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ABSTRACT

The remarkable discovery of the Higgs boson at the Large Hadron Collider filled

the last missing bit of the Standard Model and marked the beginning of a new

era of searching for physics beyond the SM. TeV scale new physics, if it exists,

should show up at the Large Hadron Collider. Among all new physics models,

dark matter motivated theories are of particular interest. The dark matter signals

in the Large Hadron Collider are challenging in respect of discovering them as

well as determination of properties like mass, spin etc. associated with the new

particles in the discovery signal. Study of mass sensitive observables in this

regard can not only provide mass and spin information but can also be used as

a discovery tool.

In this thesis, we demonstrate how the already available constraint(s) can fur-

ther sharpen the mass bound variables considering both inclusive and exclusive

observables. We have studied the mass bound variables
√
Ŝmin and its variants

by minimizing the parton level center of mass energy that is consistent with

all inclusive measurements. They were proposed to have the ability to measure

mass scale of new physics in a fully model independent way. Here we relax the

criteria by assuming the availability of partial information of new physics events

and thus constrain this mass variable even further. Starting with two different

classes of production topology, i.e., antler and non-antler, we demonstrate the

usefulness of these variables to constrain the unknown masses. This discussion

is illustrated with different examples, from the standard model Higgs produc-

tion and beyond standard model resonance productions leading to semi-invisible

production. We also utilize these constraints to reconstruct semi-invisible events

and thus improving the measurements to reveal the properties of new physics.

We further moved to mass-constraining variable M2, a (1 + 3)-dimensional

natural successor of the extremely popular MT2. M2 possesses an array of rich

features having the ability to use on-shell mass constraints in semi-invisible pro-

duction at a hadron collider. We investigate the consequence of applying a

heavy resonance mass-shell constraint in the context of a semi-invisible antler
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decay topology produced at the LHC. Our proposed variable, under additional

constraint, develops a new kink solution at the true masses. This enables one

to determine the invisible particle mass simultaneously with the parent particle

mass from these events. We analyze a way to measure this kink optimally, ex-

ploring the origin and the properties of such interesting characteristics. We also

study the event reconstruction capability inferred from this new variable and

find that the resulting momenta are unique and well correlated with the true in-

visible particle momenta. This proposal of reconstruction is demonstrated with

a potentially interesting scenario, when the Higgs boson decays into a pair of τ

leptons. The LHC has already started exploring this pair production to investi-

gate the properties of Higgs in the leptonic sector. Dominant signatures through

hadronic decay of tau, associated with invisible neutrinos compound the diffi-

culty in the reconstruction of such events. Exploiting the already existing Higgs

mass bound, this new method provides a unique event reconstruction, together

with a significant enhancement in terms of efficiency over the existing methods.

Keywords : Beyond Standard Model, Standard Model, Hadronic Colliders,

Particle and resonance production, Higgs, Tau lepton, Event reconstruction.
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2.1 Partonic mandelstam variable:
√
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Chapter 1

Introduction

“We keep moving forward, opening new doors, and doing new things, because we

are curious and curiosity keeps leading us down new paths.”

–Walt Disney

We, the Humans, are curious about the origin/formation and the evolution

of our Universe from the beginning of human life on the Earth. Our curiosity

drives us to form a theory to explain the observed phenomena in nature and test

the theory by designing suitable experiments. Now, at this point of time, with

the advancement of many experiments, the most successful theory that explains

the microscopic nature of our Universe is the Standard Model (SM) of particle

physics. The SM [1, 2] is the description that tries to include all the fundamental

building blocks of matter in our Universe and the interactions between them. It

is a gauge theory based on some symmetry principles. Once these symmetries

are respected, all fundamental fermions and bosons need to be massless, which

is contradictory to observations. Spontaneous symmetry breaking (SSB) is the

mechanism which gives masses to these fundamental particles without explicitly

breaking the symmetry of the theory. In this chapter, we discuss briefly the

structure of the SM and the SSB mechanism and the motivation for the physics

beyond the Standard Model (BSM). We also discuss the ongoing Large Hadron

1
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Collider (LHC) and generic production mechanisms of new particles. If new

exotic particle production is observed at the LHC, measurement of their masses

and momenta remains a challenge, if some of their final decay products are

invisible. This being the basic theme of this thesis, we further discuss challenges

involved pointing out some of the techniques. Finally, we present an overview of

remaining chapters of the thesis.

1.1 The Standard Model of particle Physics

Fundamental particles are basic building blocks of everything we see around

us. All matter in the Universe consists of two types of fundamental particles

– quarks and leptons, which are spin-1/2 fermions. Each type comes in three

generations. The first generation particles are the lightest and stable, the second

and third generation particles are heavier and unstable which eventually decay

into lighter ones1. Hence, all matter we see around us now is mostly made up of

first generation particles. The first generation quarks are named as up and down,

charm and strange are quarks of the second generation followed by the third

generation top and bottom quarks. The quarks have color charge and fractional

electric charge associated with them. But color confinement ensures that they

combine in such a way as to result in colorless mesons and baryons. Similarly, the

electron and electron-neutrino are first generation leptons, the second and third

generation leptons are muon, muon-neutrino and tau, tau-neutrino, respectively.

Neutrinos are electrically neutral and massless in the Standard Model. The

remaining three leptons (electron, muon and tau) are electrically charged with

the electron being the lightest and stable, while tau is the heaviest and unstable.

There exist four fundamental interactions in Nature. They are strong, elec-

tromagnetic, weak and gravitational interactions. These forces are responsible

for the interaction of fundamental particles among themselves. These first three

interactions are mediated via a spin-1 boson. The electromagnetic and strong

interaction are mediated via the photon and gluons which are massless, while the
1Note that neutrinos in the SM are stable particles and they do not decay, irrespective of

which generation they belong to.
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weak force is mediated by massive W and Z bosons. Gravitational interaction

or its mediator graviton is not included in the SM. Among the four fundamen-

tal forces the gravitational force is the weakest and it has infinite range. The

electromagnetic interaction is also of infinite range but much stronger than the

gravitational force. The strong interaction is the strongest force among all and

the weak force is the second weakest interaction. In addition, both the strong

and weak forces are short-ranged and act at the sub-atomic level.

The Standard Model is the description of the interactions which include all the

fundamental particles and three of the four forces listed above. The SM does not

include gravitational interaction. In addition, it is a unified description in terms

of a gauge theory (one that is invariant under a set of local transformations where

the parameters are functions of space and time) of all fundamental particles.

The underlying gauge group of the SM is SU(3)c ⊗ SU(2)L ⊗U(1)Y , where c, L

and Y stand for color, left-handed isospin and hyper charge, respectively. The

SM has been extremely successful in explaining a wide range of experimental

observations. The recent discovery of the last remaining piece of the SM, the

Higgs boson, by the ATLAS [3] and the CMS [4] collaborations at the LHC

makes this model even more appealing. The Higgs boson is the particle which is

responsible for generating mass terms in the theory for all the fermions and weak

gauge bosons without explicitly breaking the SM symmetry. The field content

of the SM and the corresponding quantum numbers are listed in table 1.1.

The Lagrangian of the SM with the above symmetry and particle contents is

LSM = LGauge + LFermion + LHiggs, (1.1)

the three contributions on the right-hand side being as described below.

Gauge and fermion sector

The gauge boson of the abelian group U(1)Y in the SM gauge structure above
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Fields (particles) (Color(c), Isospin(T3), Hypercharge(Y )) Electric charge(Q)
SU(3)c ⊗ SU(2)L ⊗ U(1)Y Q = T3 + Y/2

qL =
(
uL
dL

) (
(3,+1/2,+1/3)
(3,−1/2,+1/3)

) (
+2/3
−1/3

)
uR (3, 0, +4/3) +2/3
dR (3, 0, −2/3) −1/3

`L =
(
νL
eL

) (
(1,+1/2,−1)
(1,−1/2,−1)

) (
0
−1

)
eR (1, 0, −2) −1

H =
(
φ+

φ0

) (
(1,+1/2,+1)
(1,−1/2,+1)

) (
+1
0

)

Table 1.1: The SM field content and the quantum numbers are listed with charges
c, T3 and Y for color, isospin and hypercharge of a particle, respectively.

is denoted by Bµ. The SU(2)L has three generators and the gauge bosons lie

in the adjoint representation of the group. Gauge bosons in this group are rep-

resented by Wα
µ (α = 1, 2, 3). These gauge bosons (both Wα

µ and Bµ) are not

physical but their linear combinations (photon, W± and Z bosons) are, and they

mediate electroweak interactions. Lastly, the SU(3)c describes strong interac-

tions with eight generators and there are eight gauge bosons, viz., the gluons.

The theory of strong interactions which is based on the gauge group SU(3)c is

known as quantum chromodynamics (QCD)[5, 6]. All these bosons are described

by spin-1 vector fields. The Lagrangian for this part is given by,

LGauge = −1
4BµνB

µν − 1
4W

α
µνW

α µν − 1
4F

i
µνF

i µν , (1.2)

with

Bµν = ∂µBν − ∂νBµ, (1.3)

Wα
µν = ∂µW

α
ν − ∂νWα

µ − gεαβγW β
µW

γ
ν , (1.4)

F i
µν = ∂µF

i
ν − ∂νF i

µ − gsf ijkF j
µF

k
ν , (1.5)

where F i
µ represent gluons (with i = 1, 2, . . . , 8). g and gs are coupling constants

of SU(2)L and SU(3)c gauge groups , respectively. The εαβγ and f ijk are the

structure constants of the corresponding Lie algebras.
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Fermions in the SM can be categorized based on their representations under

SU(2)L as can be seen in table 1.1. Left-handed leptons form a SU(2)L doublet,

while the right-handed leptons are singlets. Similarly, the left-handed quarks

are SU(2)L doublets while the right-handed quarks transforms as singlets. The

Lagrangian for the fermion kinetic term is

LFermion =
∑

iψ̄ /Dψ, (1.6)

with /D = γµDµ, where Dµ is the corresponding covariant derivative defined as,

Dµ = ∂µ + igs
λ.Fµ

2 + ig
σ.Wµ

2 + ig
′
Y Bµ, (1.7)

where g′ is the U(1)Y gauge coupling. The generators of SU(3)c, λi (with i =

1, 2, . . . , 8) , are the Gell-Mann matrices. Similarly, the generators of SU(2)Y ,

σi, (with i = 1, 2, 3), are the Pauli matrices.

Higgs mechanism

One can notice that an explicit mass term for fermions will violate the gauge

invariance. This is because the mass term mixes the left and right-handed

fermions which are coming from different multiplets of the SU(2)L. Similarly,

an explicit gauge boson mass term also breaks gauge invariance. But from ex-

perimental observations, we know that some of the gauge bosons as well as all

the fermions2 are massive. The existence of massive fundamental particles and

massive gauge bosons can be understood from spontaneous breaking of the SM

symmetry, known as the Higgs mechanism [7–10]. In this mechanism the the-

ory (i.e., Lagrangian) remains invariant under the SM symmetry but the ground

state (i.e., vacuum) does not. To achieve this, one needs to introduce a complex

2Although in the SM the neutrinos are massless, the neutrino oscillation experiments show
that they have tiny non-zero mass.
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scalar field φ which is a doublet under the SU(2)L gauge group as given by,

φ =

φ+

φ0

 . (1.8)

The gauge invariant Lagrangian corresponding to this scalar field is

LHiggs = (Dµφ)†(Dµφ)− V (φ), (1.9)

with

V (φ) = −µ2(φ†φ) + λ(φ†φ)2, (1.10)

Dµ = ∂µ + ig
σ.Wµ

2 + ig
′
Y Bµ, (1.11)

where V (φ) and Dµ are the scalar potential and the covariant derivative associ-

ated with the scalar field, respectively. The parameters µ2 and λ are positive.

The potential V (φ) has a minimum at

φ†φ = µ2

2λ. (1.12)

The real part of the neutral component of the scalar doublet gets a vacuum

expectation value (vev) and we can write this as

〈φ0〉 = 1√
2

0

v

 (1.13)

with v = µ√
λ
. The perturbative calculation would require expansions around this

minimum as

φ = 1√
2

 0

v + h(x)

 (1.14)

where h(x) is the quantum fluctuation around this minimum. Using eqs. 1.14

and 1.10 we get a mass term for the Higgs field h as mh =
√

2λv2. Similarly,

using eq. 1.14 and the first term of eq. 1.9 we get the mass terms for the gauge
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bosons as

|Dµφ|2 = 1
2(∂µh)2 + g2v2

4 W+W− + v2

8 (gW 3
µ − g

′
Bµ)2 + . . . (1.15)

= 1
2(∂µh)2 + g2v2

4 W+W− + g2v2

8 cos2 θW
ZµZ

µ + . . . , (1.16)

where the ellipses in previous equations contains the interaction terms and W±,

Zµ and Aµ are the charge eigenstates of the gauge bosons defined as,

W±
µ = 1√

2
(W 1

µ ± iW 2
µ), (1.17)

Zµ = cos θWW 3
µ − sin θWBµ, (1.18)

Aµ = cos θWBµ + sin θWW 3
µ . (1.19)

Here θW is the Weinberg angle which is defined as

tan θW = g
′

g
. (1.20)

Now the mass of the gauge bosons are

mW = 1
2gv, (1.21)

mZ = 1
2v
√
g2 + g′2, (1.22)

mA = 0. (1.23)

Thus, the gauge bosons W and Z acquire masses and the photon remains mass-

less which results from the spontaneous breaking of the SM gauge group. The

symmetry group U(1)Q remains an unbroken symmetry of nature which leads to

a massless photon.

The fundamental fermions, except neutrinos, also get their masses through

the Higgs mechanism. The Lagrangian corresponding to the interaction of the

first generation fermions with the scalar is,

LY ukawa = −Yuq̄Lφ̃uR − Ydq̄LφdR − Ye ¯̀
LφeR + h.c., (1.24)
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where φ̃ = iσ2φ
∗ and Yi (i = u, d, e) is the Yukawa coupling for the fermions of

the first generation. Similar terms can be written for the other two generations.

The mass of the fermions after spontaneous symmetry breaking, using eq. 1.14

in eq. 1.24, is mf = Yiv√
2 .

1.2 Need for physics beyond the Standard Model

Besides the fact that the SM attains humongous success both theoretically and

experimentally, it has a number of drawbacks. There is a series of experimental

observations which are not explained by the SM, although they do not negate

it either. We have inferred the presence of dark matter (DM), from several as-

trophysical observations which tell us that the DM makes up roughly 80% of

the total matter content of our Universe. The DM particle, if it is some exotic

fundamental one, needs to be colorless, electrically neutral and interacts weakly

with the SM particles. It manifests its presence through the gravitational in-

teraction. The SM does not include a particle which can qualify as a good DM

candidate. Hence, DM should be a particle coming from some as yet unknown

physics beyond the SM. Also, our Universe is found to be populated with bary-

onic matter which implies matter-antimatter asymmetry. This asymmetry can

not be explained by the SM and requires BSM. The observation of neutrino oscil-

lation implies the existence of tiny but non-zero neutrino mass. This cannot be

described by the SM because the SM does not include any right-handed neutrino.

To explain neutrino mass one needs to invoke BSM.

In addition, there are a number of open questions of rather fundamental na-

ture to believe that there must be physics beyond the SM, where the SM is one

great low energy description of effective theory. In the SM there is no a priori

reason for existence of three generation of fermions and their mass range is really

vast. The gravitational interaction is outside the SM description. More impor-

tantly, the observed Higgs mass (125 Gev) receives a large quantum correction

and must cancel up to 34 decimal places in order to obtain a finite quantity, which

is unnatural. This arises because of the difference between the involved energy
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scales: the electroweak scale and the Planck scale. This is known as the hierar-

chy problem. Numerous models beyond the Standard Model were constructed

to accommodate some of these phenomena with the general belief that the scale

of new physics is just around the corner in the multi-TeV range. Unfortunately,

the Large Hadron Collider has not observed any indication of new physics so far.

If any of these TeV-scale BSM theories exist in nature, then it should manifest

its signature at the next LHC run. A scenario with a positive signal essentially

necessitates the determination of masses, spins, and couplings etc. of the new

particles associated with the new physics.

1.3 Large Hadron Collider

In this section we briefly discuss the LHC. The LHC is the largest particle ac-

celerator ever built in human history, installed at the European particle physics

laboratory CERN, situated across the border between Switzerland and France.

It consists of a circular tunnel of 27 km circumference which is approximately

100 meters below the ground in which two beam pipes are present. Inside each

beam pipe proton beams are accelerated, in opposite direction, with the highest

possible speed using superconducting magnets and other accelerator components.

The speed and direction of the proton beams are controlled by the electric and

magnetic fields. In its run-I, the LHC had gathered 5 fb−1 and 25 fb−1 of data

with 7 TeV and 8 TeV center of mass (CM) energy of collision, respectively. After

that it had undergone a long shut down and upgraded its CM energy of collision

to 13 TeV and now it has already gathered around 5 fb−1 data in its run-II in

2016.

The detectors are the most important part of the LHC and is placed at the

crossing points of the two proton beams as shown in fig. 1.1. There are four

crossing points where detectors ATLAS[12], CMS[13], ALICE[14], LHCb[15] are

installed among which the first two are general purpose detectors and the last

two are dedicated for heavy ion collisions and B hadron studies, respectively.

The CMS detector consists of several layers of detector material that use differ-
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Figure 1.1: Representation of the LHC position with its two beam pipes. It also
captures the positions of different detectors ATLAS, CMS, ALICE and LHCb.
ATLAS and CMS are the general purpose detectors while ALICE and LHCb are
specialized for heavy ion collision and bottom quark studies (taken from [11]).

ent properties of particles and measure their energy and momenta. The different

components of the CMS detector are silicon tracker, electromagnetic calorime-

ter, hadron calorimeter and lastly the muon chamber. The length of the detector

is 22 meters with diameter 15 meters and the approximate weight is 14 × 106

kilograms. To measure the properties of charged particles, there is a supercon-

ducting solenoid which in its running condition can produce a magnetic field of

3.8 Tesla. A pictorial representation of CMS detector is shown in fig. 1.2.

The particles produced from the collision of two proton beams first encounter

the silicon tracker. It is made up of silicon pixels and silicon strip detector, which

measures the trajectory of the charged particle as it traverses through it. Due to

the presence of a strong magnetic field, the trajectories of the charged particles

will be curved because of the Lorentz force acting on it. From the nature of

the tracks the momentum of the charged particles can be measured. After the

tracker, the next detector component is the electromagnetic calorimeter where

electron, photon etc. deposit their energy. The third major part is the hadron

calorimeter in which hadron like proton, neutron, pion etc. deposit energy. Fi-
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Figure 1.2: A schematic representation of the multipurpose CMS detector
(adapted from ref. [16]).

nally, the last part of the detector is the muon chamber which is used to stop

the muon and measure its energy. As neutrinos are weakly interacting particles,

they escape the detector without detection. The signatures displayed by different

particles are represented in fig. 1.3.

We have mentioned in the last paragraph that the momentum of a charged

particle can be determined by measuring the radius of curvature of the trajectory

exhibited by it in the tracker. The radius of curvature in terms of the momentum

is
1
r

= qB

p
, (1.25)

where q is the electric charge of the particle, B is the applied magnetic field

and p is the momentum of the particle. Hence, the momentum can be measured

with the assumption of unit electric charge. The energy loss of a heavy charged

particle inside a detector, using the Bethe-Block formula, is proportional to the
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Figure 1.3: A pictorial description of a transverse slice of the CMS detector
is shown. The characteristic signature of stable particles are shown as different
colored/dashed lines. The charged particles display tracks in the tracker and
deposit energy in the calorimeter while neutral particles deposit energy in the
corresponding calorie meter (taken from [17]).

charge q and the speed β of the particle as follows,

dE

dx
∝ (q/β)2. (1.26)

Therefore, by assuming unit electric charge and measuring the energy loss inside

the detector, one can calculate the speed of the particle. Now, using eqs. 1.25 and

1.26 the mass of the corresponding particle can be determined. Any measurement

in a detector follows a coordinate system. In the CMS conventionally the center of

the coordinate system is taken as collision point of the two protons. The radially

inward direction of the LHC ring is the x − direction, the vertically upward

direction is the y− axis and the proton beam direction is the z− direction. The

commonly used coordinate system is the cylindrical coordinate system where the

radial distance r is measured from the interaction point, φ is the azimuthal angle

with x = r cosφ and y = r sinφ. The longitudinal component is taken care

of by the pseudorapidity η = − ln
(

tan(θ/2)
)
where θ is measured from z-axis.
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Figure 1.4: A generic picture (left panel) of a proton-proton collision at the LHC;
some visible particles along with some invisible particles are produced. A particle
is referred as visible if the energy and momentum of it can be determined in the
detector and invisible otherwise. The examples of invisible particle are neutrinos
and dark matter candidates and visible particles are electron, muon, photon,
pion etc. In the reaction each parton (quarks and gluons) takes a fraction of the
proton momenta. In the right panel, a generic topology as expected theoretically
is shown. The solid black lines represent the SM visible particles which can
come from the hard scattering (HS) or initial state radiation (ISR). Dashed lines
portray invisible particles with black lines refers to SM neutrinos while red lines
are DM particles.

Commonly used coordinates to express the momentum of any particle are the η,

φ and the transverse momentum associated with it.

1.4 Mass determination methods at LHC

After a brief discussion about the LHC, in this section we talk about various

mass determination methods which can be used for measuring the mass of the

new particles. Before we talk about mass measurement methods, we would like

to briefly mention the generic event topology through which new particles are

produced at the LHC. A generic event topology is represented in the right panel

of fig. 1.4. Among the final state particles, the black solid lines correspond to

SM visible particles Vi, with i = 1, 2, . . . , nvis, where nvis is the number of visible

particles, e.g., electron, muon, photon, and jets, whose energy and momentum

can be measured in the detector. The SM particles may come from the hard

scattering and decay products of some unstable particles (hidden in the green

shaded ellipse) or from the initial state radiation (ISR). Dashed lines delineate
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the invisible particles such as SM neutrinos or DM candidates which remain

undetected in the detector. The red dashed lines depict DM particles χi, with i =

1, 2, . . . , nχ, where nχ is the number of DM particle produced in the final state.

Black dashed lines represent the SM neutrinos χi, with i = nχ+1, nχ+2, . . . , ninv,

where ninv is the total number of invisible particles produced. The identities

and masses of the DM particles in this topology may not be same, allowing

simultaneous production of different species of DM particles.

For the invisible particle, missing transverse momenta 6~PT is the only exper-

imentally measured quantity, calculated from the imbalance of transverse mo-

menta produced in such events. This imbalance is evident from the fact that,

using momentum conservation, the transverse momentum of the final state par-

ticles should add to zero, as it does for the initial partons. The inability to de-

termine the energy and longitudinal component of the invisible particle is partly

because of the challenges associated with the hadron collider. The challenges

include partial knowledge of the incoming parton momenta, that the boost along

the beam direction is unknown, and that the CM energy of collision is also not

known.

In the left panel of fig. 1.4, we discuss the production of a similar generic

event topology at a hadron collider and describe the challenges associated with

it. The momenta of the two colliding protons are denoted by {
√
S/2, 0, 0,

√
S/2}

and {
√
S/2, 0, 0,−

√
S/2}, where S is the CM energy of the collider. In high

energy colliders, the collision between protons is effectively a collision between

the constituent partons which carry an unknown fraction of corresponding proton

momenta. So the parton momenta before collision are written in terms of these

two unknown fractions x1 and x2. As a result the parton level CM energy of

collision, ŝ = x1x2S, is unknown. The boost along the beam direction, β = x1−x2
x1+x2

,

is also not known.

In such a scenario, if some of the final state particles go undetected from

the production of neutrinos or dark matter candidate, the kinematics of such

semi-invisible event remains undetermined. Hence, a subset of the degrees of

freedom remains unknown. A typical production of presence of dark matter
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in the event even worsens the scenario. The stability of dark matter, in most

of the BSM theories is ensured by some discrete symmetry, such as R-parity

in supersymmetry, KK-parity in Universal Extra Dimension models etc. Once

this symmetry is respected, all the heavy BSM particles in such model have to

be produced in pairs, subsequently decaying into some lighter BSM resonance

together with SM particles (which may or may not be detected) in multiple steps

of successive decay. Typically, at the end of each decay chain the lightest BSM

particle is produced which is the dark matter particle of that model and escapes

the detection. Hence, not one, but at least two massive BSM particles remain

hidden in these events. The only way to know their presence, as discussed earlier,

is the observation of a sizable 6~PT in the detector.

Several studies have been performed to determine the masses and spins of the

particles in the context of semi-invisible production at the hadronic collider, for

some recent reviews, see refs. [18–20]. We classify them based on the topology

information as follows3:

Global and inclusive variables
These variables are independent of the topology information and hence, do not

require any information about the production mechanism of the particles in the

event and are defined for a generic topology shown in fig. 1.4. This kind of vari-

ables are constructed using only visible particle momenta and missing transverse

momenta in the event. Several of them were well known and utilized for long

as event selection variables e.g., HT [21], total visible invariant mass M [22], ef-

fective mass Meff , total transverse component of invisible momentum 6ET , total

visible energy E and total transverse energy ET in the event. The recently intro-

duced ŝmin [23] and its variants ŝsubmin and ŝrecomin [24] are also constructed as global

and inclusive variables for measuring mass scale of new physics. Being topology

independent variables, they are also applicable to any decay chain irrespective of

whether it has symmetric or asymmetric topology and a simple analytical form

is also available. Thus, any generic topology can be assimilated without being

3Although we have covered some of the mainstream studies, there are plenty of analysis
techniques which we have not included here. Here our choices are motivated by the idea of
giving an introduction of the approaches we followed and refined in subsequent chapters.
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affected by the combinatorial ambiguity.

Exclusive variables
Exclusive variables are defined based on the topology of the production mecha-

nism and decay processes under consideration. Identical signatures consisting of

visible and invisible particles present in the final state can originate from very

different topologies which are deeply related to the stabilizing symmetry of the

DM. The shape of the visible invariant mass can effectively carry information on

topology along with the mass spectrum [25] of the decay chain. The underly-

ing DM stabilizing symmetry can also be probed [25–29] using kinematic edge

and cusp in the invariant mass distributions and from the shapes of transverse

mass variable MT2. Even the assumption of one particular underlying symme-

try allows some fixed number of different topologies from which the correct one

can be identified comparing suitable kinematic variables [30]. One expects that

the ignorance of the correct topology can add difficulties in solving combinato-

rial ambiguity [31–34] which is one source of complexity in mass determination

methods. This ambiguity becomes more prominent for longer decay chain. This

ambiguity can originate from two different sources. Firstly, allocation of the final

state particles to the correct decay chain, i.e., deciding from which side of the

decay chain some particular states are produced. Secondly, the ordering of the

assigned particle in a single decay chain. The hemisphere method [35] and PT v.

M method [32] are introduced to reduce this ambiguity in assigning the correct

final state particles to the corresponding decay chain. However, the ordering

of the particles is left unresolved. The MT2 variable together with invariant

mass are also shown to reduce the combinatorics significantly [33]. In the liter-

ature several classes of exclusive variables are defined assuming that the correct

knowledge of the topology is available and anticipating that the combinatorial

ambiguity can be controlled. The exclusive mass determination methods can be

categorized as follows:

� Edge measurement method: This method is based on the idea of construct-

ing all possible invariant masses out of visible decay products in each decay

chain [36–42]. Each invariant mass has an endpoint which is experimen-
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tally observable and these endpoints are related to the unknown masses

in the decay chain. To evaluate all the unknown masses by inverting the

equations in terms of measured endpoints, one needs sufficient number of

independent endpoint measurements. So essentially a long decay chain is

necessary to have unique measurement of all the unknown masses. How-

ever, this criterion inevitably invites combinatorial ambiguity thereby re-

ducing the effectiveness of the method. This method does not use all the

available information like missing transverse momentum 6~PT in the event.

� Polynomial method: One tries to utilize all the available information in

the event of a particular topology and solve for the unknown masses and

momenta [43–47] considering on-shell cascade decay. In the literature, typi-

cally the production of two heavy invisible particle is considered in the final

state, assuming Z2 type of DM stabilizing symmetry in the theory. All the

unknown invisible momentum components are solved for utilizing mass-

shell constraints and missing 6~PT constraints in the event. It can be shown

that one needs to consider long decay chains to solve for all unknowns

in the event. Combinatorial ambiguity naturally arises here from the re-

quirement of the long decay chain. Moreover, resulting invisible momenta

remain ambiguous due to the existence of multiple solutions originating

from non-linear mass-shell constraints [47, 48].

� Transverse mass variable: Rather than considering full event information,

transverse projection of momenta is considered during the calculation.

Contrary to the previous cases, even a small decay chain can constrain

the masses realistically. In the literature, many variants of transverse mass

variables have been studied, such as MT2 [49–57], M sub
T2 [58], MCT2 [59, 60],

1D orthogonal decomposition of MT2 (MT2⊥ and MT2‖) [61], asymmet-

ric MT2 [62, 63] and Mapprox
T2 [64], MCT [65–67], and variants MCT⊥ and

MCT‖ [68] etc. Among these broad classes of transverse mass-bound vari-

ables, we briefly discuss some properties of MT2 which is studied widely

in the literature. This variable is defined as the constrained minimization
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of maximum of two transverse masses MT from both sides of the decay

chain. The minimization is done over all possible partitions of missing

transverse momenta satisfying the 6~PT constraint. The variable MT2(m̃inv),

expressed as a function of the unknown invisible particle mass, can have an

experimentally observed upper bound over many events. This provides a

useful correlation between the trial invisible mass m̃inv and measured up-

per bound Mmax
T2 , which represents the corresponding mass of the ancestor

particle (commonly called as mother or parent) responsible for producing

all the visible and the invisible particles within the (sub)system. This cor-

relation also satisfies the true yet unknown mass parameters fulfilling the

crucial equalityMmax
T2 (mtrue

inv ) = mtrue
mother. Interestingly, one can measure the

true mass of both mother and daughter simultaneously by identifying a kink

arising due to additional conditions like a two step decay chain [53, 54],

extra upfront PT from ISR [55, 56] or in the subsystem context [58]. In the

presence of background, extracting these kinematic endpoint is occasion-

ally troublesome with thinly populated events at the endpoint. Available

on-shell constraints of intermediate particles can be exploited in the (1+3)

dimensional variableM2 [69, 70] to improve the number of events appearing

at the tail of these distributions.

1.5 Thesis Overview

The thesis is organized as follows. In chapter 2, we briefly discuss the global

and inclusive variable ŝmin and its sisters ŝsubmin and ŝrecomin. We thereafter discuss

the effect of partial topology information on these inclusive variables which re-

sults in some interesting new observables . We also talk about the full event

reconstruction capability of the new variables and compared the result with the

existing ones. In chapter 3, we describe the transverse mass variable, MT2, and

its properties which enables one to determine all the unknown masses in a short

decay chain. We then discuss a new and interesting observable M2Cons and ex-

amine its properties. It has been shown to improve measurement as compared
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to earlier transverse mass observables. We also analyze the modified phase space

arising due to the constraint used in the new observable and also comment on

the full event reconstruction of semi-invisible events. Subsequently, in chapter 4,

we discuss the semi-invisible tau pair event reconstruction using the new observ-

able M2Cons. The efficiency of M2Cons to reconstruct this semi-invisible events is

compared with the older methods and a significant improvement can be noticed.

Finally, in chapter 5 we summarize and conclude.





Chapter 2

Effect of partial topology informa-

tion on inclusive variable ŝ

In this chapter we briefly describe the global and inclusive variable
√
ŝmin and its

sisters which are important to our analysis. But before that we mention about

the event topology and notation which would be followed throughout this thesis.

We categorize the topology that can be produced at the LHC, in the context of

SM as well as BSM theories. The topologies are as follows:

� Antler topology, in which a heavy resonance produced at the LHC and

subsequently decays to visible and invisible particles, realized in different

SM processes and a variety of new physics models, is very common and

widely explored. The SM Higgs boson decaying semi-invisibly through the

W -boson,1 h→ W +W ∗ → `ν + `ν, or via τ lepton, h→ τ + τ → W ∗ντ +

W ∗ντ , are some significant channels in the context of the SM Higgs search

at the LHC. Similarly, in several BSM theories, the search strategy relies on

antler topology. Some of these include the heavy Higgs of supersymmetry

(SUSY) decaying to the Z-boson and the lightest supersymmetric particle

(LSP) via neutralinos, H → χ̃0
2 + χ̃0

2 → Zχ̃0
1 + Zχ̃0

1 [71] and the SUSY

extended Z
′ decaying to the lepton and the LSP via the slepton, Z ′ →

˜̀+ + ˜̀− → `+χ̃0
1 + `−χ̃0

1 [72, 73]. Similarly, in a universal extra-dimensional
1Note that except for the fact that h → W + W ∗ probably signifies the most familiar SM

antler channel, this off-shell production of W is not pursued further in the present analysis.

21
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Figure 2.1: Archetype of antler topology where G, a heavy resonance particle
with mass mG produced at hadron collider, decays to two daughter particles
P1 and P2 through two-body decay, each of which subsequently decays to pro-
duce SM visible particle (Vi) and an invisible or dark matter particle (χi). This
topology can be considered for SM Higgs production with subsequent decays into
visible SM particles and massless neutrinos as invisibles. On the other hand, in a
BSM scenario, G (a parity-even state) can decay to produce (parity-odd states)
Pi and χi. To keep this production topology general, we keep initial state radi-
ation (ISR) emitted by the initial partons and upstream transverse momentum
(UTM) coming from particle produced in hard scattering associated with the
heavy resonance G.

model, second excitation states can decay to first excitation states, Z(2) →

L(1) + L(1) → `−γ(1) + `+γ(1) [74, 75]. The semi-invisible decay of doubly

charged exotic scalars in many BSM scenarios can produce SM particles

via W pairs, φ++ → W+ + W+ → `+ν` + `+ν` [76]. Moreover, the heavy

Higgs or heavy Z ′ can also decay semi-invisibly to SM particles via tt̄ pairs,

H/Z
′ → t+ t̄→ bW+ + b̄W− → b`+ν`+ b̄`−ν`. In addition, antler topology

can also be realized at the linear collider, as the fixed center of mass (c.m.)

energy is equivalent to the heavy resonance produced in its rest frame

before pair production and subsequent decay (for example, see [77]).

A representative diagram for the antler topology is shown in fig. 2.1, where

a parity-even2 heavy resonance particle G (grandparent) with mass mG

decays to two parity-odd particles P1 and P2, each of which subsequently

decays to a Standard Model particle (Vi) and an invisible or dark matter

2Parity is only pertinent to the BSM processes having stable invisible exotic particles in the
final state.
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Figure 2.2: Representative for a simple non-antler topology where after produc-
tion of two heavy parent particles Pα, each of them leading to a single invisible
massive particle χj together with a number of visibles Vi in the final state. The
blue blob represents an intermediate particle which may be off-shell or on-shell.
The visible particles are SM particles measurable at the detector and represented
by blue lines denoted by V1, V2, V3 and V4 respectively. The invisible particles
are represented by black dashed lines denoted by χ1 and χ2 respectively.

particle (χi). We assign momenta to visible and DM particles on the two

sides of the decay chain as pi and qi with i = 1, 2, respectively. Moreover,

we denote the masses of the parents (Pi) and the invisible daughters (χi)

as mP and mχ, respectively. The primary motivation of this analysis is to

determine these unknown parameters. Though we have shown a generic

antler topology in fig. 2.1, in this analysis we are interested in the symmet-

ric antler process motivated by the above examples. The symmetric antler

includes same parent (P1 = P2) and same daughter (χ1 = χ2) particles, or

at least their masses are same, mP1 = mP2 = mP and mχ1 = mχ2 = mχ.

In case of the SM, one considers nearly massless neutrino with mχ = 0.

� Non-antler topology, shown in fig. 2.2, is motivated by various BSM exam-

ples also abundant in SM processes. Most of the BSM theories, respecting

the DM stabilizing symmetry Z2 as discussed earlier, produce non-antler

topology at the LHC. The SM top pair production with dileptonic channel

involving neutrinos drives one for the consideration of non-antler topology.

Similarly, BSM particles (e.g., gluino, squark in supersymmetry) in dark
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matter motivated models are produced in pairs. As a result, the final state

decay products involve two massive invisible particles (DM candidates)

along with visible particles as shown in the fig. 2.2.

In the topology under consideration, two parents denoted by P1 and P2

are either produced in hard scattering at the hadron collider, or may have

been produced from heavier particles which are part of a longer decay

chain in the event. Eventually each of these parents decays to produce

two visible (e.g., two particles with blue lines shown in fig. 2.2) and one

invisible particle. The topology can also contain intermediate particles

which may be on-shell or off-shell, symbolized by the blue blob, with only

the final products shown. Momenta pj of these visible SM particles Vj
(j = 1, . . . , 4) represented by blue lines can be measured by the detector.

On the contrary, the invisible particles χi (i = 1, 2) in black dashed lines

are of BSM nature with individual masses mχi
, and 3-momenta qi.

2.1 Partonic mandelstam variable:
√
ŝmin

Let us start by discussing briefly the variable
√
ŝmin which was first intro-

duced [23] to determine the mass scale associated with any generic process (or

event topology) involving missing particles. It is inspired by the fact that the

precise knowledge of the partonic system CM energy
√
ŝ carries kinematic in-

formation like masses of heavy resonance, or threshold of pair production at the

hadron collider. Hence, one may like to know the distribution of this variable

even approximately, after recognizing the fact that there is no way we can com-

pletely reconstruct the event, or extract all the momentum information in case of

general semi-invisible production at the hadron collider. Utilizing all the exper-

imentally observed quantities, the best one can devise is the minimum partonic

CM energy which is compatible (or consistent) with the observed visible mo-

menta and missing transverse momentum. Although general event topology can

have a wide diversity in the production mechanism of visibles and invisibles and

also in their number, it emerged that the final minimization leads to a rather
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simple and versatile functional form for
√
ŝmin.

This variable was further extended [24] to apply in general subsystems, and

also utilized reconstructed events to safe guard the generic variables from under-

lying events and ISR [78, 79]. Subsequently, these
√
ŝ variables were shown and

classified [19, 80] as M1 type of mass-bound variables3 represented in a compact

nomenclature of M... class of variables.

One can simplify the discussion under the following assumptions which are

rather common in a wide class of BSM models: (i) The DM stabilization is

achieved by discrete Z2 symmetry. As a result, all BSM particles in the theory

would be produced in pairs leading to two stable DM particles in the final state.

They stay invisible in the detector resulting in missing transverse energy as their

combined footprint. (ii) There is only one DM candidate in the theory, or if

there are multiple DM particles, then they are degenerate in mass. One can note

that even after making these two assumption the variable ŝmin remains global

and inclusive.

Under these assumptions the analytic expression and properties of this mass-

bound variable
√
ŝmin can be discussed using the non-antler topology displayed4

in fig. 2.2. The partonic Mandelstam variable for this topology is given by,

ŝ =
(
Ev +

ninv∑
i=1

√
m2
i + ~q 2

iT + q2
iz

)2

−
(
P v
z +

ninv∑
i=1

qiz

) 2

. (2.1)

Here, ninv = 2, is the number of invisible particles, Ev = ∑
j e

v
j and P v

z = ∑
j p

z
j

are total energy and total longitudinal component of the visible momenta. In

the above equation, missing transverse momentum constraints 6 ~PT = ∑
i ~qiT are

also taken into account. Clearly, even in this simplified case, there are 3ninv = 6

unknown momentum components, as well as unknown invisible mass with only

3A Wide variety within these classes is constructed systematically considering different
projection methods, additional second projection [61, 68], and considering different orders
of the operations. Interestingly, most of the existing mass variables devised based on their
differing utility can be accommodated in this unified picture, leaving many more new variable
elements in this class hitherto unexplored.

4In general, there can be any number of visibles including asymmetric production topology
or asymmetric invisibles (e.g., as in [63]) in the final state, but here we restrict our discussion
to symmetric pair production for simplicity. The most generic representation is discussed in
the ref. [23] in which these

√
ŝ variables are constructed.
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two constraints from missing transverse momentum. So one cannot hope to

calculate true values of ŝ event by event. But it is important to realize that

there is an absolute minimum exists for ŝ in each event which also satisfies all

these constraints. By minimizing ŝ with respect to unknown momenta ~qi subject

to the missing transverse momenta 6~PT constraints one gets

~qiT = f (i)
m 6~PT , (2.2)

qiz = f (i)
m

P v
z√

(Ev)2 − (P v
z )2

√
M2

inv+ 6~P 2
T , (2.3)

where f (i)
m is a dimensionless mass fraction, which varies between 0 and 1 and is

given by f (i)
m = mi

Minv
and Minv = ∑ninv

i=1 mi is the total sum of all invisible masses.

Now replacing the above expression for ~qiT and qiz in eq. 2.1 one gets the final

form of ŝmin as

√
ŝmin(Minv) =

√
(Ev)2 − (P v

z )2 +
√
6~P 2
T +M2

inv. (2.4)

One can notice that the ŝmin(Minv) involves all the measured quantities except

the mass parameter Minv. Evidently eq. 2.4 is a very simple and elegant formula

which can be used for any topology. Once we have calculated ŝmin, although as

function of Minv, the next task is to find out whether it gives any new infor-

mation about the mass scale of new physics. Interestingly, the peak of the ŝmin
is correlated with the mass scale of new physics subject to the correct input of

Minv as,

(
√
ŝmin(Minv))peak ≈ (

√
ŝ)thr, (2.5)

where (
√
ŝ)thr is the threshold of pair production or mass of heavy resonance for

single production. Hence, by measuring the peak location one can determine the

mass scale of new physics produced at LHC.

One can follow from the computation that the ŝmin does not assume any

particular event topology or the DM stabilizing symmetry of the model. Based

on common BSM scenarios, we restrict our description (also in fig. 2.2) assuming

Z2 symmetry, so that, pair production of BSM particles results in two invisible
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massive particles in the final state. From minimization conditions in eqs. 2.2

and 2.3 one can infer that each DM particle carries a fraction of missing momenta,

proportional to the corresponding mass fraction f (i)
m . However, the final ŝmin is

simply a function of total Minv irrespective to this fraction. Once we assume a

pair of invisibles in the final state with the same mass (or both massless), then

this fraction f (i)
m comes out as 1/2 for any choice of trial mass5 including the true

invisible mass. The invisible momenta after the minimization are,

~qiT = 1
2 6
~PT , (2.6)

qiz = 1
2

P v
z√

(Ev)2 − (P v
z )2

√
M2

inv+ 6~P 2
T . (2.7)

These invisible momenta, calculated from the minimum, may not represent

exactly those of the true event. However, the uniqueness of these momenta can

be useful to study the semi-invisible decays involved both in the SM and BSM

scenarios. Momentum reconstruction can be exploited to analyze the properties

of the top quark decaying invisibly in the SM, whereas DM motivated BSM

models are commonplace where uniqueness of invisible momenta can help to

study decays with different topologies. One can notice that the invisible momenta

constructed through ŝmin are always parallel to each other with a magnitude

proportional to the mass fraction. Here we investigate how a partial knowledge

of event information can improve the variable ŝmin and also the reconstructed

momentum obtained from it. In our further discussion, we divide the production

topology in two types, viz., antler topology and non-antler topology. We discuss

ŝmin with and without putting on-shell constraints in both kinds of topologies.

5Although, the mass fraction f (i)
m appears to be singular for a choice of zero invisible masses,

one can recalculate starting with a massless scenario and minimize to get the fraction f (i)
m = 1

2 .
Alternatively, from this present expression with arbitrary masses, one can first use the equality
of unknown invisible masses before setting it to zero to get back the same fraction.
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2.2
√
ŝmin with ISR/UTM

The ŝmin being a global and inclusive variable with many interesting properties

is not protected from the effect of initial state radiation (ISR), multi-parton

interaction (MPI) and upstream transverse momenta (UTM). In other words

the most useful property of this variable that its peak is correlated with the

new physics mass scale is no longer valid once the above inevitable effects are

included. Some methods are proposed in the literature to rescue the
√
ŝmin

variable keeping all its interesting properties intact, which we discuss below.

It was noticed in ref. [23] that the contribution of ISR/MPI on
√
ŝmin most

likely comes from the forward region with large |η| values. Hence, a suitable cut

on η, |η| < ηmax, may reduce these adverse effects. Since there is no theoretical

motivation for choosing the appropriate value of ηmax, this approach introduces

an uncontrollable systematic error. In addition, this procedure is model depen-

dent because the ISR effect depends on various factors like collider energy, mass

of new resonant particle and initial partons before collision etc.

Subsequently, it was proposed that the effect of ISR on the ŝmin can be

calculated along with contribution from QCD [78, 79]. The analytical formula

of ŝmin as given in eqn. 2.4 can be equivalently written as

√
ŝmin(Minv) =

√
(Mv)2+ 6~P 2

T +
√
6~P 2
T +M2

inv, (2.8)

whereMv is the total visible particle invariant mass. It is argued that the second

term in the eq. 2.8 is mildly affected by the ISR. It is the total visible invariant

mass Mv which is affected strongly by the ISR and is responsible for shifting

the peak of the ŝmin distribution. In refs. [78, 79], the shift in Mv due to ISR

is calculated using QCD from first principles and thereby the movement in ŝmin
distribution peak position is measured. Hence, this method allows a way to

handle the ISR in the calculation of ŝmin and mass scale of new physics without

accounting for the MPI and UTM effects.

• ŝrecomin method
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This method does not modify definition of the ŝmin. Rather, it modifies the

observable quantities (E, ~P and 6~PT ) that go into it. The definition of ŝmin as in

eq. 2.4 uses the total visible energy and momentum observed in the calorimeter,

whereas the present method proposes to use the total energy and momentum

from the reconstructed objects, like jets, photons, electrons and muons etc.

√
ŝrecomin(Minv) =

√
(Ev

reco)2 − (P v
z(reco))2 +

√
6~PT

2
(reco) +M2

inv, (2.9)

with

Ev
reco =

n∑
i=1

Ei, (2.10)

~P v
reco =

n∑
i=1

~Pi, (2.11)

6~PT (reco) = −~PT (reco), (2.12)

where n is the number of reconstructed objects. This approach definitely out-

performs the ŝmin method in measuring the hard scattering scale (i.e., new

physics energy scale) because by employing reconstructed objects the additional

calorimeter energy is removed. But this method also does not solve the underly-

ing event problem completely, since there can be an ISR hard jet which will be

counted as reconstructed jet and results in increasing in the value of ŝrecomin even

though the peak location remains the same.

• ŝsubmin method

A general topology can be divided into two parts, first, the hard scattering (HS)

part and second, the underlying event part (ISR, UTM). We are mainly interested

in knowing the energy scale associated with the HS part. This method defines a

subsystem of the topology which only includes the HS part. In a scenario when

one can identify the subsystem unequivocally, it is possible to redefine the ŝmin
for the interested subsystem. One more crucial assumption associated with this

approach is that no invisible particles originated from ISR/UTM. The subsystem
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p(p̄)

p(p̄)

ISR UTM

P1

P2

V1 V2

V3
V4

χ2
χ1

Figure 2.3: Representative for a simple non-antler topology where after produc-
tion of two heavy parent particles Pα, each of them leading to single invisible
massive particle χj together with number of visibles Vi in the final state. The
blue blob represents the intermediate particle which may be off-shell or on-shell.
The visible particles are SM particles measurable at the detector and represented
by blue lines denoted by V1, V2, V3 and V4, respectively. The invisible particles
are represented by black dashed lines denoted by χ1 and χ2, respectively. Sub-
system of the topology is represented by the gray shaded region which includes
the HS part only.

is shown in fig 2.3 by the gray shaded region. The rest of the figure is exactly

the same as fig 2.2 where UTM can include all additional visible particles from

the earlier part of the decay chain. The observable quantities are divided into

two parts as follows,

Ev = Ev
sub + Ev

ue, (2.13)

~P v = ~P v
sub + ~P v

ue, (2.14)

6~PT = −~PT (sub) − ~PT (ue), (2.15)

where Ev
sub and ~P v

sub are total energy and momentum of the subsystem, respec-

tively. Similarly, Ev
ue and ~P v

ue are the total energy and momentum of the underly-

ing event, respectively. The minimum subsystem partonic Mandelstam variable,

ŝsubmin, consistent with the above measurements shown in eqs. 2.13- 2.15 is
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√
ŝsubmin =

√√√√√√(Ev
sub)2 − (P v

z(sub))2 +
√
6~PT

2
+M2

inv

2

− P 2
T (ue). (2.16)

Now correlation between the location of the peak of the
√
ŝsubmin distribution which

is a function of the invisible mass parameter, Minv, and the mass scale of the

subsystem (or the hard scattering) is restored. This approach works because one

can identify all the visible particles from the subsystem.

2.3 Constrained variable ŝ for antler topology

A representative diagram for antler topology is shown in fig. 2.1. A parity even

heavy resonant state G, produced through on-shell production at the hadron

collider, promptly decays to a pair of parity odd particles P1 and P2. In this

simplified picture, each P subsequently decays in the same way as described ear-

lier in fig. 2.2, and thus produces a couple of visible particles with an invisible

daughter particle. We also keep the same notation for the momentum assign-

ment associated to all final particles. Before defining ŝmin in the presence of the

additional constraints, we first list all the constraints available for this present

topology. Apart from the antler resonance mass-shell constraint at some fixed

value of the ŝ depending upon the resonant mass mG,

(
∑
j

pj +
∑
i

qi)2 = m2
G = ŝTrue. (2.17)

Additional mass equations and missing transverse momentum relations for this

topology can be put together as, {constraints}:

(p1 + p2 + q1)2 = m2
P1 , (p3 + p4 + q2)2 = m2

P2 , (2.18)

q2
1 = m2

χ1 , q
2
2 = m2

χ2 , (2.19)

~q1T + ~q2T =6~PT . (2.20)
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{mP1 , mP2} and {mχ1 , mχ2} are the masses6 of the intermediate particles {P1,

P2} and the invisible particles {χ1, χ2} respectively. Clearly, using the above

constraints in eqs. 2.18-2.20 one can reduce the number of free parameter to two.

Afterwards, in Sec. 2.5, we will further demonstrate the constrained regions in

this parameter space. One can also notice that in the eqs. 2.18 the ordering of the

particles in a particular decay chain does not affect the constraints but assigning

particles to the decay chain does. The combinatorial ambiguity of the latter type

is severe when one has a long decay chain which is absent in our analysis. In

general, this type of problem can be partially controlled using existing methods

like the hemisphere method [35] and the PT v. M method [32].

Now we are in a position to formulate a new variable, dubbed ŝconsmin , de-

fined as the minimum partonic Mandelstam variable which satisfies all the above

constraints in the event,

ŝconsmin = min ~q1, ~q2
{constraints}

[ŝ(~q1, ~q2)]. (2.21)

Among all the constraints defined in the eqs. 2.18-2.20, the variable ŝmin already

satisfies the last four constraints consisting of two missing 6 ~PT components and

two mass-shell constraints from invisible daughters. In other words, new variables

are further constrained with mass-shell relations of intermediate parents.

The true value of the partonic Mandelstam variable for an antler topology is

the mass of the heavy resonance, that is
√
ŝTrue = mG, once the heavy resonance

is produced on-shell and has narrow decay width. Hence, any mass bound vari-

able constructed by minimization, such as, ŝmin for antler topology, needs to be

bounded from above satisfying the relation ŝmin ≤ ŝTrue. This end point can be

measured from the endpoint in a distribution over many events. The constrained

variable ŝconsmin also satisfies a similar relation ŝconsmin ≤ ŝTrue, having endpoint at

6Note that throughout the analysis we have assumed the both the intermediate and daughter
masses are known and have used their true masses in the constraints. However, in a scenario
when the invisible particle mass is unknown, one can go ahead with the constrained variables
assuming some trial masses (m̃χ1 , m̃χ2) in eqs. 2.19. One can then expect a correlation between
the trial invisible masses and the endpoints in constrained variable distributions.
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ŝTrue. However, additional intermediate particle mass-shell constraints ensure a

larger value of ŝconsmin over ŝmin for each event. This inequality would also reflect

in the mass variable distributions contributing larger number of events at the

endpoint of the distribution.

As we discussed earlier, a rather striking consequence of these additional

mass-shell constraints is that they also permit us to construct a finite upper

mass bound variable, which is meaningless otherwise. We define this constrained

variable ŝconsmax as the maximum partonic Mandelstam variable,

ŝconsmax = max
~q1, ~q2

{constraints}

[ŝ(~q1, ~q2)], (2.22)

satisfying all the available constraints in the event listed in eqs. 2.18-2.20, which,

in turn, is the maximum of the physically allowed region. Since ŝTrue satisfies all

the available constraints in the event, it must remain within this region. Now,

by definition, ŝconsmax is where ŝ is maximum inside this region and ŝconsmin is where

it is minimum. So, ŝTrue can maximally reach up to ŝconsmax. Hence, ŝconsmax has

a lower bound at the ŝTrue, significantly with large number of events at this

threshold. An interesting point about these reconstructed momenta from the

constrained ŝ variables minimization (maximization) is that not only are they

unique, but they also improve over the momenta calculated through ŝmin. In case

of ŝconsmin , better momentum reconstruction is ensured by the points closer to its

endpoint. Similarly, ŝconsmax gives better reconstruction from the points associated

with its threshold. These points will be discussed further in the Sec. 2.5, where

these correlations will be more evident. Finally, the definitions of different ŝ

variables, after imposing different constrains, ensures the hierarchy among these

mass variables:

ŝmin ≤ ŝconsmin ≤ ŝTrue ≤ ŝconsmax. (2.23)

To illustrate the properties of these constraint variables, first we consider

a simple example of SM Higgs production through gluon fusion at the hadron

collider. Higgs boson decays further semi-invisibly through tau pair production,

h → ττ → WντWντ . To compare with the representative diagram for antler
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Figure 2.4: (Left) panel the distribution of
√
ŝmin and

√
ŝconsmin with

√
ŝTrue =

Mh = 125.0 GeV. The red colored histogram is for analytical formula of
√
ŝmin

which also can be verified using numerical minimization, blue colored histogram
is
√
ŝconsmin calculated using numerical minimization. The variables

√
ŝmin and√

ŝconsmin have endpoint at the heavy resonance mass Mh but
√
ŝconsmin have larger

number of events because of the extra constraints it uses in its minimization. In
the (Right) panel the distribution of the

√
ŝconsmax. As one can see it has a threshold

at the true mass of the heavy resonance Mh = 125.0 GeV. Evidently, the
√
ŝconsmax

always greater than or equal to
√
ŝTrue. Similar unconstrained variable i.e.,√

ŝmax is not present because the unconstrained phase space does not have an
upper bound.

production in fig. 2.1, τ is the intermediate particle Bi, for which additional

mass-shell condition is used in the minimization (maximization) of constrained

ŝ. The neutrino ντ is the invisible particle χi. We considered hadronic (leptonic)

decay mode for theW boson which results in two invisibles (four invisibles tested

in next example) in the final state. The distributions of ŝmin and ŝconsmin are shown

in the fig. 2.4(left). The red binned histogram shows the distribution for ŝmin,

which can be calculated numerically or using an analytical expression. The blue

histogram shows the distribution of constrained ŝconsmin . As expected, the endpoints

of both the ŝmin and ŝconsmin distributions are at
√
ŝTrue = Mh = 125 GeV for a

choice of vanishing invisible mass. Evidently, larger number of events at the

endpoint for the ŝconsmin distribution with a sharper drop can be measured more

precisely. This is even more important once the corresponding background is

also considered together. The fig. 2.4(right) demonstrates the distribution of the

other constraint variable ŝconsmax which has a threshold at ŝTrue with considerable

number of events at the threshold.

It is expected that the endpoint of the kinematic distribution would be less
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Figure 2.5: (Left) In this figure we have shown the distribution of the

√
ŝmin

and
√
ŝconsmin for four invisible particles in the final state. The red histogram shows

the distribution of
√
ŝconsmin and the green histogram shows the distribution

√
ŝmin.

As one can see, though there are endpoint features for both the variables, the
number of events is very small and the improvement for

√
ŝconsmin over

√
ŝmin is also

very little. (Right) Here the black histogram is for
√
ŝsubmin calculated using the

analytical formula and the cyan histogram is for
√
ŝsub,consmin calculated numerically.

The variables
√
ŝsubmin and

√
ŝsub,consmin have endpoint at

√
ŝsub,True = Mφ++ .

populated if one had more number of invisible particles in the event. This is

because increasing the number of invisible particles would increase the number

of unknown momenta restricted with the same constraints. Following our pre-

vious example, we now consider four invisible particles by decaying both W ’s

leptonically and demonstrate the corresponding
√
ŝmin and

√
ŝconsmin distributions

in fig. 2.5(left). The red histogram shows the distribution for
√
ŝconsmin , whereas

the green binned histogram shows
√
ŝmin to compare the effect due to the ex-

tra constraints. These distributions confirm that the number of events at the

endpoint are considerably low as one increases the number of invisible particles

in the final state. Although constrained variable can improve the situation only

slightly, overall both of these distributions form a narrow tail rather than the

sharp endpoint.

We further study one more interesting example from the resonant production
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of exotic doubly charged scalar [76] production at the hadron collider followed

by its decay into the dominant decay channel producing pair of W ’s, which in

turn decays leptonically. Hence, the resonant sub-system under consideration

is φ++ → W+W+ → `+ν``
+ν`. At a hadron collider this exotic state φ++ can

be produced associated with charged W− which mainly decays hadronically and

it is possible to disentangle this from the antler subsystem producing a lepton

pair from the exotic decay. We choose to use the corresponding subsystem vari-

able
√
ŝsubmin for our analysis. Here analytical expressions for the invisible particle

momenta remain the same except the modified form for 6 ~PT which includes the

visible contribution from non-sub-system [24]. The distributions for the
√
ŝsubmin

and the constrained variable
√
ŝsub,consmin are demonstrated in fig. 2.5(right). The

dark binned histogram represents the distribution for
√
ŝsubmin which can be calcu-

lated either analytically or using numerical minimization. The cyan histogram is

the distribution for
√
ŝsub,consmin utilizing extra W mass-shell constraints, and min-

imized numerically. One can note that the
√
ŝsub,consmin performs better in getting

the endpoint at the φ++ mass. The observed small tail is because of finite width

from φ++ and these extra constraints ensures that the
√
ŝsub,consmin distribution

starts from a threshold at 2mW .

2.4 Constrained variable ŝ for non-antler topol-

ogy

Non-antler topology is extremely common in most of the BSM theories and also

abundant in the SM. This topology is already described in the fig. 2.2, where Pi
are the parent particles produced in pair. After a cascade decay, each side of the

decay chain produces a number of visibles along with a massive invisible particle

χi. Detailed study on the behavior of
√
ŝmin as a mass bound variable has been

done extensively for this kind of topology. Here we will illustrate the constrained

variables in the light of additional on-shell constraints. Rather than using these

exact on-shell constraints for the parent mass, which is primarily what one would

like to know through these mass bound variables, ref. [70] uses constraints from
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Figure 2.6: The distribution of
√
ŝmin (black) and

√
ŝconsmin (blue) considering a

toy model of non-antler pair production at the hadron collider is shown, with
parent and invisible masses as 300 GeV and 200 GeV, respectively. Non-antler
heavy-parent particle pair production must have a true parton level CM energy
distribution starting from a threshold value of total parent mass as shown by the
yellow histogram. As a consequence of additional constraints,

√
ŝconsmin distribution

also possesses this same threshold, however with a considerable number of events
at the threshold.

the equality of the two parent masses. Following our analysis in the previous

section, we continue using these mass-shell constraints with the expectation of

improved momentum reconstruction.

As a consequence of on-shell constraints, one can expect that the
√
ŝconsmin dis-

tribution would start from a threshold at the sum of the parent masses. This is

contrary to the unconstrained
√
ŝmin distribution which exhibits a peak at that

position giving an excellent correlation for the new physics mass scale. This is

demonstrated in fig. 2.6 where distributions for
√
ŝmin (black) and

√
ŝconsmin (blue)

are plotted using a toy model of non-antler pair production at the hadron col-

lider, with parent and invisible masses as 300 GeV and 200 GeV, respectively.

Unlike antler decay topology where heavy-particle resonant production forms a

near delta function at the parton level center of mass energy, here the heavy-

parent particle pair production has a distribution starting from a threshold value

of the total parent mass as shown by the yellow histogram. As we note that the√
ŝconsmin distribution also possesses this same threshold, however with a consider-

able number of events at the threshold. We will pursue this further in the next
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Figure 2.7: Some example events demonstrating the invisible momentum recon-
struction in case of antler topology through minimization during construction of
different

√
ŝ variables. Each color shaded region is represents the phase space

allowed by additional constraint in the unknown invisible momentum parameter
space. In both plots the yellow elliptical region is the constrained area describing
q1z(~q1T ) and the green elliptical region is the constrained area for q2z(~q1T ). The
intersection region between these two constrained ellipses, shaded in white, is
eligible for containing all the constraint

√
ŝ(~q1T ) parameters as well as the true

√
ŝ. Two other ends in this overlapping region would typically represent

√
ŝconsmin

and
√
ŝconsmax, with the true

√
ŝ in between them. Since

√
ŝmin does not have this

additional constraint, it would be outside the overlapping region and far from
the true

√
ŝ. Inside the overlapping region

√
ŝ contours are also presented where

true c.m. energy matches with the value of the Higgs mass. The left figure shows
one example event where

√
ŝTrue is closer to

√
ŝconsmin . This event contributes at

the endpoint of the
√
ŝconsmin distribution and also gives better momentum recon-

struction. The right figure shows another event where
√
ŝTrue is close to

√
ŝconsmax

contributing at the threshold of this distribution with better momentum recon-
struction.

section to show the improvements in the invisible momentum construction in the

presence of these constraints. Analogous to the variables constructed for antler

topology, one can follow a similar hierarchy among all the constrained
√
ŝ mass

variables after imposing different constraints:

√
ŝmin ≤

√
ŝconsmin ≤

√
ŝTrue ≤

√
ŝconsmax. (2.24)
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2.5 Event reconstruction capability

In this section we describe the invisible momentum reconstruction capability

using mass variables ŝmin and improvement in it accounting for additional con-

straints in the context of antler and non-antler decay topology. Analytic expres-

sions for invisible momenta components from the ŝmin were already discussed in

Sec. 2.1. It was also argued that these reconstructed invisible momenta using

ŝmin are unique irrespective of any topology considered. Note that these recon-

structed momenta from the minimization of ŝmin are not the true momenta, but

approximated momenta consistent with the observables in such events. These

calculated momenta can be correlated with the true values to find the reconstruc-

tion efficiency similar to the other reconstruction methods like MAOS [81, 82],

an event reconstruction method based on the transverse mass variable MT2 as

discussed in chapter 4.

To describe the consequence of the constraints given in eqs. 2.18-2.19 in con-

structing the new variables ŝconsmin and ŝconsmax, we reorient them to write unknown

longitudinal momenta in terms of their transverse components ~qiT . We get,

qiz =
ΣiP

V
iz ± EV

i

√
Σ2
i − (EV

iTE
q
iT )2

(EV
iT )2 , (2.25)

with

Σi =
m2
P1 −m

2
χi
−M2

vi

2 + ~P V
iT .~qiT , (2.26)

EV
iT =

√
M2

vi + (pViT )2 , (2.27)

Eq
iT =

√
m2
χi

+ q2
iT , (2.28)

where Mvi is the invariant mass of visibles in the i-th decay chain, i = 1, 2.

Missing transverse momentum constraints further permit us to rewrite them in

terms of single invisible particle transverse momentum components, which we

choose as ~q1T for our examples. By simplifying the right hand side of eq. 2.25,

one gets the equation of an ellipse in terms of the transverse momenta and
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Figure 2.8: One example event demonstrating the invisible momentum recon-
struction in case of non-antler topology through minimization during construc-
tion of different ŝ variables. Description of shaded regions and mass variables
are similar to previous figure.

the parameters outside the ellipse are not physical for the given event. Two

elliptical allowed regions for each event correspond to two decay chains and

these two regions cannot be completely disjoint from each other. All the available

constraints in an event are satisfied only at the intersection region between them.

Different situations can emerge for this overlapping region. Two ellipses may

intersect each other over a finite region or a point (touching each other). In

some cases one ellipse may contain the other ellipse.

In fig. 2.7 we consider such constrained regions demonstrated for two differ-

ent events in antler topology. Each color shaded region represents the phase

space allowed by the additional constraint in the unknown invisible momentum

parameter space. Overlapping region between these two constrained ellipse is

shaded in white where ŝ contours are also presented. One can identify the mini-

mum value from this intersection region as ŝconsmin and the maximum value as ŝconsmax

which reside at opposite ends within this region. Since ŝTrue also satisfies all

the constraints in the event it must also remain in the intersection region and in

between these two constrained points7. Since the ŝmin variable does not satisfy

all the additional constraints in the event, it would lie outside the intersection

7eq. 2.25 reflects a four fold ambiguity for the longitudinal component in each event. How-
ever, the extremization of constrained ŝ would qualify for a choice of unique momentum re-
construction.
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Figure 2.9: Histograms showing the distributions for deviation of the recon-
structed momentum from the corresponding true momentum as a fraction of
true momentum (qreconstructedi − qtruei )/|qtruei | using both unconstrained (red) and
constrained (blue) ŝmin methods. Left (right) panel displays the momentum
reconstruction capability in antler topology for transverse (longitudinal) compo-
nents of momentum.

region and relatively far from the true value. The left figure displays one typical

example event where ŝTrue is closer to ŝconsmin . This contributes at the endpoint of

the ŝconsmin distribution and also gives better momentum reconstruction. The right

figure shows another event where ŝTrue is close to the ŝconsmax contributing at the

threshold of this distribution with better momentum reconstruction. In both the

figures, we depicted different colored dots for the position (invisible momenta

during minimization or maximization) of all ŝ variables together with actual ŝ

correspond to that particular event. One can even read the corresponding val-

ues of these mass variables from their contours plotted within the intersection

region. Similarly, in fig. 2.8 we have shown the momentum reconstruction ca-

pability of ŝconsmin and ŝmin in an example of non-antler topology. The yellow and

green shaded regions represent constrained q1z(~q1T ) and q2z(~q1T ) respectively and

their intersection region is suitable for constrained ŝ. The red, orange and black

points show the true momenta and reconstructed momenta given by ŝmin, ŝconsmin

respectively.

We are now in a position to quantify the capability of momentum recon-

struction. fig. 2.9 exhibits the histograms showing the distributions for deviation
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of the reconstructed momentum from the corresponding true momentum as a

fraction of true momentum (qreconstructedi −qtruei )/|qtruei | using both unconstrained

and constrained ŝmin methods. The left panel in fig. 2.9, displays the momen-

tum reconstruction capability in an antler topology for transverse components of

momentum. Similarly, the right panel, is for the corresponding longitudinal com-

ponent of the momentum. In each figure, one histogram (in red bins) is shown for

ŝmin which agrees with the corresponding analytical form. Also, histograms with

blue bins are plotted in the same figure to display the momentum reconstruction

capability using constrained minimization ŝconsmin pointing out improvements over

the unconstrained one.

We discussed the additional constraints in ŝmin to choose the minimization

that gives reconstructed invisible momenta closer to their true values. To un-

derstand this consequence better, we look into the movements of these calcu-

lated momenta once we impose the constraints. In fig. 2.10 we demonstrate this

through a correlation plot of constructed invisible momentum versus the cor-

responding true momentum taking few random representative event points. In

both plots, each red dot point represents the calculated momentum derived from

the ŝmin against the corresponding true momentum for each event. Similarly,

green dots are for corresponding momentum derived from the ŝconsmin . The pur-

ple arrows connecting from one red dot to other green dot represent the shift

in the derived momentum once extra constraints are imposed. Since the true

momentum is always same for a particular event, shifts due to minimization in

different mass variables are only horizontal. These arrows represent the degree

of change due to constraints, shifting calculated momenta towards the diagonal

true momentum points. Blue points along the diagonal simply correlate the true

momenta with themselves in each event to give the perspective of how derived

momenta are correlated against the true values. Left (right) plot corresponds to

the transverse (longitudinal) momenta derived from ŝmin and ŝconsmin .
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Figure 2.10: Correlation plot, taking few random representative event points,
showing the shift of reconstructed transverse momenta (in left panel) and lon-
gitudinal momentum component (in right panel) derived from ŝmin and ŝconsmin .
In both plots, each red dot represents the calculated momentum derived from
ŝmin against the corresponding true momentum for each event. Similarly, green
dots are for corresponding momentum derived from ŝconsmin . The purple arrows
connecting from one red dot to a green dot represent the shift in the derived
momentum once extra constraints are imposed. Blue points along the diagonal
simply correlate the true momenta with themselves in each event to give the
perspective of how derived momenta are correlated against the true values.





Chapter 3

Constrained M2 variable

In this chapter we discuss the (1+2)-dimensional transverse mass variable MT2

and various properties associated with it. We then describe the importance of

(1+3)-dimensional observable and generalizeMT2 to its 3D analogM2. We define

a new constrained 3D mass variable M2Cons for antler topology and explore all

its interesting features.

3.1 Transverse mass variable: MT2

We would like to address the antler topology using the mass-constraining variable

for the subsystem represented by the gray shaded region shown in fig. 2.1. Let us

start with the existing and popular transverse mass variable MT2 before moving

to a generalization and finally extending to our new variable. MT2 is defined to

have the potential to measure the masses of the BSM particles both in short or

long decay chains, although its dominance and significance is mostly grounded

in its capability to handle the former case. The classic definition1 of MT2 is

given by the larger value between two transverse masses M (i)
T constructed from

both sides of the decay chain and minimized over unknown invisible momenta
1Here, "T " and "2" in MT2 stand for the transverse projection and two parent particles,

respectively, in the topology under examination. Ref. [19] generalized and unified the concept
of mass variables and set a preferred nomenclature according to the order of operations to
rewrite the same variable as M2T within a general M2 family. Notably, [19] also demonstrated
the fact that the transverse projection can be done using not one, but three completely different
schemes.

45
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satisfying the 6~PT constraints of that event. Mathematically,

MT2 ≡ min
~qiT

{
∑

~qiT =6~PT }

[
max
i=1,2
{M (i)

T (piT , qiT ,mvis(i);mχ)}
]
, (3.1)

with the usual definition of the transverse mass for each decay chain,

(M (i)
T )2 = m2

vis(i) +m2
χ + 2(Evis(i)

T E
inv(i)
T − ~piT .~qiT ) (3.2)

E
vis(i)
T =

√
m2
vis(i) + p2

iT , E
inv(i)
T =

√
m2
χ + q2

iT . (3.3)

Here (Evis(i)
T , ~piT ) and (Einv(i)

T , ~qiT ) are (1 + 2)-dimensional transverse energy-

momenta corresponding to the visible and the invisible decay products in the ith

decay chain, respectively. Note that, in the definition of MT2, the minimization

is done over all possible partitions of 6~PT and the maximization ofM (i)
T within the

bracket ensures a closer shot towards the parent mass mP . By this definition,

MT2, calculated for each event, must be smaller than or equal to mP with the

correct mass of invisible particle as input, shown in eqn 3.1. The equality holds

when the visible and invisible particle of each decay chain are produced with

equal rapidity. Hence, by measuring the endpoint of the MT2 distribution, mass

of the parent particle can be determined with the true daughter mass as input.

But the true daughter mass is also not known, so MT2 is calculated as a function

of the trial mass hypothesis of the invisible particle, m̃χ, the true but yet unknown

mass of invisible being mχ. Mathematically, the properties of MT2 are

mχ ≤MT2(mχ) ≤ mP , (3.4)

m̃χ ≤MT2(m̃χ). (3.5)

The variable MT2 can also be measured from geometry of the topology us-

ing minimal kinematic constraints, which are parent and daughter mass shell
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Figure 3.1: Geometrical interpretation ofMT2 where each decay chain represents
an ellipse and the ellipses are related through the missing transverse momenta
constraints. The size of the ellipse are functions of unknown parent and daughter
masses and increase monotonically with the parent mass. These two ellipses, for
a particular choice of parent mass, are either disjoint (left) or one contains the
other (right) depending on the momentum configuration. For the left panel
momentum configuration, MT2 is determined by choosing the minimum value
of the parent mass such that the two ellipses touch each other for a particular
daughter mass and for the right configuration, it is the minimum value of parent
mass such that one ellipse is a point contained in the other.

conditions and missing transverse momentum constraints,

q2
1 = q2

2 = m̃2
χ, (3.6)

(p1 + q1)2 = (p2 + q2)2 = m̃2
P , (3.7)

q1T + q2T =6~PT , (3.8)

where m̃P and m̃χ are hypothesized parent and daughter masses. It is straight-

forward to show, using mass shell conditions, that each decay chain represents an

ellipse. These two ellipses are not independent but are related to each other by

missing transverse momenta constraints. The sizes of the ellipses are functions of

the hypothesized parent and daughter masses and increase monotonically with

m̃P for a particular m̃χ. These two ellipses, presupposing a parent mass, may

be disjoint or one ellipse may contain the other depending on the momentum

configuration of an event. For the former case, MT2 is the minimum m̃P such
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that intersection between the two ellipses is non-zero and for the latter, it is the

m̃P when one ellipse becomes a point while the other one has some finite size

as shown in the fig. 3.1. This approach2 for determining MT2 is comparatively

faster than the minimization method which is widely used, although the ideal

way is to have an analytic formula which is available for certain simplified event

topologies.

The analytic formula for MT2 assuming that the total visible transverse mo-

menta in an event are balanced by the missing transverse momenta is given in

the following,

(MBal
T2 (m̃χ))2 = m̃2

χ+βT+

√√√√(1 +
4m̃2

χ

2βT − (mvis(1))2 − (mvis(2))2 )(β2
T − (mvis(1)mvis(2))2),

(3.9)

with

βT = E
vis(1)
T E

vis(2)
T + ~p1T .~p2T , (3.10)

where the superscript Bal in MT2 refers to the balanced momentum configu-

ration. The visible and invisible particle momenta in a particular event have

two kinds of momentum configuration, they are “balanced” and “unbalanced”.

An event is said to have balanced momentum configuration when the (1+2)-

dimensional transverse mass of all decay chains are equal, else it satisfies unbal-

anced configuration. A detailed derivation of the above formula can be found in

refs. [52, 54]. For the unbalanced configuration, the analytic formula for MUnBal
T2

is the larger value between the unconstrained minimum of the two transverse

masses as follows

MUnBal
T2 = mvis(i) + m̃χ. (3.11)

The distribution of MT2 is shown in the left panel of fig. 3.2. As we have

discussed earlier MT2 is a function of the trial invisible particle mass. In this

2Note that this approach assume the invariant mass of visible particles of each decay chain
is greater than zero and sets the visible longitudinal component of momentum to zero. When
the invariant mass of visible system is zero, the ellipse becomes parabola while the approach
remains same, the details about general case is discussed in the ref. [83].
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Figure 3.2: (Left) MT2 distribution with a value of invisible mass hypothesis less
than its true value and the resulting endpoint of this distribution is not at the
parent mass. MT2, as evident from the eqn. 3.1, is a function of the invisible
particle mass and hence the endpoint is also a function of trial invisible mass
which is shown in the (right) plot. This correlation curve between Mmax

T2 and m̃χ

passes through the true mass point, so this relation gives a constraint between
parent and daughter masses.

plot, we have taken an invisible mass hypothesis less than its true value and

the resulting maximum (endpoint) is not at the parent mass, as evident from

eqn. 3.4. The maximum quantity for any of these mass variables M... (such as,

MT2, M2 or M2Cons) over the available data set is

Mmax
... (mχ) ≡ max

{All events}
[M...(mχ)]. (3.12)

NowMmax
T2 should provide a very close estimate ofmP with the true invisible par-

ticle mass as input,Mmax
T2 (m̃χ = mχ) = mP . Moreover, in the scenario where the

invisible particle mass is a priori unknown, e.g., dark matter models, Mmax
T2 (m̃χ)

would still offer a useful correlation with the trial invisible mass m̃χ as shown in

the right panel of fig. 3.2. One can possess only this partial information on the

unknown parent and daughter masses, unless, under some special circumstances,

this correlation curve generates a kink feature exactly at the correct mass point.

Kink in mass measurement techniques is a widely acclaimed feature, first

shown in the context of the MT2 variable. It was shown [53, 54] that simul-

taneously both parent mass mP and daughter mass mχ can be determined by

identifying a kink in this correlation curve, where the true mass point resides.

It is worthy of attention that Mmax
T2 (m̃χ) has two different functional forms be-
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Figure 3.3: (Left)Mmax
T2 for the off-shell intermediate resonant particle with trial

invisible mass, m̃χ, is shown. The blue line represents the functionMmax
T2 (m̃χ) for

m̃χ < mχ while the green dashed line displays the same function for m̃χ > mχ.
The red dotted line represents Mmax

T2 with the variation of m̃χ, in the full range.
Similarly, the right panel displays Mmax

T2 for on-shell case. As we have discussed,
the kink is stronger in the off-shell case compared to the on-shell case which is
reflected in the plot.

fore and after this kink, and they share the same value at the true mass point.

This behavior stems from the fact that the visible system invariant mass of any

(or both) decay chain(s) have to have a range of values; hence, there should be

at least two visible particles per decay chain. Consequently, the experimentally

simpler single-step decay chain topology is deprived of such an advantage.

The visible invariant mass range of a decay chain depends on the decay topol-

ogy; the maximum value attained by the invariant mass of the visible system in

fig. 2.2 depends on the intermediate resonant particle, in the blue blob, produced

on-shell or off-shell. Let us assume the blue blob represents a hypothetical in-

termediate particle which is produced off-shell, then the range of the invariant

mass is

0 ≤ mvis(i) ≤ mP −mχ. (3.13)

Where we have neglected the individual mass of the visible particle. The maxi-

mum of MT2 obtained in the frame where the two parents are produced at rest

and their decay products are in transverse plane. The endpoint of MT2 varies

with m̃χ as,

Mmax
T2 (m̃χ) =


α +

√
α2 + m̃2

χ, if m̃χ < mχ,

(mP −mχ) + m̃χ, if m̃χ > mχ,
(3.14)
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with

α =
m2
P −m2

χ

2mP

. (3.15)

The invariant mass range, if a hypothetical intermediate resonant is produced

on-shell is

0 ≤ mvis(i) ≤

√√√√(m2
P −m2

B)(m2
B −m2

χ)
m2
B

, (3.16)

where mB is the mass of the intermediate particle. Since the minimum value is

the same as in the off-shell case, Mmax
T2 (m̃χ) for m̃χ < mχ remains unchanged

while for m̃χ > mχ it will change as follows,

Mmax
T2 (m̃χ) =


α +

√
α2 + m̃2

χ, if m̃χ < mχ

(λ+ κ) +
√

(λ− κ)2 + m̃2
χ, if m̃χ > mχ,

(3.17)

with

λ = mP

2

(
1− m2

B

m2
P

)
(3.18)

κ = mP

2

(
1−

m2
χ

m2
B

)
. (3.19)

The maximum value of the invariant mass in the on-shell intermediate case is

smaller in comparison to the off-shell case making the kink weaker as shown in the

fig. 3.3. The left plot represents the kink in the case of an off-shell intermediate

particle with the green line representing the function Mmax
T2 (m̃χ) for m̃χ < mχ,

while the red dotted line displays the same function for m̃χ > mχ. Similarly, the

right plot portrays the kink when intermediate particle produced on-shell.

The above feature was shown where the system does not have any recoil from

initial state radiation (ISR) or upstream transverse momenta (UTM). But the

presence of ISR is inevitable during the production at any hadron collider. It

is subsequently revealed [55, 56, 58] that a kink can also arise from a topology

having a single-step decay chain on both sides, but there should be recoil to the

system which may come from ISR or UTM. Both the scenarios can naturally

arise in the context of a subsystem in a longer decay chain. However, sizable
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kink resolution only comes from events with very high recoil PT , essentially with

very low statistics.

Now to motivate the (1+3)-dimensional generalization of previous definitions

as in eq. 3.1, one readily notes that MT2 does not utilize longitudinal compo-

nents of the momenta and, thus, the available mass-shell constraints for a given

topology. M2 is thus constructed [19] out of the (1+3)-dimensional momenta by

removing all “T” in the definition of eqs. 3.1-3.3 (except that of the total missing

transverse momentum constraint under the curly bracket, since the longitudinal

part is not available in the context of the hadron collider). Now one can apply

the on-shell mass constraints in the minimization of M2, and, depending on the

constraints applied, different constrained classes of the M2 variable (e.g., M2xx,

M2cx and M2cc) can be constructed; details about these variables can be found

in ref. [70]. Using similar notation, one can readily come up with the first two

types of variables available from the subsystem considered in fig. 2.1. Here, M2cx

is the (1 + 3)-dimensional generalization of MT2 with the equality of the parent

mass constraint applied in the minimization,

M2cx ≡ min
~q1,~q2{

~q1T +~q2T =6~PT

(p1+q1)2=(p2+q2)2

}
[
max
i=1,2
{M (i)(pi, qi,mvis(i);mχ)}

]
, (3.20)

with the (1 + 3)-dimensional mass from each decay chain as

(M (i))2 = m2
vis(i) +m2

χ + 2(Evis(i)Einv(i) − ~pi.~qi). (3.21)

The corresponding M2xx variable is simply realized by removing the last con-

straint inside bracket, just like the transverse mass case in eq. 3.1. It is straight-

forward to show [70] that,

MT2 = M2xx ≡M2 (3.22)

= M2cx. (3.23)

Also, note that in our example, there is one visible particle per decay chain in
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the final state. Hence, MT2 and other variables always come from a balanced

configuration irrespective of the choice of trial invisible mass. So once again the

maximum Mmax
T2 (or the maxima of other variables as in eqs. 3.22 and 3.23) can

only give a constraint between parent and invisible particle masses.

3.2 Constrained M2 variable: M2Cons

In the example topology under consideration, there is one visible particle, per

decay chain in the final state. Hence, MT2 and other variables always come from

a balanced configuration irrespective of the choice of trial invisible mass. So once

again the maximum Mmax
T2 (or the maxima of other variables as in eq. 3.22 and

eq. 3.23) can only give a constraint between parent and invisible particle masses.

Now, by looking at fig. 2.1, one realizes that the parents (P1, P2) actually

originate from a heavy resonance (G). In a BSM scenario, even-parity G can

directly decay to observable SM particles and hence the mass, mG, can in prin-

ciple be measured. Before we move further, we assume that in our topology only

this heavy resonance mass mG is known. We are now in a position to develop a

variable using this mass constraint, so that3

M2Cons(m̃χ) ≡ min
~q1,~q2{

~q1T +~q2T = 6~PT

(p1+p2+q1+q2)2=m2
G

}
[
max
i=1,2
{M (i)(pi, qi,mvis(i); m̃χ)}

]
, (3.24)

where the (1 + 3)-dimensional invariant mass is M (i) as in eq. 3.21. Additionally,

the dependence on the unknown trial invisible mass m̃χ is shown explicitly. With

this additional constraint, one expects a more squeezed phase space affecting this

new variable as compared to that of M2. Furthermore, we will soon realize that

this effect is a little more far-reaching. Before we gradually move to demonstrate

that, let us open the discussion with the consequences of this new variable in the

invisible momentum space.
3One can also consider an additional constraint using the equality of parent masses (p1 +

q1)2 = (p2 + q2)2 in M2Cons. Although this would further constrain the allowed invisible
momentum space, it would finally choose the same minima. Hence, our arguments with this
present example and analysis remain the same.



54 Chapter 3. Constrained M2 variable

The additional heavy resonance mass-shell constraint in the minimization

(last condition inside bracket of eq. 3.24) constrains the invisible particle mo-

menta, such that the invariant mass of the parents is confined to a resonance of

mass mG. This is true for each event. In fig. 3.4, the effect of this constraint

is demonstrated for one event with an example where the trial invisible particle

mass m̃χ is considered smaller than the as yet unknown true mass mχ. The

region represented by the light temperature map color gradient is the maximum

between two transverse masses M (i)
T , as in eq. 3.1 before executing the mini-

mization. This is shown with respect to the invisible momenta components, q1x

and q1y, by taking care of the missing transverse momenta constraints. Now

the minimum of this quantity, which is nothing but MT2, is the minimum point

in the color map displayed by the filled circle , and different contour lines are

shown by dashed curves. Moving to our (1 + 3)-dimensional new variable with

the heavy resonance mass-shell constraint in eq. 3.24, once again after doing a

similar exercise we get the solid contour curves superimposed in the same plot.

Of course, we are no longer showing the color gradient as done in the transverse

mass case. The transformation of the dashed contour lines into corresponding

solid ones (the same color represents the same value of that contours) within the

same region qualitatively indicates the effect of this additional mass constraint.

Minimum of these solid contours represents M2Cons, displayed by circled plus

⊕ in the same figure. Note that the longitudinal momenta components for the

invisible pairs are eliminated in this demonstration by minimizing with the G

mass-shell constraint.

As noted, themG constraint restricts the invisible momenta making the region

shrink as depicted by the dashed and solid contours (e.g. blue lines correspond to

100 GeV). The dashed line contour does not satisfy the additional G mass-shell

constraint while the solid contour does. The same is true for all other lines as

well. The representative values of MT2 and M2Cons considered in this example

are 75.1 and 98.5 GeV, respectively, for trial mass m̃χ at 10 GeV which is smaller

than the true invisible mass 100 GeV. The corresponding true mass of parents

and heavy resonance are 200.0 and 1000.0 GeV, respectively. The white dashed
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Figure 3.4: The effect of the heavy resonance mass-shell constraint is demon-
strated using the mass variables MT2 and M2Cons considering one antler event
in the invisible momentum component space. The region represented by the
color gradient is the maximum among two transverse masses coming from two
decay chains. Corresponding contours are shown with dashed lines. Following
eq. 3.1, the minimization of this quantity, MT2, is represented by the filled circle
. In the same plot, the solid lines (of the same colors) are delineating the corre-

sponding contours for the (1+3)-dimensional new variable with heavy resonance
mass-shell constraint as in eq. 3.24. Note that only the contour lines are shown
in this case, not the color gradient as in the transverse mass case. The minimum
of these solid contours is represented by the M2Cons, displayed by circled plus ⊕
in the same figure. The G mass-shell constraint restricts the invisible momenta,
making the region shrink, as depicted by the dashed and solid lines. The white
dashed (solid) line represents the equality of transverse-mass (mass) of parents
and this equality line is also moving towards higher values because of the con-
straint. The red star F is the position of true transverse momenta of invisible
particle. The mass spectrum we choose is (mG, mP , mχ) = (1000.0, 200.0, 100.0)
in GeV and the trial invisible particle mass m̃χ we took for this plot is 10.0 GeV.

(solid) line represents the equality of the transverse-mass (mass) of the parents

and this equality line has moved towards higher value because of the constraint.

As a result, one naturally expects M2Cons ≥M2 event by event. The red star F

is the position of the true transverse momenta of the invisible particle. Clearly,
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Figure 3.5: Normalized distributions of the mass variables are delineated using
a toy model of antler topology with parents mass at 200 GeV. Both the M2
(black) and M2cons (green) distributions, considering the invisible particle mass
at its true value (100 GeV), produce the end point at the correct parent mass.
However, the heavy resonance constraint gives M2cons a higher value, resulting a
larger number of events at the end point.

the constraint brings the minimum,M2Cons, closer to the true momenta, and this

can improve any effort to reconstruct the invisible momenta. This feature will

be further considered and discussed in Sec. 3.5.

One more remarkable feature which emerges at this point is the appearance

of a kink which will be capitalized on in the next section. We already noted the

event wise upward shift of values under the constraint. The next natural question

in this context concerns the maximum value achievable by this mass variable

and how it is related to the trial missing particle mass. The experimentally

measured maximum can deviate (downward) from the theoretical maximum of

the mass variable depending upon the accessible number of events, and more

importantly, the abundance of events towards the end point of the distribution.

We postpone this issue for the time being and consider it again in Sec. 3.4.

Now coming back to our variable, it should not be surprising that at the true

value of the invisible particle mass (i.e., when m̃χ = mχ), the maximum value

of the constraint variable Mmax
2Cons coincides with that of the variable without this

constraint, Mmax
2 . This is because both of these variables are derived for the

same topology. On the other hand, for all other trial mass values, not only is the

individual (event-by-event) constraint quantity larger, but also the maximum of
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that constraint mass is the larger value. To write in a compact form,

Mmax
2Cons(m̃χ)


= Mmax

2 (m̃χ) = mP , if m̃χ = mχ

> Mmax
2 (m̃χ), if m̃χ 6= mχ.

(3.25)

While this point is further discussed in the following section as a means of

measuring the unknown masses, here we illustrate it with one example distri-

bution for the aforementioned M2 variables, considering a toy process with an

antler topology as shown in fig. 2.1. For demonstration purposes, we choose a

mass spectrum with {mG,mP ,mχ} = {1000, 200, 100} in GeV, which is a rela-

tively difficult region for the kinematic cusp method [84, 85] known as the “large

mass gap” region, where the cusp may not be very sharp, leading to large errors

in the mass determination. The M2Cons variable can be effective for mass deter-

mination both in the large mass gap region as well as in other regions of phase

space. In fig. 3.5, we have compared the normalized distributions for M2 and

M2Cons at the true mass of the invisible particle. Both the constrained (green

histogram) and unconstrained (dark histogram) distributions share the same end

point precisely at the parent mass, as argued earlier. However, from the distribu-

tion, one should also note the movement of the events towards the higher value

under the heavy resonance constraint and, thus, expect a larger number of events

at the end point.

3.3 Mass measurements with kink

In the last section, we defined the constrained variable M2Cons using the heavy

resonance on-shell constraint in the minimization of M2. Analogous to the pre-

vious discussion,4 the maximum of this variable Mmax
2Cons also exhibits different

dependencies on either side of the true mass, as a function of the trial invisible

particle mass m̃χ. Following the eq. 3.25, one can obtain the kink structure ex-
4At this point, we would like to make it clear that the effect of ISR/UTM is not considered

in this present analysis. This study shows a new kink solution due to the kinematic constraint
coming from on-shell mass resonance in antler events. If one considers such events associated
with ISR, that may marginally contribute to strengthening the already strong kink solution as
demonstrated.
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actly at the true mass. However, the reason for the appearance of this kink is

attributed to the heavy resonance mass-shell constraint in the minimization.5 Al-

though there is no analytic formula in support of the above empirical observation,

we verified it by checking the slope numerically before and after the true mass

point. The presence of this kink is also authenticated by various mass spectra.

Also, note that unlike Mmax
2 (m̃χ), the constrained variable Mmax

2Cons(m̃χ) cannot

increase forever with the increase of the trial invisible particle mass m̃χ, owing

to the additional heavy resonance mass-shell constraint. Mmax
2Cons can maximally

reach up to half of the resonant mass and after that it would be unphysical. We

have not studied the effects of ISR or UTM on this kink solution leaving these

realistic studies for future work, but one expects that the presence of those extra

transverse momenta will sharpen the kink structure.

To demonstrate this behavior in a more quantitative sense, we once again

consider the toy process with the antler topology with the aforementioned mass

spectrum. The top panel of fig. 3.6 depicts the dependence of both Mmax
2 (m̃χ)

and the constrained Mmax
2Cons(m̃χ) on the trial invisible particle mass m̃χ. The

red thin dotted lines showing true mass lines intersect at the true mass point,

{mχ,mP} = {100, 200} in GeV. This plot clearly illustrates that because of the

on-shell constraint, M2Cons attains a larger value, even bigger than the corre-

sponding Mmax
2 once m̃χ is different from the true mass mχ. However, both of

these maximum quantities attain the same value precisely at the true mass. The

most compelling observation about this plot is the appearance of a kink exactly

at this point for Mmax
2Cons(m̃χ), which can be used for measuring both masses mP

and mχ simultaneously. The bottom plot describes the variation of difference

between two maxima i.e., Mmax
2Cons(m̃χ) − Mmax

2 (m̃χ) with respect to the trial

invisible particle mass m̃χ. As expected, this difference between both the end

points should ideally be zero at the true invisible particle mass.

5One can argue that the heavy resonance constraint works in the same spirit of ‘relative’
constraint as defined in M2 class of variables [70]. In fact, in a non-antler scenario the M2
variables under usual relative constraints extend/shift their distribution end-point value over
and above the end point where this relative constraint is absent. Similar to our case, this can
happen when the trial mass deviates from the true invisible particle mass. Hence, one expects
formation or consolidation of a similar kink structure.
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Figure 3.6: The upper panel depicts the behavior of the upper end points for both
constrained Mmax

2Cons(m̃χ) and unconstrained Mmax
2 (m̃χ) variables with respect to

the trial invisible particle mass m̃χ. The blue dashed line portraysMmax
2 (m̃χ), the

red dashed lineMmax
2Cons(m̃χ) and the red thin dotted lines intersect at the value of

true masses. This plot clearly illustrates that because of the on-shell constraint,
M2Cons attains a larger value, even bigger than the correspondingMmax

2 once m̃χ

is different from the true mass mχ. The most compelling observation about this
plot is the appearance of a kink exactly at the true mass point for Mmax

2Cons(mχ),
which can be used solely for measuring both mP and mχ simultaneously. The
lower panel describes the differenceMmax

2Cons(m̃χ)−Mmax
2 (m̃χ) with respect to the

trial invisible particle mass m̃χ. As expected, the difference between both the
end points is zero at the true invisible particle mass.

3.4 More aspects of kink measurement

One of the significant challenges with most of the mass variables is the detection

of the distribution end point, which can reach the theoretical maximum only

after using a large amount of data. The problem comes from the fact that a

negligible amount of events typically contributes towards the distribution end

point. M2Cons is also not an exception, forming a tail in the distribution towards

its maximum value.6

This feature is clarified in fig. 3.7 where the density of events is displayed as

a percentage of the total data contributing to theM2 distribution. As a function

of the trial invisible mass m̃χ, the left plot shows the reference density for theM2

6On the contrary, at the true invisible mass, M2Cons produces a sharper end point as
demonstrated in fig. 3.5.
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Figure 3.7: Density of events as a percentage of total data contributing to M2
distributions as a function of the trial invisible mass m̃χ. On the left, the refer-
ence figure is shown for the M2 variable which does not include heavy resonance
constraint. The similar figure on the right is for the constrained variableM2Cons,
where constraint refers to the G mass-shell constraint. The color coding rep-
resents the percentage of events per 2 GeV bin in M2. Since this distribution
reaches a maximum for every trial value of m̃χ, above which there are no events,
this disallowed range is kept as white. This upper end point in each plot rep-
resents the maximum curve shown in fig. 3.6. The presence of the kink can be
clearly seen from the figure, and it is solely because of the on-shell heavy reso-
nance constraint. But the reconstruction of the kink can be challenging due to
the much smaller number of events at the endpoint, specifically when away from
the kink. Also, it is interesting to note the changes in the event density due to
the application of an additional constraint. Evidently, a significant number of
events shifted towards the end point at the true mass, as can be observed in the
figure.

distribution which can reach up to a maximum, above which there are no events

and it remains white. For the same data set, the right panel shows the density

of events for the constrained variable M2Cons. The color coding represents the

percentage of events per 2 GeV bin in M2. These upper end points are equiva-

lent to the maximum curve in fig. 3.6, in the last section. Compared to the left

figure, M2Cons developed a clear kink solely because of the on-shell constraint

of the heavy resonance. One notices that a tiny fraction of events actually con-

tributes at the end point, specifically when away from the kink position. Also, it

is interesting to note the changes in the event density due to the additional con-

straint. At the true mass (kink), a significant number of events shifted towards
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Figure 3.8: The variable n(m̃χ) is shown with the black line and the blue line
corresponds to the position at which the function exhibits its minimum. This
minimum is exactly at the true value of the invisible particle. The effective-
ness of the variable n(m̃χ) as defined in eq. 3.26 is in identifying the minimum
and thus measuring the true mass of the invisible daughter. The function as a
percentage of the event fraction clearly shows a sharp minimum at m̃χ = mχ.
So by identifying the minimum of n(m̃χ), one can measure the invisible particle
mass accurately. The red band shows the error accounting only for the statistical
uncertainty.

the end point, as is also observed in fig. 3.5. This demonstration is also generated

considering a toy process with an antler topology with the aforementioned mass

spectrum {mG,mP ,mχ} = {1000, 200, 100} in GeV.

We pointed out and discussed the difficulty in determining the end points,

which is in no way a shortcoming for this variable only. Fortunately, in this

present case, the ability to simultaneously identify bothM2 andM2Cons provides

a solution for effectively pointing out the kink using all the events, not just

relying on the events at the maximum.

We have already discussed in Sec. 3.2 that the additional constraint pushes

the M2Cons towards the higher value compared to M2, such that, as long as the

trial invisible mass m̃χ is unequal to the true mass mχ, there can be enough

events generating a larger M2Cons than Mmax
2 . Moreover, it is clear from eq. 3.25

that the Mmax
2Cons coincides with Mmax

2 at the true invisible mass. This enables us

to define a dimensionless variable pointing out the position of the kink, in a way
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that was originally proposed in [61]. For a given m̃χ, one counts all the events

having M2Cons value larger than the corresponding Mmax
2 to get the fraction,

n(m̃χ) = 1
N
N (m̃χ) = 1

N

N∑
i=1
H((M2Cons(m̃χ)−Mmax

2 (m̃χ))i). (3.26)

Here, i is the event index with total number N . N (m̃χ) is the number of events

in which M2Cons(m̃χ) > Mmax
2 (m̃χ) for any given m̃χ, satisfied by the Heaviside

step function,

H(y) =


0, if y ≤ 0,

1, if y > 0.
(3.27)

It is easy to follow from eq. 3.25 that the quantity n(m̃χ) should ideally be

zero at the true mass mχ, since both M2Cons and M2 share the same maximum

value at that point. However, on both sides away from this point, substantial

events contribute above the Mmax
2 ; hence, n(m̃χ) poses a sharp minimum at the

true mass point. If other realistic effects, such as backgrounds, mass width, and

experimental errors are considered there would be some finite number of events

present at the minimum rather than zero. These effects are not considered in

the present analysis. However, it is safe to assume that the position of the

functional minimum can be correctly identified to get the true invisible mass.

The advantage of using n(m̃χ) is that it does not rely on some isolated event at

the end point but rather it relies on a significant number of events distributed on

a band in a two-dimensional plane between Mmax
2 and Mmax

2Cons which contribute

to establish this minimum.

In our example, the theoretical prediction of the function n(m̃χ) (as a fraction

of total events) is shown in fig. 3.8. The red band is the error accounting only

for the statistical uncertainty. One can clearly identify the minimum and justify

the relation,

n(m̃χ = mχ) ≡ nmin(m̃χ), (3.28)

to measure the invisible particle mass accurately. Hence, it is straightforward to

measure both the parent and daughter masses simultaneously.
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Figure 3.9: Capability of reconstructing missing daughters momenta is demon-
strated using constrained variable. The left figure displays a normalized distri-
bution of ∆q1t

|qT rue
1t |

with ∆q1t = qreco1t − qTrue1t , hence parameterizing the deviation
from true momenta for the transverse part, with "t" referring to either x or
y-component of momenta. This reconstruction of momenta is done from the
minimization of the M2Cons with the true mass of the invisible particle as in-
put. The reconstructed invisible momentum is unique and very well correlated
with true momentum as the distribution of ∆q1t

|qT rue
1t |

has a sharp peak at zero.
In a process where the invisible particle mass is unknown, n(mχ) can be used
for invisible particle mass determination and then event reconstruction using
M2Cons. Similarly, the right figure displays a normalized distribution of ∆q1z

|qT rue
1z |

with ∆q1z = qreco1z − qTrue1z for more troublesome longitudinal momentum. Once
again, q1z reconstruction is unique and well correlated with true longitudinal
momenta of invisible particle.

3.5 Reconstruction capability of events

In this section, we want to explore the event reconstruction capability coming

from the constrained mass variable M2Cons, typically once the invisible particle

mass is determined, as in last the section. Event reconstruction is extremely

important in the case of spin, polarization and coupling determination of new

physics particles as well as of the Higgs boson and the top quark in SM processes.

However, it is almost impossible to determine them exactly for a scenario involv-

ing multiple invisible particles in a hadron collider, especially for a topology with

a short decay chain. Attempts have been made to reconstruct events using the

transverse mass variable MT2 [81, 82, 86] known as the MT2-assisted on-shell

(MAOS) method in which the transverse momenta of the invisible particles are

determined from the minimization of MT2, and the longitudinal components are

determined by solving the mass-shell constraints of parent and daughter. In
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refs. [87, 88], it is shown that ŝmin and its constrained sisters ŝconsmin and ŝconsmax, can

also be used for event reconstruction especially in antler topology, where con-

straints refer to missing transverse momenta and available mass-shell constraints

in an event. The reconstructed momenta of the invisible particles are derived at

the extremum of ŝ and the constrained ŝ variables.

In this section we reconstruct all components of the invisible particle momenta

from minimization of the (1+3)-dimensional variable M2Cons with the true mass

of the invisible particle as input. The capability of reconstructing the missing

daughter momenta is demonstrated in fig. 3.9 using this constrained variable.

The left plot displays a normalized distribution of the fractional deviation (or

error) in this reconstructed quantity from that of the true value, in the case of

transverse part of the invisible momenta. This deviation is parametrized using

a ratio defined as
qreco1t − qTrue1t
|qTrue1t |

, (3.29)

where the subscript "t" refers to the transverse (x or y) component of the mo-

menta. The reconstructed invisible momenta are proved to be unique and very

well correlated with the true momenta, as the observed distribution has a sharp

peak at its true value (i.e., zero deviation). Similarly, the right figure displays

a normalized distribution of the corresponding variable for longitudinal momen-

tum, and once again one gets a unique reconstruction well correlated with the

true longitudinal momenta of the invisible particle. In a process where the in-

visible particle mass is unknown, n(mχ) can be used for invisible particle mass

determination, and then events can be reconstructed using M2Cons.
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Reconstructing semi-invisible events

from Higgs

In this chapter we will discuss the reconstruction of semi-invisible tau-lepton

pair events using the constrained mass variable M2Cons. Before reconstructing

the tau pair events we will discuss the motivation for studying tau-lepton and

some earlier methods which will subsequently be compared to our method.

The Large Hadron Collider (LHC), still lacking in its objective of confirming

any clear indication of new physics beyond the Standard Model (SM), has never-

theless successfully discovered the SM like Higgs boson at 125 GeV [3, 4] and also

made tremendous progress in probing different properties of this newly discov-

ered scalar [89, 90]. Owing to the relatively large Yukawa coupling, looking for

events where the Higgs decays into third generation τ ’s is the natural first step in

exploring interactions with leptonic modes. Full event reconstruction for such an

event topology is especially important, since fermions from the third generation

hold the key to electro-weak symmetry breaking, and moreover, can shed light

on different aspects of the resonant state such as, coupling structure, spin and

CP properties. This, in turn, can be exploited to constrain effects coming from

any possible new physics.

The CMS collaboration recently studied [91] tau pair production from the

Higgs boson, at center-of-mass energies 7 and 8 TeV, corresponding to inte-

grated luminosities of 4.9 and 19.7 fb−1, respectively. To explore these τ leptons,

65
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both hadronic and leptonic decay modes are considered, resulting in six different

final states from the pair. This analysis reported an excess of events over the

background only hypothesis, with a local significance 3.2 standard deviations

corresponding to the Higgs boson mass at 125 GeV. The study of τ pair final

state at the LHC is rather onerous, making the significance of signal smaller

compared to other decay modes of the Higgs boson. The difficulty lies in recon-

structing the hadronic or leptonic decay modes of the tau lepton, especially in

the presence of invisible neutrinos in the final state.

There are several techniques introduced for the study of the h→ ττ process

and we give an outline as follows.

� Collinear approximation [92] assumes that all the decay products from the

tau lepton are collinear. As a result, each neutrino, among these decay

products, takes some fraction of the tau momenta. This unknown fraction

can be determined by using the measured momenta of the visible particles

and missing transverse momentum. This approximation is effective when

the Higgs is produced in association with hard jet(s), boosting the tau pair

system. Thus, a significant portion of events, producing the τ ’s back-to-

back in transverse direction, remains outside the purview of this method.

Therefore, the overall statistical significance from such study gets reduced.

� Missing mass calculator [93] replaces the collinear approximation by con-

structing a probability function utilizing the angular information in the

event to parameterize this under-constrained system. Two remaining un-

solved degrees of freedom are thus fixed, whereas, the rest are solved using

the four constraints with τ mass-shell relations, and the missing transverse

momenta. Missing mass calculator is applicable to all events, although it

is computationally expensive.1

� Displaced vertex method [95] considers the events in which at least one of
1Recently, a method [94] similar to the missing mass calculator, is proposed. This study

samples all kinematically allowed values of the magnitude of invisible momentum and the
visible/invisible invariant mass using their distributions from the Monte Carlo simulations.
The mass of the heavy resonance is shown to be the position of maximum probability.
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the τ ’s undergoes a three-prong decay. This method reconstructs the τ mo-

menta using the secondary vertex information, together with the mass-shell

and missing transverse momentum constraints. This method can utilize

only a small fraction of events associated with 3-prong decay of tau.

� Constrained ŝ method [87, 88] assumes the knowledge of the parent mass

(mτ in present process) and minimizes the partonic Mandelstam variable

with respect to the unknown invisible particle momenta, taking care of

missing transverse momentum constraints, to construct ŝconsmin and ŝconsmax vari-

ables. The new variable ŝconsmin (ŝconsmax) exhibits a sharp endpoint (threshold)

exactly at the Higgs mass.

� Stochastic mass-reconstruction [96] is another prescription proposed lately

for the measurement of the mass of a heavy resonance decaying into tau

pair. This method estimates the momentum of the parent particle (τ) by

multiplying the final state daughter multiplicity with the average momenta

of visible daughters.

Before discussing the new reconstruction method, we start with investigating

yet another method based on the MAOS technique. We reconstruct the invisi-

ble momenta, followed by calculating the τ pair invariant mass. One expects a

correct reconstruction of the heavy resonant mass if the true invisible momenta

were already available. In the absence of that information, the efficiency of any

such reconstruction technique, in calculating the event momenta, is best repre-

sented by demonstrating the derived invariant mass. The benefit of this MAOS

method is in its applicability for all events and in a simpleMT2 based calculation

for this topology with two semi-invisible tau decay chains. More importantly, it

motivates one to use the (1+3) dimensional sister M2Cons, which preserves all

the properties of MT2. In addition, this new variable has the ability to utilize

the on-shell mass information including that of the Higgs and thus improves

the reconstructed momentum and mass for this semi-invisible system. Already

measured Higgs mass information at the LHC is utilized in the construction of

the proposed variable M2Cons, significantly improving the event reconstruction
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capability over the existing methods. Although, in the present study we focus

on the reconstruction of the SM Higgs boson decaying into the tau lepton pair

events, this technique is in general applicable for the reconstruction of any heavy

resonance producing a pair of unstable particles, which subsequently decay semi-

invisibly. This is typically antler [84] type production mechanism which can be

mediated either by a light or heavy scalar, or heavy Z ′ like vector boson, or some

spin-2 resonance. Once the mass of the heavy resonance is known, the M2Cons

can be used for a better event reconstruction and thus looking into different

properties of this heavy particle.

The rest of our presentation is organized as follows. In section 4.1, we give a

short outline of the collinear approximation describing the principle to calculate

invisible momenta before moving to our scenario. We introduce theMT2 assisted

method, MAOS, and once again reconstruct the events using this technique. We

compare the reconstruction efficiency in both cases by constructing the τ pair

invariant mass. Knowing the mass of the Higgs boson already, we thereafter

introduce the (1+3) dimensional generalization M2Cons which, by exploiting this

constraint, is expected to give an improved measurement over MT2. Event re-

construction efficiency for longitudinal and transverse momentum components

are discussed in section 4.2 and comparison is made between these methods.

4.1 Existing reconstruction methods for h→ ττ

events

The collinear approximation is one of the most popular methods used for the

reconstruction of the invariant mass mττ in semi-invisible decay of the h → ττ

process. The primary assumptions associated with this method are that all

decay products of the τ lepton are collinear and the source of missing transverse

momenta is the neutrinos only. Following the above mentioned presuppositions,

the visible decay products from each τ take some fraction of the respective τ

momentum, fi with i = 1, 2. So in a particular event these two unknown fractions

can be solved using missing transverse momentum constraints. As a result, full
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Figure 4.1: The purple-dotted histogram delineates the normalized distribution
of τ pair invariant mass mττ , calculated using the collinear approximation. Sim-
ilarly, in the same plot, the green-solid histogram describe the same quantity
utilizing the MAOS momentum reconstruction method. The peak position of
both these distributions are at the Higgs mass implying comparable efficiency.

reconstruction of the event is possible. But when the Higgs boson is produced

with small (zero) transverse momentum the two τ leptons are going back-to-back

in the transverse direction, making the reconstruction of τ momenta impossible.

The situation can be surpassed if the Higgs boson is produced with sufficient

non-zero transverse momentum, that may come from associated production of

initial state radiation (ISR) or extra hard jet(s).

The full reconstruction of these semi-invisible tau-lepton pair events requires

the reconstruction of the neutrino momenta. The neutrino momentum in terms

of visible particle momenta is ~qi = ~pτi
− ~pi = Fi~pi, where Fi = 1

fi
− 1, and pτi

are momenta of τ ’s in the h → ττ process, while pi and qi are the final visible

momenta and neutrino momenta respectively from each of these τi decay. We are

following this momentum convention throughout this chapter. The two unknown

fractions fi can be solved using the following two transverse equations

~/pT =
∑
i

Fi~piT . (4.1)

The solutions for fi are,
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f1 = 1
1 + r2

, f2 = 1
1 + r1

, (4.2)

with ri =
∣∣∣/py

px
i −/px

py
i

py
1p

x
2−p

x
1p

y
2

∣∣∣ positive dimensionless ratios constructed in terms of mea-

sured momentum combinations. The invariant mass of the ττ system using the

collinear approximation is mvis√
f1f2

, where mvis is the total invariant mass of all the

visible particles. In fig. 4.1, we have presented the normalized distribution for the

invariant mass mττ (in purple-dotted histogram), calculated using the collinear

approximation. The peak of the distribution is exactly at the Higgs mass.

Now it is evident from the eq. 4.2 that when the two τ ’s are back-to-back

in the transverse direction the collinear approximation fails to work. Similar

arguments can be realized in terms of azimuthal angle [93]. Here, parton level

simulated events2 for h → ττ are generated along with the ISR jet(s) using

PYTHIA 8 [97] and thereby making a suitable momentum configuration for

the collinear approximation to work. One can also notice from the histogram

that the collinear approximation shifts the reconstructed invariant mass towards

a higher value, and also develops a tail at larger invariant mass. This is a

consequence of some of the events coming with soft (ISR) jets. This tail becomes

rather significant once realistic events with measurement errors are also included

[93]. Subsequently, the information of the heavy resonance mass is utilized in

addition to the collinear approximation for the full reconstruction of the tau pair

events [98]. This additional constraint improves the reconstruction of tau lepton

momenta. This technique is effective even if the tau leptons are produced nearly

back-to-back in transverse plane as happens for a significant portion of events. In

the present analysis we have already considered the Higgs boson produced with

sufficient transverse momenta balanced by ISR jet(s). So this tail feature in the

distribution (as noted in fig. 4.1) is not prominent and this provides an estimate

2Note that the default setting in PYTHIA 8 generates both the hadronic and leptonic decay
of tau preserving spin correlations based on fully modeled τ lepton decay. Along with that,
in our present analysis, we generate parton-level simulated events keeping the hadronization
option off, leaving the realistic analysis including the particle identification and detector level
simulation for future work.
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of the efficiency which one expects after using the resonant mass constraint.

We now move to examining the ability of MAOS [81, 82], a MT2-based (MT2

assisted on-shell) method, for the full reconstruction of the tau pair events. MT2

[49, 53] is defined as the maximum of transverse mass, constructed for each τ

using missing transverse momentum constraints, minimized over the invisible

particle momenta. In the MAOS method transverse momenta of the invisible

particles are assigned to the values that give this minimization. The longitudinal

momentum is further determined using the two mass-shell conditions (pi+qi)2 =

m2
τi
. Hence, the MAOS method reconstructs the full event with a four fold

ambiguity, arising because of the quadratic mass-shell constraints.

The mass of the heavy resonance can be constrained by calculating the invari-

ant mass of both the τ ’s, mMAOS
ττ , with their assigned MAOS momenta, pMAOS

τi
,

where pMAOS
τi

= pi+qMAOS
i and the full four fold ambiguity is taken into account

by the superscript MAOS. In the same fig. 4.1, we have also shown the normal-

ized distribution (green-solid curve) considering this MAOS reconstruction and

recognize that both the methods display equal level of efficiency in reconstruct-

ing the invariant mass. Note that we utilize the same Higgs data associated

with an additional jet3 for this analysis. That was essential for the collinear

approximation to work, but the MAOS method can be applied to all momentum

configurations of the considered process, leading to a statistical advantage over

the collinear approximation. The same argument is also true for our proposed

method which we would discuss next.

We now explore whether the event reconstruction can be improved using

MAOS along with the heavy resonance mass shell constraint. Since MAOS as-

signs the transverse momenta from the minimization ofMT2, a (1+2) dimensional

variable, qMAOS
T can not be constrained by the heavy resonance mass. But MAOS

uses (1+3) dimensional mass shell constraints to assign longitudinal momentum.

So the heavy resonance mass shell constraint may be used along with parent

mass to get longitudinal momentum. But the full event reconstruction may not

3Therefore we actually used the subsystem based Msub
T2 [58] but to avoid cumbersome nota-

tion we simply write it as MT2 (also similarly in case of M2) in this whole chapter.
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be improved. We now look at the possibility to construct the mass variable where

this mass constraint can be used more inclusively.

We shift our focus from transverse mass variables to M2, which is a (1+3)-

dimensional variable [19, 70, 80] used for the determination of mass of the un-

stable particle, produced in pair and decaying semi-invisibly. This variable can

use the longitudinal momentum component information which enables it to use

available mass-shell constraints of resonance particle. This capability was lacking

in its predecessor MT2, although, this is an efficient variable for mass and spin

measurement. As discussed in chapter 3, after executing the additional mini-

mization over the z-components of invisible particle momenta, M2 comes out

to be exactly equal to its (1+2)-dimensional analog, MT2 [70]. Hence, all the

properties of MT2 transmit to its successor M2 with additional advantages, ac-

commodating the on-shell mass constraints as discussed earlier. One important

property of the M2 (or MT2) is that, by construction, this quantity needs to be

less than or equal to the unstable parent mass, mτ , given a massless invisible

daughter hypothesis (m̃ν = 0). So, over many events, the distribution of M2 has

an endpoint exactly at the true mass of the mother particle.

The distribution of M2 mass variable considering the semi-invisible decay of

tau pair is displayed in fig. 4.2 in green-dotted histogram. It is clear from the

figure that the endpoint of M2 is at mτ , as expected. We have considered only

the hadronic decays of τ ’s encompassing both the 1-prong and 3-prong decays.

The tau lepton has a branching ratio of around 66% for hadronic decays of which

1-prong and 3-prong decay accounts for 50% and 15% respectively, while rest are

other hadronic decays. Although the leptonic decay modes can have a consider-

able branching ratio together with a relatively better energy resolution, we have

not considered these decay modes in the present analysis. With associated three

to four neutrinos in the final state event reconstruction is impossible unless one

invokes some kind of approximation.

Equipped with the Higgs mass (mh), already measured in the first run of

the LHC, M2 can be further improved with this constraint and can prove to

be useful in providing the invisible particle momenta with great efficiency. The
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Figure 4.2: Normalized distributions for (1+3)-dimensional mass constraining
variables in the process when Higgs decays semi-invisibly through τ pair produc-
tion. Green-dotted histogram describes theM2 distribution considering hadronic
decays of τ , consisting of both 1-prong and 3-prong decays. As expected, the
figure shows that the endpoint of this distribution is at mτ mass. Similarly,
the blue-solid histogram representing the M2Cons also has endpoint at the same
point. However, endpoint in this case is populated with much a larger number
of events.

constrained variable was proposed in the chapter 3, in eq. 3.24.

The Higgs mass-shell condition further constrains the invisible momenta and

thus making the allowed phase space shrink to a comparatively smaller region.4

Hence, the derived value of M2Cons comes out to be greater than or equal to M2.

Both of these quantities, considering each events, are bounded by the tau mass

which satisfies the relation M2 ≤ M2Cons ≤ mτ . Consequently, more number of

events move towards the endpoint in the distribution ofM2Cons in comparison to

M2. The distribution of M2Cons is also shown in the fig. 4.2 in blue-solid curve

which clearly demonstrates that the constrained variable M2Cons exhibits a very

sharp endpoint with large number of events present there, enabling a better mass

measurement and momentum reconstruction which we discuss now.

4A detailed discussion on the squeezed phase space under the influence of additional mass-
shell constraint can be followed from ref. [99].
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Figure 4.3: Efficiency of different methods for reconstructing events coming from
semi-invisible Higgs boson decay through τ pair production, after considering
hadronic decays of τ , consisting of both 1-prong and 3-prong decays. Deviation
of the reconstructed momenta from the true invisible momenta are parameter-
ized using two variables (left panel) Rt

ef for transverse part and (right panel)
Rz
ef for longitudinal momentum. The distributions of these variables utilizing

the M2Cons, collinear approximation and MAOS method are exhibited in blue-
dashed-dotted, red-solid and greed-dotted lines respectively. The event recon-
struction capability of the collinear approximation and MAOS method are of
same order (as seen in fig. 4.1) while M2Cons, with the help of additional mass
constraint, is showing significant improvement. (Inset plots) Efficiency of recon-
struction for both the transverse part and longitudinal momentum comparing
with and without using M2Cons cut. We have selected 10% of events towards the
upper endpoint of M2Cons and the reconstructed momenta with these events are
found to be highly correlated with the true momenta of the invisible particle in
comparison to the full data set.

4.2 Correlation of reconstructed momenta with

true neutrino momenta

In this section, we parametrize the efficiency of event reconstruction for h→ ττ

using different methods including collinear approximation and argue the effective-

ness in using the M2Cons in calculating5 the invisible particle momenta. Recon-

struction of such events are of particular interest for spin, polarization, coupling

5We have calculated the mass variable M2 and M2Cons using constrained optimization
method in Mathematica. Towards the end of this analysis, a generic package, OPTIMASS[24],
for the calculation of mass variables appeared which is a Minuit2 based method. OPTIMASS
can also be used for the calculation of M2Cons with a simple modification of the constraint in
the examples demonstrated there.
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measurement and CP symmetry studies [100, 101]. We use two dimensionless

parameters, Rt
ef for transverse (with t is either x or y component) and Rz

ef for

longitudinal momenta, to determine the efficiency of event reconstruction.

Rt
ef = ∆qt

|qTruet |
= qRecot − qTruet

|qTruet |
, (4.3)

Rz
ef = ∆qz

|qTruez |
= qRecoz − qTruez

|qTruez |
. (4.4)

By construction, the variables Rt
ef and Rz

ef acquire zero value once the recon-

structed momentum matches with the true invisible particle momentum in a

particular event. Hence, the efficiency of any reconstruction method is judged

depending on the number of events having vanishing values of Rt
ef and Rz

ef . In

other words, the sharper the peak of the distribution coupled with higher num-

ber of events, the better is the efficiency of reconstruction. It is straightforward

to calculate Rt
ef and Rz

ef for collinear approximation, once the fractions fi are

known. In fig. 4.3, the left panel shows the distribution of Rt
ef utilizing the

collinear approximation, MAOS andM2Cons methods respectively. Similarly, the

right plot displays the distribution of Rz
ef for all these methods. The recon-

structed momenta using M2Cons are shown to be unique and very well correlated

with the true momenta of the invisible particle. It is evident from the figure that

M2Cons gives significant improvement in event reconstruction compared to the

collinear approximation and MAOS method.

The efficiency of reconstruction for both the transverse part and longitudi-

nal momentum from M2Cons can be improved further by selecting events near

the upper endpoint of M2Cons distribution. Although, the additional constraint

in M2Cons already shifts its value towards the endpoint, an improvement over

conventional MAOS calculation, one can still use a M2Cons cut to improve the

event reconstruction with higher statistics in comparison to MAOS as evident

from fig. 4.2. In the inset plots of fig. 4.3, we compare the improvement in

reconstruction efficiency using the M2Cons selection. Only 10% of events are se-

lected towards the upper endpoint ofM2Cons and the reconstructed momenta are

proved to be highly correlated with the true momenta of the invisible particle in
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comparison with the full data set, at a price of event statistics.



Chapter 5

Summary and Conclusions

The Large Hadron Collider (LHC), after successfully completing its first run cou-

pled with the remarkable achievement of the Higgs boson discovery, has already

entered into its second phase. Upgraded with higher energy and luminosity,

the main physics goal would be to explore the multi-TeV scale associated with

physics beyond the Standard Model (BSM). Although LHC has not reported any

clinching evidence for new physics so far, expectations are running high for pos-

sible new physics signals in the near feature unless such signatures are already

hidden inside the LHC data. Any scenario with a positive outcome essentially

demands the measurements of the mass, coupling and spin of new BSM particles.

However, this is expected to be complex in many of the very likely scenarios with

a wide class of BSM models which have incorporated the concept of thermal relic

dark matter (DM) as some stable exotic member within them. These massive

DM particles being colorless, electrically neutral and weakly interacting, once

produced in the collider, does not leave any trace at the detector. Hence, one

needs to rely on experimentally challenging signature of missing transverse mo-

menta 6~PT from the imbalance of total transverse momentum, accounting for all

visible products in each event from an already adverse jetty environment of the

hadron collider. Moreover, DM in many models would be expected to be pro-

duced in pairs because of a stabilizing symmetry, commonly the Z2 parity. As a

result, common signatures, coming from such models at a high-energy collider,

typically are detectable SM particles along with a pair of invisible particles. It is

77
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very strenuous to measure all the unknown masses or to fully reconstruct those

events, with these kinds of signatures, at the large hadron collider.

In the light of dark matter models, missing energy signals would be looked for

very carefully. The ŝmin variants of mass variables were designed for promptly

finding the mass scale in a model independent way for any complex topology of

BSM events associated with semi-invisible final state production. In the present

analysis, we proposed to exploit additional partial information available in the

event as constraints to improve the search. We classified our discussion based

on two different classes of simple production topologies, widely available both in

SM and BSM production, which are, antler and non-antler topologies.

The SM as well as new physics models predict antler production processes,

including important Higgs production in the hadron collider. These topologies

can be constrained significantly using additional intermediate mass-shell con-

ditions. We have demonstrated, with different examples, that the constrained

variable ŝconsmin can significantly improve the distribution and the measurements.

More interestingly, these additional constraints ensure a finite upper value of the

ŝ variable, defined as, ŝconsmax which is not well-defined and finite in the uncon-

strained picture. Hence, this new variable can also be exploited to some extent.

Apart from considering different BSM examples to demonstrate this variable in

the context of sub-system topology and in the difficult signatures with more in-

visible final states in antler topology, we also demonstrated the effect of these

additional constraints in a simple non-antler topology.

To clarify the effects of these constraints in the invisible momenta parameter

space, we choose phenomenological examples explicitly demonstrating how these

mass variables are restricted and pushed towards the true values of ŝ, together

with their choice of the invisible momenta closer to the true ones. Hence, one

can consider quantifying the capability of reconstructing the invisible momenta

in present scenario. We have constructed and shown the efficiency of momen-

tum reconstruction using these constrained ŝ variables which predict a unique

momentum associated with each of these mass-bound variables in each event.

Subsequently, we have studied the antler topology where intermediate and
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invisible masses are unknown unlike in the earlier case, but instead assume the

knowledge of heavy resonance mass. There are several BSM scenarios, where

the heavy resonance is produced before its semi-invisible decay into some visible

decay products and other invisibles which are exotic dark matter particles. Our

objective is to determine all the unknown masses, including those of the dark

matter particles produced from the heavy resonance. We consider a new con-

strained variable M2Cons extending the (1 + 3)-dimensional mass variable M2,

by implementing additional heavy grandparent mass-shell constraint in the min-

imization.

This new variable M2Cons contains several interesting features. We demon-

strate how this variable acquires an event-wise higher value owing to this con-

straint. In particular, we show how this variable moves closer to the unknown

parent mass. In addition, the calculated invisible momenta at this minimum can

provide a close estimate of the true momenta of the invisible particles for such

events. Both these characteristic features are highlighted and exploited further

to sharpen the measurements.

Another striking feature comes out once we analyze the distribution max-

ima of this new variable, Mmax
2Cons(m̃χ), as a function of the trial values of the

unknown dark matter particle mass. This is constructed in an analogy with

the popular study of Mmax
T2 (m̃χ), which gives a useful correlation curve relating

the parent mass with the invisible particle mass. But now, under mass-shell

constraint, Mmax
2Cons(m̃χ) develops a new kink solution over the correlation curve

exactly at the value where this trial mass coincides with the true mass. Hence,

this opened another new avenue that produces a kink feature to measure both

masses simultaneously.

To handle the sparseness of events towards the distribution end point, we

analyze with an experimentally feasible observable n(m̃χ) by utilizing both con-

strained and unconstrained variables. This observable does not rely on isolated

events at the end point, but instead uses a significant amount of available data

to pinpoint the unknown invisible particle mass from the sharp minimum.

Our method provides a complementary procedure to earlier antler studies and
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is applicable to any mass region. We demonstrated our analysis in the large mass

gap region, considered as a difficult region for the kinematic cusp method. In this

region, the cusps of many variables are not very sharp, which makes the mass

determination more prone to error. But the M2Cons method can be used safely

for better accuracy. We also investigated the event reconstruction capability

of M2Cons, and we reconstruct the unknown invisible particle momenta at the

constrained minimum. The reconstructed momenta are found to be unique and

well correlated with the true invisible momenta.

We thereafter presented a detailed analysis by applying M2Cons in recon-

structing the semi-invisible tau-lepton pair produced from the Higgs boson .

With increasing Higgs data, it is an exciting time to verify and validate differ-

ent properties of the Higgs including the exploration of minuscule couplings in

the leptonic sector. Along with the popular machinery using collinear approx-

imation, we also looked into the efficiency of the MAOS method. We further

examined the effectiveness of another variable in the M2 class accommodating

the Higgs mass information in the analysis. The variable, M2Cons, is capable of

providing a very accurate and unique reconstruction of such events.

We have studied the usefulness of the constrained mass bound variables for

semi-invisible events produced at the LHC. The constrained ŝ mass variables are

associated with a sharp endpoint feature which can be helpful in pointing out the

endpoint over the background events. Although consideration of backgrounds,

width effect, detector resolution and other realistic effects will change the end-

point structure, the endpoint may still be identified. In addition, these variables

provide a well approximated momentum to the invisible particles. The variable

M2Cons has many interesting properties e.g., sharp endpoint, strong kink etc.

which will help in quantifying all the unknown masses associated with a short

decay chain simultaneously. These properties, even after including realistic ef-

fects, may be measured with improved statistics compared to earlier methods.

Moreover, these constrained variables can be useful in distinguishing signal from

background events, not just limiting our objectives in mass and momentum mea-

surement. We, are therefore looking forward to appending these observables in
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the LHC toolkit for future analysis.

Once the masses and the invisible particle four momenta are determined, the

next major task is to measure the spin, couplings etc. related to the new particles.

In the future we would like to utilize these constrained mass variables for the

spin and coupling measurement of new particles. In addition, the reconstructed

momenta from the constrained mass bound variables can be utilized to study

the CP properties of the SM Higgs boson decaying to tau-lepton pairs. Similar

studies can also be done for the semi-invisible decay of top pair production.
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