as discussed in chapter 1. This equation may help to trace back the

high-energy value of this parameter.

2.3 RG Scaling and R-parity Violation

Introduction of R-violating couplings has already been discussed in chapter 1. As dis-
cussed there, we shall retain only L violating couplings which can naturally accommodate
hierarchical neutrino masses and one or two large mixing angles as required by experi-
ments. Though a prior: arbitrary these couplings are severely constrained by dangerous
contributions to FCNCs [17, 20]. They are also required to be suppressed (~ O(107)) in
order to generate small neutrino masses. Thus they do not significantly alter the MSSM
RG equations [21]. Since our goal is to study neutrino masses from R-violation, we need
to solve the RG equations for these couplings. Being large in number, we have studied the
effects of bilinear and trilinear R-violation on neutrino masses separately for simplicity.
The necessary RG equations have been derived using the general formulae given in [35].
Below we give the the RG equations for R-violating couplings. The equations presented

here agree with the ones given in [17]. For other useful references, please see [22].

§ Bilinear R-violation

alt) = alt) (Gaa(t) + sha(n) - S¥E(D) — SNi(0)) (2.82)
Bu(t) = Ba(t) (—3¥E() = S¥0) + Saa(t) + shaa(r)) — e (Baa(t)Ma(t)
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FSaM (1) + BA(N() + AYE() (2.33)
§ Trilinear R-violation X
M) = M) (“¥E0) ¥ - V(1) - 2¥R(0) - V(035 + Sas(t)
3+ 5o (1) — o RN (2.34)
Bu(t) = Bu(t) (=3%(0) — 3% + Sau(t) + p(0)
OO () (5Bl + AN (0) (2.35)
(1) = () (5X0) — SYH0)) — N (A(0) (i, (1)
+ mi (1) +2m (1) +24% (AL (1) + 2m3, (1)) (2.36)
A1) = S ABOYPi) S ANOYEE) — ALY ()
— ABOYE() — oM (1) (1) - 2V (1)as(t) - M(0)ds(r). (237)
§ Trilinear R-violation A
() = duat) (S5VE ) — V() — SYE(0) + Saa(t) + (1))
2 a8+ X (Y (1) i) (239)
B.(t) = B.( (th ——YE —I—;az()—l—%&l(t)>
— <>h§d<>(Azd<>+§BM<t>) (2.39)
() = () (~SYE() = 3Y0) = SH(0) — g OR(E) (i, (1)
4 mL()sz()+2Agj(t)Afj(t)+2m%Ej) (2.40)
A1) = —3Mi(1)(1) — 3Ma(t)anlt) — SABYE() — SALMYEW).  (241)
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Chapter 3

Neutrino Anomalies

3.1 Neutrino Mass: A Harbinger for New Physics

Almost massless, chargeless and weakly interacting fermions, neutrinos have remained
a mystery ever since they were introduced to understand the continuous spectrum of 3
decay. Neutrinos played a very instrumental role in establishing the V' — A nature of
weak interactions, when it was found that only left-handed neutrinos and right-handed
antineutrinos are produced in weak decays. This led Pauli to conjecture that neutrinos
have very small mass. Fermi [1] and Perrin [2] proposed a kinematic method to determine
the neutrino mass through investigation of 3 spectrum near its end-point. End-point
of # spectrum being poorly known, it could put only upper bounds on the mass of the
neutrinos. Therefore, it became evident that the neutrino mass (if at all non-zero) is much
smaller than the electron mass. This was the main reason that in 1957, after the discovery
of parity violation in 3 decay, the authors of the two component theory of the neutrino
(Landau, Lee and Yang and Salam [3]) assumed that the neutrino is a massless particle,
the field of which is either a left-handed field v, or a right-handed field vp. In 1958,
Goldhaber et al. [4] measured the helicity of the neutrino. The result of this experiment
was in agreement with the two component neutrino theory and it was established that
neutrino field is vy,. The result of the experiment of Goldhaber et al could not exclude,
however, the possibility of a small neutrino mass. Recent experiments measuring the flux
of Solar and Atmospheric neutrinos have given strong hints in favour of neutrino masses.
This would call for a drastic revision of SM as well as have seminal implications in areas
of Astrophysics and Cosmology. Before we discuss the experimental indications, it would

be instructive to discuss theoretical issues related to neutrino masses.

§ Theoretical Motivations

Theoretically there is no compelling reason for neutrinos to be massless within the frame-
work of SM. The masslessness of neutrinos within SM is due to its particle content which
does not have right handed neutrinos or triplet Higgs.

The theoretical question is not only how one can extend the SM to find models with

34
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massive neutrinos, but also how one can understand the smallness of neutrino masses com-
pared to the masses of other charged fermions. One might argue that even the charged
fermion masses vary widely. For example, the top quark mass is more than five orders of
magnitude larger than the electron mass. This requires an understanding of the family
structure of SM and the hierarchy in the family space of fermions. Within the family,
quark masses agree to within an order or so. This is in sharp contrast with the lepton
sector where for example v, is five orders lighter than the electron mass. Thus, the small-
ness of neutrino mass is indeed an acute problem and perhaps suggesting an altogether

different origin.

§ Motiwations from Astrophysics and Cosmology

Neutrinos are produced inside the core of the Sun in thermonuclear reactions. Since their
interaction cross-section is very less, they carry information about the core of the Sun,
which is inaccessible to direct optical observation. The flux of solar electron neutrinos
detected on earth, is only about one half to one third of the flux calculated using using
Nuclear Physics and Standard Solar Model. This is the infamous Solar Neutrino Prob-
lem. It can be resolved if neutrinos have mass. With massive neutrinos, the interaction
eigenstates need not be same as the propagating mass eigenstates. This results in neu-
trino mixing analogous to quark mixing and the phenomena of neutrino oscillations (if
neutrino spectrum is non-degenerate), whereby one neutrino flavour converts into another
flavour, thus explaining deficit in electron neutrino flux from the Sun. If neutrinos are
massive, they can also possess magnetic moment. This can lead to helicity flip in the
Solar magnetic field thus turning it into a right-handed non interacting neutrino, and
could explain the deficit of left-handed .. A similar deficit of muon neutrinos was also
reported for neutrinos coming from the Atmosphere, where they are produced in high
energy cosmic ray interactions. This is the so called Atmospheric Neutrino Anomaly, and
can be understood in terms of oscillations of massive non-degenerate neutrinos.

For gravitationally bound systems of stars, like galaxies, clusters, super-clusters etc,
it 1s known for quite sometime that the mass to light ratio for these different systems
increases as one goes to larger and larger systems. This problem of missing light can also
be resolved if neutrinos have masses of the order of a few eV. They can be gravitationally
bound to these systems and provide them with the non-luminous halo. However neutrinos
with this kind of mass can contribute to a huge amount of energy density to the universe
and thus affect the evolution of the universe as a whole! .

The big-bang nucleosynthesis depends sensitively on neutrino interactions and number

'Number density of background neutrinos is about 8 orders of magnitude larger than the average
number density of baryons in the universe.
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of light neutrino species. Neutrinos may also play an important role in baryogenesis: the
observed access of baryons over anti-baryons in the universe may be related to the decays

of heavy Majorana neutrinos ?

3.2 Theoretical Issues in Neutrino Masses and Mixing

Before discussing the experimental evidence for neutrino masses, let us take a look at the
theoretical revision necessary to accommodate massive neutrinos. Since neutrinos do not
carry electric charge, it i1s possible that they are their own antiparticle, and hence possess
Majorana nature. The Majorana condition puts an additional constraint of self-conjugacy
and hence reduces half the degrees of freedom. Thus in the absence of right-handed
neutrinos, it is possible to write down a Majorana mass term for the neutrinos. Such
a mass term violates lepton number by two units. Lepton number being an accidental
symmetry of SM its conservation is not sacrosanct. However, it turns out that it is not
possible to add Majorana mass term without augmenting the particle content of SM. The
Majorana mass term being a component of an isotriplet operator, the only way it can
couple in a gauge invariant, renormalizable and Lorentz invariant way, is with a triplet
Higgs, whose neutral component would attain a vev and thus generating Majorana mass
term. This would also spontaneously break lepton number, giving rise to a massless
goldstone boson called Majoron. From the inferred value of number of neutrino species
from invisible Zy decay width at LEP, triplet Majoron models are ruled out as these
would contribute sizeably to the invisible decay width of Z boson [7]. However, a simple
extension of these models with introduction of an extra singlet scalar along with the triplet
scalar, the LEP constraints on Zg can be satisfied [8].

Another simplest and natural extension of SM is just to add three SU(2); singlet
neutrinos vg, one per generation in analogy with other charged fermions. vgr can have
Yukawa couplings to lepton doublets. But they can have “bare” Majorana mass terms
which are invariant under SU(2), x U(1)y. If one assigns lepton number L = 1 to vg, such
a Majorana mass term breaks lepton number by two units. Alternatively if we assign zero
lepton number to vg, the Yukawa couplings of vp break the lepton number. Therefore,
an introduction of vgp in SM, leads to a qualitatively new situation: lepton number is
no longer an automatic symmetry of the Lagrangian, following from gauge and Lorentz

invariance and renormalizability.

2In one of our work [6] we discuss the question of leptogenesis [5](and hence baryogenssis) via decay
of heavy right handed Majorana neutrinos. Since the nature of that problem is very different from the
ones addressed in the thesis, we have not included it in this thesis.
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3.2.1 General Dirac + Majorana Mass term

Let us now consider the most general neutrino mass terms for the case of n species of
left handed and right handed neutrinos. It includes not only the Dirac mass mp and
Majorana mass mpg, but also the Majorana mass my, for the left handed neutrinos. The

neutrino mass term can be written as

1 1 1
—L,, = 5 EC'le/L + vrmprr + §I/£CmRI/R + h.c. = §n€C'A/inL + h.c..  (3.1)

Here n;, = (vi, (vr)?) = (vi,v5) is the vector of 2n left handed fields, (which we have
written as a line rather than column), mz, and mpg are complex symmetric n X n matrices,

mp 1s a complex n X n matrix. The matrix M has a form

myp Mmp
M = . (3.2)

m% meg
It is instructive to consider first the one generation case in which my, mgr and mp are
just numbers, and M is a 2 X 2 matrix. Assuming all the parameters to be real, M can
be diagonalized by the transformation UL MU = My, where U is an orthogonal matrix

and My = diag(my, my). We introduce the fields yz, through n;, = Uxy, or

v cosf siné /
np=| 7P| = e (3.3)

C

vy —sinf cosf X2r,
Here 17, and xo7 are the left handed components of the neutrino mass eigenstates. The

mixing angle # is given by

2
tan20 = — 2 (3.4)
mpr —my,
and the corresponding mass eigenvalues are
_ 2
g = TEETE o \/ (Y g, (3.5)
They are real but can be of either sign. The mass term can now be rewritten as
1 1
—,Cm = §H€C./MHL + h.c. = §X€OMdXL + h.c. (36)
1 1
= §(m1X?LCX1L + maxarCxar) + h.c. = §(|m1|X1X1 + [ma|xa2x2)-
Here we have defined
X1 = XL+ m(xiz)% X2 = xer + m2(x2r) (3.7)
with g2 = 1 or —1 for m; 2 > 0 or < 0 respectively. It follows from above equation that

mass eigenstates are Majorana neutrinos. The relative signs of the mass eigenvalues (1
and 7;) determine the relative CP parities of y; and x3; physical masses |m;| and |mg|

are positive, as they should be.
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3.2.2 Seesaw Mechanism and Small Neutrino Mass

We have already discussed in section 1.1, that except for neutrinos, the masses of all
fermions in each of the three generations are within 1-2 orders of magnitude of each
other. Thus the smallness of neutrino mass is a disturbing feature and any complete
theory of neutrino masses should also explain the exceptionally small mass for neutrinos.

The seesaw mechanism provides a very simple and attractive explanation of the small-
ness of neutrino mass, by relating it to the suppression from a very large mass scale.
Although the seesaw mechanism is most natural in the framework of the Grand Unified
Theories (such as SO(10)) or left-right symmetric models, it also operates in the standard
model extended to include right handed neutrinos vg. The most general mass term for
n generations of left-handed and right-handed neutrinos is written in eq. (3.1). In SM,
there is no Majorana mass term of left-handed neutrinos as there are no triplet Higgs
scalars; however, my, is different from zero in many extensions of SM, so we shall keep it
for generality. The right handed neutrino v is an electroweak singlet and hence its mass
is not protected by the electroweak symmetry. One can therefore expect it to be very
large, possibly at the Planck scale or at the intermediate scale M; ~ /v Mp; ~ 10'° —10'2
GeV which may be relevant for the physics of parity breaking.

Let us first consider the limit m; < mp < mp of the simple one-generation case

discussed in the previous section. In this limit

2

92@<<1, mlsz—@, My ™~ Mp (3.8)
mp mp
X1 2vp+m(vn), X2~ (vr)" + mve. (3.9)

Thus we have a very light Majorana mass eigenstate y; predominantly composed of vy,
and a heavy eigenstate y, mainly composed of vg.
Consider now the full n-generation case. We want to block diagonalize the matrix M

is eq. (3.2) so as to decouple the light and heavy neutrino degrees of freedom:

o 0
np=Uyp, UTMU=0UT | ™ "™ = | ™ 7 |, (3.10)
m% MR 0 MR

where U is a unitary 2n X 2n matrix, and we have changed the notation mrp — Mp. We
shall be looking for the matrix U of the form

1
U= P , UU =14 0(p?), (3.11)

_p’r 1
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where the elements are n X n matrices, and p will be treated as a perturbation and we
shall treat my, mp and mpg as real. The matrix p can then be chosen to be real. Block

diagonalization of M gives
pszMﬁl, TNanmL—mDMﬁlmg, MRZMR. (312)

The diagonalization of effective mass matrix my, yields, n light Majorana neutrinos. Diag-
onalization of Mg produces n, heavy Majorana neutrinos. It is important that the active
neutrinos get Majorana masses mj, even if they have no “direct” mass, i.e. my = 0 as it is
in the Standard Model. The masses of active neutrinos are then of the order of m?,/Mpg.
It is interesting that with the largest Dirac mass eigenvalues of the order of electroweak
scale, mp ~ 200 GeV, the right handed scale Mpr ~ 10'® GeV which is close to the typical
GUT scales, and assuming that the direct mass term my < m%/Mpg, one obtains the
mass of the heaviest of the light neutrinos m, ~ (1072 — 10~!) eV, which is just of the
right order of magnitude for the neutrino oscillation solution of the atmospheric neutrino
anomaly.

We shall see in the next chapters that seesaw like mechanism is also operative in Super-
symmetric models with R-parity violation, and these models very naturally accommodate
the solutions to Atmospheric and Solar neutrino anomalies. There are many other models
proposed for neutrino masses and we shall not go into the details of these models. Instead

we refer the interested reader the to the pedagogic description in [7, 9].

3.2.3 Radiative Mechanisms

In the above we have introduced additional fermions with a heavy mass scale to generate
small neutrino masses. One can instead modify the scalar sector of the model, which is
anyway not well understood. Neutrino masses are now generated radiatively and thus are
naturally small.

Within the Standard Model neutrinos can attain Majorana masses if one modifies
the scalar sector. This can be seen by considering the operator, €, L¢ C L?, where C is
the charge conjugation matrix and a,b are the SU(2) indices and ¢, are the generation
indices. This can couple to a field, transforming either as a singlet or a triplet under
SU(2). Models with triplet Higgs are considered unattractive as they contribute to p
parameter [11]. Instead here we consider models with a singlet field ™. The coupling of
the lepton fields to this field is given as, fYeL¢ C L;’h‘*.

Though the above coupling violates lepton number, one can always conserve it by

defining AT to have a lepton number of -2. However if one introduces an additional scalar

field ¢ (in-addition to the already existing ¢;), a new coupling of the form M,gp.dsh™
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is possible which violates lepton number exactly by two units as required for neutrino
mass generation. In this model which is named as {¢;¢2h} model, neutrinos attain mass
at the one-loop level and hence the masses are naturally suppressed. One interesting
feature about this model is that the couplings f;; are antisymmetric due to the SU(2)
metric. This would lead to an interesting texture of the neutrino mass matrix whose
diagonal elements are zero. Instead of adding an additional doublet, one can as well add
a doubly charged singlet in to the model, k**. In this case, neutrinos attain mass at the
two-loop level. This is popularly known as Babu model in literature [12]. Including both
the additional doublet as well as the doubly charged singlet would lead to neutrino mass
both at the 1-loop level as well as at the 2-loop level. Such a scenario may be required to
understand neutrino anomalies in these models with symmetries like L, — L,, — L, [13].
In this thesis, we consider an alternative method to generate neutrino masses. In
these models neutrinos attain mass employing both the ‘see-saw type’ mechanism as well

as radiative mechanisms. We will discuss them in detail in further chapters.

3.3 Neutrino Oscillations in Vacuum and Matter

As we have already mentioned in section 1.1, if neutrinos are massive, then in general
mass eigenstates are super-position of interacting flavour eigenstates. This leads to the
phenomena of neutrino oscillations, whereby one neutrino flavour converts into another
flavour as it propagates, thus explaining the deficit in the Solar and Atmospheric neutrino
flux, if there is a correct mass hierarchy and mixing angle among neutrinos. If |v,) are
flavour eigenstates (a = e, p, 7) and |vg) are the mass eigenstates (k = 1,2,3) then the

mixing is expressed as:
3
Va) = D Uakv). (3.13)
k=1

By straight-forward application of Quantum Mechanics and the assumption of ultra-
relativistic neutrinos, one can show that the survival probability for v, after it has prop-

agated for time ¢, is given as >

Am?L
Pyeye:1—4ZUz.U2<sin2( ) ) (3.14)

et ej

= 4F

where Amfj represents the mass squared difference between ith and jth neutrino mass
eigenstates and L represents the distance traveled. If there are only two generations

involved, this formula reduces to,

Am?*L
P,., =1—sin’28sin? ( m ) ,

7 (3.15)

3For the quantum field theoretical treatment of the neutrino oscillation formula, please see [14].



Neutrino Anomalies 41

where now the mixing matrix i1s represented as a rotation by an angle §. The solar
and atmospheric neutrino anomalies can be understood in terms of neutrino oscillations,
if the mass squared differences of the neutrinos and the mixing angles are of the right
order. The experimental data now constrains regions in parameter space of the neutrino
oscillation formula. The deficit in the data of a particular anomaly can be caused either
by oscillations in two generations or in three generations. Another possibility is that
neutrinos oscillate in to a sterile neutrino, which does not even have weak interaction.
In this thesis, we consider that there are only three active neutrinos and the solar and
atmospheric neutrino anomalies can be resolved in terms of oscillations among neutrinos
in the family space. In general this would require a three generation analysis of the
entire solar and atmospheric neutrino data. However, assuming a hierarchical pattern for

4 an important constraint on the neutrino mixing comes from the

the neutrino masses
CHOOZ experiment [6] (to be discussed in next section) which simplifies such an analysis
[17]. With the help of CHOOZ constraint, which requires the mixing matrix element
|Ues| < 0.15, the three flavour analysis reduces to two flavour analysis. Now the survival

probability for electrons and muons is given by

Am2 L

P, = 1—4U31U32sin2( Z‘Eﬂ )—2U33(1—U33) (3.16)
Am2 L

P,, = 1—4U32U33sin2( Z‘; ) (3.17)

The mixing matrix element Uz is constrained by the CHOOZ experiment to be small
[6]. The above formulae are identical to the 2-flavour oscillation formula, eq.(3.15), in the
limit of small U.s. In this case, we can concentrate only on two flavour solutions to the
neutrino anomalies.

The standard solutions for the the solar neutrino anomaly comprise of three ‘regions’
in the oscillation parameter space of Am? and sin?26. One of the regions is called the
“Vacuum Oscillations’ or ‘just so’. The Am? required is very small ~ 107""eV? and the
mixing angle ~ Z. The other two solutions require a much larger Am?, typically of
O(107%eV?). These two solutions consider matter effects on neutrino propagation whilst
the neutrino traverses the distance between the core of the Sun and its surface. They
allow for matter enhanced resonant conversion (MSW mechanism) [18] of the neutrinos
from electron species to another in specific density regions of the Sun. The question
is, how does the matter affect the neutrino propagation 7 Neutrinos can be absorbed

by the matter constituents, or scattered off them, changing their momentum and energy.

4For a discussion on the neutrino mass matrix allowed by the experiments, including degenerate
spectra please see [15].
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However the probabilities of these processes, being proportional to the square of the Fermi
constant G, are typically very small. Neutrinos can also experience forward scattering,
an elastic scattering in which their momentum is not changed. This process is coherent,
and it creates mean potentials V, for neutrinos which are proportional to the number
densities of the scatterers. These potentials are of the first order in Gz, but one could
still expect them to be too small and of no practical interest. This expectation, however,
would be wrong. To assess the importance of matter effects on neutrino oscillations,
one has to compare the matter induced potentials of neutrinos V, with the characteristic
neutrino kinetic energy differences Am?/2E. Although the potentials V, are typically
very small, so are Am?/2E; if V, are comparable to or larger than Am?/2F | matter
can strongly affect the neutrino oscillations, even if the mixing angle in vacuum is very
small. Such a resonance enhancement or suppression in neutrino oscillation in certain
regions of matter with favourable density, is called the MSW effect and offers two different
oscillation solutions to the solar neutrino anomaly. One of the solutions allows for a
large mixing angle, # ~ 7 - Large Angle MSW. The other region allows for a small
mixing angle § ~ 107 and is called Small Angle MSW [19]. However, from the recent
results of solar neutrino experiment at Sudbury Neutrino Observatory, not all the solutions
are favourable. We shall discuss these solutions in next section where we discuss the
recent experimental results. In the case of atmospheric neutrino anomaly, the results are
much more constrained. The analysis of super-Kamiokande results [20] allow solutions
for regions in Am? ~ 1072 and sin®26 ~ 1.

In the above we have used sin® 28 to express the range of mixing angles. However it is
a common practise now, to express the mixing angles for solar neutrinos in tan®# and we
shall follow this recent practise in next section when we discuss various solutions. The use
of the variable tan? d instead of the usual sin® 26 is worth a comment. The probability of
2-flavour neutrino oscillations in vacuum is invariant under the substitutions § — 7/2 —#6
or Am? — —Am?, but the oscillation probability in matter is not. It is, however, invariant
under the combined action of these substitutions. To cover the full parameter space, it
is sufficient to assume 0 < # < /4 and allow for both signs of Am?, or to assume that
Am? is always positive (which can always be achieved by renaming the mass eigenstates
v1 ¢ v3) and let 4 be in the full domain [0, 7/2]. Usually, the first approach was adopted;
however, the solutions of the solar neutrino problem in the region Am? < 0 have not been
studied (except in the 3-neutrino [21] and 4-neutrino [22] frameworks). This was motivated
by the fact that there is no MSW enhancement for neutrinos in this region of parameters.
However, in [23] it has been emphasized that if one allows for large enough confidence
levels, or treats the solar ®B neutrino flux as a free parameter, or leaves the Homestake

result out, solutions in this “dark side” of the parameter space exist, provided that the
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mixing angle is close to the maximal one. It is convenient to assume Am? > 0 and plot the
allowed regions of the parameter space in the plane (tan?#6, Am?) with 0 < 8 < 7/2; in
the conventional approach one would need two separate plots for Am? > 0 and Am? < 0.

It should be noted that from recent results from Super-Kamiokande and SNO exper-
iments, only certain solutions are favourable. We shall discuss these issues in the next

section where we also discuss the solar and atmospheric neutrino anomalies in detail.

3.4 Experimental Indications

3.4.1 The Solar Neutrino Problem

As we have already discussed in section 1, Solar Neutrino Problem (SNP) is basically
the discrepancy between theoretically calculated and experimentally measured flux of
neutrinos coming from Sun. Neutrinos are produced inside the Sun during nuclear fusion
reaction. 98% of the energy released, is carried by the photons and the remaining 2% by
neutrinos. Neutrinos are mainly produced in proton-proton (pp) reactions and some (less
than 2%) are also produced in Carbon-Nitrogen-Oxygen (CNO) cycle. Rates for these
reactions are known from application of the principles of Nuclear and Particle physics.
Chemical abundances of various elements are known from the Standard Solar Model
(SSM) [24]. There are about 20 different models proposed by 10 different groups, all of
which agree with each other and with the data from Helio-Seismology very well. These
models are based on reasonable assumptions like (a) Hydrostatic equilibrium inside the
star (b) energy transport by means of conduction and convection only and (c¢) change in
the chemical composition of Sun is only through the nuclear reactions. Using Nuclear
Physics, one can predict energy spectrum of neutrinos produced in various reactions and
using SSM, one can predict the flux of neutrinos. Since neutrinos interact very less with
matter, the flux reaching earth remains the same.

The earliest measurement of flux was done in around 1968 by Davis and his collab-
orators in the famous HOMESTAKE chlorine experiment through the following charged
current (CC) reaction [26].

01+ v — 3Ar + ™. (3.18)

Radioactive Argon atoms are extracted by chemical methods and counted in proportional
counter. The energy threshold of the reaction is 0.814 MeV so only ®B and “Be and pep
neutrinos (see fig3.1) could be detected. The results showed almost one third reduction in
the flux compared to the predictions of SSM. Similar measurements using radiochemical
methods, were carried out at SAGE and GALLEX experiments, where they used the CC
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Table 3.1: SSM predictions: solar neutrino fluxes and neutrino capture rates for the
different experiments, with 1o uncertainties. The neutrino fluxes are the same as in
the original BP00 model except for the ®B flux, which is increased because of the larger

adopted value of S17(0) (see [25])

Source Flux Cl Ga SK SNO(CC)
(1010 cm_2s_1) (SNU) (SNU) (106 cm_2s_1) (106 cm_zs_l)
pp 5.95 (1.007001) 0.0 69.7 0.0 0.0
pep 1.40 x 1072 (1.00%5 313) 0.22 2.8 0.0 0.0
hep 9.3 x 1077 0.04 0.1 0.0093 0.0093
"Be 4.77 x 107" (1.00%0 19 1.15 34.2 0.0 0.0
B 5.93 x 10~* (1.00%0 13 6.76 14.2 5.93 5.93
13N 5.48 x 1072 (1.00153}) 0.09 3.4 0.0 0.0
150 4.80 x 1072 (1.00%333) 0.33 5.5 0.0 0.0
17 —4 +0.25
F 5.63 x 10~ (1.001533) 0.0 0.1 0.0 0.0
+1.1 +9 40.89 +0.89
Total 8.6117 13012 5.931089 5.9310-89
Measured 2.56+0.226  75.6+ 4.8 2.324 0.085 1.75 £ 0.148
Measured 0.2908+0.049 0.581+0.055  0.391 4 0.060 0.295 £ 0.051
reaction
71 71 -
Ga+v.— "Ge+e . (3.19)

The energy threshold was about 0.234 Mev, so they could also detect the lowest energy
pp neutrinos. They also reported reduction in the flux.

Recent experiments at Kamiomande (E > 7.5MeV) and its upgraded version Super-
Kamiokande ( £ > 5.5MeV) employed water cherenkov detectors and use the electron-
neutrino scattering reaction,

vet+eT = v+ e. (3.20)

This reaction has zero threshold but to remove the background these energy cuts are
used. Owing to their high energy cuts, they are sensitive to only ®B neutrinos. Above
reaction has a very interesting feature that for £ > m,, the angular distribution of the
recoil electrons is forward peaked. For neutrinos detected at Super-Kamiokande (SK) it
points 180? opposite to Sun, thus confirming the Solar origin of these neutrinos.

In the recent experiment at Sudbury Neutrino Observatory, solar neutrinos were de-
tected in real time through charged current, neutral current and elastic scattering exper-
iments. It has not only confirmed the neutrino oscillation hypothesis but also severely
constrained the possible solutions. In the next section we discuss its results in detail.

In all the six experiments fewer neutrinos than expected were detected (see table 3.1),

thus pointing towards solar neutrino anomaly.
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Figure 3.1: Solar neutrino spectrum and estimated theoretical errors of fluxes. The thresholds
of solar neutrino experiments are indicated above the figure. From [24]

§ Is the Solar Neutrino Anomaly for Real ¢

Suppose there is no solar neutrino anomaly and something has gone wrong somewhere.
What could possibly be the problem ?

o Ezperiments are wrong: This is most unlikely because six experiments, all using
different techniques of detection, cannot simultaneously show a systematic trend of

reduction in the flux.

o Flux calculations are wrong: This is also ruled out as 20 different models, from 10
different groups agree very well with each other and their predictions have been
beautifully vindicated by Helio-seismological measurements. Moreover we will show

below the existence of Solar neutrino problem independent of the inputs of SSM.

o Calculation of energy spectrum is wrong: This is where possibly the problem is.
Calculation of neutrino energy spectrum are done on the assumption of massless
neutrinos which is an intuitive input from speculation and does not have empirical
evidence. This points towards possible particle physics solutions to the problem,

which calls for the introduction of massive neutrinos in the theory.

The existence of Solar Neutrino Problem independent of Standard Solar Model can be
demonstrated by comparing ®B neutrino flux from different experiments. Such a compar-
ision proves that not only the experiments show reduction in the flux, results of different
experiments are inconsistent with each other. For example, one can infer the flux of B

neutrino from SK. This can be used as an input to the Homestake experiment and one
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can subtract it from the total flux and obtain the flux of "Be neutrinos. This flux turns
out to be negative. Forcing all fluxes to be positive, the hypothesis of no-new-physics
was rejected at the effective 2.60 level (99% C.L.) (see Gonzalez-Garcia in [27] ). So the
oscillation of v, to v, or v, is the most likely possible solution to the SNP. Energy of solar
neutrino being small, the v, or v, cannot be detected at the charged current reactions
in Chlorine or Gallium experiments. And the cross section for NC interaction in Water
cherenkov detectors is a factor of 6 smaller than the CC interaction channel and so the
deficit in the neutrino flux observed in SK can be explained. The probabilities of neutrino
oscillations depend on neutrino energy, and the distortion of the energy spectra of the
experimentally detected Solar neutrinos, which is necessary to reconcile with the data of
different experiments, is readily obtained. For a pedagogic discussion of Solar neutrino
problem please refer to the reviews in [27]

Now let us take a look at the Atmospheric Neutrino Problem which again is a discrep-

ancy between theoretical prediction and experimentally measured neutrino flux.

3.4.2 Atmospheric Neutrino problem

Atmospheric neutrinos are electron and muon neutrinos and their anti-neutrinos which
are produced in the hadronic showers induced by cosmic rays in the earth’s atmosphere.
The main mechanism of production of the atmospheric neutrinos can be summarized as

follows:

1. Primary cosmic rays interact with the air molecules producing kaons (K*) and pions
(7).

2. These pions then decay to form a part of the neutrino (,) flux and the muons (u®).

3. Lastly muons decay to give rest of the neutrinos (v,) flux and the (v.) flux.

Atmospheric neutrinos can be detected directly in large mass underground detectors,
predominantly by means of their charged current (CC) interactions. Calculation of the
atmospheric neutrino fluxes predict the v, /v, ratio that depends on neutrino energy and
the zenith angle of neutrino trajectory, approaching 2 for low energy neutrinos and hori-
zontal trajectories but exceeding this value for higher energy neutrinos and for trajectories
close to vertical. The overall uncertainty of the calculated atmospheric neutrino fluxes is
large, and the total fluxes calculated by different authors differ by as much as 20 — 30%.
At the same time the ratio of the muon to electron neutrino fluxes is fairly insensitive to

this uncertainty, and different calculations yield the ratios of muon-like to electron-like
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contained events, which agree to about 5%. This ratio has been measured in a num-
ber of experiments, and the Kamiokande and IMB Collaborations reported smaller than

expected ratio in their contained events, with the ratio of the ratio given as:

(Vu + V)

] _ Rpara
(ve + 7e) DATA(MC)

: R(p/e) = ——— ~ 0.6, (3.21)

Rparamcy = [ Rarc

where MC stands for Mote-Carlo simulations. The discrepancy between the observed
and predicted atmospheric neutrino fluxes was called the Atmospheric neutrino anomaly.
The existence of this anomaly was subsequently confirmed by Soudan 2, MACRO and

Super-Kamiokande (SK) experiments.

3.5 Evidence for Massive Neutrinos

3.5.1 The SK Results for Atmospheric Neutrinos

Super-Kamiokande obtained a very convincing evidence of the up-down asymmetry and
zenith angle dependent deficiency for the flux of muon neutrinos, which has been inter-
preted as an evidence for neutrino oscillations. We shall now discuss the SK data and
their interpretation.

From eq. (3.14) it is clear that the oscillation probability depends on the distance
traveled by the neutrino and its energy. The distances L traveled by the neutrinos before
they reach the detector vary in a wide range: for vertically downwards going neutrinos
(neutrino zenith angle ©,, = 0°) L ~ 15 km; for horizontal neutrino trajectories (0, = 90°)
L ~ 500 km; and vertically up going neutrinos ( ©, = 180°) cross the earth along its
diameter and for them L ~ 13,000 km.

In fig. 3.2 the zenith angle distribution of the SK e-like and p like events are shown
separately for sub-GeV (visible energy less than 1.33 GeV) and multi-GeV (visible en-
ergy greater than 1.33 GeV) contained events. One can see that for e-like events, the
measured zenith angle distributions agree very well with the MC predictions (shown by
bars), both in the sub-GeV and multi-GeV samples, while for p-like events both sam-
ples show zenith-angle dependent deficiency of event numbers compared to expectations.
The deficit of muon neutrinos is stronger for upward going neutrinos which have larger
pathlengths. In the multi-GeV sample, there is practically no deficit of events caused by
muon neutrinos coming from the upper hemisphere (cos © > 0), whereas in the sub-GeV
sample, all p-like events exhibit a deficit which decreases with cos ®. This pattern is
perfectly consistent with oscillations v, <+ v; or v, ¢ v, where v, is a sterile neutrino.

Muon neutrinos responsible for the multi-GeV sample are depleted by the oscillations
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Figure 3.2: Zenith angle distributions for sub-GeV and multi-GeV e-like and p-like events at
SK (1144 live days). The dark-hatched lines show the (no-oscillations) Monte Carlo predictions;
light-hatched lines show the predictions for v, «+ v, oscillations with the best-fit parameters
Am? = 3.2 x 1072 eVZ, sin? 26 = 1.0 from [2§]

when their pathlength is large enough; the depletion becomes less pronounced as the
pathlength decreases (cos © increases); for neutrinos coming from the upper hemisphere,
the pathlengths are too short and there are practically no oscillations. Neutrinos responsi-
ble for the sub-GeV p-like events have smaller energies, and so their oscillation lengths are
smaller; therefore even neutrinos coming from the upper hemisphere experience sizeable
depletion due to the oscillations. For up-going sub-GeV neutrinos the oscillation length
is much smaller than the pathlength and they experience averaged oscillations. The solid
line in fig. 3.2 obtained with the v, <+ v, oscillation parameters in the 2-flavour scheme
Am? = 3.2 x 1072 eV?2, sin® 20 = 1.0 gives an excellent fit of the data.

An informative parameter characterizing the distortion of the zenith angle distribution
is the up-down event ratio U/ D, where up corresponds to the events with cos © < —0.2 and
down to those with cos @ > 0.2. The flux of atmospheric neutrinos is expected to be nearly
up-down symmetric for neutrino energies £ > 1 GeV, with minor deviations coming from
geomagnetic effects which are well understood and can be accurately taken into account.
In particular, at the geographical location of the SK detector, small upward asymmetry is
expected, i.e. U/D should be slightly bigger than 1. Any significant deviation of the up-

down asymmetry of neutrino induced events from the asymmetry due to the geomagnetic
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effects 1s an indication of neutrino oscillations or some other new neutrino physics. The
U/ D ratio measured for the SK multi-GeV p-like events is [28, 29]

U/D = 0.54 + 0.04 (stat.) + 0.01 (syst.) (3.22)

i.e. is below unity by about 9¢! Thus, this is a concrete evidence for oscillations of

atmospheric neutrinos pointing towards massive neutrinos.

3.5.2 SK Results for Solar neutrinos

Recent SK results on solar neutrino data [1], have significantly constrained the possible
solutions to solar neutrino anomaly. Information on the different oscillation regimes can
be obtained, from the analysis of the energy and time dependence data from SK which is
currently presented in the form of observed day-night spectrum. The observed day-night
spectrum 1is essentially undistorted in comparision to the SSM expectation and shows
no significant differences between day and night periods. In fig 3.3 we show the SK
spectrum corresponding to 1258 days of data relative to the Oritiz et. al [31] spectrum
normalized to BP00, together with the expectations from the best fit points for the LMA,
SMA and LOW solutions. The various solutions give different predictions for the day
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Figure 3.3: The electron recoil energy spectrum measured in SK normalized to the SSM
prediction, and the expectations for the best fit points for the LMA, SMA and LOW
solutions.
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night spectrum. For LMA and LOW, the expected spectrum is very little distorted. For
SMA a positive slope is expected, with larger slope for larger mixing angle within SMA.
For VAC, large distortions are expected. The main consequences of adding day-night

spectrum information to the analysis of the total event rates are:

o Active SMA: Within this region, the part with larger mixing angle fails to comply
with the observed energy spectrum, while the part with smaller mixing angles gives
a bad fit to the total rates.

e VAC (either active or sterile): The observed flat spectrum cannot be accommodated.

o Active LMA and active LOW: The small Am? part of LMA and the large Am? part
of LOW are reduced because they predict a day-night variation that is larger than
observed. Both active LMA and active LOW solutions predict a flat spectrum in

agreement with the observation.

In June 2001, the Sudbury Neutrino Observatory (SNO) also announced their results
conforming not only the oscillation hypothesis for Solar neutrinos but also severely con-

strained the possible solutions. We discuss these results in the next section.

3.5.3 The SNO results

In the SNO experiment, located 6800 feet below the ground in the Creighton mine, near
Sudbury in Ontario (Canada), a Cherenkov detector containing 1 Kton of heavy water
(D30), detected neutrinos in real-time through the charged current (CC), the neutral
current (NC) and the elastic scattering (ES) reactions

ve+d — e +p+p (CC) (3.23)
v+d — y+p+n (NC) (3.24)
vi+es — yte (ES), (3.25)

where | = e, yu, 7. Since energy threshold for the observation of the recoil electron in the CC
and ES processes is about 5 MeV, and the neutrino energy threshold for the NC reaction
is 2.2 MeV, only ®B neutrinos can be observed. The CC reaction is sensitive to exclusively
electron type neutrinos whereas NC is sensitive to all active flavours. The elastic scattering
ES reaction is sensitive to all flavours as well, but with reduced sensitivity to v, and v..
The reaction of v, is very well suited for measuring the solar neutrino spectrum: unlike
the scattering in the SK detector in which the energy of incoming neutrino is shared
between two light particles in the final state, the final state of CC reaction in SNO,
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contains only one light particle electron, and a heavy 2p system whose kinetic energy is
relatively small. Therefore the electron energy is strongly correlated with the energy of
the incoming neutrino. But the latest results from SNO, from the analysis of CC events,
show no evidence for deviation of a spectral shape from the predicted shape under the
no-oscillation hypothesis [30]. Recently SNO also published the analysis of their neutral
current data [31, 32]. The measured ®B flux with each reaction in SNO assuming the

standard spectrum shape [31] is given as (in units of 10°cm™2s71):

SNO(v) = 1.75+ 0.07(stat.) 013 (syst.)
SNO(y) = 2.39 4 0.34(stat.) 9 8(syst.)

Nl (m) = 509735 (stat. ) T5g(syst.). (3.26)

The difference between 8B flux deduced from ES rate and that deduced from CC rate in
SNO is 0.64 £+ 0.40 x 10%c¢m 257! or 1.60. SNO’s ES measurement is consistent with the

precision measurement by SK of the ®B flux using the same ES reaction [1].

Ei(v) = 2.3440.03 (stat.)T0% (sys.) x 10%cm?s™! (3.27)
E(m) — d5vo(re) = 0.57+0.17 x 106em?s™". (3.28)

The difference is obtained assuming that errors are normally distributed. If oscillation
solely to a sterile neutrino is occurring, the SNO derived ®B flux should be consistent
with the Super-Kamiokande ES derived ®B flux. These data are therefore evidence of a
non-electron active flavour component in the the solar neutrino flux. These data are also
inconsistent with the “Just-so” parameters of neutrino oscillations [35]. Also the excess
of NC flux over the CC and ES fluxes implies neutrino flavour transformation. Removing
the constraint that solar neutrino energy spectrum is undistorted, the total flux of ®B

neutrinos measured with the NC reaction is
Hr? = 6.4211 5T (stat.) TS (syst.). (3.29)

which is in agreement with the shape constrained value above and with the standard solar
model prediction [24] for ®B, ¢ssar = 5.057 591,

In the light of above results, the limits on allowed values of Am? and mixing angle
tan? # have considerably changed [33, 37]. In the units of V%, the range for Am? for
LMA solution at 3¢ level is

23x107° < Am? < 3.7x 107" (3.30)
For the LOW solution only the following small mass range is allowed,

3.5x107% < Am? < 1.2x107". (3.31)
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Exact bi-maximal solution is disfavoured at the 3.30 C.L. for LMA, at the 3.2¢ C.L. for
the LOW solution, and at the 2.8¢ C.L. for the VAC solutions. But the approximate
maximal mixing is heavily favoured. At the three sigma, the following range for LMA 1is

allowed

0.24 < tan’#4 < 0.89, (3.32)

and for the LOW solution
0.43 < tan’d < 0.86. (3.33)

3.5.4 The Borexino Experiment

The Borexino experiment is scheduled to start taking data in 2002. It will detect solar
neutrinos through the vje scattering with a very low energy threshold, and will be able
to detect the “Be neutrino line. Different solutions of the solar neutrino problem predict
different degree of suppression of “Be neutrinos, and their detection could help discrim-
inate between these solutions. Observation of the “Be neutrino line would be especially
important in the case of the VO solution. Due to the eccentricity of the earth’s orbit,
the distance between the sun and the earth varies by about 3.5% during the year, and
this should lead to varying oscillation phase (and therefore varying solar neutrino sig-
nal) in the case of vacuum neutrino oscillations. This seasonal variation can in principle
be separated from the trivial 7% variation due to the 1/L?* law which is not related to
neutrino oscillations. Since the oscillation phase depends on neutrino energy, integration
over significant energy intervals may make it difficult to observe the seasonal variations of
the solar neutrino flux due to VO. The “Be neutrinos are monochromatic, which should
facilitate the observation of the seasonal variations at Borexino.

Borexino will also be capable of confirming or refuting the LOW solution: a strong
day /night effect predicted for “Be neutrinos by this solution should be clearly detectable
at Borexino [38]. One can hope that the combined data of the currently operating and

forthcoming experiments will allow to finally resolve the solar neutrino problem.

3.5.5 Reactor and Accelarator Experiments

In reactor neutrino experiments oscillations of electron antineutrinos into another neu-
trino species are searched for by studying possible depletion of the v, flux beyond the
usual geometrical one. These are the disappearance experiments, because the energies of
the reactor v.’s ((E) ~ 3 MeV) are too small to allow the detection of muon or tauon
antineutrinos in CC experiments. Small v, energy makes the reactor neutrino experiments

sensitive to oscillations with rather small values of Am?.
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Up to now, no evidence for neutrino oscillations has been found in the reactor neutrino
experiments, which allowed to exclude certain regions in the neutrino parameter space.
The best constraints were obtained by the CHOOZ experiment in France [6]. For the
values of Am3, = Am2,,, in the SK allowed region (1.5 —5) x 107% eV?% the CHOOZ

results give the following constraint on the element U.; of the lepton mixing matrix:
|Ues|*(1 — |Ues|?) < 0.055 — 0.015 at 90% c.l., i.e. |Ues] is either small or close to unity.
The latter possibility is excluded by solar and atmospheric neutrino observations, and one

finally obtains
sin® 013 = |U.s]? < (0.06 — 0.018) for Am3, = (1.5 —-5) x 107% eV?. (3.34)

This is the most stringent constraint on |U| to date.

From January 2002, a long baseline reactor experiment KamLAND in Japan has
become operational. It is a large liquid scintillator detector experiment using the for-
mer Kamiokande site. KamLAND will detect electron antineutrinos coming from several
Japanese and Korean power reactors at an average distance of about 180 km. It will be
sensitive to values of Am? as low as 4 x 107% €V?, i.e. in the range relevant for the solar
neutrino oscillations. It is expected to be able to probe the LMA solution of the solar
neutrino problem. It may also be able to directly detect solar ®B and "Be neutrinos after
its liquid scintillator has been purified to ultra high purity level by recirculating through
purification.

There have been a number of accelerator experiments looking for neutrino oscillations.
In all but one no evidence for oscillations was found and constraints on oscillation pa-
rameters were obtained. The LSND Collaboration have obtained an evidence for v, — v,
and v, — v, oscillations [39]. The LSND result is the only indication for neutrino oscil-
lations that is a signal and not a deficiency. The KARMEN experiment [40] is looking
for neutrino oscillations in v, — 15 channel. No evidence for oscillations has been ob-
tained, and part of the LSND allowed region has been excluded. In fig. 3.4 the results
from LSND and KARMEN experiments are shown along with the relevant constraints
from the BNL E776, CCFR, CHOOZ and Bugey experiments. One can see that the only
domain of the LSND allowed region which is presently not excluded is a narrow strip with
sin?20 ~ 1 x 1072 — 4 x 1072 and Am? ~ 0.2 — 2 eV?2,

The existing neutrino anomalies (solar neutrino problem, atmospheric neutrino anomaly
and the LSND result), if all interpreted in terms of neutrino oscillations, require three
different scales of mass squared differences: Am2 < 107* eV?, Am2,, ~ 107 eV? and
AmZenp > 0.2 eV2. This is only possible with four (or more) light neutrino species. The
fourth light neutrino cannot be just the 4th generation neutrino similar to v, v, and v,

because this would be in conflict with the experimentally measured width of Z° boson.
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It can only be an electroweak singlet (sterile) neutrino. Therefore the LSND result, if
correct, would imply the existence of a light sterile neutrino. But such a possibility is

disfavoured by the recent results of SNO, as we have already discussed.

BUGEY

97-Mar.2000
(90% CL)

CHOOZ————

T 1072 107" sif20 1

Figure 3.4: LSND allowed parameter region for v, — 1, oscillations (shaded areas) along

with KARMEN, BNL E776, CCFR, CHOOZ and Bugey exclusion regions [40].

Out of all experimental evidences for neutrino oscillations, the LSND result is the
only one that has not yet been confirmed by other experiments. It is therefore very
important to have it independently checked. This will be done by the MiniBooNE (first
phase of BooNE) experiment at Fermilab [41]. MiniBooNE will be capable of observing
both v, — v. appearance and v, disappearance. If the LSND signal is due to v, — v.
oscillations, MiniBooNE is expected to detect an excess of several hundred of v, events
during its first year of operation, establishing the oscillation signal at 8¢ to 100 level. If
this happens, the second detector will be installed, with the goal to accurately measure
the oscillation parameters. MiniBooNE will begin taking data sometime in 2002.

A number of long baseline accelerator neutrino experiments have been proposed to
date. They are designed to independently test the oscillation interpretation of the results
of the atmospheric neutrino experiments, accurately measure the oscillation parameters
and to (possibly) identify the oscillation channel. The first of these experiments, K2K
(KEK to Super-Kamiokande), started taking data in 1999. It has a baseline of 250 km,
average neutrino energy (F) ~ 1.4 GeV and is looking for v, disappearance. K2K should
be able to test practically the whole region of oscillation parameters allowed by the SK
atmospheric neutrino data except perhaps the lowest-Am? part of it. The data collected
from April 1999 to April 2001 have been reported [42]. A total of 44 neutrinos from
KEK have been identified in the Super-Kamiokande detector. Based on a wide variety of

measurements made at KEK, the number of events expected in the absence of neutrino
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oscillations would be 64, with error margins conservatively estimated as approximately
10%. Thus the K2K results are statistically inconsistent with the no-oscillations hypoth-
esis (i.e., Standard Model assumption of massless neutrinos) at about the 97% confidence
level. K2K has also studied the energy distribution of these events compared to the expec-
tation based on the pion monitor data and a Monte-Carlo simulation, but the statistics
to test the neutrino energy spectrum is very poor®.

Two other long baseline projects, NuMI - MINOS (Fermilab to Soudan mine in the
US) [43] and CNGS (CERN to Gran Sasso in Europe) [44], each with the baseline of
730 km, will be sensitive to smaller values of Am? and should be able to test the whole
allowed region of SK . MINOS will look for v, disappearance and spectrum distortions due
to v, — v, oscillations. It may run in three different energy regimes — high, medium and
low energy ((E) ~ 12, 6 and 3 GeV, respectively). MINOS is scheduled to start taking
data in 2003. CERN to Gran Sasso ((E) ~ 17 GeV) will be an appearance experiment
looking specifically for v, — v, oscillations. It will also probe v, disappearance and
v, — v, appearance. At the moment, two detectors have been approved for participation
in the experiment - OPERA and ICARUS. The whole project was approved in December
of 1999 and the data taking is planned to begin in 2005 [45].

Among widely discussed now future projects are neutrino factories — muon storage
rings producing intense beams of high energy neutrinos. In addition to high statistics
studies of neutrino interactions, experiments at neutrino factories should be capable of
measuring neutrino oscillation parameters with high precision and probing the subdom-
inant neutrino oscillation channels, matter effects and CP violation effects in neutrino

oscillations [46].

SK2K experiment has suffered a severe setback due to an unfortunate accident in the SK detector on
12th Nov 2001, blowing away the photo-multiplier tubes. However the plans of rebuilding the detector
are underway.
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Chapter 4

A Brief Interlude on R-parity

In the previous chapters we briefly discussed the Minimal Supersymmetric Standard
Model, RG equations and neutrino anomalies. The purpose of this thesis is to address
the question of neutrino anomalies in the framework of supersymmetric standard model
without R parity. Before we dwell into those problems it is worth-while to discuss certain
issues connected with R-parity that are central to our problem. In this chapter we briefly

discuss these issues.

4.1 From R-symmetry to R-parity

The Yukawa interactions of the standard model are extracted from the superpotential:

Wy = ea (v, QU HY + y) Qi DS HY + yfi L ESHY) (4.1)

i3
This cubic superpotential contains no mass term for the Higgs and has many global

symmetries, some nefarious to the phenomenology. Let us identify them. Global trans-

formations on the superfields appear as
(I)f — emfn(I)f, (42)

where f denotes the species: L, E, U, D¢ or (). The transformations which preserve

SUSY obey the relations,

np, +nestng = 0 1=epu,T,
ng +nue+ng, = 0 any flavour,
vg+npe+ng = 0 any flavour. (4.3)

With only one family, there are seven fields, with seven independent phases, obeying three
relations from the couplings, leaving four independent symmetries namely, the lepton
number, baryon number, hyper-charge and the Peccei-Quinn symmetry (PQ) [1]. The

cubic super-potential is invariant under global U(1) transformations
Hi) — € Hipy; Q(L) = e*Q(L); U° - U ; D°— D°; E° — E°. (4.4)
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This 1s PQ symmetry and is preserved as along as the coefficient of the bilinear term in
superpotential u is zero. Note that the condition ¢ = 0 would imply that the correspond-
ing soft parameter B, = 0. This gives rise to two cases: (a) the vev of Hy or Hj is zero,
that is some quarks/charged leptons are massless ,(b) the mass of CP-odd neutral Higgs
m4 = 0. Both the cases are experimentally ruled out. Hence p cannot be zero.

In the absence of y term, the cubic superpotential enjoys one more global U(1) sym-
metry, namely the R-symmetry [2, 3]. Under this symmetry W — W’ = e**W. This can
be arranged by the following choice of R-charge:

Hio) — € Hipy; Q(L) = ¢“Q(L); U° - U°; D°— D°; E° — E°. (4.5)

Note that £ = [d*W is invariant under this transformation. Therefore df — e~**df
and § — €6 (to ensure [ dAf = 1). As mentioned in chapter 1, a chiral superfield ® can
be written in terms of its scalar, fermionic and auxiliary components, ® = ¢ + 8 + 6%F.
Thus it is clear that ¢ carries same charge as ®, and @ carries one unit less. Also since
the vector superfield V' is real, R(V) = 0, which means that R(V,) = R(D) = 0 and
R(X) = 1. Thus gauginos are massless in the limit of exact R-symmetry. In the MSSM,
the majorana mass terms for the gauginos are generated by the soft SUSY breaking. Since
these terms are quadratic in A, the majorana gaugino mass terms break the continuous

U(1)gr symmetry down to a discrete Z; symmetry called R-parity. R-parity is defined as:
Rp — (_1)3B+L+257 (46)

where B, L and S are the baryon, lepton and spin quantum numbers. R-parity is gener-
ally invoked to forbid the baryon and lepton number violating terms which are present
when one writes down the most general superpotential allowed by supersymmetry, gauge
invariance and renormalizability as we already discussed in chapter 1.

It is clear that the imposition of R, (henceforth we will remove the subscript ‘p’ ) is
only for the phenomenological purpose and does not follow as some sacrosanct symmetry
principle. So, as far as the R violating couplings respect the constraints from phenomenol-
ogy, they are not only harmless but give rise to rich phenomenology. For example, it is
only the simultaneous presence of B and L violation that is in conflict with proton life-
time. Removing one of them would render proton stable. The popular approach is to
invoke an alternative to R-parity, called the baryon parity which does not allow the B
violating terms. We shall discuss in the next chapters, how retaining L violation leads to

natural solutions for neutrino anomalies.



A Brief Interlude on R-parity 61
4.2 Distinguishing leptons and Higgs: Breaking an SU(4)

There are certain subtle issues connected with the freedom of rotation of leptons and
Higgs. This freedom of rotation plays an important role when we discuss the neutrino
masses from R violation in next chapters and hence we briefly discuss them here.

Let us assume for the time being, there are no superpotential terms and no soft SUSY
breaking terms, but only gauge interactions. In such a scenario, since leptons and a down-
type Higgs H; superfields carry the same gauge quantum numbers, there is no way we can
distinguish them. The theory possesses an additional SU(4) rotation symmetry in the
L;, H, space. Now let us introduce the MSSM superpotential and soft terms. This spoils
SU(4) symmetry as lepton and Higgs superfields have different interactions. At this stage
there are two possibilities: (a) If the superpotential and the soft terms conserve the lepton
number as a global symmetry, the lepton numbers are fixed so the lepton numbers make
sense. In fact this along with the imposition of baryon number conservation is the MSSM
with R-parity imposed . (b) If they are switched on, but violate the lepton number,
although the SU(4) symmetry is lost, a freedom to define the three lepton superfields and
the down-type Higgs is still there. For example, if all the terms in the superpotential and
the soft potential undergo an SU(4) rotation to redefine the lepton and Higgs superfield of
the model, then superficially the vewvs of the sneutrinos, the mass matrices and the relevant
couplings are changed accordingly, whereas the physics is not changed [4, 5, 12, 7, 13, 9].

Because of the freedom of SU(4) rotation, it is possible to rotate away the bilinear R
violating terms from the superpotential. This led many authors to conclude that these
terms are unphysical. It was pointed out by the work in [7], that regardless of whether the
bilinear terms are present in the superpotential at the high scale or not, the corresponding
soft bilinear terms are always generated at the weak scale. This is because the removal
of bilinear terms by rotation, generates a subclass of trilinear L violating terms in the
superpotential and these contribute to RG scaling of the soft bilinear parameters. These
issues will be discussed at length in the next chapters. Suffice it to say that the freedom
of SU(4) rotation should be used carefully and that different choices for rotation suited
for different problems can change vevs and the couplings, but the final physics is basis

independent as it should be.
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Chapter 5

Bilinear R Violation and Bimaximal Mixing

5.1 Introduction

We discussed at length in chapter 2, the experimental results of deficits in the solar [1, 2]
and atmospheric[1] neutrino fluxes. This has provided concrete ground to believe in neu-
trino oscillations. The experimental results are consistent with a simple picture of three
active neutrinos mixing with each other [4]. Within this picture, two independent (mass)?
differences (Ag, Autrm) among three neutrinos govern the oscillations of the solar and at-
mospheric neutrinos respectively. One needs Ag /A < 1072, Two of the mixing angles
determining the amplitudes of these oscillations are required to be large [5]. The third
mixing angle measured by the survival probability of the electron neutrinos in laboratory
experiments such as CHOOZ is found to be much smaller < 0.1 [6].

So one is led to believe that like any other fermion, neutrinos are also massive. Never-
theless, extremely tiny masses and one or two large mixing angles in the neutrino sector
are suggestive of a different origin for neutrino masses. Any theory of neutrino masses
should naturally explain these distinctive features. In order to do so, the candidate theory

should possess following desirable features:

o Extra fermions with same gauge quantum numbers as neutrinos, so that neutrinos

can mix with them.

e Some of these fermions be several orders of magnitude heavier than neutrinos so

that see-saw like mechanism is possible.

e Since neutrinos do not carry electromagnetic or colour charge, it is very much likely
that they are Majorana fermions. This means that the theory should contain lepton
number violating couplings, which can conjure to give radiative Majorana mass to

neutrino.

We already discussed in chapter 2, the merits and demerits of extending Higgs and/or

fermionic sector of SM in the framework of both seesaw as well as radiative mechanisms to
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explain the neutrino masses. In this chapter we pursue one of the most attractive extension
to SM, the so called Minimal Supersymmetric Standard Model, without R — parity which
naturally contains all the above attributes of a candidate theory for neutrino masses. In
such a framework the virtues of seesaw as well as radiative mechanisms are naturally
operative.

One potentially interesting possibility in this regard is supersymmetric standard model
containing bilinear R parity and lepton number violation [5, 8,23, 7, 8,9, 11, 10, 15]. This
assumption is theoretically well motivated. Spontaneous breaking of lepton number [16]
could normally result in such a term. This approach however leads to a low scale massless
mode called majoron [17] which cannot be reconciled with phenomenology !. Alternatively
one could imagine generalized Peccei-Quinn (PQ) symmetry whose spontaneous breaking
leads to p and ¢; at the weak scale through dimension 5 operators. [19]. Moreover it is
possible to choose the PQ charges of different fields in such a way that the generation
of effective trilinear operators is enormously suppressed. We follow an approach where
lepton number violating couplings are present explicitly in the theory. Two features of this
model make it an ideal candidate for the description of neutrino masses. (1) The lepton
number violations and hence neutrino masses and mixing are described in this model
in terms of only three parameters. Ratios of these parameters control neutrino mixing
which can be naturally large. (2) The mechanism for suppression of neutrino masses
compared to other fermion masses is automatically built-in for two of the most popular
supersymmetry breaking scenario namely the minimal supergravity model (mSUGRA)
and models with gauge mediated supersymmetry breaking (GMSB).

Extensive studies of these models have been carried out in the literature [8, 23, 7, 8].
In this chapter, which is based on our work [13], we wish to discuss the conditions under
which the bilinear model can lead to two large mixing angle among neutrinos. We discuss
this issue analytically and in the process show that the two scenarios mentioned above
cannot lead to two large mixing angles although small angle mixing solution to the solar
neutrino problem is possible?.

In order to understand the suppression of neutrino masses, let us briefly discuss, how
neutrinos obtain mass in these models. In these modes, the scalar soft potential contains
terms linear in sneutrino field (see eq. 6.4). The stationary value conditions for soft
potential gives rise to sneutrinos vevs. This leads to neutrino-neutralino mixing given by
a 7 x 7 matrix. Neutralinos being very heavy (~ TeV) the mass matrix has a seesaw type

structure. Such a matrix can be block diagonalized to give an effective 3 x 3 neutrino

1See [18] for the solution to this problem.
ZFeasibility of only small mixing angle solution was pointed out also in [15] . Our analysis considerably
differs from theirs.
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mass matrix, which upon diagonalization gives neutrino mass eigenvalues (for details, see
appendix A). So the neutrino masses are quadratic in sneutrino vevs. Sneutrino vevs in
turn are derived in terms of the differences in the bilinear soft parameters at the weak
scale. To be specific, it depends upon the differences between soft parameters of one
of the Higgs fields (= H;), with the corresponding parameters of the leptonic doublets
having the same quantum numbers as H;. Small differences arise in these parameters at

the weak scale due to RG scaling. For example, one finds in case of mSUGRA
2 N\ 3h2 Mx 2

2 2 ~ i -3 2
Ami = (ml;i/ — mHl/> ~ mln Emsusy ~ 2 10 msusy,

(5.1)

2

where ml’f(i = 1,2,3),m12q{ respectively denote the weak scale values of the soft SUSY
breaking masses of the sneutrino and H; respectively and mgpysy is the typical SUSY
breaking scale ~ O(100 GeV) . The h; in the above equation refers to the b-quark Yukawa
coupling. The neutrino masses in this model involve the above and similar differences
among B parameters. The suppression in these differences leads to suppression in neutrino
masses. Thus the smallness of neutrino masses is linked to near universality of the Higgs
(H;) and sneutrino soft parameters. As we will discuss in this chapter, the solar neutrino
mixing angle is directly linked to flavour universality violation, ¢.e, to differences in
sneutrino mass parameters themselves. More specifically, the solar neutrino mixing angle

involves the parameter

"y T 5.2
_Am%—l—Am%7 (5.2)

which is required to be O(1) implying that the weak scale universality violation among
different flavours are required to be as strong as the corresponding Higgs-slepton univer-
sality violations. This is in sharp contrast with the expectations based on mSUGRA and
GMSB where the former violations are mainly controlled by the muon Yukawa coupling
while the latter by the b or 7 Yukawa couplings. Thus § in eq.(5.2) is of O(10™*) instead
of being one.

Link between universality violation and large mixing was brought out in the numerical
study of [10]. In contrast to their work, our analytical study allows us to determine specific
pattern of universality violation and also allows us to quantify the amount of violation
needed to obtain the LMA solution for the solar neutrino problem.

We present our results in the following manner. The next section outlines general
formalism we adopt and our assumptions. It also contains analytic discussion of neutrino
mixing and masses in this scheme. The close link between large angle solar neutrino
solution and flavour violation is emphasized in section (3) which also contains results
based on numerical analysis. The last section contains a summary. Some of the technical

aspects relevant to discussions in the text are elaborated in the appendices.
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5.2 Sources of neutrino masses

We consider supersymmetric extension of the standard model with the following super-

potential:

W = hQiuSHy + hIQidSH, + W LiSHY + 1/ H Hy + L. H,. (5.3)

J

Without loss of generality, we have chosen above the basis in which the down quarks and
charged lepton masses are diagonal. The ¢; characterize lepton number violation in this
basis.

We assume the following soft supersymmetry breaking terms:
Viost = mgpol H°|* + mip | Hp|* + mg, |0/
(BMM’HioHS + c.c) — Be; (ﬁ/Hg + c.c.) + ... (5.4)

Note that the above equation refers to soft terms at the weak scale. For simplicity we
have displayed only the terms involving neutral fields in the above equation. The follow-
ing comments are needed in connection with eq.(6.4):
(i) Although we have allowed for arbitrary diagonal sneutrino masses, we have not in-
cluded off-diagonal sneutrino masses in this primed basis since such off-diagonal masses
are severely constrained by flavour violating processes, e.g. u — ey [21].
(#i) Viost does not contain sneutrino-Higgs mixing terms of the form mlz;,iHl, ;"™ Hy although
they are allowed by the gauge symmetry. Such terms are not present in the minimal su-
pergravity theory at high scale. The renormalization group (RG) equations for m?,i,Hl,
given in the appendix, eq.(5.49) show that these terms cannot get generated even at the
weak scale if they are not present at high scale. Thus it is meaningful to omit these
terms. We should emphasize that this statement is very specific to the particular basis in
which bilinear terms are not rotated away from the superpotential until the weak scale and
neglect of such terms would not be justified in any other basis. In our case, the r;" H; term
would make its appearance when we go to the basis with no bilinear R violating terms in
the superpotential at the weak scale.

The neutrino masses arise from several sources in this model. Discussion of these
sources becomes transparent if we re-express eq.(5.3) in the new basis in which bilinear

terms are rotated away from TW3:
pH 4+ Y 6L
H1 - 7 ;
1
p'Li — i Hj
oo

3Note that this definition of a new basis is same as that of Ref.[17]. However in the present work, this

rotation is done only at the weak scale in contrast to [17] where it is scale-dependent.

L; = (5.5)
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This basis are simple but are orthonormal only up to O(;—,Qz) This approximation is suffi-
cient for most of our discussions since ¢; are required to be much smaller than the typical
SUSY scale i/ in order to reproduce the scale of neutrino masses correctly. Generalization
of eq.(5.5) valid to higher order in ¢; and its consequences are discussed in the appendix

C. Eq.(5.3) takes the following form in the unprimed basis:

W = hZ‘Q,u;Hz + h?Q,del + hfL,ele — )‘i]kLlQ]dz — )\,’jkL,’Ljei + /LHng, (56)

J

where
2 2 2 2 2 .12
poo= prteatetermuT,
N o= Sopds.
igk ; 595k
7

€;

€
Aijk = (&khfu—], - 5;%;;) . (5.7)

Similarly, after rotating primed terms in eq.(6.4) and adding the contribution of the
supersymimetric part, we get the following expression for the full scalar potential in the

unprimed basis:

~ 62 ~*
Vieatar = (migo + p*) | HY* + (i + p?) |3 + mil il + Ami - (5 HY + c.c)

— (BMILLH?HS + c.c) — ABie; (ﬁng + c.c)
1 B 2
+ gt ) (1H + il - 1 H) (5.8)
where
Am? = m?;i, —myo 3 AB;=B;,—B,. (5.9)

Two major sources of neutrino masses arise from eqs.(5.7,5.8). Minimization of eq.(5.8)
generates sneutrino vev:

< v; >= €k, (5.10)
where
v1 (—Am? + tan 8 pAB;)
w (mZ +1/2M7 cos 2(3)’

vy =< HY > and My represents the Z boson mass. Sneutrino vevs lead to neutrino

ki & (5.11)

masses through their mixing with neutral-gauginos:
Miree = Ag < 17; >< I/Nj >= Aoe,-ejk,'kj . (5.12)

Ap 1s obtained by diagonalizing the 7 X 7 neutrino-neutralino mass matrix in the standard

way [21] and is demonstrated in the appendix A of this chapter:

2, n
Ay = a (29 +97) — (5.13)
2(—cuMy + My sin 23 (¢ + tan® Ow))



Bilinear R Violation and Bimazimal Mizing 68

where 0y represents the Weinberg angle and My represents the W-boson mass. ¢ is given
by 5¢%/3g" 2 ~ 0.5 with M, representing the standard gaugino mass parameter.

The trilinear terms in eq.(5.7) lead to the second contribution to neutrino masses at
1-loop level for the X' couplings. Since these couplings are proportional to the Yukawa
couplings, the dominant contributions arise due to exchanges of the b-quark-squark and

7-lepton-slepton in the loops. The loop induced mass matrix is of the form :

(Mioop)i; = €i€; (Ap + Ar (1 — 6i3) (1 — 3)) , (5.14)
where
3 un 3 . M22b
Ay = —h In|—= 1
b 1672 12 b Sin ¢y cos Ppln (Mlzb , (5.15)
i 1 (%] 3 . ) ; M22‘r v
A, = 602 ?hf sin ¢, cos ¢,ln (Mlzr . (5.16)

Here ¢, (r) denotes mixing between the left and the right handed squark (sneutrino) fields.
These mixing angles are proportional to the b and 7 Yukawa couplings. Approximating

them by —~ we get the following numerical values

Ag ~ 5-107°GeV™!,
Ay ~ 3-10710GeV T,
Ar & 41007 GeV T (5.17)

for msysy ~ 100 GeV. There are other loop contributions to neutrino masses and a com-
plete discussion is given in [8, 10, 22]. We have retained here only those contributions
which are known [22] to be dominant in case of mSUGRA and GMSB. The additional
contributions not included in the text come from, (a) R parity violating mixing of the
charged leptons with Higgs fields, (b) sneutrino (chargino) exchange diagrams with off-
diagonal sneutrino (chargino) mass insertion and (c¢) loop contribution to the tree level
neutrino neutralino mixing. These contributions are sub-dominant as long as the param-
eters Am?, AB; are suppressed [22]. Such suppression is required purely from the phe-
nomenological point as we argue below. It is then consistent to omit these sub-dominant
terms for the analytical discussion that follows. We however discuss these additional
contributions in the appendix C.

The total neutrino mass matrix is given by
("MtOt)ij = Aoe,'ejk,'kj + €;€5 (Ab + A,- (1 - 5,3) (1 - (Sjg)) . (518)

The desired hierarchy among neutrino masses is automatically built in the above equa-

tions in view of typical numerical values of the parameters Agp .. The tree contribution
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dominates over the rest (unless k; are enormously suppressed) but it leads to only one
massive neutrino. Switching on the b-quark contribution gives mass to the other neu-
trino, one neutrino still remaining massless at this stage. The latter obtains its mass from
somewhat less dominant contribution due to A,. Note that hierarchy among the first two
neutrino masses need not be very strong due to similar magnitudes of A; .. The above

statements are made explicit below which also contains discussion on neutrino mixing.

5.2.1 Neutrino masses and mixing

The tree-level neutrino mass matrix can be easily diagonalized:
Up MUl = diag{0,0,m,,} , (5.19)

where

C2 $2C3  S9253
Ul = 5.20
0o = —82 (€203 (283 ) (0- )
0 —S3 C3

with sp3 = sinfy 3 and

tan 8y = €1k /exky ; tan O3 = \/e2ki + e3k2/esks - (5.21)

The total mass matrix eq.(5.18), assumes the following form in basis with diagonal tree

mass matrix:

aj(Ap + A;) ai(Apaz + Arby) ai(Apaz + A;bs)
Us Mot Uy = ai(Apag + Arby)  Apas + Ab2 Apasas + A bybsy . (5.22)
ar(Apas + Arbs)  Apasas + Arbobs  Agw? + Apa3 + Ab3

where
€1€2
= 9% g
ax wy ( 1 2)7
€
ay = ——(etki(kr — ks) + e3ka(ks — ks)),
wiw
1
az = —;(Eikl + 63]6‘2 + 6:23]63),
k
b2 - 63—3 b3,
Wl
1

b3 = ——(G%kl + ng‘z) 5 (523)
w
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with

o = (€K SR+ SR

wi = (K 4 ERHV2 (5.24)
The subsequent diagonalization can be approximately done if we neglect terms of O(Aj(’; ).
Let
C1 S1 0
Ul'=| —si & 0|, (5.25)
0 0 1
where 2y (Agts + Arby)
ay |\ Apda 702
tan 26; = . 5.26
SV % () 520
We then have
my,, 0 0
Ay,
UUMiUTUT =1 0 m,, 0 |40 2’ ). (5.27)
0
0 0 my,
The eigenvalues are approximately given by
my, ~ A‘r a%(iz — ()22)27
(af + a3)
my, & Ap (a% + a;),
m,, ~ Ayw’ (5.28)
The mixing among neutrinos is described by
C2C1 — S152C3 C281 + €182¢3  S283
U=U; Ul = | —s501 —s10a¢3 —8951 + 16203 €283 | - (5.29)

5153 —C153 C3

Let us now discuss consequences of the above algebraic results.
(1) It follows from eqs.(5.17,5.28) that the neutrino masses obey the desired hierarchy:

<
My, S My, K My, .

(2) The neutrino masses relevant for the solar and atmospheric scales are respectively

given by Age?k? and Ape? leading to

~

Ag (Ab > 2
Aatm

~ A_O k4’
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where €, k represent typical values of ¢;, k;. It follows that the ratio of the solar to at-
mospheric scales is independent of the R violating parameters ¢; and depends upon the

values of the soft parameters represented by k. One typically needs
e~107"GeV ; k~107°-107" (5.30)

in order to reproduce the scales correctly. This shows in particular that irrespective of
details of the SUSY breaking the Higgs-slepton universality (corresponding to very small
values of k) is unavoidable in this model if neutrino masses are to be correctly reproduced.
(3) If exact flavour universality were to hold between the first two generations then ky = ky
(see eq.(5.11)). In this case a; as defined in eq.(5.23) would be zero leading to s; = 0
in eq.(6.44) . The s; is required to be large in order to obtain the large mixing angle
solution and obtaining this solution would need very sizable departures from the flavour
universality among the first two generations. We quantify these remarks in the next

section.

5.3 Neutrino mixing and departure from flavour universality

We derived approximate expressions for the neutrino masses and mixing without any
specific assumption on the soft symmetry breaking sector. The entire neutrino spectrum
can be parameterized in terms of three ¢; and three k; of which k; depend upon the soft
SUSY breaking parameters. We now quantify the amount of flavour universality violations
needed for obtaining the most preferred large angle solution to the solar neutrino problem.

The following two parameters are introduced as a measure of universality violation:

T = (k1 - ks)/(k1 + k3) 7y Y= (kl - kZ)/(kl + k2)- (5'31)

We regard = and y as independent parameters but restrict their variation to values between
(-1,1) in the numerical analysis that follows.

The neutrino mixing is determined by the matrix U in eq.(5.29). Due to hierarchical
mass spectrum, the survival probabilities for the solar and atmospheric neutrinos approx-
imately assume two generation form. The corresponding mixing angles 65 and 8atm, are

given in terms of elements of the mixing matrix U as follows:
sin’ 20um ~ 4 Uly(1—Uus)’*~08-10,
sin®20 ~ 4 ULU% ~0.75-1.0,
SiIl2 OCHOOZ ~ U623 S 0.01 5 (532)

where numbers on the RHS correspond to the required values for these parameters based

on two generation analysis of the experimental data [5].
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We can convert the above restrictions on g, fatm to restrictions on the mixing angles
1,23 entering the definition of U. The CHOOZ result requires |szs3| < 0.1 and the nearly
maximal atmospheric mixing is obtained with |cps3| ~ % This requires small s, and
large s3. The solar mixing angle defined in eq.(5.32) coincides with sy in this limit. We
thus need sin®26; ~ 0.75 — 1. Large value of s; in turn needs sizable departure from
flavour universality as argued in the last subsection.

The expressions for mixing angles and masses obtained in the last section can be used
to approximately determine the allowed ranges of parameters k;, ¢; which explain the solar
and atmospheric neutrino anomalies. We approximately need |s,| < V2U.5 and |s3| ~ %

2
This implies:

272 . 37.2
exky ~ e;k3

lerky| & V2|Uesesks|. (5.33)

The magnitude of e3k3 is then approximately fixed by the atmospheric mass scale:

ml/3 ~ VAatm

2k2 ~ 5.34
63 3 2A0 2A0 9 ( )
while the solar scale and mixing angle determines 6:2,)2
Ag 1 2(1 —y)?
€ o |\ 1+2) 0 -y)" (5.35)
2 Ay cos? b (x —y)?

Eqs.(5.33,5.34,5.35) allow us to express magnitudes of all ¢;, k; in terms of =,y , approxi-
mately known Agj and the experimentally measurable quantities.
The solar mixing angle following from eq.(5.26) is given in the limit A, < Ap by

tan® g ~ tan’ b, ~ e(x — ) . (5.36)

We have used eq.(5.33) in deriving the above relation. It is clear that large 6; requires

sizable departure from flavour universality, i.e. sizable y. Moreover, one typically needs
|z — y| ~ 2|Uesy(l — x)| in order to obtain a sizable solar angle.

We now numerically determine the region in the z,y plane needed to reproduce the
required ranges in mixing angle and masses. We make use of eqs.(5.33-5.35) to determine
the approximate input values of ¢;, k; in terms of the Ay, Ay and z,y. We allow input
values to vary by varying Ag, Agm over the experimentally allowed ranges. We also
randomly choose z,y between -1 and 1. Through this procedure, we choose a set of 1.5 x
10° different values for the input parameters ¢;, k;. Then we numerically diagonalize the

total neutrino mass matrix, eq.(5.18) for each of these values of €;, k; and determine a set
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of =,y values which correctly reproduces the allowed ranges of the solar and atmospheric
neutrino parameters and lead to |Ues| < 0.1. We obtain about 2024 z,y values leading to
the correct description of neutrino anomalies. These points in the z, y plane are displayed
in Fig.(1). This figure, based on the complete diagonalization clearly shows the features
obtained through approximate formulas. All the allowed values of  and y are in the
range —0.9 to —0.6 and sizable departure from universality is clearly seen. Also most
points satisfy approximate equality |z — y| ~ 2U.3y needed to obtain large solar angle.
As an illustration, we give below a typical set of ¢;, k; which correctly reproduces all the
parameters:
€3 ~0.1GeV  ; k3~1.1 -1073
€3~ 0.031GeV ; ky ~3.5 -1073 (5.37)
€1 ~0.087GeV : k ~9.1 -107%

Typically, one needs e; ~ O(107" GeV') and k; ~ 1072 as argued before.

Let us now compare above phenomenological restrictions with expectations based on
specific framework like mSUGRA. In order to obtain correct neutrino masses one needs
parameters k; (5.11) to be suppressed, typically & ~ 107® — 10~* as in eq.(5.30). The
other constraint is that y should be O(1). The k; provide a measure of the Higgs-slepton
universality violation. Typical value of k; obtained in mSUGRA follows from eq.(1) and
is in the range required from phenomenology. Thus mSUGRA provides a very good
framework to understand neutrino mass hierarchy as has been demonstrated in number
of papers through detailed numerical calculations [8, 8, 10]. However mSUGRA would
not be able to provide the required value of y. This can be seen as follows. Theoretically,

y can be approximately written using eq.(5.11) as follows:

ptan B(By — By) — (mlz;,1 —m% )

1112

= ptan 3(AB; + ABy) — (Am? + Am3) ’

(5.38)

where we have neglected terms of order (Am?)? (AB;)* etc. Within mSUGRA, y is
identically zero at the high scale as By = By and m_, = mZ, due to the universal boundary
conditions. At the weak scale, this universality condition is broken solely by RG evolution.
In the limit of neglecting first two generation Yukawa couplings, y is identically zero even
at the weak scale. A rough estimate of parameters appearing in y can be obtained by
approximately integrating the RG equations, eqs.(5.50,5.51) given in appendix B. We see
that
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(Bl — BQ) 1 (mu)z —4
—_— " - | — ~1 . 5.
ABl + ABQ 6 mp 0 (O 39)

Together they would imply very small value for y ~ 0 instead of the required value of
O(1). Thus universal boundary conditions of mSUGRA cannot lead to a large mixing
angle solution to the solar neutrino problem.

It is clear from the forgoing discussion that one needs small Higgs-slepton universality
violation as well as flavour violation of similar magnitude. While mSUGRA cannot give
this pattern, such pattern can be incorporated in non-minimal models of GMSB [18].
The flavour universality violations needed to obtain large solar angle can come either
from non-universal mass terms or from non-universal B parameters or both. Identical
gauge quantum numbers of all sneutrinos assure almost universal sneutrino masses at the
weak scale as in the case of mSUGRA. In contrast, there is no natural reason within these
models for the flavour universal B parameters. In fact, the B parameters are assumed to
vanish in the minimal version of the scheme [20, 27]. Thus the universality of B parameters
at supersymmetry breaking scale holds by default. It is possible to choose non-universal
and non-zero B, terms to start with in this model. This does not significantly influence
the conventional phenomenology of the minimal version as long as the parameters ¢; are
much smaller than the y-parameter in the superpotential. But it allows the LMA solution
as has been demonstrated through a detailed numerical work [7].

Knowing the value of = and y required for a correct neutrino spectrum at the weak
scale, it is possible to estimate the amount of non-universality required at the high scale.
For example, using y, we have in the limit of neglecting contributions from AB terms,
the required slepton flavour universality violations to be of order:

mz, (0) m7, (0)

2 0) — 2 s 2~/ 2~/ 9 vy v
mg (0) —mg (0) & y(m;, (0) +m; (0)) +2y m2,(0) + dm,’

(5.40)

where dm?;,, represents the correction to the high scale Higgs mass due to RG scaling.
1
From the above we see that for a large negative y, m2 (0) should be at least a factor of
2

3 times larger than mj (0). However these estimates should not be taken very seriously.
As in the realm of non-universal soft parameters, the sub-dominant contributions which
have been neglected in the present analysis can possibly become dominantly contributing

depending on the choice of parameters.

5.4 Summary

Supersymmetric model with bilinear R parity violations provides a potentially interesting

framework to study neutrino masses and mixing. The dominant sources of neutrino masses
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can be parameterized in this scenario in terms of three dimensionful parameters ¢; and
three dimensional parameters k;. The k; depend on the structure of soft supersymmetry
breaking terms at the weak scale. We have tried to obtain phenomenological restrictions
on ¢; and k; without making specific assumptions on the values of the soft supersymmetry
breaking parameters. While neutrino masses can be suppressed by lowering the overall
scale ¢; of R parity violation, phenomenologically preferred hierarchy in neutrino masses
require that both ¢ and k; are suppressed, see eq.(5.30). k; provide a measure of the
Higgs-slepton universality and suppression in their values indicate very small amount of
this violation. Such violation of universality is already built in the mSUGRA and GMSB
scenario.

A large solar neutrino mixing angle can be obtained consistently within these scenarios
only if flavour universality violations in the soft parameters of the first two generations
are almost as large as the violation of Higgs-slepton universality. This feature does not
emerge in models where these universality violations are generated solely by RG scaling
as in the case of mSUGRA. Thus mSUGRA seems more suitable to describe the less
preferred small mixing angle solution to the solar neutrino problem.

We concentrated throughout on the most dominant sources of neutrino masses in
this theory. This is a good assumption in case of small universality violation. The other
sources of neutrino masses would become important in case of large universality violation.
It is not unlikely that these contributions could also lead to a large solar neutrino mixing

angle in such scenarios.

5.5 Appendix A

We present here the derivation of the tree level mass matrix, eq.(5.12) *. In the presence
of R-violating couplings neutrinos mix with neutralinos. In the bilinear R-parity violating
scenarios, this mixing takes place with ¢; couplings and the sneutrino vevs. In the Weyl

basis, the Lagrangian describing the neutrino-neutralino mass matrix is given by,
Lot
Ernass = —5\:[/0 ./MO\IIO + h.C., (541)
where in the two component notation, ¥y is a column vector of neutrinos and neutralinos,

U] = (Ves v v, —idy, —ids, 0, 00, ) - (5.42)

“Here we work in the un-rotated basis, retaining the bilinear couplings ¢; for sake of generality. The
tree level mass matrix of of eq. (5.12) can be obtained by putting ¢; = 0.
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The mass matrix has the following general structure which is of see-saw type:

0 m

Mipee = . (5.43)
mT M4

Here the sub-matrix m is of dimension 3 X 4 and has the following structure:

— %wl %wl 0 &
m = —%wz %wg 0 e |, (5.44)
- %UJ?, %wg 0 €3

with the w; representing the sneutrino vevs. My is the standard 4 x 4 neutralino mass

matrix of the MSSM which has the following form:

M1 O —%’Ul %Uz
0 My, —Lqy, Ly

M, = SRCRECh (5.45)
—%Ul %01 0 —H

g2

—WUQ \/57]2 — U 0
The effective 3 x 3 neutrino mass matrix is obtained by block diagonalizing the above

matrix. It has the form :

Meff = —mMZlmT

A2 AAy AjAs

M 2 M 12
G EMLGT) | A A | (5.46)

D
AAs AyAs A2
The vector A is defined as,
A= s —ve (5.47)
D is given by,
D =2(—pu M; My +2 Mj,cgss( My + My tan®0w)). (5.48)

Here, the matrix m.s; 1s written in the basis where ¢; are not rotated away from the
superpotential. The rotated form of this matrix is given in the text and takes the form
Miree, €q.(5.12), in the charged lepton mass basis. From m.s; we can easily see that it
has only one eigenvalue, even in the presence of the first generation sneutrino vev. This

is a generic result of all the R-parity violating models.
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5.6 Appendix B

The renormalization group equations for various parameters appearing in the soft scalar
potential are basis dependent. We have chosen a specific basis in which bilinear terms in
the potential are kept in the superpotential till the weak scale. These terms are rotated
only after evolving to weak scale. We collect here RG equations for relevant parameters
with this specific choice. They differ for example from the ones derived in [22] where
relevant rotation is performed at each scale. The following equations follow in a straight-

forward manner from the formalism given by Falck[35]:

d 1 1 3
aml%;H; = mZ;H;(—§Y;E 5= 5h), (5.49)
d "
Z(Am) = 3Yy(mg, + mp, +miy + Ap)
— Y (mi, +mp, +miy + AP ), (5.50)
d - " "
(ABi) = AV 434, - 3v;FAL. (5.51)

In the above, we have used standard notation for all the soft parameters appearing in the

equations.

5.7 Appendix C

In this appendix we justify the neglect of additional contributions to neutrino masses not
included in the main text. We also discuss flavour violating processes y — ey and show
that the corresponding branching ratio is very small in the present context.

Detailed analysis of the additional 1-loop diagrams contributing to neutrino mass
matrix has been done in [8, 10, 22]. While Refs. [8, 10] calculate all the 1-loop self-energy
diagrams to the 7 X 7 neutrino-neutralino mass matrix and re-diagonalize it, Ref.[22]
follows the effective mixing matrix approach. In addition to the contributions considered
in the text, large contributions are also expected from diagrams which are not Yukawa
suppressed, thus involving only gauge vertices. These can be visualized as diagrams with
two R-parity violating mass insertions proportional to Am?, AB; as given in eq.(5.8), with
neutralino (chargino), sneutrino (charged slepton) and neutral Higgs (charged Higgs) in
the loops [11, 22]. Typical magnitude of these diagrams is given by

2

Ao 9
'/Ml] ~ 167-[-2

eie;kikim,, (5.52)

susy

with

ciAm? + c;AB?

2

Ui
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Msusy 18 a typical supersymmetry breaking scale and ¢; 5 are coefficients of order one
following from the scalar mass matrices of the model. k] are similar to parameters k;
defined in eq.(5.11). It is natural then to choose k] ~ ki for order of magnitude estimates.
Comparing the 1-loop gaugino contribution with the b-quark contribution (eq.(5.14)) M?®

we obtain

M 2 2 kik;
i Y <”> J (5.53)

M?J - 167T2Ab

The numerical value of A is given in eq.(5.15). As argued above, we typically need

U1/ Mausy
k; ~ 1073 = 107*. It is seen that the b — quark contribution retained in the main text
dominates over the gaugino contribution in this case and it is consistent to neglect the
latter. The other contributions to neutrino masses are even less dominant than the gaugino
contribution®. They come from 1-loop diagrams with two Yukawa vertices. These can be
seen as a) diagrams with A and A, vertices with a R-parity violating mass insertion in
the internal line connecting charged slepton and charged Higgs, and b) diagrams with A
couplings at both the vertices with two R-parity violating mass insertions proportional to
the sneutrino vev. Both these sets of diagrams are suppressed by the 7-Yukawa coupling.
They have been analyzed in detail in Ref.[22] where it has been shown that they can
become comparable in magnitude to A, in large tan [ regions. However as we have
seen earlier this contribution is always sub-dominant compared to the contribution from
bottom Yukawa couplings, A;. Thus it 1s justified to neglect these contributions within
the present analysis.

Effects of Basis Rotation up to higher order in ¢ : We now generalize the basis (5.5)
to higher order in € and discuss its consequences. Such generalization becomes necessary
for discussion of flavour violating transitions such as g — evy. Eq.(5.5) can be re-rewritten

as follows:

1 »~2 A A A 7
H1 1-— 3 € €1 €9 €3 Hl
L, —€ —1e& _lege —lée L
2 1 2 1€2 2 1€3 1 A3
= 1 R l+o@).  (554)
L2 —€9 ) €1€2 1-— 3 €5 ) €9€3 L2
N 1 A =~ 1 A =~ 1 a2 ’
L3 —€3 ) €1€3 ) €9€3 1-— 3 €3 L3

where & = (€;)/u, €2 = €] + & + €3. The Viopt in eq.(6.4) assumes the form
Viojt = qul |Hf|2 + qu2|Hg|2 + m12;i|1;l'|2 + Am?é,- (ﬁi*Hf + c.c) + (—,LLBH?HS + c.c)

1
— ADB,; (ﬁng + c.c) ~5 &iéi(Am] + Am?)(;}i*ﬂj +c.c.), (5.55)
1<j

For a detailed discussion of the various diagrams in mass insertion approximation, see [29].
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where
qul = mfqu/(l éz) —|— mlz;i/élz,
5= mip e +mi(1— &),
B =B,(1- é2) + Bié?. (5.56)

The rotation has generated off-diagonal flavour violating sneutrino mixing terms at O(e?).
Since these terms conserve lepton number, they do not directly contribute to the neutrino
masses but lead to flavour violating transitions such as y — ev.

The rotation in eq.(5.54) induces mixing among the charged leptons which were diag-

onal to start with. Define the charged lepton mass matrix as

Ll' Ml e’ 5
then
hidy  €1éhafa E1éshsfs
Ml - éléZhlfl hzdz é163h3f3 5 (557)
€1éshifi €xéshafy  hads
where )
d,’ = Ul(l + 5(@? — |e 2) + é?k, — élzkl 5
1
fi= 501 + k.

The k; appearing in above are defined in eq.(5.11) and they signify sneutrino vev con-
tribution to the charged lepton mass matrix. As argued in the text, k; are required to
be small ~ (107 — 10~*) in order to account for the correct neutrino masses. It then
follows that sneutrino vev contribution to each element in M; is suppressed compared to
the corresponding contribution of vy. Thus this contribution can be neglected while diag-
onalizing M; in any realistic theory. Even after neglecting it, the O(é?) contribution does
produce additional mixing among charged leptons that is not Yukawa suppressed. This
is easily seen in the simplified case of two generation. The 2 x 2 version of the charged
lepton mass matrix is obtained from eq.(5.57) by setting e3 = 0. The following rotation
on the basis (ey, €3) is needed to diagonalize the charged lepton masses:

%éléz ey

_ ) (5.58)

1% —56162 1 €2
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(e, 1) here refers to the flavour basis. This additional rotation affects the neutrino mixing

terms in eq.(5.55) which can be re-written in the flavour basis as

Vsoft = m?‘[1|H10|2+m?‘[2|H20|2+ml%/1|ﬂ6|2+ml%/2|’>l4|2
+ (Amfélﬁ:Hf + Amié i HY + c.c)
— (ILLBH?HS + c.c) — (elABlﬂeHS + ezABgﬂMHS + c.c)
1
- é1é2§(Amf + Amj —mi +mi ) (D0, + c.c.). (5.59)

One sees that there are no additional lepton number violating mass terms other than
present at O(€). Thus discussion on additional contribution to neutrino masses just given
remains unchanged. However, eq.(5.59) contains lepton conserving but flavour violat-
ing contribution proportional to 7. This can lead to process such as g — ey. The

branching ratio for this process is given by

1272
BR(j — ey) = ———|B|* . (5.60)

- 2 .02
GFmM

In the present case, the amplitude B arises due to insertion of the flavour violating

sneutrino mass term given in the last term in eq.(5.59). This is approximately given

by [30]
e my lee

1672 m22 p2

1B ~ (5.61)

where k is a typical magnitude of k; and m? is sneutrino (mass)?. As already argued, we
need ¢; ~ 0.1 GeV and k ~ 1073, Given this, last equation is seen to give very small
contribution to BR(u — ey) ~ O(107" |e|*|k|*) which makes it unobservable in both

present [31] and future [32] experiments.
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Figure 5.1: Allowed values of x and y for which all the neutrino oscillation constraints
are satisfied. The input values of parameters are chosen in a way described in the text.
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Chapter 6

Trilinear R Violation and Neutrino Anomalies

6.1 Introduction

In chapter 3, we discussed in detail the problem of atmospheric and solar neutrino anoma-
lies. It was concluded that the oscillations among three active neutrinos are likely to be
responsible for the observed features of the data and that neutrino mass spectrum is char-
acterized by hierarchical masses and one or two large mixing angle. Many mechanisms
have been advanced to understand these features of the neutrino spectrum [4]. One of
these is provided by supersymmetric theory which contains several features to make it at-
tractive for the description of the neutrino spectrum. The lepton number violation needed
to understand neutrino masses is in-built in this theory through the presence of the R
parity violating couplings [5]. Moreover, it is possible to understand the hierarchical neu-
trino masses and large mixing among them within this framework without fine tuning of
parameters or without postulating ad hoc textures for the neutrino mass matrices [23, 7.

The supersymmetrized version of the standard model contains the following lepton

number violating couplings:
Wﬂ = EZ'L,'HQ —|— /\”kL,L]Eg —|— A;]kLlQ]chiﬂ (61)

where L, (@), H, represent the leptonic, quark and one of the Higgs doublets (up-type)
respectively and E€, D° represent the leptonic and down quark singlets. Each of these
couplings is a potential source for neutrino masses. There have been detailed studies of
the effects of these couplings on neutrino masses under different assumptions [23, 7, 8, 9,
10, 11]. We briefly recapitulate the relevant gross features of these studies and motivate
additional work that we are going to present in this chapter which is based on our work
[12].

The most studied effect is that of the three bilinear mass parameters ¢;, particularly in
the context of the supersymmetry breaking with universal boundary conditions at a high
scale [23, 7, 8,10, 11, 13]. In the last chapter, we discussed the effect of bilinear couplings

on the neutrino masses in a model independent way, by considering the form of the scalar
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potential at the weak scale. We found that the hierarchy among various generations of
neutrinos is related to an approximate Higgs - slepton universality at the weak scale. The
solar mixing angle was shown to be related to non-universality in slepton mass terms,
specifically to differences in soft parameters of the first two leptonic generations. It was
shown that this flavour universality violation should be as strong as the Higgs-slepton
universality violation if solar neutrino mixing angle is to be large. The standard super-
gravity models with universal boundary conditions at a high scale lead to the required
Higgs-slepton universality violations but the predicted violation of flavour universality
among the first two generations is much smaller than required. This model therefore can-
not provide an explanation of large solar mixing angle unless some universality violations
in soft supersymmetry breaking parameters are introduced at a high scale itself.

In contrast to the bilinear case, the presence of trilinear interactions can allow two
large angles without conflicting with the CHOOZ result. There have been several studies
to determine possible set of trilinear couplings which can reproduce the observed features
of neutrino masses and mixing [14]. It is not surprising that one could ‘fit’ the neutrino
spectrum in these cases due to very large number of trilinear couplings. But it was realized
[15, 16] that gross features of the neutrino spectrum can be understood without making
specific assumptions on the trilinear couplings other than requiring them to be similar in
magnitude. This makes the R violation with trilinear interaction ‘predictive’ in spite of
the presence of very large number of couplings.

In addition to the R violating parameters, the neutrino spectrum in these models
also depends upon the nature of the supersymmetry breaking. This spectrum has been
studied in the standard supergravity case, with bilinear as well as trilinear couplings, and
in the case of gauge mediated supersymmetry breaking when R violation is only through
the bilinear terms in eq.(6.1). The supersymmetry breaking generically introduces two
different types of contributions to neutrino masses. The presence of terms linear in the
sneutrino field in the scalar potential induces a vacuum expectation value (vev) for the
former which mix neutrinos with neutralinos and lead to neutrino masses. In addition to
this ‘tree level’ contribution, the trilinear terms in the superpotential also lead to neutrino
masses at the 1-loop level. Both the types of contributions are present in models with
purely bilinear or purely trilinear terms in the superpotential at a high scale. In the case
of the trilinear couplings, the running of the couplings to lower scale generates in the
scalar potential couplings linear in the sneutrino vev and lead to a tree level contribution
which is often neglected in the literature [23, 7] .

The relative importance of the tree level and loop induced contributions to neutrino
masses in case of trilinear interactions was studied in [16, 17] in the context of the standard

supergravity (mSUGRA) models with universal boundary conditions at a high scale. It
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was concluded that the tree level contribution dominates over the loop for large ranges
in the parameters of the model. This results [16] in the following hierarchy in neutrino

masses if all the trilinear A’ couplings are assumed to be similar in magnitudes:

ml/2 mloop ms

~
~

(6.2)

mllg mO + mloop mb

The parameters m,,., and mg characterize the strength of the 1-loop and the RG-induced
tree level contributions respectively and are determined by soft SUSY breaking param-
eters. my and my denote the strange quark and the bottom quark masses respectively.
It is possible to obtain the vacuum or the MSW solution (large angle) to solar neutrino
problem in this context by choosing the SUSY parameters in appropriate range [16].

An attractive alternative to the standard supergravity induced SUSY breaking is pro-
vided by the gauge mediated SUSY breaking [18]. Neutrino mass spectrum has been
studied in gauge mediated models with trilinear R-violation by Choi et al. in [10]. Their
study has been confined to non-minimal models of this category. The minimal model in
this category called the Minimal Messenger Model(MMM) [20] has only two free param-
eters and is more predictive than the standard SUGRA based models and the models
studied in [10]. The two free parameters of the model determine all the soft terms at
the high scale ~ a few hundred TeV, where SUSY breaking occurs. Thus this model
implies very constrained spectrum for neutrino masses. This constrained spectrum has
been shown [7] to be inadequate for simultaneous solution of the solar and atmospheric
neutrino anomalies in the case of purely bilinear R violation. In this chapter, we wish to
study neutrino masses in the minimal messenger model in the presence of purely trilinear
R violation. This would mean that both, the scale at which SUSY breaking occurs as
well as the boundary conditions at the high scale would be sufficiently different from the
mSUGRA scenario which has been studied in [16]. We have studied the neutrino mass
spectrum in the MMM for two separate cases, namely purely A’ couplings and purely A
couplings. Such a choice has been made for simplicity. The X’ couplings with comparable
magnitude are argued to describe neutrino spectrum well. In contrast, we find that if all
the A couplings are of similar strength, then one cannot describe the neutrino spectrum
well and one needs to postulate somewhat inverse hierarchy among them. We give a spe-
cific example with hierarchical A which reproduces the observed features of the neutrino
spectrum.

Within the Minimal Messenger Model, the soft supersymmetry breaking terms are
decided by the gauge quantum numbers of the fields. As we will demonstrate later, this
significantly alters the hierarchy within the neutrino mass states. In particular, we find

that the my dominates over m,,., in case of the X’ couplings but the situation is reversed



Trilinear R Violation and Neutrino Anomalies 88

when the R violation occurs through A couplings. This feature is characteristic of the
gauge mediated scenario and is quiet distinct from all the earlier studies [12].

We discuss the basic formalism in the next section which also contains analysis of the
effect of the trilinear A’ couplings. The third section has detailed study of the A couplings

and we end with a discussion in the last section.

6.2 Formalism
We consider the following trilinear interaction in this section:
Whr, = N LiQidy . (6.3)

where i, j, k are generation indices. In spite of very large number of these couplings, one
could determine the neutrino masses and mixing in terms of small number of parameters if
one assumes that all the trilinear couplings are similar in magnitude. The basic formalism
was developed in [16] and we recapitulate here the relevant parts.

The neutrinos obtain their masses from two different contributions in this case. The X’
couplings generate radiative masses through exchange of the down squarks at the 1-loop
level. In addition to this, the trilinear interactions also radiatively generate soft SUSY
breaking terms which are linear in the sneutrino fields. These terms lead to additional
contribution to neutrino masses which can dominate over the the first contribution. The

second contribution follows from the RG improved scalar potential [16, 17]:

2

Vieatar =l | 53 4y | HY P iy, | H 2 4 (2, 7 HY
~ 1
—p ByHYHY — B..i;HY + H.c| + Sl + @) HY P = | HY ) + o (6.4)

where we have used the standard notation for the SM fields and their masses, with B,
and m7, p representing the bilinear lepton number violating soft terms. Minimization of
the above potential leads to the sneutrino vewvs:

B, vy — miHl U1

Ui = , 6.5
<y m%l + %M% cos 23 (6.5)

where v; and vy stand for the vevs of the Higgs fields HY and HY respectively !.

!These sneutrino vevs are derived from the tree level scalar potential. Corrections from the one-loop
effective potential can significantly shift these naive tree level values [21]. For neutrino phenomenology
these corrections would be important in regions in the parameter space where two contributions to the
sneutrino vev cancel each other [22]. Such regions are not encountered in MMM parameter space in
which we are interested. Moreover, we are approximately including the effect of 1-loop corrections by
dynamically choosing soft parameters at appropriate scale in the manner discussed in Refs.[21, 23].
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These wvevs vanish at a high scale since we are assuming only trilinear L violating
interactions. They however get generated at the weak scale. The magnitudes of the
parameters B, and m_, i and hence the sneutrino vevs at the weak scale are determined by
solving the renormalization group (RG) equations satisfied by them. These RG equations

are presented in Appendix A. The general solution of these equations can be parameterized

as
_ ! D .
B, = )\l-pphp Kip »
2 _ ! D 1
my.p = )\ipphp Kip » (6.6)

where k, k" are dependent on the soft terms appearing in the RHS of the respective RG
equations and k" are down type quark yukawa.

The sneutrino vevs break R parity and lead to mixing of neutrinos with neutralinos.
This in turn leads to neutrino masses. For small sneutrino vewvs, the neutrino mass matrix
follows from the seesaw approximation and is given by [21]:

pleg> +49?) <vi> <v;>
2(—cuMy +2 M cgsp(c+ tanb%,))

0
M;; (6.7)
where ¢ = 5¢'*/3g* ~ 0.5, My is the W boson mass, y is the mass term for Higgs /Higgsino,
M, 1s mass term for a gaugino, and the Weinberg angle is represented by fy . Assuming
generation independence of the terms «, k" which was found to be a very good approxi-

mation in [16], we can rewrite the above mass matrix as

(6.8)

0 !
'/Ml] = m() /\ipp

D D
WP N

gmm ''m

where the parameters p and m are summed over the three generations and mg now contains
the dependence of the tree level mass on the soft SUSY breaking parameters. Only one
neutrino attains mass through this mechanism. The other neutrinos attain mass at the
1-loop level. The complete 1-loop structure of the neutrino masses has been discussed in
[22]. In the present case, the most dominant contributions are from diagrams having X’
couplings at both the vertices. The mass matrix generated by these diagrams is given by

3 My

M = —— XNy Ny v1 by singy cos ¢y In —3 (6.9)
My,

1672 °*

In the above, sin ¢ cos ¢ determines the mixing of the squark-antisquark pairs and M3
and M represent the eigenvalues of the standard 2x 2 mass matrix of the down squark
system. The indices [ and k are summed over. As the mixing sin ¢; cos ¢y is proportional

to kY, we rewrite the 1-loop contribution as,

JMij = Mioop i’lk ;’kl th th7 (6-10)
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where my,,, 1s independent of the R violation and solely depends on the MSSM parame-
ters.

The total neutrino mass matrix is given by,
MY = M® + M, (6.11)
which can be rewritten in the following form when (’)(h{32 , thQ) terms are neglected:
M~ (Mo 4 Migep) @ilj + Migep h? h3D Aij, (6.12)

where a; = A, Al (p summed over generations) and

Aij = /\223/\;‘32 + /\232/\;‘23 - /\222/\;‘33 - /\233/\;‘22 : (6-13)

To derive the eigenvalues of the total matrix M, we recognize that a) The first matrix
on the RHS of eq.(6.12) has only one non-zero eigenvalue ; b) The dominant terms in the
total matrix M” of O(hL ?) are present only in the first matrix . Moreover, as we will

show below my,,, < mg in the Minimal Messenger Model in the purely X case. Hence
MsMloop

Tnb(mO‘l'mloop)

corrections. The detailed derivation of the eigenvalues and the mixing matrix has been

approximate eigenvalues can be derived up to O ), neglecting the high order

presented in [16]. These eigenvalues are given as,

D7D
My, ~ Mygephy by 01

D1 D
Myy ™~ Migoply N3 02

3
ml/3 ~ (mo —I_ mloop) Z a?
:

3
~ (1m0 + oo ) 37 Nigs”, (6.14)
where
o = (C? A/n - 2C15114,12 + 5314/22) )
Sy = (8T A+ 2e151 A0, + A . (6.15)

The entries A;»j are the elements of the matrix A’ = UAT,AU,\/ where

C2 S2C3  S2S53
Uy = —S82 C2C3 (283 ) (6-16)

0 —S83 C3
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Sy= b sy = —a% + 0} (6.17)
2 — ) 3 — . .
\/a%—l—ag a%—l—a%—l—a%

The total mixing is given as [16],

with

K = Uy U//\/
C1C3 — S152€C3 $1C3 + €182¢3  S283
= —82C1 — 81CC3  —S8183 + €1CaC3 €283 | (6.18)
5183 —S53C1 C3

where the 1-2 mixing angle 6, is given by,

247,

tan20 = - .
PTOAL, - AL

(6.19)

From eq.(6.13), we see that in the limit of exact degeneracy of the X couplings, the
parameters A;; would be zero. In this case, only one neutrino becomes massive in spite of
the inclusion of the loop corrections. The 1-2 mixing also remains undetermined in this
case. There is no reason a priori for the exact equality of A’ and non-zero but similar
value for these parameters determine the 1-2 mixing to be large (see eq.(6.19)) and also

generates mass for the other two neutrinos.

6.2.1 MMM and neutrino anomalies

The parameters m,,,, and mg appearing in eq.(6.14) are independent of the details of the
R violation and get determined by the soft SUSY breaking terms. We assume throughout
that SUSY breaking is mediated by the standard gauge interactions [18]. We work in the
so-called minimal messenger model [20]. It is characterized by a messenger sector with a
pair of superfields which transform vector-like under a gauge group chosen to be SU(5)
for unification purposes. SUSY breaking is characterized by a singlet chiral superfield
whose scalar and the auxiliary components acquire vevs breaking supersymmetry. This
breaking is communicated to the visible sector by loop diagrams. The gauginos acquire

masses at the 1-loop level which are given as,
Mi(X) = ai(X) A g(z) , (6.20)

where X = XA < § > is the supersymmetric mass of the scalar and fermionic components

of the singlet superfield, A is the ratio <25>, Fs being the vev of the auxiliary field of the
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singlet. The parameter x is defined as % The scalars acquire masses at the two loop
level. They are given by
. . 3 R
m? =20 (CRE3(X) + CLa3(Y) + SV2aH(X)) f(a) (6.21)

where Cs5, Cy are the quadratic casimirs of the gauge groups SU(3) and SU(2) respectively
and Y; being the hypercharge of the scalar field i , with i = {Q;, d5, u$, L;, €5, Hi, Ha},
where j = 1,2,3 is the generation index. The functions f(x),g(z) are given in [25] and
the dependence of the soft masses on these functions is minimal. In the present analysis,
we follow [23] and choose 2 = 1. Since the dependence of the soft masses on z is minimal,
a different choice of  would not significantly modify the results presented here.

The major feature characterizing the model is the absence of A -terms and the B

terms in the soft potential at the scale X.
AX)=0, B(X)=0. (6.22)

Thus, the entire soft spectrum of this model gets essentially determined by one parameter
A. The parameters tan3 and p are fixed at the weak scale by requiring the breaking of the
SU(2) x U(1) symmetry. The relevant equations following from the tree level potential

are given by

2B
sin23 = 5 g,u >
My, + My, + 20
2 _ 2 tan? 1
pt = i T, 5——M§, (6.23)

tan?3 — 1 2

where all the parameters on the RHS of the above equations are evolved to the weak scale
using the MSSM RGE. Because of the boundary condition eq.(6.22), the value of the B
parameter at the weak scale remains small. This pushes tanf to very large values in this
model [23, 26]. The above equations are strictly valid in case of the MSSM and R violating
trilinear couplings can give corrections to these. The smallness of neutrino masses however
require very tiny trilinear couplings of O(10~* — 10~5) which would contribute negligible
to eqs.(6.23). We thus continue to use eqs.(6.23).

The neutrino masses in eq.(6.14) are strongly hierarchical in the limit my,., < mo.

Specifically, one obtains from eq.(6.14),

M Mioop Ms ( 09 ) (6.24)
mo mp \ Xi(Nsz)? ) .

where m, and my represent the strange and the bottom quark masses. For all the A" of

similar magnitudes, this ratio is completely determined by the parameter A.
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We can determine the above ratio by exactly solving the RG equations, (6.63) . Before
doing this, it i1s instructive to study the approximate expressions obtained when one
neglects the Q% dependence of the parameters appearing on the RHS of the RGE. In
other words, we neglect the effect of running of the soft masses (from high scale, X to
weak scale M) appearing in the expressions of the RGE as well as for neutrino masses.
Instead, we take them to be their high scale values given by eqs.(6.21). Noting that
more dominant contribution to sneutrino vev comes from the mlz,iH1 term in eq.(6.5) and
integrating the corresponding RGE for m. y in the above approximation, one finds in

this simplifying case :

2cos B\° M2, as3(X) x2\?
o~ / n ) 2
" ( 37 ) A oa (6:29)

The my,.p, defined in eq.(6.9) has the following approximate form in the same approxima-

tion as above where we neglect the running of the soft masses.

viu\ cos3 sinf3
~ ) 2
Mheor <A2 ) 8 72 a2(X) (6.26)

Eq.(6.25) clearly demonstrates that the often neglected [14, 15] RG induced contribution
dominates over the loop contribution in the present case of MMM just as in the case of the
supergravity induced breaking [16, 27]. One would have naively thought that this will not
be the case in gauge mediated model since the running of masses in this case (signified

by t = ln(])\f[—%) ~ 11 in eq.(6.25)) is over much smaller range than in the supergravity

M,

@) ~ 66. But smallness of ¢t in MMM is compensated by the

case where t = In( 5
V4

largeness of the ratio Z—z? (signified by the factor) % As a result of which the value of
mgo here can be compargble to the corresponding value [16] in supergravity case. From
the expressions we see that dependence on the A is more severe for the 1-loop mass, ma0p
compared to the tree level contribution, mg. However, the y parameter in the numerator

increases approximately linearly with A [23]. This makes the A dependence of the both

the contributions essentially the same. The ratio m:}% following from eqs.(6.25,6.26) is

() () e

From the above we see that the dependence of the ratio on A is essentially determined by

given as:

the way the p parameter scales with respect to A. This leads to a very mild dependence
of the ratio on A. Such A ‘independence’ has also been seen in the case of bilinear R-

violating models in MMM [7]. For A = 100 TeV, ¢t =2 In <A§—z> = 10.6, tan § = 46 and
zZ
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Table 6.1: In the following we present the allowed ranges for mass-squared differences
and mixing angles for various solutions to solar and atmospheric neutrino anomalies. The
ranges for LMA and LOW solutions are at 3o level following the recent analysis of SNO
neutral current data [28, 29, 30, 31, 32, 33]. Vacuum solutions and SMA are absent at 3o
level, but we retain them here as this work was done prior to publication of SNO data.

Anomaly Solution Am?(eV?) tan? 4
Solar MSW-SMA (2—10) x 10°° (1—20) x 10~
MSW-LMA 2.3 x107% —3.7x 1074 0.2 - 4.
LOW-QVO 3.5x1078 - 1.2 x 107" 0.1 -8.
Vacuum (Just-So) (4 —-12) x 107" 0.1-7.
Anomaly Am?(eV?) sin? 26
Atmosphere (1-8)x 1073 0.83 - 1.

p = 400 GeV, from the above we see that the ratio is 0.39. From eqs.(6.25,6.26) we see
that the typical order of magnitude for the ratio of the mass eigenvalues, eq.(6.24) is :

My,

~ 1072, (6.28)

My,

However the above expressions are approximate. We have determined this ratio exactly

by solving the relevant RG equations numerically. The numerical procedure along with

the flow diagram is presented in appendix B of this chapter. The ratio :”2, determined
v3

following the numerical procedure is plotted in Figure 1 (at the end of this chapter) for

A varying from (50 — 150) TeV.

From the figure we see that the ratio of the eigenvalues,

ml/g ~ - —4 52
e (1-2)x10 (721_(&33)2), (6.29)

is typically around the expected value, eq.(6.28). While the ratio shown in Fig. 1 is
completely fixed by the value of A, the neutrino mass ratio is uncertain by a number of
O(1) which is related to the trilinear parameters.

We now turn to discussing feasibility of the model for the simultaneous description of
the solar and atmospheric data. The two generation analysis of each of these experiments
constrain the value of the relevant (mass)? difference and mixing angle.

At present, global analysis including the recent results from the day/night recoil elec-

tron energy spectrum and charged and neutral current rates from SNO and of the solar
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neutrinos from super-Kamiokande [2] favours the MSW-LMA solution. At 3o vacuum and
SMA are absent [33]. In table 6.1 we have retained all solutions as this work was published
prior to publication of SNO data. From the table it is clear that the most natural solution
for the solar neutrino problem is through the vacuum oscillations but quasi-vacuum solu-
tion can also be obtained, if the " dependent factor in eq.(6.29) is somewhat large (e.g.
~ 5) instead of exactly being one. The most preferred LMA solution cannot however be
obtained.

The mixing among neutrinos is essentially controlled by ratios of trilinear couplings.
This mixing is given by eq.(6.18). It is seen from this equation that a choice of angles
51,2,3 1s possible which reproduces two large and one small mixing angles as required by

the present data. As an example, consider the choice

1
g =c3 =8 =83 = —= ;83 ~.13. (6.30)

V2
This gives
sin20, = 4K, }(1- K,7)~0.99,
sin?20s = 4K.2 K2 ~0.95,
K'y = 0.09. (6.31)

This choice reproduces the required mixing angles and also satisfies the CHOOZ con-

straint.

6.3 Models with A;j;

In this section, we discuss the structure of neutrino masses and mixing in the presence
of only trilinear A couplings. The lepton number violating part of the superpotential is
given as,

Wﬂ = /\ijkLiLjei . (632)

There are two basic changes here compared to the last section. Firstly, the A;j; are an-
tisymmetric in the first two indices restricting their total number to nine. This strongly
restricts neutrino mass structure and one does not get phenomenologically consistent spec-
trum when all the trilinear couplings are assumed to be similar in magnitudes. Secondly,
unlike in the X' case, the loop induced contribution dominates over the tree level SUSY
breaking in the minimal messenger model. Such dominant loop contribution has been
earlier seen in some particular regions of the parameter space in the mSUGRA framework

[16, 10]. Here this dominance follows generically.



Trilinear R Violation and Neutrino Anomalies 96

We present here a formalism which is similar to the spirit of the previous section in
order to understand the basic features of the neutrino mass matrix . As before, the RG
improved effective soft potential contains terms B, and m_ y which break the lepton
number. These terms are generated due to the presence of A couplings in the superpo-
tential. At the weak scale, the magnitude of these depends on the respective RGE, which

we have presented in Appendix A. The solutions of eqs.(6.64) can be written as,
Be, = Nipphl Rip, (6.33)

mlg = A,-pphguz;gp, (6.34)

where (1 # j) due to the anti-symmetric nature of the A couplings and % and &’ represent
the dependence on the soft masses in the RGE and A” are the charged lepton yukawa.
Following similar arguments as in Section 2, the presence of these terms in the scalar

potential would lead to a tree level neutrino mass matrix of the following form:
M?j = mobibj 5 (635)

where mg contains the dependence on the soft terms and b; are given as, b; = )\,'pphgj (1 #
p). In addition to the tree level mass, the presence of A couplings also gives rise to
contributions at the 1-loop level. Assuming only canonical 1-loop contributions to be the
most dominant contributions the 1-loop level mass matrix has the form:
1 2

@/\ilk/\jkl Uy th sin ¢y cos ¢yln M1217

where sin ¢; cos ¢ and My, My represent the mixing and the eigenvalues respectively of

M. = (6.36)

the standard 2 x 2 stau slepton mass matrix. Following the previous section, we rewrite

the above as,
"Mij = Mysop /\,lk/\]klh{zth (637)
In writing the above, we have implicitly assumed the anti-symmetric nature of the cou-

plings. The total neutrino mass matrix is given as,
M= M+ M. (6.38)
The above can be rewritten in the form:
Mij = (M0 + Migep)bib; + Mo h RE By + O(RY RERT), (6.39)
where we have neglected O(hfz, RYRE) contributions to the mass matrix. The matrix B
is given as
A132A123 — AizsArzz Ar2sdesz — Aizedass Aisadsas — AissAsae
B = | A23Aa32 — AazzAiao 0 0 : (6.40)
A132A323 — A133A322 0 0
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We diagonalise the total matrix M in the same manner as for the X’ case and as described
in [16]. However we do not make any assumption on the relative magnitude of mg and

Mieop- The approximate eigenvalues correct up to O(h %) are derived as,

my

R Muphdhym + O(hy ?)
My, ~ mIOOPhSEhgnz + O(hg 2)
3
ml/3 ~ (mo —I_ mloop) Z blz
~ (Mo + Migop) Y 203 + O(RERE). (6.41)

The parameters 7y, 12,13 are given by,

m = (Ci Bil - 261513{2 + S?Béz)

m = (5% Bil + 20131312 + C%Béz)

N3 = Z Naa: (6.42)
i=1,2

The parameters B!, are elements of the matrix, B’ = Ul BU, where, Uy has the same
p ¥ ) A 9

form as Uy in eq.(6.16) with the angles now given by,

by B 4 b 6,43
89 = ———— , 83 = 4| 5. )
R LR

The total mixing matrix is given as in eq.(6.18) with the 1 — 2 mixing angle given by,
2Bj,
By — Biy

In the above, we have made no assumption on the relative magnitudes of mg and my,ep.

tan 26, = (6.44)

Only assumption is almost equality of all the A couplings. Most definitions are formally
the same as in case of the A’ couplings but the physical consequences are quite different.
This follows from the expressions of mixing angles s33 in eq.(6.43). If no hierarchy is

assumed among the A couplings then due to antisymmetry of A we get,

by b hE 2

—r — =~ 0(—==).

by b3 (h3E 7)
As a result, eq.(6.43) implies ¢3 ~ O(::—*T‘) and the mixing matrix, eq.(6.18) can be written
as

K = U )\U//\
C1Co S1C2 S9
My
= —89C1 —S8189 co | + O(m—) (6.45)

S1 (8] 0
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The equations for 1,7, and tan 26, take the following approximate forms in this case:

m = 8363311 + 2Bj3¢e51(c1 — s152)
Ny & c%chH — 2By3¢182(81 + ¢182) (6.46)
—2By,
Biicy —253Byy

With the hierarchical masses, the effective mixing angles 84 and 8oz probed by the

tan 26; =~

(6.47)

atmospheric data and the CHOOZ experiment respectively are given by
sin? 26A = 4](33(1 — IX’Z3) ; sin? 290HOOZ ~ 4](33(1 — IX’33) .

Eq.(6.45) implies that these two mixing angles are equal in conflict with the observation.

The above derivation has not assumed any specific mechanism for the supersymmetry
breaking and thus the conclusions are valid in supergravity scenario as well as in the
MMM case considered here. It is quite interesting that in spite of the presence of nine
independent A parameters, one cannot explain solar and atmospheric neutrino anomaly
as long as these parameters are of similar magnitudes. Departure from equalities of A
can lead to explanations of these anomalies and we shall present a specific example in the

next section.

6.3.1 Models with );;; and Neutrino Anomalies

In this sub-section, we first determine the numerical values of the parameters m,,,, and
mo which enter the neutrino mass. The dependence on trilinear couplings is factored out
in defining these parameters. But their numerical values are quite different here compared
to the X case studied in the earlier section. This follows since the soft sfermion masses
which determine these parameters are quite different in these two cases ( see RG equations
in the appendix A ).

In models with gauge mediated SUSY breaking, the soft masses are proportional to
the gauge quantum numbers they carry. Thus particles with strong interactions have
much larger soft masses compared to the weakly interacting particles, as is evident from
the eqs.(6.20,6.21). The effect of the gauge couplings also trickles down to the parameters
B.,,m} y through the corresponding soft masses present in their respective renormal-
ization group equations. In the presence of purely X interactions, the strong coupling
determines the magnitudes of B, m 5 at the weak scale and in turn the tree level mass
as is evident from eq.(6.25). The loop contribution is still however determined by the
weak coupling, eq.(6.26). It is thus the interplay between the strong coupling and the

weak coupling which leads to a suppressed loop mass in the case of purely X' couplings.
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In the case of pure A couplings, the squark masses do not enter the definition of mq and
Mieop anld both of these are determined by the weak coupling. However the dependence
on the power of the weak coupling is different. Following the same method as described

in the X’ case (above eq.(6.25)), an estimate of the parameter mg is given by,

2 2
cos 3\ M3 1 X?
= 1 . 6.48
o (8) A a2<X>(“M% (648)
The 1-loop contribution m,., can also be estimated in the similar manner as,
v2u\ cosBsin 3
= . — 6.49
Mheor (A?) 24 m2a3(X) (6.49)

The ratio m:;;’p is then given by,

Mooy (877 (v p tan By 1 (6.50)
mo 3 t2 A MI%V OKQ(X)
where ¢t = In ]\);—2 . The above is typically of O(10?) for A = 100 TeV, u = 400 GeV,

tan 3 = 46 which shows that the tree level mass is much suppressed compared to the
1-loop mass. Comparing the above equation with that of the corresponding one for the
A case, eq.(6.27), we see that the absence of strong-weak interplay in this case leads to a
much larger ratio.

In a general mSUGRA inspired scenario, the tree level mass is much larger compared
to the 1-loop mass [16] for large range in MSSM parameters, irrespective of the nature of
R parity breaking. In the present case, the relative importance of loop and the tree level
contributions is sensitive to the nature of R violation as demonstrated above. This feature
arises not as a consequence of running of soft masses but due to difference in the relevant
RG equations in case of A and X couplings and the boundary conditions themselves which
strongly depend on the gauge couplings in these models.

We have determined the ratio m:,% by solving the relevant RG equations numerically
in the manner described in section (3). This ratio is plotted versus A in Fig.2 (at the end

of this chapter) for A = (50 — 150) TeV. In this range,

—loop _ 95 _ 45, (6.51)

as expected from eq.(6.50).
The dominance of my,., has the following important implication. The neutrino mass

ratio following from eq.(6.41) is given by

mllg . mloop m/J 772

= (6.52)

mllg mO —I_ mloop mT n3




Trilinear R Violation and Neutrino Anomalies 100

In the previous case, the hierarchy in m,,,, and mg resulted in strong hierarchy between
neutrino masses. As a result, one could only obtain vacuum or quasi-vacuum solution for
the solar neutrino. Here due to m,,., > my, hierarchy in neutrino mass is much weaker,
and we have,

My

A 5 % 1072, (6.53)

m,

My
We can thus easily get the scale relevant for the LMA solution of the solar neutrino. As
already argued the mixing pattern is not appropriate if all the A couplings are similar.

This is no longer true if A obey some specific hierarchy as we discuss now.

6.3.2 Illustrative Model

We assume that the couplings Aj23, Aa33, A322 dominate over the rest and neglect the latter.

Moreover we assume that non-zero couplings satisfy the following hierarchy,

mao(ir) 32 co(f). (654

A322 th E o @

We do not have strong theoretical reasons to assume the above hierarchy. The following
considerations should therefore be viewed as an example which leads to the successful
explanation of the neutrino anomalies.

The tree level mass matrix in the presence of these couplings is given by,

0 0 0
JMS =mo | 0 )\333h3E 2 /\233h3E/\322hf2E . (6-55)
0 )\233h3E)\322h§ )‘:Qszzhg ?

The 1-loop level mass matrix is given by,

0 )\123h2E/\232h3E 0
JMls = Mioop )\123h2E)\232h3E )\333th 2 Azszhg)\:azsh;;E . (6-56)
0 /\232h2E/\323h3E /\gzzhg 2

In view of the hierarchy in eq.(6.54), the total mass matrix has the following simple form

0 ~ 0
M= | 2 A A, (6.57)
0 A A
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where

A = (mo+ mloop)/\§33h3E 2,

r = —mloop/\322/\123hfh3E . (658)

We shall assume x < A which is consistent with the hierarchy in eq.(6.54). One can

diagonalise the above matrix:
R12(912) R13(913) R23(7T/4) ./\/ts [RIZ(HIZ) R13(913) R23(7T/4)]T ~ Diag.(myl,mw,mw) .

Here, R;; denotes rotation in the i;" plane with angle #,;. We have neglected a small
contribution of O(z\/_ﬁ) to the 2 — 3 mixing angle in the above derivation. The mixing

angles are given by

424

Z
z

tan26;3 ~ ——=. 6.59
all 13 A\/§ ( )

The eigenvalues can be approximately written as

tan 26012 =~ \

2

~ X X
e N 5T EA

~ T ZL’Z
e N B T4

2

X
v ~O2A4+ — .
Mg t54

It is seen from the last two equations that all the mixing angles and the masses are

(6.60)

predicted in terms of only two parameters namely, * and A. The atmospheric mixing
angle is predicted to be around 7/4 and the other two mixing angles can be expressed in

terms of the solar and atmospheric scales. Using eqs.(6.59,6.60) we find,
-1/3
4/2A 2A sotar
VoA /3 (8\[71) |
Ay
x 1 (8\/§Asola1‘) Ve

tan 20000, ~
z

tan 26 N O — = ——= 6.61
an260crooz WA A, (6.61)

Choosing A4 ~ 31072 eV? and A, g4y ~ (2.3—37) x 10~° eV? following the recent analysis
of SNO neutral current data we get,

X

A
tan? O,o0r A (0.68 — 0.86)

Us(CHOOZ) =~ (0.15—0.32) . (6.62)

&

(0.44 — 1.12) ,
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The predictions for the mixing angles are in very good agreement with the observations
which prefer large mixing angle solution for the solar neutrino. The required value of %

is also consistent with the assumed hierarchy in eq.(6.54) among the trilinear couplings.

6.4 Discussion

We have discussed the structure of neutrino masses and mixing in the Minimal messenger
model (MMM) of gauge mediated supersymmetric breaking with purely trilinear R vio-
lating interactions. We considered two specific cases of purely ) interactions and purely
A interactions for simplicity. The model contains very large number of parameters even
under this simplifying assumptions. Remarkably, it is possible to make meaningful state-
ment on the neutrino spectrum in spite of the presence of many unknown parameters if
all these parameters are assumed similar in magnitude. This is a natural assumption in
the absence of any specific symmetry to restrict the trilinear R parity violation. It is not
always easy to justify this specific choice, e.g use of a U(1) symmetry which uses Froggatt
-Nielsen [FN] mechanism to obtain quark and lepton masses tend to forbid all the trilinear
terms altogether [34].

In the case where only A’ couplings are present, one naturally gets large mixing between
the neutrino states. Further, the MMM offers a very constrained structure giving rise to
a large hierarchy between the masses ~ O(1072) for all the parameter space. The model
is suitable for obtaining simultaneously solutions for atmospheric neutrino problem and
quasi-vacuum oscillations.

Assumption of approximate equality of A couplings in case with only A couplings, leads
to very constrained and phenomenologically inconsistent pattern for neutrino mixing. This
conclusion follows on general grounds and it is true even if SUSY breaking is induced
by supergravity interactions. It is quite interesting that one can arrive at this strong
conclusions in spite of the presence of many unknown parameters by simply assuming
them to be of similar magnitude.

One can obtain consistent picture of neutrino anomalies if A couplings are assumed to
be hierarchical. We provided an example which leads to two large and one small mixing
and correct hierarchy between the solar and atmospheric neutrino scales.

One interesting result of this analysis is the interplay between the sneutrino vev induced
contribution and the loop induced contribution to neutrino masses. In the context of
supergravity induced SUSY breaking, it has been shown that the large logarithmic factors
induced due to RG scaling enhance the sneutrino vev induced contribution compared to
the loop contribution. We showed that this remains true even in the gauge mediated
models of SUSY breaking in case of the trilinear X’ couplings. In the mSUGRA model,
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2
the dominance of tree level mass follows simply from the large factor ¢t = InMayr iy

12
sneutrino vev generated by running of soft parameters. In the present case, thez tree
level dominance occurs essentially due to boundary conditions. In case of X' couplings,
mg is determined by squark masses which depend upon a3(X). mg dominates over loop
contribution in this case. For A couplings, mg is determined by sleptons rather than by
squarks masses. Due to their dependence on weak couplings, slepton masses are much
smaller than squark masses. As a consequence, mg is suppressed compared to X' case.
This results in loop dominance if R is violated by A couplings.

Mloop

The neutrino mass hierarchy strongly depends on the ratio . In case of the tree
level dominance (purely A’ couplings) one obtains strong hierarchy and vacuum solution
while the case with loop mass dominating corresponds to milder hierarchy and the LMA
MSW solution. This analysis along with other similar analysis [16, 17, 10] therefore
underlines the need of including both the contributions to neutrino masses in a proper

way.

6.5 Appendix A: Relevant RG Equations

Here we present the Renormalization Group Equations (RGE) for the soft parameters
B., and m_  for the two cases considered in this work: either purely A’ couplings or
purely A couplings are the sources of lepton number violation in the superpotential. These
equations have been derived using the general formulae given in [35]. These equations can
also be found in [17], whereas the equations for the standard soft parameters appearing in
the RHS of the equations can be found in many papers such as [36]. In writing the below
eqs.(6.63)(eqs.(6.64)), we have neglected O(X" 2) (O()\?)) corrections. The notation is as
described in the text.

X' couplings in the superpotential:

dB:l;(” — B.(t) (—%Yt(t) - %Y;E(t) + géz(t) + %&1@))
_ %M(t)/\ijj(t)h?j(t) <%Bu(t) + A;\J‘Ij(t)>
+ om (1) +2m) (1) +2 AN (DAD(H) + 2 mb, (1)) (6.63)

A couplings in the superpotential:

dB.,(t)
dt

= Ba(t) (~ 3%l — Y (0) + Saalt) + 3 (1))
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(DN ORE(E) (Aalt) + 51

1672
Tt (1) (< SV — 2¥al0) = 3i0) — g s ORE() (i (1)
+omi(t) +2m] (1) +2 AN ()AL (1) + 2 mE (1)) (6.64)

6.6 Appendix B: Comments on Numerical Evaluation of RG

Equations

We have seen in this chapter that neutrino masses can be expressed as a product of soft
parameters and R-violating couplings. So we need to know the values of these parameters
at weak scale. Here we briefly discuss the numerical approach used to obtain neutrino
masses. In numerical evaluation of relavent RG equations, we closely follow the work
of [23] where two loop RG equation for the B parameter were used for fixing the sign
of p parameter at the weak scale. In our calculation we do not use complete 1-loop
effective potential. Instead we use an approximately equivalent method in which we
define a decoupling scale Qg as the geometric mean of m3(X) and m#(X). The high
scale X ~ (60 — 150) T'eV. To begin with Qg is approximately taken as 100GeV. Then
the RG equations for gauge couplings are evolved from electroweak scale to Qg scale using
standard model 3 functions and from g to high scale X using MSSM [ functions. At
scale X then one finds the scalar masses in terms of gauge couplings, as defined by gauge
mediated boundary conditions. A geometric mean of mg(X) and m¢;(X) then gives the
improved value of decoupling scale Jg. This process is iteratively repeated until one finds
self-consistent Qg. Having found @) one runs yukawa from scale M, to @)y using SM (3
functions for the gauge couplings, and then from Qg to X using MSSM [ functions for
the gauge couplings. Having known yukawas at X all the soft parameters are evolved
from X to o. Knowing scalar masses at (g, one can find y and B, requiring correct
electroweak breaking. Evolving i and B, from () to X we get their values at X. Now all
the soft and supersymmetric parameters are evolved from scale X to Jg. Trilinear and
bilinear soft parameters like A and B are zero at the scale X, which is a typical feature of
GMSB models. But they develop non-zero values at Q¢ due to RG scaling. Knowing all
the soft parameters at Qo one can find neutrino masses. Fig (1.1) illustrates the flow-chart

for numerical evaluation of neutrino masses.
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Chapter 7

U(1) Symmetry and R Violation

7.1 Introduction

In the last chapters we have seen that there are theoretical motivations and experimen-
tal evidences for neutrinos to be massive. We described in detail, how one can obtain
hierarchical masses and one or two large mixing angles for neutrinos, as suggested by
experiments, in the framework of R violating SUSY. Although such a model is very ap-
pealing, introduction of a large number of a prior:i arbitrary R violating couplings sounds
very ad hoc. Being large in number, any phenomenological analysis with these couplings
is a daunting task and one is compelled to resort to certain assumptions like, they are
similar in magnitude, or possess some kind of hierarchy among them. Is it possible to
restrict the number of R violating couplings from some symmetry principle which gives
some insight into the pattern and magnitude of these couplings 7 It turns out that one
does not have to invoke very exotic extensions and a simplest possibility of an anomalous
Abelian family symmetry, when used in conjunction with phenomenological restrictions,
puts stringent constraints on the possible patterns and magnitudes of R violating cou-
plings. For example, we find that all the trilinear A}, couplings vanish identically, and
all but at most two trilinear A;j; couplings vanish or are enormously suppressed [1].
Such an Abelian family symmetry was considered first by Froggatt and Nielsen [2] in
order to explain the large mass ratios of quarks and leptons of different families. Such
mass ratios when viewed as powers of Cabibo angle A ~ 0.22 show strange geometrical

hierarchy. This is also true of charged lepton sector as shown below.

My

R — ~ AS ’ ~ A4
my my
m m
_d ~ /\4 : 5 /\2
my my
m m
S o~ X N (7.1)
mr mr

Froggatt and Nielsen first tried to explain the large mass ratios as due to Renormalization

Group evolution of the effective masses (“bare” Higgs couplings) from a more fundamental
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high energy scale, where they are all supposed to be of the same order of magnitude. They
found that there can be a large overall renormalization of the top (bottom) quark mass
matrix by many orders of magnitude but there is only a finite renormalization of the
mass ratios. It is only possible to obtain a large mass renormalization of the mass ratios
between a top type quark and a bottom type quark (or a lepton) [3], where the difference
in gauge quantum numbers ensures that they are treated differently by the dynamics.
The question is, how to obtain the hierarchy along the family space of fermions 7 May
be one needs to invoke a gauge symmetry that assigns different gauge quantum numbers
to different families. Such a horizontal Abelian symmetry along family space is precisely
what Froggatt and Nielsen suggested to solve the problem of mass hierarchy among the
fermion families. Such an approach also confers with the beautiful argument given by ’t
Hooft in [4], that small dimensionless numbers should have a dynamical origin'. Although
this mechanism is quite general, it becomes quite attractive to combine the virtues of
this U(1) symmetry with that of the minimal supersymmetric standard model (MSSM)
[5, 6, 7,8,9, 10, 11]. In this case, the U(1) can give information not only on the quark
spectrum but also on the R parity violating couplings which can determine the neutrino
masses through the pattern of the R violation it dictates [9, 10, 12, 13, 14]. The superfields
charged under U(1), transform as chiral representation of SUSY 2. Such a symmetry if
un-gauged, would lead to problematic massless Goldstone bosons. If gauged, it would lead
to anomalies. It turns out that the pathological anomalies, if cancelled via 4-D version of
Green-Schwarz (GS) mechanism [16], are blessings in disguise. In the next subsection, we
point out a stringy origin of U(1) symmetry and the positive role of its anomalies. With a
Stringy origin U(1), could prove to be a well motivated simple extension, connecting the
hypothetical Physics at the high scale to its verifiable low energy predictions of fermion
masses and mixings. As we will see, it can also predict the Weinberg angle at the string
scale. Before we discuss patterns of R violation and U(1) symmetry, it would be instructive

to look into motivations for taking U(1) symmetry so seriously.

7.1.1 A brief detour on GS Mechanism

String theory, though beautiful in its own right, suffers a lack of contact with the SM gauge
group. Closest thing achieved so far, being models with gauge group SU(3) x SU(2) x

1See the discussion on Naturalness in chapter 1.

2The reason for their being chiral, is that most often a U(1) symmetry is a relic of the compactification
of String gauge group. As pointed out in [15, 16] it is not easy to obtain an effective four-dimensional
theory containing chiral fermions by spontaneous compactification of a theory in D > 4 dimensions. It
may be necessary that the D-dimensional theory itself contains chiral fermions and elementary Yang-Mills
gauge fields.
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U(l)y x U(1)" x G, where G is some “hidden sector” gauge group not coupling to the
SM particles. So the Stringy models upon compactification always leave anomalous U(1)
gauge groups. Since the original String model is anomaly free, the anomalies must cancel,
via Green Schwarz mechanism as follows. For an anomalous gauge theory, the low energy
Lagrangian is not invariant under gauge transformation and gets additional anomalous
contributions proportional to FF, where F are the field strengths corresponding to SU(2)
and U(1) gauge groups, and F are dual to F. To restore gauge invariance we can add to
the Lagrangian a Green-Schwarz term, which is essentially a coupling of a pseudo-scalar
axion 7 to the anomaly term. An axion couples universally to all gauge groups. The

quadratic gauge piece of the Lagrangian has the form

1 2, M) [

(M) iZI%;S’XleZ» + i 12122:3)( k,F;F;, (7.2)
where ¢ is the gauge coupling constant at the string scale M, and index ¢ runs over the
three gauge groups SU(3), SU(2),U(1) and the ‘anomalous’ gauge group U(1)x (we shall
use the subscript ‘X’ here to distinguish ‘stringy’ U(1) from the U(1)y) . The coefficients
k; are the Kac-Moody levels of the corresponding gauge algebra [17]. For the case of
non-Abelian groups like SU(3) and SU(2) these levels are integer and in practically all
models constructed up to now, one had ky = k3 = 1. In the case of an Abelian group
like U(1) hypercharge, k; is a normalization factor (not necessarily integer) and is model
dependent. Under a U(1)x gauge transformation, axion transforms non-trivially in order

to cancel the anomalous contribution:
A — A%+ +08(x)
n — n—6(z)das, (7.3)
where dgs is a constant. If the coefficients A3, A; and A, of the mixed anomalies of U(1)x
with the SM gauge groups SU(3), SU(2) and U(1)y respectively are in the ratio
A Ay A3
ki ky ks

those mixed anomalies will be cancelled by the gauge variation of the second term in eq.

= das, (7.4)

(7.2). Since there may be in the spectrum extra singlet particles with U(1)x quantum
numbers but no SM gauge interactions, we will not consider here the equivalent conditions
involving the U(1)x anomaly coeflicient, since those singlets can always be chosen so
that anomaly is cancelled. For the same reason we will not consider the mixed U(1)x
gravitational anomalies. On the other hand, to be consistent, one has to impose that the
mixed U(1)y — U(1)% anomaly vanishes identically since it only involves the standard

model fermions and cannot be cancelled by a GS mechanism.
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Before leaving this section, it would be worthwhile to comment upon, one of the
important prediction of this U(1) model, and that is the Weinberg angle at the string
scale [18]. From eqs, (7.2) and (7.4) one obtains for the tree level weak angle at the string

scale

e A
ki + ke A+ Ay

The above expression shows that, for each given ‘anomalous’ U(1)x, the cancellation of

(7.5)

sin?ly =

the anomalies through a GS mechanism gives a definite prediction for the weak mixing
angle in terms of the coefficients of anomaly. The latter may be computed in terms of
the U(1)x charges of the massless fermions of the theory. This mechanism gives us an
alternative to GUTs concerning the derivation of sin?f = 3/8 in perfect agreement with
data when extrapolated to the infra-red. It should be noted that the U(1)x may be made
anomaly free through the GS mechanism if and only if the normalization of the coupling
constants is the canonical one g2 = g3 = %gf The success of that prediction would be an

indication of the existence of a 4-D string with the gauge group of the form
SU3) x SU(2) x U(l)y x U(1)x x G, (7.6)

and with the mixed U(1)x anomalies in the ratio A,/(A; + A;) = 3/8.

Of late, anomalous U(1)x models with anomalies cancelled through GS mechanism
have become popular because they provide an attractive mechanism for SUSY breaking.
In order to obtain supersymmetric version of Green-Schwarz term, we have to add a
dilaton field S to the axion to make a complex chiral superfield. When the dilaton attains
a vev it generates Fayet-Illiopoulose tade-pole D-term and thus breaking supersymmetry
[19]. In the simplest model it turns out that gaugino masses may be too low and one
must seek ways around this. However, the A and B terms are also likely to be small in
this model and that may provide certain advantages.

So we have seen that U(1)x symmetry is very well motivated and provides an attractive
simple extension to look for the origin of R violation. In the next sections we describe in
detail how such a scenario leads to severely constrained patterns of R violation. In the
following sections we will remove the subscript ‘X’ from the U(1) as the meaning is clear

from the context.

7.2 U(1l) Symmetry and R Violation

As we have already pointed out in the introduction that one of the attractive ways to
understand the mysterious hierarchy among quark and lepton masses is to postulate the

existence of a U(1) symmetry broken spontaneously at a scale much larger than that of
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weak interactions [2]. Most fermion masses and the entire Cabibbo Kobayashi Maskawa
(CKM) matrix arise in this approach due to the breaking of U(1) and are determined
in terms of a parameter A\ ~ % and the U(1) charges of the fermions. Here < 6 >
determines the scale of U(1l) breaking and M is some higher scale which could be the
Planck scale Mp or the string scale if U(1) arises from an underlying string theory. The A
is usually identified with the Cabibbo angle ~ 0.22 and all the fermion mass matrices are
represented as powers of A. It would be interesting to combine this idea with the minimal
supersymmetric standard model. In this case, the U(1) can give information not only on
the quark spectrum but also on the R parity violating couplings which can determine the
neutrino masses through the pattern of the R violation it dictates [9, 10, 12, 13, 14].
The lepton number violation in the MSSM is generated due to the presence of the
supersymmetric partners of quarks and leptons. This can be characterized by the following

R violating terms in the superpotential of the model:
WRP = /\;]kLlQ]chc + /\,]kL,L]Eg + EiLl’HQ. (77)

A priori, this involves 39 independent parameters. Each of this can contribute to the mass
matrix for the three light neutrinos. It is desirable to restrict the number of the allowed
couplings from some symmetry principle and the U(1) symmetry can play a crucial role.
By requiring that the U(1) charges of the MSSM field should be such that it leads to
correct quark and charge lepton masses as well as the CKM matrix, one could considerably
reduce the freedom in choosing the U(1) charges. Set of charges so determined would
lead to definite patterns of the R violating couplings appearing in eq.(7.7). This in turn
leads to specific structure for neutrino masses.

We start in the next section with a discussion of our framework and the basic as-
sumptions and highlight the problem of generation of the large €; parameters within this
framework. In the next section, we discuss the structure of trilinear interactions and
their consistency with phenomenology in models which can explain the quark spectrum.
Section 6.5 contains specific discussion of the consequences of models allowed on phe-

nomenological ground and we summarize the main results in the last section.

7.3 U(1) symmetry and ¢ problem

Let us consider the MSSM augmented with a gauged horizontal U(1) symmetry. The
standard superfields (L;, Q,, D, U7, Ef, H,, H,) are assumed to carry the charges
(liy @, di, u;, €i, hi, hy) respectively with ¢ running from 1 to 3. The U(1) symmetry
is assumed to be broken at a high scale by the vacuum expectation value (vev) of one

gauge singlet superfield § with the U(1) charge normalized to -1 or with two such fields
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6 and 8, with charges -1 and 1 respectively. It is normally assumed that only the third
generation of fermions have renormalizable couplings invariant under U(1). The rest of

the couplings arise in the effective theory from the higher dimensional terms [2]:

6 \"
\I/i\I/jH<M) :

where ¥; is a chiral superfield, H is the Higgs doublet and M is some higher mass scale
which could be the Planck scale M, and n;; = ;41 ;+h are positive numbers representing
the charges of ¥;, ¥; and H under U(1) respectively. Similar term is absent in case of a
negative n;; due to holomorphic nature of W [5]. For positive n;;, one gets an 15" entry
of order A"V in the mass matrix for the field . Identification A ~ 0.22 and proper choice
of the U(1) charges leads to successful quark mass matrices [6, 7, 8.

A priori, the model has 15 independent U(1) charges for matter and 2 charges for
Higgs fields. Of these, all but four can be fixed from different requirements discussed in
the literature which we list below [§].

(1) The fermions in the third generation are assumed to have the following couplings

invariant under U(1)

6\ f\*
Wy = 5:QsU5 Hy + 5yQsD5H,y (M) + B:LsE5H,y (H) ; (7.8)

where (3,4, are assumed to be of O(1). This is possible if,

(_73-|-U3-|-h2:0; Q3—|-d3—|-h1: Z3+€3—|—h1:$. (79)

This determines hy = —¢3 — uz and hy = —¢3 — ds + = with tan 3 ~ A*(m;/ms). The
phenomenological requirement of tan 3 > O(1) implies 0 < z < 2. Here b — 7 unification

has been implicitly assumed in writing eq.(7.9).

(2) The charge differences ¢;5 = ¢; — ¢3, uis = u; — us and d;3 = d; — d3 (1 = 1,2) are
determined by requiring that the quark masses and the CKM matrix come out to be
exactly or approximately correct. Various possible values for these differences have been

classified in [8] and we shall use these results.

(3) The U(1) symmetry being gauged is required to be anomaly free. It has been shown
[7] that all the relevant U(1) anomalies cannot be zero in models with a single 6 if one

is to require the correct structure for the quark and lepton masses. These anomalies
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then need to be cancelled by the Green-Schwarz mechanism [16] as discussed in the in-

troduction. This requirement imposes three non-trivial relations among the U(1) charges.

(4) The prediction of approximately correct hierarchy among the charged lepton masses
requires

l13 + €13 = 4 OR 5 ) lz3 + €93 = 2. (710)

After imposing the above listed requirements, the successful model is fixed in terms of
the 4 independent charges. Each choice of these charges would imply different patterns
for R violation. Since the U(1) is capable of predicting orders of magnitudes of various
couplings, it 1s not guaranteed that all the patterns of R violation predicted in this way
would be phenomenologically consistent. In fact very few can meet the constraints from
phenomenology. The most stringent constraint on possible choice of U(1) charges is

provided by the parameters ¢;. The U(1) symmetry can lead to the following term in W:

0 li+hy
M L, Hy (M) ) (7.11)
This leads to
<>\t
€~ M ( A ) ~ MNith (7.12)

Unless the charges [; + hy are appropriately chosen, the predicted value for €; can grossly
conflict with (a) the scale of SU(2) x U(1) breaking which would require sneutrino vev
< O(Mw) and (b) neutrino masses. A bilinear parameter € would imply a neutrino mass

[20] of order [21]:

2
€ M% . 9
my, ~ | — sin” ¢. 7.13

(M) Msy sy ¢ (7.13)

Here, sin’ ¢ is O(1) if SUSY breaking is not characterized by the universal boundary
conditions at a high scale. In the converse case, this factor gets enormously suppressed
due to the fact that ¢; can be rotated away from the full Lagrangian in the limit of
vanishing down quark and charged lepton couplings. This issue is discussed in number of

papers [22]. Typical order of magnitude estimate of sin? ¢ is [23]

2
) 3h§ln:—§ .
i ~ || —%| ~107". 7.14
sin” ¢ 162 (7.14)
These equations are very rough estimates. The exact values depend upon the MSSM
parameters. But these rough estimates are sufficient to show that phenomenologically

required ¢; are grossly in disagreement with the typical predictions, for e.g, even with
sing? ~ 1077, m, < eV would need e ~ GeV for p ~ Msysy ~ 100 GeV.
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In order to prevent very large €; being generated, one must ensure one of the following:

(a) I; + hq is bounded by
i+ hy 2 24, (7.15)

This can lead to ¢ in GeV range and neutrinos with mass in the eV range in case of
models with universal boundary conditions and M ~ 10'® GeV. In models without the

universal boundary conditions, the required magnitude for I; + hy would be even larger.

(b) U(1) is broken by only one superfield 8 and [, + ks is negative. The terms in eq.(7.12)
are then not allowed in W by the U(1) symmetry and by the analyticity of W.

(c) I; + hy is fractional, forbidding coupling of bilinear term to 6.

(d) Impose some additional symmetry, e.g. modular invariance which may prevent occur-
rence of dangerous terms [24].

Note that models containing two #-like fields with opposite U(1) charges would lead
to large €; independent of the sign of /; + hy. Thus these models can be made phenomeno-
logically consistent only by choosing fractional or unnaturally high values for |I; 4 hy|. We
shall therefore not consider these models and concentrate only on models with a single 4
and also assume only integer U(1) charges. Then ¢; can be suppressed either through (a)
or through (b) if no other symmetry is imposed.

Although the structure of R violating interactions following from a U(1) symmetry
alone has been discussed in a number of papers [7, 10, 12, 13, 14], the requirement that
the U(1) symmetry should not generate large ¢, has not always been imposed [7, 10, 13].
It is argued customarily that €; are unphysical as they can be rotated away by redefining
the new H; as a linear combination of the original H; and L; appearing in eq.(7.7). This
however changes the original ; parameter to (%4 €2)'/2. Thus if the models do allow large
¢; then rotating them away generates equally large p which is also phenomenologically
inconsistent. One must therefore allow only the U(1) charge assignments corresponding

to zero or suppressed €; in W.

7.4 Structures of trilinear couplings

In this section, we shall enumerate possible U(1) models leading to correct quark mass
spectrum and investigate structures for the trilinear couplings in these models keeping

the phenomenological constraints in mind.
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After imposing eqs.(7.9), the quark mass ratios and the CKM mixing angles are deter-
mined in terms of the quark charge differences. Systematic search for the possible charge
differences led to the eight models [8, 10] reproduced in the table 1.

The model T exactly reproduces the quark mass ratios and all the three CKM mixing
angles. Since the predictions of the U(1l) symmetry are exact only up to coefficients
of O(1), one has to allow for models which may deviate from the exact predictions by
small amount. The charge differences in model II, III, and IV represent the models which
deviate from the exact predictions by O(A) [8]. The leptonic mixing analogous to the
CKM matrix is still arbitrary in these models but the charged lepton masses are required

to satisfy 2= ~ A\ 28 ~ A% in models (A) and 2= ~ A 22 ~ A% in models (B).

msr

Models
Models | ;3 + €13 | las + €23 | qis | q2s | U1s | Uzs | dys | das
IA 4 2 3 2 5 2 1 0
ITA 4 2 4 3 4 1 1 -1
ITTA 4 2 4 3 4 1 -1 ] -1
IVA 4 2 -2 | -3 | 10 7 6 5
IB 5 2 3 2 5 2 1 0
I1B 5 2 4 3 4 1 -1
ITTB 5 2 4 3 4 1 -1 ] -1
IVB 5 2 -2 | -3 | 10 7 6 5

Table 1 : We present here all the possible models which generate correct quark and

lepton mass hierarchies as well as the CKM matrix.

The U(1) charges are still subject to the anomaly constraint. The anomalies generated

due to the presence of the extra U(1) are as follows:

[SUBPU(L)x : As = i(ZQi+ui+di)

[SURPUL)x: A = Y.(3¢i+ 1)+ hi + hy

=1

301 8 2
[Uy)PUQ)x 2 A = Z(nggui+§di+li+2ei)+h1+hz
=1
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3
UMy[U@)Tx = AL = D (¢ —2u+df =7+ e) —hi+hj. (7.16)

=1
These can be cancelled in string theory through the Green-Schwartz mechanism [16] b

requiring
3

The above constraints on Ay, Ay, A3z can be solved to give:

3

3

h=hy+hy = Z(QiS‘I'sz Z lis + €is),
=1
m

=1

b = m—(L+1l+ 9q3 + 4h — 3z), (7.18)
where ,
m = ;(W3 + dis — ¢:3). (7.19)
Also from eqs.(7.9),
us = & — 2q3 — dz — h. (7.20)

Note that the parameter h determines whether the u term is allowed in W. Positive h

will result in too large p unless h is also correspondingly large ?

. Negative h does not
allow the p term in W but phenomenologically consistent value can be generated through
GM mechanism in this case. h = 0 allows arbitrary g in W. The anomaly constraints
determines A completely in terms of the charge differences fixed by the models in Table 1
and is insensitive to the overall redefinition of the U(1) charges. It is seen that all except
model (ITA) lead to zero or negative h and thus are phenomenologically consistent.

The magnitudes and structure of the trilinear couplings is determined by the following

equation:
gk = Blai+ n]k)/\cﬁn
Aijg = 0(ci + n]k)/\cﬁn ) (7.21)

where ¢; = l; +x+hy —h n]k g3+ dis ; k = l;3+ eg3 with nd k being completely

ks T
fixed for a given model displayed in Table 1. Note that some of] the] trilinear couplings
may be zero if the corresponding exponent is negative. They may still be generated due
to non-minimal contribution to the kinetic energy term of different fields [8, 9, 10]. Such
contributions do not however affect the order of magnitudes of those couplings which are
non-zero to start with [9].

After imposing the constraints of eqs.(7.17), one is still left with four independent

parameters including . One would thus expect considerable freedom in the choice of

3see however ref. [24] which imposes additional modular invariance
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Aijks Aijk- Typically, more than one such couplings are allowed to be non-zero simul-
taneously in various models. Thus they lead to flavour violating transitions which are
known to be enormously suppressed. It is these constraints on the product of trilinear
couplings which lead to stringent restrictions on the allowed U(1) charges. It turns out
that constraint following from the K° — K° mass difference alone is sufficient to rule out
the presence of non-zero trilinear couplings in most models. The K° — K° mass difference
constrains the product M ,\.,, to be < 1072 [25] for the slepton masses of O(100 GeV).

Allowing for some variation in these masses, we shall use the following conservative limit
Moy <A~ 131078, (7.22)

We now analyze the magnitudes of the product in eq.(7.22) predicted by models of Table
1, when one imposes the additional requirement that the /; + hy is negative or has a large
value given in eq.(7.15). These requirements result in zero or suppressed ¢; respectively.
But they would also lead to zero or suppressed trilinear interactions as we now discuss.

Let us consider these two cases separately.

7.4.1 ;4 h z 24

In this case, ¢; are artificially forced to be small by choosing very large value of I; + hq as
in eq.(7.15). But the large value of these charges also results in the enormous suppression
in the allowed magnitudes of the trilinear couplings. This is easily seen from eqs.(7.21).

Since h 1s zero or negative for all the allowed models, and = < 2, it follows that
¢ =lLi+ho+ax—h > l;+hy > 22.

It follows from Table 1 that the n‘;kl are positive or small negative numbers in all the
models. As a consequence, all the trilinear couplings are < A'® ~ 10712 in this case. This

value is too small to have any phenomenological consequence.

7.4.2 1,4+ hs <0

We shall first show that the most preferred model IA can be phenomenologically consistent
in this case only when all A}, are zero and then generalize this result to other cases. The

Ay are explicitly given as follows in this model:

A3 8

l l;+h :
k= Nithatz A3 22 )2

: (7.23)
A1l
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where it is implicit that some element is zero if corresponding exponent is negative [5].
The matrix in the above eq. (7.23) coincides with e=* (Md)jk‘ Hence for negative I; + ho, it
follows that the A, is either larger than the matrix element (Mjy);x or is zero for every .
In the former case, one cannot easily meet the phenomenological requirement in eq.(7.22).

Specifically, equation for the ¢; gets translated to
C,El,—I—hg—I-iL’ < -3 OR
> 3. (7.24)

This condition ensures that A, Ay, either satisfies eq.(7.22) (when ¢; > 3 ) or is identically
zero when ¢; < —3. But ¢; > 3 is untenable since I; + hy < 0 and tan 3 ~ A (m;/my) >
O(1) needs = < 2 leading to ¢; < 2. As a result one must restrict ¢; to less than -3 for
all i. It can be easily seen that ¢; = —4 is also ruled out. As follows from eq.(7.23), all
the Al except A}}; are zero in this case to start with. But the mixing of superfields in

kinetic terms can regenerate other A};. Specifically, one gets
D
XNaz = Vigdin ~ A
Q
/\221 = ‘/12/\;11 ~ A

/\212/\221 ~ /\27 (7.25)
where V¥ rotates the matter field ¥; to bring kinetic terms to canonical form [9]
U = VYU,
i—vj]
" <f>
VYo o~ ( i ) . (7.26)

It follows from the above that one must require ¢; < —4 for all ;. One concludes from
eq.(7.23) that only phenomenologically viable possibility in model IA is to require vanish-
ing A} for all values of 4, j, k. We emphasize that a non-trivial role is played in the above
argument by the requirement of zero or negative [; + hy and by the value of h determined
from the anomaly constraints.

The above argument also serves to restrict the trilinear couplings A;j;. Defining the

antisymmetric matrices (Ag);; = Aijk, one could rewrite the Ay as follows:
0 Ac2 Ac8
(Al)ij = )\ —)\& 0 Nestla—lh
)\ _)\estl-h 0

0 e Nes+h—la
(Ag)i; = A —X% 0 A%
_)\esth=la  _)es 0
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0 Aeth-ls ya
(A3)ij = | —xethls o e |, (7.27)
a0

where ¢; are the same coefficients defined in the context of the A’ and are required to be
< —4 as argued above. It then immediately follows from Table 1 that all the A;j; except
A123, A231 and A3qo are forced to be zero. Moreover, A3 and Aj3; cannot simultaneously
be zero. Thus one reaches an important conclusion that Model A can be consistent with
phenomenology only if all Ai;; and all A;; except at most two are zero. We have not
made use of one of the anomaly equation namely, A} = 0. Use of this does not allow even
one \;;r to be non-zero in large number of models.

Essentially the same argument can be repeated also in case of other models. The

structure of the Aj;; is determined in these models by
/\i'jk ~ /\Ci+‘Ij3+dk37 (7.28)

where ¢; = I; + hy + ¥ — h; The main difference compared to earlier model is that the
h appearing in ¢; is not forced to be zero but is given by eq.(7.18) and can take values
-1 ( Model IB, Model IIIA, Model IVB ) or -2 ( Model IIIB ). The » = 0 for model IIB
and the above argument made in the case of model TA also remains valid in this case.
Because, A < 0 in these models, they allow somewhat larger values for ¢; compared to
¢; < 2 1in case of model TA. These larger values of ¢; result in extreme case corresponding
to li+ hy = 0 and = = 2. It is possible to satisfy constraint coming from Ampg in these

extreme cases e.g for model IB [; + hy = 0,z = 2 leads * to

AT N6 )S
(M) | X6 X5 X5 . (7.29)
A3 )8

This structure is consistent with eq.(7.22) as well as all other constraints on A};. This
possibility cannot be therefore ruled out purely on phenomenological grounds. But as we

will show, A7 = 0 plays an important role and does not allow these marginal cases.

7.5 Models

Let us now discuss specific models which successfully meet all the phenomenological con-

straints. An important role is played in categorizing these models by the anomaly con-

*similar marginal cases are also found for models, IIIB,IVB.
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straint A} = 0 which has been not yet imposed. Imposition of this further constraints the
model.

It 1s possible to give a general solution of all the anomaly constraints for all the models
listed in Table 1. We outline the solution for A} = 0 condition in the appendix. We have
numerically looked for integer solutions of the anomaly constraints satisfying the criteria
(1) Ii + h2 < 0 (2) ¢; are chosen to satisfy the constraint eq.(7.22) e.g. ¢; < —4 in case
of Model TA (3) The absolute values of g3, us,ds,l1,ls,1l3 are restricted to be less than
or equal to 10. The last requirement is imposed for simplicity. Moreover in practice,
higher values of these charges will generically result in suppressed R violating couplings
which may not be of phenomenological interest. Although, all the U(1) couplings can be
specified using only four parameters, we have displayed values of x, g3, us, ds,l; and [; + h,
in tables 2A - 2G (all the tables are put after the appendix). We draw the following

conclusions from the tables:

(1) None of the models displayed allow the value I; + hy = 0 ruling out the marginal

models displayed in eqs.(7.29) at least for the ranges of parameters considered here.

(2) While all the A}, are forced to be zero, some of the models allow one or two non-zero
Aijk- We have shown this in the last column which also gives the order of magnitude for
the allowed A;;z. This need not always be compatible with phenomenology particularly
after taking care of the mixing of kinetic energy terms. Thus some of the models displayed

in tables would not be allowed.

(3) Although the term L;H, is not directly allowed, it can be generated from the Kahler
potential through the mechanism proposed by GM [26] in order to explain the y parameter.

The order of magnitudes of the ¢; is given in this case by
€; ™~ ?’)’L3/2)\|li—}_}12|7 (730)

where mg/; is the gravitino mass. This can be read off from the table in all the cases.
Uniformly large magnitudes of /; + hy found in tables implies that the R violation through
effective bilinear term is also quite suppressed but it can still be of phenomenological

relevance.

(4) We did not impose baryon parity in the above analysis. The look at the solutions
presented in the table however shows that the operator U;D;Dy carries large negative
charge in all the models. Thus baryon number violating terms are automatically forbidden

from the superpotential. These terms will be generated from the effective U(1) violating
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D term

laijix|
1 0* J

— = °pDeDe
Mp (M) (U7 D5Dy),

where g,;, is the negative U(1) charge of the combination Uf D$Djf. This leads to baryon
number violating couplings
e~ M/\Iqmcl7
P

which are extremely suppressed, < O(107"°) for mg/; ~ TeV. Thus proton stability gets

automatically explained in all the models.

(5) The trilinear lepton number violating terms are not allowed in the superpotential from
analyticity. But they will be effectively generated in the same way as A" discussed above.
Their magnitudes will also be enormously suppressed < 10~'* depending upon the model.

It follows from the forgoing discussions that consistently implemented U(1) symmetry
allows very simple R violating interactions namely three bilinear terms and at most two
trilinear coupling A;;x. The constraints coming from the K° — K° mass difference were
instrumental in arriving at this conclusion. It is worth emphasizing that the effective
bilinear interactions generated from GM mechanism in this case are not subject to such
stringent constraint from the flavour violating process. A priori, the bilinear terms can
be rotated away in favour of trilinear A’ and A interactions. It turns out that one does
not generate dangerous flavour violating terms in the process. Specifically, one finds for

the flavour structure [23],

tan 5

W=———
< H; >

(07 )saLa] (mhLaeh +mPQids) . (7.31)

where all the fields are in the physical i.e, the mass basis. (OY) represents a mixing
matrix determined solely by the ratios of ¢; and tan 63 = \ﬂzl €7)/p and a, 3 run over
e, i, 7. It 1s seen that the resulting trilinear interactions are flavour diagonal and thus the
parameter ¢; are not severely constrained °. The major effect of the bilinear terms is to
generate the neutrino masses and leptonic Kobayashi Maskawa matrix.

The neutrino masses in the presence of bilinear terms alone, have been discussed in
many papers [22]. Large number of these concentrated on universal boundary conditions
since they provide natural means to understand smallness of neutrino masses even when
the bilinear parameters are not suppressed [22, 23]. The soft SUSY breaking terms are
also subject to the U(1) symmetry and need not follow the universal structure [24]. But
the smallness of neutrino masses follows here from the U(1) symmetry itself without

invoking universal boundary conditions since the allowed values of |l; + hy| in various

>The same conclusion was also drawn in ref. [8] by using different leptonic basis.
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tables are large leading to suppressed ﬁ and hence neutrino masses, eq.( 7.13). The
detailed structure of neutrino masses and mixing will be more model dependent here
than in case of the universal boundary conditions. It seems possible to obtain reasonable
mixing and masses in some of the models. As an example, consider model 2 in table 2 A.
This is characterized by three bilinear terms of equal magnitudes. Thus in the absence of
any fine tuning one can expect to get large mixing angles naturally. The heaviest neutrino
would have mass of the order
Mj

SUSY

~ 107" eV,

m, ~ )\18

which is in the right range for solving the atmospheric neutrino anomaly. The other mass
gets generated radiatively through eq.(7.31) and would be suppressed compared to the
above mass. The detailed predictions of the neutrino spectrum would depend upon the
structures of soft symmetry breaking terms which themselves would be determined by the

U(1) symmetry. We shall not discuss it here.

7.6 Summary

The supersymmetric standard model allows 39 lepton number violating parameters which
are not constrained theoretically. We have shown in this chapter that the U(1) symmetry
invoked to understand fermion masses can play an important role in constraining these
parameters. We restricted ourselves to integer U(1) charges and considered different
U(1) charge assignments compatible with fermion spectrum. We have shown that only
phenomenologically consistent possibility in this context is that all the trilinear A}, and
all but two \;jx couplings to be zero or extremely small of O(107'%). While the patterns of
R violation have been earlier discussed in the presence of U(1) symmetry the systematic
confrontation of these pattern with phenomenology leading to this important conclusion
was not made to the best of our knowledge. In fact, some works [14] which neglected
important constraint of I; + hy < 0 concluded to the contrary that it is possible to obtain
phenomenologically consistent and non-zero trilinear couplings.

Our work is restricted to only U(1) symmetry which is by far most popular and to
integer U(1) charges. Use of other horizontal symmetries can allow non-zero trilinear
interactions and still be consistent with phenomenology. An example of this can be found
in [27]. Our work is closely related to and compliments the analysis presented in [12].
It was assumed in this paper that bilinear R violating interactions come from the GM
mechanism and are absent in the superpotential. Assuming that there are no trilinear
interactions in the superpotential it was shown that flavor violating transitions in the

model are adequately suppressed. We have systematically shown that this is the only
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allowed possibility except for the occurrence of one or two trilinear A;j; couplings. This
way, U(1l) symmetry is shown to require that only four or five of the total 39 lepton
number violating couplings could have magnitudes in the phenomenologically interesting

range!

7.7 Appendix

Here we give the most general solutions for the Green-Schwarz anomaly conditions in
terms of the four independent charges. The constraints A; = A, and A3 = g A gave us
eq.(7.18). The condition A} = 0 can be solved to give,

where
-1
2 i
-1
2 i
C = _—1 (ko — k1)
. 2 1
-1
2 i
B o= (S +d-nd+H) - s 2-m) (3
and
By = lLs+ e
Ey = I+ es. (7.34)

In the above we have taken g3, d3,[; and z as four independent parameters and /3 has been
expressed in terms of them. m and us are respectively given by eqs.(7.19,7.20) of the text
and remaining charges by the Table 1 defining the models. This way all the U(1) charges

get fixed in terms of ¢z, d3, ljand = once a model displayed in the table is chosen.
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Model TA

No. |x|qs|ug|ds| 11 I, |13 | f; | f5 | f; If A\ allowed
1 {021 |-5|-6]-3|-61]-9]-6]-9 No

2 |02 |1 |-5|-5|-b5]|-5]-8]-8]-8 No

3 (02 |1 |-5|-4]|-7]|-4]-7T]|-10|-7 No

4 |02 |1 |-5]-3]-9|-3|-6/|-12|-6 |XN32~48x1072
5 (0] 2 ]2 |-6[-10|-4]-11]-14] -8 | -5 | A3 ~51x10"*
6 (03 ]2 |-8]-10]-4]-10|-15| -9 |-15 No
7100312 |-8]-9]-61]-9|-14]|-11]-14 No

8 (03 ]2 |-8]-8]-8]|-8|-13]|-13|-13 No

9 (03 |2 |-8|-7]|-10]| -7 |-12|-15|-12 No

0 (232 |-6|-7]|-3]-8]-12| -8 |-13 No

11 (23|12 |-6]|-6|-5]|-7|-11]-10|-12 No

12 {232 |-6]|-5]-7]-6|[-10]-12]-11 No

3 (232 |-6|-4]-9]|-5]|-9]-14]-10 No

4 2413 |-9|-9]|-8]-10|-16]-15|-17 No

5 (21413 |-9|-8]-10]-9 |-15|-17|-16 No

128

Table 2A: Here we display the allowed models where the following constraints have been

imposed : a) requirement of correct quark and lepton mass hierarchies as per Model IA in

table I b) GS anomaly cancellations ¢) f; = I; + hy < 0 d) phenomenological constraints

from K° — K° mixing on X,; couplings and (e) |gs, us, ds, ;] < 10.
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Model IB
No. |x|qs |ug | ds | 11 I, | 13 | f; | 5 | f; If \;;¢ allowed
1 1022 |-5]-6|-3]|-2/|-10]-7]-6 Az1 ~ 1.0, Ag3p ~ 1072
2 |03 |2 |-7|-4]|-61]-10|-9 |-11|-15 No
3 (11326 |-3]|-5]-9]-8]-10]|-14 No
4 |03 |3 |-8|-10]|-11]-9 -16]| -7 |-15 Agzp ~ 1.0
5 (0133 ]-8]-8]-61]-6/]-14]|-12]-12 No
6 (1133 |-7|-8]-4]-5]-14]-10]-11 Agzp ~ 1.0
T |13 (3 |-7]-6|-9)|-2|-12|-15| -8 No
8 |23 |3 |6 |-8]|-2] -4/ -14|-8|-10] 21 ~1.0,M3; ~23x1073
9 |14 |4 |-10|-10]| -7 | -9 |-18|-15|-17 No
10 (2414 |-9-10]-5]-8|-18|-13|-16 No
11 (2414 |-9)-8|-10] -5 |-16]|-18|-13 No

Table 2B: Same as above, but for values given by Model IB.

Model IIB
No. |x|qs|usg|ds |l | 12 |1s| f1 | £f2 | f5 | If A5 allowed
1 1022 |-6|-3|-8|-9|-7|-12|-13 No
2 |02 |3 |-7T|-8]-5|-T|-13|-10|-12 No
3 (023 |-7|-6]|-10]-4|-11|-15| -9 No
4 |12 |3 |-6]|-8|-2|-7|-13| -7 |-12 Agzr ~ 1.0
5 11213 ]|-6|-6|-7|-4]-11]-12| -9 No
6 2|2 |3 |-5|6|-4|-4]-11]-9]|-9 Agz1 ~ 1.0
7 1113 141-9]-9|-10|-7|-16|-17 |-14 No
8 |23 |4 |-8|-9|-7|-7|-16|-14|-14 No

Table 2C: Same as above, but for values given by Model IIB.
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Model ITTA

No. |x|qs|ug |(ds |1y | 1o |13 | f; | fo | f5 If \;;¢ allowed

1 10|23 |-6|-7|-2]-9]|-12| -7 |-14 No

2 (023 |6|6]-4]-8]|-11]-9 |-13 No

3 |02 |3 |-6|-5]-6|-7]|-10]-11]-12 No

4 (0] 2|3 |6|4|-8|-6]-9 |-13]|-11 No

5 |02 ]3|-6[-3]-10]-5]-8 |-15]-10 A1z ~ 1.0

6 |12 |3 |-5|-6]|-2|-7|-11| -7 |-12 No

7T 111213 |-5]-5]4/|-6|-10|-9 | -11 No

8 |11 2|3 |-5]4]-61|-5]-9 |-11]-10 No

9 (112 |3|-5|-3|-8|-4|-18]-13] -9 A2 ~ 1.0
10 1123 |-5[|-2[-10]-3|-7]-15] -8 |X3g2~23x1073
11 (22|13 |-4|4|-4]4]-9]-9]-9 No

12 (12123 |-4|-3|-61]-3|]-8/|-11]-8 A1z ~ 1.0

Table 2D: Same as above, but for values given by Model IITA.

Model ITIB

No. |x|qs|ug|ds |13 | 1o |13 | f; | f2 | f3 If A allowed

1 |02 3 |-5|-2|-5]|-7T]-7]-10]-12 No

2 10|24 |6 |-7T|-3]-41]-13|-9 |-10 Aoz ~ 0.22

3 |02 ]|4 |6 |-5|-8 -1 |-11]|-14] -7 | A31 ~1.0,A132~1.0
4 |23 |4 )|-61|-3]-4|-10]-10|-11|-17 A2z ~ 1.0

5 |01 3|5 |-9|-8|-6|-9|-16|-14|-17 No

6 (113 |5|-8[-9|-3|-8|-17|-11|-16 No

7 |13 |5 |-8|-7|-8]-5|-15|-16 |-13 No

8 |23 |5 |-7|-8|-5|-4/|-16|-13|-12 Aoz ~ 1.0

9 |23 |5 |-7T|-6|-10] -1 |-14]-18] -9 | Ai31 ~ 1.0, Ay32 ~ 0.22
10 (2|46 |-10-9|-8]-9 |-19]-18]-19 No

Table 2E: Same as above, but for values given by Model ITIB.
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Model IVA
No. |x|qs|ug|dsg | 11 L, | 13 | f; | £ | f3 | If A;5¢ allowed
1 |06 |-3]-9]|-10]|-4]|-7|-13| -7 |-10 Agz1 ~ 1.0
2 (06399661 -12]-9 -9 No
3 (06 |-3|-9|-8|-8]|-5|-11]-11| -8 No
4 106 |-3|-9|-7]-10| -4 |-10]|-13]| -7 No
5 (27 ]-2|-10 -8 | -6 [-10|-13 |-11 |-15 No
6 2|7 |-2]-10|-7|-8 -9 |-12|-13|-14 No
7 2|7 |-2|-10]| -6 |-10] -8 |-11 |-15|-13 No

Table 2F: Same as above, but for values given by Model IVA.

Model IVB
No. | x qs | Us d3 11 12 13 fl fz f3 If /\ijk allowed
1 o6 -2|-9|8|-5|4|-12] -9 | -8 Aoz ~ 0.22
2 27 |-1|-10|-8| -5 |-7|-14|-11|-13 No
3 27 |-1]-10|-6|-10|-4]-12|-16 | -10 No

Table 2G: Same as above, but for values given by Model IVB.
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Chapter 8

Epilogue

SM has successfully passed the test of precision measurements of physical parameters
as 1ts predictions match with the experimental measurements with amazing accuracy.
As of now there are no indications from experiments that point towards fundamental
deficiency of SM. Exception must be made here as regards recent experimental evidence
for neutrino oscillations which point towards massive neutrinos and hence the need to
modify/extend SM. We briefly discussed, the theoretical issues connected with the massive
neutrinos in chapter 3. In this thesis we mainly concentrated on neutrino mass models
in the framework of R parity violating supersymmetry. It was argued that such a model
naturally accommodates the hierarchical mass spectrum and one or two large mixing
angles.

Supersymmetric model with bilinear R parity violations provides a potentially inter-
esting framework to study neutrino masses and mixing. The dominant sources of neutrino
masses can be parameterized in this scenario in terms of three dimensionful parameters e,
and three dimensional parameters k; which depend on the structure of soft supersymmetry
breaking terms at the weak scale. We have tried to obtain phenomenological restrictions
on ¢; and k; without making specific assumptions on the values of the soft supersymmetry
breaking parameters. While neutrino masses can be suppressed by lowering the overall
scale ¢; of R parity violation, phenomenologically preferred hierarchy in neutrino masses
require that both ¢; and k; are suppressed. k; provide a measure of the Higgs-slepton
universality and suppression in their values indicate very small amount of this violation.
Such violation of universality is already built in the popular models of SUSY breaking
namely, mSUGRA and GMSB scenario.

A large solar neutrino mixing angle can be obtained consistently within these scenarios
only if flavour universality violations in the soft parameters of the first two generations
are almost as large as the violation of Higgs-slepton universality. This feature does not
emerge in models where these universality violations are generated solely by RG scaling
as in the case of mSUGRA. Thus mSUGRA seems more suitable to describe the less

preferred small mixing angle solution to the solar neutrino problem.
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In another investigation we discussed the structure of neutrino masses and mixing
in the Minimal Messenger Model (MMM) of gauge mediated supersymmetry breaking
with purely trilinear R violating interactions. We considered two specific cases of purely
A interactions and purely A interactions for simplicity. The model contains very large
number of parameters even under this simplifying assumptions. Remarkably, it is possible
to make meaningful statement on the neutrino spectrum in spite of the presence of many
unknown parameters if all these parameters are assumed similar in magnitude. This is
a natural assumption in the absence of any specific symmetry to restrict the trilinear R
parity violation.

In the case where only A’ couplings are present, one naturally gets large mixing between
the neutrino states. Further, the MMM offers a very constrained structure giving rise to
a large hierarchy between the masses ~ O(1072) for all the parameter space. The model
is suitable for obtaining simultaneously solutions for atmospheric neutrino problem and
quasi-vacuum oscillations for solar neutrino problem.

Assumption of approximate equality of A couplings in case with only A couplings, leads
to very constrained and phenomenologically inconsistent pattern for neutrino mixing. This
conclusion follows on general grounds and it is true even if SUSY breaking is induced
by supergravity interactions. It is quite interesting that one can arrive at this strong
conclusions in spite of the presence of many unknown parameters by simply assuming
them to be of similar magnitude. One can obtain consistent picture of neutrino anomalies
if A couplings are assumed to be hierarchical. We provided an example which leads to
two large and one small mixing and correct hierarchy between the solar and atmospheric
neutrino scales.

Though R violating SUSY is an attractive model to understand neutrino masses and
mixing, the magnitude of these couplings, apart from phenomenological constraints, is
apriors arbitrary. It would be indeed interesting if these couplings follow from some sym-
metry principle. In chapter 7 we discussed in detail, that the U(1) family symmetry
invoked to understand fermion masses can play an important role in constraining these
parameters. We restricted ourselves to integer U(1) charges and considered different
U(1) charge assignments compatible with fermion spectrum. We have shown that only
phenomenologically consistent possibility in this context is that all the trilinear A;; and all
but two A;jx couplings to be zero or extremely small of O(107'%). The problem of genera-
tion of phenemenologically inconsistent bilinear terms ¢; in these models was pointed out.
Requiring that €; are suppressed, played an important role in obtaining the constrained
pattern of R violation. While the patterns of R violation have been earlier discussed
in the presence of U(1l) symmetry the systematic confrontation of these pattern with

phenomenology leading to this important conclusion was not made.



