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A'bstract

When a star or a planet has an associated magnetic field, the space surrounding
the ob ject is strongly influenced by the magnetic field. The magnetic field acts as a
barrier to charged particles that travel towards the central object because gyrating
motions of the particles deflect direction of the flight. Due to this effect, plasma
from external origin tends to be excluded from vicinity of the magnetised objects.
As a result, a cavity is carved out around a magnetised object in the domain of
the streaming plasma. The cavity inside which magnetic field lines are confined is
called the magnetosphere of the central object.

The study of magnetospheres around accreting compact ob jects started with
the discovery of the quasars, Active Galactic Nuclei (AGN ’s) and X-ray sources.
Most of the energy emitted by these objects is in the range of 105 -10%° ergs/sec.
The main energy generation mechanism is believed to be the accretion of matter
onto highly collapsed stars, a scenario where gravitation, the main binding force of
the universe is in operation. If the matter béing attracted has angular momentum
with respect to the central star, it forms a disc around it. The large scale structure
and the dynamics of such discs is important physically, as many of the observable
properties like pulse shapes, spectra, spin-up rate and intensity fluctuations depend

on it.



- The earliest of the theoretical models of such accretion discs, which took
into account, self-consistently, various physical parameters, was due to Shakura &
Sunyaev [33]. Subsequent!}, several variations of this model have been considered
depending upon the particular scenario where the model was applied, but a firm
theoretical basis for these models is yet to be established. One of the factors is
the non-inclusion of the role of magnetic fields in the discussion of the dynamics
of the plasma flow. It is believed that most of the matter in the ufiverse is in
plasma state. The motion of ions and electrons in the plasma environment circling
the central star would produce currents and the associated magnetic fields. One
of the earliest discussions that explains qualitatively the influence of the magnetic
field on the inner edge of the magnetosphere, in the context of the accretion disk
model for compact X-ray sources, is due to Pringle [114]. Bisnovatyi-Kogan [101]
had considered the effects of magnetic field on the accreting magnetofluid and found
that there could be an increase in the efficiency of radiation emission.

As accretion is synonymous to gravitation, it is quite natural to realise the
importance of general relativity in discussing the structure and stability of magneto-
spheric plasma around a compact object [11]. Although, the Newtonian description
may be satisfactory for describing thé/;}otion of the magnetofluid in the magne-
tosphere of a neutron star, it would not be adequate for the case of\“\'pla.sma flow
around black holes. Thus, it is very important to consider the dynamics and sta-
bility of magnetospheric plasma in the presence of electromagnetic fields on curved
space time.

In this work, we have taken up the study of the dynamical equilibrium and
stability of magnetospheric plasma around a compact object including the effects of

general relativity through the analysis of the MHD equations self consistently. With

ix



'this motivation, we have developed the dynamical equations for a magnetofluid sur-
rounding a central compact object in a curved background geometry. The governing
equations are solved for several special cases of velocity and magnetic field distri-
butions. The analysis reveals explicitly the inter-dependence of certain physical
parameters like seed magnetic field, outer disc density, finite conductivity and con-
tinuous pressure distribution on the equilibrium configurations of the magnetofluid.

Instability studies, as a source for different kinds of radiation processes es-
pecially X-rays from accretion discs, are very important. We have analysed the
instabilities of diflerent modes that can be supported by the plasma in accretion
discs. One of the key features of this investigation, in the frame work of a local
analysis, is the existence of plasma instabilities like Kelvin-Helmholtz, Rayleigh-
Taylor and magnetosonic modes.In addition, we have also observed one other mode
which may be excited due to the finite conductivity of the plasma in the disc. To
understand the structure of various-unstable modes, we have also carried out, a

global analysis in the frame work of a complete numerical model.



Chapter 1

B

INTRODUCTION

The study of structure of magnetospﬂhge around accreting compact objects is central
to the understanding of a wide variety of cosmic high energy sources. Most of the
energy emitted by these sources is in the form of X-rays in the range of 10°° ergs-
571 to 10*° ergs-s~! and is supplied by the accretion of matter to the surface of the
compact objects like neutron stars or black holes. If the central compact object has
an intrinsic magnetic field, the magnefic field influences the incoming magnétoﬁuid
and eventually the motion is completely governed by the field. Finally, the matter
ends up on the surface of the central star either by flowing along the field lines or by
diffusing across it due to turbulence or instabilities. If the matter being attracted
has angular momentum with respect to the central body, it forms a disc around
it. The large scale structures and dynamics of such plasma magnetospheres are of
fundamental importance and the current interest lies in understanding of structure
and properties of these magnetospheres in order to explain many of the observable
properties.

It is also of great significance to understand the interaction between the

magnetosphere of a neutron star and the surrounding accretion disc with regard to



the formation of binary radio pulsars and the origin of quasi-periodic oscillations
(QPO) from low mass X-ray binaries. In this context, it is necessary to investigate
different modes of instabilities that could arise in discs supported by the gas and
magﬁetic pressure around compact objects under general perturbations. Although
numerous models with several variations have been proposed for different scenarios,
equﬂibrium structures and the corresponding stability analysis including the effects
of self-consistent magnetic fields are still in its infancy. *

In this thesis, we have studied the self-consistent equilibrium configurations
and stability criteria for a plasma magnetosphere around compact objects in the
presence of magnetic and gravitational fields both in Newtonian and relativistic for-
malisms. With this motivation, we have developed the dynamical equations for a
magnetofluid surrounding a central compact object in a curved background geome-
try. Subsequently, these equations are applied to analyse the dynamical equilibrium
and stability of a few configurations.

In this chapter, a brief description of the magnetospheric models associated
with disc accretion is presented. We start with the preliminaries in Section 1. The
basic need for studying such models is stressed in Section 2. Section 3 highlights
the role of general relativity and magnetic fields in such studies. An overview of
theoretical models with special emphasis on those incorporating magnétic fields is
given in Section 4. The role of plasma instabilities is illustrated in Section 5. A
brief summary of the structure and stability of thick disc models is presented in

Section 6. The aim and scope of the thesis is briefly outlined in Section 7.



1.1 Preliminaries

When a star or a planet has an intrinsic magnetié field, the space surrounding the
object is strongly influenced by the magnetic field. The magnetic field acts as a
barrier to charged particles that travel towards the central object because gyrating
motions of the particles deflect direction of the ﬁight. Due to this effect, plasma from
external origin tends to be excluded from the vicinity of the magnetized objects.
As a result, a cavity is formed around a magnetized object in the domain of the
streaming plasma. The cavity inside which magnetic ﬁelg Jines are confined, is called
the magnetosphere of the central object. The term ‘magnetosphere’ was introduced,
in the terrestrial context by Gold [1]. The magnetosphere of an object, according
to his definition, is the region of space surrounding the object within which the
object’s magnetic field exerts a dominant influence upon the motion of the plasma.
Since the magnetic field controls the plasma flow and viceversa, the two ways of
defining the magnetosphere are essentially equivalent.

The study of magnetospheres can be broadly classified into two types viz.
planetary or terrestrial magnetosphere (Fig. 1.1) and magnetosphere around com-
pact objects (Fig.1. 2). The planetary magnetospheres are formed by the interaction
of the solar wind with the intrinsic magnetic fields of the planets. The physical mech-
anisms that operate in planetary magnetospheres are more or less well u.\ﬁderstood.
Many basic plasma processes and instabilities such as the reconnection of magnetic
field lines, wave particle interactions, double layers and Kelvin-Helmholtz (K-H)
instability occur in planetary magnetospheres. Although, some of these fundamen-
tal concepts have been already applied for the understanding of physical processes
around compact objects, these concepts need to be extensively examined in the

case of plasma magnetospheres around compact objects and its interaction with the
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COMPANION

f

Figure 1.2: An artistic picture of a spinning neutron star having an accretion

disc and being orbited by a companion star. (Source: J. Shaham, 1987, Sci.

American., 256(2), 50)



the ac’cr’efion discs.

The study of magnetospheres around accreting compact objects started with
the discovery of the quasars, vactive galactic nuclei (AGN) and X-ray sources. Most
of the energy emitted by these objects is in the range of 1038 -10 ergs-s~!. The main
energy generation mechanism is believed to be the accretion of matter onto highly
collapsed stars, a scenario where gravitation, the main binding force of the universe
is in operation. A simple back-of-envelope estimate will illustrate this $oint. For
a body of mass M, and radius R, the amount of potential energy released by the

accretion of mass M on to its surface is

GM,M
AE,, = —2—, 1.1.1
! (1.1.1)
and the luminosity is given by
‘GM,M
La(:c - < 3 y (112)
R

where G is the gravitational constant and M is the accretion rate . If the accreting
body is a neutron star (NS) with radius R = 10 km and mass M, = Mg, the solar
mass, then AE,.. = 10% ergs/accreted gram and this energy is released mainly in
the form of electromagnetic energy. Since the observed X-ray luminosity is in the

range of 10°° to 10% ergs-s—!, equation (1.1.2) implies
M =10""My/M, for a white dwarf (1.1.3)

M =10"°My/M, for a neutron star. (1.1.4)

For the case of accretion onto black holes, the validity of luminosity relation is
questionable. The main objection arises from the fact that the radius does not refer

to a hard surface and once the matter enters the event horizon, it cannot escape out



of the black hole. This uhcertainty in the luminosity relationship is parameterized

by the introduction of a dimensionless quantity 7 called the efficiency factor,

Lacc = ‘2—7%@ (1.15)
= nMc, (1.1.6)

where R = 2GM/c* have been used for the black hole radius. )

The study of magnetospheres of accreting neutron stars began With the dis-
covery of bright pulsating X-ray sources in the galaxy in 1972 by Schreier et al. [2]
& Tananbaum et al. [3]. These rotating magnetic neutron stars accrefe matter from
a binary companion and should not be confused with the pulsars (pulsating radio
sources) in which the primary energy source and the physical conditions are com-
pletely different. The plasma environment of neutron star magnetospheres which
ranges from low density winds with little rotation to very high density Keplerian
accretion discs, are considerably different than those of the known planetary mag-
netospheres, all of which are immersed in solar wind. In spite of this contrasting

nature, the principal differences between the two types of magnetospheres may be

traced to a relatively few factors:

1. the strong gravitational field, which traps the plasma far outside the magne-

tosphere and controls its flow to the stellar surface,

2. the large mass flux into the magnetosphere, which stresses the outer magne-

tosphere and produces a relatively high plasma density throughout,

3. the high density, which makes the plasma collisional or quasi-collisional and

leads to rapid cooling,



4. the intense radiation field, which quickly cools the plasma and can produce

forces even larger than gravity and,

5. the rapid rotation of the plasma and the magnetosphere, which stretches the

outer magnetosphere and strongly affects the plasma flow pattern.

In describing the dynamics of mass outflow from the companion and its subsequent
capture by the compact star, two broad cases viz. spherical accretion and #fccretion
from a disc can be distinguished. These cases can be illustrated by considering a
binary system whose orbits are circular. This is usually a good approximation since
tidal effects tend to circularize the azimuthal eccentric orbits on time scales short
compared to the time over which mass transfer occurs. The effective gravitational

potential (Roche potential) of the binary system is given by,

GM My GMyMy 1

_]r—rlflrﬁrzl—g(mx?)z, (1.1.7)

¢(r) =

where ry and rg are the position vectors of the centers of the two stars with masses
M, and M,. Fig. 1.3 depicts the equipotential surfaces of ®(r) in the orbital plane.
The most interesting and important feature of this diagram is the figure-of-eight
area which is called the Roche lobe. The lobes join at the inner Lagrangian point I,
which is a saddle point of ®(r) and it facilitates mass transfer from one side to the
other. On the basis of the relative sizes of the Roche lobe to the companion star,

the above mentioned accretion processes are distinguished which we define below.

1.1.1  Spherical accretion

If the companion star is much smaller than the Roche lobe, then the matter lowing

out from the star as a stellar wind is captured by the gravitational field of the



F'igure 1.3.

Sections in the orbital plane of the Roche

equipotentials q>(r) = constant, tfor a
binary system with mass ratio q = M,/M. =
0.2. shown are the centre of mass (ch) and
Lagrange points L, -L._.. The equipotentials

are lapelled 1-4 in Order of increasingcy@ﬁ.
Adopted trom Frank et al. [34].



compact object from the gravitational sphere of influence whose radius is given by

_ GM,
AL

where V is the flow speed of the stellar wind. This case was studied by Hoyle &

R (1.1.8)

Lyttleton [4] and later by Bondi [5] three decades ago and presently, this is referred

to as spherical accretion (Fig. 1.4a).

1.1.2 Disc accretion

On the other hand, if the companion star fills its Roche Lobe (Roche lobe over-
flow), matter from the normal star transfers through the Lagrangian point L; to
the compact object. As a consequence of this process, the accreting matter has con-
siderable angular momentum so that the matter cannot accrete directly onto the
compact object. Instead it forms a disc from which the matter spirals slowly as the
angular momentum is removed by tangential stresses, either viscous or magnetic.

This case is universally referred to as disc accretion (Fig. 1.4b).

1.2 Why magnetospheric models ?

Theoretical models of a magnetosphere aim to describe the configuration of the
magnetic field and the dynamics of the plasma flow within the magnetosphere. The
existence of Eddington limit for luminosity (an upper bound on the luminosity
at which radiation pressure on free electron balances gravity) which signifies the
importance of forces other than gravity, suggests that the dynamics of the flow may
not be very simple. In addition to the intrinsic scientific interest of the problem,
there are several reasons for developing the magnetospheric models of compact

objects:
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1. Understanding of the observable properties of the X-ray sources like pulse
shapes, spectra, spin up rates and intensity fluctuations which depend on the

structure of the magnetosphere.
2. To ensure that mass transfer rate is adequate to sustain the luminosity.

3. To understand the possible ways of losing angular momentum and the ap-
plication of torque on the compact object which would provide guantitative

estimates of rate of change of period for comparison with observations.

4. Properties of the plasma within the magnetosphere for a detailed calculation

of the emitted radiation.

5. Detailed description of the accretion flow to explain the observed spectral

distribution of the radiation produced.

6. Plasma instabilities and their associated time scales in the magnetosphere to
explain the formation of bursts, X-ray emissions, variabilities of AGN’s and

possibly millisecond pulsars.

Many published theoretical models, in the past, have attempted to explain
various features of the observations. However, more sophisticated médels of the dy-
namical properties of the accreting matter and the transfer of angular momentum
as well as the response of the compact object itself are still required to understand
the whole variety of observations. Although many excellent review articles (Va-
syliunas [6], Borner (7], Hayakawa [8], Wiita [9], Fumiaki [10], Prasanna [11]) have
been published, we cite here, for the sake of completeness, a brief summary of the
research work done with special emphasis on the role of magnetic fields in both

Newtonian formalism and on curved background geometry.



1.3 Importance of general relativity and magnetic

field

The influence of gravity in the study of accretion process is self evident. To give a
flavour, we consider a simple example which will bring out the importance of grav-
itation in accretion dynamics. Consider a blob of gas (plasma) which approaches a
rotating neutron star with approximately radial velocity. Even far froi the mag-
netosphere, the plasma is gravitationally bound to the star due to the nature of the
gravitational force and it will remain so until it enters the magnetosphere. Even in
the case of disc accretion, model calculations indicate that the bulk of the plasma
that reaches the magnetospheric boundary will be accreted to the stellar surface.
Thus, it is to be emphasized that due to gravity the plasma cannot escape from the
potential well of the compact object and has to follow only one path - to fall into

s

the central star.

As accretion is synonymous to gravitation, it is quite natural to realise the
importance of general relativity in discussing the structure and stability of magne-
tospheric plasma around a compact object (for a review, see Prasanna[ll]). The
significance of general relativity in accretion process was independently cited by
Zeldovich [12] and Salpeter [13] in 1964 while discussing the accretion of interstellar
matter by massive objects for producing high luminosities. In the case of accretion
onto black holes, it is well known that the accreted material would finally fall into
its center and emit part of its energy as radiation. In the absence of the magnetic
field, the transformation of kinetic energy into radiation is very small but this gets
enhanced in the presence of the magnetic field due to the intense synchrotron ra-

diation (Bishnovyati-Kogan [14]). A clue to the relevance of magnetic field in the

]



.’ ;‘ccryét'io.n process was obtained from the study of charged particle motion on curved
- gpace-time geometry (Prasanna [15]). Even, in the presence of a weak magnetic
" field, the investigation for the motion of a charged particle in Schwarzschild geom-

etry (Prasanna & Varma [16]) demonstrated that there exists stable orbits as close

. a5 2.1m against the limit of 6m in the absence of magnetic fields. A further study by

Chakrabarty & Prasanna [17] showed the possible existence of thick disc structures
due to the interaction of magnetic and intense gravitational fields. This analysis
also revealed that the formation of cusp is possible only when the gravitational field
is described by the general relativistic formalism and not in the Newtonian theory.
The cusp, where the angular momentum induced by the gravity of the central source
equals the angular momentum of the source itself, was shown (Abramowicz et al.
[18]) to exist between the marginally bound (r = 4m) and marginally stable (r =
6m) time like orbits in the Schwarzschild geometry.

Although black holes do not have an intrinsic magnetic field, the analysis of
Galeev et al. [19] showed that as a result of stretching of the interstellar magnetic
fields, the field gets amplified and becomes dynamically important. The motion of
the plasma would then produce currents and associated magnetic fields in the disc.
These ordered magnetic fields in accretion discs around black holes may have a
completely different role in the formation of narrow jets seen in many extra-galactic
radio sources. Although a widely favoured idea for the origin of these jets is based
on the occurrence of narrow, essentially empty vortex funnels in accretion flows
(Lynden-Bell [20]), an alternative proposal involving magnetic fields in which jets
are electrodynamically accelerated due to the unipolar induction dynamo effect, has
also been considered (Lovelace et al. [21]; Blandford [22]; Blandford et al. [23]).

In the realm of observations, the evidence to include the effects of general
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relativity is progressively .incre'asing.‘ Malkan et al. [24] showed that the best fit for
the quasar emission spectra could be obtained by including the general relativistic
effects of redshift and focusiﬁg. Paczynski [25] attributed the QPO phenomenon to
the unsteady flow of the accreting matter in the inner region of a thick accretion
disc and conjectured that the oscillations may be due to the general relativistic
effect.

The above description clearly illustrates the importance of magngtic field in
the dynamics of plasma flow around compact objects. It also highlights the fact
that the Newtonian formalism is not adequate for the analysis of accretion flow
around black holes although it may be satisfactory for characterizing the motion of
the magnetofluid in the magnetosphere of a neutron star.

Hence, it is imperative to consider the role of magnetic fields in a curved back
ground geometry for the analysis of accretion flows around magnetospheres of com-
pact objects. With this prime motivation, we have investigated the self-consistent
structures and stability of plasma magnetospheres around compact objects in the

frame work of a complete relativistic model including magnetic fields.

1.4 Historical perspective

The study of accretion had its foundations in the late thirties with the publication of
a paper by Hoyle & Lyttleton [4]. This key note paper which has an interesting title
“The effect of interstellar matter on climatic variations” contains the first derivation
of the accretion rate for a star moving through cold gas. The next important step in
the development of accretion theory was the paper by Bondi [5] where a full analytic
solution for the fluid flow was derived. The real emphasis on building self-consistent

models of accretion discs started in the sixties with two fundamental astrophysical

11



discoveries: quasars and X-ray sources with extremely large luminosities (1038 - 104
ergs-s~'). From the variability associated with these objects, it was immediately
known that the radiation isv being emitted from comparatively small regions (r ~
1 pc). Even before the detection of X-ray sources, Hayakawa [26] had suggested
that close binary stars may be detectable as X-ray objects because of the mass
accretion. The role of accretion discs in binary sources was recognized by Novikov
& Zeldovich [27], Shklovsky [28] and Prendergest & Burbidge [29] and st#tbsequently
the importance of disc accretion onto a massive black hole was pointed out by
Lynden-Bell [30] with special reference to the center of our galaxy and by Lynden-
Bell and Rees [31] with application to AGN. The discovery in 1971 of the source
Cen X-3 (Giaconni et al., Schreier et al. [32,2]) and Her X-1 (Tananbaum [3]) by the
Uhuru satellite exhibiting eclipses and periodic doppler variations of the pulsation
period ushered in a new era in the study of accretion dynamics. A detailed model
with a computation of the emission spectrum was later published by Shakura and
Sunyaev [33] which is now referred to as the standard a-disc model in the literature
and is discussed in great length by Frank et al. [34]. The other earlier models which
need special mention are due to Novikov & Thorne [35] and Thorne [36] where they
elucidated the effects of general relativity on the inner regions of the accretion disc.
Subsequently, several variations of the standard model and many other models have
been published but a firm theoretical confirmation with observations is yet to be
achieved.

With the success of accretion theory being applied to X-ray sources, quasars
and AGN, it is natural for the theory to gain a prominent role in the standard
astrophysical scenarios. At present, the theory of accretion enters into the realm of

various classes of objects like cataclysmic variables (CVs), X-ray binaries and AGN
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- (seyfert nuclei, quasars and blazars) and possibly the still mysterious gamma ray

sources.

1.5 Survey of models

Accretion disc, at present, is the only important model capable of explaining radia-
tion and some of the observed properties from high energy astrophysical gb jects. As
a result, these models have gained tremendous popularity in astrophysical commu-
nity. However, due to the extreme conditions prevailing in and around the compact
object, a single comprehensive modgl describing all the major aspects of the mag-
netosphere around accreting compact objects is yet to emerge. The development
of accretion theory could be broadly classified into two major sections viz. (i) the
seminal ones (ii) the ones that are fundamentally important in establishing accre-
tion as a basic mechanism for energy generation. Some of the important papers
covering these aspects are now available in a collected volume (Treves et al. [37].)

The first quantitative models of accreting neutron star magnetospheres were
those developed by Pringle and Rees [38], Davidson and Ostriker [39] and Lamb,
Pethick and Pines [40]. Various features of these models were subsequently de-
- veloped by Baan and Treves [41], and Elsner and Lamb [42]. Plasma flow inside
the magnetosphere has also been studied by Ghosh, Lamb and Pethick [43] and by
Scharlemann [44]. The basic models, as reviewed by Vasyliunas [6] can be classified

into four broad headings viz

e the early models in which the size of the magnetosphere is estimated from the
simple pressure balance conditions and the accreting matter is postulated to

enter the magnetosphere through a pair of funnels at the pole,
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o closed magnetospheric models in which the matter enters the magnetosphere

through instabilities at its inner boundary,
e plasma flow inside the magnetosphere and,
e magnetospheric models associated with disc accretion.

However, in the next section, we confine our discussion specifically to disc accretion
. . . @
models which are primarily relevant to our work.

1.5.1 Disc Accretion

As noted earlier, an accretion disc would form if the incoming matter possesses
significant angular momentum during the Roche lobe overflow. Accretion from
such a disc is possible only when the angular momentum is transported away by

dissipative processes. The total luminosity during such processes in a steady state

(Frank et al. [34]) is _
GM,M
2R’

where M is the accretion rate. It is to be noted that this disc luminosity is just half

Laise = (1.5.1)

of the accretion luminosity (equation 1.1.2) which is obtained when all the kinetic
energy of the infalling matter is given up at the stellar surface. The other half of the
energy is to be radiated at the magnetospheric boundaryl (magnetopause or inner
boundary) between the accretion disc and the compact object. The estimate of the
size of the magnetosphere was obtained by Davidson & Ostriker [39] and Baan &
Treves [41] based on the concept first proposed by Chapman and Ferraro in 1933
and extensively applied in the terrestrial magnetosphere. To a first approximation,

the radial distance Rgp (Chapman-Ferraro radius) from the compact object to the
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magnetopause may be estimated by equating the pressure of the dipole magnetic

field to the gas pressure of the accreting matter i.e.

Bg'pl A
—Z22C — Piise. 1.5.2
o i (1.5.2)

In the case of spherical accretion, the radius is found to be

Rer
R TALIAAS . (1.5.3)

where p is the dipole moment of the compact object, L is the luminosity, V;; =
(ZGM/'r)’iV is the free fall velocity, ¢ is the area over which the accreting matter
enters the magnetosphere and ¢ signifies the ratio between the average flow speed
and free fall velocity at the magnetopause. Using the same concept of pressure
balance, Pringle and Rees [38] estimated this distance for a disc accretion and

found that this occurs at the radius,

rV, 7
= 0. s 1.5.4
rp = 0.89 [thfJ lo, (1.5.4)

where V, is the inward radial drift velocity in the disc, h is the disc semi-thickness,
and Iy is a characteristic length which appears in nearly all estimates of the size
of accreting neutron star magnetospheres. Since, above and below the disc, the
pressure is assumed to be very small, the magnetosphere is expected to extend to
larger distances over the disc’s mid-plane and the equilibriuin configuration requires
the matter pressure at the top and bottom of the disc to balance the magnetic field.

The details of the accretion process in the region where the magnetic field
dominates the dynamics have been studied by several investigators. The general
description of plasma flow from the disc midp’lane to the surface is quite complex
and still not very well understood. Further, there is no consensus regarding several

basic questions. This could be probably attributed to two rather different types of



models that have been considered. .I‘n one approach to the problem, the accretion
disc is presumed to be threaded by stellar magnetic field. In contrast, the other
approach is based on the assumption that the disc matter (plasma) is characterized
by an infinite conductivity. As a result, the disc is considered to be diamagnetic

and the stellar field is completely excluded from the disc. We discuss, in the next

section, the main merits and demerits of these models.

Accretion discs could also be broadly divided into two distinct classes based
on their geometrical shapes. If the disc flow is confined closely to the orbital plane
then, as a first approximation, one can regard the disc as a two dimensional gas
flow, such a configuration is called a thin disc. In cylindrical geometry (R,p,2), a
disc is defined to be thin, if h < R, where h is the vertical height of the disc. In
terms of the dynamics, a disc is said to be thin if the local Keplerian velocity turns

out to be supersonic, i.e.

R

where C, is the local sound speed. The above descriptions may be violated in the

c, < (ﬂ{) (1.5.5)

innermost region of accretion discs around stellar black holes and neutron stars
where the accretion rate approaches the limiting value specified by the Eddington
luminosity. In this case, the thin disc approximation breaks down near the central
object. We will discuss the case of thin disc accretion first and then goi'over to the

discussion of thick discs in Sect. 1.5.3.

1.5.2 Thin Disc

Lamb, Pethick & Pines [40] were the first to assume that the plasma entering the
magnetosphere would be rapidly threaded by the magnetic field and showed that

the plasma would then be forced to flow along the field lines. Fig. 1.5a depicts
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Figure 1.5. (a) The shape of the accreting magnetosphere in
case of closed magnetospheric models. Adopted
from Arons & Lea [8@].
(b) Sketch of closed magnetosphere in case of disc
accretion. Adopted from Lamb [46].



schematically the magnetosphere for a case where the magnetic field lines are as-
sumed to be closed. Scharlemann {44] emphasized the importance of the shape of
the field lines threading the plasma in controlling the flow of plasma from the inner
edge of the disc to the neutron star. Assuming that the stellar magnetic field is
completely excluded from the disc by screening currents which are represented by
a current ring of radius R¢p, he discusses the possible mechanisms viz. K-H and
Rayleigh-Taylor (R-T) instabilities through which the plasma can flow tethe stellar
surfaces either along the field lines or through the equatorial magnetosphere. Ichi-
maru [45] proposed a model of disc accretion in which the inner radius of the disc
is determined by a static pressure balance condition but modified in an attempt to
include the effect of gravity and centrifugal force acting on the plasma in the bound-
ary layer between the disc and the magnetosphere. However, all these models are
mostly qualitative in nature and several questions have been raised on the validity
of the inherent assumptions (Lamb [46]). The most important of all, concerns the
complete screening of the stellar magnetic field from the disc.

Towards a more quantitative decsription, Lamb and his collaborators have
considered, in detail, disc accretion onto a magnetic neutron star. The initial model
of Lamb et al. [40] takes into account the effects of stellar rotation and the magnetic
field. In the case of a neutron star, the theory shows that the accreting material is
channeled toward the magnetic poles of the star and forms a hot spot on entering the
stellar atmosphere. The resulting radiation emerges from the neighbourhood of the
stellar surface in a strongly angular pattern with a spectrum which depends on the
nature of the accretion flow process and the configuration of the magnetic field inside
the magnetosphere of a rotating neutron star (Ghosh & Lamb [47]). Assuming that

the star is an aligned slow rotator and that the accreting plasma becomes threaded
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‘lv)y the stellar rﬁa.gnétic field near t.hé magnetospheric boundary, theAy investigated
kthe flow of matter and the configuration of the magnetic field inside the Alfven
surface. In the absence of piessure and electrical resistivity, this analysis concluded
that the flow within Alfven surface is well described by the magnetohydrodynamic
(MHD) equations and that the matter moves along the field lines when viewed from
the frame co-rotating with the star. As a special case, they considered a Keplerian
 disc flow outside the magnetosphere. Contrary to the earlier belief regarding the
source of the excess energy dissipated in the disc as being the rotational energy
of the star, they showed that this energy comes mainly from the transition zone
between the disc and the magnetosphere. These studies were later extended by
Ghosh et al. [48,49]. The study emphasized that the stellar magnetic field cannot
be completely screened by disc plasma due to turbulent diffusion, development of
K-H instability and reconnection of small scale fields within the disc. The resulting
configuration projected on the meridional plane is qualitatively shown in Fig. 1.5b.
The major uncertainty concerning this model is the question of magnetic field line
reconnection in the disc and it is not clear if the field lines could be adequately
simulated by introducing an effective resiétivity (Lamb [46]; Borner [7]; Kaburaki
[50]). In addition, all these models do not derive the self-consistent magnetic field
structures.

In a model similar to Schralemann [44], Aly [51] obtained an exact analytical
solution for a thin disc consisting of a perfectly conducting plasma which excludes
the stellar field from the interior of the disc. The general structure of steady accre-
tion discs with magnetic fields, in the limit of infinite conductivity was also analysed
by Horiuchi et al. [52,53]. The results showed the existence of three critical points

(surfaces) the Alfven, slow and fast points (surfaces) where the poloidal components
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of accretion velocity equal the phase velocities of the Alfven, slow and fast waves
respectively. In a follow-up paper, Horiuchi [54] solved the vertical force equation
under the approximation of a geometrically thin disc and concluded that for a treat-
ment of sub-Alfvenic flow in the disc, one needs to study magnetic disc consisting of
a viscous plasma with finite conductivity. Anzer et al. [55] computed the changes
in the vertical structure of an accretion disc brought about by an external magnetic
field and found that a high probability exists for the occurance of instabilities at
the magnetospheric boundary due to the inversion of the density profile.

In a different approach, Kaburaki [50,56] considered structure of thin Keple-
rian accretion discs threaded by magnetic fields including the finite electrical con-
ductivity of the plasma. Assuming that the vertical and radial structures separate
out, Kaburaki [50] obtained disc solutions with two parameters R,, and A which
represent magnetic Reynold’s number and half thickness of the disc respectively.
But, as he points out the calculations are not self-consistent due to the fact that
one gets two different expressions for the radial velocity. In addition, the electric
field solutions do not satisfy the Faraday’s law and we believe this to be an artifact
of the scaling used in his calculation. However, the calculations revealed that the
pressure term has a contribution comparable to gravity and hence one cannot ne-
glect the pressure gradients in the dynamical equations in the presence of magnetic
fields. In a follow up paper, he [56] included the pressure term in the equation of
radial force balance and also considered the flow along the meridional direction.
As a result, he obtained self-consistent radial velocity but the inconsistency in the
above mentioned Maxwell’s equation still remained.

Lightman and Eardley [57] tested the stability of a thin orbiting accretion

disc near a black hole and found that the disc is always secularly unstable on
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. tiﬁe scales of a few seconds or less. As an alternative model, they formulated a
detailed self-consistent model for magnetic viscosity. The equilibrium structure for
~ the accretion of matter withoﬁt pressure into a gravitating center of a black hole for
(a) alaminar disc with the Coulomb mechanism of diffusion and (b) a turbulent disc,
was calculated by Bisnovyati-Kogan & Ruzmaikin [58,59]. This study was further
elaborated by Bisnovyati-Kogan [14] where a self-consistent two-dimensional MHD
solution for a chaotic and ordered magnetic field in the gas along with the spectra
of radiation was computed. However, this study was restricted to a case where
the matter falling to the collapsar (black hole) was assumed to have no angular
momentum and no poloidal magnetic field (V¢ = 0 and By = 0). Lovelace et al.
[60] has proposed a general theory for relativistic ideal MHD flows around a black
hole or a rotating magnetized neutron star. This theory leads to an autonomous
second order partial Grad-Shafranov equation (a well known equation in fusion
plasmas) for the magnetic flux function and needs sophisticated numerical codes
for its solution. As a particular example they obtained solutions for a simplified
case of a disc around neutron stars with no poloidal flow (Vp = 0) and no toroidal
magnetic field (B, = 0). The above theory was later generalised to include steady
axisymmetric flow around a Schwarzschild black hole (Mobarry & Lovelace [61]).
Although, this work derived a virial equation and discussed the sta,bﬂity of the
motion of a charged test particle in the presence of an electromagnetic field, the
model does not present any specific equilibrium solution.

In a completely different formalism, Prasanna & Chakraborty [62], and
Chakrabarty & Prasanna [63] analyzed structure and stability of fluid discs around

a Schwarzschild black hole and observed that

1. the inner edge of the disc can not lie within 4m,
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- 9..if the inner edge of the disc lies within 4m and 6m, then the outer edge must
lie beyond 2a/(a-4), where a is the radius of the inner edge defined in units of

m (m = MG/c?),
3. there exists no restriction on outer edge, if the inner edge is at or beyond 6m,

4. in the case of a pressureless disc, the structure is stable if the inner edge is

greater than 6m, »

5. an ordinary perfect fluid disc rotating around central source is stable under

radial perturbations.

The dynamics of accretion disc and its emerging radiation flux in the presence
of electromagnetic fields on curved space time for several special cases of azimuthal
velocity distributions was obtained by Prasanna & Bhaskaran [64] and Bhaskaran &
Prasanna [65] A subsequent analysis by Bhaskaran & Prasanna [66] including the
radial velcocity component of the flow revealed the inter-dependence of different
physical parameters like outer density, seed magnetic field and finite conductivity
on the continuous pressure distributions of the disc configurations. An analysis for
a disc around a slowly rotating compact object was also carried out by Bhaskaran
et al. [67] which demonstrated the influence of co- and counter rotation at the inner
edge of the disc . However, all these analyses were confined to the thin disc limit
(0 =m/2).

Most of the studies mentioned above were carried out for thin discs with
assumptions that (i) there are no pressure gradient forces (ii) the angular momentum
distribution is Keplerian and (iii) the accretion rate is sub-Eddington. In case, the
luminosity exceeds the Eddington limit, the inner regions of the disc get blown up

by radiation pressure giving rise to thick disc configurations. In the next section,
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we focus our attention on these models.

1.5.3 Thick disc

Geometrical thick accretion discs are believed to form when the accretion rate M
is super critical (super Eddington, L > Lg) and are bright candidates for 55-433,
active galactic nuclei and QPO sources. The interior properties of the radiation
dominated thick accretion discs are determined by three dimensionzﬂ:&transonic,
dissipative general relativistic hydrodynamics and its study is still in a developing
stage. This is because the structure of accretion flow with M > Mj is consid-
erably more complicated than the structure of M < Mg flows described by the
standard thin accretion disc model. The complexity is caused by several physical
processes which are assumed to be absent for thin accretion disc. The most notable
feature is the angular momentum flow which no longer remains Keplerian. Work
on the equilibrium distributions of perfect black holes showed that as long as the
radiation pressure is not negligible, material near a black hole probably would not
follow Keplerian orbits and would tend to have a nearly constant specific angular
momentum. This is due to the inherent properties of discs with M > My, where
both horizontal and vertical pressure gradients determine equilibrium as against the
case of thin discs where only the vertical gradient is dynamically impo;tant, As a
result, the structures of thick discs have to be described by a set of complicated
partial differential equations. The most complex part of modelling thick discs is
the inner most region, due to the transonic nature of the accretion flow and to the
formation of cusp at the inner boundary (topological peculiarity of the equipotential
surfaces, Abramowicz [68]). As a consequence, there have been only a few attempts

to solve the complete equations.
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- In discussing quasars and double radio galaxies, Lynden-Bell [20] showed that
the accreting material could form a pair of very deep vortices or whirlpools along
the rotation axis through which relativistic plasma could be shut out, thus produc-
ing the frequently observed radio jets. Subsequent works have attempted to build
more complex pictures of these thick accretion discs to elucidate the luminosities,
to estimate the possible acceleration and collimation of the beams and analyze the
stability. Following the earlier works of Fishbone & Moncrief [69] and #Abramow-
icz et al. [18], Paczynski [70] developed a full-fledged disc model. To describe the
gravitational field of the central compact source, he used a pseudo-Newtonian po-
tential instead of a complete relativistic calculation. In these models, hydrostatic
equilibrium was presumed which is equivalent to taking the orbital velocity of the
fluid much greater than the radial velocity. This concept was subsequently verified
in an analysis of flow through a cusp where it was found that the sonic point for
the in-flowing fluid is located closer to the inner edge of the disc. The study of
Jaroszynski et al. [71] who performed general relativistic calculations for both the
Schwarzschild and Kerr metric showed that the thick discs implied o < 1 in the
standard picture or conversely if @ < 1, then disc has to be treated as physically
thick. Although the existence of super critical discs does depend on relativistic
effects, the analysis carried out by Abramowicz et al. [72] showed that fairly good
results could be obtained by assuming a purely Newtonian treatment where the
parameter of the model depends on the ratio of the inner to the outer radii. The
other significant highlights of this analysis was that for super-Eddington accretion
rate, the luminosity does not grow in proportion to the accretion rate but more

slowly as

L o logh. (1.5.6)
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The specific models including accretion flows were proposed by Paczynski [73] who
assumed that the accretion flow is confined to a thin surface layer of the disc and

concluded that for high enough accretion rates, dynamical instabilities could af-

fect part of the disc. Assuming the viscous processes to be significant in the same
thin layer Paczynski and Abramowicz [74] showed that both these models produced
maximal equatorial temperature around 1_07 K. In different analyses, Kuwahara
[75,76] considered all the flow components of the matter and calculated gxisymmet-
ric structures of relativistic tori around Schwarzschild and Kerr black holes. The
results showed that for the existence of thick disc configurations, the radial velocity
of the flow must be subsonic throughout the whole torus.

From the above studies of disc dynamics both in the limit of thin and thick
discs, it is evident that the theories of thin accretion discs are reasonably well un-
derstood as compared to that of thick discs. However, the theories of thin accretion
discs including self-consistent magnetic fields, finite conductivity of the plasma and
all the velocity flow patterns are just emerging. But, as the theory is becoming
more concrete and detail, it is giving rise to new problems. It turns out from the
study of Kaburaki [50] that in the case of thin discs with magnetic fields the pres-
sure gradient is as large as the gravitational force. Thus, whether the magnetic
accretion discs can be really in a Keplerian orbit (which is one of the assumptions
in the study of thin discs) is questionable ( Kaburaki [56])

In the case of thick discs, most of the calculations have been carried out
for fluid discs without self-consistent magnetic fields. But, we saw that magnetic
fields help in bringing the matter nearer to the compact object. Also, for modelling
extragalactic jets, one has to take into account the magnetic fields. We investigate in

subsequent chapters the importance of magnetic fields in disc configurations around
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magnetospheres of compact objects.

1.6 Plasma instabilities in the accretion disc

The motivation for studying the stability of accretion flows lies in the possibility of

its relevance to
e magnetic field penetration into the disc,
e mass transport inside the magnetosphere through the inner bqundary,
e outbursts of dwarf novae,

the rapid time variability of compact X-ray sources (X-ray bursters and QPO’s),

@

variability of active galactic nuclei.

In addition, there are several other reasons which necessitate the study of insta-
bilities of accretion discs. The primary reason is to find out if the steady state
models are stable against small perturbations or the growth rates of instabilities
could completely disrupt the equilibrium structures. Another important reason for
this study, is to gain quantitative information about the viscosity parameter which
controls the time dependence behaviour of the steady flow (Pringle [77])

It has been found that thin accretion discs quite generally fall prey to un-
stable modes of oscillations. Two types of instabilities (secular and thermal) of
radiation pressure dominant discs have been investigated by Lightman [57]; Pringle
[78]; and Shakura & Sunyaev [79]. Even when the gas pressure is dominant, the
disc becomes thermally unstable owing to hydrogen ionisation (Hoshi [80]). Both

thermal and viscous instabilities have been extensively studied regarding outbursts
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of dwarf novae (Bath [81]). More general analyses conclude that instabilities of the
above types could significantly affect almost any thin accretion disc model and are
difficult to avoid (Wiita [9]). But, the analysis of Abramowicz et al. [82] shows that
the mass loss from the inner edges of the discs could stabilize the innermost regions
of the thin accretion discs.

The outstanding question of plasma entry into the magnetosphere in mag-
netically closed models can, probably, be answered by plasma instabilities at the
inner boundary. Some attempts have been made in this direction. The most plau-
sible mechanism which pushes matter inside the inner edge is believed to be caused
by the interchange instability at the magnetopause (Elsner & Lamb [42]; Lamb &
Elsner [83] and Arons & Lea [84]). This instability arises due to accumulation of
matter at the inner edge supported by gravity against magnetic field, a situation
well known to be unstable and goes by the name of Rayleigh-Taylor instability.
Ghosh & Lamb [47] invoked the K-H instability in the context of field penetration
into the magnetic disc. The study of Anzer & Borner [85,86] showed that the ve-
locity discontinuity between the low density magnetic field and the disc drives the
Kelvin-Helmholtz instability and initially grows on a time scale much shorter than
the radial drift time.

The stability of thick accretion discs is a subject of very active research
at present. The initial study of Papaloizou and Pringle [87] [88] demonstrated
that non-accreting perfect fluid tori orbiting a Newtonian center of gravity are
subject to violent global non-axisymmetric instability. However, the subsequent
studies showed that stabilization could occur by (i) inclusion of accretion flow (Blaes
et.al. [89]) and (ii) self gravity (Goodman & Narayan [90]). It was also pointed

out that the growth rate of the instability is too low to be of any astrophysical
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. signiﬁcance and decreases with increasing width of the torus (Robinson [91]). A
‘possible explanation for the quasi-periodic oscillations observed in some galactic
X-ray sources has also been proposed ( Vanderklis [92]) in terms of oscillations in
the inner region of a thick accretion disc which partially obscures the X-ray source.
In addition, a qualitative argument by Treves et al. [93] suggests a limit cycle
behaviour between thick and thin accretion discs when the mass supply rate from
the secondary star is higher than the critical value of 2 x 107? My for M = M.
It is conjectured that this occurs due to the alternate expansion and cooling of the
disc. However, more theoretical and 3-dimensional hydrodynamic simulations need

to be carried out before any final conclusion on the stability of thick discs is arrived

at.

1.7 Aim and scope of the thesis

Although a substantial progress has been achieved in the study of thin and thick
accretion discs since its inception, many major aspects remain to be investigated.
A fully self-consistent MHD calculation is yet to be realized and the stability of
these discs is still very much an open question. Thus our main objective, in this
thesis, is to obtain fully self- consistent solutions of structure of magnetic accretion
discs around magnetosphere of compact objects including the possible effects of
general relativity. The motivation for working in the relativistic framework came
from the fact that cusps between the marginally bound and marginally stable orbits
could form only in relativistic treatment. Furthermore, the charged particle motion
in the presence of a weakly magnetized fields demonstrated that the stable orbits
could be pushed much closer to the compact object. As the existence of cusps

ncarer to the central star is of vital importance in the theory of accretion discs, we
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 were inspired to look for solutions of r‘nagnetohy'drodyﬁmnic equatibns on a general
curved background space-time. Thﬁs, we have taken up the study of dynamical
structure and stability of accretion discs- both in the limit of thin and thick disc
configurations to answer some of the yet unanswered questioné.

The rest of the thesis is divided into the following chapters. A general formal-
ism for the study of plasma magnetosphere in a relativistic formalism is presented

| _in Chapter 2. The two subsequent chapters are devoted to equilibrium_ structures

érdund compact objects. The equilibrium configuration in Chapter 3 manifests the
general relativistic effects with particular emphasis on the nature of the Keplerian
flow. Chapter 4 treats a more complicated flow pattern including the effects of finite
conductivity of the plasma in Newtonian forrhalism. A general stability analysis of
the equilibrium structures of Chapter 4 is presented in Chapter 5. The conclusions

and open problems are summarized in Chapter 6.
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Chapter 2

MATHEMATICAL FORMULATION

2.1 Dynamics of magnetofluid in relativistic

formalism

In this Chapter, we develop the complete set of basic mathematical equations in the
relativistic domain for the study of structure, dynamics and stability of the mag-
netofluid around non-rotating compact objects. This general theory is applicable,
for example, to the detailed calculation of plasma accretion flows involving appre-
ciable magnetic fields and to the determintion of the electrodynamically driven jets.
However, in this analysis, we confine ourselves only to the study of plasina motion
around the compact objects. In Section 2, we derive the equations governing the

equilibrium and in Section 3, we cite the linear perturbation equations.

2.2 Equations of structure

In the previous chapter, the analysis of dynamics of plasma flow around compact

objects emphasized the role of magnetic ficlds and associated currents produced by



the motion of the magnetofluid. In a realistic astrophysical situation involving a
neutron star, the electromagnetic field is generated by the currents on its surface
while for a blackhole it may b’e due to the ring currents in plasma discs surrounding
the object. In addition, interstellar magnetic field would also be present. Thus,
in the relativistic formalism, it is appropriate to look for solutions of Einstein-
Maxwell’s equations which are asymptotically flat and have non-zero dipole moment
even in the absence of rotation of the central compact object. In gemeral, these
system of equations are formidable to solve. However, there are some solutions
obtained by perturbation techniques under the assumption that the electromagnetic
field energy is small compared to the mass energy of the gravitating source. As a
result, the electromagnetic field does not affect the background geometry but the
background geometry modifies the electromagnetic field. These fields, in general,
are referred to as the painted fields. In this frame work, we will consider the
complete set of dynamical equations that govern the flow of the magnetofluid with

the following assumptions.

(i) The disc is not massive in comparison with the central object such that the
space-time structure supporting the disc is entirely governed by the central

object.

(ii) The energy associated with the electromagnetic field (test field) produced in
and around the disc is negligible compared to the mass of the central object
such that the field does not affect the geometry but itself gets modified by the

geometry.

The equation of motion for such a system is obtained through the laws of

conservation of energy and momentum expressed through the covariant equations
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(Prasanna [94]) .
Té;; = 0, (2.2.1)

where T,-j is the appropriate énergy momentum tensor and the covariant derivative
is taken with respect to the background metric. In general, the geometry of the
spacetime should be obtained by solving the set of Einstein equations Gy; = Ti;,
where
T! = mi — ‘_chEq" ®(2.22)

The matter part m?, and the electromagnetic stress tensor E7 are defined as

mi=(p+2)viw? - L, O (223)

C Cc

and

3 , 1 ..
jo g (Emk _ Zéﬁﬂ,F“) . (2.2.4)
Here p, p and U* are the density, the hydrostatic pressure, and the time like four

velocity vector respectively. Assuming the background geometry to be given by the

metric

ds® = gijdz* dz’ ., (2.2.5)
we have the normalisation condition for the fluid four velocity (Ui = %),

gi; = Uin = :}:1, ) (2.2.6)

where the choice of the sign depends on the signature of the metric. In addition,

the antisymmetric field tensor Fy; is defined through the vector potential as

The complete system of coupled equations are obtained by adding the covariant

Maxwell’s equations

Fidy, = J (2.2.8)



Fijn =0 (2.2.9)
The current density J* is defined through the covariant expression of Ohm’s law
J' = ceU' + o F* ;U7 (2.2.10)

where ¢ is the charge density measured locally, and o is the electrical conductivity

of the fluid. With these definitions, we can now split the conservation law (equation
o

2.2.1) as,

the equation of continuity (mass conservation)

. 1 oy
p; U7 + (,0 + %) Ul = —3-FikJ"U‘, (2.2.11)
c ’ c
and the momentum equation

(p + %) Ut U7 o+ (3) 3 (U079 - g9) = S(F = FpUUHJE (2.2.12)

c?

Using the spatial 3-velocity V', defined through the relation U* = UOZC—, these
systems of equations in terms of currents can be rewritten as,

the equation of continuity

D 63 63 Jé] (o3 0 Ve Vﬂ 8 P
(p+_> [V(:+CFO{z_<F8z1_Pﬁa)V —‘I‘aﬁ P + 5‘5 p_—C—E

o2
o« 0 p 1 00 0P 0e_OP
v Dz <p B ?) * c2(U0)? <g o "9 g

1
(U0

+

[I’_‘,\?«]k N QEkJI\:UiU()] = 0, (2213)

and the equation of momentum balance

P 2 [V _GV“' ) o A% .
(p + —cj> <U0> [ ot + V7 ozP e <Iv o TI 80)
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. o Va . s o Va
+ 2V ( 08~ _C"Fgﬂ) +VIVT (Pﬁv - Fg—y‘c“”
V(X

Ve N\ Op J*
0: ot - FO — Fa ) —_— = 0 2.214
+ <g c g ) ozx? + ( "¢ *) e | )

where greek indices take values 1, 2 and 3 while latin ones take values 0, 1, 2 and
'3 (2° = ct). These equations (2.2.13 & 2.2.14) together with the set of Maxwell’s
\ équations (2.2.8 & 2.2.9) constitute the system of equations governing the structure
| of a magnetofluid disc around a gravitating source which is in equilibr?um under

the influence of
(i) the gravitational field produced by the background geometry,
(i) the centrifugal force produced by the rotating disc, and
(iii) the self-consistent electromagnetic field produced by the moving magnetofluid.

The formulation described above is applicable to any given metric, but we re-
strict our analysis to the case of Schwarzschild background geometry (static, spher-
ically symmetric) representing the gravitational field of a non-rotating compact

object of mass M. The form of the metric in spherical co-ordinate system (r,d, ¢) is,

2 2m\ !
ds* = <1 - ﬂ) ctdt® — (1 — ——77—7:) dr* —1r* (d02 - sin29d¢2> , . (2.2.15)

T T \
where m = %4/‘1 with G and ¢ denoting the gravitational constant and velocity of
light respectively. We write the equations in terms of Local Lorentz Frame (LLF)
components defined by the orthogonal tetrad appropriate to the Schwarzschild met-

Tic as,

. o2m\ ~/? 2m\Y? 1 1
N di [ — 1 = 2.2.16
(a) dza/g {(1 —7‘ > b ( 7 > ) 7'7 Sin 0:' ) ( )
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 alongwith’
Flay) = Moy Aoy Pt
J@ =\,

By = Flay),

B(o) = €apyFip)(y) (no summation),

(2.2.17)

“where €,5, is the Levi-Civita symbol. Using these definitions, the electromagnetic

field components can be explicitly written as

1 2m 3
Firye = ;(1——7) Fg,

Foyw = Lo

Fow = r2slint9 ¢
ﬂm>=%@*%ﬁ%ﬁ’
F(d:)(r) - TS:IIG <1 B ?—:Tn-) % Fd)r’

(2.2.18)

Using the same tetrad (equation 2.2.16), one can also expreés the 3-velocity V in

terms of local Lorentz components as given by

| /A — (1 _ 2_?7}.> 174588

T
1
VH — (1_?&)2_‘{.@)
T T

1
2 7 V)
W::Q_ﬁﬁ L
\ 7 rsinf
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Thus, the complete set of equations that govern the dynamics of a quasi-neutral

magnetofluid (n; = n. ; e = 0) around a compact object are given by,

the equations of momentum balance

p DV(T) mC2 V(r)2 1 ( 2m> (9)2 (¢)2
o+ 5) {Dt o e ) R ) (V)

72 c
2 (r) |
N <1~.2Ln_>§_1‘2.,_v 9
c? r /] Or ¢t Ot
-+ (1 - ——;——) ~C— F(,)(,-)J + p F(t)(a)J , (2.2.20)

c? Dt T T T T
_ _{(; & (1 2m>2 18p V& op
- c? r T 00 ¢ Ot
1
2m\ 7 1 s Ve o
+ (1 - —;—) - {F(e)(,)J( )+ — Fly(a)J* )H ; (2.2.21)

T

2 % (4)
_ w(1_V_) [(1__2_@)2 1 o V@op

c? T
29mN\ 7 1 ; V() N
+ (1,~ 7:*)/; {F(«z,xi)f” + TFu)m)J( )H ) (2.2.22)

the continuity equation

E 2m i‘ 2m %1 0 217(r)
o+ %) [(“T) {(“T) a7



1 0 av ¢ D P
O fanay @) L VIONU LD () p
rsing (aa (sindv @) + 9 )H "D ("’ c2)

2 . 2 MmN ¥
+ (1 - L) 1o, 1 (1 - L) (1 -~ ——m-> Fy(a) 7™

c?

1
2 2m\ 7 V(@) "
., (1 - 7—) {Faxa)ﬂ"‘) — I i)J(l)} =0, (2:2.23)

Maxwell’s equations

10 1 0 2m\ T *
1 T - ! &b
c8t( o) + r2sinf {aa {"S‘“H (1 r ) l“’“)}

0 2m\ 2 '
_ ) F =90 2.2.24
8¢ {T <1 r > “’"”H ! (2:2.24)
10 1 2m\? | 0
2o (o) + 5o (1= 22)7 5o

o ;.. o[ . om\“F _
5; <7‘251119F((;)(4,)) + —579— {TSlna (1 — -—;——) F(d))(r)}
0 . 2m -3
4 _ F = 2.2.27
| 56 {T @ ; ) (r)(e)} ) ( )

10 2m\t 1 & ,.
PP (F<r><z>) - (“7) Tsin(,gg(m”vw))
2m
T




10

c Ot

and Ohm’s law

(F (e)(t)) -

A 7 L
A (1 _ ?f.”.) ), (2.2.28)

7 0
L (1 - g?) 5% (Fw)w))

1
2
4 (1 _ ?ﬁ) 7o) ®(2.2.29)
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where, we have defined

Vi =

and

Dt~ ot r

1
3 .
) [FyoV® + FooV® + FgV®], (2.2.35)

)2

1740 y®? + V((/))z’

or r 86 + rsind 8¢ |

T

9 ; ‘ 4% 4QN
D _ _+<1_3T_>7 !:(1—@)§V(’)—?—+ 4

(2.2.36)

“(2.2.37)

Thus, we have a closed system of 12 equdtions in 12 variables (B, Bg, By, E., Eq, Ey,

Vv, V8 V¢ p, p and charge density J*).

2.3 Equations governing general perturbation

In order to consider the stability of the plasma flow around the compact object, we

consider small perturbations of the physical variables ¥ as ¥y + 6%, where ¥y is

the equilibrium part and §¥ is the generic perturbation. We restrict the analysis to

the theory of linear perturabtion only i.e. we assume —‘\SI%— < 1. Introducing these

notations into the general equations (2.2.20 - 2.2.35) and retaining only the linear

terms in the perturbations, the following linearised set of equations governing the

perturbations are obtained.

The linearised perturbed momentum equations are given by

6D
Dz

7o D (r)y _ 20 () 617 (r)
2
P

(1 _m

) (Vi25v® 4 VO(4’)5v(¢»)>]

38



(Po +

Po
62

2 2
v 4y )J

(
- (%) [<1 -2 Doy B D 1 2

or ¢t ¢ ot

2m\ 7 1 i i
o (177) o s ori )

(r) (*)
+ @—;“ (Fogyan 1) + it (5F(t)(a)fc§a))}}

c

mw(1@3m+wwo
c? T or c® Ot
9m\ ¥ 1 PR ,
+ (1 — T) E {Fo(r)(x)J(g ) + L (FO(t)(a)JO ))}:‘ ) (231)

) [;% (6v®) + (1 - %75‘-) % (Vv ) + v sy @)

2m %— cot 8 (¢) 6D 8
_ 1-22) 22291 (¢) . Y (8
( T ) T 0 OV 4 Dz(VO )

ép\ | D ., 3m Vo(r)VO(a) 2m\ 7 cot § (4)2
¢ () B+ () (e
_ . .¥% (1~3@>%1ﬁ(5)+ﬂ£(5)4_5V(6)f9£9
B c? r 06 2 0t ¢ Ot

om\? 1 i i
+ (1"—> {(Fowy879 + 80y J5”)

T C

sV o '%(9) )
T (Foo 767) + 0 (6F (e 7)

39



N 2Vo6V (1 2m)%16p0 v{® bp,
c? T r 00 ¢z Ot
b1 oy VD
+ <1——T) —c—{Fo(o)(i)J(g)+T(Fo(t)(a)Jo > ) (2.3.2)

Po D o) 3m\ 1 o) c@) o y#® gy )
<p0+—-) [—D—(W )+(1—~—T—)—7:(VO sV 1 v{Psv )

c? T
1
z D
B (1 3 @) 7 cotd (V0(0)5v(¢) + 5V(9)V0(¢)) + i——(VO(d')) »
T Dz
527 D ) ( 3m> VO(")%W’)
2= 122y "0
* <5p+ c2) Dt(VO )+ T T
L
_ (1 _ ?.72) LUAMOMO)
T T

om\z 1 & VO(QS) 0 §V©®) dpg
(1_____) rsinﬂ%(ﬁp)+ c? 515—(61))+ ¢z Ot

T

2m\ 7 1 i :
+ (1 - “‘) —{ (P79 + SF iy IS))

@ (#)
¢ (Fo(t)(a)féa))+y%‘ (‘5F(t)(“)‘7‘§a))H

L 2oV < . 2m>% 1 dpo v op,
c? T rsind 0¢ 2 0t
2m % 1 i %(¢) @
+ <1 — T) - {F0(¢>)(i)'](g) +— (FO(t)(rx)J(‘() )) : (2.3.3)

The linearised perturbed continuity equation is given by

(+3) {(1“ 7) {ﬁ(l”“r) o (T8V)
1 0 0
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The linearised perturbed Maxwell’s equations are written as
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25 (PFow)
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%5; (6Fye)
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1 0 2m
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- E((SF(,)@))J =0, (2.3.7)
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_ A (1 - 3—771) 570, (2.3.12)
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Finally, the linearised perturbed Ohm’s law in components form are written as
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In deriving the above set of equations (2.3.1-2.3.16), we have used the following

notations.

. )2 2 $)2
1/02 — Vb() + I/O(H) _}_ 'VO(/)) , (23]7)
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VbV = 1 O(r)§v(r) + %(9)5~V(9)_+ %(d))(gv(fb)’ (2.3.18)

| 1 0 ¢
To discuss the stability as governed by the above set of equations, we fol-
low two different approaches depending on the different physical situations. If the
scale length over which the disturbances grow is quite large in comparison with the
wavelength of the perturbation, then a local stability analysis is performed and fol-
lowing the standard normal mode analysis (Chandrasekhar [95]), the general time

dependent perturbations are written as:
69 (r,0,¢,t) = iexpli(wt + kr + nf + me)] (2.3.20)

where k, n and m are real wave numbers in radial, meridional and azimuthal direc-
tion respectively and w, the frequency, could be complex. For illustration, let us
consider the case of radial perturbation only where the scale length is defined as
1 dpo

Po ar
the local analysis is satisfied and a wave like solution, as shown above, is assumed.

the pressure scale length L,, with L;l = . If kL, > 1, then the criterion for
As a result of these assumptions, the differential equations governing the flow and
fields are reduced to algebraic equations and a dispersion relation could be obtained
after considerable algebra. The roots of the dispersion relation (i.e. w's)are in gen-
eral complex. The real component of w (w,) gives the probagation characteristic
of the mode while negative imaginary component (w;) indicates an instability and
determines its growth rate. It is to be noted that in a local stability analysis, the
spatial variation of the amplitude (¥;) is assumed to be constant over the entire
scale length.

If, on the other hand, the approximation of scale length is not valid, then

the generic time dependent perturbations, for an axisymmetric system, are written
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5‘1’(r,0,y¢>,t) = Uy(r,0)exp [i(wt + me)] (2.3.21)

where the amplitude ¥; no longer remains a constant but becomes a function of
r and 4. This procedure is generally followed, when the steady state solutions are
inhomogeneous in spatial directions. The appropriate partial differential equations
are then solved through the standard method of eigenvalue techniques. This ap-
proach involves transformation of the system of linearised differential equ:tions into
the form of an algebraic matrix eigenvalue equation (A — wB) X = 0. A non-trivial
solution of this homogeneous system requires a zero value for the determinant of
the associated matrix of the coeflicients (| A — wB | = 0). Therefore, given a set
of equilibrium parameters ¥o(r,§) and the corresponding wave numbers, we have
to make a search for the zeros of the determinant in the plane (w,,w;); the corre-
sponding values of the complex parameter w are the required eigenvalues. By using
numerical methods, one can obtain solution of this system of equations. We have
adopted one of the better known programs accronymed EISPACK [96,97] which is a
systematised collection of subroutines to compute the eigenvalues and eigenvectors.

In this chapter, we have developed a general set of equations, in relativistic
formalism, for the study of structure and stability of plasma flows around magneto-
sphere of compact objects. In subsequent chapters, we use this formalisr;l to study

equilibrium configurations and their stability properties.
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Chapter 3

"EQUILIBRIUM STRUCTURE FOR A
PLASMA MAGNETOSPHERE AROUND

COMPACT OBJECTS

3.1 Introduction

In the last chapter, considering the background geometry to be the Schwarzschild
geometry, the dynamical equations for the analysis of the magnetospheric plasma
flow around compact objects were developed. Here, we apply these equations to the
study of the equilibrium structures around a spherical compact source, W}lich could
be either a neutron star or a black hole. The study in its entirety is quite involved.
As a first step, towards the solutions of the problem, a fairly simple but an ana-
lytical equilibrium configuration is presented here. For a steady and axisymmetric
electromagnetic field and matter distribution, the investigation is carried out for
an incompressible fluid with toroidal flow supported by poloidal magnetic field and

radial gravitational field.

As mentioned in Chap. 1, though there have been numerous discussions of



the magnetospheric theory with considerable progress, only a few of them attempts
to obtain self- consistent configurations of the global magnetic field structures. For
a neutron star, the calculations invariably negléct the major changesin the external '
dipole magnetic field that are expected to result from diamagnetic currents induced
in the accreting plasma. A global magnetic field is important because it provides the
stage for various physical processes and may even affect the physical interpretation
of the observed phenomena. This problem, in the Newtonian formalism, was studied
by Low and Uchida [98], where they confined their study to the discussion of the
axisymmetric non-rotating magnetosphere in equilibrium with the magnetized mass
accreted by the central gravitating star. Their analysis indicated that the mass
slides down along the field lines to the point closest to the star and is stratified in
hydrostatic equilibrium to form a disc in the equatorial plane. The picture obtained
was encouraging enough to look for detailed analysis wherein one could also consider
the relativistic equations through curved space formalism.

In a completely different approach, Lovelace and coworkers [60,61] have con-
sidered the flow of an ideal (infinite conductivity) relativistic MHD fluid around
a compact object. The analysis was centered in solving the second order Grad-
Shafranov equation for the magnetic flux function through numerical techniques.
As a particular application, Lovelace et. al [60] analyse, numerically, magneti;‘, thin
discs with no poloidal flow and no toroidal field. This theory was later generalised
to curved space time [61] where a virial equation was derived from the basic MHD
equations in Schwarzschild geometry. This equation was used to show that the ratio
of the total electromagnetic energy to the gravitational binding energy between the
black hole and the matter outside it, is less than unity. However, no equilibrium

solution was reported in the paper. Under an identical approximation of infinite
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conductivity, the fully general relativistic forrﬁulation of Bhaskaran & Prasanna
(64,65] demonstrates the possible existence of equilibrium configurations.

For a long time, these and many more (Frank et al. [34]) theoretical descrip-
tions of plasma flow around the compact objects were based on the approximation
of thin discs which assumed (7) very small vertical thickness of the disc, (ii) hy-
drostatic equilibrium along the vertical direction and (iii) no significant pressure
gradient forces in the radial direction. This in turn leads to a Keplerian veloc-
ity distribution in the azimuthal direction. In the light of growing observational
evidences [68], it appears that some of the above assumptions may not be valid
for accreting systems. It is probable that there are accretion discs which are geo-
metrically thick in the vertical direction and hence the assumption of hydrostatic
equilibrium would be inappropriate for the dynamics of such discs. In addition,
the inclusion of magnetic fields in the dynamics suggests the break down of the
assumption of Keplerian distribution. In the limit of thin disc, this conjecture is
supported by the computation of Lovalace [60] and Kaburaki [56] which are based
entirely on two different approaches. Lovelace ef. al. contemplates the azimuthal
velocity of the disc matter to be much less than Keplerian value while the analytical
calculations of Kaburaki show that the velocity reduces by a factor of v/6. Such
a situation is different from the standard model of viscous accretion discs (with-
out magnetic fields) where one could justify the omission of pressure gradients and
definitely assume the azimuthal velocity to be Keplerian.

Keeping this dilemma of Keplerian velocity distribution in the dynamics of
accretion discs, in mind, a simple analysis in the relativistic framework including
the effects of magnetic fields is carried out in this chapter. The objective of this

analysis is two fold:
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(7) to carry out a rigorous calculation of the equilibrium structure around a
non-rotating compact object including the effects of general relativity through the
analysis of fluid as well as Mzixwell’s equations self consistently, and

(#) to study the flow pattern in the azimuthal direction that could sustain
equilibrium disc configurations.

The outline of this chapter is as follows. In Section 2, we describe the dy-
namical equations that are most suitable for such studies. Possible efjuilibrium
solutions in the limit of thin and thick discs are derived in Section 3. Conclusions

and discussions are presented in Section 4.

3.2 Dynamical equations

In this section, we derive the necessary equations from the most general set of

equations given in Chap. 2 for our particular assumptions which are described below.

3.2.1 Geometry

The plasma flow and the electromagnetic fields are assumed to be stationary and
axially symmetric i.e. the properties of the flow are independent of t and ¢. Also,
it is easy to verify that the toroidal component of the electric field (E’¢,) is zero
due to the symmetry assumed. With this symmetry, the governing equations of

(2.2.20-2.2.31) are given as
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the equations of momentum balance
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the continuity equation

P 2m s GV 10V ot
£ 1 — i z (6)
<”+c2) {( r) {(1 r> o Treg TV

2 (1 - 3?— z [E(a)ﬂa) + LBy g — BT )
I—/C(i) By J P — By g0} 4 vy {Be ”}J
and the Maxwell’s equations
8;39 (sm 9B<¢)) = —4—:7: sin 7,
(-2 ] - ot

o0

A

(1 - 2_m> 66; [rz sin 0,y }

60

g 2m\ ¥ .
ar [ (1=) 2

) 2m\ 2
— [Tz sin 0 B(y| + } 0 [ (1 - m) ’ sin HB((,)J =0,
T

+<1- 31”—) V(*)” n (1 —;?1’7-1-)7 {V(’) (1 —-—~—>§ o YT
T T T T or

a 4
[r sin 0E g J = 26070
c

4% Bp
r 00

(3.2.4)

(3.2.5)

(3.2.6)
(3.2.7)

(3.2.8)

(3.2.9)

(3.2.10)



3.3 Possible solutions
One admissible solution of the Maxwell’s equations (3.2.9-3.2.10 & 3.2.5-3.2.6)

R 3
E(,.) = EO <’;‘) COSs 0,

E 3 2m\ 1
By =20 (BY (12 0 (3.3.1)
(6) .

o

B 3 2m\ 2
B(g) = =9 (—Ri—) <1 — —-——> ’ Sin 9,
2 \r T
k1 2m —%
B = <1 - ————) 3.3.2
@) r sind T ( )
gives rise to the currents
J) =g,
JO =,
3
Jé) — _@EBQ E sin @
dr r2 \r ’
2me Ey { R\° 2m\ ~7
J®H = ___77_1_9_;(_) (1 = —T-n~) cosd, (3.3.3)
4 r2 \r T

where R, By, and Ej denote the radius, magnetic and electric field strengths on
the surface of the compact object respectively and k; is an arbitrary constant. As
the currents in the radial and meridional dire.ctions are zero, one can look for a
self-consistent solution of the fluid equations for a purely rotating fluid having only
the azimuthal component of V(®) to be nonzero. It is also to be noted that as a
result of J(*) and J®) being zero, B4y does not enter into the calculations and hence

the arbitrary constant &; is assumed to be zero (B = 0). With these simplifying

52



aésurriptions, equations (3.2.3 and 3.2.4) get satisfied while the other two momentum

equations (3.2.1 & 3.2.2) take the form
. -1 2
V()2 MG om\ V@®
(+5) -=) |F-0-7)
c c T 7 T

2m\ Op m (R\° 2m>
o) (-

2 -1
x [-;iBg sin? 0 — 2 (1 - —?—) cos? GJ =0, , (334)

9\ —1
p V(4 (#)?2 dp
(p + c2) (1 -3 Vi) cotd — 5

6 -1
1 (E) {333 + B (1-27) } sinfcosf =0.  (3.3.5)
drr \ 7 T

As there are three variables (V¢, p & p) to be determined and only two equations,
we would require an equation of state to close the system. Our aim is now to solve

this restricted problem for different physical systems.

3.4 Thin disc

As a test case, if one restricts the discussion to the matter confined to the equatorial

plane (6 = %) of the disc, then equation (3.3.5) gets satisfied identically while (3.3.4)

9\ —
p vV (4)
<p + 25) (1 e

yields

MG om\~1 V&?
T

T r

N Op N @BSRG B
or 8r r8

0. (3.4.1)

To solve this equation, we assume, as a first approximation, the magneotfluid, to

be incompressible and further specify the nature of the velocity distribution and
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anély'sé' the effects on the disc configurations.

3.4.1 Free fall velocity

Considen'ﬁg the motion of the magnetofluid to be governed by the free fall velocity

v _ 2GM
r ?
equation (3.4.1) reduces to »
2 ) -2 4 B2R6 .
i _me(_2m)(dm) (, 2) InBE (g
dr 12 7 T c? 8w 18 ,

In order to look for an exact analytic solution in closed form, one takes the Newto-

| nian limit of this equation and obtains

3m BZRS

@ (pc +p) + e =0 (3.4.3)

T

, whose solution for an incompressible fluid (p = constant = pg) is given by

P _ 3B2RS m 5
(po + 62> ¢ + 8mmS T r

430 (- - 4) (T >3 4. 360m (—— - 2> + 720} . (34.4)

T T

For a steady and stable disc configuration, the constant of integration D is obtained
from the boundary condition that at theinner edger = r4, the hydrostatic pressure
p equals the pressure due to stellar magnetic field 1.e.

B2

== (3.4.5)

P = Prn

If one uses accretion disc model of Pringle & Rees [38], this occurs at the radius

2
V.17
Ty = 0-89 - g lo, 346

! [thf] ( )
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where V; is the inward radial drift velocity in the disc, h is the disc semi-thickness,

Vi = (2GM/r)?, and

1
4 7 B .
pMG|T 24 M 1 2

l() = [-’Z‘;z—“i“‘] = 3.88 X 108L377/L:;0(—‘;)7R6 7CIn, (3.4.7)

is a characteristic length which appears in nearly all estimates of the size of accret-
ing neutron star magnetospheres. Here, L is the accretion luminosity in units of
10%ergs-s~1, 4 is the magnetic moment in units of 103 gauss and R is the stellar
radius in units of 10° cm. On the other hand, if we specify the inner edge distance
T4, the unknown integration constant D can be easily evaluated from the boundary
condition mentioned above and by doing so, we obtain

D = 10%) + 3n° :7;1_5_5 20 60 120

a

st 120, (3.4.8)

where n = R/m and z, = 7,/m. Fig. 3.2 gives the profiles of pressure in terms of
the magnetic pressure (P,,) for two different compact objects having radii R = 3m
and R = 15m corresponding to a black hole and a neutron star respectively. The
solution of the complete equation (3.4.2) is obtained numerically and the pressure
profiles are shown in Figs. 3.3 & 3.4. It is to be noted that for obtaining the plots,

we have taken pgo = 1 (By = 10'% gauss), and (pg) = 10 gm/cm?.

3.4.2 Relativistic Keplerian distribution

If we assume the velocity distribution to be relativistic Keplerian

-1
V@ \/<1 - ?IE) MG

T r

equation (3.4.1) yields
2 6
dp _ _3m BI" (3.4.9)
dr 8r 78




000 —

0.995

P/Pm

0.990

0.98%

- PRESSURE

0.980

BTN TSN T

l]llf]’l"l[l[l

0.975 :
15.00 26.29 37.58

ro=r/m B==IOlz

1.00 T T T T T I T

0.97

(L RN B B
o

P/Pm

0.94

0.91

PRESSURE

0.89

I SR U B SRS BN SN NN AR A A

0.86 [ T SR R
3.00 14.29 2558

ro=r/m B!IOl2

2.00 T T T I T [ !

1.60

1.20

11111111111

s . o o]

0.80

PRESSURE=P/Pm

0.40

IIT]I[[]TII]I](]!‘I

b b b b

oool o L 1 oL
0.00 12.50 25.00

AV
ro=r/m B=10 @)

Figure 3.5. Pressure profiles for thin disc withV’¢:/(1—2m/r)GM/r
for a compact object with (a) R=3m, (b) R=15m;
comparison of the two pressure profiles is made in (c)
by solid (R=3m), and broken (K=15m) lines.

9



_ whose solution is
3m BZRS

= D4 — 20
PEEt e

v (3.4.10)

 Using the previously mentioned boundary condition (3.4.5), one evaluates D and

finally obtains the pressure to be:

BZRS 3m (ra)7
— 1 — 1— (=2 . 4.11
P 8nrs [ 7, { T (3 )

The pressure profile as a function of x (x = r/m) is illustrated in Fig. 3.5. It is

| evident that for a relativistic Keplerian velocity distribution there exists a perfect
balance between the centrifugal and gravitational forces. This leaves the magnetic
stress to balance the pressure gradient force. Now, if we assume that the contribu-
tion from the magnetic field is negligible, then integration of equation (3.4.9) would
yield pressure to be constant all over the disc surface, which would be an idealistic
picture. Instead of relativistic formalism , if one uses the Newtonian equations, Ke-

plerian velocity distribution would generate the same expression (equation 3.4.9).

It is also apparent that in the absence of magnetic field for a self-consistent calcu-
lation, the pressure gradient force in the radial direction has to be neglected unless
other forces (like radiation pressure) are involved. However, we emphasize that in
most of the calculations of thin disc including magnetic fields (Kaburaki, [50]), the
radial momentum balance equation is neglected and the meridional con;ponent is

integrated to obtain the pressure, which in our opinion is inconsistent.

3.4.3 Keplerian distribution

Assuming the azimuthal velocity to be Keplerian,

yo _ [CM
.
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‘equation (3.4.1) gives,

1 26
P . 3m  2m?\ 7" 2m? 3m BiR
' AL T e i 3.4.12
d + (pe +p)< T + r2> r3 8r 78 ( )
Retaining terms of order m? only, we get
dp . 2m? 3m BERS
—_— » — ] 3.4.13
5. T )3 P — ( )

Using the boundary condition mentioned in equation (3.4.5), the above t#o equa-
‘tions are integrated numerically and the corresponding presure profiles are depicted

in Fig. 3.6.

3.5 Thick Disc

The physics of thick discs is more complex than that of thin discs. In the case
of thick discs, one has to solve coupled partial differential equations (see below)
as compared to thin discs where one solves ordinary differential equations due to
the assumption of separation of vertical and radial disc structures. In order to
understand the dynamics of thick discs, we restrict, as in the case of thin discs, the
magnetofluid to be incompressible and study the effect of velocity patterns on the
disc dynamics for the angular momentum distributions illustrated in case of thin

discs.

3.5.1 Free fall velocity

With free fall velocity distributions,
V@ _ ZGJW7
V 7

57




the momentum equations (3.3.4 & 3.3.5) are rewritten in the following form:

E - 3620

T T
udis B 29 _ 9R? (1 2—"3) " cos? 0 (3.5.1)
2 2m\ !
-g% = (pc® +p) m(l_Tm_) cot 8
6 -1 *
RN PY Iy (1 - ?—Tf‘—) sin 6 cos 6. (3.5.2)
4orr? 7

Assuming a separable form for (pc? + p), in the form (pc® + p)= f(r)sin?4, the

integrability condition for an incompressible fluid (p = po) yields the equation

df 2f R® 0 2m ) Zm)l( 4m) _
3;_7—8WT7[18B0<1~_T_>+3E 1-F) (-5)=0 053

whose exact solution is
RS8¢? dm 9 : 1 1
P CIC RN
f rot 8w B 79 478 + Lo 478 + 14mr?
1 + 1 + 1 N 1 + 1
24mir6 ~ 40m3r®  64mirt  96mbSr3  128mSr?

P S ln(l_?_”l)}]. (3.5.4)

128m"r = 256m?® T
The constant of integration D can be evaluated using the boundary condition men-
tioned earlier in case of the thin disc (equation 3.4.5). The pressure profile for a

given set of parameters is then obtained and is shown in Fig. 3.7a.

3.5.2 Relativistic Keplerian distribution

Considering the velocity distribution to be relativistic Keplerian,

v - \/(1 _?ﬁ)_l MG
T T’
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equations (3.3.4 & 3.3.5) reduce to the pair of equations,

Op m (R\°[3_, . , 2 2m\"' y
'8—; — ——47[")"2 (—7:> ,i*i.BO SlIl- H — 2EO <1 o T) COS8 0 5 (355)

0 2m\ "t m
B—g — (pc2 + p) (1 — T) ;I—COi 0
m [ R\° 9 9 2m\"
+ — <—> 3B + E <1 — ———) sin § cos§. (3.5.6)
dor \ 7 r '
As before, with (pc® 4+ p) = f(r)sin® 6, the integrability condition requires
d f r® [18BZ 3E? < 2m> -2 ( 4m)
— = |2 4 U - 22 1——1, 3.5.7
dr (7’ — 3m) 47 [ 78 + 78 T T ' ( )
whose solution is |
18b2 RO
2 , 0
"{(pc +p) = [D(r —3m) — (r — 3m) { - }
EXRS 5 3 5 15 45
= (r—3m) 607 <_ omrd  4dm2r5 | 16mird + 32mSr? + 64mOr
15 2m\ ~* 60 2m
R l <1-.—-—> in? 4. 3.5.8
+ 128m7< T ) * Togm " T N o ( )

The pressure profile in the meridional plane of the thick disc for this case is depicted
in Fig. 3.7b. Fig. 3.7c shows the comparison of the pressure profiles for the thick

disc configurations presented in Sect. 3.5.1 and Sect. 3.5.2.

3.5.3 Keplerian distribution

With the assumption of Keplerian velocity distribution,

|GM
V) R
”
equations (3.3.4 & 3.3.5) give

Op ) 2m> -1 < 2771) tm om
Loty p) (1= p Ay mm
or Hoe” +p) < T T r2  p2

59



R\°[3 2m\ !
+4:;2 (;) [-iBg sin® § — 27 (1 - —:3) cos’ 9} =0, (3.5.9)

dp ) < 2m>‘1gn3
50 +(pc* +p) |1~ . " cot 0

6 —1
_m <5) FBS +2E? (1 - 2_m) } sinfcosf = 0. (3.5.10)

drr \ 1 2 A

As before, the integrability condition requires,

b _ F*“@(l“@)_lf%“(l‘g‘m’)—l}

dr
1 /R\® . y 2m\ m\]
drr \ 7 T T

_ 2m (E)ﬁgg (1 _ sz) - (1 - —m-) . (3.5.11)

drr? \ 7 T

Using the pressure balance condition (3.4.5) at the inner edge, the pressure profile

for a given set of values is evaluated numerically and is shown in Fig. 3.8.

3.6 Discussions and conclusions

The structure of the magnetic field lines (Fig. 3.1) highlights the importance of
general relativity in the study of disc configurations. Due to the presence of the
gravitational field of the compact object, we find that the field structure is modified
to the effect that the field strength at every point enhances. In addition, it is noticed
that the enhancement is more i)ronﬁnent in the case of the black hole (R = 2m)
than in case of the Neutron star (R = 12m). This emphasizes the fact that the
effects are stronger for a more compact object.

The results for pressure distribution in the meridional plane (§ = 7/2 ; thin

disc limit) of the disc clearly shows the difference that could arise due to varied
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velocity distributions. Particularly, if the velocity distribution is higher than Kep-

lerian, the difference between the Newtonian and the general relativistic treatment

is very interesting. In the Newtonian limit, the solution presents a pressure dis-

tribution (Fig. 3.2) which is increasing from the inner edge outwards for a short
distance and then stays almost constant. On the other hand, in the case when no

approximation was made (Fig. 3.3), the pressure first decreases to reach a mini-

mum and then increases outward just as in the earlier case. The minimum occurs

at r = 4m which could be mainly due to the general relativistic term (1 — %77_1) in

the equation (3.4.1). In contrast, when we consider the velocity distribution to be

relativistic Keplerian or Keplerian, the pressure profiles (Figs. 3.4 & 3.5) are more

physical decreasing outwards as one would normally expect. For a thin disc, it can
be concluded that for an equilibrium configuration of plasma flow around a com-

pact object having an intrinsic magnetic field, a velocity greater than the Keplerian
velocity is inconsistent with the fully relativistic equations.

In case of thick discs, since the integration constant gets multiplied by w1
and (1-3m) for Keplerian, relativistic Keplerian and a velocity higher than Keplerian
respectively, the pressure profiles (Figs. 3.7 & 3.8) increase outward monotonically.
The increasing pressure distribution indicates an unstable configuration. Thus, we
conclude that for the type of electromagnetic field configuration that we have consid-
ered, no physically meaningful solution exists for a prescribed velocity distribution
as chosen above.

Despite the reasonable equilibrium configuration in the fully relativistic treat-
ment of the thin discs, there may still be an unsatisfactory element as far as Ohm’s

law is considered, since we have not specifically made use of it. It is worth noting
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that if one were to consider Ohm’s law
Ji= oF LU, (3.6.1)

along with the dynamical equations (3.2.1) to (3.2.10), then it is clear that the
electric and magnetic fields are coupled through the velocity field and it would not
be consistent to choose certain components of V™ to be zero apriori. This would
mean a more complex set of coupled nonlinear equations for which the existence of
an equilibrium solution may not be always guaranteed.

In conclusion, we find that for a situation wherein the current contribution of
the plasma on the existing electromagnetic field of the compact object is neglected,
Keplerian or relativistic Keplerian velocity configuration in equilibrium with the

electromagnetic field does admit a reasonable pressure profile.
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Chapter 4

ACCRETING MAGNETOFLUID AROUND A
COMPACT OBJECT: A NEWTONIAN
ANALYSIS

4.1 Introduction

The structure of magnetospheres around accreting neutron stars is central to the
understanding of a wide variety of high energy cosmic sources. The study of mag-
netospheres of accreting neutron stars began with the discovery of bright pulsating
X-ray sources (Schreier [2], Tananbaum [3]) in the early 1970’s and the\interpreta—
tion of these as rotating neutron stars (Pringle [38], Davidson & Ostriker‘[39], Lamb
[40]). Most of the energy emitted by these objects is in the form of X-rays with
energies in the range of 0.1 - 0.3 keV and is supplied by accretion of matter onto
the star’s surface. As the accreting matter approaches the rotating neutron star,
it is more and more influenced by its magnetic field until eventually the motion is
completely determined by the field and the plasma ends up on the surface of the

star either by flowing along the field lines or across it due to diffusion or instabilities



at fhe inner edge. Although the details of the accretion process in the region where
- the magnetic field dominates the dynamics have been studied by a number of in-
vestigators (see Prasanna [11];(md references therein), the general description of the
plasma flow from the disc midplane to the stellar surface is complex and a satisfac-
tory theoretical description is not yet found ( Anzer & Borner [55]). The angular
momentum transport mechanisms in the disc and the rotating magnetosphere are
just two examples for which only simplified model versions have been distussed.
On the other hand, the large scale structure of the magnetospheres of these
stars is important since many of the observational properties including pulse shapes,
spin up rates and intensity fluctuations depend on it. There have been considerable
progress in the understanding of the dynamics of thin discs with external magnetic
fields. In this context, there exists two different types of models. The first kind of
models assume that the stellar magnetic field is presumed to thread a broad region
of the disc as a consequence of turbulent diffusion, magnetic field reconnection and
Kelvin-Helmholtz instabilities (Ghosh & Lamb [47]). In contrast, the second kind
of models are based upon the assumption that the disc material is characterized
by infinite conductivity such that the stellar field is completely screened from the
disc. It seems promising to develop a general theory for steady, axisymmetric mag-
netohydrodynamic (MHD) flows around a magnetized star or a compact object. In
ideal MHD limit, Lovelace and co workers [60,61] have considered a general theory
in both Newtonian and relativistic limits. The theory leads to a basic second order
Grad-Shafranov equation which was then solved numerically. The first analytical
equilibrium solution including the finite conductivity of the fluid for the case of

a non-rotating magnetized star in the thin disc limit was obtained by Kaburaki
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[50,56] but as mentioned in Chap. 1 these equilibrium solutions are not self consis-
tent. First, the system yields two solutions for the radial velocity and secondly the
electric vector does not satisfy the Faraday’s law.

In order to understand the dynamics of finite resistive thick discs in a better
perspective, we elucidate .in this chapter, the importance of magnetic field on the
accretion flow process by developing a general theory in the Newtonian framework.
This theory is similar to the theory developed by Abramowicz et. al. [72] for
thick accretion discs. The difference lies in the consideration of magnetic fields
and finite conductivity of the plasma. Thus, our theory is more appropriate for
hydromagnetic flows around compact objects. The plan of this chapter is as follows.
In Section 4.2 we give the basic Newtonian equations which are derived from the
corresponding relativistic equations given in Chap. 2. The possible equilibrium
structure is described in Section 4.3. Special cases of thin and thick disc solutions
are illustrated in Section 4.4. Global properties of the thick disc configuration is

highlighted in section 4.5. Conclusions are drawn in Section 4.6.

4.2 Formalism

In this section, we derive the Newtonian limit of the dynamical equations of Chap. 2
(equations 2.2.20-2.2.31) for the stationary and axisymmeﬁic magnetofluid around
a compact object of mass M. In the Newtonian limit, the momentum and mass
conservation equations are written as

the momentum equations

av” VOOVT MG 1, g un] O

- v = V</> i

p {V or + r 00 + 7?2 7 (V + ﬂ * or
+ (B + Byt - ByJ?) =0, (4.2.1)
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1dp

ov? veove 1 ,,. 2
T D (vl veotd) |+~
”[V el i UL )}Jrrae
+ (EeJ'+ B.J? — ByJ7) =0, (4.2.2)
ov? viove 1
T e+ = (VV 4+ VOV ot
p[V or + r 00 +r( * °0 )}
+ (BeJ" - B.J*) =0, (4.2.3)
the continuity equation
ovr 1V 1 dp V%op
S+ 2 (2V7 + cotfVE Vvl 4 —L =0.. 2.
”{arﬂaﬂ( o >}+ ar T a0 " (4.2:4)

The Maxwell’s equations are given by

inf 0 4

S“; = (sin08,) = ——c’iJ', (4.2.5)
10 47

'7—‘(—9-; (TBd,) = ?Jg, (426)
0 0 i

5 (rBs) — 55 (B,) = ~~6~er, (4.2.7)
e g ,. AT,

o (7’ ET) + 50 (sinfEg) = — T J (4.2.8)
0 0

g (rEg) — % (E,) =0, : (4.2.9)
0/, T .

. (»*B,) + g (5n0Ba) = 0. (4.2.10)

where p, p and G denote the density, pressure and the gravitational constant,
(V",VG,V“") indicate the spatial components of fluid four velocity U' and elec-
tric and magnetic fields are represented by E and B respectively. J' is the current

density defined through the covariant Ohm’s law which for a quasi-neutral plasma
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(e = 0) reduces to ,

Ji= LUk, (4.2.11)
c

" Here € is the charge density measured locally, and o is the electrical conductivity

of the fluid which, for simplicity, has been assumed to be constant throughout the

disc. One of the admissible solutions of equatiohs (4.2.5-4.2.6) is

1

By = ———— 4.2.12
7 sing’ » )
which yields J* = J? = 0. As a consequence, Ohm’s law (4.2.11) yields
) _
E, = BeV , (4.2.13)
c
[
By = -2 (4.2.14)
¢
62 . 6 .
Jh= - (Bev™ - B,V*), (4.2.15)
JeVe
Ji= -2 (EV + EV®) = (4.2.16)
c c
Using equation (4.2.8) in (4.2.16), we obtain
d /., r 0 4mor
— (77 E, — (sinfEy) = EV 4.2.17
5r (1°B:) + G g (sin0B0) = =5~ (BV) o (421m)

which is not in the standard form of the Poisson’s equatioﬁ v - E = 4wq. This
apparent ambiguity in definition is due to the fact that E and e are measured in
different coordinate systems. As mentioned earlier, ¢ is measured locally while J*
is determined w.r.t the global Cartesian coordinate system. In fact, this relation

gives the transformation law for q and e (Greenberg [100])

g=¢e+ -c‘f;(E.V), (4.2.18)
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where q is the charge density as measured w.r.i. the global Cartesian coordinate

system.

We define, for a stationary and axisymmetric case, the total derivative

o Vi
=V — 4+ —— 4.2.1
d=Vot T e (4.2.19)
and cite the final equations that govern the flow of the magnetofluid,

r MG 1 g2 ¢2 J ap o B9J¢ @
p[d(VH——-Tz -;(V +V*) toa =T (4.2.20)
1 2 10p B,J*

2 - ry 8y e I 9.
p [d (V) + - (vive-v cot@)} = —, (4.2.21)
d (rsinfv?) =0, (4.2.22)
9 (7‘2/) sin HV’) + 9 (rp sin 6’V”> = 0. (4.2.23)
or ol

In deriving equations (4.2.20) and (4.2.21), (4.2.16) has been used and terms of order
V?2/c? has been neglected. Finally, we rewrite the remaining Maxwell’s equations

(4.2.7 - 4.2.10) in a more useful format.

o__ ¢ |9 9 »
T = i [67’ (rBo) — 55 (B’)} ! (4.2.24)
1 [0 r 0 '

t_ a2 ) i Y ¢
J 47rr? [87‘ (T BeV > sin § 90 (Sm 6B,V >} ’ (1.2.25)
o (T‘BTV ) + 50 (BGV ) =0, (4.2.26)
0 0 .

gy (FB:) + 55 (sin0Ba) = 0. (4.2.27)

A closer look at expressions (4.2.15) and (4.2.24) reveal that there are two different
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definitions of the current components J¢ and the consistency demands the condition

) W S S 0 |

To summarize, the basic equations that govern the flow of a stationary
and axisymmetric magnetofluid are represented by equations (4.2.20-4.2.26) and
(4.2.28). Also, the self-consistent electric field components can be obtained from

(4.2.13 & 4.2.14). »

4.3 Possible structure

Integrating equation (4.2.22), one has the azimuthal velocity

L

Vo= ——
rsinf’

(4.3.1)

where L is the constant of integration. As has been considered previously (Fishbone
& Moncrief [69]), we choose L? = nGM R;, such that the range of values of n signifies
various possible bounded discs. Using this, after some algebra, we obtain a class of

solutions for the magnetic field components:
B, = —Byr*lsin®**6cosd, (4.3.2)
By = Bir*'sin* 6, . ©(4.3.3)

where k and B, are the constants of integration. The derivations of the electric field

components and the current components are now straight forward and the results

are
Lo ko ko1
E, =—Byr" “sin"""4, (4.3.4)
c
Lo wo . ko1 ‘
Ey = =By *sin" " fcosdb, (4.3.5)
c
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Jt = (1~ k)i—;Bl(r sin 0)F~2, (4.3.6)

Jto=(1- k)zl{iBl(r sin §)F3. (4.3.7)
T

Substituting the functional form of the magnetic field and the current components,

the consistency relation (4.2.28) reduces to
(k —1)c?

4drorsin? 6

V' +Vicotl = (4.3.8)

Multiplying (4.2.20) by V™ and (4.2.21) by V* and adding, we obtain the Bernoulli’s

dp+p [d { (%—2) - (54;65) H 0, (4.3.9)

where we have used the following notations:

equation

B2 = Bz + Bg foond [Bl(’f' Sinﬁ)k_l]:z,

p=p + —8—7;,

v2= v+ v 4 v
The system of dynamical equations are now given by the the equation of continuity
(4.2.23), the Bernoulli’s equation (4.3.9) and the consistency relation (4.3.8). Since

there are four variables to be determined viz. p, p, V" and V¢, one needs an equation

of state to close the system. \

4.4 Special cases

4.4.1 Thin disc

For the case of a thin disc (§ = x/2 and V¥ = 0), equation (4.3.8) yields
(k —1)c*

drwor

V= (4.4.1)

70



' The condition that V"/c < 1 sets a lower limit on the value of the conductivity

of the fluid as given by

(L— k)c.

o> - (4.4.2)

47y

The accretion rate M is obtained by integrating the mass conservation law (4.2.23)
- 97’!01‘ |
M= / pr?VTde . (4.4.3)
Omin

This relation yields the density

p = ﬁﬁ% =10"*Mgoer7 gmem™>, ‘ (4.4.4)
where the subscript implies the units in which the parameters are measured e.g.
Mig implies that the accretion rate is measured in units of 108, Knowing the mass
conservation rate and the conductivity of the fluid, we can calculate the density
distribution. More appropriately, one can specify the density at the outer boundary

- (pout) and find out the accretion rate of the magnetofluid. Finally, integration of

Bernoulli’s equation (4.3.9) yields

(4.4.5)

ArGMMo 1 ((1-k)ME  4nMoL? B?
p="Po+

=k 35\ dre (A -FK))  8r’

where Py is the integration constant.

4.4.1.1 Boundary conditions

The solutions obtained above for a thin disc contains two arbitrary integration
constants B; and 7. The magnetic moment of the disc (B;) is determined through
the requirement of total pressure equilibrium across the boundary. We consider the
external magnetic field to be dipolar, which could match for a modeling of accretion

discs around neutron stars, and further we set, without the loss of generality, 5 = 0.

71



As described above, equating the energy density of the dipole magnetic field tq 1.t

of the accreting plasma, we obtain

B? - <:_E_"_‘> 22k 2wa M
v n (1 — k)mz,

om 1 {(1 - k)c}2

3 24z;, 4o

1 -

N 442k
2
+ — By (;j) : (4.4.6)

where By is the surface magnetic field of the compact object and we have also jp .

duced the dimensionless parameters N (N = R/m) and i, (= 7in/m) respectively.

As the left-hand-side of equation (4.4.6) is a quadratic term, the right-},,4.
side should Be positive definite. This implies that the sum of the first two terpg i
the above expression should be larger than the third. This puts an upper limj; o,

the value of By which we denote by B, and find

o [T\ 2moM o 1 [(1=Rk)e”
Be = ( n) ((1~k)mz? T T | e o (44.7)

k323

" The same argument of positiveness also requires that the second term itself shqyqg

be positive. This demands

ne 'g {1 - 24i,~n {(14;:) }T ' (4.4.8)

Accordingly, the disc is bounded by 0 < n < 1.5 which diflers slightly from {}e

result of Fishbone & Moncrief [69], where the disc is bounded by 1< n <2 The
difference could be attributed to the presence of the magnetic field.

The effect of different parameters on the pressure is investigated by Plotting
pressure as a function of r for different values of n and k. Fork = 0 and n = 1, the
pressure distribution (Fig. 4.1a) decreases smoothly with distance but as n increggeg
and reaches a critical value, the profiles show turning point behaviour indicating the

presence of large pressure gradients around that point. This region being neare; ¢,
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the inner boundary indicates the presence of plasrﬁa instabilities near this edge. The
same effects can also be seen by keeping n constant and varying k (Fig. 4.1a). The
effect of compactness (role of gravity) can be visualized by comparing the Figs. 4.1b
and 4.1c. For the same values of k and n, Fig. 4.1b is plotted for an object with R
= 12m and R;, = 15m whereas Fig. 4.1c corresponds to R = 6m and R;, = 9m.
But as a result of this change, the smoothly decreasing pressure profile (Fig. 4.1b)
started showing the turning point behaviour (Fig. 4.1c). This clearly illustrates the

importance of gravity for compact objects.

4.4.2 Thick disk

Despite its enormous promises (central engine in active galactic nuclei, origin of jets,
etc.), the theory of thick accretion discs is still in its infancy. In case of thin discs,
the horizontal and vertical structures separate out and the model is described by
ordinary differential equations. Consequently, one has an explicit analytic solution
in the deep interior of the thin disc i.e. on the equatorial plane. On the contrary,
the deep interior of a thick disc is an extended region. Its structure is described
by rather complicated partial differential equations and in most of the cases, these
equations are to be solved by sophisticated computer codes.

In order to comprehend the dynamics of thick discs analytxcall;y including
the effects of magnetic fields we assume, as a first approximation, the magnetofluid
to be incompressible (p = pg). With this simplification, the continuity equation
(4.2.23) can be expressed as 7 .V = 0, which implies V = 7 x F, where F is any

arbitrary vector function. The components of the velocity vector can be writien as

1 0
VT o= 0 (Fysinf), (4.4.9)
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10
o _ 10 5 4.4.10
Ve = o (rFy), (4.4.10)

L 18 10
b — __19 29k, 4.4,
v rsin 6 r Or (rFp) 7'86'( ") (4.4.11)

Using equations (4.4.9) and (4.4.10) in the consistency relation (4.3.8), the expres-

sion for Fy is found to be

1— k)
Fy = f(Arsinf) + (G}l cot 8, (4.4.12)
o e
where { is any arbitrary function of r and 6 and A is a constant. We use a power-law

distribution for f such that

. 2
(1-k)c o
o

Fy = f(Arsinf)" + 0. (4.4.13)

From the symmetry consideration, we know that V% must change sign across the
equatorial plane. We use this fact as the boundary condition to evaluate the inte-

gration constant A and find that A = 0. This yields

2
yr— 1=k (4.4.14)
dror
A
Ve = -—(—1—4—§)—c~ cot 4. (4.4.15)
ToT

In the limit of thin disc, V¢ vanishes and V™ goes over to (4.4.1) which ensures the
consistency of our calculation. As in case of thin disc, the condition that V'/e <« 1
sets a lower limit on the value of the conductivity of the fluid as given by

o> (=Fkle (4.4.16)
4drr

Finally, the integration of Bernoulli’s equation (4.3.9), for an incompressible fluid

(p = po) yields pressure to be

MG V? B?
P =g Pot+——=—=] =5 (4417)
T 2 8
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A similar calculation in the limit of zero anguiar momentum (V¢ = 0) in two
dimensions was carried out by Bisnovatyi-Kogan & Blinnikkov [101]. The analysis
shows that during accretion the matter accumulates in the plane § = w/2 and
subsequently forms a thin disc. However, our investigation of thick disc structure

is more physical due to the inclusion of angular momentum.

4.5 Global properties of the thick disc

In this section, we focus our attention on the global properties viz. self-consistent

magnetic field structure, pressure distribution, angular momentum transfer and

energetics of the thick disc configuration.

4.5.1 Magnetic field structure

In the presence of the magnetofluid with finite resistivity, magnetic lines of force
can penetrate the accretion disc (Ghosh & Lamb [47]) and hence the magnetic field

lines should be continuous at the edge of the disc. Equating the disc field with the

external field at the inner boundary, we obtain
R>2+k

B, = By (7 (4.5.1)

5

where the external magnetic field is assumed to be a dipolar which for k < -2
decreases with distance more rapidly than the disc field. The total magnetic field

is given by the sum of the external and disc fields and the components are written

in a non-dimensional form for k =-2 as
R3B,

/L
R3B,

/_L

= 2z cos § + =" sin* 6, (4.5.2)

= 2 %sin 6 4 2z " sin*~" O cos 0. (4.5.3)



We plot the field lines with and without the disc field in Fig. 4.3. It is evident that
v inside the disc dipolar field lines are pushed in by the plasma accreted in the disc.
Also, it is apparent that the field lines are connected with the distorted dipolar

field lines at the surface of the disc and are continuous at the inner boundary as

postulated earlier.

4.5.2 Pressure distribution »

In order to obtain the constant of integration P, (4.4.17), we use the definition of
the inner boundary between the disc and the magnetosphere as outlined in the case
of the thin disc. Thus, equating the pressure on either side of the the boundary, P,

1s found to be
Py = e e — (4.5.4)

where

(Btotaf)z = (-Batar)2 + (Bdiac)2 .

As before,we choose L2 = nG Mr;, and obtain the pressure profiles (Figs. 4.4
& 4.5) for different values of n and k (with k < 1 which guarantees the flow).
Figs. 4.4a& 4.4b show the effect of By on the pressure distribution and on com-
parison, we find the existence of a critical value of the surface magnetic field for a
prescribed value of k and n. Above this critical value, the pressure profile increases
with distance. Furthermore, Table 1 demonstrates the presence of a lower bound
on the value of By. Below this value, pressure becomes negative which indicates
an unphysical situation. These observations point to the fact that a disc can exist
in equilibrium configurations only for a certain range of By values which, in turn,

depend on other physical parameters like o, pou and M. The thick disc pressure p
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n |k p.10* 0.108 | By.107% | Pressure p. 1071°
(gm ce™!) | (s7') | (gauss) (dyne em™?)

at Tin | at Tou

0110 1 1 1.953 0.010 -0.47

19.53 1.043 0.58

976.562 | 2607.595 | 2652.63

0.11-1 1 1 1.953 0.010 -0.47

19.53 1.043 0.56

976.562 26.595 | 2617.97

Table 4.1: Comparison of pressure values for a thick disc for different magnetic field

strengths By for n = 0.1 and k = 0 and -1.
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for different n values is depicted in. Fig. 4.5. Similar to the thin disc case, one can
notice the turning point behaviour of the pressure distribution. However, the thick
disc configuration can exist in stable states for higher angular momentum values.
For example, for k = 0, in the case of thin disc (Fig. 4.1b), the pressure profile
exhibits turning point behaviour for n = 0.5 whereas in the case of the thick disc
(Fig. 4.5), this happens for n > 1. Thus, for a given set of values of k, By, o and p,u
a thick disc with Keplerian velocity remains in equilibrium while a thin disc does
not remain in steady configuration. A plot of pressure (Fig. 4.2) for different values
of conductivity also illustrates that there exists a critical value of the conductivity
below which the pressure profile shows unphysical behaviour. This threshold value

agrees with the expression derived in equation (4.4.16).

4.5.3 Accretion rate and angular momentum

Once the physical quantities of the disc are known, we can calculate the accretion
rate. Since, the accreting matter converges towards the central plane of the disc
from both sides, the total mass accretion rate in the disc becomes a function of r
(Kaburaki [56]). As the disc is in a steady state, we integrate the mass flux over

the entire surface to obtain

(1 — k)pcir

o

7+Omin

M = -27r/ (rsz’ sin 0) df = Sin @,,in, (4.5.5)
T—nin

which is indeed a function of r and #8,,,,,,, where 8,,;,, is the polar angle beyond which

no radial flow exists. The accretion rate at the inner boundary is

¥ 1—-k 2 in .
M;, = (= kJocTrin Sin G,in. (4.5.6)

a

Henceforth, the accretion rate will be expressed in terms of ]\.4‘-“.
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‘We calculate the rate at which the angular momentum is transported by the
matter inward past the point r = 7;, within the disc. Through a vertical stripe
encircling the origin with an arbitrary r, the angular momentum is carried by the

fluid at a rate
M(r)Vr = (V2)™ My /nG Mri,. (4.5.7)

Consequently, the amount of matter that enters into the disc through, the outer
edge leaves the inner edge exerting no net torque on the disc. The transfer rate due

to the convergent flow of matter is
2 /rm pVO (7, 0min) V¥ (r)2nrdr = 0. (4.5.8)

Therefore, there is no momentum transfer through the vertical flow of the
matter. As a result, there is no net torque acting on the disc and this guarantees the
existence of a steady and stable thick accretion disc. However, one can not expect
to balance the angular momentum inflow in the meridional direction as there are
no magnetic stress across radial and meridional surfaces due to the non-existence
of the toroidal component of the magnetic field (Bg = 0). This angular momentum
imbalance would perhaps produce a non-zero torque and it may be possible that this
torque is responsible for the absence of the pinching of the magnetic field structure

within the disc.

4.5.4 Energetics

The energy radiated (F) from the unit surface is supplied by the gravitational

contraction of the matter. The energy flux is computed from the definition

2nr2F = G];/I
.

-27rr2er(r,7r/2)] (4.5.9)

79



from which:

 GMM,,
F, = T (4.5.10)

and the total disc luminosity in the steady state is
Ldiac = Zin = —Lacc- (4.5.11)

The other half of the gravitational energy being carried away by the pl?&sma across
the inner edge has to be released very close to the compact object, ‘where it is
believed that the instability would play a major role. If the disc is not transparent to
the radiation, then the heat produced is transported to its surface. Approximately,

we have

orT* = F, (4.5.12)

where o7 is the Stefan-Boltzmann constant.

4.6 Conclusion

Considering the plasma to be resistive and including all the three fluid velocity
components, we have derived, in the Newtonian limit, a self-consistent equilibrium
solution for a plasma disc having only a poloidal magnetic field. The accreting
plasma in the presence of a dipole magnetic field gives rise to a current in the
azimuthal direction and a charge density J* as determined from the Global Carte-
sian coordinate system. This current generates the disc field which is continuous
across the disc Boundary due to the presence of the finite resistivity of the plasma.
The calculation of angular momentum reveals that there is no net flow of angu-
lar momentﬁm and hence an axisymmetric thick disc configuration can exist in a

steady state. Calculation of pressure profiles for different magnetic field strengths
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show that there exist minimum as well as maxifnum bounds for the magnetic field
strength of the compact object for which the disc equilibria are meaningful. How-
ever, the presence of large i)ressure gradients indicates the occurrence of plasma
instabilities in the inner edge which we will pursue in the next chapter.

A similar calculation without the magnetic fields but including all the compo-
nents of flow velocity around Schwarzschild black holes was carried out by Kuwahara

[75]. Our results qualitatively agrees with his results, viz. »

e The radial and the meridional velocities play a minor role in the structure of

the disc but assume a dominant role in determining the accretion rate and

angular momentum transfer.
o The radial velocity of the flow is subsonic at the inner boundary.

To summarize, one finds that self-consistent equilibrium solutions in the Newtonian
framework do exist for a non-rotating compact object with a purely poloidal mag-

netic field accreting matter from a disc having all the three non zero components of

the velocity vector.
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Chapter 5

PLASMA INSTABILITY AT THE INNER

EDGE OF THE ACCRETION DISC

5.1 Imtroduction

Recent developments in the study of accretion discs around compact objects has
stressed the inclusion of self generated electromagnetic fields and pressure gradient
forces in the dynamical equations governing the structure and stability of accretion
discs (Prasanna [11]). Addition of electromagnetic forces brings the inner edge of
the disc closer to the central object, thus enhancing the efficiency of the energy
release. The presence of strong magnetic field defines the magnetosphere where
the accretion flow is dominated by magnetic pressure. The radial distance where
the magnetic pressure equals the fluid pressure of the accreting matter is defined
as the magnetopause or the inner boundary. In Chap. 1 (page 14), we observed
that the disc luminosity is just half of the accretion luminosity and the other half
is to be released at the inner boundary or at the stellar surface. In either case,

the boundary layer plays a dominant role in the accretion process. If the energy



is fadiat’ed at the boundary layer, then one has to understand the different plasma
processes that convert the gravitational energy into X-rays. On the other hand, if
the energy has to be released at the stellar surface, then the boundary layer plays
an important role in pushing the matter inside. For a theoretical interpretation
of X-rays from binary sources, attention has been focused on the various physical
processes and MHD instabilities that could arise as a result of the interaction be-
tween the magnetic field of a NS and matter in a thin Keplerian disc» Recently,
this interaction has attracted considerable attention with regard to the formation of
binary radio pulsars, the origin of quasi- periodic oscillations from low mass X-Ray
binaries (Taam et al. [102]) and observed time variation of the pulse periods of
X-ray sources. This interaction which regulates the spin of the central object by
transferring material and angular momentum from the disc could also be a pos-
sible mechanism for spinning the old pulsars to milli-second regime. Also, in the
case of AGN’s, Wiita [9] pointed out that instabilities in the accretion discs could
lead to multiple ways of inducing variabilities, for example release of large amounts
of magnetic energy on the surface of the disc (Shields [103]). In this context, it
is necessary to understand the different modes of instabilities that could arise in
discs supported by the gas and magnetic pressure around compact objects under
radial and axisymmetric perturbations. The other important reason for extending
the study to time dependent behaviour is to check whether the steady state models
are stable against small perturbations. If not, it is possible that some assumptions
made in the course of obtaining the equilibrium solutions are not compatible with
the further assumption of steadiness of the disc. Further, the observable properties
of a steady optically thick disc are largely independent of viscosity and does not

provide much information about it. However, the size of the viscosity controls the

83



rate of plasma flow. .Thus, it is believed that observations of time dependant disc
behaviour may provide quantitative information about the disc viscosity. In the
absence of a better model involving the physical processes, such a semi empirical
approach to the problem seems to be most reasonable (Frank et al. [34]).

Most of the earlier studies on the disc instabilities were confined to the
analysis of a-disc models which elucidated the existence of two kinds of instabilities
viz. secular and thermal modes. In general, it has been found that®these two
instabilities would significantly affect almost any thin accretion disc models. It was
also conjectured that the instability could explain the variation of the luminosity
iﬁ AGN if the growth rate of the modes are limited by non-linear terms (Wiita [9])
and such studies are yet to be considered. However, the local stability analysis of
Abramowicz et al. [104] showed that some of the unstable modes driven by viscosity
could be stabilized only for barotropic or radially in-flowing fluids.

The interaction between a thin accretion Keplerian disc with the magneto-
sphere of a rotating neutron star has been investigated by several workers. The
existence of the velocity jump between the disc material and the magnetosphere
invariably indicates the presence of K-H instabilities. The linear K-H instability of
non-magnetized shear layer is well known for flows with a subsonic velocity change
(Chandrasekhar, [95]). Other important instabilities that can occur aré the hydro-
magnetic, and Rayleigh-Taylor (RT) instabilities. Although these instabilities have
been widely discussed in plasma physics, they have not been exhaustively studied
in the context of astrophysical plasmas, in general and in magnetospheres around
compact objects, in particular. |

Many authors (Choudhury & Lovelace [105], Pietrini & Toricelli-Ciamponi
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- [106], and Corbelli & TorriCelli-Ciarhpoﬁi [107]) have analyzed K-H ahd hydromag-
netic instabilities to model extragalactic radio jets using ideal MHD equations. A
general study of K-H instability (KHI) in a compressible plasma has been carried
out by Miura & Pritchett [108]. This analysis shows that the shorter wavelengths
of K-H mode are stabilized by finite width of the shear layer. It ﬁvas further ob-
served that the compressibility increases the growth rate of pure ideal magnetic
modes (Pietrini & Toricelli-Ciamponi [106]) whereas it lowers those of KHI (Miura
& Pritchet [108]). KHI was invoked in context of field penetration into the magnetic
disc by Ghosh & Lamb [47] and by Schralemann [44]. The important effect of KHI
is to mix the turbulent magnetic field and plasma on spatial scales small enough to
permit diffusion of plasma onto field lines. Thus, it is useful to consider KHI in order
to understand the above time and spatial scales. In the context of disc accretion,
Anzer & Borner [85,86] have explored some further aspects of the KHI. Restricting
the analysis to a purely hydrodynamic treatment and assuming equal sound speeds
on both side of the boundary layer, they [85] found that the instability can grow to
large amplitudes only within a narrow ring around the co rotation radius. Subse-
quently, the analysis was extended to incorporate the magnetic field and to allow
for different sound épeeds in the disc and in the magnetosphere (Anzer & Borner
(86]). However, this study was still restricted to a simplified planar geometry with
constant density and constant magnetic field. |

In order to elucidate the importance of inhomogeneous magnetic field and
finite conductivity of the plasma on different instabilities, we attempt in this Chap-
ter, a study of the linear stability analysis of plasma discs around compact objects
whose equilibrium configuration under the influence of gravitational, electromag-

netic and centrifugal forces was considered in Chap. 4. The importance of the
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stdbility analysis lies in our equilibrium conﬁgﬁratiOn which is more realistic as
compared to other models to understand plasma processes in accretion discs. Our
configuration involves smooth profiles for all equilibrium quantities whereas other
models consider discontinuous profile either in the magnetic field or in the velocity
flow. If one considers a plasma (disc) with finite resistivity, some analysis (not nec-
essarily in astrophysical context) seems to indicate that the finite resistivity of the
plasma leads to the existence of a new mode (Shivamoggi [109]). >

The outline of this Chapter is as follows. In Section 5.2, we write down the
perturbation equations explicitly. The relevant equations for performing a radial-
azimuthal stability analysis in the domain of global approximation is presented
in Section 5.3. The results of local radial perturbations in the frame work of an
analytical description are presented in Section 5.4. Section 5.5 deals with an al-
ternate method to carry out the stability analysis. This is used to perform the

radial-azimuthal analysis in Section 5.6. Conclusions are drawn in Section 5.7.

5.2 Linearised equations

Here, we present the linearised Newtonian perturbation equations which are derived

from the generalized relativistic equations (2.3.1-2.3.16) presented in Chap. 2.

The linearised Maxwell’s equations are given by,

l@El 1 8.83 cot d + 1 8B2
c ot r 80 r 2" rsind d¢

+ dwoc™ [cBy + ByV? — B,V? — ByVy| = 0, (5.2.1)
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The linearised perturbed continuity equation is given by
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The four components of the linearised Ohm’s law are given by
a 9 &
.5:.%k&+&%+&w_mm—mw] (5.2.12)
Jo = == [cBy+ BV + BV — BiVY — BV (5.2.13)
. | ‘
Jy = »-—C—[E.V], (5.2.14)
where
EV = E\V™ + EV, + E,V° 4+ EgV,y + E Vs + E; VY. (5.2.15)

Physical quantities with numeral subscripts denote perturbed variables. As for the

energy equation, we use the adiabatic law
d

ag[pp~7]::07 (5.2.16)
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i.e we consider the plasma to be an ideal fluid with no heat exchange with its sur-
roundings. Note that, the equilibrium solutions were derived for an incompressible
plasma and this equation is necessary only to perform the stability analysis (see

Corbelli & Ciamponi [107]).

5.3 A general formulation for stability analysis

»

In this section, we carry out the detailed stability analysis of the equilibrium con-

figuration given in Chap. 4 where the existence of instability near the inner edge

of the accretion disc was conjectured. The complete set of linearised perturbation
equations are given in the previous section.

Following the standard normal mode analysis, the general time dependant

perturbations are written in the following form
Uy (r,¢,t) = (r) exp [t(vt + me)] (5.3.1)

where m is the azimuthal mode number signifying the number of azimuthal crests
around a circumference of radius r, v is the frequency which may be complex and
¥(r) is the amplitude of the perturbation which is also complex. Further, for the
sake of simplicity and for an analytical understanding of the nature of the instabil-
ities, we assume the flow to be along the azimuthal directién only (V¢ #£ 0; V7, V¢
= 0). This could be justified from the analysis of Chap. 4, where it was concluded
that the azimuthal component of the fluid flow dominates the motion of the plasma
at the inner edge while the other two velocity components play a minor role in the
structure of the disc. Upon substituting the radial-azimuthal perturbations into

the disc equations (5.2.1 - 5.2.10, 5.2.16), the linearised perturbation equations in
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dimensionless form are written as

(iw+ &) By + L2By — 6V — 6V¢B, =0, (5.3.2)
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o a do a .

where the hat over the quantities represent the dimensionless variables with E

= E /By, and B = B/By. In addition, we have defined the other normalized

quantities as below.
V¢ =V?/c, a=r7/R

6 =4noR/c, w=vR/c

90



g P
o Ba o2 T (5.3.12)
4 poc pac

In subsequent analysis the hat over the quantities will be dropped.

5.4 One dimensional perturbation analysis

5.4.1 Local analysis »

In order to give a basis for a physical understanding of the natﬁre of the instabilities,
we perform here, a local ana.lysis. The approach of local analysis is a well established
procedure in plasma physics which assumes the wavelength (A) of the perturbation
to be small compared to the scale size of the inhomogeneity in the system. For

1dP
example, if one assumes the scale size to be the pressure scale length (L, = ),

" po dr
then the condition can be written as kL, > 1, where k is the wave numbzg and,
if satisfied, implies that the space variation of the amplitude of the perturbation
over its scale length can be neglected. In addition, a local analysis allows one to
Fourier transform the perturbed variables even in the direction of inhomogeneity

(Rognlien & Weinstock [110]). Thus, the differential equations are transformed into

the algebraic equations whose solutions are not very difficult to find.

5.4.2 Analytical results

We first consider a special case of one dimensional perturbation in the radial di-
rection (m = 0). Under, the local approximation, we Fourier transform all the
perturbed quantities in the radial direction. With this simplification, a look at the
set of equations with m = 0, (5.3.2-5.3.11) discloses that the perturbed meridional

velocity (i.e. V,) enters into the dynamics only through equation (5.3.9) and it
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is not required for the description of mode characteristics. Also equation (5.3.5)
leads to w B; = 0. For consistency V, and B; are assumed to be zero for non-zero
eigenvalue w. It is now straigvht forward to eliminate the perturbed magnetic fields
from equations (5.3.6-5.3.7) and finally, a somewhat lengthy calculation produces

the simple result

Q1 Ey =0, (5.4.1)
Q2 — Q3B =0, (5.4.2)
QsBs — QuEy =0, : (5.4.3)

where the complex coefficients Q; to Qj are defined in the Appendix B. Setting

the determinant of the above set of equations to zero, for a non-trivial solution, we

obtain the dispersion relation (DR) in the form,

Q1 (Q2Q5 — Q3Q4) = 0. (5.4.4)

It is apparent that there exists two distinct dispersion relations corresponding to
Q=0 and (Q: Qs — QsQ;) = 0 and both are algebraic relations. The roots to
the above DR are in general complex. The real component of w gives an oscilla-
tory nature to the wave while the negative imaginary component characterizes the

instability and determines the growth rate of the unstable modes.
Case 1: Resistive electromagnetic mode
The dispersion relation 1 = 0 can be explicitly written as,
w? — iwe — (k* — a™? — %ka™') = 0. (5.4.5)

Separating w into real and imaginary components, the solution is found to be,

2%k

-
e (5.4.6)

W
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w; = 0.5¢

1
f A, 4 1)\)T
1+ {1 += (k t g - Zﬁ)} } : (5.4.7)

It is evident that the root with the negative sign gives the growth rate of the

instability. Since, the second term inside the curly bracket is less than 1, it can be

expanded binomially which for ka >1 gives the growth rate as

k2
w; = — : (548)
o »
In dimensional form the real component of w,
9 .
v, = kc( © > , (5.4.9)
drro

suggests that this mode which is propagating in the radially inward direction is
electromagnetic in nature but its form is different from that of an electromagnetic
wave in vacuum due to the presence of the finite conductivity. We conjecture that
this mode is a consequence of the finite conductivity of the fluid as mentioned by
Shivamoggi [109] and would not arise if one assumes the perturbed electric field
in the meridional direction to be zero. It may be argued that the relative motion
between the magnetofluid and the magnetic field causes this instability since finite
conductivity prevents the magnetic field to follow the plasma flow or vice-versa.
The variation of growth rate versus the wave number and the dispersion curve are

depicted in Fig. 5.1.

Case 2. (Q2Q5 — Q3Q4) = 0.

The dispersion relation corresponding to (Qg Q5 — @5 @) = 0 in a compact form is

written as,
A1w5+z'A2w4+(A3+iA4)w3-l-(As—HAG)wZ+(A7—|—1',A8)w%—(Ag—{—z'Aw) = 0, (5410)
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where the coeflicients A1, A, ...etc are defined in Appendix B. We first solve the dis-
persion relation, analytically, under two different approximations and subsequently

solve the complete DR numerically.

5.4.2.1 Kelvin-Helmholtz mode

Let’s assume that w < 1 and wo < 1. Under this approximation, the higher powers

of w may be neglected and the dispersion relation (5.4.10) reduces to, =

Writing w = w, + iw;, the solution of (5.4.11) in compact notation is written as
ArAy + AgAio
- — 5.4.12
ArAy — Agdy
L= . A.
w; A 1 A2 (5.4.13)
Explicitly w; can be written as,
2
(= - DP {1+ 3K?*a* + k'a*
“ ao V(1 + 4K 2a?) [DP {1+ 38K’ + '
Vtﬁz ak20?
(24 K%a* — ko) } — ~d |, 5.4.14
+ (1+Vj)(Jr o’ - ko) 20> | (5-4.14)
where
V,
M = = 5.4.15
- (5.4.15)
(y—1)dp
DP = — 5.4.16
poc? da ( )
6(1 + k*a?)_ 42
¢ = VM 4 k(M
] 1T V(‘Z 4 (&4 ( + )
+ 2K%a*(M? + 1.5) + M* — 4, (5.4.17)
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where M signifies the magnetic Mach number. As negative w; is the signature of the
instability, this would occur when the pressure gradient term (1st term in equation
5.4.14) is positive. The stabiiizing role of the acoustic term (2nd term in (5.4.14))
depends on the value of M, where the critical value is given by, M, < /2. Thus, for
M? > 2, this term destabilizes the system in the absence of the pressure gradient.
Our analysis of the equilibrium configuration in Chap. 4 shows M = 0.5 and this
implies that the accoustic term stabilizes the disc structure. A plot of & as a
function of k for different values of M is depicted in Fig. 5.2 which demonstrates
that for higher values of M (M > M,), longer wavelengths are destabilized while
the shorter wavelengths are stabilized.

The variation of growth rate versus k with n as a parameter, where n is
the angular momentum parameter (c¢f. Chap. 4) is depicted in Fig. 5.3a. It is
observed that the system is unstable for n > 0.1, which is in good agreement with
the equilibrium pressure profile (Fig. 4.5). Since, in the absence of velocity shear
(dVo/dr = 0), the instability vanishes, we conclude that this mode is driven by the
velocity shear and is of Kelvin-Helmholtz in nature. It is to be emphasized that in
our analysis the velocity shear arises due to the differential rotation of the disc and
not due to the velocity discontinuity between the disc and the magnetosphere as
discussed by many authors (Scharlemann [44], Anzer & Bérner [86) and references
there in). In addition, there could be a jump in the azimuthal velocity at the inner
edge. In fact, from the turning point behaviour of the pressure profiles near the
inner edge, we had already postulated the existence of instability (see, page 81).
This mode which is propagating in the radially inward direction reveals that the
growth rate is large for higher values of n and one can also notice that the validity

of the local approximation is limited to very small range of k values near the cutoff
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(Fig. 5.3a). The dispersion curves for different n values are plotted in Fig. 5.3b.
Considering conductivity as a parameter,; the instability growth rate as a |

function of the wave number is plotted in Fig. 5.4. It is seen that the growth rate is

directly proportional to the resistivity i.e. the higher value of conductivity lowers
the growth rate of K-H. However, some earlier studies of KHI (Shivamoggi [109],
Chhajlani & Vyas [111]) have reported that the growth rate varies as 1/3 rd power
of the resistivity. The discrepancy may be attributed to the variation in equilibrium
configurations and geometry that one has considered.

As mentioned earlier, the above study was carried out for a case where the
equilibrium density was assumed to be constant. However, the preliminary pertur-
bation analysis with the effect of density gradient reveals that the inhomogeneity
in density destabilises K-H instability. The instability which is éxcited even in
the absence of velocity shear, is identified as Rayleigh-Taylor like instability. This
nomenclature is due to the fact that this mode is propagating along the direction of
density gradient whereas the usual R-T mode propagates transverse to the density

gradient.

5.4.2.2 Magnetosonic mode

Under the approximation, 1 < w < ¢ and wo > 1, the dispersion relation (5.4.10)

simplifies to,
) (A7 + 1A4s)
= s 5.4.18
w v ( )

As done earlier, separating w into real and imaginary parts, we obtain

1 /401 A8>2 1]?
P 14 (28 5.4.19
w j:z(A3> 1i{1+<A7 ( )
Asg

v 2A3w,- ( )
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It is clear that the value of w; with the negative sign in the front describes the

"unstable mode. The form of w, identifies the instability to be magnetosonic in

nature. We also find that this instability is independent of conductivity and is

propagating in the radially inward direction. The growth rate and the dispersion

curve are plotted in Fig. 5.5.

5.4.3 Numerical results "

The complete fifth order dispersion relation (5.4.10) is solved numerically using
complex routine ZROOTS from the Numerical Recipes (Press et al. [112]). Out of
the five possible roots only two are associated with instabilities (corresponding to
negative w; values). These are graphically presented in Fig. 5.6. The analytical and
numerical growth rates for K-H and magnetosonic modes are presented in Fig. 5.7.

It can be observed that the results agree fairly well with each other.

5.4.4 Discussion

The present analysis deals with the one-dimensional instability studies at the inner
edge of an accretion disc around a compact object taking into account the effect of
finite conductivity, inhomogeneous magnetic field and velocity shear. C‘f)nsidering
only the radial perturbation of the resistive MHD equations, the calculations show
that there exist three different modes namely Kelvin-Helmholtz, magnetosonic and
resistive electromagnetic, which, under appropriate conditions, become unstable as
described in the text. The KHI exists only for velocities slightly lower than the
Keplerian value. In the absence of the pressure gradient forces arising due to the
velocity shear (dV,/dr), KHI ’gets stabilized whereas the other two instabilities still

exist. The analytical expressions of the growth rate for K-H and electromagnetic
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instability reveal that the growth rates are inversely proportional to the conductiv-
ity. It is also to be noted that the compressibility lowers the growth rate of these
two modes, which is in agreerﬁent with the known results (Miura & Pritchett [108]).
However, the magnetosonic instability is unaffected by the finite conductivity of the
medium. Also, the preliminary investigation of the effect of density gradient on KHI
shows that the density inhomogeneity destabilises KHI and excites R-T like modes

e

at the inner edge of the disc.

2.5 Eigenvalue techniques

It is evident from the above calculations that the process of deriving and solving
an exact dispersion relation is a cumbersome exercise and involves tedious algebra.
We, now solve the same set of equations taking a different but simple approach
and subsequently use this technique to study two-dimensional perturbations. The
method as outlined by Simonutti [113] consists of converting the system of linearised

equations into the form of an algebraic matrix eigenvalue problem
(A: +iA;) X = w(B, +1B)X, (5.5.1)

where A and B are square matrices of finite dimension n and its elements are
defined in terms of the independent variables of the problenﬁ. X is a column vector
of dimension n and is a scalar and each of these quantities may be complex. It is well
known that the eigenvalue will represent the dependant variable of the dispersion
relation and the elements of the eigenvector will represent the selected dynamic
variables of the system. With the eigen system formulation, it is possible to dire sty
determine the solutions of the dispersion relation by calculating the eigenvalue and

the eigenvectors. The eigenvectors contain information concerning the nature of the
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dynamic variables i.e. polarizations etc. for each mode of oscillations. This elegant

method is very much simpler compared to the earlier method described in Sect. 5.4.

5.5.1 Comparison of results

We have applied this method to the foregoing calculations of the radial stability

analysis by considering the time dependence of the perturbations as
Uy(r,t) = o exp(vt + ikr) (5.5.2)

This change in time dependence is made with the objective of keeping the matrix
B as purely real which makes the numerical computation easier. For computing the
eigenvalues and eigenvectors of the complex eigenvalue problem (equation 5.5.1),
we use the well known EISPAK routines (Smith et al.[96]. The results agree quite
well with our earlier calculations (Figs. 5.8, 5.9 and 5.10a,b). In addition, we also
obtained the eigenvector for different modes and are presented in Figs.5.10¢ & 5.11.
The mode structures as a function of k gives the distribution of energy over the
possible wavelengths. The eigenmode structures for KHI (Fig. 5.10c) reveal that
the energy is mainly distributed over the longer wavelengths and this matches with
the earlier calculations. This is also true in the case of the magnetosonic mode
(Fig. 5.11). From these analyses, we conclude that the eigenmode st\fuctures of
various instabilities over k-space match consiétently with their corresponding growth

rate curves.
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5.6 Two dimensional perturbation analysis

We report, in this section, the results obtained by carrying out a two dimensional
(radial-azimuthal) perturbation analysis under local approximation using the eigen-
value techniques. The problem at hand consists of solving ten equations in ten vari-
ables and forms a closed system. As carried out earlier, we separate the complete
equations into two groups and solve them separately in order to obtain petter nu-
- merical results. Thus, equations (5.3.3,5.3.5, & 5.3.7) involving the variables E,, By,
and Bg constitute one eigenvalue problem while the remaining seven equations with

seven variables (E, Ej, B,, Vi, V3, V3 and p;) form the second eigenvalue problem.

5.6.1 Results and discussions

In this section, we discuss the numerical results obtained in the case of radial-
azimuthal perturbation by the method of eigenvalue techniques. The analyses reveal
the existence of three basic instabilities viz., K-H, fast magnetosonic (FMS) and slow
magnetosonic modes (SMS). A comparison of the growth rates (Figs. 5.12a & 5.13a)
of these modes shows that FMS mode is most unstable with a higher growth rate
whereas KHI is least unstable with a normalized growth rate of the order 10-%. From
the dispersion curves for K-H and MS modes (Figs. 5.12a & 5.13b), it is found that
longer wavelengths of K-H and shorter wavelengths of MS modes are more unstable.
It is also to be noted that KHI exists only for purely radial perturbation and gets
stabilized if the wave propagation in the azimuthal direction is included (m # 0) in
the analysis. But, the finite azimuthal mode number excites slow MS mode which
was absent in the one dimensional analysis.

The phase velocity calculation of slow and fast magnetosonic modes show the
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directioﬁ of propagation of theée modes and we find that FMS and SMS propagate
in opposite direction to each other. For purely azimuthal perturbation (k =0) FMS
propagates in azimuthal direction but oppésite to the direction of plasma flow while
SMS propagates along the flow direction. The effect of higher m-mode numbers on
these instabilities is depicted in Figs. 5.14 & 5.15. These diagrams show that higher
m values reduce the growth rates of the fast and slow MS modes.

The investigation of the dispersion characteristics of these modes reveal that
the FMS modes are non-dispersive along the radial direction but dispersive in az-
imuthal direction. Contrary to this, the SMS modes are weakly dispersive along
radial direction and non-dispersive in azimuthal direction. Dispersion is found to
be significant for smaller k (higher wavelength) values and for Alfvenic mach num-
ber My (M4 = V*/V,) > 0.3. The growth rates of these instabilities are found
to be more for subsonic and sub-alfvenic plasma flows (Figs. 5.16-5.18 ). The na-
ture of the growth rate curves is in qualitative agreement with the work of Miura
& Pritchett [108] where they find that the growth rate is reduced due to the sta-
bilizing effects of the finite value of k., where k, is the perturbation along the z
direction in cylindrical co-ordinate system. However, in their case the growth rate
becomes zero beyond some value of the wave number k,. But, our study shows that
SMS mode gets completely stabilized for higher mode numbers whereas t\he fast one
grows with a constant growth rate. MS modes are found to be independent of the
finite conductivity of the fluid as in the case of radial perturbation analysis.

The K-H instability which exists only in radial direction becomes prominent
for higher flow velocity i.e. higher Alfvenic and sonic mach numbers (Fig. 5.3).
For lower Alfvenic and sonic mach numbers, the growth rate of the instability shifts

towards the longer wavelength. Existence of a threshold value of plasma flow for the
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excitation of KHI is found to be consistent with our equilibrium results. In contrast,
the MS modes are weakly dependent on the value of V¢ and exists even for static
case (V¢ = 0, Figs. 5.16 & 5;17). The analysis of these modes further demonstrate
that FMS (SMS) mode depends on V4 (C,) and the instability is switched off for
zero value of these parameters (Figs. 5.18-5.21).

We now turn to the discussion of the eigenmode structure of these instabili-
ties. Figs. 5.11b, 5.12b & 5.13 show the amplitudes of perturbed electricpmagnetic,
velocity and density fields as a function of m with the parameter V¢ = 0.316, V, =
0.942, C, = 0.4394. The amplitude of density perturbation of these two instabili-
ties has a broad maximum which falls off monotonically with higher mode number.
However, the rate of decrease is different for the fast and slow MS modes. It is
interesting to note that for a given instability, the distribution of the amplitudes of
all the fields and the corresponding growth rates as a function of wavenumber have
identical patterns. This implies that our analysis is consistent.

The analysis of the other three equations in the framework of the eigenvalue
analysis reveals the existence of one more instability which is purely electromagnetic
in nature. This mode propagates radially inward and is suppressed by higher m
values (m > 2) (Fig. 5.22). As discussed in case of radial perturbations (Sect. 5.4.2),
this mode is believed to arise due to the finite conductivity of the plasma (see,
Shivamoggi [109]). We further conjecture that this mode may be modified if one
considers the finite thickness of the accretion disc, since it is known that finite

thickness stabilizes some of the growing modes (Miura & Pritchett [108]).
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5.6.2 Non-local analysis

In earlier studies, as described in Sect. 5.4 and 5.6.1, we carried out the perturbation
analysis in the frame work of a local approximation and obtained results which are
in fairly agreement with the work of other investigators. The approximation of local
stability analysis which breaks down for smaller values of radial wave number (k)
points out the need to carry out a non-local (global) analysis. In the framework of
global analysis, in this section, we carry out a preliminary perturbation fmalysis of
the equilibrium solution given in Chap. 4.

The governing equations for this analysis are given in Sect. 5.3. We perform a
radial perturbation analysis (m = 0) using these dynamical equations (5.3.2-5.3.11).
The set of 10 differential equations with 10 variables are solved as an eigenvalue
problem using the techniques outlined in Sect. 5.5. The numerical method that
converts the differential equations into a set of linear and homogeneous algebraic
equations uses a second order finite difference method.

In this analysis, we consider N-grid points in the « interval [1.25,8.75]. Cen-
tral differencing is used at the inner grid points (J = 2,3, ...N-1) and a forward
differencing is used at the inner edge of the disc (J = 1). Thus, we have 10(N-1)
algebraic equations for N-1 perturbed quantities. We apply these N equations at
each grid points, J = 1, 2, ...N-1 and the resulting set of equations wili have N x
N-1 closed set of equations. Since, we have a system of N first order differential
equations, we have to specify N boundary conditions which provides the remaining
N equations of the N x N closed set of equations. The boundary conditions assume
that all the perturbed quantities viz. E;, B;, V; and p; where i = 1,3, vanish at the
outermost boundary (r = 7,, and J =Nth grid point). Now, we have to find the

eigenvalues w, and w; by requiring a zero value for the determinant of the coeflicient
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matrix. We have used the previously mentioned EISPAK routines (Smith ef al. [96))
to obtain the solutions.

The numerical study sh’ows the presence of three modes which agrees with our
earlier calculation of radial perturbation in the framework of local approximation.
The normalized eigenmode structure elucidates that the perturbation is localized
near the inner edge of the accretion disc. The maximum growth also coincides with
the pressure profile (Fig. 4.5) where the gradient is maximum. A typical eigenmode
plot for KHI is depicted in Fig. 5.23. However, this analysis is far from complete. It
is well known that one has to test the convergence of the eigenvalues by carrying out
a sensitivity study by changing the matrix size. But, due to the large matrix size
involved in our calculation, and due to the limitation of computational facilities, we
have not been able to satisfy the convergence criterion to the limit of satisfaction.
However, the eigenvalues are localized around N = 100 and do not vary by more

than a few percent.

5.7 Conclusion

In this chapter, we have investigated the plasma instabilities at the inner edge
of the accretion disc around a compact object under the local and non-local ap-
proximations. This analysis is based on the equilibrium' solution presented in
Chap. 4. The one-dimensional perturbation analyses reveal the presence of resistive-
electromagnetic, K-H and magnetosonic modes which under appropriate conditions
become unstable. The K-H mode propagating in a radially inward direction be-
comes stable for azimuthal velocity slightly lower than the Keplerian velocity. This
mode also gets stabilized in the absence of velocity shear. The electromagnetic

mode is conjectured to be the consequence of the finite conductivity of the plasma
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and may get modified due to the finite thickness of the disc, which is neglected in
this study. It is also found that the compressibility lowers the growth rate of these
two modes which is in agreement with the known results. The analytical expres-
sions (5.4.8 & 5.4.14) for the growth rate of these two instabilities clearly show that
the growth rates are inversely proportional to the finite conductivity. However, the
magnetosonic modes are independent of conductivity. The density inhomogeneity
excites R-T like modes. These modes which are present even in the absence of
velocity shear is believed to play an important role in pushing the matter inside
the inner edge. The consistency of these analyses are verified by adopting another
approach to solve the same problem. This approach employs the technique of eigen-
value formulation to solve the linearised equations which are Fourier transformed
under the local approximation. The results of both the approaches agree perfectly
with each other. In addition, this method illustrates the eigenmode structures of
the unstable modes and reveals that the density perturbation has the maximum
amplitude. The nature of the mode structure has the same pattern as their growth
rates which further demonstrates the consistency of our calculation.

This investigation in the frame work of eigenvalue technique is further ex-
tended to two dimensional perturbation analysis of the same equilibrium configu-
ration. The study highlights the stabilizing effects of the perturbation ‘\with finite
azimuthal mode number. We notice that KHI gets stabilized for m > 0. But the
finite m number excites slow magnetosonic mode and this mode also gets stabilized
for higher m-mode number (m > 2). In contest, the fast magnetosonic mode attains
a constant growth rate for higher m values. An investigation is also carried out to
analyze the effects of different parameters on the instability. The study concludes

that the growth rates of all the modes are higher for subsonic and subalfvenic plasma



flows. The study also shows the differences in the propagation and dispersion char-
acteristics of magnetosonic modes. These two modes which propagate in opposite
directions have contrasting divspersive characteristics. FMS are non-dispersive along
the radial direction and dispersive in azimuthal direction whereas SMS is dispersive
in radial direction and non-dispersive in azimuthal direction. As, in case of one
dimensional perturbation analysis, MS modes are further found to be independent
of conductivity. The computation of the eigenmode structures which had the same
pattern as the corresponding growth rates implies the consistency of our calculation.

We have also carried out a preliminary survey of one-dimensional pertur-
bation analysis in the framework of global analysis. Considering the appropriate
boundary conditions at the outer edge, the equations are solved by the method of
eigenvalue techniques using a finite difference scheme. The results show the exis-
tence of three different modes and confirms our earlier study of radial perturbation
in the framework of local approach.

Although, our results qualitatively agree with the instability studies of ear-
lier investigators, we find that our results have some quantitative differences. We
attribute this to the following factors. The basic difference lies in our geometry. We
recall that our analysis started with the study of dynamics and structure of equi-
librium configurations in relativistic formalism. Thus, we have adopted ‘a spherical
geometry which is the natural co-ordinate system to describe gravity. This coor-
dination system is also adopted for the stability analysis. The second point to be
stressed is our equilibrium solution which is quite rigorous and involves many phys-
ical parameters compared to equilibrium configuration adopted by others. Thirdly,
our equilibrium configurations of magnetic and velocity fields have smooth profiles

in contrast to equilibrium solutions adopted by other investigators where a jump
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was invariably considered. Further, we have considered the propagation of the
wave along the direction of velocity shear in contrast to the usual studies where
the direction of propagation’ is taken transverse to the shear along with the bound-
ary conditions. In addition, under local approximations we have not considered
any boundary conditions and thus our modes represent body modes. However, for
purely azimuthal mode (k = 0), the instability characteristics partially coincide
with the other known results. =

Thus, our work where we have tried to improve upon the earlier approaches,
presents the stability properties of a resistive plasma flow configuration around a
compact object. The novelty of this research lies in the fact that the present per-
turbation analysis corresponds to physically relevant and self-consistent equilibrium
solutions which describe a more realistic configuration of magnetic accretion discs
around plasma magnetospheres. It is probable that the two dimensional behaviour
of the above instabilities can modify the accretion flow pattern. We also conjec-
ture that as a result of these instabilities, the incoming matter can penetrate the
magnetic field of the central star and can push the inner edge of the disc nearer to
the compact object. Consequently, disc luminosity would be enhanced. It is also
believed that the instability could explain the variability of AGN’s and X-ray bina-
ries. However, more effort is needed to associate these instabilities toh‘\‘explain the
observable features of the astrophysical plasmas and our work presents a systematic

progress towards this goal.
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Chapter 6

CONCLUDING REMARKS AND OPEN
PROBLEMS

The study of structure of magnetosphere around accreting compact objects is im-
portant for the understanding of a wide variety of cosmic high energy sources. Most
of the energy emitted by these sources is in the form of X-rays with energy out-
put in the range of 10%¢ ergs-s~! to 10% ergs-s~! and is supplied by the accretion of
matter to the surface of the compact objects like neutron stars or black holes. If the
central compact object has an intrinsic magnetic field, the magnetic field influences
the incoming magnetofluid and eventually the motion is completely governed by
the field and the matter ends up on the surface of the central star either by flowing
along the field lines or by diffusing across the field lines due to the turbulence or
instabilities. If the matter being attracted have angular momentum with respect
to the central body, it forms a disc around it. The large scale structure and the
dynamics of such discs is important physically, as many of the observable properties
like pulse shapes, spectra, spin-up rate and intensity fluctuations depend on it. On

the other hand, the interaction between the magnetosphere of a neutron star and a



surrounding accretion disc is important with regard to the formation of binary radio
pulsars and the origin of quasi-periodic oscillations from low mass X-ray binaries.
In this context, it is necessary' to understand the different modes of instabilities that
could arise in discs supported by the gas and magnetic pressure around compact
objects under general perturbations.

With this motivation, we have developed the dynamical equations for a mag-
netofluid surrounding a central compact object in a curved background#®geometry.
These general set of equations can fit into any astrophysical plasma studies includ-
ing jets observed from extragalactic radio sources. But, our aim in this thesis have
been to analyze and show the existence of equilibrium structures around compact
objects and subsequently study their stability characteristics. Thus, we have inves-
tigated the dynamical equilibrium and stability of few configurations. The analyses

and the conclusions are briefly summarized below.

1. Considering the background spacetime to be the Schwarzschild geometry and
the electromagnetic field as well as the matter distribution to be stationary
and axisymmetric, a fairly simple analytical solution for an incompressible
matter having only azimuthal component of velocity was obtained. The anal-
ysis showed that the self-consistent calculation of fully relativistic equations
demand the flow velocity to be Keplerian (sub-Keplerian) for thin (lhick) disc

configurations (Prasanna et al. [115]).

2. With the understanding that a velocity greater than Keplerian distribution
is not consistent with the generalized equations, we next, investigated a more
complicated equilibrium structure for a resistive plasma disc having a poloidal
magnetic field and all velocity components. For a better understanding of the

underlying physical mechanisms and for the sake of mathematical simplicity,
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this study was carried out in Newtonian limit. The analysis revealed that
equilibrium configurations could exist only for certain combination of physical
parameters. Thus, this study obtained limits on physical variables like seed
magnetic field of the compact object, outer disc density and finite conductivity
of the plasma. The study shows that the magnetic field of the central star
is of the order of 10® gauss. As the estimation of magnetic fields for some
of the X-ray binaries fall in this range, our model appears to be promising.
The study also revealed that for certain combination of numerical values, the
pressure distribution shows turning point behaviour indicating the presence
of large pressure gradients around these points. The presence of such large

pressure gradients is known to give rise to instabilities (Tripathy et al. [116]).

. As the presence of large pressure gradients near the inner edge indicated the
presence of instabilities, we have also carried out stability analysis of the
plasma flow around compact objects, both in the framework of local and
non-local approach. We first carried out one-dimensional perturbation inves-
tigation along the direction of the velocity shear (radial direction) and subse-
quently extended it into two dimension to include the direction of plasma flow
(azimuthal direction). This problem has been investigated both analytically
and numerically by the method of finding complex roots. One of the key fea-
tures of this investigation is the existence of Kelvin-Helmholtz and Rayleigh-
Taylor type of instabilities which opens up possibilities for the matter to flow
across or along the magnetic field lines. The absence of velocity shear switches
off the KHI but R-T like instability still exists. We have also obtained resistive
electromagnetic modes which are, probably, due to the finite conductivity of

the plasma. The results of this analysis have been subsequently verified by
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solving the matrix eigenvalue problem by using numerical techniques. Using,
the same eigenvalue technique, the radial-azimuthal perturbation analyses
have revealed the presence of fast and slow magnetosonic modes which get
stabilized in the absence of V4 and C, respectively. A preliminary study in
the framework of non-local analysis presented the eigenmode structures and
the results indicated that the instability is localized at the inner edge of the
disc. The presence of all the three modes in this frame work afso verified
the consistency of our local approximation. However, in order to get a good
correlation between the theory and observation, more detailed analysis would

be required. (Tripathy et al. [118]).

As the steady state solutions are inhomogeneous in spatial coordinates r and 6,
it is necessary to perform a global stability analysis of the above mentioned equi-
librium configurations with proper boundary conditions at the inner edge of the
accretion disc. The break down of local approximation for longer wavelengths of
unstable modes also necessitates a non-local study. This problem as cleér from the
above considerations, is very difficult to tackle analytically and has to be solved

numerically. The following questions would be addressed in this study.

e Nature of instabilities that exist in a thick disc having a self-consistent mag-

netic field.
e The role of instabilities in radiation processes.

e The mechanism and amount of angular momentum and torque transported

to the central star.

In our investigation of self-consistent equilibrium configurations, we have as-

sumed the disc to have a poloidal component of the magnetic field only. But, the
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motion of ions and electrons in the plasma environment ‘going around the central
star would produce currents and associated magnetic fields in the toroidal direction
also. As a result of the generation of this toroidal field, angular momentum is ex-
changed between the star and the disc. It is believed that the toroidal component
of the magnetofluid plays an important role in the generation of jets in astrophys-
ical objects. Thus, it is important to analyze the equilibrium structure of a thick

accretion disc including the self consistent magnetic field in the toroidal direction.
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APPENDIX A

o

Here, we show that the magnetic fields inside the disc are constant in nature and
do not depend on the value of k. Using spherical polar co-ordinates (r,d,4), the

equation for magnetic field lines dx/ds = B/ IB| can be written in component form

as
gg - l% (A1)
S ; (42)

Dividing equation (A1) by (A2), we obtain
Z; = —r cotf, (A3)

which on integration yields r sinf = A. Transforming this into the cartesian coor-
dinate system with X = r sinf, where 6 = 0 denotes the pole, we have the equation
of field line as X = A. This represents the constant field lines parallel to the Y axis

which is shown in Fig 4.1.
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APPENDIX B

where

1 =
Qy =
Q3 =
Qs =

DpP

o

w? —iws — (k* — a7 — 2ika™)
w(l+4 VZ+iws™)

~VO(k —ia™)

—2V%a™ (1 4 iws™)

¢2

Vi 2
{—iF—l— 3—} +6V2+ 4 (k —ia™)
w & ow

[ikC? + DP| (k — Sia")

ow?

= 2ka”' +i(k’ - a7?) —iw? - Gw

(y—1)dp
poc? da
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APPENDIX C

1

- (C11)
-ZE{—VQ (C12)
(L+VE + 072 [K*(1+ C?) — 207 (DP) — o (C13)
—ko™? [2a77(1 + C2) + DP| (C14)
—kalo 7t [2(1 + 2V3) + (24 V2)(207 + aDP)] (C15)
o (1 +2V2) (@ — k) + (2 + VE)(2a~'DP — k*C2)] (C16)

1+ Vi) 207 DP + Via™? — KV} + 0=202)] + 2V2V*%a-2 (017
A A

Clk* (o)™ [5 - k*o?| + 2k’a~'o"?DP 2 k"%rﬂ (C18)
2k 2k
(14 V) H(Vj +C7) + /cDP} + = [2KCI + ViV (C19)
g 262 + aDP(5 - ] (C20)
k 202
2y Mo 2 2 k) 101 — 9K 202
(1+ Vi) [DP(L of —5) - —=(1 - 2K’a )J (C21)
2
)] 2DP(1 - 2k%0?) + ak?C2(k?a’ — 5)] (C22)
ado! ,
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