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Abstract

The work in this thesis deals with the group velocity of electromagnetic fields in differ-

ent atomic media. The main thrust of this work is that coherent control of group velocity

is possible by manipulating the atomic coherence of the medium. In chapter 1, the basic

theory of radiation-matter interaction is discussed. The theory of propagation equation is

presented in Sec. 1.1. In Sec. 1.2 the derivation of interaction Hamiltonian is discussed.

Sec. 1.3 and 1.4 present the manipulation of atomic coherence by applying an external

coherent control field of suitable intensity. Sec. 1.5 presents the basic concept of group

velocity and introduces the key theme of the thesis - manipulating atomic coherence to

control the group velocity of light inside the medium. The coherent control of the group

velocity produces subluminal propagation, storage and retrieval of light pulses as well as

superluminal propagation are discussed in the following section. Many different applica-

tions of slow light, storage and retrieval of light and fast light are discussed.

In chapter 2, we study the propagation of a weak electromagnetic pulse through a Λ-

system when the central frequency of the pulse is close to the atomic transition frequency.

This weak pulse couples one arm of the Λ-system and a strong control field couples to the

other arm. The lower metastable states of the atom are coupled by an additional field called

lower level (LL) coupling field. An undistorted pulse propagation requires a stringent

condition that the medium should be absorptionless when the pulse is near-resonance

with atomic transition frequency. By properly selecting the parameters of control and LL

coupling field intensity, we could achieve this condition and consequently distortionless

pulse propagation. We show that the group velocity of the weak pulse can be controlled by

suitably choosing the intensity of the control and LL coupling field. We also demonstrate

viii



that such control can lead to a knob for changing the velocity of propagation of the pulse

from subluminal to superluminal.

In chapter 3, we investigate the possibility of storage and retrieval of an intense probe

pulse in a medium which can be modelled as a set of atoms with the relevant energy levels

in Λ-configuration. We demonstrate that it is indeed possible to store and retrieve a probe

pulse which is not necessarily weak. We find that the retrieved pulse remains a replica

of the original pulse, although there is an overall broadening and loss of the intensity.

The loss of intensity can be understood in terms of the dependence of medium absorption

on the intensity of the probe. Our calculations include the dynamics of the control field,

which becomes especially important as the intensity of the probe pulse increases. We use

the theory of adiabatons [Grobe et al. Phys. Rev. Lett. 73, 3183 (1994)] to understand

our numerical results on the storage and retrieval of light pulses at moderate powers. We

also demonstrate that a robust way of storage and retrieval of information on the weak

modulating signal is possible by applying a suitable control pulse.

In chapter 4, we develop models for the propagation of intense pulses in solid state

media which can have either saturated absorption or reverse absorption. We model sublu-

minal propagation in ruby as a three level system and superluminal propagation in alexan-

drite as a four level system. The propagation dynamics is governed by the Maxwell’s equa-

tions. We calculate the group velocity from the relative delay or advancement between the

reference and output pulse. We present results well beyond the traditional pump-probe

approach and explain the experiments of Bigelow et al.[Phys. Rev. Lett. 90, 113903 (2003);

Science 301, 200 (2003).] on solid state materials. We also notice that the input pulse be-

comes distorted due to the intensity dependent nonlinearity of the medium.

In chapter 5, propagation of light pulses through a Doppler-broadened atomic medium

is analyzed. It is shown that how Lamb dip and saturated absorption can be used to pro-

duce slow light with group indices of the order of 103 in a Doppler-broadened medium

which otherwise exhibits very flat dispersion. We include all coherence effects in our nu-

merical calculations.

In chapter 6, a new way to freeze light pulse inside a Doppler-broadened atomic medium

through electromagnetically induced transparency is examined. It is shown that the appli-

cation of an additional control field connecting the two lower level metastable states in the

Λ-system can change the group velocity of the pulse inside the medium from negative to a

ix



positive value. This change helps in stopping light provided the probe field as well as the

suitable detuning of control field satisfies the two-photon resonance condition.
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CHAPTER 1

Introduction

The meaning of group velocity in the context of light pulse propagation through resonant

optical media has been puzzling the physicists for some time. Lord Rayleigh was the first

to comment that the pulse travels in a medium with a group velocity rather than the phase

velocity [1]. Later on, Sommerfeld and Brillouin developed a complete theory of the pulse

propagation through a medium whose dielectric response was described by the Lorentz

model [2]. They showed that anomalous dispersion always occurs in the region of absorp-

tion and leads to group velocity much larger than c, the speed of light in vacuum. They also

pointed out that signal velocity is always less than c even in the case of anomalous disper-

sion, where the group velocity exceeds c. Manipulation of group velocity of the light pulse

is possible by changing the dispersive property of the medium. The dispersive property

can be dramatically modified by employing laser fields to drive the optical medium. The

required dispersion and absorption can be obtained by the application of coherent control

fields of suitable intensity. The precise control over the optical properties of the medium

such as dispersion, absorption, and refractive index, gives rise to fascinating phenomena

like coherent population trapping (CPT), electromagnetically induced transparency (EIT),

lasing without inversion (LWI), ultraslow light and fast light. The recent demonstration on

storage and retrieval of light in resonant media has tremendous technological implications.

The ability to slow down the propagation velocity of light and to coherently stop and store

it, holds the key to the ultimate control of light. This will have revolutionary impact in the

area of optical communications and quantum information processing. It should be borne

1



Introduction 2

in mind that the key feature underlying all these recent developments is atomic coherence.

This thesis describe how atomic coherence can be manipulated using appropriate coherent

control fields which will modify the propagation velocity of light through the medium.

1.1 Basic Propagation Equation

Light is an electromagnetic wave (em) consisting of oscillating electric and magnetic field

vectors. The propagation of light (em) through an optical medium is governed by four

fundamental Maxwell’s equations, which in Gaussian units can be written as,

~∇ · ~D = 4π%, (Gauss’s Law) (1.1a)

~∇ · ~B = 0, (1.1b)

~∇× ~E = −1
c

∂ ~B

∂t
, (Faraday’s Law) (1.1c)

~∇× ~H =
4π

c
~J +

1
c

∂ ~D

∂t
, (Ampere’s Law). (1.1d)

Here ~E, ~H are the time-averaged values of the basic electric, magnetic field vectors at some

space-time point (~r, t), rather than the instantaneous values and c is the velocity of light in

free space [3]. The electric displacement ~D and the magnetic induction ~B have “additive

relations”, coming from the interaction of matter and field,

~D = ~E + 4π ~P, (1.2a)

~B = ~H + 4π ~M. (1.2b)

Here ~P and ~M are the electric and magnetic polarizations respectively. In Eq. (1.2a) the con-

tribution from the multipole moments (such as electric quadrapole moments) has been ne-

glected, since at optical frequency the electric dipole moment is the most dominant quan-

tity. In free space, both ~P and ~M vanish, hence, these quantities represent the influence of

matter on the field. In this thesis, the system under consideration is non magnetic ( ~M = 0),

and non conducting ( ~J = 0), together with no free charge (% = 0). Applying the curl opera-

tor in Eq. (1.1c), taking appropriate time derivatives and using the constitutive relation for
~B, we obtain

~∇× ~∇× ~E +
1
c2

∂2

∂t2
( ~E + 4π ~P) = 0. (1.3)
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Since ~D = ~E + 4π ~P , for a charge free isotropic medium, ~∇ · ~D = 0, and thus ~∇ · ~E = 0.

Therefore, the simplified wave equation can be written as

~∇2 ~E − 1
c2

∂2 ~E

∂t2
=

4π

c2

∂2 ~P
∂t2

. (1.4)

This equation has the form of an inhomogeneous wave equation. The source term which

appears on the right-hand side of this equation represents the nonlinear response of the

medium. In the absence of the source term, the above Eq.(1.4) reduces to

~∇2 ~E − 1
c2

∂2 ~E

∂t2
= 0. (1.5)

In the optical wavelength limit, the variations of the field along the transverse directions

is small. Therefore the general solution of this equation can be written in the form,

~E = ~E1(z − ct) + ~E2(z + ct), (1.6)

where ~E1 and ~E2 are arbitrary functions. We see that the argument of ~E1 is unchanged

when (z, t) is replaced by (z + ct, t + τ), where τ is an arbitrary parameter. Hence ~E1( ~E2)

represents a field which is propagating with velocity c in the positive (negative) z-direction.

Now in the presence of a polarized medium, the Maxwell’s wave equation becomes

nonlinear. In practice, it is very difficult to get the exact solution of nonlinear wave equa-

tion. But these equations can be solved analytically with few specialized approximations

and, numerically, in the general case. For example, consider a linearly-polarized plane

wave propagating in the z-direction, its electric field can be described by

~E(z, t) = êE0(z, t)e−i(ωt−kz) + c.c. (1.7)

where ê is the direction of polarization, ω is the central angular frequency of the field, and

the wave number, k = ω/c. The complex conjugate (c.c.) term has been added to the

electric field expression to make it real. The induced polarization of the medium can be

written as
~P(z, t) = êP0(z, t)e−i(ωt−kz) + c.c. (1.8)

We know that the bound state electron in an atomic medium experiences stronger electro-

static field due to the interaction with the nucleus as compared to the external field created
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by an applied laser. Hence, we study the interaction of atom with the applied field per-

turbatively. The induced polarization can be expanded in a Taylor series, in powers of the

applied electric field ~E:

Pα(z, t) ≡ Pα|E=0 +
∑

β

(
∂Pα

∂Eβ

)∣∣∣∣
E=0

Eβ +
1
2!

∑

β,γ

(
∂2Pα

∂Eβ∂Eγ

)∣∣∣∣
E=0

EβEγ + · · · . (1.9)

The first term in Eq. (1.9) corresponds to the permanent polarization of the system. This

type of polarization is not present in our system. The second term represents the induced

linear polarization. The term in the first bracket along with the summation in the second

term of Eq. (1.9) can be regarded as the linear susceptibility of the medium. The higher

order susceptibility term can be obtained by the subsequent terms in Eq. (1.9); these be-

come important when the applied field is not weak, otherwise one can retain up to the first

order. Therefore, the polarization Pα is usually a complicated nonlinear function of ~E. In

the linear case, however, Pα takes a simple linearized form

Pα(z, t) =
∑

β

∫ ∞

−∞
dt′dz′χαβ(z − z′, t− t′)Eβ(z′, t′) , (1.10)

where χαβ is the linear susceptibility tensor with rank two for an anisotropic medium,

where the response of the medium is different for different components of the electric field.

In the present thesis, the medium is isotropic and the complex susceptibility, χαβ ≡ χ, is a

scalar quantity. Thus Eq. (1.10) can be written as

P(z, t) =
∫ ∞

−∞
dt′dz′χ(z − z′, t− t′)E(z′, t′) . (1.11)

We consider that the electric field amplitude E0(z, t) and polarization P0(z, t) vary suffi-

ciently slowly in time and space so that the following inequalities are valid:

|kE0| À
∣∣∣∣k2 ∂E0

∂z

∣∣∣∣ À
∣∣∣∣
∂E0

2

∂2z

∣∣∣∣ , |ωE0| À
∣∣∣∣ω2 ∂E0

∂t

∣∣∣∣ À
∣∣∣∣
∂E0

2

∂2t

∣∣∣∣

|kP0| À
∣∣∣∣k2 ∂P0

∂z

∣∣∣∣ À
∣∣∣∣
∂P0

2

∂2z

∣∣∣∣ , |ωP0| À
∣∣∣∣ω2 ∂P0

∂z

∣∣∣∣ À
∣∣∣∣
∂P0

2

∂2z

∣∣∣∣ . (1.12)

These equations define the so called “slowly-varying amplitude approximation” (SVAP), which

plays a central role in laser physics and pulse propagation problems. It means that we

consider light waves whose amplitudes vary little within the optical period and optical

wavelength. Sometimes this approximation is also called the “slowly-varying envelope ap-

proximation” (SVEA) [4].
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E’( r, t )
Maxwell’s Equations

E( r, t ) P( r, t )

Self consistency

Bloch’s Equations

Figure 1.1: Incident electric field ~E(~r, t) induces polarization of the medium ~P(~r, t), which acts as a source
in Maxwell’s equations. The condition self-consistency then requires that the incident field ~E(~r, t) is equal
the reaction field ~E′(~r, t).

The SVEA leads to major mathematical simplifications as can be seen by substituting

the field (1.7) and polarization (1.8) into the wave equation (1.4) and using equation (1.12)

to eliminate the small contributions Ë0,P̈0,E0
′′
,P0

′′
(double dot and double prime denotes

second order derivative with respect to time and space respectively). We find

∂E0

∂z
+

1
c

∂E0

∂t
= 2πikP0. (1.13)

This equation tells us how light propagates through a medium and specifically how the

real and imaginary parts of the polarization act. Equation (1.13) is not sufficient to describe

physical problems completely, since it only tells us how a plane electromagnetic wave

responds to a given polarization of the medium. Further, polarization has to be determined

by using Bloch’s equations of the medium. We are aware that the polarization of a medium

is influenced by the field to which it is subjected. In particular for atomic gases without

permanent polarization, it is the electromagnetic field itself that induces the polarization!

Thus, the field drives the polarization of the medium and vice versa. This leads to the

description of the interaction between the matter and field to be expressed in terms of

coupled nonlinear partial differential equations which have to be solved “self-consistently”

as depicted in Fig (1.1). Pulse propagation in a nonlinear transparent medium has been

lucidly discussed by Allen and Eberly [5]. We transform to new variables

τ = t− z/c, ζ = z, (1.14)

so that

∂/∂z + c−1∂/∂t = ∂/∂ζ, ∂/∂t = ∂/∂τ (1.15)

and
∂E0

∂ζ
= 2πikP0. (1.16)
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The spatio-temporal evolution of the atomic polarizationP0 will be discussed in the subse-

quent section via density matrix and the numerical solution of the coupled Maxwell-Bloch

equation will be addressed in the appendix.

For a steady state limit of wave equation of the type

∂E0

∂z
= 2πikχE0. (1.17)

where P0 = χ(ω)E0 is the linear response of the medium to the electric field, the solution

for the output field of the medium of length L can be written as

~Eout(z = L, t) = êE0e
2πikLχe−i(ωt−kz) + c.c. (1.18)

For χ ¿ 1, which is the case in the optical wavelength domain, the approximate linear

value of the refractive index η(ω) and the extinction coefficient α(ω) are given by

η(ω) = 1 + 2πRe[χ(ω)] (1.19a)

α(ω) = 4πkIm[χ(ω)] (1.19b)

The only measurable quantity is the output intensity at the end of the medium, Iout ≡
| ~Eout|2. Therefore the absolute square of equation (1.18) gives Beer’s Law for the intensity

Iout = I0e
−αL. (1.20)

The information about α(ω) i.e., the imaginary part of the complex susceptibility of the

medium can be derived from the measured output intensity. Now, one can use the Kramers-

Kronig relations to find the real part of the susceptibility, i.e., the refractive index of the

medium at all frequencies. Such relations were first introduced by them in 1926 to study

the dielectric constant of a substance [6]. The measurable parameter α(ω) depend upon the

susceptibility of the medium which can be modified by applying strong external coherent

field. In presence of a strong field, the susceptibility of the medium can be changed and

this changed can be probed by a weak field (probe field). Note here that the probe field

does not change the properties of the medium at the experimental time scale. The study of

interaction of radiation with matter becomes important as the field incident on the atomic

medium. We will use the semiclassical theory of the interaction of radiation with matter

where radiation field is considered classically and the matter is treated as quantum me-

chanical particle with discrete energy levels.
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1.2 Interaction of Radiation with Matter

The light field (em) is treated classically by Maxwell’s equations while the atom is con-

sidered to have quantized energy levels and is treated by the Schrödinger equation. For

simplicity, the atom is assumed to have a single electron of charge e and mass m inter-

acting with an external electromagnetic field. The interaction between atom and field is

described by the following Hamiltonian

H =
[~P − e ~A(~r, t)]2

2m
+ eΦ(~r, t) + V (r), (1.21)

where ~P is the momentum of the electron, ~A(~r, t) and Φ(~r, t) are the vector and scaler

potentials of the external field respectively. Here V (r) is a central potential experienced by

the bound electron due to the presence of motionless nucleus. Quantization of the electron

motion can be done by replacing the classical variable with operators, e.g.,

~P −→ −i~~∇,H −→ i~∂/∂t. (1.22)

Here ~ = h/2π, where h is the Planck’s constant. Therefore, the motion of electron is

described by the Schrödinger equation

i~
∂|Ψ(~r, t)〉

∂t
=

{
[−i~~∇− e

c
~A(~r, t)]2

2m
+ V (r) + eΦ(~r, t)

}
|Ψ(~r, t)〉

= (HO +HI)|Ψ(~r, t)〉, (1.23)

where the unperturbed Hamiltonian is given by

HO = − ~
2

2m
~∇2 + V (r) + eΦ (1.24)

and the interaction Hamiltonian involves only the vector potential ~A:

HI =
e

2mc

[
2i~ ~A(~r, t) · ~∇+ i~~∇ · ~A(~r, t)

]
+

e2

2mc2
~A(~r, t) · ~A(~r, t) (1.25)

In passing we note that, the transformations ~A −→ ~A
′
= ~A+ ~

e
~∇χ and Φ −→ Φ

′
= Φ− ~

e
∂χ
∂t ,

leave the ~E and ~B as invariant quantities which are thus gauge independent. Here, χ is

any arbitrary scalar function. This allows one to choose a suitable gauge to simplify a given

problem. Here we are working in the radiation gauge in which Φ(~r, t) = 0 and ~∇ · ~A = 0.

Under the radiation gauge condition, the interaction Hamiltonian becomes

HI =
ie~
mc

~A(~r, t) · ~∇+
e2

2mc2
~A(~r, t) · ~A(~r, t) (1.26)
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The dipole moment approximation is often used in quantum optics, which simplifies the

interaction Hamiltonian term [7]. This approximation assumes that the whole atom is sub-

merged in a plane em wave described by a vector potential, ~A(~r +~r0, t), which is assumed

to have no spatial variation in the vicinity of the atom whose nucleus is located at ~r0. For

such a case,

~A(~r + ~r0, t) = ~A(t)exp
[
i~k · (~r + ~r0)

]

= ~A(t)exp(i~k · ~r0)(1 + i~k · ~r + · · · ) (1.27)

Taking ~k · ~r ¿ 1, we obtain

~A(~r + ~r0, t) ≈ ~A(t)exp(i~k · ~r0). (1.28)

Using the unitary transformation |Ψ(~r, t)〉 = e
ie
~ ~r· ~A0 |ψ(~r, t)〉 in Eq. (1.23), we get

i~
∂|ψ(~r, t)〉

∂t
=

{
~2

2m
~∇2 + V (r)− e~r · ~E(t)

}
|ψ(~r, t)〉

= (HO +HI)|ψ(~r, t)〉 (1.29)

The atom-field interaction Hamiltonian in the semiclassical picture is given by

HI = −e~r · ~E = −~d · ~E (1.30)

where the dipole moment operator ~d is e~r. A significant contribution towards understand-

ing radiation-matter interaction was given by Einstein. He employed the basic ideas of

quantum mechanics to lay the foundation for the quantitative analysis of the absorption

and emission of light by atoms [8]. Later this simple theory has been extensively verified

by rigorous quantum mechanical calculations.

For illustration, it is simpler to consider two energy states of an atom, namely, the

excited state |1〉 and ground state |2〉. Phenomenologically, Einstein introduced three pro-

cesses underlying radiation-matter interactions:

Stimulated absorption: In the presence of radiation, the transition rate for absorption

|2〉 −→ |1〉 is proportional to the radiative energy density and the probability per unit time

for the stimulated absorption is given by B21.

Stimulated emission: In the presence of radiation, the transition rate for emission |1〉 −→
|2〉 is proportional to the radiative energy density and the probability per unit time for the

stimulated emission is denoted by B12.
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Spontaneous emission: In the absence of radiation fields, there is a finite probability that

the atom in the excited state |1〉 decays into the ground state |2〉 by emitting a photon of

energy ~ω12. The probability per unit time for occurrence of this spontaneous emission is

denoted by A12.

The above coefficients A & B are independent of the radiative energy density, depend-

ing only on the property of the atomic states. The interrelation of these three probabilities

at thermal equilibrium is given by

A12 =
~ω3

12

π2c3
B12 (1.31a)

B12 =
g2

g1
B21. (1.31b)

Here g1(g2) is the degeneracy of the ground state (excited state) and ω12 is the atomic

transition frequency. A full quantum mechanical treatment for the two level atom relates

the above probabilities to atomic properties:

A12 =
4|~d12|2ω3

12

3~c3
, (1.32a)

B12 =
4π2|~d12|2

3~2
. (1.32b)

Here ~d12 is the dipole moment matrix element of the relevant transition. It is clear from

the above that the spontaneous emission rateA12 increases with the increase in the atomic

transition frequency ω12. At this point a natural question arises on the possibility of con-

trolling the spontaneous emission rate. With using the Fermi golden rule it can be shown

that the transition rate from a discrete atomic state to a continuum of electromagnetic

modes is given by

A12 =
2π

~
|V12|2ρ(ω) (1.33)

where |V12|2 is the transition matrix element; it connects the initial and final states of an

atomic system and ρ(ω) is the density of the mode of the final radiation states [9]. There-

fore, the spontaneous emission rate can be changed by changing the density of modes

or the coupling strength of the incident radiation. The semiclassical treatment is widely

used in laser physics and in non-linear optical phenomena, since the exact study of the

radiation-matter interaction is an extremely difficult problem.
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Figure 1.2: Two level atomic system coupled to a control field with Rabi frequency 2G.

1.3 Induced Atomic Coherences in Two Level Atomic Systems

The coherent interaction of the external laser fields and atoms induces atomic coherence

among the atomic states. In recent years, atomic coherence has played a central role in

the precise control over the optical property of the medium. Next, we will show how this

atomic coherence is created and manipulated using the density matrix formalism.

The simplest nontrivial problem involving atom-field interaction is the coupling of a

two level atom with a quasi-monochromatic radiation field. In nature, real two level atoms

do not exist. A two level description is found to be useful in explaining phenomena where

two levels involved are in resonance (or near resonance) with the external radiation field,

while all other levels are highly detuned. In this two level atomic system, we will introduce

certain realistic approximations which bring the problem to a tractable form.

Let |1〉 and |2〉 represent the excited and ground states of the atom as shown in Fig (1.2).

The respective eigenvaules of the states |1〉 and |2〉 are ~ω1 and ~ω2 for the unperturbed

Hamiltonian H0. By using the completeness relation |1〉〈1| + |2〉〈2| = 1, we write the

Hamiltonian H0

H0 = ~ω1|1〉〈1|+ ~ω2|2〉〈2| (1.34)

and the wave function in the Schrödinger picture is as fellow:

|ψ〉 = C1|1〉+ C2|2〉, (1.35)

where Ci (i = 1, 2) is the probability amplitude of being in a state |i〉. Then the density
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matrix operator is defined as the projector ρ = |ψ〉〈ψ|, which is given by in matrix form as

 ρ11 ρ12

ρ21 ρ22


 (1.36)

where the matrix elements are given by

ρ11 = C1C
∗
1 , probability of being in upper level (1.37a)

ρ22 = C2C
∗
2 , probability of being in lower level (1.37b)

ρ12 = ρ∗
21

= C1C
∗
2 , atomic coherence (1.37c)

An atomic coherence depends on the phase difference between C1 and C2. These can be

related to the macroscopic property of the atomic medium. The dipole moment operator

can be written as
~d = ~d12|1〉〈2|+ ~d21|2〉〈1| (1.38)

where the diagonal element ~d11 and ~d22 are zero as the dipole operator ~d has odd parity.

Therefore, the elements of the dipole operator ~d will be non zero if and only if the states |1〉
and |2〉 have different parity. The two level atomic system is driven by a plane monochro-

matic laser field
~E = êE0e

−i(ωt−~k.~r) + c.c., (1.39)

where ê and E0 are respectively the direction of polarization and constant amplitude for

the continuous wave (cw) respectively. The carrier frequency ω of the cw is very close to

the atomic transition frequency, ω12 , (= ω1 − ω2) of the two level atomic system and is

highly detuned with all other levels. The interaction Hamiltonian of the two level atom in

the dipole moment approximation can be written as :

HI = −~d · ~E

= −(~d12|1〉〈2|+ ~d21|2〉〈1|) · ~E. (1.40)

Therefore the total Hamiltonian of the atom is given by

H = ~ω12|1〉〈1| − (~d12|1〉〈2|+ ~d21|2〉〈1|) · ~E, (1.41)

where the energy of the ground state level |2〉 is taken to be zero. We now make use of the

unitary transformation :

|ψ(t)〉 = e−iω|1〉〈1|t|φ(t)〉; (1.42)
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to write the Schrödinger equation written as

i~
∂|φ(~r, t)〉

∂t
= Heff |φ(t)〉. (1.43)

Here the effective Hamiltonian is

Heff/~ = −∆|1〉〈1| − (G|1〉〈2|+ h.c.)− (G
′
e−2iωt|1〉〈2|+ h.c.), (1.44)

where ∆ = ω−ω12, is the detuning of the control field from the atomic transition frequency.

The coupling strengths G and G
′

are given by

G =
~d12 · ~E0

~
ei~k·~r, G

′
=

~d12 · ~E0

~
e−i~k·~r (1.45)

It should be noted that the effective Hamiltonian contains d.c terms;−∆|1〉〈1| − (G|1〉〈2|+
G∗|2〉〈1|) and a highly oscillating term (oscillating at frequency 2ωc) related to G

′
. The

value of G
′

becomes important only when G
′ ≈ ω. Therefore, the term G

′
can be neglected

at optical frequency domain where G
′ ¿ 2ω. This approximation is known as the rotat-

ing wave approximation (RWA) which is used frequently in this thesis [10]. Therefore, the

effective Hamiltonian becomes

Heff/~ = −∆|1〉〈1| − (G|1〉〈2|+ G∗|2〉〈1|). (1.46)

In writing Eq. (1.46) the RWA has been made to remove the explicit time dependence of

Heff . The coupling strength 2G is called the Rabi frequency [11]. To obtain the dynamics

of the density matrix equation using the Liouville equation 1:

ρ̇ = − i

~
[Heff , ρ]. (1.47)

The dynamics of population and polarization of the atoms in the two-level configuration

is given by

ρ̇11 = −ρ̇22 = iGρ21 − iG∗ρ12 , (1.48a)

ρ̇12 = ρ̇∗
21

= i∆ρ12 + iG(ρ22 − ρ11), (1.48b)

where dot denotes ∂/∂t. The density-matrix elements in the original frame are given by

ρ12e
−iωt, ρ11 , and ρ22 . These equations are known as the optical Bloch equations (OBE),

1The Liouville equation is a more general compared to the Schrödinger equation because it has both satis-
tical and quantum mechanical information of the system
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in analogy to the Bloch equations in nuclear magnetic resonance. Note that ρ̇11 = −ρ̇22 , in

accordance with the requirement of a closed two-level system 2, where the total population

is conserved (ρ11+ρ22 = 1). Let us assume that initially all the atoms are in the ground state

|2〉 and thus ρ22(0) = 1 with all other density-matrix elements beings zero. The solutions

for the atomic population and atomic polarization can be obtained by solving the set of

density matrix equations (1.48) and can be written as

ρ22 = cos2
(

Ωt

2

)
+

∆2

Ω2
sin2

(
Ωt

2

)
(1.49)

ρ12 =
2G

Ω2
sin

(
Ωt

2

){
∆sin

(
Ωt

2

)
+ iΩcos

(
Ωt

2

)}
(1.50)

where Ω =
√

(∆2 + 4|G|2) is called the generalized Rabi frequency. For the zero detuning

case, with ω = ω12, Eq. (1.49) reduces to

ρ22 = cos2
(

Ωt

2

)
; (1.51)

the atom oscillates symmetrically between its ground and excited states with an angular

frequency Ω. The increase in the detuning of the field results in the increase of the Rabi

oscillation with a reduced amplitude. The two level atom interacting with a classical elec-

tromagnetic field has been beautifully discussed in the book by Allen and Eberly [5].

The above calculation does not include spontaneous emission. To include the same it is

necessary to generalize these Bloch equations by inclusion of the effects of the spontaneous

emission [12]. In the presence of spontaneous emission, the Bloch equations are modified

to

ρ̇11 = −2γρ11 + iGρ21 − iG∗ρ12

ρ̇22 = 2γρ11 − iGρ21 + iG∗ρ12

ρ̇12 = −[γ − i∆]ρ12 + iG(ρ22 − ρ11)

ρ̇21 = −[γ + i∆]ρ12 + iG∗(ρ11 − ρ22) (1.52)

where 2γ (1/T1) describes the decay rate of the atomic excited state |1〉 and γ (1/T2) is the

decay rate of the atomic coherence. However, in cases where the collision between atoms

play a significant role, the decay of the coherences and the populations are described by
2A driven system is said to be a closed system when the excited state decays only to the ground state. If

the excited state decays not only to the ground state but also to the environment then the system is called an
open system. For an open system the total population is not conserved
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different decay parameters, and in those cases the parameters T2 and T1 are introduced to

account for this difference. This will be discussed in chapter 4.

The solution of the above equations are no longer purely oscillatory, as in the cases of

Eqs. (1.49) and (1.50). The system now settles down into a steady state after a sufficiently

long time (t À 1/γ). Then all time derivatives in Eqs. (1.52) are set equal to zero; it is then

reduced to linear algebraic equations. The simultaneous equations for steady state density

matrix elements are readily solved to give

ρ11 =
|G|2

(γ2 + ∆2) + 2|G|2

ρ12 =
iG(γ + i∆)

(γ2 + ∆2) + 2|G|2 . (1.53)

The induced polarization, say at frequency ω, is expressed in terms of the non-diagonal

elements of the density matrix ρ12 and ρ21 :

~P ≡ N〈~d〉 ≡ NTr(~dρ) ≡ N (~d21ρ12 + h.c.). (1.54)

Here N is the atomic density of the medium. Using the steady state value of ρ12 , one can

easily calculate the susceptibility of the medium

χ =
N|d12|2
~

i(γ + i∆)
(γ2 + ∆2) + 2|G|2 (1.55)

This is no longer a linear susceptibility because the strength of the field E0 is contained

in the quantity G that appears in the denominator. These contributions are related to the

nonlinear susceptibility [13], which controls varieties of higher-order processes that occur

in nonlinear optics. Note that the imaginary part of the above susceptibility, which gives

the absorption profile of the medium, is of the Lorentzian type. The full width at half

maximum (FWHM) of the Lorentzian profile is γc =
√

γ2 + 2|G|2. Therefore, the width

depends on the intensity of the applied field as shown in Fig. (1.3)(red-long dashed). The

additional contribution to the line width is known as power or saturation broadening . The

linear susceptibility expression can be obtained from Eq. (1.55) after dropping the 2|G|2
term in the denominator:

χ =
N|d12|2
~

i

(γ − i∆)
. (1.56)

In the presence of a weak field, Re [χ] has a standard dispersive line shape i.e., the dis-

persion is anomalous, Im [χ] has also a Lorentzian shaped with natural line-width 2γ as
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Figure 1.3: Real [χ] and imaginary [χ] parts of the susceptibility of a two-level atom as a function of the
atom-field detuning ∆ = ω − ω12 in units of γ for two different field G=0, 1γ. The parameters of the above
graph for 87Rb vapor are chosen as density N= 2× 1012 atoms/cc, γ = 3π × 106 rad/sec .

shown in the Fig. (1.3) (black-dashed) . However, as can be seen from Fig. (1.3) for the case

of a two-level system, in usual the medium the light pulses experience very large absorp-

tion in the vicinity of the sharp atomic resonance that prevents a clear observation of high

anomalous dispersion. We next show that this susceptibility behavior can be drastically

modified by applying an additional control field which will extend two level system to

three level atomic configuration.

1.4 Control of Susceptibility in Multilevel Systems

The three level system interacting with two monochromatic fields is considered as a natu-

ral extension of the two level atomic system. The atomic coherence effects in a three level

system are greatly enhanced compared to the two level system which can change the ab-

sorption and dispersion of the system drastically. Depending on the level structure and the

dipole allowed transitions involved in the atom-field interaction, there are three types of

three level configurations as shown in Fig (1.4). A strong field, coupling the states |1〉 and

|2〉 at frequency ωc, with the potential to modify the property of the system, is called the

control field. A weak field at frequency ωp used to couple |1〉 ←→ |3〉 is called a probe field

which measures the changes of the atomic system due to the control field. The detuning

∆c,∆p and the coupling constant 2g and 2G are defined by
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Figure 1.4: Three possible configurations in three level atomic system with two laser fields of Rabi frequency
2G and 2g: Ξ, Λ, V.

∆c = ωc − ω12 , ∆p = ωp − ω13 , 2g =
2~d13 · ~Ep

~
, 2G =

2~d12 · ~Ec

~
(1.57)

Here we will the concentrate on a Λ-system because it is a much more robust system than

the other two systems. The reason behind robustness is that the two lower metastable

states present in a Λ-system have longer life time. Most of the work of this thesis is con-

centrated on Λ-systems. The total Hamiltonian for a Λ-system is given by

H/~ = ω13|1〉〈1|+ ω12|2〉〈2| −
(
G|1〉〈2|e−iωct + g|1〉〈2|e−iωpt + h.c.

)
, (1.58)

where the state |3〉 is considered as a ground state. Making a unitary transformation

|Ψ(t)〉 = e[iωp|1〉〈1|t+i(ωp−ωc)|2〉〈2|t]|ψ(t)〉 in the Schrödinger Eq. (1.23), the effective Hamil-

tonian under the RWA is given by

Heff/~ = −∆p|1〉〈1|+ (∆c −∆p)|2〉〈2| − (G|1〉〈2|+ g|1〉〈3|+ h.c.). (1.59)

Using the Liouville equation, we obtain the corresponding density matrix equations:

σ̇11 = iGσ21 + igσ31 − iG∗σ12 − ig∗σ13 − 2(γ21 + γ31)σ11 , (1.60a)

σ̇22 = iG∗σ12 − iGσ21 + 2γ21σ11 , (1.60b)

σ̇12 = −[γ21 + γ31 − i∆p]σ12 + iGσ22 + igσ32 − iGσ11 , (1.60c)

σ̇13 = −[γ21 + γ31 − i∆c]σ13 + iGσ23 + igσ33 − igσ11 , (1.60d)

σ̇23 = −(Γ23 − i(∆p −∆c))σ23 + iG∗σ13 − igσ21 , (1.60e)

where the following transformations have been used

ρ13 = σ13e
−iωpt, ρ23 = σ23e

−i(ωp−ωc)t, ρ12 = σ12e
−iωct and ρii = σii (1.61)

Let the spontaneous emission rates from the states |1〉 to the state |3〉 and |2〉 be denoted by

2γ31 and 2γ21 , respectively and Γ23 be the decay rate of the ground state atomic coherence



Introduction 17

−5.0 −3.0 −1.0 1.0 3.0 5.0

∆
p
/γ

−0.0020

−0.0010

0.0000

0.0010

0.0020

0.0030

0.0040

Re[χ]

Im[χ]

Figure 1.5: Real [χ] and imaginary [χ] parts of the susceptibility versus the probe detuning ∆p/γ for the
three level Λ-system in the presence of control field. The parameters of the above graph for 87Rb vapor are
chosen as density N= 2× 1012 atoms/cc, G= 1γ, ∆c = 0, Γ23 = 0, γ = 3π × 106 rad/sec .

σ23 . The explicit expressions of the decay terms can be obtained by using the master equa-

tion approach [14]. All the three level configurations are equivalent unless the decay terms

are included. In the absence of any field, we assume that the population is in the ground

state |3〉. The induced atomic coherence by the probe field for the transition |1〉 ←→ |3〉 can

be calculated to the lowest order in the probe field at steady state limit

σ13 =
ig(Γ23 − i(∆p −∆c))

|G|2 + (γ21 + γ31 − i∆p)(Γ23 − i(∆p −∆c))
. (1.62)

From this equation, we obtain the susceptibility expression for the probe field by means of

the polarization expression P = Nd13σ13 = χE, which yields

χ =
iN|d13|2
~

1
|G|2

(Γ23−i(∆p−∆c))
+ (2γ − i∆p)

, (1.63)

where γ31 = γ21 = γ has been used. In the absence of the applied control field (|G|2 = 0),

the above expression gives the same result as in the two level system where the absorption

is large as shown in Fig. (1.3). By applying a suitable control field, the absorption of the

probe field by the medium can become zero as shown in the Fig .(1.5). This effect can be

understood by using the quantum interference theory. It has been well known in quantum
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mechanics from the time of Fano [15] that if states of atom are coupled via several possi-

ble alternative transition processes, interference between the amplitudes of these processes

leads to either constructive or destructive interferences of the total transition probability.

These effects arise because of probability amplitudes which can be either positive or neg-

ative in sign. This type of interference effect can be precisely found in the laser control of

the atomic media. The external control field creates a new path for the electron to reach

the same final state. For suitable field parameters, a destructive interference created by the

external control field permits the propagation of a weak probe pulse through an opaque

atomic medium. This phenomenon is know as “Electromagnetically Induced Transparency”

(EIT).

The possibility of modifying the linear optical properties of the atomic medium using

external auxiliary field was first demonstrated by Tewari and Agarwal [16] and much later

by Harris and coworkers [17]. EIT was first coined to by Stevan Harris in his paper (1990)

where the enhancement of nonlinear effects based on EIT was proposed [17]. EIT was

demonstrated for the first time by Harris and his coworker in a Λ-system in strontium

vapor [18]. This experiment showed that the transmittance of the weak probe field, which

couples a ground state and an autoionising state, could be increased from e−20 (in the

absence of a control field) to e−1 (in presence of a control field). The important point is

that large increment in probe transmission is possible because of the presence of quantum

interference as otherwise the transmittance would only have increased to e−7 due to the

presence of strong saturating field. This implies that the observed phenomenon is not

a sort of hole-burning or saturation effect [19, 20, 21, 22, 23], it is due purely to quantum

interference phenomena. One could also imagine that if somehow the population of the

ground probe level was removed then there would be a large transmission of the probe

field. This is not a true realization of the experimental situation since the probe field is kept

sufficiently weak to prevent significant population movement. The EIT can be observed

even on the reduction of the Rabi frequency of the control field below the spontaneous

decay rate of the common excited state so that there is no Aulter-Townes splitting [24].

This clearly demonstrates that the reduction of probe absorption at low intensity of the

control field is possible due to the presence of quantum interference between the dressed

states, and not due to the ac-stark shift of the atomic levels [25]. Many review articles on

EIT exist in literature [26, 27, 28].
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So far we have discussed that one can manipulate the required dispersive property of

the medium by the application of coherent control fields of suitable intensity. Next, we will

show that the precise control of the group velocity of the light pulse through the atomic

medium can be obtained by manipulating the dispersive property of the medium.

1.5 Group Velocity and its Kinematics

Light pulses in a dispersive media are characterized by various velocities, which was first

pointed out by Brillouin in his famous book; Wave propagation and group velocity [2]. For

an absorptive, dispersive medium, he found it necessary to demarcate velocities into five

different kinds:

the phase velocity, at which the zero-crossing of the carrier wave moves,

the group velocity, at which the peak of the envelope of a wave packet moves,

the energy velocity, at which energy is transported by the wave,

the signal velocity, at which the half-maximum wave amplitude moves, and

the front velocity, at which the first appearance of the discontinuity moves.

These five velocities can differ from each other in the anomalous dispersion region near

the line center. The group velocity may be faster than c (in fact it may become infinite or

even negative), but the energy and signal velocities are always less than c. In a normal

dispersive medium, the last four mentioned velocities coincide and usually are less than

the phase velocity.

In the first section we derive a basic equation that governs the propagation of optical pulses

through the medium. We start with Maxwell’s equation for the applied electric field E

~∇2 ~E − 1
c2

∂2 ~E

∂t2
=

4π

c2

∂2 ~P
∂t2

, (1.64)

where induced polarizationP is usually a complicated nonlinear function of E as in Eq. (1.9).

In the linear case, however, induced macroscopic polarization P can be expressed in terms

of susceptibility by the relation

P(z, t) =
∫ ∞

−∞
χ(ω)E(z, ω)e−iωtdω (1.65)

where the electric field E(z, ω) and susceptibility χ(ω) are related with E(z, t) and χ(t− t′)
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by Fourier transformations as given below:

E(z, t) =
∫ ∞

−∞
E(z, ω)e−iωtdω (1.66)

χ(t− t′) =
∫ ∞

−∞
χ(ω)e−iω(t−t′)dω. (1.67)

The susceptibility χ(ω) can be expanded in Taylor series as

χ(ω) = χ(ω0) + (ω − ω0)
[
∂χ

∂ω

]

ω0

+ · · · (1.68)

and we obtain the expression for the induced polarization (keeping terms only upto first

order in (ω − ω0)),

P(z, t) =
[
χ(ω0)E0(z, t) + i

∂χ(ω0)
∂ω

∂E0

∂t

]
e−i(ω0t−k0z). (1.69)

Substituting the expression for the field (1.66) and polarization (1.69) into the wave equa-

tion (1.64) and using the slowly varying envelope approximation, we can obtain the wave

equation in a simplified form

∂E0

∂z
+

1
c

∂E0

∂t
= 2πik0

[
χ(ω0)E0(z, t) + i

∂χ(ω0)
∂ω

∂E0

∂t

]
. (1.70)

Subsequent rearrangement of the above equation gives

∂E0

∂z
+

1
vg

∂E0

∂t
= 0, (1.71)

where the group velocity of the light pulse is expressed as:

vg ≡ Re
dω

dk
= Re


 c

1 + 2πχ(ω0) + 2πω0
∂χ
∂ω

∣∣∣
ω0


 . (1.72)

It is clear from the above group velocity expression that when the light pulses, propagate

through the medium it has mastery over temporal dispersion of the refractive index given

by

n(ω) =
√

1 + 4πχ(ω), (1.73)

where χ(ω) is the complex susceptibility of the medium. The real part of the susceptibil-

ity (denoted as χ′) gives the dispersive nature of the medium, while the imaginary part

(denoted as χ′′) leads to the absorption by medium. In our expression of group velocity

Eq. (1.72), we have assumed absorption or gain of the medium to be very small. Otherwise



Introduction 21

the group velocity loses its own identity as strong absorption prevents the propagation of

light through the medium. The third term in denominator of Eq. (1.72) is due to frequency

dispersion and vg can be expressed as

vg = Re


 c

1 + 2πχ(ω0) + 2πω0
∂χ
∂ω

∣∣∣
ω0


 = Re

[
c

ng

]
, (1.74)

where group index ng = n + ω ∂n/∂ω. Note that the group index (ng) is totally different

from the refractive index n of the medium. The control of group velocity of the light pulses

through the material medium is possible by two distinct ways as inferred from Eq. (1.72).

First, one can change the group velocity by enhancing of the refractive index n À 1. In

general, the index of refraction, n can be made large by working in the neighborhood of

an optical resonance. Usual dispersion-absorption relations tell us that the absorption of

the light pulses will be large at the same detuning at which the resonant refractive index

is large. Naturally, an important question is whether it is possible to make large refractive

index associated with very small absorption at resonance condition. It was demonstrated

that vanishing absorption can be achieved when the atoms are prepared in coherent super-

position states called “phaseonium” [29]. In a “phaseonium” gas without population in the

excited states, the zero absorption is always accompanied by vanishing refractive index.

However, with a small population in the excited states, absorption vanishes at slightly off

resonance, where the refractive index has a non zero value. This is the idea to get a large

refractive index in a nonabsorbing medium [30, 31, 32, 33, 34, 35]

The second way of changing group velocity is to change the slope of the temporal

dispersion ∂n/∂ω. For normal dispersive medium; ∂n/∂ω > 0 it leads to light propagating

through the medium with subluminal velocity (light traveling slower in the medium than

in vacuum). For the case of anomalous dispersion: ∂n/∂ω < 0 implies that n + ∂n/∂ω <

1. This results in light pulse propagation at a superluminal velocity (light traveling at a

velocity faster than in the vacuum). One example of this case is vg = ∞when the condition

of n + ∂n/∂ω = 0 is satisfied. This corresponds a rare situation; here the response of the

medium to the applied field is local.

All these indicate that the precise control of the velocity of the light pulses through the

medium is made possible by manipulating its dispersive property. As mentioned in an

earlier section, one can manipulate the dispersive property of the medium by applying the
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control field. Therefore, the external control fields act as key tools for precise control of the

group velocity of light pulses through the atomic medium.

1.6 Subluminal Pulse Propagation

Two level atomic system is able to slow light pulse propagation. However, two level

atomic systems show large absorption, which prevents the propagation of pulse inside

the medium. One can get rid of this large absorption by using a very strong field which

takes the medium into a saturating condition. Using this technique, Mossberg observed

a group velocity of c/60 [36]. McCall and Hahn demonstrated that light pulses energies

of a certain profile (called Π- pulses) can be transmitted even through strongly absorb-

ing two level medium without any change in its shape and energy [37]. In this case, the

leading edge of the pulse is absorbed producing inversion in the medium. This inversion

amplifies the trailing part of the pulse and thus the energy is conserved for the pulse. This

phenomenon is called self induced transparency (SIT) [38, 39, 40]. The absorption of lead-

ing edge and amplification of trailing edge results in a delay and thus light pulses move

with a slower velocity as compared to free space. Note that the pulse duration is much

shorter than the inverse of the homogeneous linewidth. The experimentally observed low-

est group velocity for SIT is about c/104 [41, 42, 43]. Recently, Bennink et al. have predicted

that a simple two-level system driven by a strong control field can display a very sharp

normal dispersion which leads to dramatically reduce the value of the group velocity [44].

In a multilevel system i.e., a system with more than two levels, coherent coupling of

more than one transition can dramatically alter the group velocity. For a medium that can

be modelled as a set of atoms with relevant energy level in Λ-configuration, the group

velocity expression in Eq. (1.74) can be written as:

vg =
c

1 +
2πω13N|d13|2(G2−Γ23)

~(G2+2γΓ23)
2

, (1.75)

where ∆p = ∆c = 0. For the intensity of the control field |G|2 À γΓ23 , the group index

expression will be ng = 2πω13N|d13 |2
~|G|2 . This implies that group velocity of the light pulse

is very much sensitive to the intensity of the applied control field. For ultra slow group

velocity one requires a large group index. This is made possible when the dephasing rate

of the ground state atomic coherence is reduced significantly, thereby, narrowing the width
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of the EIT window. The slope of the refractive index become very steep which results in

the group velocity getting reduced to a very small value. Thus group velocity can be

controlled using the coherent manipulation of dispersion.

In 1992, Harris et al. theoretically studied the EIT dispersive property, and found that

there is a steep normal dispersion in the line center of the transparency window in which

the group velocity of the light pulse can be slowed [c/vg = 250] [45]. From then on, re-

searchers focused their attention on slowing down the light speed in highly dispersive EIT

media. Min Xiao et al., for the first time observed the normal dispersion slope correspond-

ing to a group velocity c/vg = 13.2 in the region of the transparency window in hot Rb

vapour in a ladder configuration [46]. Soon thereafter, Kasapi et al. measured the sub-

luminal group velocity of c/vg = 165 in a 10 cm Pb vapor cell in EIT configuration [47].

Schmidt et al. measured simultaneously the absorption and dispersion in the vicinity of an

EIT resonance in a cesium vapor cell. They found steep dispersion corresponding to group

velocity of c/vg = 3000, associated with low absorption [48]. The light pulse can propagate

with extremely slow group velocity in three level Λ-systems at two photon Raman reso-

nance condition [49]. Paspalakis and Knight have shown how the group velocity of the

probe pulse can also be controlled in a multilevel EIT system [50]. Slow light has also been

observed in far-off-resonance Raman systems [51].

Electromagnetically induced transparency in a Bose-Einstein condensate is an excel-

lent environment for studying the ultra slow group velocity of light pulses. By using this

technique, Hau and her coworkers demonstrated the ultra slow group velocities of 17 m/s

in an ultra cold gas of sodium atoms. In ultra cold atoms, extremely narrow transparency

dip due to quantum interference can be induced by using very low intensity of the control

field. A very rapid variation in the refractive index is present at the line center of the low

absorption region. This steep slope together with high density ultra cold atoms leads to

ultra-slow group velocity [52]. A model was proposed by Morigi and Agarwal to explain

the temperature dependence of the group velocity as observed by Hau et al. in a Bose-

Einstein condensate [53]. Kash et al. have reported ultra-slow light in coherently driven

hot Rb atoms. By a suitable choice of experimental parameters such as the control field

intensity and atomic density, a group velocity of 90 m/s was observed [54]. Budker et al.

performed the ultra-slow group velocity experiment on rubidium vapor in a cell with anti-

relaxation parafin wall coating [55]. This coating suppresses inelastic collisions of atoms
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with the walls of the vapour cell. They observed the group delay of 13 ms, corresponding

to 8 m/s group velocity of light. However, the density of the Rb atoms in such experiment

is modest i.e., ∼ 1012 atoms/cm3. It is of considerable interest to produce ultra-slow light

in solid state material, where the atomic density is a million times larger than in gases.

Ultra-slow light in a solid state material like Pr3+ doped Y2SiO5 crystal at a cryogenic tem-

perature was first demonstrated by Turukhin et al.. In their experiment, they were able to

slow down the group velocity of light pulses to 45 m/s [56]. Bigelow et al. demonstrated

the propagation of ultra-slow light with a velocity 57.5 m/s in a ruby crystal at room tem-

perature [57].

Ultra-slow light offers many newer applications in quantum and non-linear optics. A

very interesting and exciting application of ultra-slow light in optical “black hole”. This

idea was put forward by Leonhardt and Piwnicki [58, 59, 60]. They pointed out that for

a highly dispersive medium, a vortex can create a long-range Aharonov-Bhom effect [61,

62, 63, 64] on incident light and at shorter ranges the vortex can behave like a black hole

i.e., as if the light is being trapped into the vortex in a way that matter is trapped into a

black hole in space. Further, applications of slow light in moving media was demonstrated

in nonlinear interactions at very low levels [65, 66]. Slow light has found application in

quantum networks and quantum information processing. Quantum entanglement of slow

photons [67], non-classical and entangled atomic ensembles [68], and quantum memories

[69] are other interesting areas needing further research.

Freezing of Light

The ultimate control over the velocity of light pulse can be obtained by reducing the group

velocity to zero. For a temporally dispersive medium, the minimum value of the group

velocity is written as

vg =
2πΓ23

3Nλ2
(1.76)

when G2 ≈ γΓ23. The above equation implies that the group velocity attains its minimum

value but it will never be equal to zero, since Γ23 6= 0, which prevents the stoppage of light

inside the medium. This is the main constraint of a temporally dispersive medium. One

can overcome this limitation by considering the spatial as well as the temporal dispersion

of the medium i.e., by using the dependence of refractive index on the frequency ω0 and

wave vector ~k0. It has been shown both theoretically and experimentally how the control
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fields can produce spatially varying refractive index profiles [70]. Therefore, the group

velocity can be expressed in the following form

vg ≡ Re
dω

dk
= Re

[
c (1− 2πk0∂χ/∂k)

1 + 2πχ + 2πω0∂χ/∂ω

]
. (1.77)

This equation suggests that the stoppage of light is possible by making the numerator to

zero instead of increasing the dominator to a very large value, which is rather impossible.

This idea was proposed by Kocharovskaya et al. and they proved it in a coherently driven

Doppler broadened atomic medium via EIT [71].

1.7 Storage and Retrieval of Light Pulses

Over the past couple of years, storage and retrieval of light pulses in an atomic medium,

have received serious attention in the field of quantum information due to the fact that

photons are the most suitable candidates to carry information. In general, photons are dif-

ficult to store and retrieve without any destruction. In this context, matter can be used to

serve as the storage element of the light pulse. The faithful map of the quantum state of

the light pulse onto matter with less dissipation is made feasible by using the technique of

electromagnetically induced transparency. Accompanied with the transparency, is a dras-

tic modification of the dispersive property of the medium. This modification can result in

ultraslow velocity of light pulses which is the basic principle of the light storage technique.

Classical storage of optical information in time domain based on the phenomenon of

photon echo experiments in two level systems [72] and multilevel media [73, 74], has a

long history. However, in this promising technique for high capacity storage of classical

optical information, the storage time is very short because of shorter transverse relaxation

time. Storage time can be increased by using the stimulated photon echo combined with

the long lifetime of the ground-state hyperfine levels [73, 75, 76]. Usually the photon echo

technique does not provide complete information about the signal because the retrieved

pulse has a different shape compared to the input pulse shape. Non-linear optical effects

at low light levels [65, 77, 78] give rise to an opportunity to store and retrieve light pulse

without loss of generality [79, 69, 80].

A weak probe pulse moves with a substantially reduced velocity in a EIT configured

three-level Λ-system in the presence of control field. The propagation velocity of the weak
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probe pulse is reduced very much due to the formation of a dark state polariton, which

is a mixture of atomic coherence and the field. The characteristic of the dark polariton

depends on the intensity of the control field. Dynamically reducing the intensity of the

control field decelerates the polariton and this can effectively bring to halt the light pulse

inside the medium. When this happens, the polariton develops a purely atomic character

and the information about the weak probe pulse is mapped onto the atomic coherence.

Therefore, the weak probe pulse can be stored inside an atomic ensemble in the form of

atomic coherence. The atomic coherence can be transferred back to a input probe pulse

by reaccelerating the polariton. The EIT Polaritons were first considered theoretically by

Mazets and Matisov [81], and later by Fleischhauer and Lukin [69, 82] who proposed stor-

age and retrieval of the weak probe pulses in an atomic medium by switching off the

control field adiabatically. The role of adiabaticity for the light storage technique has been

relaxed in the discussion of Matsko et al.. They have shown that almost perfect light stor-

age is possible by using adiabatic as well as non-adiabatic switching of the control field

[83]. Juzeliunas and Carmichael formulated a theory of slow EIT polaritons in BEC model

with a Λ-configuration for storage and retrieval of laser pulse [84]. These effects have also

been observed in a double Λ-system [85]. In the presence of the detunings of the weak

probe pulse and control field, storage of light has also been investigated [86]. Storing and

releasing light pulses can now be achieved in a gas of moving atoms by using a pair of

stationary and spatially separated control fields, i.e., there is no need to switch off and on

a control field at precise times [87].

Using the EIT technique, Phillips et al. [88] have experimentally demonstrated a method

of storage and retrieval of light pulses in a hot Rb vapour by changing the intensity of the

control field. In their experiment, light can be stored inside the medium only upto ∼ 0.5

ms due to the short lifetime of the atomic coherence. Almost at the same time, Hau et al.

[89] have performed the light storage experiment in a laser cooled atomic sodium vapour

near the temperature for Bose-Einstein condensation. Both experiments have been carried

out with orthogonally polarized weak probe and control fields. Gao et al. have shown that

the weak probe pulse with arbitrary polarization can be stored in a hot Rb vapour [90]. In

a different development, Bajcsy et al. have been demonstrated that storage of light in a Rb

vapour is possible via the simultaneous application of a pair of counter propagating con-

trol field. These two counter propagating control fields create a standing wave interference
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pattern of dark and bright regions inside the medium. The bright regions of the standing

wave pattern diminish the EIT, causing the atoms to absorb photons. But, by tuning the

two control fields to make the bright region very narrow, one can force the region to reflect

rather than absorb light pulse. This results in trapping of light pulse inside the medium.

The trapped light can be retrieved only after one of the control beams is turned off and the

properties of the released light will then depend on the remaining control field [91].

The released light can be modified in a controlled way by processing the atomic medium

during the storage stage. On this issue, Zibrov et al. applied an additional control field

which is scattered by the ground state Zeeman coherence and is released as a new field

[92]. The property of the new field depends solely on the characteristics of the additional

control field. Another successful experimental demonstration was made by Mair et al. re-

garding this issue. They applied an additional magnetic field during the light storage stage

in order to change the phase of the atomic coherence which results in a phase shift of the re-

trieved pulse [93]. The effect of detuning in the light storage experiment has been reported

experimentally (as well as theoretically) by Payne et al. [94, 95]. Recently, Hemmer and his

coworkers reported the storage of light in solid state material at a cryogenic temperature

[56]. Storage and retrieval of light will have profound implication in the area of quantum

information processing [96, 97]. The possible application of the light storage technique to

generate continuous beams of atoms in nonclassical or entangled quantum states has also

been proposed [98]. Storage of light can fulfill the dream of creating superfast computers

that manipulate the quantum states of light beams rather than the classical states of elec-

trons as in today’s computers. A comprehensive reviews of this subject have been carried

out recently [99, 100, 101].

1.8 Superluminal Pulse Propagation

Sommerfeld and Brillouin first demonstrated that the group velocity of light pulses could

exceed c in a media exhibiting anomalous dispersion near the absorption line center [102,

2]. In their classic paper, a rectangular shaped light pulse where the sharply vanishing

amplitude of pulse gives rise to the front of the pulse was considered. Interestingly they

found that the speed of the front of the pulse is equal to the speed of light in vacuum even

in the case of anomalously dispersive region, where the group velocity vg > c or vg < 0 and
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the pulse gets sufficiently distorted. Much later, in 1969, a theoretical paper by Aharonov

et al. pointed out the possibility of superluminal group velocities in a non-optical context

which involve an unstable configuration and do not violate causality [103]. In 1966 Basov

et al. first demonstrated that the group velocity of a laser pulse in an amplifier (population-

inverted two level medium) could exceed c [104]. This phenomenon comes from the fact

that the amplification of the front portion of the pulse leaves less gain available for the back

portion, resulting in an advancement of the peak of the pulse. This advancement comes

solely from the pulse reshaping process. In a subsequent paper, Icsevgi and Lamb [105]

argued that Basov et al. [104] considered an unphysical input pulse extending to infinity at

both ends resulting in an apparent violation of causality. Propagation of light pulses with

group velocity vg greater than speed of light c, which results from amplification, is now

known as superluminal propagation [106, 107].

In 1970, Garrett and McCumber [108] made an important contribution towards su-

perluminal propagation. They investigated theoretically the propagation of sufficiently

smooth pulses, such as Gaussian pulses through either an amplifying or absorbing medium

under the conditions that the pulse bandwidth is much smaller than the width of the ab-

sorption line and the medium is sufficiently short for distortion-free propagation. In 1981,

Chu and Wong established the predictions of Garrett and McCumber [108] by measuring

the transmission time of a resonant picosecond laser pulse in GaP:N [109]. Later, Segard

and Macke [110] also confirmed experimentally (as well as numerically) the theoretical

predications made by Garrett and McCumber [108]. They used millimeter wave pulses

through a linear resonant molecular absorber and observed significant pulse advancement

and negative group velocities with no pulse distortion.

The study on superluminal propagation has received considerable boost from the work

of Raymond Y. Chiao and coworkers [111, 112, 113, 114, 115, 116, 117, 118, 119]. By using

two closely spaced Raman gain lines which induces a transparenency in the anomalous

dispersion region where the group velocity exceeds c without any significant pulse dis-

tortion was initially proposed by Steinberg and Chiao [115]. The idea of Chiao et al. has

been experimentally verified by Wang and his coworkers [120, 121]. Wang et al. used two

intense cw pumps with a slight frequency separation of 2 MHz. They were sufficiently

detunned from a particular Zeeman component of the cesium resonance line to create the

Raman gain doublet. These Raman gain doublet results in a lossless anomalous dispersion
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region and therefore the group velocity of a pulse in this anomalous dispersion is greater

than c and can even become negative while the shape of the pulse remains same. They

measured a negative group velocity vg = −c/315 which means that a light pulse propagat-

ing through atomic vapor cell exits early as compared to the propagation through the same

length in free space. Therefore, the peak of the pulse leaves the cell before it enters. This

counterintuitive phenomenon about light pulses is a consequence of classical interference

between its different Fourier components in the anomalously dispersion region and does

not violate causality [122].

Akulshin and his coworkers have demonstrated that extraordinarily steep anomalous

dispersion can be obtained in two level atomic systems by using electromagnetically in-

duced absorption [123, 124, 125]. They observed a value of anomalous dispersion cor-

responding to a negative group velocity vg ' −c/23000 with large absorption. Steep

anomalous dispersion in the absence of absorption has been shown both theoretically

and experimentally in a two level atomic system strongly driven by a resonant pump

[126, 127, 128, 129], for both weak and moderately strong probes [126]. The superluminal

propagation of pulses has also been studied inside diffractive structures [130], photonic

band gap materials [131, 132], active plasma medium [107, 133], and nonlinear coherent

medium [134]. In a Raman scheme, Payne and Deng theoretically demonstrated how light

pulse moves with superluminal velocity when two-photon detuning is large [49].

There have been a few attempts to realize both subluminal and superluminal pulse

propagation in a single atomic system. Talukder et al. [135] have shown femtosecond laser

pulses propagating from superluminal to subluminal velocities in an absorbing dye with

change in dye concentrations. The group velocity of the weak pulse can be switched from

subluminal to superluminal by manipulating the phases of the two weak optical fields ap-

plied to a V-shaped three level system [136]. Budker et al. demonstrated that propagation

can be changed from subluminal to superluminal by using, say, a static magnetic field of

the order of a few microgauss [55]. The experimental demonstration of the change of the

group velocity from superluminal to subluminal can be obtained by changing the power

of the coupling intensity in the single atomic transition [137]. Bigelow et al. have demon-

strated that ultraslow and superluminal propagation can be obtained in the same solid

state material at room temperature by changing the excitation wavelength [138].

Superluminal group velocity has restarted the debate about the definition of informa-
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tion velocity. On this issue, Diener has clarified that the information velocity, i.e., the speed

of a point of non-analyticity, can never exceed in vacuum speed of light, not even in the

case of superluminal group velocity [139, 140]. This preserves causality. The propagation

pulse, consists of a few photons, through an anomalous dispersion media where quan-

tum fluctuations in the photon numbers impose severe restrictions on the observation of

superluminal phenomena [141, 142, 143]. Very recently, Stenner and his coworkers have

experimentally shown that the time to detect information propagation through a gain as-

sisted anomalous dispersive medium is slightly longer than the time required to detect the

information travelling the same distance in vacuum, even though superluminal group ve-

locity exceeds the speed of light c [144]. Many reviews on this superluminal propagation

now exist in the literature [101, 145].

The possible application of superluminal light propagation can be found in optical

communication, optical networks, opto-electronic devices and wave guides where smooth

pulse are used. As we know, time synchronization of differently routed pulses decide the

clock speed of computer chips. If different pulses are routed through different paths, they

will arrive at different times at the final logic gate. Therefore, the time synchronization at

final gate can be achieved by adding extra time delay to pulses arriving early. As a result,

the clock speed of the computer chip becomes slower and it reduces the performance of

computers. By using the principle of superluminality one can speed up the clock of a

computer chip [146].



CHAPTER 2

From Subluminal to Superluminal Propagation

Light pulse travels at an enormous speed of 300,000 kilometers per second in vacuum.

Recent research has established the possibility of controlling the speed of light in a medium

by manipulating the dispersive property of the medium. It is well understood as to how

the dispersion of a medium can be manipulated by the use of control laser fields which

precisely controls the speed of the light pulses. When a well-defined light pulse of angular

frequency, ω1, propagates in a highly dispersive linear medium of optical refractive index

n(ω1), the light pulse propagates at a group velocity, given by

vg =
c

ng
, (2.1)

where ng = n(ω1) + ∂n(ω1)/∂ω1 is the group-velocity index. We assume that the absorp-

tion or gain of the medium is very small i.e., imaginary part of the refractive index, n(ω1),

vanishes. Group velocity is the velocity with which the peak of a light pulse propagates

through the dispersive medium. The expression of Eq. (2.1) indicates that the functional

form of the real part of the refractive index, n(ω1), and its derivative, ∂n(ω1)/∂ω1, de-

termine the group velocity, vg. In the normal dispersion region where the refractive in-

dex changes sharply and ∂n(ω1)/∂ω1 À 1, the group velocity become subluminal i.e.,

vg < c. Furthermore, it may be noted from Eq. (2.1) that for the anomalous region, where

∂n(ω1)/∂ω1 ¿ 0, the group velocity can be superluminal (e.g. vg > c,∞ or even -ve).

A negative group velocity corresponds to the situation where the peak of the pulse ar-

rives at the output end of the medium before it has entered the medium. In this chap-

ter, we demonstrate how the application of the coupling field connecting two lower level

31



From Subluminal to Superluminal Propagation 32

ω1 ,
, ω2G

5 S
2

1/2

5  P
2

1/2
2

g

γ

Ω , 

1 2 γ 2

|

|

1>

3| >

2 >

F=1

F=2

Probe Field Control Field

F’=2

Additional Field
3

ω

Figure 2.1: Schematic diagram of three level Λ-system.

metastable states of a Λ-system, allows one to change the dispersion at line center such that

it can switch from normal to anomalous and again back to normal region. In particular, we

show how the light pulse propagates with superluminal velocity through a gain assisted

anomalous dispersive medium with very little pulse distortion. The distortion of the light

pulse solely comes from the group velocity dispersion which will be discussed later. The

effect of Doppler broadening on the group velocity calculation will also be discussed.

2.1 Model System and Its Basic Equations

The atomic system we investigate here is a Λ-shaped closed three level system as depicted

in Fig (2.1). Here we define all fields as

~E(z, t) = ~E(z, t) e−i(ωt−kz) + c.c., (2.2)

where ~E is the slowly varying envelope of the field. We consider the propagation of a weak

probe pulse whose central frequency ω1 is close to the frequency of the atomic transition

|1〉 ↔ |3〉. we apply a control field on the optical transition |1〉 ↔ |2〉. The transition |2〉 ↔
|3〉 is generally an electric dipole forbidden transition. The states |2〉 and |3〉 are metastable

states. An additional control field, referred to as lower level (LL) coupling field, acts on

the transition |2〉 ↔ |3〉. The application of lower level coupling field can produce regions

in the optical response with an appropriate dispersion profile. The dispersion can change

from normal to anomalous depending on the intensity of the lower level coupling field.

The model of Λ atomic configuration can be found for example in energy levels of 87Rb

where the hyperfine levels |52S1/2;F = 1〉 as |3〉, |52S1/2; F = 2〉 as |2〉, and |52P1/2; F ′ = 2〉
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as |1〉 as shown in Fig. (2.1). The nature of LL field, which will couple to |2〉(52S1/2; F = 2)

↔ |3〉 (52S1/2;F = 1), depends on the level structure of the atom. The frequency difference

between hyperfine levels |52S1/2;F = 1〉 and |52S1/2; F = 2〉 is 6.8 GHz which corresponds

to the microwave field in the case of 87Rb. It could be an infrared field in case of 208Pb atom.

Moreover, it could be a dc field if one is considering transparency with Zeeman sublevels.

The total Hamiltonian for such a closed Λ-system coupled with the probe and control fields

can be written as

H = ~ω13 |1〉〈1|+ ~ω13 |2〉〈2| − ~Ge−iω2t|1〉〈2| − ~Ωe−iω3t|2〉〈3| − ~ge−iω1t|1〉〈3|+ h.c., (2.3)

where the Rabi frequencies 2g, 2G and 2Ω are defined by

2g =
2~d13.~Ep

~
, 2G =

2~d12.~Ec

~
, 2Ω =

2~µ23. ~B
~

, (2.4)

for the probe transition |1〉 ↔ |3〉, the pump transition |1〉 ↔ |2〉 and the additional cou-

pling transition |2〉 ↔ |3〉, respectively. The electric and magnetic dipole-matrix element

are represented by ~dij and ~µij , respectively. Note that magnetic dipoles are much weaker

than electric dipoles this has serious implications for the power requirements of the LL

coupling field. In writing Eq. (2.3), we have made RWA to neglect the rapidly oscillating

term. The state |1〉 decays to the states |3〉 and |2〉 at the rates 2γ1 and 2γ2, respectively.

For simplicity we ignore all collisional effects though they could be easily included. By

making a unitary transformation from the density matrix ρ to σ via

ρ12 = σ12e
−iω2t ; ρ13 = σ13e

−i(ω2+ω3)t ; ρ23 = σ23e
−iω3t , (2.5)

we have the relevant density matrix equations

σ̇11 = iGσ21 + ige−i∆4tσ31 − iG∗σ12 − ig∗ei∆4tσ13 − 2(γ1 + γ2)σ11 ,

σ̇22 = iG∗σ12 + iΩσ32 − iGσ21 − iΩ∗σ23 + 2γ2σ11 ,

σ̇12 = −[γ1 + γ2 + Γ12 − i∆2]σ12 + iGσ22 + ige−i∆4tσ32 − iGσ11 − iΩ∗σ13 , (2.6)

σ̇13 = −[γ1 + γ2 + Γ13 − i(∆2 + ∆3)]σ13 + iGσ23 + ige−i∆4tσ33 − ige−i∆4tσ11 − iΩσ12 ,

σ̇23 = −(Γ23 − i∆3)σ23 + iG∗σ13 + iΩσ33 − ige−i∆4tσ21 − iΩσ22 ,

with σ∗ij = σij and σ11 + σ22 + σ33 = 1. Here Γ’s give collisional dephasings, the detunings

∆1, ∆2, ∆3, and ∆4 are defined by

∆1 = ω1 − ω13 ; ∆2 = ω2 − ω12 ; ∆3 = ω3 − ω23 ; ∆4 = ∆1 −∆2 −∆3 . (2.7)
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We are interested in calculating the group velocity of the probe pulse for transparent

medium, i.e., systems, which have very low probe absorption or gain. The group velocity

of the probe pulse is given by

vg =
c

1 + 2πχ′
13

(ω1) + 2πω1
∂χ
′
13

(ω1)

∂ω1

, (2.8)

where χ
′
13

(ω1) is the real part of the probe susceptibility χ13(ω1). We are working under

conditions such that Im[χ13(ω1)] = χ
′′
13

(ω1) ≈ 0. The susceptibility χ13(ω1) will depend

strongly on the intensities and the frequencies of the control and the LL coupling field.

The susceptibility χ13 can be obtained by considering the steady state solution of Eq. (2.6)

to first order in the probe field on the transition |1〉 ↔ |3〉. For this purpose we assume that

γ1 = γ2 = γ and write the solution as

σ = σ0 +
g

γ
e−i∆4t σ+ +

g∗

γ
ei∆4t σ− + ...... (2.9)

The 13− element of σ+ will yields the susceptibility at the frequency ω1 which can be seen

by combining Eqs. (2.5) and (2.9)

χ13(ω1) =
N|d13|2
~γ

σ+
13 , (2.10)

where N is the density of atoms. The group velocity can be obtained by substituting

Eq. (2.10) in Eq. (2.8). Another important quantity is time delay Td with respect to propa-

gation in the vacuum over the same distance is given by

Td = L(
1
c
− 1

vg
), (2.11)

where L is the length of the medium. In presence of the LL coupling field it is difficult to

obtain algebraically simple expressions for χ13 , however Eqs. (2.6) can be solved numeri-

cally in the steady state limit.

2.2 Numerical Results and Discussion

Here, we present a number of numerical results obtained from the study of the steady state

response of the medium described in the above section. We have used the parameters for
87Rb vapor with the natural decay rate of the excited state |1〉 (γ = 3π × 106 rad/sec), the
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Figure 2.2: (a) and (b) Real and imaginary parts of the susceptibility [Eq. (2.10) ; χ13~γ/N|d13|2] versus
the probe detuning ∆1/γ for the three level Λ-system in the presence of control field, for (a) LL coupling field
Ω = 0 and (b) LL coupling field Ω = 5γ. The parameters of the above two graphs for 87Rb vapor are chosen
as density N= 2× 1012 atoms/cc, G= 10γ, ∆2 = ∆3 = 0, Γ12 = Γ13 = Γ23 = 0, γ = 3π × 106 rad/sec .

wavelength for the ground to excited state transition (λ1 = 7950Å), and density of atoms

in the medium (N = 2× 1012 atoms cm−3). Fig. (2.2) shows the dispersive behavior of the

medium in the absence and presence of the additional control field (LL), respectively. We

plot absorption Im[χ13~γ/N|d13|2] and refraction Re[χ13~γ/N|d13|2] as a function of the

dimensionless probe detuning ∆1/γ. Fig. (2.2a) shows a normal dispersion accompanied

with a transparency window (EIT window) in the absence of the LL coupling field i.e.,

Ω = 0. The dispersion becomes zero at the line center ∆1 = 0, and its slope around this

point is positive and steep. This can lead to the subluminal group velocity. The dispersion

slope is very sensitive to the intensity of the control field. By suitable application of the

LL coupling field, the dispersive nature of the medium can be modified dramatically. As

shown in Fig. (2.2b), the real part of χ13 exhibits anomalous dispersion whereas the imagi-

nary part of χ13 is fairly flat and negative, vanishing exactly at line center, i.e., ∆1 = 0. The

anomalous dispersion along the negative flat region in the imaginary part of χ13 is espe-

cially fascinating for superluminal propagation. In the experiment of Wang et al. similar

regions of χ13 were used to produce superluminal propagation [120]. To clarify further,

we have plotted the group index ng as a function of the intensity of LL coupling field. We

notice from the Fig. (2.3), how the group index ng changes from large positive values to
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Figure 2.3: Variation of group index with the Rabi frequency of LL coupling field. We have used the same
parameters as in Fig. (2.2).

large negative values and back to positive values as the intensity of the LL coupling field

is increased. Thus, LL coupling field is like a knob which can be used to change light pulse

propagation from subluminal to superluminal. We note that the production of superlu-

minal propagation depends very much on the nature of the atomic transitions within the

system under study and the choice of a large number of parameters such as the powers

of the control and coupling fields. From our numerical results it is clear that we need a

large coupling between |2〉 and |3〉. For a magnetic dipole transition between the states |2〉
and |3〉 the requirement of power of the LL coupling field is large and, in principle, this

can be met by using pulsed fields with a pulse width & µ sec. However, if |2〉 and |3〉 are

chosen to be Zeeman levels, then the available dc magnetic field can be utilized to change

propagation from subluminal to superluminal. Note that for 87Rb, a Rabi frequency of

100γ implies a magnetic field of the order of 99.3 Gauss. Another possibility would be to

consider an effective interaction between |2〉 and |3〉 via Raman transition using two other

laser fields. The choice of the system is quite open and we have essentially shown the “in

principle” possibility of subluminal to superluminal light propagation.
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2.3 Distortion Free Superluminal Pulse Propagation

To verify the above result, we consider the propagation of a Gaussian shaped probe pulse

through the transparent anomalous dispersing medium of length L. The envelope of the

Gaussian pulse in the frequency domain is given by

Ein(ω) =
E0√
πΓ2

exp
[−(ω − ω0)2/Γ2

]
, (2.12)

where Γ is the spectral width of the pulse. In the time domain the Fourier counterpart can

be written as

Ein(z, t) =
∫ ∞

−∞
dωEin(ω)e−i(ωt−kz). (2.13)

Therefore, at the entrance point of the medium i.e., at z = 0, we can rewrite the above

equation

Ein(0, t) =
∫ ∞

−∞
dωEin(ω)e−iωt

=
E0

2π
e−

(t Γ)2

4 e−iω0t, (2.14)

where ω0 is the carrier frequency of the light pulse. At the exit point of the medium, i.e., at

z = L, the form of the output pulse is given by

Eout(t) =
∫ ∞

−∞
dωEin(ω)e−i(ωt−ωL

c
n(ω)) (2.15)

The limited spectral bandwidth of the input pulse allows us to approximate ωn(ω) by the

first few terms of the Taylor series:

ωn(ω) = ω0n(ω0) + (ω − ω0)
∂(ωn(ω))

∂ω

∣∣∣∣
ω=ω0

+
(ω − ω0)2

2!
∂2(ωn(ω))

∂ω2

∣∣∣∣
ω=ω0

+ · · ·

= ω0n(ω0) + (ω − ω0)
c

vg

∣∣∣∣
ω=ω0

+
(ω − ω0)2

2!
∂2(ωn(ω))

∂ω2

∣∣∣∣
ω=ω0

+ · · · (2.16)

where the expansion is carried out upto the quadratic term. Nonlinear term in the expan-

sion of Eq. (2.16) are often associated with “group velocity dispersion” which causes pulse

distortion. Thus after integration, we can obtain the output pulse

Eout(t) =
E0√

1− iκL
e−iω0{t− z

c
− z

c
n(ω0)}e−

[Γ(t−L/vg)]2

4(1−iκL) , (2.17)

with

κ =
Γ2

2c

[
∂2

∂ω2
(ωn(ω))

]∣∣∣∣
ω=ω0

=
Γ2

2c

[
∂2

∂ω2
(ω (1 + 2πχ(ω)))

]∣∣∣∣
ω=ω0

. (2.18)
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Figure 2.4: The pulse is taken to have a central frequency in resonance with the transition |1〉 ↔ |3〉. The
solid curve of (d) shows light pulse propagating at speed c through 6 cm of vacuum. The dotted curve shows
same light pulse propagation through 87Rb vapour with density 2 × 1012 atom/cm3 of length 6 cm with a
time delay −4.39µsec in the presence of a LL coupling field with Rabi frequency Ω = 5γ. The pulse width
Γ is 120KHz. Other parameters are chosen as G= 10γ, ∆1 = ∆2 = ∆3 = 0, Γ12 = Γ13 = Γ23 = 0,
γ = 3× π × 106 rad/sec.

where χ(ω) is the complex susceptibility of the dilute atomic gas, such that |4πχ| ¿ 1.

We are working in the region such that Im[χ(ω0)] ≈ 0, i.e., first exponential part of the

Eq. (2.17) does not have any contribution on the amplitude reduction or gain. Therefore,

the change in the amplitude and width of the pulse solely comes from the imaginary part

of the group velocity dispersion. The broadening and narrowing of the pulse respectively

depend on whether Im [zκ] > 0 or Im [zκ] < 0.

The effect of superluminality in course of the probe pulse propagation has been shown

in Fig (2.4). In this Fig (2.4) we also show the pulse at the output in absence of the medium.

The advancement of the pulse due to the superluminality medium is seen. The time delay

of the probe pulse, calculated from the relative delay between the peak positions of the

reference pulse and output pulse, is −4.39µs. This result is in very good agreement with

the results of the Eq. (2.11). For our numerical simulation, we have considered 6 cm long
87Rb atomic vapour at atomic densityN = 2× 1012 atom/cm3. We have used pulse width

Γ = 120 KHz to avoid any severe absorption of the pulse and in order that it is well

contained within the transparency window of the medium. We also note that the output

pulse gets narrowed as compared to the input pulse. This narrowing is related to the

second order of the susceptibility, i.e., the group velocity dispersion as discussed earlier.

Next, we have investigated the pulse width change factor (Im[κL]). Fig. (2.5) depicts
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Figure 2.5: Variation of the pulse width change factor Im[κL] with the Rabi frequency of the LL coupling
field. We get narrowing of the pulse by ∼20.37% for the chosen parameters as in Fig. (2.4).

the imaginary part of the group velocity dispersion as function of the intensity of the LL

coupling field. The narrowing of the pulse as shown in the Fig. (2.4) is in conformity with

the pulse width change factor Im[κL] by about 20% for the chosen parameters.

2.4 Doppler Effect on Group Index Calculation

In this section, we determine the influence of the Doppler broadening on the superluminal

group velocity calculation. For a single atom, moving with a velocity v along the z-axis,

the probe frequency ω1(v) as seen by the atom, is given by

ω1(v) = ω1 ± k1v (2.19)

where the negative (positive) sign corresponds to co-propagating (counter - propagating)

atom and probe respectively. In our model system we consider probe and control fields

are copropagating with atom. Hence, the control field frequency ω2(v) and LL coupling

field frequency ω3(v), as seen by the atom are given by

ω2(v) = ω2 − k2v, ω3(v) = ω3 − k3v. (2.20)

Note that the velocity dependence of the LL coupling field frequency ω3 is insignificant and

hence we can ignore it. The detunings of the probe and control fields from their respective

transitions are given by

δ1(v) = ω1(v)− ω13 = ∆1 − k1v, δ2(v) = ω2(v)− ω12 = ∆2 − k2v. (2.21)
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Figure 2.6: Group index variation with the Rabi frequency of LL coupling field. The curves (a) and (b) are
for propagation in Rubidium vapor with density N= 2 × 1012 atoms/cc. Other parameters are chosen as
G= 200γ, ∆1 = ∆2 = ∆3 = 0, Γ12 = Γ13 = Γ23 = 0, γ = 3 × π × 106 rad/sec. For curve (b) the
Doppler width parameter δ is chosen as 1.33 × 109 rad/sec. Curve (c) shows variation of group index ng

with the Rabi frequency of LL coupling field in 208Pb vapor with density N= 2× 1014 atoms/cc, G= 297γ,
∆1 = ∆2 = ∆3 = 0, Γ12 = Γ13 = Γ23 = 0, γ = 4.75× 107 rad/sec.

For our numerical simulation, we can also set k1 ≈ k2. For a Doppler broadened system,

one needs to average ng over the Maxwell-Boltzmann distribution for the atomic velocities,

defined by

P(k1v)d(k1v) =
1√

2πD2
e−(k1v)2/2D2

d(k1v), D =
√

KBTω2
1/Mc2. (2.22)

Therefore, the velocity distribution function for δ1 is given by

P(δ1) =
1√

2πD2
e−(δ1−∆1)2/2D2

(2.23)

where D is the width of Gaussian distribution which is dependent on the temperature, T ,

and atomic mass, M , for the relevant atomic transition. The group index, ng, averaged

over the Doppler distribution, is obtained from

〈ng〉 =
∫ ∞

−∞
ng(δ1)P (δ1)dδ1 (2.24)

In Fig. (2.6) we show the results for the group index with and without Doppler averaging.

It is known from the work of Kash et al. [54] that Doppler broadening was insignificant in

the behavior of the pulse propagation through a Λ-system in the presence of a control laser.

However, the situation changes with the application of the LL coupling field at |2〉 ↔ |3〉
transition (with a wavelength ∼ 1.3µm) particularly in the region where the group index

is negative. In Fig. (2.6), we also show the results for propagation in a much heavier 208Pb
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Figure 2.7: Gaussian pulse propagation through a transparent anomalous dispersion medium of length L.

vapor . This was the system used earlier by Kasapi et al. [47] to demonstrate sublumi-

nal propagation. The application of the LL coupling field can lead to the superluminal

propagation. The results obtained in this case are not sensitive to Doppler broadening be-

cause the Doppler width parameter δ (∼= 25γ) is much smaller than the Rabi frequency

G (= 297γ) of the pump.

2.5 Kinematics of Superluminal Light

We are using stationary phase method in order to understand the counter-intuitive phe-

nomena of superluminal propagation. A smooth Gaussian pulse can propagate with su-

perluminal velocity through a medium which has a gain-assisted linear anomalous disper-

sion. The medium extends from z = 0 to z = L and is in vacuum as illustrated in Fig (2.7).

The electric field of the propagating Gaussian pulse can be written as

Eout(z, t) =
∫

dωEin(ω)e−i(ωt−k(ω)z); k(ω) =
n(ω)ω

c

=
∫

dωEin(ω)e−iφ(ω) (2.25)

where

Ein(ω) =
E0√
πΓ2

exp
[−(ω − ω0)2/Γ2

]
, (2.26)

and the spectral width Γ will decide how many Fourier components are involved in form-

ing a Gaussian pulse. In a dispersive medium, the speed of each Fourier component of

the pulse is determined by the refractive index at that frequency. All Fourier components

appear in the medium as soon as the leading edge of the pulse touches the entrance point

of the medium. It is not necessary for the peak of the pulse to appear at the entrance point

of the medium because it does not carry new information which is not already present at

its weak forward leading edge. From Eq. (2.25), one can find out the position z and time

t at which all Fourier components are in same phase and interfere constructively to form
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the peak of the pulse. All the points exhibit destructive interference to form weaker part

of the pulse except the point satisfying the interference conditions. For a linear dispersive

medium, the phase φ(ω) of Eq. (2.25) can be expand by Taylor expansion

φ(ω) = φ(ω0) + (ω − ω0)
dφ

dω

∣∣∣∣
ω=ω0

. (2.27)

The phase φ(ω) becomes independent of ω when dφ/dω|ω=ω0
= 0. This is the condition of

stationary phase method [122]. Let us define the rephasing length l of the medium

l = c
dφ

dω

∣∣∣∣
ω=ω0

= c
d [ωt− k(ω)z]

dω
= c

(
t− z

vg

)
= 0. (2.28)

where vg is the group velocity of Gaussian pulse.

The superluminal phenomena can be well understood by examining the rephasing length

l of the medium. The peak of the pulse arrives at the entry point of the medium at time

t = 0. From Eq. (2.28), one can find

lI = ct− z (z < 0) (2.29)

lII = ct− ngz (0 < z < L) (2.30)

lIII = ct + (1− ng)L− z (z > L) (2.31)

Let us consider the situation ng < 0 which corresponds to the negative group delay mean-

ing that the peak of pulse arrives at the output end before it touches the entrance interface

of the medium. At a time t < 0 before the peak of the pulse arrives at the entry point of the

medium, the rephasing length lII inside the medium becomes zero at a position z0 = ct/ng.

Since group index ng and t both are negative, the range of rephasing position is 0 < z0 < L.

At the position z0 = ct/ng the relative phase difference between different Fourier compo-

nents vanishes and a peak of the pulse is reproduced due to constructive interference and

localized near the exit point of the medium such that 0 > t > ngL/c. The exit pulse is

formed long before the peak of the pulse enters the medium. As the incident pulse moves

toward the entrance point of the medium at a later time t′ such that 0 > t′ > t, the position

of the rephasing point inside the medium z′0 = ct/ng decreases i.e., z′0 < z0 and hence the

peak moves with negative velocity −vg inside the medium. At the time t = 0 the peak

of incident pulse touches the entrance interface of the medium, at the same time reverse

propagating pulse inside the medium also reaches the entry point and destructively in-

terfere with the input pulse at the entrance point of the medium thereby suppressing the
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input pulse propagation. In region III, the rephasing position can be obtained by putting

Eq. (2.31) equal to zero. This gives rephasing position z
′′
0 = L + ct− ngL. From rephasing

condition, we have 0 > t > ngL/c, and hence rephasing position in the region III : z
′′
0 > L

(note that both t, ng < 0). At a later time t′ such that 0 > t′ > t, the rephasing position z
′′′
0

in region III, the peak moves forward direction because z
′′′
0 > z

′′
0 .

An interesting situation arises when the group index ng = 0 corresponds to infinite

group velocity (vg = ∞). In this case, we have zero transit time means that the peak of

the pulse emerging from the medium occurs at same time as the peak of the pulse entering

the medium. The rephasing length lII becomes independent of position z i.e., the relative

phase difference between different Fourier components will remain same throughout the

length of the medium. In region III, the leading edge of the pulse is formed at z > L due

to the phase difference between different components of the pulse are reproduced again.

Therefore, the peak of the pulse simultaneously appear at the entrance and exit point of

the medium for ng = 0 case. Hence, superluminal propagation is a manifestation of the

pulse rephasing phenomena that is already contained inside the medium.

2.6 Summary

In summary we have demonstrated how the Λ system can produce a variety of new re-

sults, as regard to light pulse propagation, if we apply an additional LL coupling field.

In particular we have demonstrated how the application of the LL coupling can produce

regions of anomalous dispersion with gain and how this results in superluminal propa-

gation of a weak pulse of light. The advantageous feature of our model configuration is

that subluminal as well as superluminal propagation can be achieved by changing the in-

tensity of the LL coupling field, in the same configuration. We have shown that distortion

free pulse propagation is possible only when the intensity of the LL coupling field is cho-

sen suitably. The narrowing or broadening of the output pulse can be explained from the

study of group velocity dispersion which is very much sensitive to the intensity of the LL

coupling field. We have also shown that Doppler broadening is significant in the behavior

of the superluminal pulse propagation through a Λ-system driven by the control and LL

coupling field.



CHAPTER 3

Storage and Retrieval of Light Pulses

Storage of light can be achieved by electromagnetically induced transparency wherein an

external control field switches the medium from opaque to transparent near an atomic res-

onance, thereby allowing the weak probe pulse to propagate without distortion in shape.

Coherent interaction of control and probe pulses in a three level Λ-system creates atomic

coherence between the ground states which can serve as storage element of the informa-

tion of the probe pulse. A weak probe pulse moves with substantially reduced velocity

due to the formation of dark state polariton, which is a combination of atomic coherence

and the probe pulse, introduced by Fleishhauer and Lukin [88]. The relative weightage

of the dark state polariton depends on the temporal shape of the control pulse. After the

whole probe pulse has entered the medium, the control field is switched off, mapping the

information of the probe pulse on to the atomic coherence. At that instant the dark state

polariton has a purely atomic character and, therefore, the storage of probe pulse is possi-

ble inside the medium in the form of atomic coherence. Switching on the control pulse, the

polariton starts acquiring the field character that eventually dominates. The storage and

retrieval of weak pulses thus become possible. In this chapter, we discuss the possibility

of storage and retrieval of the light pulse that are not necessarily weak in Λ configuration

atomic systems. The spatio-temporal evolution of both control pulse and probe pulse be-

comes important when they are of comparable strengths. We use the adiabatic theory of

Grobe et al. [147] to understand our numerical simulations on the storage and retrieval of

light pulses at moderate powers. We also demonstrate that a robust way of storage and re-

44
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Figure 3.1: Three-level Λ-type medium resonantly coupled to a control field with Rabi frequency 2G and
probe field 2g.

trieval of information on frequency of the weak modulation signal is possible by applying

suitable control pulse.

3.1 Dynamics of Pulse Propagation

The physical system under consideration is an isotropic homogeneous medium where rel-

evant atomic transitions are taking in the Λ-configuration as shown in Fig. (3.1). Consider

the propagation of a pulse (called probe) defined by the electric field

~Ep(z, t) = ~Ep(z, t) e−i(ω1t−k1z) + c.c. (3.1)

Here ~Ep is the slowly varying envelop of the probe field. We define a pump pulse by

~Ec(z, t) = ~Ec(z, t) e−i(ω2t−k2z) + c.c., (3.2)

will act as a control on the propagation of the probe pulse. The probe pulse is tuned close

to the transition |1〉 ←→ |3〉 . The control field is tuned to the transition |1〉 ←→ |2〉. We

further assume that the states |2〉 and |3〉 are metastable states. We work with the density

matrix equations for the medium, taking into account the radiative decay of the excited

state. For the case, when the fields are in resonance with their respective transitions, the

semiclassical density matrix equations of motion under the rotating wave approximation
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can be written as

ρ̇11 = −2(γ1 + γ2)ρ11 + iGρ21 + igρ31 − iG∗ρ12 − ig∗ρ13 ,

ρ̇22 = 2γ2ρ11 + iG∗ρ12 − iGρ21 ,

ρ̇12 = −[γ1 + γ2]ρ12 + iGρ22 + igρ32 − iGρ11 , (3.3)

ρ̇13 = −[γ1 + γ2]ρ13 + iGρ23 + igρ33 − igρ11 ,

ρ̇23 = iG∗ρ13 − igρ21 .

These Bloch equations are to be supplemented by the population conservation law

ρ11 + ρ22 + ρ33 = 1. (3.4)

In original frame of reference, the density matrix elements are given by ρ13e
−iω1t, ρ12e

−iω2t,

ρ23e
−i(ω1−ω2)t, ρ11 , and ρ22 . The state |1〉 decay at rates 2γ1 (2γ2) to the state |3〉 (|2〉), re-

spectively. The Rabi frequency of the probe and control field 2g and 2G are related to the

slowly varying amplitudes of Ep and Ec according to the relation

2g =
2~d13 · ~Ep

~
(3.5)

2G =
2~d12 · ~Ec

~
, (3.6)

where ~dij is the dipole matrix element corresponding to the atomic transitions. The atomic

medium consists of a large number of atoms. The induced atomic polarization at frequency

ω1 will be obtained from off-diagonal matrix element ρ13 :

~P0 = N ~d31ρ13 (3.7)

whereN is the density of the medium. It should be borne in mind that g and G are depen-

dent on both space and time coordinates. Therefore, the polarization ~P0 is also a slowly

varying function of both space and time coordinates. We are using the Maxwell equa-

tions to obtain the spatiotemporal evolutions of both probe and control pulses through the

medium. The Maxwell equations for the slowly varying amplitudes of ~Ep and ~Ec are given

by
(

∂

∂z
+

1
c

∂

∂t

)
~Ep = 2iπNk1

~d31ρ13

(
∂

∂z
+

1
c

∂

∂t

)
~Ec = 2iπNk2

~d21ρ12 . (3.8)
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The above Maxwell equations can be expressed in terms of slowly varying Rabi frequen-

cies as fellows:
(

∂

∂z
+

1
c

∂

∂t

)
g = iηpρ13 ; ηp =

2πNk1|d13|2
~(

∂

∂z
+

1
c

∂

∂t

)
G = iηcρ12 ; ηc =

2πNk2|d12|2
~

. (3.9)

For simplicity we will assume same coupling constant (ηp ≈ ηc = η) for the two transitions

i.e., λ12 ' λ13 ' λ and it has a form in Gaussian units,

η = 3λ2Nγ/4π . (3.10)

where we consider the same decay rates of different channel of excited state i.e.,γ1 = γ2 =

γ. The solution of Eqs. (3.3) and (3.9) gives the complete spatiotemporal evolution of the

atom-field system.

3.2 Numerical Simulations

Generally, the analytical solutions of the Maxwell-Bloch equation is very difficult except

under very certain special approximation [148, 149]. Therefore, the study of pulse propa-

gation inside the medium is only possible by the numerical simulation. In Appendix, we

present a basic algorithm for solving the coupled Maxwell-Bloch equations numerically.

3.2.1 Pulse Propagation: Effect of Nonlinearities

We solve the propagation problem numerically for a homogeneously broadened gas of

cold atoms in the travelling window frame of reference: τ = t − z/c, ζ = z. We consider

initial probe pulses of two different shapes given by

g(0, τ) =





g0e
−

(
τ−τ0

σ

)2

Gaussian pulse

g0[sech( τ−τ0
σ ) + f × sech( τ−τ1

σ )] Sech pulse.

Here, g0 is the real constant characterizing the peak amplitude of the Rabi frequency before

the pulse enter the homogeneous medium, σ is the temporal width of the input pulse and

τi (i = 0, 1) gives the location of peaks. All the atoms are initially in the state |3〉 and thus

ρ33(ζ, 0) = 1, with all other density matrix elements equal to zero.
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In order to appreciate the effect of nonlinearities due to the moderate power of the probe

pulse, we first consider the control field as a continuous wave (cw) G(0, γτ) ≡ constant

[(G/γ)2 = 10]. We work under the condition of electromagnetically induced transparency,

i.e., ω1 − ω2 = ω13 − ω12. Figs. 3.2(a), 3.2(b) [3.2(c), 3.2(d)] display the propagation of a

Gaussian pulse (Sech combination pulse) inside the medium. From Figs. 3.2(a) and 3.2(c),

we see that the weaker probe pulse would propagate without any significant absorption

and broadening inside the medium. Figs. 3.2(b) and 3.2(d) show that the intense probe

pulse suffers absorption and broadening. This is one of our key results. The shape of

the pulse remains almost identical to the input pulse. This behavior of the intense probe

pulse can be explained using the form of steady state probe absorption spectra. In Fig. 3.3,

we show the behavior of the probe absorption as a function of the probe detuning when

the control field is at resonance. It is clear from the Fig. (3.3) that, increase of the probe

field intensity results in the increased absorption of the probe for a given frequency in the

neighborhood of the frequency satisfying two photon resonance condition. Note that the

width of the transparency window depends on the intensities of the control and probe

fields. For a fixed intensity of the control field, the width of the transparency window

becomes smaller when the probe field intensity is increased. Note that the condition for

distortionless pulse propagation is that the spectral width of the probe pulse should be

contained within the transparency window of the medium. If the pulse becomes too short,

or its spectrum too broad relative to the transparency window of the medium, absorption

and also the higher order dispersion need to be taken into account. The dispersion of the

medium also causes the distortion of the probe pulse.

3.2.2 Storage and Retrieval of Electromagnetic Fields at Moderate Powers

Fleischhauer and Lukin [88] showed that it is possible to store and retrieve weak pulses

of the electromagnetic radiation by using atomic coherences. They demonstrated how a

control pulse and a probe pulse creates atomic coherence and that by slowly switching

off the control pulse, the probe pulse disappears and gets stored in the form of atomic

coherence. Switching on the control field can retrieve the stored probe pulse. The smooth

switch off and on of the control field is made possible by gradually varying the intensity

of the control field with respect to time. Therefore, the switching off and on of the control
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Figure 3.2: The probe field intensity in the medium is plotted against retarded time at different propagation
distances within the medium. Fig (a) and (c) show the probe pulse propagation with non-diminishing am-
plitude, for small intensities. Fig (b) and (d) depict the broadening and loss of intensity in case of an intense
probe pulse. In all the cases, the control field is taken as a cw with G = 3.16γ.
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Figure 3.3: Imaginary part of susceptibility [χ13~c/Nλ|d13 |2] as a function of probe frequency ω1 in the
presence of control field as a cw with G = 3.16γ. The width of the transparency window decreases with
increase in the intensity of the probe field.

field can be modelled by a super-Gaussian shape given by

G(0, τ) = G0[1 − e
−

(
τ−τ2

σ′
)α

], (3.11)

where the parameter α determines how the pulse is switched on. For α = 4 (100) we

will have adiabatic (nonadiabatic) switching. Fig. (3.4) shows the adiabatic switching of

the control field . Switching off of the control field can give rise to the absorption of the

probe pulse when the entire probe pulse is inside the medium. The group velocity of

the probe pulse is reduced to zero and its propagation is stopped by switching off the

control field. The stored probe pulse can be retrieved by switching on the control field. The

time difference between switching off and on is dependent on the life time of the atomic

coherence between the state |2〉 and |3〉. As seen from Figs. (3.5(a)) and (3.5(c)), for weaker

probe pulse, the shape of the retrieved pulse is same as the original one because the width

of the probe pulse spectrum is very much less than width of the EIT window. Therefore,

almost perfect storage and retrieval of light is possible by adiabatic switching of the control

field as pointed out by Fleischhauer et al. [88]. When the probe field intensity is large, we

observe from Figs. (3.5b) and (3.5d) ,that the retrieved probe pulse suffers absorption as

well as broadening because of narrowing of the width of EIT window. Remarkably, the

probe pulse can be retrieved even for a probe that is not necessarily weak. The switching

off of the control field gives rise to a probe pulse that is stored inside the medium in form

of atomic coherence ρ32 . Fig. (3.6) shows the behavior of the atomic coherence ρ32 as a
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Figure 3.4: The intensity of the control field as a function of retarded time at the entry surface of the medium
at ζ = 0. Switching mode of the super Gaussian control field is adiabatic.

function of retarded time at different distances. The atomic coherence retains value that it

attains before switching off. The atomic coherence starts generating the replica of the probe

pulse at the moment the control field is switched on. Therefore, the atomic coherence is

responsible for storage and retrieval of the probe pulse. In the presence of control field,

the temporal shape of the atomic coherence ρ32 is same as the shape of the input probe

pulse. A comparison of the Figs. (3.5(a)) and (3.6(a)) shows very close connection between

the probe pulse at different points in the medium and atomic coherence. For example, for

ηζ/γ = 3200 and γτ ¿ 550, the negligible amount of coherence leads to very little pulse

power. Similar observations apply to the storage and retrieval of pulses at higher powers.

On comparison of the Figs. 3.6a (3.6c) with 3.6b (3.6d) we find that the generated atomic

coherence ρ32 is much more significant for larger values of the probe intensity. It is clear

from Fig. (3.5), that the retrieval of intense probe pulse is possible at ηζ/γ = 3200 which

corresponds to the actual physical length of the medium L = 2.13 cm. Here, we have used

the parameters for 87Rb with spontaneous decay rate of the excited state |1〉 2γ = 3π × 106

rad/sec, the wavelength for the ground state |3〉 to excited state |1〉 transition λ = 795 nm,

density N = 1012 atom/cc.
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Figure 3.5: The frames (b) and (d) show the time evolution of the weaker probe pulse at different propagation
distances; and the frames (c) and (e) depict the time profile of the intense probe pulse at different propagation
distances.



Storage and Retrieval of Light Pulses 53

0 550 1100

Retarded time γτ

0

0.01

0.02

0.03

0.04

C
o

h
er

en
ce

 −
ρ 32

(a)

ηζ/γ=0

ηζ/γ=800

ηζ/γ=1600

ηζ/γ=2400

ηζ/γ=3200

g
0
=0.1γ, τ0=200/γ, σ=90/γ

0 550 1100

Retarded time γτ

0

0.1

0.2

0.3

0.4

C
oh

er
en

ce
 −

ρ 32

(b)

ηζ/γ=0

ηζ/γ=800

ηζ/γ=1600

ηζ/γ=2400

ηζ/γ=3200

g
0
=1.41γ, τ0=200/γ, σ=90/γ

0 550 1100

Retarded time  γτ

0

0.01

0.02

0.03

0.04

C
o

h
er

en
ce

 −
ρ 32

(c)

ηζ /γ=0

ηζ /γ=800

ηζ /γ=1600

ηζ /γ=2400

ηζ /γ=3200

g
0
=0.0964γ, τ0=100/γ, τ1=200/γ

σ=30/γ, f=0.54

0 550 1100

Retarded time γτ

0

0.1

0.2

0.3

0.4

C
oh

er
en

ce
 −

ρ 32

(d)

ηζ/γ=0

ηζ/γ=800

ηζ/γ=1600

ηζ/γ=2400

ηζ/γ=3200

g
0
=1.85γ, τ0=100/γ, τ1=200/γ

σ=30/γ, f=0.54

Figure 3.6: Fig. (a)-(d) shows the temporal profile of atomic coherence−ρ32 against retarded time at different
propagation distances.
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3.2.3 Storage and Retrieval of Information on Modulating Signal

In communication engineering, the faithful reproduction of the frequency of the signal is

a tremendous task. Generally, the signal can be sent as amplitude or frequency modulated

carrier wave, where the amplitude or frequency of the carrier wave is modulated according

to the frequency of the modulating signal. The modulation is necessary for long distance

communication because of presence of environmental thermal noise which prevents the

propagation of signal in free space. Therefore, the study of modulated wave in the context

of storage and retrieval of information on frequency of the modulating signal becomes

important in its own right. For this issue, we consider the propagation of the amplitude

modulated Gaussian pulse acting as a initial probe pulse and define as

Ep(0, τ) = Ep

(
1 +

kaEm

Ep
cosωmt

)
e
−

(
τ−τ0

σ

)2

(3.12)

where Em and ωm are respectively the amplitude and frequency of the modulating signal

Em cosωmt. In practice, ωm is small compared to the carrier frequency ω1 of the probe pulse.

The modulating circuit determines the proportionality constant ka. Hence the complete

expression for the probe pulse in terms of the Rabi frequency is given by

g(0, τ) = g0(1 + ma cosωmt)e−
(

τ−τ0
σ

)2

(3.13)

Here ma = kaEm/Ep, is termed as the modulation index or the depth of modulation. It is

defined as the ratio of the maximum deviation of the modulated probe pulse amplitude

from the unmodulated value [150]. The storage and retrieval of the modulated Gaussian

pulse is possible by dynamical switching off and on the control pulse, shaped as super-

Gaussian, shown in the inset of Fig. (3.7). Here the intensity of the probe pulse is much

weaker than the intensity of the control pulse. Therefore, almost there is no effect on the

population of levels with which the pulse interacts. As seen from Fig. (3.7), the faithful re-

production of modulating frequency of the probe pulse is also possible even for the case of

amplitude modulated probe pulse. This implies that a robust way of storage and retrieval

of information on frequency of modulating signal is possible via a suitably driven control

pulse.
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Figure 3.7: The above frame show the time evolution of the weaker amplitude modulated probe pulse at
different propagation distances; The used parameter for probe pulse: modulation index g0 = 0.5γ, ma = 0.5,
ωm = γ/3, and σ = 50/γ.

3.2.4 Dynamical Evolution of the Control Field

The dynamical evolution of the control field becomes important when the intensities of

the control and probe fields are comparable. Fig. (3.8) depicts time evolution of the control

field at different propagation distances within the medium. It is evident from this figure

that a dip and a bump develops in the amplitude of the control field as it propagates

through the medium. The shape of the bump and dip in the control field depends on the

initial shape of the probe pulse at the entry of the medium. The changes in the control field

are quite significant. Even for the cw control field, the output control field is a combination

of both cw and a pulse.

3.2.5 Nonadiabatic Results

Matsko et al.[83] have shown that for any switching time of the control field, an almost per-

fect storage and retrieval of weak probe pulse is possible. We have found that their results

can be extended to probe with moderate powers. We show the results in Fig. (3.9) for an

intense probe pulse and nonadiabatic switching of the control field. For both adiabatic and

nonadiabatic switching, the retrieved intense probe pulse is the same as the original one.

However, there is overall broadening and loss in intensity of the retrieved probe pulse. We
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Figure 3.8: (a) and (b) shows temporal profiles of the control (G/γ)2 and probe field (g/γ)2 at different
propagation distances within the medium. Temporal shape of (V/γ)2 as shown in the inset does not depend
on ζ. In Fig. (a) the input control field is a cw. In Fig (b) the input control field is a Super-Gaussian shape
with parameters τ2 = 575/γ, σ′ = 200/γ. The common parameters of the above two graphs are chosen
as: G0 = 3.16γ, g0 = 1.414γ, τ0 = 200/γ, σ = 90/γ. The results of simulations using Maxwell-Bloch
equations are indistinguishable from the results based on adiabaton theory.
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Figure 3.9: (a) shows storage and retrieval of intense probe pulse even for nonadiabatic switching of the
control field. Nonadiabatic switching is shown in the inset. (b)drop in intensity ratio of the probe retrieved
to the input pulse as a function of input probe intensity for the case of non adiabatic switching of the control
field ; the Iout is measured at ηζ/γ = 3200 and γτ = 1000.
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show in Fig. (3.9b) the drop in the intensity of the output pulse as the intensity of the input

pulse increases.

3.3 Adiabaton Theory and Its Relation to Light Storage

In a remarkable paper Grobe et al. [147] discovered what they called as adiabatons. These

are the pulse pairs which are generated in a Λ-system under adiabatic conditions. We

show the deep connection of the problem of storage and retrieval of pulses to the theory

of adiabatons. The control field is switched on before the probe field. This is to keep

the system in the dark state, which is an essential condition for the adiabaton formation.

Under conditions of negligible damping, Grobe et al. [147] find that the response of the

medium can be very well approximated by the solutions

ρ13 ≈ i

V

∂

∂τ

( g

V

)

ρ12 ≈ i

V

∂

∂τ

(
G

V

)
(3.14)

ρ32 ≈ −gG

V 2
,

where V 2 = (G2 + g2). The approximate solutions (3.14) holds provided the following

adiabacity condition is satisfied by the two fields:

G
∂g

∂τ
− g

∂G

∂τ
¿ V 3. (3.15)

By inserting solution (3.14) into the Maxwell equation (3.9), we obtain a pair of coupled

nonlinear wave equations

∂g

∂ζ
= − η

V

∂

∂τ

( g

V

)

∂G

∂ζ
= − η

V

∂

∂τ

(
G

V

)
. (3.16)

These two, one dimensional PDE are nonlinearly coupled through the variable V. With the

help of equation (3.16), one can easily show that V does not depend on the space variable

i.e. ζ, during the propagation, V satisfies the relation

V

(
ηζ

γ
, γτ

)
= V (0, γτ) (3.17)
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Thus the conservation law would imply that any change in probe field is compensated by a

corresponding change in the control field for V to remain independent of the spatial coor-

dinates. The input fields determine the temporal shape of V. Analytical solutions of equa-

tion (3.16) can be obtained by changing the variable τ to z(γτ) ≡ 1
γ2

∫ γτ
−∞ V 2(0, γτ)d(γτ):

g

(
ηζ

γ
, γτ

)
= V (0, γτ)Fg

[
z(γτ)− ηζ

γ

]

G

(
ηζ

γ
, γτ

)
= V (0, γτ)FG

[
z(γτ)− ηζ

γ

]
, (3.18)

where Fg[x] = g[0, z−1(x)]/V [0, z−1(x)] and z−1(x) denotes the inverse function of z. We

have chosen the initial fields strong enough to ensure the formation of an adiabaton pair.

The input fields g and G are chosen such that V is constant after a certain time T. Therefore,

for τ ≥ T , the integral z(γτ) can be analytically performed. For a cw control field and a

Gaussian probe pulse, we find the explicit results for the probe and control fields

g

(
ηζ

γ
, γτ

)
=

√
[g02

e−
2(γτ−γτ0)2

σ2 + G02]

√
[g02e−

2(γτ−γτ0− ηζ

γG02 )2

σ2 + G02]

g0e−
(γτ−γτ0)2

σ2

G

(
ηζ

γ
, γτ

)
=

√
[g02

e−
2(γτ−γτ0)2

σ2 + G02]

√
[g02e−

2(γτ−γτ0− ηζ

γG02 )2

σ2 + G02]

G0 ; t ≥ T (3.19)

For the case when the control field is taken as a super Gaussian pulse and the probe field

as a Gaussian pulse, it is not possible to evaluate the function z analytically. The solu-

tions of equation (3.14) for both these cases, are superimposed on the numerical results

obtained from density matrix equations in Fig. (3.8). It is remarkable that, the solutions

of equations (3.16) obtained under the adiabatic approximation, matches extremely well

with the numerical solutions of the complete set of density matrix equations. As shown in

Fig. (3.6), the adiabatic approximation for the atomic coherence ρ32 of the equation (3.14)

is also indistinguishable from the result obtained from density matrix equations. It should

be noted that the adiabatic approximation starts breaking down when the control field is

switched off, although the created atomic coherence survives. It is evident from the tem-

poral profiles of the control and probe field at different propagation distances that a dip

and a bump develops in the control field intensity as it propagates through the medium.

Fig. (3.8) unambiguously confirms that the adiabaton pair (consisting of the dip in the
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pump and broadened probe) travels loss-free distances which exceed the weak probe ab-

sorption length (here typical value of ηζ/γ = 2400) by several orders of magnitude with

an unaltered shape. In principle, V could have both space and time dependence. Within

the adiabatic approximation, V does not depend on space coordinate as shown in the inset

of Fig. (3.8). From this Fig., it is very much clear that the temporal shape of V depends on

the input shape of the control and probe field and it propagates inside the medium with

unaltered shape. To keep V constant in space domain, any change in temporal shape of

the control field is compensated by change in temporal shape of probe field. When V 2 and

control field are zero, then the probe field is also zero which suggests that probe field gets

stored inside the medium. The retrieved probe pulse which is a replica of the input probe

pulse is a part of adiabaton pair. The numerical results on the storage and retrieval of

light obtained from density matrix formalism matches extremely well with those obtained

from adiabatic approximation. Clearly adiabaton pair propagation is quite important for

understanding the storage and retrieval of light.

3.4 Summary

In summary, we have investigated the possibility of storage and retrieval of moderately

intense probe pulses in a system with relevant atomic transition in Λ configuration. We

numerically integrate the full set of the density matrix equations and the Maxwell equa-

tions for both control and probe fields. The numerical results show that the storage and

retrieval of probe pulses with moderate powers is possible. The dynamical evolution of

the control field is important. It may be worth noting that a cw control field becomes

pulsed due to its coupling to the probe pulse via the atomic polarization. We find that

even though the storage and retrieval at larger powers is possible, the probe field gets ab-

sorbed and broadened, however they are not very significant. This behavior is explained

in terms of the narrowing of the EIT window as the power of the probe increases. We

show how the adiabaton theory of Grobe et al.[147] enables us to understand the storage

and retrieval of pulses. We further show that the storage and retrieval of information on

frequency of modulating signal such as amplitude modulated probe pulse is also possible

in the same system via a suitably driven control pulse.



CHAPTER 4

Subluminal and Superluminal Propagation of Intense Pulses at

Room Temperature Solid

In the previous two chapters we have demonstrated that light pulses can be propagated

“superluminally” or, “subluminally” or to bring them to a complete halt (storage of light)

inside atomic gases. However, most of the experiments on slow, fast or storage of light

have been carried out in atomic gases with modest density of the order of 1012 atoms/cm3

maintained at cryogenic or room temperature. It would be interesting to produce super

and subluminal light pulses in solids, where the density of the relevant atoms is million

times larger than in gases. Turukhin et al. first demonstrated the propagation of slow light

with a velocity of 45 m/sec in solid state material, Y2SiO5 doped with Pr, maintained at a

cryogenic temperature of 5K [56]. Also quite recently, Bigelow et al. demonstrated a new

method for controlling the speed of light pulses propagating through a solid state material

[57]. This experiment differs considerably from all earlier experiments which were based

on conventional electromagnetically induced transparency [26]. They recognize that a two

level system driven by a strong field and a probe gives rise to a hole in the probe response

function with a width of the order of 1/T1, where T1 is the longitudinal relaxation time

[151]. These very narrow spectral hole in the homogeneously broadened probe absorption

spectrum caused by coherent population oscillation leads to the ultra-slow group velocity.

These authors also discovered that they need not use separate pump and probe fields. A

field with peak power of the order of saturation intensity could be slowed down consid-

erably to about 57.5 m/s. Further they extended their work to a material like alexandrite,

60
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where they reported superluminal pulse propagation. In this chapter we develop models

for the propagation of intense pulse in nonlinear solid state media which can have either

saturated absorption or reverse saturated absorption. We show that the experiments of

Bigelow et al. on subluminal propagation in ruby [Phys. Rev. Lett. 90, 113903 (2003)],

and superluminal propagation in alexandrite [Science 301, 200 (2003)] are well explained

by modeling them as three level and four level systems respectively, coupled to Maxwell

equations. We present results well beyond the traditional pump-probe approach.

4.1 Saturated Absorption

In order to understand the basic idea of the saturated absorption, we consider there-level

atomic system as shown in Fig. (4.1(a)) where single intense pump field interact between

the ground state 4A2 and the excited state 4F2. Therefore incident field promotes an atoms

from ground state 4A2 to excited state 4F2. The excited state 4F2 can rapidly decay to

the state 2Ā and Ē by a non-radiative transition. The intensity of the pump field is such

that the rate of transition of the atoms from ground state 4A2 to excited state 2Ā and Ē

becomes larger than the relaxation rate of the excited state 2Ā and Ē. This leads to a

pronounced decrease of the population in the ground state. Therefore, the net result is

that the system can not absorb as large a fraction of the incident field as it can under low

intensity conditions. This process is called saturated absorption. For saturated absorption

case, the absorption cross-section of the excited state 2Ā and Ē are smaller than that of the

ground state 4A2. Therefore, the transmission of the system is increased due to smaller

absorption cross-section of the excited state. In this chapter we treat the homogeneous

case, while the saturation of inhomogeneous line profile is discussed in next chapter. The

material like ruby where the transverse relaxation time T2 ¿T1 can exhibit the saturated

absorption.

4.2 Model Description and Dynamical Equations

Ruby was the first synthetic material used by Maimen to built a laser in 1960 [152]. It

consists a crystalline aluminium oxide (Al2O3, also known as corundum), in which a small

fraction of aluminium ion’s Al3+ have been replaced by chromium ion’s Cr3+. Chromium
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Figure 4.1: (a) Energy levels of chromium ions in ruby. (b) Three level model for Ruby Crystal

ion’s is transition metal with electronic configuration

1s2 2s2 2p6 3s2 3p6 3d3 = [Ar]3d3.

The unpaired d-electrons from a high-spin ground state referred to as 4F. The first excited

state of the free ion is a 2G state and it is 2eV higher than the ground state 4F. The ground

state 4F and first excited state 2G have high orbital degeneracy. When these Cr3+ ions is

placed in a crystalline aluminium oxide, the levels 4F and 2G are split under the action

of crystalline electric fields according to the symmetry of the field as 4A2+4F1+4F2 and

E+other terms, respectively. The 4A2 level is singly degenerate. The E level is doubly

degenerate (2Ā, Ē). The energy level diagram for the chromium ion in ruby is shown

in the Fig. (4.1(a)). These Cr3+ are active in absorbing any green (blue) light to pump

population from the ground state to the broad 4F2 (4F1) absorption band. The absorption

band 4F2 is homogeneously broadened and has width of∼ 100 nm which corresponds to a

dephasing time T2 of a few fs. The population in 4F2 absorption band decays very rapidly

to the levels 2Ā and Ē where it is trapped due to the long life time of these levels before

it decays back to the ground state. The relaxation time of the metastable states 2Ā and

Ē is of the order of few ms. Ruby has no fluorescence at the absorbing wavelength since

the metastable state decays to the ground state by radiating red fluorescent light which is

completely different wavelength compared to the wavelength of absorbing light. In light

of energy level diagram of chromium ion’s in ruby, it is a three level system [153]. To study

the propagation of intense pulses in ruby, we represent the ground state 4A2 as |g〉, the
4F2 absorption band as |e1〉 and the levels 2Ā and Ē as |e2〉 as shown in Fig. (4.1(b)). The
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propagation of an intense pulse is defined by the electric field

~E(z, t) = ~E(z, t) e−i(ωt−kz) + c.c., (4.1)

where ~E is the slowly varying envelope of the intense field. The carrier frequency of in-

tense field, ω, is in resonance with the frequency of the |g〉 ←→ |e1〉 transition. The total

Hamiltonian of the atom interacting with the intense field under RWA is

H = ~ω1g |e1〉〈e1 |+ ~ω2g |e2〉〈e2 | − ~Ωe−iωt|e1〉〈g| − ~Ω∗eiωt|g〉〈e1 |, (4.2)

where the Rabi frequency Ω is defined by Ω(z, t) = 2~d1g · ~E(z, t)/~, and ~d1g is the dipole

matrix element. Some of the atomic coherences become irrelevant on experimental time

scale due to the very rapid decay of the level |e1〉 to |e2〉. Therefore, the density matrix

equations for the model in Fig. (4.1) are

ρ̇gg = 2Γ2ρ22
+ i

Ω
2

(ρ
1g
− ρ

g1
) (4.3)

ρ̇
22

= 2Γ1ρ11
− 2Γ2ρ22

(4.4)

ρ̇
1g

= −Γ1ρ1g
+ i

Ω
2

(ρgg − ρ
11

) (4.5)

ρgg + ρ
11

+ ρ
22

= 1, (4.6)

where ρ
ij

= 〈ei |ρ|ej 〉; i, j = 1, 2. Note that the density matrix elements in the original

frame are given by ρ1ge
−iωt, ρgg , ρ22 and ρ11 . Under the approximation, Γ1 À Γ2, Ω, ρ̇1g ∼ 0,

Eq. (4.5) simplifies to

ρ
1g
∼= iΩ(ρgg − ρ11)

2Γ1
. (4.7)

Therefore, we derive the approximate equation for the evolution of the ground state pop-

ulation as,

ρ̇gg = 2Γ2ρ22 + i
Ω
2

(ρ
1g
− ρ

g1
)

= 2Γ2ρ22 −
Ω2(ρ

gg
− ρ

11
)

2Γ1

= 2Γ2(1− ρgg)−
Ω2

2Γ1
ρ

gg
(4.8)

Note that we can easily prove that ρ11 ≈ 0 if Γ1 À Γ2, Ω. Under the same conditions and

the slowly varying envelop approximation, the evolution equation for the Rabi frequency

of the field is written by
∂Ω̃
∂z

= −α0

2
Ω̃ρgg, Ω̃ = Ω/Ωsat, (4.9)
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where α0 = 4Nπω|d1g |2/c}Γ1 and Ωsat = 2
√

Γ1Γ2. Therefore, we have derived coupled

Maxwell-Bloch equations for pulse propagation in the three level model in ruby

ρ̇gg

2Γ2
= (1− ρgg)− Ω̃2ρ

gg
(4.10)

∂Ω̃
∂z

= −α0

2
Ω̃ρgg. (4.11)

In Eqs. (4.10) and (4.11) we have used the pulse coordinates i.e., t−z/c, z. The time deriva-

tive in Eq. (4.10) is with respect to (t− z/c). The time t can be expressed in units of 1/2Γ2.

4.3 Numerical Results on Ultra-slow Pulse Propagation

To delineate various aspects of the pulse propagation, we solve the system of coupled

equations (4.10) and (4.11) numerically for a homogeneous broadened ruby crystal. For

numerical computation, we consider two different types of input pulses, viz, a Gaussian

pulse with a temporal width & 1/Γ2

Ω̃in = Ω̃0 e[−t2/2σ2] (4.12)

and amplitude modulated pulse

Ω̃2
in(t) = I = I0 (1 + m cos[∆t]) . (4.13)

Here Ω̃0 =
√

I0 is a real constant characterizing the peak amplitude of the Rabi frequency

before the pulse enters the homogeneous ruby medium. The equations (4.10) - (4.13) are

used for numerical computations. We do not make any approximation on the strength of

the pulses so that we can model experimental observations on strong pulses. We calculate

the evolution of pulse for arbitrary values of Ω̃0 or I0. Some typical results for the Gaus-

sian pulses are shown in the Fig. (4.2). We get group velocities in the range of 50 m/s for

Ω/Ωsat v 1 and the transmission is rather small. Group velocity of the intense pulse can

be calculated from the relative delay between the peak positions of the reference pulse and

output pulse, though the group velocity concept may not be very relevant as the pulse is

not weak. It is well known that the group velocity concept is introduced for a linear dis-

persive medium, however, in the present case the medium is nonlinear, dispersive and the

refractive index of the medium is modified by the propagating intense light pulse itself.

Next, we consider the input pulse as a modulated pulse given by Eq. (4.13). The ampli-
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tude modulated pulse contains a strong pump of intensity I0 and two side bands acting

as probes of intensity mI0 when modulation index m = 0.06 is very small. The strong

pump that creates a hole in the probe absorption spectrum becomes prominent when the

beating frequency ∆ between pump and probe is less than or approximately equal to 2Γ2.

This narrow hole causes an amplitude modulated pulse to experience a large group delay.

We show this time delay as a function of modulation frequency for three different pump

powers in Fig. (4.3). As seen from Fig. (4.3), at large modulation frequency the ampli-

tude modulated pulse moves with speed c/n, where n is refractive index of the medium.

Bigelow et al. have used pulses with incident power Iin of 0.25 Watts [57] and they have

measured group delay 1.26 ms corresponds to the group velocity 57.5 m/s. Let us evaluate

the Rabi frequency corresponding to the power level 0.25 Watts. The incident beam Iin of

power 0.25 Watts was focused with 40 cm focal length lens to a beam waist (w0) 84µm near

the entrance face of a 7.25 cm long ruby rod. Therefore, the peak power at the entrance face

of the ruby rod is given by

I0
in =

Iin

πr2
; r =

w0√
2

= 2.25 kWatt/cm2. (4.14)

The value of saturated intensity Isat of ruby at 514.5 nm is 1.5 kWatt/cm2 [153]. Therefore,

the Rabi frequency corresponds to the power level 0.25 Watts is as fellows:

Ω̃0 =

√
I0
in

Isat
≈ 1.15. (4.15)

As shown in Fig (4.2(a)), we get group velocity of the order of 50 m/s corresponds to the

Rabi frequency Ω̃0 ∼ 1 which is qualitative agreement with the experimental result of

Bigelow et al. [57]. Note that the measurement conditions in Refs.[153] and [57] are not

same.

4.4 Comparison between Two and There Level Model for Ruby

To study the group velocity and transmission for the intense pulse propagation through a

conventional two level model described by the traditional Bloch equations. Therefore, the
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Bloch equations for this conventional system are given by

ρ̇1g = − 1
T2

ρ1g + i
Ω
2

(ρ
gg
− ρ

11
), (4.16)

ρ̇gg =
1
T1

ρ11 + i
Ω
2

(ρ
1g
− ρ

g1
). (4.17)

At the limit of longitudinal relaxation time, T1 very much greater than transverse relax-

ation time T2, ρ̇1g ∼ 0, Eqs. (4.16) and (4.17) are simplified to

ρ
1g

∼= iΩT2(ρgg − ρ11)
2

(4.18)

ρ̇gg =
1
T1

(1− ρgg) −
|Ω|2T2

2
(2ρgg − 1). (4.19)

Therefore, the coupled Maxwell-Bloch equations are

ρ̇ggT1 = (1− ρgg) −
|Ω̃|2
2

(2ρgg − 1) (4.20)

∂Ω̃
∂z

= −α0

2
Ω̃(2ρgg − 1), (4.21)

where Ω̃ = Ω
√

T1T2 and dot denotes ∂/∂(t−z/c). In Fig.(4.4), we also show for comparison

the results of the group velocities and the transmission for the propagation of an intense

pulse through a two level system described by the traditional Bloch equations. As seen

from Fig. (4.4), there are substantial differences in the propagation of pulses in two level

and three level media. Note that the time T1 is equal to 1/2Γ2. We believe that, in light of

the energy level diagram of ruby, it is more appropriate to model it as a three level system.

The two level model misses the interesting physics since, in the effective two level model

there would be field induced transition from |e2〉 to |g〉 whereas, in the three level scheme

this does not occur. The steady state population of the ground state |g〉 for two level and

three level model obtained from Eqs. (4.20) and (4.10) are respectively given by

ρgg

∣∣
two

=
1 + Ω2

2Ω2
sat

1 + Ω2

Ω2
sat

(4.22)

ρgg

∣∣
three

=
1

1 + Ω2

Ω2
sat

; Ωsat = 2
√

Γ1Γ2 (4.23)

At Ω = Ωsat, the saturated value of population in the ground state |g〉 are 3/4 and 1/2 for

two and three level systems, respectively. As a result, two and three level systems saturate

in distinct ways which leads an important difference between two model configuration.
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Figure 4.4: Variation of transmissions and group velocities as a function of the input amplitude of the light
pulse. The solid (dashed) curve gives the intensity transmission of the pulse for the three (two) level model of
the medium. The corresponding group velocities are given by the dotted curve (two level model) and the long
dashed curve (three level model). The light pulse is propagating through the medium of length 7.25 cm.

While our results in Figs. (4.2) - (4.3) are in broad agreement with the experimental data,

we do not make a precise comparison due to the sensitive dependence on pump powers,

focusing of the pump and the possible uncertainty in the known value of the saturation

power for experimental conditions.

4.5 Reverse Saturated Absorption

We explicate the basic understanding of reverse saturation absorption, considering a four

level system interacting with single intense pump field, as shown in Fig. (4.5(a)), as seen

in alexandrite crystal. The process of absorption in a four level system is as follows. Ab-

sorption of incident field promotes an atoms to the first excited state 4T2. From the excited

state 4T2 can rapidly make a transition to the state 2E by a non-radiative transition. A

higher-lying state |e3〉 that may be radiatively coupled to the state 2E, and for which the

energy difference is in near resonance with the incident field. Therefore, before the atoms

are completely relaxes to the ground state, it may experience absorption that promotes it

to the higher-lying state |e3〉. This process is named as excited state absorption. When the
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Figure 4.5: (a) The energy level diagram of chromium ion’s in BeAl2O4 crystal. (b)Four level model for
Alexandrite crystal

absorption cross-section of the excited state is larger than that of the ground state, then

the system will exhibit reverse saturated absorption phenomena and display less trans-

missive when excited. Therefore, an anti hole is produced (instead of a hole) in the probe

absorption spectrum. The system becomes less transmissive due to the presence of anti

hole in the probe absorption spectrum at the frequency of pump field. The width of the

anti hole is the order of inverse of the relaxation time T1 of the excited state. A spectral

hole leads to slow light, whereas an anti hole leads to superluminal light associated with

small transmission.

4.6 Superluminal Pulse Propagation in Alexandrite

Alexandrite (Cr3+:BeAl2O4) is chromium-doped chrysoberyl, in which the chromium ion’s

(Cr3+) are embedded in the BeAl2O4 crystal at the amount 0.01%-0.04%. Fig. (4.5 (a))

shows energy levels of chromium ion’s in alexandrite. These chromium ion’s absorbing

the excitation of wavelengths in the approximate range 450-510 nm to pump population

from ground state 4A2 to the absorption bands 4T2 or 4T1. The population in this ab-

sorption band decays very rapidly to the 2E level, where it is trapped because of long

life time of this level (260 µs). At the excitation wavelength, the absorption cross-section

of the 2E state exceeds that of the ground state. Thus, alexandrite exhibits inverse of the
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normal saturation i.e., reverse saturation absorption [154]. Reverse saturation absorption

produces a narrow antihole in the susceptibility for the probe in presence of a pump

field. Bigelow et al. experimentally demonstrate how the anti-hole can result in the su-

perluminal propagation through alexandrite [138]. In order to model the experiment, we

model alexandrite as a four level system to account for reverse absorption as shown in

Fig. (4.5(b)), where the ground state 4A2 is designated as |g〉, the absorption bands 4T2

and 4T1 as |e1〉 and the level 2E as |e2〉. The intense pulse is defined by the electric field,
~E(z, t) = ~E(z, t) e−i(ωt−kz) + c.c., which is couples |e1〉 ←→ |g〉, can also drive |e3〉 ←→ |e2〉.
The Hamiltonian of the system under the action of these field in the RWA approximation

can be written as

H = ~ω1g |e1〉〈e1 |+~ω2g |e2〉〈e2 |+~ω3g |e3〉〈e3 |−~Ωe−iωt|e1〉〈g|−~Ωe−iωt|e3〉〈e2 |+h.c. (4.24)

The density matrix equations are now given by

ρ̇
gg

= 2Γ2ρ22
+ iΩ(ρ

1g
− ρ

g1
)/2 (4.25a)

ρ̇
22

= 2Γ1ρ11
− 2Γ2ρ22

+ 2Γ3ρ33
+ iΩ(ρ

32
− ρ

23
)/2 (4.25b)

ρ̇
33

= −2Γ3ρ33
+ iΩ(ρ

23
− ρ

32
)/2 (4.25c)

ρ̇
32

= −Γ3ρ32
+ iΩ(ρ

22
− ρ

33
)/2 (4.25d)

ρ̇
1g

= −Γ1ρ1g
+ iΩ(ρgg − ρ

11
)/2 (4.25e)

ρgg + ρ
11

+ ρ
22

+ ρ
33

= 1. (4.25f)

Here we consider the intense pulse is in resonance with |e1〉 ←→ |g〉 and |e3〉 ←→ |e2〉,
respectively. The Rabi frequency Ω is defined by Ω(z, t) = 2~d1g · ~E(z, t)/~, where ~d1g is

the dipole moment matrix element and ~E(z, t) is the slowly varying envelope of the pulse.

In the original frame of reference, the matrix elements are given by ρ
1g

e−iωt, and ρ
32

e−iωt,

whereas the other elements remain unchanged. Under the approximation, Γ1, Γ3 À Γ2, Ω;

ρ̇32 and ρ̇1g ∼ 0, therefore Eqs. (4.25(d)) and (4.25(e)) can be expressed in the following

form:

ρ
1g

∼= iΩ(ρgg − ρ11)
Γ1

=
iΩρgg

Γ1
(4.26a)

ρ
32

∼= iΩ(ρ22 − ρ33)
Γ3

=
iΩ(1− ρgg)

Γ3
(4.26b)
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Figure 4.6: The solid curve of (a) shows light pulse propagating at speed c through a distance of 4 cm in
vacuum. The dotted, long dashed and dot-dashed curves depict light pulse propagating through a medium
of length 4 cm at different input amplitudes. The pulse width σ is 500 µs, whereas 1/2Γ2=250µs. Fig (b)
shows the amplitude of the output pulse normalized with input amplitude. The transmission is decreased
with increase in the input field intensity .

where ρ
11

& ρ
33
∼ 0, that can be easily prove under the same approximation. Thus we

obtain the approximate equation for the evolution of ground state population as

ρ̇gg

2Γ2
= (1− ρ

gg
)− |Ω̃2|ρ

gg
. (4.27)

The evolution equation for the slowly varying Rabi frequency of the intense field under

the same conditions is

∂Ω̃
∂z

= −α0

2
Ω̃ρ

gg
− α̃0

2
Ω̃(1− ρ

gg
), Ω̃ =

Ω
Ωsat

, (4.28)

where α0 and α̃0 gives the saturation and reverse saturation, respectively. Shand et al. have

shown that, for excitation wavelength of 457 nm, the excited-state |e2〉 absorption cross-

section σ2 (4.05× 10−20 cm2) exceeds that of the ground state |g〉 absorption cross-section

σ1 (0.9 × 10−20 cm2) [155]. Thus the absorption rate for excitation at these wavelength

displays the reverse saturation absorption in that the total absorption coefficient increases

rather than decreases with input intensity. Following these experimental data, we estimate

(α̃0/α0) ≈ 4. The coupled differential Eqs. (4.27) and (4.28) are numerically integrated

for studying the input Gaussian pulse given by Eq. (4.12) through the resonant systems.

We show a number of our numerical results in Fig. (4.6). This Figure also shows that

the group velocity and net transmission depends on the peak intensity of the Gaussian
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pulses. It is clear from Fig. (4.6b) that an increase in the input pulse intensity results in

increased absorption of the pulse at the resonant condition. It should be borne in mind

that in the range of the intensities of Fig. (4.6), no perturbation theory can be used and one

has to study the full nonlinear behavior. We also notice that the shape of input pulses get

distorted. The nonlinearity of the medium becomes more pronounced as the intensity of

the input pulse increases leading to severe distortion of the input pulses.

4.7 Summary

In summary, we have shown how to model the propagation of intense pulse in solid state

media with very strong relaxation effects. The media can exhibit either saturated absorp-

tion or reverse absorption. We solve numerically the system of Maxwell-Bloch equations

without any approximation on the strength of the input pulses. We calculate the group

velocity of the intense pulses from the relative delay or advancement between reference

pulse and the output pulse. Our modelling goes well beyond the traditional pump-probe

approach. We specifically present results on the propagation of pulses in ruby and alexan-

drite. Our model would also be applicable to other systems, such as Er+3 doped fluoroin-

dogallate glasses [156], where reverse absorption could be dominant.



CHAPTER 5

Saturated Absorption for Production of Slow Light in

Doppler-Broadened Two Level Systems

In the previous chapters, we have discussed the propagation of light pulse through a

homogeneously broadened atomic medium. In this chapter, we demonstrate that light

pulse can be slowed down considerably in an inhomogeneously broadened medium. This

is somewhat counterintuitive as one would think that inhomogeneous line shape would

make the dispersion, or more precisely, the derivative of susceptibility, rather negligible.

We, however, suggest the use of the method of saturation absorption spectroscopy[19,

20, 21, 22, 23] to produce a hole of the order of the homogeneous width in the Doppler

broadened line. The application of a counter propagating saturated beam can result in

considerable reduction in absorption, and adequate normal dispersion to produce slow

light.

5.1 Basic Equation for Driven Two Level System

We have considered the standard geometry of a Doppler broadened system as shown in

Fig. (5.1) where the atom interacts with counterpropagating probe and control field. Here

a probe pulse propagates in the direction ẑ in a medium of two level atoms. For simplicity,

we consider the incident probe pulse of the form

~E(t) ≡ ~Eei(kz−ωt) + c.c., k =
ω

c
(5.1)

73
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Figure 5.1: (a) A block diagram where the pump (ωc) and probe (ω) field are counter propagating inside the
medium. (b) Schematic representation of a two level atomic system with ground state |g〉 and excited state
|e1〉.

A counter propagating cw pump field, ~Ec(t), is used for producing saturation

~Ec(t) ≡ ~Ece
i(kz−ωct) + c.c. (5.2)

What is the relevant for further consideration is that the effective linear susceptibility χ(ω)

of the two level system which is interacting with the field ~Eei(kz−ωt) and ~Ec(t). The Hamil-

tonian of the system under the action of theses field in dipole moment approximation is

given by

H = H0 +HI

= ~ω1g|1〉〈1| − ~
[
Ge−iωct|1〉〈g|+ ge−iωt|1〉〈g|+ h.c.

]
,

(5.3)

where 2G and 2g are the Rabi frequency of the pump and probe field, respectively. By

making a unitary transformation from the density matrix ρ to σ via

σ11 = ρ11 , σ1g = ρ1ge
iωct, σgg = ρgg , (5.4)

we have the corresponding density matrix equations

σ̇11 = −σ̇gg = − 1
T1

σ11 + i(G + ge−iδt)σg1 − i(G∗ + g∗eiδt)σ1g , (5.5)

σ̇1g = σ̇∗
g1

= −(
1
T2
− i∆)σ1g + i(G + ge−iδt)(σgg − σ11), (5.6)

where T1 and T2 are called “longitudinal” and “transverse” relaxation times and the de-

tunings ∆ and δ are defined by

∆ = ωc − ω1g, δ = ω − ωc (5.7)
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Equations (5.5) and (5.6) cannot be solved exactly. The strategy will be to find a solution

that is exact for saturating control field and is correct to first order for the amplitude of g,

the weak probe field. Hence, we require that the steady-state solution of the density matrix

can be written in the form

σij = σ(0)
ij

+ σ(+)
ij

ge−iδt + σ(−)
ij

g∗eiδt. (5.8)

where σ(0)
ij

denote the solution for the case in which the control field is only present in the

system and the other terms are assumed to be small in the sense that |σ(+)
ij
|, |σ(−)

ij
| ¿σ(0)

ij
.

We now substitute the above expression in the density matrix equations and equate the

coefficients of ge−iδt, g∗eiδt and the constant terms. Thus we obtain a set of twelve coupled

simultaneous equations. The solutions of simultaneous equations for steady state density

matrix elements are given all relevant coefficients as fellows:

σ
(0)
11 =

2|G|2T1T2

1 + ∆2T 2
2 + 4|G|2 , (5.9a)

σ
(0)
1g =

iG

(1/T2 − i∆)

(
1 + ∆2T 2

2

)

(1 + ∆2T 2
2 + 4|G|2T1T2)

(5.9b)

σ
(+)
1g = −

(
1 + ∆2T 2

2

)

(∆ + δ + i/T2)(1 + ∆2T 2
2 + 4|G|2T1T2)

×
[
1− 2|G|2(∆− i/T2)−1(δ + 2i/T2)(δ −∆ + i/T2)

(δ + i/T1)(δ −∆ + i/T2)(δ + ∆ + i/T2)− 4|G|2(δ + i/T2)

]
(5.9c)

σ
(−)
1g = − 2|G|2 (

1 + ∆2T 2
2

)

(∆ + i/T2)(1 + ∆2T 2
2 + 4|G|2T1T2)(∆− δ + i/T2)

×
(δ −∆− i/T2)(−δ + 2i/T2)

(δ − i/T1)(δ −∆− i/T2)(δ + ∆− i/T2)− 4|G|2(δ − i/T2)
(5.9d)

σ
(+)
11 =

iσ
(0)
g1 + iGσ

(+)
g1 − iG∗σ(+)

g1

1/T1 − iδ

σ
(−)
11 =

−iσ
(0)
g1 − iGσ

(+)
g1 + iG∗σ(+)

g1

1/T1 + iδ
(5.9e)

and σ
(0)
g1 = σ

(0)∗
1g , σ

(±)
g1 = σ

(∓)∗
1g . Now, the steady state value of atomic coherence σ(+)

1g
will

yield the susceptibility at frequency ω as given below:

χ = −N |d|2
~

1 + ∆2T2
2

(1 + ∆2T2
2 + 4|G|2T1T2)(∆ + δ + i/T2)

×
[
1− 2|G|2(∆− i/T2)−1(δ + 2i/T2)(δ −∆ + i/T2)

(δ + i/T1)(δ + ∆ + i/T2)(δ −∆ + i/T2)− 4|G|2(δ + i/T2)

]
, (5.10)
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Figure 5.2: (a) The absorptive response of the probe is shown as a function of the probe detunning δ/γ for
a pump field at resonance condition ∆ = 0γ. (b)Probe absorption and dispersion spectra for a driven two
level atom as function of probe detuning δ/γ with pump detunning ∆ = −2.5γ, G= 10γ,. The common
parameters of the above two graphs for 87Rb vapor are chosen as density N= 2× 1011 atoms/cc, T1=T2/2 =
1/2γ, and γ = 3π × 106 rad/sec.

This susceptibility expression was first derived by Mollow in a driven two level system

[157]. The Fig. (5.2(a)) shows the imaginary part of χ as a function of the probe detun-

ning δ/γ, where the pump field is tuned directly to the atomic resonance condition ∆ = 0.

It is clear from the Fig. (5.2(a)) that the probe absorption spectrum begins to saturate as

the pump field intensity is increased from zero to well above saturation. At G = 1γ, the

probe absorption spectrum split up into three-peaked spectrum and the positions of the

three peaks are at ω, ω − 2G and ω + 2G respectively. The probe absorption spectrum

become asymmetric when ∆ < 0 as shown in the Fig. (5.2(b)). The probe field absorp-

tion acquires negative values at frequency ω − 2G, representing stimulated emission even

though population inversion does not occur as shown in the Fig. (5.2(b)). This was first

dealt by Mollow in 1972 [157] and observed [158] a few years later. It is also clear from

the Fig. (5.2(b)), a dispersive characteristics appears around ω ≈ ωc in the absorption spec-

tra which corresponds to stimulated Rayleigh scattering. The dispersion like behavior in

the absorption spectrum was explained by Agarwal [159] in great detail. The gain associ-

ated with dispersive type feature has been utilized for optical parametric oscillation [160].

The understanding of such physical phenomena was provided by Cohen-Tannoudji and

Reynaud by introducing a dressed state picture of the atom-field system [161].
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5.2 Saturation Absorption Spectroscopy and Lamb Dip

Saturation absorption spectroscopy [19, 20, 21, 22, 23] was perhaps the first spectroscop-

ically interesting nonlinear optical phenomena, discovered just after the operation of the

first gas laser by Javan in 1961 [162]. This spectroscopy is based on the velocity-selective

saturation of the Doppler broadened atomic medium and is often called Lamb-dip spec-

troscopy. The broadening of the spectral line is a result of the thermal motion of the atoms

in the atomic gas.

We first consider the Doppler effect qualitatively. If a laser, having frequency (ω) is

incident on the cell containing the thermal atoms. The frequency of the laser as seen by the

moving atom with a velocity v along the z-direction is given by

ω(v) = ω
(
1± v

c

)
. (5.11)

where the lower (upper) sign corresponds to a co-propagating (counter-propagating) atom

and field. The probability that an atom has a velocity between v and v + dv is given by the

Maxwell distribution

P(kv)d(kv) =
1√

2πD2
e−(kv)2/2D2

d(kv), (5.12)

where D is the Doppler width defined by

D =
√

KBTω2/Mc2. (5.13)

and it is therefore dependent on the temperature of atomic gas. If the incident powerful

laser (pump) has a smaller bandwidth than the Doppler width of the absorbing atoms, sat-

uration occurs only for a subset of atoms within the Doppler spread. In laser spectroscopy,

Doppler broadening is often called as an inhomogeneous broadening. The narrow band

laser at frequency ω travelling in the z-direction is absorbed only by the particular subset

of atoms with z component of the velocity such that their rest resonance frequency ω1g

matches with Doppler shifted frequency ω:

v

c
=

ω − ω1g

ω
(5.14)

This particular velocity component is absent in the Doppler velocity distribution and hence

it produces a hole in the lower level population distribution. A probe laser (weak field)
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Figure 5.3: “Lamb dip” or a hole in the probe absorption spectrum caused by the counterpropagating pump
field at resonance condition. The inset shows the close up of the “Lamb dip” near kv/γ=0

tuned to the same frequency finds the gas transparent because of the population depletion

of the lower level. The gas become transparent if the probe laser is travelling in the same

direction, but if its direction is reversed it probes atoms which have velocity, −v, and the

gas no longer appears transparent. The velocity dependent susceptibility can give rise

the dip in the probe spectrum when the doppler shifted probe (ω − kv) and pump field

(ωc + kv) are taken into account of the Eq. (5.10). A dip of width of the order of 1/T1 is

created when the strong pump and weak probe laser are at the resonance with the system

as shown in the Fig. (5.3). The dip in the probe absorption spectrum corresponds to a hole

in the lower level population distribution. It is clear from the Fig. (5.3) that the dip never go

to zero no matter how strong the pump laser is and attains the minimum value when the

medium saturates. At that instant the population distribution between lower and upper

level become equal. The dip in the probe absorption spectrum accompanied with a rapid

variation of refractive index is able to produced slow light in Doppler-broadened system.

5.3 Susceptibilities χ(ω) of the Doppler Broadened Medium

In the present case, we consider that the probe and the control field are co-propagating

(ω − kv) and counter-propagating (ωc + kcv) with the atom, respectively. Therefore, the

Doppler shift of the detunings of the Eq. (5.7) can be written as

∆(v) = ∆ + kv, δ(v) = δ − 2kv (5.15)
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Figure 5.4: The imaginary (a) and real parts (b) of susceptibility S(ω) at the probe frequency ω in the
presence of pump field G. Here we considered the pump field is in resonance. The insets shows a zoom part
of the same near δ/γ = 0. The common parameters of the above four curve for 87Rb vapor are chosen as:
Doppler width parameter D= 1.33× 109 rad/sec, density N= 2× 1011 atoms/cc, γ = 3π × 106 rad/sec.

where we assume k = kc for simplicity of our numerical calculation. Next we need to

take into account the atomic thermal motion which is assume to obey the Maxwellian

distribution

P(kv)d(kv) =
1√

2πD2
e−(kv)2/2D2

d(kv), (5.16)

with D is the Doppler width defined by

D =
√

KBTω2/Mc2. (5.17)

For a Doppler broadened system, one needs to averages the susceptibility χ over the

Doppler distribution which is given by

〈χ〉 =
∫ ∞

−∞
χ(kv)P (kv)d(kv) (5.18)

We denote the average of χ(ω) by S(ω). We show in Fig. (5.4), the behavior of imaginary

and real parts of the susceptibility, S(ω), assuming that the counter propagating pump

is in resonance with atomic transition i.e, ωc = ω1g. The imaginary part of S(ω) shows

the typical Lamb dip [163] which becomes deeper with the increase in the intensity of

the saturating beam. We show the behavior in the region of Lamb dip. The width of the

Lamb dip is the order of 2γ. The real part of S(ω) exhibits normal dispersion, which in

fact, is very pronounced. It is this sharp dispersion which can produce slow light. In our

numerical simulation we have chosen typical parameters corresponds to the D1 absorption
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line of 87Rb: T1 = T2/2 = 1/2γ, γ = 3π × 106 rad/sec, D= 1.33 × 109 rad/sec ( at room

temperature ), N= 2× 1011 atom/cc and λ = 795 nm.

5.4 Pulse Propagation and Verification

Consider the incident pulse of the form

~E(t) ≡ ~E(1 + m cos νt)e−i(ωt−kz) + c.c., k =
ω

c
(5.19)

where m and ν are the modulation index and frequency respectively. For small modula-

tions, we can use the approximation

S(ω ± ν) = S(ω)± ν
∂S

∂ω
(5.20)

Therefore, the probe field at the output face z = l of the medium, can be expressed as

~E(l, t) = ~E (1 + m cos[νt]) e−i(ωt−ωln(ω)
c

) + c.c., k =
ωn(ω)

c
and n(ω) = 1 + 2πS(ω)

= ~Ee−i(ωt−ωln(ω)
c

) +
m~E
2

e−i(ω−ν)tei
(ω−ν)l

c
n(ω−ν) +

m~E
2

e−i(ω+ν)tei
(ω+ν)l

c
n(ω+ν) + c.c.,

=
[
1 +

m

2

(
eiν{t+ l

c
(1+2πS+2πω ∂S

∂ω
)} + e−iν{t+ l

c
(1+2πS+2πω ∂S

∂ω
)})]

×
~Ee−iω(t− l

c
+ 2πiωlS

c
) + c.c.,

≈
[
1 +

m

2

(
eiν{t+ 2πωl

c
∂S
∂ω} + e−iν{t+ 2πωl

c
∂S
∂ω}

)]
~Ee−iω(t− l

c
+ 2πiωlS

c
) + c.c.,

= ~E(1 + m cos[ν(t + θ)])e−i(ωt−kl)+i ω
c
2πlS(ω) + c.c., (5.21)

where the delay time, θ, is defined by

θ = 2πl
ω

c

∂Re[S]
∂ω

. (5.22)

Note that θ will be positive if ∂Re[S]/∂ω > 0, i.e, if the medium exhibits normal dispersion.

Note further the relation of the parameter θ to the group velocity and the group index :

vg =
c

ng
=

c(
1 + 2πRe[S(ω)] + 2πω ∂Re[S]

∂ω

) , (5.23)

where real part of S(ω) is zero at resonance condition and has very small value of order

of 10−7 in the neighborhood of resonance. Therefore, one can drop the term 2πRe[S(ω)]

from the group index expression and it reduces to (1 + 2πω∂Re[S]/∂ω). The imaginary
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Figure 5.5: The variation of group index with the detuning of the probe field. The parameters are chosen as :
N=2× 1011 atoms/cc, D=1.33× 109 rad/sec, γ = 3π × 106 rad/sec and ∆ = 0.

part of S(ω) will give the overall attenuation of the probe pulse inside the medium. We

will present numerical results for the group index by evaluating Eq. (5.23) at different

intensities of the counter propagating beam. The calculated group index, ng, as a function

of the detuning of the probe from the atomic transition is shown in Fig. (5.5). Clearly the

group index is larger for values of the intensity of the saturating pump G = 0.4γ. One can

calculate ng as a function of G, for δ = 0, and the result is shown in the Fig. (5.6).

To confirm these results, we also studied the propagation of a Gaussian pulse with an

envelope given by

E(t− L/c) =
E0

2π
exp

[−(t− L/c)2/τ2
]

E(ω) =
E0√
πΓ2

exp
[−(ω − ω0)2/Γ2

]
, (5.24)

where Γτ is equal to 2. We use Γ = 120 KHz for our numerical simulation. The electric

field of input pulse is given by

~Ein(z, t) ≡ ε̂

∫ ∞

−∞
dωE(ω)e−i(ωt−kz)

≡ ε̂e−
Γ2

4
(t−z/c)2e−iω0(t−z/c) (5.25)

Here, we consider the atomic system is dilute, for this reason the back reflections are very
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Figure 5.6: Group index variation with the Rabi frequency of the saturating field. The parameters are chosen
as : N=2× 1011 atoms/cc, D=1.33× 109 rad/sec, γ = 3π × 106 rad/sec, ∆ = 0, and δ = 0.

negligibly small. Therefore, the electric field of the output pulse can be written as

~Eout(L, t) ≡ ε̂

∫ ∞

−∞
dωE(ω)e

[
−iω(t−L/c)+

2iπωS(ω)
c

]
(5.26)

Using Eqs.(5.18) and (5.24) we evaluate numerically the output pulse and show the result

in Fig. (5.7). The pulse delay of 0.05 µsec due to the medium is seen in the Fig. (5.7). The

group velocity of the pulse, calculated from the relative delay between the reference pulse

and the output pulse, is in good agreement, with the value of group index [(c/vg) = 1500].

We get 2.1% transmission of Gaussian pulse. The transmitted intensity is almost same as in

any saturation absorption experiment [164]. This value of transmission can be understood

by evaluating Im[4πlωS(ω)/c](cf. Eq. (5.21)) which is found to be 3.84. This implies a

transmission e−3.84 ∼ 2.1%. The condition for distortionless pulse propagation is that

the spectral width of the Gaussian pulse to be well contained within the region of Lamb

dip of the medium. If the pulse spectrum becomes too broad relative to width of the

Lamb dip then simple expression like (5.23) does not hold. One can, however still calculate

numerically the output pulse.
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Figure 5.7: The Solid curve shows light pulse propagating at speed c through 1 cm of vacuum. The dotted
curve shows same light pulse propagation through a medium of length 1 cm with time delay .05µsec in the
presence of saturating pump with Rabi frequency G = 0.4γ. The common parameters of the above graph for
87Rb vapor are chosen as N = 2 × 1011 atoms/cc, D= 1.33 × 109 rad/sec, γ = 3π × 106 rad/sec, ∆ = 0
and δ = 0. The transmission intensity is 2.1%. The inset shows the close up of the Gaussian pulse with a
spectral width 120 KHz.

5.5 Summary

In summary, we have studied how Lamb dip and saturated absorption spectroscopy can be

used to produce slow light with group indices of the order of 103 in a Doppler broadened

medium, which otherwise has very flat dispersion. We also studied the propagation of

Gaussian pulse to verify the results that are obtained from susceptibility calculation. We

illustrate our results using the case of the rubidium atomic vapors. We believe that a very

similar result or even more remarkable results on slowing of light can be obtained for

inhomogenously broadened solid state systems, where the densities are large.



CHAPTER 6

Stoppage of Light in Hot Atomic Gases

In the previous chapter we have demonstrated that subluminal propagation of light in

Doppler-broadened medium can be achieved by using the phenomenon of saturation ab-

sorption. Slowing down the group velocity of light pulse to zero in a Doppler-broadened

medium is especially intriguing. Kocharovskaya et al. demonstrated how the light can

be stopped in a coherently driven Doppler-broadened medium via electromagnetically

induced transparency [71]. This can be achieved by using the property of spatial disper-

sion of the refractive index of the medium. It is well known from both theory and ex-

periments how control fields can produce spatially varying refractive index profiles [70].

Kocharovskaya et al. argued that the motion of atoms leads naturally to a refractive index

or a susceptibility that is dependent on both the propagation vector and the frequency. Ex-

plicit calculation for a Λ-system shows that the stoppage of light occurs when the control

fields are suitable detunned from the atomic transition and when the central frequency of

the probe pulse satisfies two photon resonance condition. This stoppage light mechanism

is quite different from that in [69], as it does not require switching off and on of the control

field. All these have a remarkable bearing on the pulse propagation. In this chapter we

demonstrate how the application of a lower level coupling field in Doppler-broadened EIT

medium makes it easy to change the group velocity from negative value to positive value

and hence helps in stopping light inside the medium.

84
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6.1 Group Velocity and Spatial Dispersive Hot Atomic Medium

The evolution of the slowly varying electric field amplitude along the z-direction is de-

scribed by Maxwell’s equations

∂E0

∂z
+

1
c

∂E0

∂t
= 2πikP0. (6.1)

where the electric field ~E(z, t) and the polarization ~P (z, t) are given by

~E(z, t) = ê~E0(z, t)e−i(ω0 t−k0z) + c.c. (6.2)

~P(z, t) = ê ~P0(z, t)e−i(ω0 t−k0z) + c.c. (6.3)

and we have assumed the central frequency, ω0, is very close to the atomic transition fre-

quency (ω0 = ω13). For a linear response medium, the polarization P(z, t) is related to the

electric field by

P(z, t) =
∫ ∞

−∞
χ(ω, k)E(ω, k)e−i(ωt−kz)dkdω. (6.4)

The electric field E(k, ω) and susceptibility χ(ω, k) are related with E(z, t) and χ(t− t′, z−
z′) by Fourier transformation as given below:

E(z, t) =
∫ ∞

−∞
E(k, ω)e−i(ωt−kz)dkdω (6.5)

χ(z − z′, t− t′) =
∫ ∞

−∞
χ(k, ω)e−i[ω(t−t′)−k(z−z′)]dkdω. (6.6)

As is well known, a spatially dispersive medium [165] is characterized by a susceptibility

χ(k, ω) that is dependent on the propagation vector, ~k, and frequency, ω. Further, the

allowed wavevectors are given by the dispersion relation

k2 =
ω2

c2
[1 + 4πχ(k, ω)] . (6.7)

The above dispersion relation can lead to many real solutions for k, for a fixed ω, and thus

one has the possibility of additional waves in a spatially dispersive medium. For a dilute

atomic gas, where |χ| ¿ 1, optical refractive index can be expressed as n = 1 + 2πχ(k, ω).

In this case we would basically have a single wave. It is convenient to decompose χ(ω, k)

in a Taylor series as

χ(ω, k) = χ(ω0, k0) + (ω − ω0)
[
∂χ

∂ω

]

ω0

+ (k − k0)
[
∂χ

∂k

]

k0

+ · · · (6.8)
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and we obtain expression for induced polarization (keeping terms only upto first order),

P(z, t) =
[
χ(ω0, k0)E0(z, t) + i

∂χ(ω0, k0)
∂ω

∂E0

∂t
− i

∂χ(ω0, k0)
∂k

∂E0

∂z

]
e−i(ω0t−k0z). (6.9)

Substituting the polarization (6.9) into the wave equation (6.1), we can obtain the wave

equation in a simplified form

∂E0

∂z
+

1
c

∂E0

∂t
= 2πik0

[
χ(ω0, k0)E0(z, t) + i

∂χ(ω0, k0)
∂ω

∂E0

∂t
− i

∂χ(ω0, k0)
∂k

∂E0

∂z

]
. (6.10)

Subsequent rearrangement of the Eq. (6.10) gives

∂E0

∂z
+

1
Vg

∂E0

∂t
= 0, (6.11)

where the group velocity of the light pulse is expressed as:

Vg ≡ Re
dω

dk
= Re

[
c (1− 2πk0∂χ/∂k)

1 + 2πχ + 2πω0∂χ/∂ω

]
. (6.12)

This formula assumes weak spatial as well as temporal dispersion and negligible absorp-

tion. In a hot atomic gases, the Doppler-broadening has to be taken into the calculation of

susceptibility χ(k, ω) expression. Therefore, susceptibility χ(k, ω) is to be replaced by the

average values χ(ω − kv) over the Maxwell distribution of velocities. Then the expression

for the group velocity becomes

Vg = Re


 c

(
1 + 2πk〈v ∂χ

∂ω 〉
)

1 + 2π〈χ〉+ 2πω〈∂χ
∂ω 〉


 . (6.13)

Note that

〈v ∂χ

∂ω
〉 6= 〈v〉〈∂χ

∂ω
〉 6= 0, (6.14)

and hence the stoppage of light takes place if the numerator in Eq. (6.13) vanishes. In the

following section, we derive the expression of the susceptibility χ(ω) for a closed Λ-system

by solving the density matrix equation in the steady state limit.

6.2 Model Configuration and Its Basic Equations

We consider the scheme as shown in Fig. (6.1). We apply a control field Ec(z, t) of frequency

ω2 on the optical transition |1〉 ↔ |2〉. The transition |2〉 ↔ |3〉 is generally an electric dipole

forbidden transition. The states |2〉 and |3〉 are metastable states. We apply an additional
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Figure 6.1: Schematic diagram of three level Λ-system; the probe pulse is applied on the transition |1〉 ↔ |3〉;
other fields are cw.

control field of frequency ω3 on the transition |2〉 ↔ |3〉. The probe pulse Ep(z, t) acts on

the transition |1〉 ↔ |3〉. Here Ei(z, t) = Ei(z, t)ei(ωit−kiz) + c.c., with Ei(z, t) being the

slowly varying amplitude of the field envelope and ki, the propagation vector; i = c, p

refers to the control field and probe field, respectively. The state |1〉 decays to the states |3〉
and |2〉 at the rates 2γ1 and 2γ2. Let 2g = 2~d13. ~Ep/~ , 2G = 2~d12. ~Ec/~ and 2Ω be the Rabi

frequencies of the probe field, control field ~Ec and the LL coupling field, respectively. The

susceptibility χ(ω1) of medium can be obtained by solving the density matrix equations

for the Λ-system as shown in Fig. (6.1). The calculation of the density matrix element ρ13

is done upto first order in the applied optical field on the transition |1〉 ↔ |3〉 but to all

orders in the control field and the LL coupling field. It is not necessary to calculate upto

first order in probe; exact calculation is also possible. However one studies concepts like

group velocity in a linear medium and therefore we treat probe to first order so that the

medium is linear as far as probe is concerned. In order to proceed further we make the

following transformation on the off-diagonal matrix elements of the density matrix

ρ12 = σ12e
−i(ω2t+φ2), ρ13 = σ13e

−i(ω2+ω3)t−i(φ2+φ3), ρ23 = σ23e
−i(ω3t+φ3), (6.15)

However it should be born in mind that the full density matrix in Schrödinger picture is to

be obtained by using Eq. (6.15). We can write the equations for the density matrix elements
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as

σ̇11 = iGσ21 + ige−i(∆4t+δφ)σ31 − iG∗σ12 − ig∗ei(∆4t+δφ)σ13 − 2(γ1 + γ2)σ11,

σ̇22 = iG∗σ12 + iΩσ32 − iGσ21 − iΩ∗σ23 + 2γ2σ11 ,

σ̇12 = −[γ1 + γ2 + Γ12 − i∆2]σ12 + iGσ22 + ige−i(∆4t+δφ)σ32 − iGσ11 − iΩ∗σ13,(6.16)

σ̇13 = −[γ1 + γ2 + Γ13 − i(∆2 + ∆3)]σ13 + iGσ23 + ige−i(∆4t+δφ)σ33

−ige−i(∆4t+δφ)σ11 − iΩσ12,

σ̇23 = −(Γ23 − i∆3)σ23 + iG∗σ13 + iΩσ33 − ige−i(∆4t+δφ)σ21 − iΩσ22,

with σji = σ∗
ij

and σ11 + σ22 + σ33 = 1. Here Γ’s give collisional dephasing terms; ∆i’s are

the detunings

∆1 = ω1 − ω13, ∆2 = ω2 − ω12, ∆3 = ω3 − ω23, ∆4 = ω1 − ω2 − ω3, (6.17)

and the relative phase difference of the probe field to the sum of the pump and additional

control field is

δφ = φ1 − φ2 − φ3. (6.18)

The susceptibility χ can be obtained by considering the steady state solution of (6.16) to

first order in the probe field on the transition |1〉 ↔ |3〉. For this purpose we assume

γ1 = γ2 = γ and write the solution as

σ = σ0 +
g

γ
e−i(∆4t+δφ) σ+ +

g∗

γ
ei(∆4t+δφ) σ− + ...... (6.19)

On combining Eqs.(6.16) and (6.19), we note that to first order ρ13(t) ≡ (g/γ)e−i(ω1t+φ1)

σ+
13

. Thus 13-element of σ+ will give the susceptibility at the frequency ω1 which now can

be expressed in the form

χ(ω1) =
N|~d13|2
~γ

σ+
13, (6.20)

where N is the density of the atoms. The phase dependence of different fields does not

appear in the susceptibility. Note that the zeroth order contribution in Eqs.(6.19) can result

in phase dependent components. However for the range of parameters used in this paper,

the zeroth order term is so small that it can be ignored.

To obtain the probe response in a Doppler-broadened medium, σ+
13

should be averaged

over the Maxwell-Boltzmann velocity distribution of the moving atoms. For a single atom,
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Figure 6.2: (a) and (b) The imaginary and real parts of susceptibility 〈[χ]〉at the probe frequency ω1 in the
presence of control field G and LL coupling field Ω. Detuning ∆2 of the control field is chosen as −50γ. The
common parameters of the above two graphs for 87Rb vapor are chosen as: Doppler width parameter D=
1.33× 109 rad/sec, density N = 1012 atoms/cc, G = 0.3γ, ∆3 = 0, Γ12 = Γ13 = 0, γ = 3π × 106 rad/sec.

moving with a velocity v along the z axis, the probe frequency ω1(v) and frequencies ω2(v),

ω3(v) of the two control fields as seen by the atom are given by

ω1(v) = ω1 − k1v, ω2(v) = ω2 − k2v, ω3(v) = ω3 − k3v. (6.21)

Thus susceptibilities for moving atoms are obtained by using the substitution (6.21) in the

solution of Eqs. (6.16). Note that the velocity dependence of ω3 is insignificant and can be

dropped. For simplicity we can also set k1 ≈ k2. These susceptibilities are to be averaged

over the Maxwell-Boltzmann distribution for the atomic velocities, defined by

P(k1v)d(k1v) =
1√

2πD2
e−(k1v)2/2D2

d(k1v), D =
√

KBTω2
1/Mc2. (6.22)

6.3 Numerical Results on Stoppage of Light

In this section we present numerical results to demonstrate how the stoppage of light is

made possible by the application of LL coupling field. Note that the parameters space is

rather large and the result will depend on the proper choice of G, Ω, control field detuning

∆2 and of course the probe field detuning ∆1. We have carried out the numerical results

for a large range of parameters and we present a number of numerical results in Figs. (6.2),

(6.3) and (6.4). We have used the parameters for 87Rb with Doppler width parameters
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D= 1.33×109 rad/sec, γ = 3π×106 rad/sec, λ = 7950Å, and densityN = 1012 atom/cm3.

In Fig. (6.2(a)) and Fig. (6.2(b)) we show the behavior of the susceptibility as a function

of the detuning of the probe when the control field ω2 is detuned, ∆2 = −50γ. It is clear

from the Fig.(6.2(a)) that increase of the microwave field intensity results in decrease of the

probe absorption in presence of collisional dephasing. At two-photon resonance condition

i.e., ∆1 = ∆2 = −50γ, the absorption of the probe is very small. Therefore the transparency

window is obtained at two-photon resonance condition, i.e., ω1−ω2 = ω13−ω12. Note that

the transparency dip that appears in the absorption spectrum has finite bandwidth and its

width depends on intensities of control fields. To avoid severe absorption of the probe

pulse, one has to choose a narrow-band probe pulse, so that it remains well contained

within the bandwidth of the transparency window. However, the transparency dip is a

accompanied by a steep variation of 〈Re[χ]〉 with probe detuning. We find that if two

control fields are suitably detuned then the light can be stopped. We show in the Fig. (6.3(a))

how the group velocity 〈Vg〉 (defined in Eq. (6.13)), changes from negative values to large

positive values as the intensity of the LL coupling field is increased. This change allows to

stop the light pulse inside the atomic medium. It is clearly seen from Fig. (6.3(a)), the group

velocity 〈Vg〉 become zero at the value of Ω = 1741×10−6γ when the control field G is out of

one-photon resonance but satisfies the two photon resonance condition (∆1 = ∆2 = −50γ).

Note that for 87Rb, a Rabi frequency of 10−6γ implies a magnetic field of the order of

.993µG. The slope of 〈Re[χ]〉 with respect to central frequency of the probe pulse depends

on the intensity of the two control fields and density of atoms. The group velocity becomes

zero [Fig. 6.3(b)] as the numerator in Eq. (6.13) changes sign when the LL coupling field

is increased. Fig. (6.3(c)) gives the group velocity in the absence of spatial dispersion.

A comparison of the Figs. 6.3(a) and 6.3(c) shows the important role played by spatial

dispersion. Further we notice from the Fig. 6.3(d) that at resonance condition (∆1 = ∆2 =

0) light cannot be stopped. In order to understand how the application of the microwave

field leads to the stoppage of light, we show in the Fig. (6.4) the behavior of the Doppler

average of 〈∂χ/∂ω1〉 and 〈1− 2πk1
∂χ
∂k1
〉 as a function of ω1. The latter quantity crosses zero

which results in the stoppage of light. Figs. (6.3) and (6.4) show how the application of

the microwave field changes all the physical quantities. At a more fundamental level the

microwave field and pump field together produce new dressed states of the system. Such

dressed states determine the response of the system to the applied probe field. However all
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Figure 6.3: (a) shows variation of group velocity, in cm per sec, (Eq. (6.13)) with the strength Ω of the LL
coupling field. The group velocity becomes zero because the numerator in Eq. (6.13) becomes zero as shown
in the Fig. 6.3(b). Figs. 6.3(c), 6.3(d) gives the behavior of the group velocity if the spatial dispersion of the
susceptibility were ignored. The common parameters of the above three graphs for 87Rb vapor are chosen
as: Doppler width parameter D= 1.33 × 109 rad/sec, density N = 1012 atoms/cc, G = 0.3γ, ∆3 = 0,
Γ12 = Γ13 = 0, Γ23 = 0.001γ, γ = 3π × 106 rad/sec, ∆1 = ∆2 = −50γ. For comparison we also show in
the Fig. 6.3(d) the result for ∆1 = ∆2 = 0.
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Figure 6.4: (a) shows the variation of the numerator in Eq. (??) with the probe detuning taking Doppler
effect into account. Fig. 6.4(b) gives the slope of the susceptibility. The common parameters of the above two
graphs for 87Rb vapor are chosen as: Doppler width parameter D= 1.33 × 109 rad/sec, density N = 1012

atoms/cc, G = 0.3γ, ∆3 = 0, ∆2 = −50γ Γ12 = Γ13 = 0, Γ23 = 0.001γ, γ = 3π × 106 rad/sec.

these can be understood easily only for a homogeneously broadened system. Rostovtsev

et al. have demonstrated that the control fields provide the stoppage of light via dragging

effect due to population distribution between the lower levels of different velocity groups

[166].

6.4 Summary

In summary, we have demonstrated how the application of an LL coupling field in the

Λ system helps one to change the group velocity of the pulse inside the medium from

a negative to a positive value, and thereby helps in stopping light. Thus for a suitable

detuning of the pump and probe fields, one can stop light by just changing the intensity of

the LL coupling field.



Conclusions and Future Outlook

In conclusion, this thesis reports coherent control of subluminal and superluminal prop-

agation of electromagnetic fields in different atomic media. Manipulation of atomic co-

herence by external coherent control fields leads to changes in the group velocity of the

light pulses from subluminal to superluminal range. Our new findings are presented with

extensive numerical results which are further substantiated by physical explanations. In

the following, we present a brief summary of important conclusions of each chapter and

discuss the future outlook of the problems.

In chapter 2, it was shown how one can realize sub- as well as superluminal propa-

gation of light pulses by controlling only the intensity of the additional LL coupling field

in Λ-type atomic configuration. The additional LL coupling field is like a knob which

changes the dispersive property of the medium from normal to anomalous with a very low

absorption or gain. Superluminal velocity of Gaussian pulse was discussed. It was shown

that distortionless pulse propagation is possible only when the intensity of the LL cou-

pling field is chosen suitably. Furthermore it was shown that the thermal motion of atoms

becomes important in the behavior of the superluminal light pulse propagation through

medium driven by the control and LL coupling field.

In chapter 3, we have demonstrated that, the possibility of storage and retrieval of

moderately intense probe pulse in an EIT based storage medium via adiabatic as well as

nonadiabatic switching of the control field. We found that the retrieved probe pulse re-

mains a replica of the original one, although there is overall broadening and loss of the

intensity. These phenomena can be explained in terms of the dependence of the absorp-

tion on the intensity of the probe. The dynamical evolution of the control field becomes

93
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important when the intensities of the control and probe fields are comparable. The storage

and retrieval of the intense probe pulse can be well understood from the theory of adia-

baton. We further showed that the storage and retrieval of information in the form of a

modulation is also possible.

In chapter 4, we set out to explain the experimental results of Bigelow et al. on the

sub and superluminal propagation of optical pulses in nonlinear solid state materials at

room temperature [57, 138]. We modeled subluminal propagation in ruby and superlu-

minal propagation in alexandrite as three and four level systems, respectively, coupled

to Maxwell equations. The systems under consideration posses very strong transverse

and longitudinal relaxation effects. We presented numerical results on the propagation of

Gaussian and modulated pulses and showed qualitative agreement with the experimental

findings of Bigelow et al. [57, 138]. We also pointed out that the input pulses get distorted

in shape because the presence of nonlinearity of medium. Our modeling goes well beyond

the traditional pump-probe approach and is applicable to other systems with very strong

relaxation effects.

In chapter 5, we examined whether it is possible to slow down the light pulses in a

Doppler-broadened atomic medium even though such a medium exhibits very flat disper-

sion. This was made possible by applying a saturating counter propagating beam that pro-

duces a hole in the inhomogeneous line shape. A hole, that is, a narrow spectral region of

decreased absorption, leads to slow light. In rubidium atomic vapor, we calculated group

indices of the order of 103. However, similar or even more remarkable results on slow-

ing of light can be obtained for inhomogeneously broadened solid-state system, where the

atomic densities are large.

In chapter 6, we presented a new way of freezing the light pulses in a inhomogeneously-

broadened atomic medium via electromagnetically induced transparency. We have shown

how the application of LL coupling field in a closed Λ-system helps us to change the group

velocity of the pulse inside the medium from a negative to positive value and thereby,

helps in stopping light. Stoppage of light is made possible by using the dependence of

the refractive index on the wave number which is the origin of spatial dispersion of the

medium. In this case, the dynamical switching off and on of the control field is not neces-

sary for the stoppage of light.

Recently, Stenner and his coworkers [144] have shown experimentally that the time to
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detect information propagation through a gain assisted anomalous dispersive medium is

slightly longer than the time required to detect the information travelling the same distance

in vacuum, even though superluminal group velocity exceeds the speed of light c. Further,

it would be interesting if one can study the information velocity of the intense light pulses

through a nonlinear solid-state material like ruby or alexandrite, wherein the light pulse

propagates with subluminal or superluminal velocity, respectively.

One can extend the spectral hole burning phenomenon in a Doppler-broadened atomic

medium that can be ensemble of atoms with relevant energy levels in Λ-configuration

wherein a weak probe pulse together with counter-propagating saturating field couples

one arm of the Λ-system and a strong coupling field couples to other arm. One can study

the possibility of obtaining ultra-slow light of the weak probe pulse in the presence of both

coupling and saturating fields in Doppler-broadened atomic system.



Appendix

Numerical Integration Procedure for Light Pulse Propagation

The Interaction of optical fields with a three level Λ-system are described by the Maxwell-

Bloch equations, which are solved consistently. This equations are solved analytically in

a few specialized case. In general, the solutions of the Maxwell-Bloch equations can be

obtained numerically. The coupled Maxwell-Bloch equation has the following form in the

travelling window reference frame with local time τ = t− z/c and space ζ = z:

∂ρ11

∂τ
= −2(γ1 + γ2)ρ11 + iGρ21 + igρ31 − iG∗ρ12 − ig∗ρ13 ,

∂ρ22

∂τ
= 2γ2ρ11 + iG∗ρ12 − iGρ21 ,

∂ρ12

∂τ
= −[γ1 + γ2]ρ12 + iGρ22 + igρ32 − iGρ11 , (A.1)

∂ρ13

∂τ
= −[γ1 + γ2]ρ13 + iGρ23 + igρ33 − igρ11 ,

∂ρ23

∂τ
= iG∗ρ13 − igρ21 .

∂g

∂ζ
= iηρ13

∂G

∂ζ
= iηρ12 (A.2)

For studying the spatiotemporal evolution of the optical pulses through the resonant sys-

tems, the above partial differential equations need to be integrated. The numerical scheme

deals with the field-matter as coupled ordinary differential equations instead of solving

the partial differential equations. This is made possible since the incoming fields at the

entry plane ζ = 0 are known. In this case the Bloch equations are coupled ordinary differ-
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ential equations for the variables ρij (τ, ζ = 0). Given the initial values at τ ≤ 0, the values

of ρij can be determined for all τ in the plane ζ = 0.

The obtained value of matter can be substituted in the field equations (A.2), which

gives the field slope along the marching direction ζ. This allows to determine the field at

all values of τ at some small depth, δζ, in the system. Having found the field values on the

plane at ζ = δζ, ρij is determined everywhere on this plane. In this way the whole (τ, ζ)

space may be determined.

The (τ, ζ) plane is covered with a rectangular mesh grid, the step sizes δζ along the ζ

and δτ along the τ being independently chosen. The space step δζ and time step δτ is to-

tally dependent upon envelope shape of the propagating pulse. Our numerical simulation

deals with long Gaussian pulses, sampling point along τ and ζ direction are 4 × 106 and

2 × 106, respectively. The integration of the Maxwell-Bloch equations are performed by

predictor corrector method. We prefer the parallization of the sequential code because of

the large number of sampling points which requires large execution time. The sequential

code can be easily parallelized if each iteration is independent of the other, that is no vari-

ables that are written in some iteration will be read and/or written in another iteration.

But in our code each iteration is dependent on the previous iteration. Thus for our flow

dependence case, the parallelization of the code is difficult and we do the parallelization

manually by using OPEN MP directives on RS6000 in IBM machine.

The numerical code has been tested systematically by insuring the reproduction of nu-

merical results of problems such as storage and retrieval of light [83], shape-preserving

adiabatic pulse propagation [147] and dynamics of solitons in a coherently driven media

[167].
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