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Abstract

In this thesis, our main focus is on applications of various Quantum Field Theoretic

(QFT) treatments in analyzing early Universe phenomena primarily related to the

inflationary paradigm 1.

It is shown that non-perturbative QFT technique for calculating two-point cor-

relation in flat space, known as Källén-Lehmann spectral representation, can be

used to calculate the power spectrum of interacting scalar fields where the inter-

actions are short-ranged. Decaying inflaton and composite inflaton are two such

cases where our method of calculating power spectrum can be applied. Decaying

inflaton suppresses the long-distance correlation while the composite inflaton yields

some oscillatory features in the low l region of the TT spectrum of CMBR, which

may be observed by WMAP or in the future observations with PLANCK.

We investigate whether an exotic quantum field, named the unparticle, can

play the role of an inflaton and drive inflation. Such exotic fields yields long-range

forces due to its anomalous dimension and such anomalous dimension of tensor

and vector unparticle is constrained from Mercury’s perihelion precession data.

Signature of a scalar unparticle inflaton is the suppression of low l modes in the

anisotropy spectrum in the CMBR which can be observed by WMAP or PLANCK.

Effects of pre-inflationary radiation era on the primordial non-Gaussianity is

also studied using Thermal Field Theory techniques. The bispectrum contribution

is enhanced by a factor of 65-90 from that of single-field slow-roll inflationary model.

Thermal averaging yields trispectrum non-Gaussianity which does not depend up

on the slow-roll parameters and thus can be as large as -42. Signature of such a

pre-inflationary radiation era is a large trispectrum non-Gaussianity compared to

the bispectrum non-Gaussianity.

1keywords : Inflation, CMBR anisotropies, Power spectrum, Källén-Lehmann spectral rep-

resentation, Unparticle, Primordial non-Gaussianity, Thermal Field Theory
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Chapter 1

Introduction

1.1 Macrocosm in the microcosm

Cosmic Microwave Background Radiation (CMBR) representing 93 % of the extra-

galactic emission of our Universe (while the infrared and visible spectrum contribut-

ing up to 5 % and 2 % respectively) [1] has become an important field of research

both theoretically and observationally since the last half of a century and discovery

of which (by Penzias and Wilson in 1965) establishes the Big Bang Theory as a

“Standard Model” of the evolution of our Universe. The presently measured value

of this highly uniform temperature of CMBR is 2.725 ± 0.001 K [2] and this elec-

tromagnetic spectrum of the Universe is the best-fitted black body spectrum ever

found in nature, providing the evidence that matter and radiation were in perfect

thermal equilibrium before CMBR formed. In 1992 NASA led COBE (COsmic

Background Explorer) mission (which probed the angular power spectrum up to

the multipole l ≃ 26) clearly detected tiny anisotropies (1 part in 105) in the highly

uniform temperature distribution of CMBR throughout the sky [3]. WMAP [4],

having an angular resolution of 0.23 0, probed the TT (Temperature-Temperature)

correlation of CMBR up to l ≃ 783 and measured these anisotropies more ac-

curately. Besides these two satellite experiments, the balloon borne experiments

like Boomerang and Maxima [5] and ground based interferometer like DASI also

measure the anisotropy spectrum of CMBR up to l ≃ 1000 and provide convincing

results of the existence and location of the first peak of the anisotropy spectrum. A

1



Chapter 1. Introduction 2

new satellite mission PLANCK will achieve an angular resolution of 5 ′ in order to

probe multipoles up to l ∼ 2160 and will open new vistas to portray the macrocosm

more distinctly. The set of parameters primarily obtained from CMBR measure-

ments like Ωbh
2 (the present baryon energy density), Ωch

2 (the present cold dark

matter energy density), ΩΛ (the present dark energy density), the optical length

at reionization, ∆R(k0) (the scale invariant amplitude of curvature perturbations

at pivot scale k0 = 0.002 Mpc−1) and ns (the spectral index of the primordial

scalar fluctuations) characterizes our present knowledge about our Universe. In

addition to these, other parameters like density of all neutrino species Ων , running

of spectral index dns

dk
, the tensor-to-scalar ratio r, the amplitude and spectral index

of the isocurvature perturbations, the TE, EE and BB (an important probe of

primordial gravitational waves which is yet to be observed) spectrums and ampli-

tudes of the primordial magnetic field, non-linearity parameter fNL and τNL for

non-Gaussianity in CMBR etc. are also extracted from the observational data of

CMBR enabling us to predict more precisely about the primordial features of our

Universe.

Though the arena of Cosmology is vast enough and mostly the late time dy-

namics of the Universe is governed by the principles of General Relativity and

Newtonian dynamics (treating gravity classically), the early Universe phenomena

demand the necessity of application of Quantum Field Theory (QFT) techniques

(whose tremendous success comes from collider physics where the predictions of

Standard Model of Particle Physics are being tested) in order to achieve a proper

evolutionary history of our Universe. Besides CMBR, Big Bang Nucleosynthesis

(BBN), due to its precise measurements in recent days, has become another cor-

nerstone of the Big Bang Theory. BBN occurred when the temperature of the

Universe was of order 1 MeV (and the age of the Universe was nearly 3 minutes).

Due to such high temperature, BBN is such a scenario where the physics of cosmol-

ogy and particle physics are inter-connected. To calculate the relic abundances of

the primordial light nuclei, like He4, He3 or H3, one uses the QFT techniques of cal-

culating decay rates and cross-sections of neutron-proton interactions in the same

spirit as one does to analyze the collider phenomena. One can use such techniques

of QFT even in curved spacetime as the rates of interactions being much higher



Chapter 1. Introduction 3

than the Hubble expansion rate, these interactions are essentially short-ranged

and at small length scales one can ignore the effect of gravity. In a similar spirit

several QFT techniques are being used to determine several symmetry breaking

phase-transition epochs of the Universe such as QCD (Quantum Chromo Dynam-

ics) phase transition (∼ 10−6 sec) or electroweak phase transition (∼ 10−12 sec)

while treating gravity classically. Moving further beyond in time QFT techniques

are also being used to analyze inflationary scenario (∼ 10−35 sec) treating gravity

semi-classically. Beyond that (∼ 10−42 sec) Quantum Gravity effects start dom-

inating the dynamics of the Universe and lack of proper knowledge of Quantum

Gravity forbids us to analyze such early time phenomena.

1.2 QFT in Inflationary paradigm: Motivation

for the thesis

As by now the cosmological inflationary paradigm has become 30 years old, we

will start this section with a brief history of the development of the inflationary

paradigm along with the important role played by QFT in its development. Though

the discovery of CMBR was one of the cornerstone of Big Bang cosmology and it

was quite successful in describing our late-time Universe, it was realized in 1970’s

that the Big Bang Theory was in grave peril because of several problems arising

due to incompatibility with Particle Physics theory such as monopole problem and

gravitino problem along with severe fine-tuning problem of initial conditions like

horizon problem and flatness problem yielding the existence of our Universe highly

improbable. All these problems were simultaneously solved by incorporating the

inflationary scenario in the old Big Bang Theory. QFT plays a major role in

development of inflationary models as the success of inflationary theory lies in the

realization that the energy density of a scalar field can play the role of the vacuum

energy which is changing during the cosmological phase transitions.

The first concept of inflation was suggested by A. Starobinsky in [6] which has

a problem of having no inflation if the Universe was hot from its very beginning,

quite contrary to the hot Big Bang Theory. But Zeldovich in [7] showed that such
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inflationary scenario could have been created “from nothing”, which was not much

appreciated by cosmologists of that time (today this idea is very popular and widely

accepted in inflationary cosmology and has been named as “supercooled inflation”).

Alan Guth in 1981 [8] provided a simple inflationary model, now known as the

“old inflation”, explaining how inflation can solve the major problems arising in

the Big Bang Theory. Though the old inflationary scenario played an important

role in the development of modern cosmology, it had major problems related to

the rate of bubble formations during inflation [8] and “new inflation” theory was

proposed by Linde [9] soon after that to tackle such difficulties. Zeldovich’s idea

[7] of refuting the assumption of the hot origin of our Universe came back in

literature in 1983 in “chaotic inflationary scenario” [10] where the quantum origin

of the inflationary Universe was suggested and various initial distributions of the

inflaton field, in cases where inflation may occur, were analyzed. Following the

same trend of chaotic inflation several other inflationary scenarios emerged in the

literature such as power-law inflation [11], extended inflation [12], natural inflation

[13], hybrid inflation [14] and many others (ordered chronologically).

It was soon realized after Guth’s proposal of inflationary scenario [8], that an

additional advantage of having modified Big Bang Cosmology with the inclusion

of inflationary scenario is that inflation can generate quantum fluctuations in the

early Universe which can be stretched to the astronomical scales providing the

seeds for the large scale structures of the Universe [15]. The large scale anisotropy

at the Last Scattering Surface (LSS) predicted by slow-roll inflationary model can

be described as [16]

(Θ0 + Ψ) (k, τ∗) = −1

6
δ(τ∗), (1.1)

where Θ0 is the monopole of the Fourier transform of the observed temperature

anisotropy δT
T

at the LSS, Ψ is the perturbation in time component of the back-

ground de Sitter metric and δ is the fractional overdensity (in matter or dark

matter) at LSS. This equation relates the anisotropy in the temperature to the

overdensity in dark matter and shows that an anisotropy in temperature
(

δT
T

)
of

order 10−5 corresponds to an overdensity of 6×10−5. Besides inflation, other mod-

els of structure formation predict a coefficient of order unity [16], rather than the
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above mentioned factor of 6, resulting in a Universe too under-densed to account

for the clustering of matter. Linde in his lecture notes on inflationary cosmology

[17] has thus quoted correctly about inflation as “It has broken an umbilical cord

connecting it with the old big bang theory, and acquired an independent life of its

own”.

According to inflationary paradigm the primordial fluctuations, generated dur-

ing inflation, become “frozen” once stretched out of horizon i.e. these superhorizon

modes stop evolving along with the evolution of the Universe. The evolution of

these modes starts once again when they re-enter the horizon at some later time

either during radiation or matter dominated era. This particular nature of pri-

mordial fluctuations, of being frozen while being superhorizon, enables us to probe

various early Universe phenomena by measuring and properly quantifying such

primordial fluctuations. Thus the dynamics of these primordial fluctuations plays

a major role in analyzing early Universe phenomena and it is very significant to

further probe their possible nature and origin.

The primordial fluctuations, such as the quantum fluctuations of the inflaton

field δφ, are typically quantified by their power spectrum Pδφ which is the Fourier

transform of the two-point correlation function :

〈δφ(k1, t)δφ(k2, t)〉 ≡
2π2

k3
Pδφ(k1)δ

3(k1 + k2). (1.2)

In Quantum Field Theory language the power spectrum thus defined is nothing

but the equal-time Wightman function. The two-point function (time-ordered)

of quantum fields is very significant in QFT as they determine the propagators

of the fields which gives the probability amplitude for a particle to travel from

one place to another and the bosonic propagators mediate force between particles

according to the perturbative QFT. In QFT interactions between particles reflect

in the potential term of the Lagrangian defining the system. Another way of

calculating propagators of interacting fields in QFT is by Källén-Lehmann spectral

representation [18, 19] which is a non-perturbative way of calculating propagators

and all the interactions of an quantum field is encapsulated in its spectral function

ρ(σ2). According to this method the propagator of an interacting field G(int)(p)

can be expressed in terms of the free field propagator G0(p, σ2) and the spectral
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function ρ(σ2) as

G(int)(p) =

∫ ∞

0

dσ2ρ(σ2)G0(p, σ2). (1.3)

In inflationary theories, incorporation of interactions of the inflaton field is

generally done by modifying inflaton’s potential and then determining its effects

in the inflaton’s power spectrum as similarly done in QFT. Many such possible

Particle Physics motivated potentials of the inflaton field have been studied in the

literature [20]. But this usual method of incorporating inflaton’s interactions by

modifying its potential breaks down in several situations, mainly when the inflaton

has short-ranged interactions which have no influence in the inflaton’s potential.

Inflaton’s decay width which is smaller than the Hubble expansion rate during

inflation or a inflaton which is a condensate of fundamental fermionic fields and

whose compositeness scale is smaller than the scale of scalar fluctuations : are a

few such scenarios where the inflaton’s potential does not reflect such short-ranged

interactions like decay width or compositeness of the inflaton field. From our

knowledge of QFT, one thus may investigate whether a similar treatment of Källén-

Lehmann spectral representation of QFT can be used in a curved background to

eventually calculate the power spectrum of interacting scalar fields as

P (int)(k) =

∫ ∞

0

P (0)(k, σ2)ρ
(
σ2
)
dσ2. (1.4)

So far we have discussed inflationary scenarios where inflation is driven by

slow-roll of a scalar field called inflaton. But, as a fundamental scalar remained

unobserved in nature, cosmologists (like particle physicists) look for other scenar-

ios where other quantum fields like vectors fields [21], classical and homogeneous

spinor fields [22] or condensate of spinor fields [23, 24] plays a roll of inflaton. In

2006 Georgi proposed a new kind of quantum field whose canonical dimension is

not like any known particle physics fields [25]. Georgi named such particles as

unparticles. Due to its anomalous dimension, the unparticle can yield long range

forces while exchanged between two systems. Unparticles of tensorial nature can

couple to energy-momentum tensor of a system and thus can mimic gravity [26].

But the anomalous dimension of tensor unparticle generates a force deviated from

Newtonian inverse square law force. Such a force, which deviates from usual in-

verse square law force, can result into perihelion precession of planetary orbits. As
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Mercury’s perihelion precession is very precisely measured, one can constrain un-

particle’s anomalous dimension if exchange of tensor unparticles results into change

in the planetary orbits. On the other hand, as the vector unparticles can couple to

baryoinc matter of the planets and the Sun, anomalous dimension of such vector

unparticles can also be constrained by looking at Mercury’s perihelion precession.

Apart from this, as the spectral function of scalar unparticle is known in literature

[25], one can vindicate the possibility of having scalar unparticle as inflaton if the

Källén-Lehmann spectral representation can be used to determine the nature of

power spectrum for interacting scalar fields.

Inflationary paradigm predicts a nearly scale invariant power spectrum with a

Gaussian distribution of the primordial fluctuations which are in very good agree-

ment with the present measurement of CMBR data [2]. Power spectrum is a

powerful tool to analyze the evolution of the quantum field(s) present during the

inflationary era. But as almost all the theoretical inflationary scenarios predict

similar power spectrums (nearly scale invariant), it does not play a convincing

role in distinguishing interactions of the field(s) present during inflation. To dis-

tinctly quantified such interactions one has to look for non-vanishing higher-order

correlation functions which indicates a departure from pure Gaussian distribution

of primordial fluctuations. The non-linear evolution of primordial perturbations,

such as comoving curvature perturbation R, gives rise to non-Gaussian features in

the pleasingly simple model of inflation, i.e. the single-field slow roll inflationary

model, of the order of slow-roll parameters ǫ. Inflationary scenarios with presence of

more than one scalar field during inflation (such as curvaton model [27], multi-field

inflationary model) relaxes the condition of slow-rolling of the scalar field respon-

sible for generating curvature perturbations and thus can lead to large primordial

non-Gaussianities [28]. Inflationary scenarios with higher derivative interactions

of the inflaton field can also give rise to large primordial non-Gaussianity [29]. In

inflationary theories, the preferred initial vacuum chosen for the inflaton field is the

Bunch-Davies vacuum. It was shown by Gangui et al. in [30] that departure from

such an assumption about the inflaton field may lead to large non-Gaussianities

in single-field slow-roll inflationary model. One such scenario occurs when the in-

flation is preceded by a radiation era [31]. Inflation takes place when the energy
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density of radiation ρr drops below the value of the potential of a coherent scalar

field. Thermal Field Theory plays a major role in analyzing such a scenario as

the inflaton field has an initial thermal distribution which will affect its statistical

properties like power spectrum and higher-order correlation functions. One can

thus investigate, following Gangui’s argument [30], whether such a scenario, where

the initial vacuum is a non-Bunch-Davies vacuum for the inflaton, can give rise to

larger primordial non-Gaussianities and whether such non-Gaussianities carry any

signature of such a pre-inflationary radiation era.

With this introduction we lay out a plot where several QFT techniques can be

used to investigate several interesting features of the early Universe such as

• Whether Källén-Lehmann spectral representation of QFT can be used in de-

termining the power spectrum of interacting inflaton and what the imprints

of such short-ranged forces (such as inflaton’s decay width or the compos-

iteness of the inflaton field) will be on the TT anisotropy spectrum of the

CMBR.

• Whether exotic quantum fields like scalar unparticle can play a role of an

inflaton and if so what possible signatures it may carry in the CMBR obser-

vations.

• Whether a pre-inflationary radiation era, which results in departure from the

initial Bunch-Davies vacuum, can give rise to larger non-Gaussianities which

can be detected by future experiments and whether such non-Gaussianities

will carry any imprints of such a pre-inflationary radiation era so that one

can distinguish it from the supercooled inflationary scenario.

1.3 Notations and conventions

All along this thesis we shall use the metric signature (+−−−). The Greek indices

µ, ν will take values 0, 1, 2, 3 whereas the Latin indices i, j will take only the

spatial values 1, 2, 3. Also the natural system of units will be adopted throughout

this thesis i.e. ~ = c = κB = 1.
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1.4 Scheme of the thesis

We have organized the rest of the thesis as follows :

Chapter 2 focuses on the detailed analysis of several dynamical features of the

single-field slow-roll inflationary model where the background metric is quasi-de

Sitter. After motivating the necessity of having inflationary era in Big Bang The-

ory, as inflation solves the severe problems of fine-tuning initial conditions in Big

Bang Cosmology, we focus on the issues of the dynamical features of the quan-

tum fluctuations in the inflaton field and how these quantum fluctuations generate

perturbations in the matter and radiation after inflation ends. To analyze this,

we first discuss the cosmological perturbation theory and deal with the issue of

choosing a proper gauge for further calculations. Gauge invariant quantities are

also constructed. The solution of the inflaton mode functions (both subhorizon and

superhorizon) and the issue of preferred initial vacuum for the inflaton fluctuations

are consecutively discussed. The statistical properties of inflaton fluctuations like

power spectrum (two-point correlation function) and higher-point correlation func-

tions like bispectrum and trispectrum are also analyzed. Brief discussions on recent

and future observation and the current status of the single-field inflationary model

have been focused.

In Chapter 3, we formulate a general method of calculating power spectrum

for interacting scalar field (where the interactions are being short-ranged) using

the method of Källén-Lehmann spectral representation (non-perturbative QFT

techniques) and show that the power spectrum for the interacting inflaton field

can be expressed in terms of free field power spectrum and the spectral function of

the interacting field encapsulating all the features of interactions. We analyze two

cases where such a method is applicable : i) inflaton with a decay width and ii)

composite inflaton. In both the cases we discuss the imprints of such short-ranged

interactions on the TT anisotropy spectrum of CMBR measured by WMAP.

Chapter 4 deals with the exotic properties of an unusual quantum field called

the unparticles. Firstly, we calculate the perihelion precession of Mercury’s or-

bit due to the exchange of tensor and vector unparticles and thus constrain the

anomalous dimension of the tensor and vector unparticle. As the spectral function
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of the unparticle is known in the literature, we thus vindicate the scenario where

scalar unparticle can play the role of an inflaton using the method we formulate

in Chapter 3 to calculate the power spectrum of interacting scalar field with the

help of Källén-Lehmann spectral function. We also analyze the possible signature

of such a scenario in the observed CMBR data.

Chapter 5 deals not with the power spectrum of the inflaton fields, like the

previous two chapters, but the higher-order correlation functions of that such as

bispectrum and trispectrum. We analyze an inflationary scenario where there is

a pre-inflationary radiation era. Due to this radiation era prior to inflation the

initial inflaton fluctuations acquires a thermal distribution and applying Ther-

mal Field theory techniques we determine the non-Gaussian features (arising from

higher-point correlation functions) in such a scenario and find that the trispec-

trum non-Gaussianity (arising from four-point correlation function) is larger than

bispectrum (three-point correlation function) non-Gaussianity. In a generic single-

field slow-roll model the bispectrum contribution is larger by a couple of order of

magnitude than that of the trispectrum. One can thus infer that the signature of

a pre-inflationary radiation era is a larger trispectrum non-Gaussianity than the

bispectrum one.

Chapter 6 concludes by discussing the main results obtained in the thesis. This

chapter is followed by several appendices where some of the essential concepts

and calculations, required for the clarification of several ideas used in the main

chapters, are discussed.



Chapter 2

General framework of Inflation

and its n−point functions

The highly uniform temperature (∼ 2.73 K) of CMBR in all directions over the

sky, having fluctuations only one part in 105, indicates that our Universe is homo-

geneous and isotropic over its large scales. Friedmann-Lemâitre-Robertson-Walker

(FLRW) cosmology, keeping in mind the underlying theory of Big Bang, is quite

a successful framework in describing different phases of evolution of our homoge-

neous and isotropic Universe. The essential features of FLRW cosmology have been

briefly discussed in Appendix (A). In spite of its tremendous success as a theory

of evolution of our Universe, the Big Bang theory suffers from severe fine-tuning

of initial conditions, making our Universe an ‘improbable accident’. This problem

of fine-tuned initial conditions, which initially plagued the Big Bang theory, can

be seen from different aspects. Some of them are :

• Horizon problem

The particle horizon at time t, within which the Universe is causally con-

nected, is defined as

RH(t) ≡ a(t)

∫ t

0

dτ = a(t)

∫ a

0

d ln a(aH)−1, (2.1)

where τ is the conformal time defined in Eq. (A.7). It can be seen from

the above equation that the conformal time τ can also be interpreted as

the comoving particle horizon. The comoving Hubble radius (aH)−1 of a

11
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Universe dominated by a fluid with equation of state ω can be expressed as

H−1
0 a

1
2
(1+3ω) using Eq. (A.4) and Eq. (A.10). Here H0 represents the present

Hubble parameter. During conventional Big Bang evolution the Universe is

dominated by fluids with ω > 0 (such as radiation or dust), showing that the

comoving particle horizon τ monotonically increases with time or the scale

factor. But any comoving length scale, such as wavelength of perturbations,

is independent of time. This implies that any comoving scale, which is now

entering the horizon, was far outside the horizon at CMBR formation. But

the uniform temperature of CMBR indicates that the regions on the last

scattering surface (LSS) should have a priori been in causal contact. This is

known as the Horizon problem of the Big Bang theory.

• Flatness problem

The curvature density Ωk ≡ Ω − 1 = k
(aH)2

(also defined in Eq. (A.5)) varies

with the comoving Hubble radius (aH)−1. As discussed in the context of

Horizon problem, the comoving Hubble radius grows with time, indicating

the diverging nature of curvature density with time. Observations show that

−0.0178 < Ωk < 0.0063 for WMAP+BAO+SNa and −0.0133 < Ωk < 0.0084

for WMAP+BAO+H0 [2]. Thus to have Ωk ∼ 0 today, consistent with

observations, one has to fine-tune Ω to extremely close to 1 during the very

early Universe. The deviation from flatness during Big Bang nucleosynthesis,

in the GUT era and at the Planck scale are respectively [32]

|ΩBBN − 1| ≤ O(10−16)

|ΩGUT − 1| ≤ O(10−55)

|ΩPl − 1| ≤ O(10−61).

This extreme fine-tuning of the curvature density at early Universe, which

is required in the Big Bang theory to explain the present observations, is

known as the Flatness problem.
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2.1 Inflation to the rescue of Big Bang Theory

Inflation [8] is one theory which potentially explains these extremely fine-tuned

initial conditions of our Universe predicted by Big Bang theory. In this thesis

we will restrict ourselves to the pleasingly simple Single-field slow-roll model

of inflation. The dynamical features of this model has been briefly discussed in

Appendix (B). According to this model, one canonical single scalar field, having

a state parameter ω = −1 due to its slow-roll, inflates the Universe exponentially.

The phase of inflation thus resembles a pure de Sitter like Universe, where the

Hubble parameter H remain constant throughout inflation and the scale factor

grows exponentially with time as a(t) ∼ eHt. This particular nature is quite

interesting as it shows that the comoving Hubble radius (aH)−1 decreases with time

during inflation as H being constant throughout and a(t) growing exponentially

with time. This remarkable feature of inflation solves both the Horizon problem

and the Flatness problem discussed above :

• Inflation solving Horizon problem

The concept of comoving particle horizon τ and the comoving Hubble radius

(aH)−1 is very important in discussing Horizon problem. It is important to

note that particles separated by length scales greater than comoving particle

horizon τ can never communicate with each other, whereas if they are sep-

arated by length scales larger than comoving Hubble radius, then they are

causally disconnected for that particular time t. It may happen that as τ is

much greater than (aH)−1 now, so the particles, which cannot communicate

today, can be in causal contact in the past if one has decreasing comoving

Hubble radius during early times !! This is exactly what happens if one

includes an inflationary era in the Big Bang theory. The comoving Hubble

radius shrinks during inflation and expands after that according conventional

Big Bang Cosmology. Hence the large wavelengths entering the horizon to-

day were causally connected with each other before inflation. This causal

physics before inflation also explains the supreme homogeneity of CMBR

temperature we observe today.
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• Inflation solving Flatness problem :

The shrinking of comoving Hubble radius during inflation also helps solving

the Flatness problem as now Ω−1 shows a converging nature with decreasing

aH−1 during inflation. Hence Ω which is ∼ 1 today, was even closer to 1

in past due to the shrinking of Hubble radius during inflation, solving the

Flatness problem of Big Bang.

2.2 Inflation and the quantum origin of structure

Inflation was quite successful in solving the severe fine-tuning problems of Big Bang

and now it has become an indispensable part of the conventional Big Bang Cos-

mology. We have already discussed that homogeneity and isotropy of our Universe

on large scales are very well described by the homogeneous and isotropic metric

of FLRW cosmology. But the presence of structures in the Universe, like galaxies

and clusters, and the tiny fluctuations (of the order of 10−5) in the uniform tem-

perature of CMBR provide evidences that our Universe, from its very beginning,

can not be so homogeneous and isotropic. It was realized soon after the concept

of inflation being proposed that inflation can actually provide seeds of these large

scale structures we see today and can also explain the tiny anisotropy observed

in CMBR’s temperature today. Quantum fluctuations around inflaton field (see

Eq. (B.7)) during inflation help generate the inhomogeneities in a homogeneous

and isotropic background. As these observed inhomogeneities are tiny in nature,

thus the cosmological perturbations are studied under linear perturbation theory.

2.2.1 Cosmological perturbation theory

Cosmological perturbation theory is very important in study of modern cosmology

as it connects the theories of very early universe with present observations. Ac-

cording to this theory, perturbations (which depend on both space and time) of

fields or metric are studied on a homogeneous and isotropic background (which are

only functions of time). As Einstein field equations (Eq. (A.2)) relate the back-

ground metric with the matter content of the universe, the perturbations in the
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inflaton field generates perturbations in the background metric during inflation.

Let us now deal with the cosmological perturbation theory step by step :

• Perturbations in the metric :

The metric perturbations in general can be of three types: scalar, vector

and tensor perturbations. Inflation can not generate vector perturbations as

there is no rotational velocity fields during the inflationary stage and even

though if they are generated by any other mechanism, they decay with the

expansion of the Universe. The tensor perturbations generates the primordial

gravitational waves, which will be not dealt with in this thesis (for more on

vector and tensor perturbations see [33]).

The scalar perturbations of the background metric generate density fluctu-

ations at the LSS which are the seeds for structure formations in the later

phase of Universe. In its most general form, the perturbed metric can be

constructed using four scalar perturbations A, B, ψ and E as

δgµν = a2(τ)


 2A −∂iB

−∂iB 2ψδij −DijE


 , (2.2)

where Dij = ∂i∂j − 1
3
δij∇2 and the most general form of the line element for

the background and scalar metric perturbations will be

ds2 = a2(τ)
[
(1 + 2A)dτ 2 − 2∂iBdx

idτ − {(1 − 2ψ)δij +DijE}
]
. (2.3)

• Choice of Gauge :

The choice of background and perturbations in a perturbed Universe is not

unique, but depends on the choice of gauges. In General Relativity choosing

a gauge implies choosing a coordinate system to define the perturbations.

Choosing a spacelike hypersurface with constant cosmological time t is called

slicing, while choosing a worldline of constant space x defines the threading.

A convenient system which completely fixes the coordinates is called the

longitudinal or conformal Newtonian gauge which is defined by B =

E = 0. Hence in this gauge the metric will become

ds2 = a2(τ)
[
(1 + 2A)dτ 2 − (1 − 2ψ)δij

]
. (2.4)
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We will continue using this particular gauge throughout this thesis. The

perturbation in the Einstein field tensor and in the Klein-Gordon equation

of motion for inflaton field due to the perturbed FLRW metric have been

discussed in detail in Appendix (C). It is to be noted at this point that

absence of stress part in the stress energy-momentum tensor puts further

constrain on the scalar perturbation degrees of freedom which essentially

implies A = ψ (as has been discussed in Appendix (C) after Eq. (C.26)).

Thus we are left with only one scalar metric perturbation ψ.

• Gauge invariant quantities :

It has been discussed in Appendix (C) that the scalar metric perturbation

ψ is not a gauge invariant quantity but changes with changing coordinate

systems as

ψ → ψ + Hξ0, (2.5)

where ξ0 is the change in the time coordinate due to change of gauge.

The inflaton perturbations also change with a change of gauge which, follow-

ing Eq. (C.8), can be written as

δφ→ δφ− φ′ξ0, (2.6)

where φ′ ≡ ∂φ
∂τ

.

Now, in a comoving slicing, which is orthogonal to the worldlines of a comov-

ing observer, there is no flux of energy measured by these observers. It can be

seen from Eq. (C.32) that during inflation the flux of energy-momentum ten-

sor is δT 0
i ≡ 1

a2∂iδφφ
′
0. Thus the comoving observer will measure δφcom = 0.

If ξ0 is the time displacement required to go from any generic slicing to a

comoving slicing then from Eq. (2.6) one gets

δφcom = 0 ⇒ ξ0 =
δφ

φ′ . (2.7)

Thus the quantity

R = ψ + Hδφ

φ′ = ψ +H
δφ

φ̇
, (2.8)
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called the comoving curvature perturbation, is gauge invariant by construc-

tion. This intrinsic curvature of spatial hypersurfaces characterizes the cos-

mological inhomogeneities. The important feature of R is that it remain

constant on superhorizon scales i.e. when its momentum is smaller than the

comoving Hubble horizon (k < aH). Because of this feature the amplitude

of R is not affected by the subhorizon physics once it becomes superhorizon

during inflation. After inflation the comoving horizon grows and the modes

of comoving curvature perturbation re-enters the horizon during the radi-

ation or the matter dominated era and determine the perturbation of the

cosmic fluid yielding the CMBR anisotropies and the large scale structures

we observe today.

Another notable feature of R is that in the spatially flat gauge, which is

defined to be a slicing where there is no curvature i.e. ψflat = 0, the comoving

curvature perturbation is related to the inflaton’s fluctuations as

R = H
δφ

φ̇
, (2.9)

which allows the inflaton’s intrinsic features to be reflected in the observed

CMBR anisotropies.

Thus, from the above discussion on Cosmological perturbation theory, we note

that in conformal Newtonian gauge one is left with only one scalar degree of free-

dom ψ and this scalar degree of freedom is related to the inflaton’s fluctuation δφ

(Eq. (2.8)) while constructing a gauge invariant quantity R, the comoving curva-

ture perturbation. We further choose a spatially flat gauge where the comoving

curvature perturbation R is directly related to the inflaton’s fluctuation δφ. This

choice of spatially flat gauge drastically simplifies the situation as now we are left

with only one perturbed quantity, the inflaton’s fluctuation δφ.

2.2.2 Quantum field theory of scalar fields in de Sitter

background

The next step is to study the dynamics of the quantum fluctuations δφ around the

classical inflaton field φ0 during inflation. The de Sitter spacetime is very important
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cosmologically as it describes a Universe which is exponentially expanding. Thus

the inflationary phase of Universe, which is an exponentially expanding phase,

is described by a de Sitter background. A brief introduction to the de Sitter

spacetime is given in Appendix (D). The de Sitter spacetime is characterized by a

constant Hubble parameter H . But during inflation the Hubble parameter varies

slowly with time. Hence at the end we will deal with quasi de Sitter spacetime,

also briefly discussed in Appendix (D), where the Hubble parameter H varies with

time during inflation. Here we will discuss the equation of motion and the solution

of the mode functions of the quantum fluctuations of the inflaton field in de Sitter

background.

• Equation of motion of quantum fluctuations

The quantum fluctuations of inflaton field δφ, being a function of both space

and time, follows the equation of motion, with a mass term as its potential

V (φ) = 1
2
m2φ2, as

δφ̈+ 3Hδφ̇− ∇2δφ

a2
+m2δφ = 0, (2.10)

which can be obtained from Eq. (B.2). In conformal FLRW spacetime the

above equation can be written as

δφ′′ + 2
a′

a
δφ′ −∇2δφ+ a2m2δφ = 0. (2.11)

It is convenient to introduce an auxiliary field χ ≡ a(τ)δφ and rewrite the

above equation of motion as

χ′′ −∇2χ+

(
m2a2 − a′′

a

)
χ = 0. (2.12)

The χ(τ,x) has a time-dependent effective mass term

m2
eff(τ) ≡ m2a2 − a′′

a
. (2.13)

Expanding the field χ in Fourier modes as

χ(τ,x) =

∫
d3k

(2π)
3
2

χk(τ)e
ik·x, (2.14)
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the equation of motion of each mode χk can be obtained from Eq. (2.12) as

χ′′
k +

(
k2 +m2a2 − a′′

a

)
χk = 0. (2.15)

This is a equation of motion of an harmonic oscillator with a time-dependent

frequency ω2
k(τ) ≡ k2 +m2

eff . In de Sitter spacetime we have

a′′

a
=

2

τ 2
, (2.16)

which follows from Eq. (D.2), and thus the above equation of motion for χk

can be written as

χ′′
k +

(
k2 +m2a2 − 2

τ 2

)
χk = 0. (2.17)

• Mode expansions and quantization of scalar field

Introducing the creation and annihilation operators for each mode χk as

χ̂k = uk(τ)ak + u∗k(τ)a
†
−k, (2.18)

one can promote the scalar field χ(τ,x) to an operator by expanding in modes

given as

χ̂(τ,x) =

∫
d3k

(2π)
3
2

[
uk(τ)ake

ik·x + u∗k(τ)a
†
ke

−ik·x
]
. (2.19)

The scalar field χ(τ,x) can now be quantized in the standard fashion by

introducing the equal-time commutation relations

[
χ̂(τ,x), Π̂(τ,y)

]
= iδ(x − y), (2.20)

where Π̂ ≡ χ̂′ is the canonical momentum and the Hamiltonian for the χ̂(τ,x)

will be

Ĥ(τ) =
1

2

∫
d3x

(
Π̂2 + (∇χ̂)2 +m2

eff(τ)χ̂2
)
. (2.21)

Thus the creation and annihilation operators satisfy the commutation rela-

tions

[
ap, a

†
q

]
= δ(p− q), [ap, aq] =

[
a†p, a

†
q

]
= 0. (2.22)
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The mode function uk(τ) obeys the equation of motion

u′′k + ω2
k(τ)uk = 0 (2.23)

as that of χk and the mode expansion of χ̂(τ,x) given in Eq. (2.19) requires

the normalization condition

u′ku
∗
k − uku

∗′
k = −i. (2.24)

• Preferred mode function at subhorizon scales and Bunch-Davies

vacuum

The choice of mode functions in mode expansions of a scalar field in de Sit-

ter spacetime, discussed in Eq. (2.19), is not unique. The preferred mode

function of a scalar field in a Minkowski background has been discussed in

Appendix (E). Unlike in Minkowski spacetime, the frequency of the mode

function uk in de Sitter spacetime depends upon time. Thus the vacuum

of minimum-energy depends on some time τi at which it is defined. Fol-

lowing the similar arguments as given in Appendix (E), one can determine

the vacuum at a given time τi which minimizes the expectation value of the

Hamiltonian at that moment and the preferred mode function will be

uk(τi) =
e−iωk(τi)τi

√
2ωk (τi)

, u′k(τi) = iωk (τi) uk(τi). (2.25)

This instantaneous minimization of the Hamiltonian is possible if ω2
k(τi) > 0.

The function Ek, given in Eq. (E.12), which accounts for the total energy

density can be written in de Sitter spacetime as

Ek = r′2k +
1

4r2
k

+ ω2
k(τi)r

2
k, (2.26)

which has no minimum for ω2
k(τi) < 0. This situation occurs as during

inflation we require a light scalar field (m≪ H) and there always be a small

enough k such that k|τi| ≪ 1 making ω2
k(τi) < 0. This can be seen from the

form of ω2
k(τi) in de Sitter spacetime

ω2
k(τi) ≡ k2 +

(
m2

H2
− 2

)
1

τ 2
i

. (2.27)
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Hence the instantaneous vacuum states can be defined only for modes χk

with kτi & 1.

A wave with a wavenumber k has the comoving wavelength λ = k−1 and a

physical wavelength λP = a(τ)λ, which in de Sitter spacetime implies

k|τ | =
1

λ

1

aH
=
H−1

λP
. (2.28)

Thus k|τi| ≪ 1 corresponds to a wave with wavelength much larger than the

horizon, which is called the superhorizon mode. On the other hand k|τi| ≫ 1

corresponds to a wave with wavelength much shorter than the horizon, which

is called the subhorizon mode. Thus at sufficiently early time which corre-

sponds to τ → −∞, all the relevant modes χk will satisfy the condition

k|τi| ≫ 1 and hence will remain well inside the horizon. These subhori-

zon modes at very early times also satisfy the condition ω2
k(τi) < 0 which

minimizes the instantaneous Hamiltonian to get a preferred mode function.

At the early time limit τ → −∞, the frequency of mode functions essentially

becomes constant ω2
k(τi) ≈ k2 as in the Minkowski spacetime which we have

discussed in Appendix (E). This implies that the effect of gravity on all

modes are negligible at sufficiently early times. Thus one can define the

mode functions uk by applying the Minkowski vacuum prescription at early

times which yields

uk(τ) →
e−iωkτ

√
2ωk

,
u′k(τ)

uk(τ)
→ iωk. (2.29)

The vacuum state determining the mode functions which satisfies the above

mentioned conditions is called the Bunch-Davies vacuum. Thus the Bunch-

Davies vacuum is essentially defined as the Minkowski vacuum of each mode

in the early time limit (τ → −∞) and this is the preferred vacuum for the

quantum fields in de Sitter spacetime.

• Mode functions for the superhorizon modes

We have seen in the previous discussion that for the modes well within the

horizon the preferred mode function will be

uk(τ) →
e−ikτ

√
2k

(2.30)
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where the frequency of the mode ωk ∼ k. On superhorizon scales (kτ ≪ 1),

the equation of motion of mode function given in Eq. (2.23) will be

u′′k −
(
a′′

a
−m2a2

)
uk = 0. (2.31)

Considering the case of a massless scalar field for simplicity, the above equa-

tion has one solution as

uk = B(k)a. (2.32)

Matching the absolute value of this solution to the plane wave solution at

the time when a mode with wave number k leaves the horizon (k = aH) (i.e.

matching the subhorizon solution and the superhorizon solution at the time

of horizon crossing) one gets

|B(k)| =
1

a

1√
2k

=
H√
2k3

. (2.33)

The amplitude of quantum fluctuation δφ of the inflaton field on superhorizon

scales thus will be

|δφk| ≡
1

a
|χk| =

1

a
|uk| =

H√
2k3

. (2.34)

This shows that the quantum fluctuations of the inflaton field as well as the

comoving curvature perturbations remain constant on superhorizon scales.

Now let us deal with the equation of motion given in Eq. (2.23) for a massive

scalar field, in its full glory, which can be rewritten as

u′′k +

[
k2 −

(
ν2

φ − 1

4

)
1

τ 2

]
uk = 0, (2.35)

where νφ ≡ 9
4
− m2

H2 . This is a Bessel equation whose general solution for real

νφ will be

uk(τ) =
√
−τ
[
c1(k)H

(1)
νφ

(−kτ) + c2(k)H
(2)(−kτ)
νφ

]
, (2.36)

where H
(1)
νφ and H

(2)
νφ are Hankel functions of first and second kind, respec-

tively. For the subhorizon modes (−kτ ≫ 1) the above solution should match
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with the plane wave solution e−ikτ/
√

2k. In the limit −kτ ≫ 1 the Hankel

functions have the form

H(1)
νφ

(−kτ ≫ 1) ∼
√

− 2

πkτ
e−i(kτ+ π

2
νφ+ π

4 ),

H(2)
νφ

(−kτ ≫ 1) ∼
√

− 2

πkτ
ei(kτ+ π

2
νφ+ π

4 ). (2.37)

Hence the requirement of plane wave solution at subhorizon scales fixes the

coefficients c1(k) and c2(k) as

c1(k) =

√
π

2
ei(νφ+ 1

2)
π
2 , c2(k) = 0 (2.38)

yielding the form of the mode function as

uk(τ) =

√
π

2
ei(νφ+ 1

2)
π
2

√
−τH(1)

νφ
(−kτ). (2.39)

On superhorizon scale (−kτ ≪ 1) the asymptotic behavior of the Hankel

function is given by

H(1)
νφ

(−kτ ≪ 1) ∼
√

2

π
e−i π

2 2(νφ− 3
2)

Γ (νφ)

Γ
(

3
2

) (−kτ)−νφ , (2.40)

which at the end yields the form of the mode functions on superhorizon scales

as

uk(τ) = ei(νφ− 1
2)

π
2 2(νφ− 3

2)
Γ (νφ)

Γ
(

3
2

) 1√
2k

(−kτ) 1
2
−νφ. (2.41)

Let us consider the case of a light scalar field m≪ 3
2
H where one can identify

the parameter ηφ = m2

3H2 as the slow-roll parameter introduced in Eq. (B.10).

Thus the amplitude of the fluctuations of a light inflaton on superhorizon

scales will be

|δφk| =
H√
2k3

(
k

2aH

) 3
2
−νφ

. (2.42)

Thus the fluctuations of a light scalar field is not exactly constant on super-

horizon scales, but depends upon time.
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2.2.3 The Power spectrum and today’s observations

It is now remain to characterize the properties of these primordial perturbations

of the inflaton field and analyze their signatures in terms of observables. It has

already been stated that, as the primordial fluctuations are tiny in nature, their

generation and evolution are studied under linear perturbation theory. One major

assumption of the study of linear cosmological perturbation theory is that these

primordial fluctuations are essentially Gaussian in nature. In that case the two-

point correlation function of these primordial fluctuations is the only parameter

to determine all the statistical properties of these primordial perturbations. In

particular, for a Gaussian distribution, the odd-point correlation functions are

zero and the higher even-point correlation functions can be written in terms of

powers of two-point correlation function. Thus the two-point correlation function

or the Fourier transform of it, named as the Power spectrum, is a crucial quantity

to determine in order to analyze the properties of primordial fluctuations of the

inflaton field.

• Power spectrum

For any given random field g(t,x) which can be expanded in Fourier space

as

g(t,x) =

∫
d3k

(2π)
3
2

ek·xgk(t), (2.43)

the power spectrum or the two-point correlation function in Fourier space

Pg(k) is defined as

〈
gk1

g∗k2

〉
≡ 2π2

k3
Pg(k)δ

3(k1 − k2). (2.44)

The power spectrum measures the amplitude of the generic random field at

a given scale k. In the real space this measures the mean square value of the

field as

〈
g2(t,x)

〉
=

∫
dk

k
Pg(k). (2.45)

With this definition, the power spectrum of the inflaton perturbations will

be

Pδφ(k) ≡ k3

2π2
|δφk|2 =

(
H

2π

)2(
k

2aH

)3−2νφ

. (2.46)
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For a heavy inflaton field m2 ≫ H2, the slow-roll condition is strongly vio-

lated as ηφ ≡ m2

3H2 ≫ 1 and it is shown in [34] that the power spectrum for

such a heavy inflaton field will be highly suppressed

Pδφ(k) |heavy =

(
H

2π

)2(
k

aH

)3

e−2m2/H2

. (2.47)

Since the comoving curvature perturbations defined in Eq. (2.9) in the spa-

tially flat gauge R approaches a constant value on superhorizon scales, it is

useful to compute the comoving curvature power spectrum for the comoving

curvature perturbations as

PR(k) =
H2

φ̇2
Pδφ(k) =

1

2M2
Plǫ

(
H

2π

)2(
k

2aH

)3−2νφ

, (2.48)

where we have used the definition of the slow-roll parameter ǫ defined in

Eq. (B.12).

• Connecting with observations

Now after deriving the power spectrum of comoving curvature perturbation

one can connect the theory of inflation with the present day cosmological

observations like CMBR and determine the signatures of these early Universe

phenomena in the anisotropy spectrum of CMBR.

It has already been discussed that the comoving curvature perturbation R
freezes to a constant once it exists the horizon during inflation at some time,

say τ∗ and starts evolving again after it re-enters the horizon at some later

time, say τ , during the radiation or the matter dominated era of Universe.

Thus one should take into account the time evolution of R once it re-enters

the horizon :

Qk(τ) = TQ(k, τ, τ∗)Rk(τ∗), (2.49)

where TQ(k, τ, τ∗) is called the transfer function and Qk(τ) is the measure of

fluctuations in the radiation field (observed temperature fluctuations in the

CMBR) or in the matter field (galaxy density scattered throughout the sky).

Here we will discuss how the power spectrum of comoving curvature pertur-

bation R is related to the observed anisotropies in the CMBR temperature.
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Different satellite experiments like COsmic Background Explorer (COBE)

or Wilkinson Microwave Background Measurement (WMAP) measure the

temperature fluctuations ∆T (n̂) relative to the background uniform temper-

ature T0 ∼ 2.7 K of CMBR. As the temperature fluctuation is mapped on a

spherical sky surface, the harmonic expansion of these fluctuations are

Θ(n̂) ≡ ∆T (n̂)

T0
=
∑

lm

almYlm(n̂), (2.50)

where n̂ is the unit vector denoting the direction in the sky and Ylm are the

spherical harmonics with l representing the different multipoles and m =

−l, · · · , l. The angular power spectrum of the temperature anisotropy map

is determined by the multipole moments alm as

CTT
l =

1

2l + 1

∑

m

〈a∗lmalm〉. (2.51)

As the comoving curvature perturbations generate fluctuations in the radia-

tion field after re-entering the horizon, the temperature fluctuation δT of the

CMBR is related to R by the linear evolution equation as [16]

alm = 4π(−i)l

∫
d3k

(2π)3∆T l(k)RkYlm(k̂), (2.52)

where ∆T l(k) is the transfer function which connects alm with R and generally

has to be computed numerically by solving Boltzmann equations using codes

like CMBFAST [35] or CAMB [36]. These Boltzmann equations depend on

the parameters of the background cosmology. Now, using the above equation,

the angular power spectrum for the CMBR fluctuations can be derived as

CTT
l =

2

π

∫
k2dk PR(k) ∆T l(k)∆T l(k), (2.53)

using the identity of the spherical harmonics

l∑

m=−l

Ylm(k̂)Ylm(k̂′) =
2l + 1

4π
Pl(k̂ · k̂′), (2.54)

where Pl(k̂ · k̂′) is the Legendre polynomial.

Fig. (2.1) shows the TT angular power spectrum of CMBR from the 7 year

data of WMAP [2]. Assuming a fixed background cosmology the shape of the
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Figure 2.1: The 7-year temperature (TT) power spectrum from WMAP.

angular power spectrum CTT
l contains informations about the initial conditions as

described by the comoving curvature power spectrum PR. The theoretical fit in

Fig. (2.1) is for a ΛCDM (Cold Dark Matter) model of the Universe with single

field slow-roll model of inflation.

2.3 Primordial Non-Gaussianity and Constraints

on slow-roll inflation and its alternatives

We have discussed the single-field slow-roll model of inflation in a great detail in

the previous section. It has also been stated that if the primordial fluctuations

like comoving curvature perturbations R are taken to be Gaussian distributed

then the power spectrum or the two-point correlation function of these primordial

fluctuations contains all the informations about the inflationary dynamics from a

statistical point of view. However, if the primordial fluctuations are non-Gaussian

in nature, then higher order correlation functions beyond the two-point correlation

function will contain additional informations about inflationary dynamics. We

will now discuss the non-Gaussian features arising from three-point and four-point
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correlation functions of the cosmological perturbations in the case of single-field

slow-roll inflationary scenario.

2.3.1 Defining Bispectrum and Trispectrum

The non-Gaussianity appearing from the three-point correlation function is quan-

tified in the Fourier space, called the Bispectrum, which is defined as [37]

〈R(k1)R(k2)R(k3)〉 = (2π)−
3
2 δ3(k1 + k2 + k3)

6

5
fNL

(
PR(k1)

k3
1

PR(k2)

k3
2

+ perms.

)

= (2π)−
3
2 δ3(k1 + k2 + k3)

6

5
fNLB(k1, k2, k3), (2.55)

where ‘perms.’ stands for two permutations of indices and for convenience we have

redefine the power spectrum as

PR(k) = (2π2)PR(k), (2.56)

and the normalization factor of (2π)−
3
2 in Eq. (2.55) has been chosen accordingly. It

can be seen from Eq. (2.55) that the bispectrum B(k1, k2, k3) is proportional to the

product of two power spectrums and hence the name bispectrum. It follows that

the bispectrum represents the lowest-order statistics which is able to distinguish

non-Gaussian from Gaussian perturbations. The order of non-Gaussianity arising

from bispectrum is characterized by the non-linearity parameter fNL. In general,

fNL will be a function of the wave-numbers ki. The delta function δ3(k1 +k2 +k3)

in Eq. (2.55) is a consequence of translational invariance of the background and

it enforces the three Fourier modes to form a closed triangle due to momentum

conservation. Different inflationary models predict maximal non-Gaussianity for

different triangle configurations.

The trispectrum T (k1, k2, k3, k4), which is the Fourier counterpart of the ‘con-

nected’ part of four-point correlation function, is defined as [37]

〈R(k1)R(k2)R(k3)R(k4)〉c = (2π)−3δ3(k1 + k2 + k3 + k4)
1

2
τNLT (k1, k2, k3, k4),

(2.57)

where the trispectrum T (k1, k2, k3, k4) can be written in terms of product of three

power spectrums :

T (k1, k2, k3, k4) =

(
PR(k1)

k3
1

PR(k2)

k3
2

PR(k13)

k3
13

+ perms.

)
(2.58)



Chapter 2. General framework of Inflation and its n−point functions 29

and hence the name trispectrum. Here k13 ≡ |k1 + k3| and ‘perms.’ stands for 23

permutations of indices. The order of non-Gaussianity arising from trispectrum is

characterized by the non-linearity parameter τNL.

2.3.2 Non-Gaussianity in a single-field slow-roll inflation

model : the Bispectrum and the Trispectrum

Non-Gaussian features, arising from higher order correlation function of cosmolog-

ical perturbations, in a single-field slow-roll model of inflation can occur from two

different aspects :

1. Self-interactions of inflaton field

As the inflaton’s fluctuations are quantum in nature (or have a Gaussian dis-

tribution as these fluctuations are tiny in nature), the three point correlation

function vanishes identically

〈δφ(k1, t)δφ(k2, t)δφ(k3, t)〉 = 0. (2.59)

A nontrivial higher-point correlation function appears if the inflaton field has

any sort of interaction with itself (or with other fields). The simplest possible

interaction that can be present in the inflaton’s potential is the cubic self-

interaction term (V (φ) ∼ λφ3). It has been shown in [38] that in the presence

of a cubic self-interaction term the three-point correlation function of inflaton

fluctuations will be proportional to the coupling of the self-interaction term

as

〈δφ(k1, t)δφ(k2, t)δφ(k3, t)〉 ∝
λ

H
. (2.60)

It is to be noted that for a cubic self-interaction, the coupling λ will be of

the order of the third derivative of the inflaton’s potential (∼ V ′′′(φ)) and

in the slow-roll scenario this coupling will be even smaller than the slow-roll

parameters (λ < ǫ, η). It has been estimated in [38] that the three-point

correlation function arising from such cubic self-interaction term will be of

the order of λ
H

∼ 10−7.
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The measure of non-Gaussianity arising from a four-point correlations func-

tion comes from its ‘connected part’ (〈· · · 〉c)

〈δφ1δφ2δφ3δφ4〉 = 〈δφ1δφ2〉〈δφ3δφ4〉 + 〈δφ1δφ3〉〈δφ2δφ4〉

+〈δφ1δφ4〉〈δφ2δφ3〉 + 〈δφ1δφ2δφ3δφ4〉c. (2.61)

For a generic scalar field, without self-interaction terms, the four-point cor-

relation function will be equal to the product of two two-point correlation

functions

〈δφ1δφ2δφ3δφ4〉 = 〈δφ1δφ2〉〈δφ3δφ4〉 + 〈δφ1δφ3〉〈δφ2δφ4〉

+〈δφ1δφ4〉〈δφ2δφ3〉. (2.62)

Thus the connected part of the four-point correlation function in this case

vanishes identically yielding no non-Gaussian features.

2. Non-linearities in cosmological perturbations

Non-linearities in the evolution of the cosmological perturbations, such as

R, can also generate primordial non-Gaussian features in CMBR. Presuming

that the inflaton fluctuations δφ are initially Gaussian, the comoving curva-

ture perturbations R given in Eq. (2.9) also obeys Gaussian statistics in the

linear order

RL(t,x) =
H

φ̇
δφL(t,x), (2.63)

where RL(t,x) can be expanded in Fourier space as

RL(t,x) =

∫
d3k

(2π)
3
2

eik·xRL(t,k). (2.64)

One can observe that the factor H
φ̇
≡ − 1

m2
Pl

V (φ)
V ′(φ)

is a function of φ. Hence the

comoving curvature perturbations R can be expanded non-linearly as [39]

RNL(t,x) =
H

φ̇
δφL(t,x) +

1

2

∂

∂φ

(
H

φ̇

)
δφ2

L(t,x) + O(δφ3
L), (2.65)

and in the Fourier space one gets

RNL(t,k) =
H

φ̇
δφL(t,k) +

1

2

∂

∂φ

(
H

φ̇

)∫
d3p

(2π)
3
2

δφL(t,p)δφL(t,k − p),

(2.66)
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where the inflaton fluctuations δφL are still Gaussian distributed. Using

Eq. (2.66) one can compute the bispectrum in this case as follows

〈RNL(k1)RNL(k2)RNL(k3)〉 = (2π)−
3
2 δ3(k1 + k2 + k3)(2M

2
Plǫ)

∂

∂φ

(
H

φ̇

)

×
(
PR(k1)

k3
1

PR(k2)

k3
2

+ 2 perms.

)
. (2.67)

This has been rigorously calculated in Appendix (F). The non-linearity

parameter fNL due to non-linear evolution of R can be quantified using

Eq. (2.55) and the above equation as

fNL =
5

3
M2

Plǫ
∂

∂φ

(
H

φ̇

)
= −5ǫ

3

∂

∂φ

(
V (φ)

V ′(φ)

)
, (2.68)

and can be expressed in terms of the slow-roll parameters given in Eq. (B.10)

as

fNL =
5

6
(δ − ǫ), (2.69)

where δ ≡ η − ǫ . The same form of fNL has been derived in [40]. The

non-linearity parameter fNL can also be expressed in terms of the potential

V (φ) using Eq. (2.68) as

fNL = −5

6
M2

Pl

(
V ′

V

)
∂

∂φ

(
V (φ)

V ′(φ)

)
. (2.70)

This equation is useful in cases where the form of the potential is known. Such

as, for a power-law potential where V (φ) ∼ φn the non-linearity parameter

will be [39]

fNL = −
(

5

6

)
n
M2

Pl

φ2
. (2.71)

The non-linear evolution of R given in Eq. (2.65) yields a connected part of

four-point correlation function or the trispectrum as

〈RNL(t,k1)RNL(t,k2)RNL(t,k3)RNL(t,k4)〉c = 2δ3(k1 + k2 + k3 + k4) ×

(2π)−3
(
2M2

Plǫ
)2
(
∂

∂φ

(
H

φ̇

))2 [
PR(k1)

k3
1

PR(k2)

k3
2

PR(k13)

k3
13

+ 23 perm.

]
,(2.72)

which has been derived in Appendix (F). It can be seen from the definition

of τNL given in Eq. (2.57) and the form of fNL arising due the non-vanishing
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three-point correlation function of RNL given in Eq. (2.68) that the non-

linearity parameter τNL will be [40]

τNL =
(
2M2

Plǫ
)2
(
∂

∂φ

(
H

φ̇

))2

=

(
6

5
fNL

)2

. (2.73)

As in the single field slow-roll inflationary scenario the bispectrum non-

linear parameter fNL turns out to be of the order of slow-roll parameters

(Eq. (2.69)), the trispectrum contribution arising due to non-linear comov-

ing curvature perturbations will be even smaller as τNL, the trispectrum

non-linearity parameter, in this case will be of the order of square of slow-

roll parameters (O(ǫ2)).

2.3.3 Alternatives to single-field slow-roll inflationary sce-

nario and non-Gaussianity

The physics of inflation provides us an avenue to learn about the evolution and

interactions of the quantum fields present in the very early Universe. The power

spectrum relates to the evolution of the quantum field (or fields) present during

the inflationary era but does not really constrain the interactions of this quan-

tum field (or fields). Inflationary models with different field interactions thus can

predict similar power spectrums. On the other hand primordial non-Gaussianity

can provide sensitive probes to the interaction of field (or fields) driving inflation.

Thus measurement of such primordial non-Gaussianity can reveal vital informa-

tions about the fundamental physics driving inflation.

The amount of non-Gaussianity arising from a single-field slow-roll inflationary

model is of the order of the slow-roll parameters (in the case of bispectrum) or

even smaller (in the case of trispectrum). The essential features of this single-field

slow-roll inflationary scenario can be characterized as

1. The inflation is driven by one canonical scalar field and this field is re-

sponsible for generating primordial seeds for structure.

2. The canonical kinetic term of this scalar field yields the propagation of

the fluctuations with speed of light.



Chapter 2. General framework of Inflation and its n−point functions 33

3. The scalar field rolls slowly along its potential during inflation.

4. The initial vacuum state of the inflaton is chosen to be the Bunch-Davies

vacuum, which is the preferred vacuum for this scalar field.

Other inflationary models violating any of these above mentioned criteria of single-

field slow-roll inflationary scenario can generate large primordial non-Gaussianity.

• Curvaton model of inflation

The usual hypothesis, that the inflaton is solely responsible for generating

the seeds of anisotropy in matter and radiation we observe today, can be

simply extended by having more scalar fields present during inflation. The

simplest possible alternative hypothesis is that these density perturbations

originate from the perturbations of some other scalar field different from the

inflaton [27]. This field is known as the curvaton. The energy density of the

curvaton field remain sub-dominant during inflation and acquires an almost

scale-independent and Gaussian perturbations with spectrum
(

H
2π

)2
[27]. As

in this scenario the inflaton field is no longer responsible for the cosmological

curvature perturbations, therefore the slow-roll conditions for the curvaton

field can be avoided. In a simple curvaton scenario, the curvaton field starts

to oscillate during radiation-dominated era after inflation and this oscillation

persists for a considerable amount of Hubble time to generate a significant

curvature perturbation. The curvaton field decays before neutrino decoupling

and the curvature perturbation remains constant till horizon entry. This

simple scenario violates two of the above criteria of single-field inflationary

model : 1) presence of two scalar fields and 2) the curvaton field, the one

responsible for generating curvature perturbations, needs not to slow-roll.

The curvaton quantum fluctuations during inflation are converted into cur-

vature perturbations ζ after its decay as

ζ ∼ rδ, (2.74)

where δ is the isocurvature fractional density perturbation in the curvaton

before decay and r is the fraction of the final radiation that the decay of the
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curvaton produces. The non-Gaussianity in this scenario will be [28]

fNL =
5

4r
. (2.75)

The non-linearity parameter fNL in this case does not depend upon the slow-

roll parameters as the curvaton field does not require to slow-roll during

inflation and fNL can be very large in the curvaton scenario depending upon

the value of r yielding large non-Gaussianity in comparison to the single field

slow-roll inflationary scenario.

• Higher-derivative interactions

A large non-Gaussianity can be obtained in a single field slow-roll inflationary

model if higher derivative terms become important during inflation. This

feature violate the criteria of the inflaton field having a canonical kinetic

term required in the single field slow-roll model. A general action of the

inflaton field can be considered during inflation as

S =
1

2

∫
d4x

√−g[R− P (X, φ)], (2.76)

where X ≡ (∂φ)2 is the kinetic term and P (X, φ) is an arbitrary function of

X. Thus these models can contain higher-derivative interactions yielding a

non-trivial sound speed for the propagation of fluctuations as

c2s ≡
P,X

P,X +2XP,XX
. (2.77)

In the absence of the higher-derivative terms one has P = X−V (φ) yielding

cs = 1. Thus in the simplest model of single field slow-roll inflationary model

with canonical kinetic term the fluctuations propagate with speed of light.

For small sound speeds (c2s ≪ 1), the non-Gaussianity becomes significant

and the non-linearity parameter will be [29]

fNL = − 35

108

(
1

c2s
− 1

)
+

5

81

(
1

c2s
− 1 − 2Λ

)
(2.78)

with Λ ≡ X2P,XX+ 2
3
X3P,XXX

XP,X+2X2P,XX
. String motivated DBI inflationary scenario is

such a model where these kind of higher-derivative interactions yielding large

primordial non-Gaussianity can be realized [29].
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From the above discussion it can be concluded that violating any of the three crite-

ria of single-field slow-roll inflationary model can generating large non-Gaussianity

and precise detection of primordial non-Gaussianity can distinguish between dif-

ferent inflationary models. The issue of non-standard initial vacuum state yielding

large non-Gaussianity will be covered in Chapter 5.

2.3.4 Observational bounds on primordial non-Gaussianity

The current constraint on CMBR bispectrum from the seven-year data of WMAP

is −214 < f eq
NL < 266 (95% CL) [2]. The single-field slow-roll inflation model

prediction of fNL ∼ O(ǫ) ∼ 10−2 (Eq. (2.69)) is too small to be detectable in

WMAP or the upcoming PLANCK mission where non-Gaussianities at the level

of fNL ∼ 5 can be probed [41]. WMAP constrains the non-Gaussianity from

trispectrum at |τNL| . 108 [42] while PLANCK is expected to reach the sensitivity

up to |τNL| ∼ 560 [43], which is still too large compared to the predictions of the

single-field slow-roll model of τNL = (6
5
fNL)2 ∼ O(ǫ2) (Eq. (2.73)).

Another source, besides CMBR, is the measurement of 21-cm transition of the

neutral hydrogen with which one can constrain the primordial non-Gaussianities.

After the decoupling of matter and radiation at the LSS (z ∼ 1100), the high

energy photons produced by the first stars and quasars later reionize the neutral

hydrogen (50 > z > 6) which is known as the epoch of reionization. Also theory

predicts that for 200 ≥ z ≥ 30, the spin temperature of the neutral hydrogen drops

below the temperature of the CMBR and the neutral hydrogen thus can absorb

CMBR at the spin flip transition of 21-cm and appear in absorption spectra against

the CMBR [44].

The 21-cm background signal contains a wealth of informations about pri-

mordial fluctuations. It is to be noted that the CMBR has emerged specifically

from one redshift z ∼ 1000 whereas the 21-cm line occurs from a span of redshift

50 > z > 6. A full sky map at a single photon frequency (corresponding to one

single redshift z), measured up to a maximum mode lmax, contains l2max indepen-

dent sample. But as by changing the frequency one can probe different redshifts,

an experiment that detects the 21-cm signal over a range of frequency ∆ν (cor-
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responding to different redshifts) centered on a frequency ν measures a total of

N21cm = 3 × 1016(lmax/106)3(∆ν/ν)(z/100)−
1
2 independent samples, whereas for

CMBR one only gets NCMBR = 2× 107(lmax/3000)2 of independent points, includ-

ing both temperature and polarization information of CMBR. Thus the number

of independent measurements obtained from 21-cm signal is a billion times more

than that of CMBR [44].

Thus the most sensitive probe of primordial non-Gaussianities can come from

the measurement of anisotropies of the 21-cm background. It has been already

mentioned that the neutral hydrogen below the redshift z ∼ 200 can resonantly

absorb the CMBR flux through spin-flip transition. Thus if the CMBR contains

informations about primordial non-Gaussianity, then the 21-cm anisotropy will

also carry the signature associated with that [45]. The anisotropies of the 21-cm

background can constrain the bispectrum to the level fNL < 0.1 [45, 46] and the

trispectrum of primordial perturbations to the level of τNL ∼ 10 [46]. But still the

measurements of fNL or τNL from 21-cm background anisotropy signal in future will

be too large to probe the non-Gaussian features arising from single field slow-roll

inflationary scenario.

2.4 Summary

In this chapter we discuss the simplest and well accepted model of inflationary

scenario which is the single-field slow-roll inflationary model and our main focus is

on the analysis of the power spectrum (two-point correlation function), bispectrum

(three-point correlation function) and trispectrum (four-point correlation function)

of inflaton perturbations (δφ) as well as the comoving curvature perturbations (R)

arising in this scenario.

In this analysis the cosmological perturbation theory plays a major role as the

primordial fluctuations, being tiny (1 part in 105), are studied under linear analysis

and cosmological perturbation theory helps us choose the proper gauge to analyze

such primordial perturbations in the perturbed background de Sitter metric. We

choose the conformal Newtonian gauge in which the metric perturbations have

a constraint B = E (defined in Eq. (2.2)). We further choose a spatially flat



Chapter 2. General framework of Inflation and its n−point functions 37

gauge (for simplification of further analysis) where the gauge invariant quantity R
is directly related to the inflaton’s fluctuations (Eq. (2.9)). This specific choice of

gauge helps us calculate all the physical quantities in terms of quantum fluctuations

of the inflaton field.

The statistical properties of the inflaton’s fluctuations, which are directly re-

lated to the observations in CMBR, are studied consequently. We start by deriving

the preferred initial vacuum (the Bunch-Davies vacuum) and the solution of the

superhorizon modes of these fluctuations in the inflaton field. As these fluctuations

are tiny, the two-point function of these perturbations is most important statis-

tically. The power spectrum (two-point function in Fourier space) of the inflaton

fluctuation and consequently that for the comoving curvature perturbation arising

in this inflationary scenario is nearly scale invariant (as shown in Eq. (2.48)) which

is in accordance with the CMBR observations.

The observations of CMBR shows that the primordial fluctuations are nearly

Gaussian and thus study of only power spectrum determines all the statistical

properties of such tiny primordial anisotropies. But the higher-point correlations

are more enriched as they can quantify the interactions of the inflaton field and

thus very useful in distinguishing between several existing inflationary model which

power spectrum alone fails to do. Keeping this in mind we calculate the bispec-

trum and trispectrum in single-field slow-roll inflationary scenario and show that

the non-linearity parameters fNL and τNL arising from these higher-point corre-

lations can be at best of the order of the slow-roll parameter ǫ (see Eq. (2.69)

and Eq. (2.73)). These non-Gaussianities arise due to non-linear evolution of R.

This model predicts a larger bispectrum non-Gaussianity than the trispectrum

one (fNL > τNL). Such tiny non-Gaussianity is beyond the range of detectabil-

ity of WMAP, PLANCK or future 21-cm background experiments measuring such

primordial non-Gaussianities imprinted in it.



Chapter 3

Källén-Lehmann representation of

QFT and power spectrum of

interacting inflaton

3.1 Introduction

We discussed in the previous chapter that in a generic inflation model [8], infla-

tion is caused by a slow-roll of the inflaton scalar field and the perturbations of

the inflaton field give rise to density perturbations [47] and CMB anisotropies ob-

served at cosmological scales. The two-point correlation function of the inflaton

perturbation during inflation or the power spectrum of this two-point correlation

in momentum space determines the CMB anisotropy of the Universe at last scat-

tering which we observe today. Inflation may also be caused by more than one

scalar field and these multifield models have interesting consequences in the CMB

anisotropy like isocurvature perturbation [48] or large non-gaussianity such as in

curvaton models [49]. In models of inflation with elementary scalar fields, the

perturbations of the inflaton obey the Klein-Gordon equation (given in Eq. (B.2))

in the quasi de Sitter space [50], whose solutions are used for calculation of the

two-point correlation function of inflaton and consequently the comoving curvature

power spectrum. The generic slow-roll model of inflation are characterized by the

inflaton potential and its derivatives. The simplest way to include interaction of

38
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the inflaton field in inflationary models is by modifying the inflaton’s potential and

thus a large variety of particle physics potential have been studied in the literature

[20].

However, it may be possible that the inflaton field is a composite of fermions

and we can ask if the compositeness changes the perturbation spectrum which can

be observed in the CMB anisotropy. Similarly if the inflaton is unstable with a

decay width Γ . H/N (such that the inflaton decays after N e-foldings of inflation

are over) then again we can ask if the decay of the inflaton is reflected in the

power spectrum and CMB anisotropy. For such situations the standard methods

of calculating the power spectrum do not work as not all forms of the short range

structure of the scalar field are reflected in the inflaton potential. If the length

scale of the scalar perturbation is of the same order as the compositeness scale

then the effective theory description of the scalar potential breaks down. Similarly

if the inflaton is a resonance with a lifetime of the same order as the duration of

inflation τ ∼ N/H i.e. a width Γ ∼ H/N then there are corrections to the two

point correlation that are not reflected in the inflaton potential.

In non-perturbative techniques of Quantum Field Theory, one way to include

interactions in the two-point function of any quantum field is by following Källén-

Lehmann spectral representation [18, 19] where the interactions are all encapsu-

lated in Källén-Lehmann spectral function. In our work [23], we find a general

method for computing the power spectrum of inflaton perturbations using the

concepts of this non-perturbative technique of Quantum Field Theory in cases

where the inflaton has non-trivial interactions like a decay width or if the inflaton

is not an elementary scalar but a composite of fermions. We show in general that

the two-point correlations of the interacting field can be written in terms of the

two-point function of the free field (in the de Sitter background) by use of the

Källén-Lehmann spectral function [18, 19]. The assumptions which are essential

for deriving such a general method of calculating power spectrum of interacting

scalar fields are :

1. the short wavelength limit of the mode functions are the plane wave states

1√
2k
e−ikτ , which in the quasi de-Sitter space is enforced by the assumption of
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the Bunch-Davis boundary conditions (as has been discussed in the previous

chapter)

2. there exists a complete orthonormal set of mode functions of the free theory

in curved spacetime which is true in the quasi de-Sitter space relevant for

inflation power spectrum calculation.

In Quantum Field Theory the two-point correlation of an interacting theory

can be written as a convolution of the free-field correlation function G0(p, σ2) with

a spectral function ρ(σ2)

G(int)(p) =

∫ ∞

0

dσ2ρ(σ2)G0(p, σ2), (3.1)

where G(int)(p) is the two-point correlation of the interacting theory and σ is called

the mass parameter. The Källén-Lehmann (KL) representation holds for all two

point correlations like the Feynman propagator ∆(p, σ2) or the equal time Wight-

man function WET(x− y). We will show that this result can be generalized to the

curved space if we assume that a complete orthogonal basis set of states of the

interacting theory exists in curved spacetime.

In inflationary theory the power spectrum of the inflaton perturbation is related

to the equal-time Wightman function of a scalar field in the de Sitter space as

W dS
ET(x) = 〈0|(δφ(x, t))2|0〉 =

∫
dk

k
Pδφ(k). (3.2)

The Bunch-Davies boundary condition is that the inflaton perturbations, in the

limit where the momentum k is large compared to the inflaton horizon (for a

spatially flat de-Sitter space), tend to the free field form δφ(k, τ) = 1√
2k
e−ikτ . As-

suming the Bunch-Davies boundary conditions, if we have short range interactions

which dominate at scales smaller than the inflation horizon, we may be justified in

using the flat space form of the spectral function in Eq. (3.2) to compute the two

point correlation function for interacting theory. Therefore power spectrum of the

interacting scalar field can be expressed as

P (int)(k) =

∫ ∞

0

P (0)(k, σ2)ρ
(
σ2
)
dσ2, (3.3)

where P (0)(k, σ2) is the power spectrum of the free scalar field with a mass pa-

rameter σ and ρ(σ2) is the KL spectral function which encapsulates all the short

distance interactions (like compositeness or resonance) of the scalar field.
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3.2 Power spectrum of interacting scalar field -

general case

The power spectrum for the inflaton is essentially given by the equal-time Wight-

man function in de-Sitter space. In this section we will provide a general formalism

of calculating power spectrum for interacting scalar field using KL representation.

Derivations of the two point correlation functions for interacting real scalar field

using KL representation in Minkowski space is given in Appendix (G).

It is assumed in the following derivation that the asymptotic ‘in’ and ‘out’

states of an interacting scalar field are free particle states in the curved space. We

assume the interactions, being short-ranged, dominate over curvature effects at

short distances. Since we assume the Bunch-Davies boundary conditions that the

curved space mode functions in the large momentum limit go over to the flat space

plane wave form, we can directly use the flat space calculation of spectral function

of the interaction theory in the inflation power spectrum formula.

To generalize the KL formalism in de Sitter spacetime it is to be noted that in

de Sitter spacetime there is no translational invariance in the time direction like

Minkowski space. Due to this particular feature of de Sitter spacetime the mode

functions given in Eq. (G.5) can be written in a more general form for the inflaton

fluctuations as

〈0|δφ(x)|n〉 =
(√

2p0
n

)
δφ(p0

n, τ)e
ipn·x〈0|δφ(0)|n〉, (3.4)

where δφ(p0
n, τ) are the free field mode functions which obey the Klein-Gordon

equation in the curved background and in the flat space limit one has

δφ(p0
n, τ) =

1√
2p0

n

exp
(
−ip0

nτ
)
. (3.5)

Hence the Wightman function in de-Sitter space can be written as

W dS
ET(x, y) = 〈0|δφ(x)δφ(y)|0〉

=
∑

n

(
2p0

n

)
δφ(p0

n, τ)δφ(p0
n, τ

′)eipn·(x−y)|〈0|δφ(0)|n〉|2. (3.6)

Here 〈0|δφ(0)|n〉 represents the short-range interactions of the interacting inflaton

perturbations and according to our previous assumption this can be replaced by
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the spectral function ρ(q2) of Minkowski space defined in Eq. (G.7) as

θ(q0)ρ(q2) = (2π)3
∑

n

δ4(q − pn)|〈0|δφ(0)|n〉|2. (3.7)

With this definition of spectral function Eq. (3.6) can be written as

〈0|δφ(x)δφ(y)|0〉 =

∫
d4q

(2π)3

∫ ∞

0

dσ2
(
2q0
)
δφ(q0, τ)δφ(q0, τ ′)eiq·(x−y)

×θ(q0)ρ(σ2)δ(q2 + σ2)

=

∫ ∞

0

dσ2ρ(σ2)

∫
d3q

(2π)3
δφ(ω, τ)δφ(ω, τ ′)eiq·(x−y). (3.8)

The equivalent form of Wightman function in Minkowski space of the above equa-

tion is given in Eq. (G.19). Here ω =
√

q2 + σ2 and in de-Sitter space δφ(ω, η)

has the solution given in Eq (2.42) with mass m of the inflaton field replaced by

the mass parameter σ. The solution for light scalar field given in Eq. (2.46) will

be used in the following derivation because for very massive fields (mφ > H) the

power spectrum is highly damped in superhorizon scales as given in Eq. (2.47) and

hence the upper limit of σ2 integration in the above equation should have a cut-off

at m2
0 where m0 ≪ H .

The equal-time Wightman function in de-Sitter space W dS
ET(x) gives the power

spectrum for the inflaton fluctuations

〈0| (δφ(x))2 |0〉 =

∫ m2
0

0

dσ2ρ(σ2)

∫
dq

q

q3

2π2
|δφ(ω, τ)|2

=

∫
dq

q

∫ m2
0

0

dσ2ρ(σ2)P(0)
δφ (q, σ2), (3.9)

where P(0)
δφ (q, σ2) is the power spectrum of the free inflaton field given by Eq. (2.46)

with m replaced by σ

P(0)
δφ (q, σ2) =

H2

4π2

( q

2aH

) 2
3

σ2

H2

. (3.10)

Following Eq. (2.45) the power spectrum for the interacting scalar field is given by

〈0|(δφ(x, τ))2|0〉 =

∫
dq

q
P(int)

δφ (q). (3.11)

From Eq. (3.9) and Eq. (3.11) we get

P(int)
δφ (k) =

∫ m2
0

0

dσ2ρ(σ2)P(0)
δφ (k, σ2), (3.12)
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and hence the curvature power spectrum (defined in Eq. (2.48)) for interacting

inflaton field will be

PR(k) =
H2

φ̇2
P(int)

δφ (k) =
1

2m2
Plǫ

∫ m2
0

0

P(0)
δφ (k, σ2)ρ

(
σ2
)
dσ2, (3.13)

where ǫ is the slow roll parameter of the inflaton. This form of curvature spectrum

will be used as input in CAMB [36] or CMBFAST [35] to determine the CMB

anisotropy spectrum from a given model of inflaton interactions.

3.3 Inflaton with a decay width

From the fact that the inflation must end in reheating we expect that the inflaton

has couplings to other particles and it can decay into lighter particles. The inflaton

decay width must be smaller thanH/N (where N ≃ 100 is the number of e-foldings

needed to solve the horizon and flatness problems). Since Γ . 10−2H , the decay

width term is negligible compared to the Hδφ̇ term in the Klein-Gordon equation

given in Eq. (2.10).

To compute the power spectrum of the decaying inflaton, we start with the

Breit-Wigner propagator in flat space, of an unstable scalar particle with decay

width Γ and mass m

∆(int)(q2) =
1

q2 −m2 + imΓ
, (3.14)

whose spectral function has the form [51]

ρ(σ2) =
1

π

mΓ

(σ2 −m2)2 +m2Γ2
. (3.15)

Using the spectral function from Eq (3.15) in Eq (3.13) the power spectrum for

inflaton with a decay width will be

PR(k) =
H2

8M2
Plǫπ

2

[
tan−1

(m
Γ

)
− tan−1

(
m2 −m2

0

mΓ

)]
+

m2

12M2
Plǫπ

2
ln
(z

2

)

×
[
tan−1

(m
Γ

)
− cot−1

(
mΓ

m2 −m2
0

)
+

Γ

2m
ln

(
(m2 −m2

0)
2
+m2Γ2

m2 (m2 + Γ2)

)]
,

(3.16)

where z = k
aH

and m0 ≪ H is the cut-off scale for the mass parameter σ.
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In Fig (3.1) we plot PR(k) vs. k plot for the decaying inflaton. We observe that

for the free scalar field (i.e. Γ = 0) the curvature power spectrum is scale-invariant

where for the decaying inflaton the power spectrum gets suppressed at low k and

increases at high k with respect to the free inflaton case. We also observe that the

higher the decay width Γ, more is the suppression of power at low k and increase

of power at high k.
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Figure 3.1: PR(k) vs. k plot for decaying scalar inflaton

In Fig (3.2) we plot the TT angular spectrum for the inflaton with a decay

width. The parameters used for the above plots are H = 1013 GeV, m = 3.5×1012

GeV, m0 = 7.5 × 1012 GeV and for Γ = 1.0 × 1011 GeV, Γ = 1.0 × 1012 GeV

and Γ = 3.0 × 1012 GeV the values of ǫ used are 1.412 × 10−5, 1.29 × 10−5 and

1.069 × 10−5 respectively. In previous figure, we find that as the inflaton decay

width Γ is increased the power at large distance scales gets suppressed. This results
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in suppression of the TT spectrum at low l with increasing decay width in this

plot. A decay width of the inflaton may be a viable explanation of the WMAP

observation of suppression in the TT power spectrum [52, 53].
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Figure 3.2: The TT angular spectrum for the inflaton with a decay width.

3.4 Inflaton as Composite Particle

An interesting model of inflation can be with the inflaton as a GUT scale techni-

pion which arises from a condensate of fermions in a GUT scale SU(N) techni-colour

model [54] or the inflaton can be a composite of heavy right handed neutrinos [24].

In such models one may ask in what way the compositeness of the inflaton affects

the power spectrum. We use the spectral representation of a composite scalar in

deriving the power spectrum in such a case.
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The spectral function for a composite scalar can be taken as in QCD models

[55] as

ρ(σ2) = Zδ(σ2 −m2
ϕ) +

1

f 2
ϕm

2
ϕ

ρc(σ
2)θ(σ2 − s2

0), (3.17)

where mϕ is the techni-pion mass, fϕ is the symmetry breaking scale and s0 is the

threshold for the onset of a continuum contribution ρc(σ
2).

The wave function renormalization constant Z can be determined using the

following property of the spectral function
∫ ∞

0

ρ(σ2)dσ2 = 1. (3.18)

The spectral function for the continuum is given as [56]

ρc(σ
2) =

N

8π2
σ2

(
1 − s2

0

σ2

) 3
2

, (3.19)

where N is the number of fermion flavours. Using Eq. (3.17), Eq. (3.18) and

Eq. (3.19) we get

Z = 1 − N

8π2

1

f 2
ϕm

2
ϕ

(
1

2
Λ4 − 3s2

0

2
Λ2 + s4

0

)
, (3.20)

where Λ is the ultra-violet cut-off of the composite theory.

Now using Eq. (3.17) and Eq. (3.19) in Eq. (3.13) we find the power spectrum

for a composite scalar particle as

PR(k) =
ZH2

8π2M2
Plǫ

(z
2

) 2
3

m2
ϕ

H2

+
3NH4

256π4M2
Plǫ
[
ln
(

z
2

)]2
1

f 2
ϕm

2
ϕ

×
[(z

2

) 2
3

s20
H2
{

3H2 + s2
0 ln
(z

2

)}
+
(z

2

) 2
3

m2
0

H2
{
−3H2 +

(
2m2

0 − 3s2
0

)
ln
(z

2

)}]
.

(3.21)

In Fig. (3.3) PR(k) vs k plot for composite inflaton is given. We see that though

the curvature power is scale invariant for a free scalar field (i.e. 1 − Z = 0), there

is a sharp resonance at k = 0.002 Mpc−1, due to compositeness (1 − Z > 0) in

the inflaton field. The resonances increases as the compositeness of the inflaton

increases (smaller Z). Such resonances in curvature power spectrum can lead to

oscillatory features in TT angular power of CMBR as seen in other examples where

spikes in the power spectrum can arise due a period of fast roll [57] or a bump in

the potential [58].
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Figure 3.3: PR(k) vs k plot for composite inflaton

In Fig (3.4) we plot the TT angular spectrum for the case of a composite

inflaton. The parameters used for these plots are H = 1013 GeV, mϕ = 1.0 × 1012

GeV, m0 = 3.0 × 1012 GeV, s0 = 1.0 × 1011 GeV, Λ = 1.0 × 1013 GeV, N = 3

and for 1 − Z = 9.7 × 10−7 and 1 − Z = 2.0 × 10−6 we take fϕ = 1.4 × 1016 GeV,

ǫ = 3.92 × 10−6 and fϕ = 1.0 × 1016 GeV, ǫ = 3.87 × 10−6 respectively. We find

that there are oscillatory features in the power spectrum at l = 30.

Analysis of WMAP data by several groups [52] suggests that the power spec-

trum may have such oscillatory features. We have given the plot for some plausible

values of the parameters.
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Figure 3.4: The TT angular spectrum for the inflaton as a composite particle.

3.5 Conclusion

We have derived a general formula for incorporating short-range interactions in

the two-point correlation functions and the power spectrum by use of the Källén-

Lehmann spectral function of flat spacetime. This method is useful if the short

wavelength limit of the mode functions are plane wave states 1√
2k
e−ikτ , follows

in the quasi de-Sitter inflation by the assumption of the Bunch-Davis boundary

conditions and there exists a complete orthonormal set of mode functions of the

free theory in curved spacetime which is true in the quasi de-Sitter space relevant

for inflation power spectrum calculation. In interacting inflaton models like the

ones studied in this paper we find that there are more interesting variations in the

power spectrum due to the modification of the propagators which do not affect the
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slow roll parameters. We apply our formulation to study inflation with decaying

and composite inflatons. We find that the decay of the inflaton results in the

suppression of long distance correlations and thereby a loss of the quadrupole

anisotropy [53]. This may be related to the observation of low quadrupole power

by WMAP [59].

When the inflaton is taken as a composite of two fermions the power spectrum

displays even more interesting features like oscillations. An examination of the

WMAP data by wavelet analysis and by the cosmic inversion method reveals that

the data may have such features [52].



Chapter 4

An exotic quantum field :

Unparticle as inflaton

4.1 Introduction

In most of the inflationary scenarios scalar fields are the most favorable candidates

to drive inflation as scalar fields are naturally homogeneous and isotropic and can

lead to exponential expansion of Universe by slowly rolling along its potential.

But the fact that scalar fields still remained unobserved in nature, drives a quest

for looking for other quantum fields to act as an inflaton. We discuss few such

attempts made in the literature :

• Inflation driven by vector fields :

In [21] an attempt was made to drive inflation with a self-coupled vector field.

As the stress tensor Tµν for vector fields is not isotropic, the Universe in this

scenario will exit inflation into an anisotropic expansion. The isotropy of

inflation is achieved in [60] by considering a non-minimally coupled triplet of

orthogonal vector fields. One can also take into account N randomly oriented

vector fields where the anisotropy of the order 1√
N

survives until the end of

inflation [60].

• Inflation driven by spinor fields :

In [22] classical, homogeneous spinor field has been considered in a flat FLRW

50
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Universe. By classical spinor field it is meant a set of four complex-valued

spacetime functions that transforms according to the spinor representation

of the Lorentz group. It has been observed in [22] that such a field can

lead to a blue spectrum of perturbations if it is allowed to drive inflation.

Thus this scenario is not much appealing and the authors look for quartic

self-interaction of such spinor field which lead to non-singular cyclic Universe.

In [61], fermionic fields are studied in presence of gravity and the Dirac

equation is done via the tetrad formalism where the components of the tetrad

play the role of the gravitational degrees of freedom. These spinor fields can

be a source of accelerated phases of Universe such as inflation and late time

acceleration (dark energy dominant Universe).

A new class of spinor fields (Dark spinors or Elko) are also studied in the

context of inflation [62] where these unusual spinor fields (of mass dimension

1) can play the role of inflaton and drive inflation.

• Inflation driven by spinor condensate :

In such scenarios the inflaton field is not a fundamental scalar but is con-

sidered as a condensate of spinor fields. We have discussed one such case

in the previous chapter where the composite inflaton shows some oscillatory

features in the low l region of the TT anisotropy spectrum of CMBR [23]. In

[24] a condensate of right-handed neutrinos are considered as inflaton.

Recently Georgi in [25] has proposed a new class of particles, called the unparticles,

which have dimensions different from their canonical scaling dimensions to exist

in an effective low energy theory. One assumes that an ultraviolet theory has a

IR fixed point at some scale Λu where the fields become conformal invariant. The

effective coupling of the ultraviolet theory operators OUV of dimension duv with

the standard model operators OSM of dimension n are suppressed by a heavy mass

scale Mu and can be written as

1

Mduv+n−4
u

OUVOSM , (4.1)

where duv is the canonical dimension of the operator OUV . Below the scale Λu

(conventionally assumed as 1 TeV), the fields of the UV theory become scale in-
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variant and by dimensional transmutation acquire a dimension du which is different

from their canonical dimension. These conformally coupled unparticle operators

OU will couple to the standard model operators as

(
Λu

Mu

)duv+n−4
1

Λdu+n−4
u

OU OSM . (4.2)

These exotic particles, along with its quite different anomalous dimensions, have

another noble feature of generating long range forces while exchanged between two

systems either microscopic or macroscopic. It has been pointed out [63] that the

exchange of scalar (pseudoscalar) unparticles can give rise to spin independent

(spin-dependent) long range forces. Long range forces from vectors and axial-

vectors have been studied in [63, 64]. Tensor unparticles can couple to the energy

momentum tensor and mimic gravity as pointed out in [26].

We will now discuss how anomalous dimensions of tensor and vector unparticles

can be constrained from Mercury’s perihelion precession as exchange of unparticles

yields long range forces which deviates from Newtonian inverse-square law force

giving rise to perihelion precession in planetary orbits. Gauge invariance protects

the tensor and vector unparticle fields from picking up a mass from radiative cor-

rections enabling them to generate long range forces. On the other hand a scalar

unparticle will pick up a mass term from radiative corrections due to which a scalar

field can give rise to only short-ranged forces. Thus the anomalous dimension of a

scalar unparticle can not be constrained from Mercury’s perihelion precession. In

[65] we study the possibility of scalar unparticle to play the role of inflaton and

look for its possible signatures in TT anisotropy spectrum of CMBR. This will be

discussed consequently.

4.2 Unparticle long range forces and constraints

on its anomalous dimension from Mercury

perihelion precession

Unparticle exchange gives rise to long range forces which deviate from the usual

inverse square law for massless particles due to the anomalous scaling of the un-
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particle propagator. In [26, 64] bounds have been put on the unparticle couplings

from millimeter scale long range force experiments [66]. It is well known that a

deviation from the Newtonian inverse square gravity will result in unclosed or-

bits which results in a shift in perihelion of planetary orbits. Since exchange of

massless unparticles gives rise to long range forces which deviate from the inverse

square law, we expect an additional contribution to the perihelion shift of planets

in addition to that caused by general relativity. In [67] we consider the effect on

the perihelion shift of Mercury due to the coupling of tensor and vector unpar-

ticles to SM particles. The perihelion shift due to general relativistic effects has

been measured to 0.3% level and thus provides tight constraints on additional long

range forces [68]. We find that this gives more stringent bounds on unparticle

couplings compared to the one from fifth force search experiments at solar system

distances [66]. Some consequences of unparticles in astrophysical phenomena has

been explored in [69–72].

4.2.1 Ungravity from tensor unparticles

We take the gravitational coupling of the tensor unparticle (ungravitons [26]) to

the stress-energy tensor Tµν to be of the form

κ∗
1

Λdu−1
u

√
gT µνOU

µν , (4.3)

where κ∗ = 1
Λu

(
Λu

Mu

)duv

. We impose the gauge symmetry as in the case of gravity,

xµ → xµ + ǫµ ,

OU
µν → OU

µν +
Λdu−1

u

κ∗
(∂µǫν + ∂νǫµ) , (4.4)

which ensures that the ungraviton remains massless below the scale Λu. The

massless ungraviton results in long range forces which can be probed at solar

system length scales.

The ungraviton propagators are [26]

∆µναβ(P ) = Bdu
P µναβ(−P 2)du−2, (4.5)

where the normalization factor Bdu
is

Bdu
≡ −

(
8π

3
2

(2π)2du

)
Γ (2 − du) Γ

(
du + 1

2

)

Γ (2du)
, (4.6)
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and P µναβ is the projection operator of the form

P µναβ(P ) ≡ 1

2
(P µαP νβ + P µβP να − αP µνP αβ), (4.7)

where P µν =
(
−ηµν + P µP ν

P 2

)
. For massless ungravitons, obeying the gauge condi-

tion of Eq (4.4), α = 1.

The ungravitational potential is obtained by taking the Fourier transform of

the propagator ∆µναβ in the static limit (P 0 = 0) :

Vu(r) =
κ2
∗

Λ2du−2
u

∫
d3P

(2π)3
Tµν∆

µναβ(P 0 = 0)Tαβe
iP·x, (4.8)

where |x| = r. Evaluating the integral gives the potential arising due to ungraviton

exchange as

Vu(r) = −m1m2

(
κ2
∗

Λ2du−2
u

)(
2

π2du−1

)
Γ
(
du + 1

2

)
Γ
(
du − 1

2

)

Γ (2du)

(
1

r2du−1

)

= −Gum1m2

r2du−1
, (4.9)

where Gu is defined to be

Gu ≡ κ2
∗

Λ2du−2
u

C(du), (4.10)

and C(du) is

C(du) ≡
(

2

π2du−1

)
Γ
(
du + 1

2

)
Γ
(
du − 1

2

)

Γ (2du)
. (4.11)

We notice that if the anomalous dimension (du) of Oµν is not equal to 1 there are

deviations from the inverse square law. So for du 6= 1 the total potential will be of

the form :

V (r) = −Gm1m2

r
− Gum1m2

r2du−1
.

= −Gm1m2

r

[
1 +

1

GΛ2
u

(
Λu

Mu

)2duv C(du)

Λ2du−2
u

1

r2du−2

]
. (4.12)

We will consider the case du > 1 as du < 1 will lead to forces which fall off slower

than gravity and can be easily ruled out from fifth force experiments [66].

Perihelion precession of mercury orbit

In polar coordinates (r, θ), the equation of motion of a planet’s orbit around the

Sun is

r̈ − rθ̇2 +
V (r),r
mp

= 0, (4.13)
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where mp is the mass of the planet and the overdot (≡ )̇ represents derivative with

respect to time and V,r ≡ ∂V (r)
∂r

. The angular momentum of the planet l = mpr
2θ̇

is a constant of motion.

Changing variables to u(θ) = 1
r(θ)

, Eq (4.13) can be written as

u,θθ +u = α+ βu2du−2. (4.14)

Here α ≡ Mm2
pG

l2
and β ≡ Mm2

pGu(2du−1)

l2
, where M is the mass of the Sun. This is

an inhomogeneous second order ordinary differential equation (ODE). Assuming

the deviation from the inverse square law to be very small, we have β << α and

Eq (4.14) can be solved using a perturbation expansion in β. To first order in β

we assume the form of the solution to be

u(θ) = u0(θ) + βu1(θ), (4.15)

where u0 is the solution of the ODE

u0,θθ
+ u0 = α, (4.16)

and u1 is the particular solution of the inhomogeneous equation

u1,θθ
+ u1 = u2du−2

0 . (4.17)

The solution of Eq (4.16) is

u0 =
1 − e cos (θ)

a(1 − e2)
, (4.18)

where a is the semi-major axis of the elliptical orbit of the planet, given by

a =
l2

Mm2
pG(1 − e2)

(4.19)

and e is the eccentricity of the orbit. As the eccentricity of Mercury’s orbit is

very small we keep terms only up to O(e) and neglect the higher order terms in

Eq (4.18). Using the above form of u0, u1(θ) obeys the equation

u1θθ
+ u1 =

1

a2du−2
− (2du − 2) e cos (θ)

a2du−2
. (4.20)

This has the particular solution

u1 =
1

a2du−2
− (du − 1) e

a2du−2
θ sin(θ). (4.21)



Chapter 4. An exotic quantum field : Unparticle as inflaton 56

Thus, from Eq (4.15), the trajectory of the planet to order β is given by

u =
1

a
+ β

1

a2du−2
− e

a

[
cos(θ) +

β (du − 1)

a2du−3
θ sin(θ)

]
. (4.22)

For small β, Eq (4.22) can be written as

u ≈ 1

a
+ β

1

a2du−2
− e

a

[
cos

(
θ − β (du − 1)

a2du−3
θ

)]
. (4.23)

To complete one full rotation, with a perihelion shift, the condition is

θ

(
1 − β (du − 1)

a2du−3

)
= 2π, (4.24)

which gives

θ ≈ 2π

(
1 +

β (du − 1)

a2du−3

)
, (4.25)

keeping only terms linear in β. So the perihelion shift induced by ungraviton

couplings is given by

δθ = 2π

(
β (du − 1)

a2du−3

)

= (du − 1)(2du − 1)C(du)
2π

GΛ2
u

(
Λu

Mu

)2duv 1

Λ2du−2
u

1

a2du−2
. (4.26)

As expected, the perihelion shift vanishes for du = 1, as it should since it corre-

sponds to the usual inverse square law case (with a different gravitational constant).

Comparing the expression for the unparticle potential Eq (4.12) (for r = a) with

the expression for perihelion advance we see that they are related as

δθ ≃ (du − 1)(2du − 1)2π
Vu

VN
, (4.27)

where Vu is the unparticle exchange potential and VN is the Newtonian potential.

The constraint on the ungravity couplings derived from mercury perihelion are

more stringent than that from fifth force measurement by testing deviation from

Kepler’s Law at planetary distances [73],[74]. However at millimeter scales there

are stringent tests of deviations of Newton’s Law as has been noted in [26, 64].

The observed precession of perihelion of mercury is 43.13±0.14 arcsec/century

[75] and the prediction from General Relativity (GR) is 42.98 arcsec/century. This

means that at 2-σ the unparticle contribution is −0.13 < δθ < 0.43. We derive a

limit on unparticle coupling by demanding that the unparticle contribution does
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not exceed the discrepancy between measurement and GR. From the 2-σ upper

bound on the possible contribution from unparticle given by Eq (4.26) we get the

limit

(du − 1)(2du − 1)C(du)
2π

GΛ2
u

(
Λu

Mu

)2duv 1

(aΛu)2du−2

(
century

T

)
< 0.43 arcsec

(4.28)

per century, where T = 87.96 days is the orbital time period of Mercury.
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Figure 4.1: log
(

Mu

GeV

)
vs. du plot for tensor unparticles.

In Fig (4.1) we plot log
(

Mu

GeV

)
vs. du which gives the tensor unparticle contri-

bution of 0.43 arcsec/century to the perihelion advance of mercury. Here regions

above the curves represent the allowed values of log
(

Mu

GeV

)
and du from observations

of Mercury orbit. We have taken duv = 1 and the values of Λu from 1 TeV to 1000

TeV. The areas above the curves represent the allowed regions for Mu and du at

2-σ for different values of Λu .
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4.2.2 Long range force from vector unparticles

Now we consider long range forces resulting from the coupling of vector unparticles

[63, 64] to baryonic and leptonic currents. The effective coupling is of the form

λ

Λdu−1
u

JµOU
µ , (4.29)

where Jµ is the baryonic or leptonic current. As in the tensor case, we assume that

the unparticle operator OU and the fermion fields Ψ obey a gauge symmetry

Ψ → exp[iα]Ψ

OU
µ → OU

µ +
Λdu−1

u

λ
∂µα. (4.30)

As a result of this U(1) gauge symmetry the vector unparticle remains massless

below the scale Λu. The gauge unparticle propagator is

∆µν = Adu
P µν(−p2)du−2, (4.31)

where

Adu
≡ 16π

5
2

(2π)2du

Γ
(
du + 1

2

)

Γ (du − 1) Γ (2du)
, (4.32)

and

P µν(p) = ηµν − pµpν

p2
. (4.33)

As usual, we get the unparticle exchange potential by taking the Fourier transform

of the propagator given in Eq (4.31) in the static limit. This gives

Vu(r) =
1

2π2du

λ2

Λ2du−2
u

Γ
(
du + 1

2

)
Γ
(
du − 1

2

)

Γ (2du)

N1N2

r2du−1

=
C ′ (du)λ

2N1N2

r2du−1
, (4.34)

where

C ′(du) ≡
1

2π2du

1

Λ2du−2
u

Γ
(
du + 1

2

)
Γ
(
du − 1

2

)

Γ (2du)
, (4.35)

is a constant and N1 and N2 are the total number of baryons (Ni = Mi

mn
,where Mi

is the mass of the Sun or the planet and mn is the nucleon mass) in the Sun and

the planet. Hence the total potential is

V (r) = VN(r) + Vu(r)

= −Gm1m2

r

[
1 − C ′ (du)λ

2N1N2

Gm1m2

1

r2du−2

]
. (4.36)
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By following the same methodology as in the tensor case we find the perihelion

shift, due to exchange of vector unparticles, to be

δθ = −2π(du − 1)(2du − 1)
C ′ (du)λ

2N1N2

Gm1m2

1

a2du−2
. (4.37)

Vector unparticle exchange would cause a retardation in the perihelion of mercury

1 1.2 1.4 1.6 1.8 2
du

5

10

15

20

-
L
o
g
H
Λ
L

Lu=1 TeV

Lu=10 TeV

Lu=100 TeV

Lu=1000 TeV

Figure 4.2: − log(λ) vs. du plot for vector unparticles

orbit ( δθ < 0) due to the fact that the force is repulsive. At 1-σ the discrepancy

between theory and experiment is still positive (0.01 < δθ < 0.29) which means

that the vector unparticle force can be ruled out at 1-σ. At 2−σ the allowed range

for a unparticle vector contribution is −0.13 < δθ < 0.43. The maximum value

of this retardation allowed from observations [75] and the prediction of general

relativity is 0.13 arcsec/century at 2-σ. This puts an upper bound on the vector

unparticle couplings

2π(du − 1)(2du − 1)
C ′ (du)λ

2N1N2

Gm1m2

1

a2du−2

(
century

T

)
< 0.13 arcsec (4.38)

per century, where T = 87.96 days is the orbital time period of Mercury as stated

before.

In Fig (4.2) we show − log (λ) vs. du plot taking δθ = 0.13 arcsec/century.

Here region above the curve represents the allowed values of − log(λ) and du from



Chapter 4. An exotic quantum field : Unparticle as inflaton 60

observations of Mercury orbit. We have taken the values of Λu from 1 TeV to

1000 TeV. The areas above the curves represent the allowed values of λ and du

at 2-σ experimental error for different Λu after accounting for the contribution to

perihelion shift from general relativity.

4.3 Unparticle as inflaton

There may be large deviations of the scale dimension du of a scalar particle from

the canonical dimension du = 1 due to non-perturbative interactions at a high scale

M . The scalar propagator of such an unparticle [25] of dimension du will be

1

(p2 − µ2)2−du
. (4.39)

This gives rise to a deviation from inverse square law, as has been discussed in the

previous section, having some interesting astrophysical consequences [67].

Here we will investigate the scenario of a scalar unparticle driving inflation.

Such an attempt was also made in earlier works as in [76] and [77]. We will follow

the general method of calculating power spectrum for an inflaton field using Källén-

Lehmann representation discussed in the previous chapter (see Sec. (3.2)) as the

flat space spectral function for unparticle in well known in literature. The spectral

function for a scalar unparticle, where the conformal invariance is broken at a low

energy µ, is given as [78]

ρ(σ2) = Adu
θ(σ2 − µ2)(σ2 − µ2)du−2, (4.40)

where

Adu
=

16π
5
2

(2π)2du

Γ
(
du + 1

2

)

Γ (du − 1) Γ (2du)
. (4.41)

In the limit du → 1 when the scale dimension approaches the canonical dimension

the spectral function in Eq. (4.40) approaches the ordinary massive particle spectral

function [25]

lim
du→1

(
Adu

θ(σ2 − µ2)(σ2 − µ2)du−2
)

= δ(σ2 − µ2). (4.42)

If we assume that the inflaton is an unparticle of scale dimension du, then to

calculate the power spectrum of the comoving density perturbation we assume the
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form of the potential of this unparticle inflaton as

V (φ) =
1

2

µ2

M2∆u
φ2, (4.43)
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Figure 4.3: The TT angular spectrum for the Unparticle-inflaton

where the mass of the unparticle is taken as µ at which the scale invariance of

the unparticle is broken and ∆u = du−1. Since the scale dimension of the inflaton

is different from unity, we introduce a heavy mass scale M such that φ → φ
M∆u

and so the potential contains in the denominator M2∆, compared to the usual

quadratic potential µ2φ2 . The Klein-Gordon equation of motion gives us

φ̇2

H2
=
m2

PlM
2∆u

4∆N
, (4.44)

where ∆N is the number of e-foldings during inflation.
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Using Eq (4.40) and Eq (4.44) in Eq (3.13) the power spectrum for the case of

an unparticle inflaton will be

PR =
Adu

H2∆N

π2M2
PlM

2∆u

(z
2

) 2
3

µ2

H2

(
3H2

2 ln
(

2
z

)
)∆u [

Γ(∆u) − Γ

(
∆u,

2

3

Λ2
u

H2
ln

(
2

z

))]
,

(4.45)

where Γ(., .) is the incomplete gamma function and Λu ≪ H is the energy scale of

the unparticle up to which the assumptions for the power spectrum is retained.

In Fig (4.3) we plot the TT angular spectrum for the Unparticle-inflaton with

different values of du andM . The parameters used for the above plots areH = 1013

GeV, ∆N = 60, µ = 0.1 × 1013 GeV and Λu = 0.5 × 1013 GeV. The values of M

used are 1.158 × 102 GeV, 6.23 × 109 GeV and 3.715 × 1010 GeV for du = 1.1,

du = 1.5 and du = 1.9 respectively. We see that as du deviates from the canonical

value 1 there is a greater suppression of the power at large angular scales.

4.4 Conclusions

In this chapter we first put bounds on the tensor and vector unparticle anomalous

dimensions with respect to its coupling to matter from perihelion precession of

Mercury and secondly we venture the possibility of scalar unparticle playing role

of an inflaton.

There are several bounds on unparticle couplings to standard model particles

from collider experiments [79] from the anomalous missing energy spectrum. There

are also bounds on such couplings from the cooling rates of supernova and stars

[69–72]. If the conformal invariance of unparticles remains unbroken then these

particles can give rise to extra long range forces [26, 64] which can be constrained

from fifth force experiments [66]. In [67] we have considered unparticle gauge

bosons of spin-1 and spin-2. The gauge symmetry ensures that the unparticles

remain massless. The main characteristic feature of unparticle long range force

which we apply in this paper is a deviation from the inverse square law which

leads to a perihelion shift in planetary orbits. The constraints from perihelion

shift are more stringent than the constraints from the deviation from the inverse

square law at the scale of solar system distances [73, 74]. However at millimeter
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scales there are stringent tests of deviations of Newton’s Law as has been noted

in [26, 64]. Comparing our bounds on vector and tensor unparticle couplings with

that of [26] and [64] we find our bounds based on perihelion precession are more

stringent when du . 1.4.

When the inflaton field is taken as a scalar unparticle [65], the TT angular

power spectrum of CMBR is suppressed at low l which may be related to the

observation of low quadrupole power by WMAP [59].



Chapter 5

Thermal field theory and

enhanced non-Gaussianity

5.1 Introduction

We discussed in detail about non-Gaussian features arising in single-field slow-roll

inflationary model and importance of looking for primordial non-Gaussianities in

Chapter 2. In this chapter we will discuss the case where the initial vacuum for the

inflaton fluctuations is not the conventional Bunch-Davies vacuum but a thermal

initial state.

It was shown earlier by Gangui et al. [30] and more recently in [29, 80–82] that

if the initial state of the inflatons is not the Bunch-Davies vacuum but some excited

state then there is an enhancement of the non-Gaussianity from such initial state

effects. A natural example of a non-Bunch-Davies initial state arises if there is a

radiation era prior to inflation [31]. Inflation takes place when the energy density

of radiation ρr drops below the value of the potential of a coherent scalar field. In

such models it is seen that the power spectrum is enhanced at low k which can

be used to put constraint on the comoving temperature at the time of inflation

[31]. These kind of inflation scenarios with a pre-radiation era have an interesting

prediction that the B-mode polarization spectrum is enhanced at low l due the

contribution of thermal gravitons [83, 84].

The scenario of thermal initial condition is very general and would be applicable

64
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for any model of inflation if there was a pre-inflationary radiation dominated era.

The effects of the initial thermal era to be observable either in the CMB anisotropy

spectrum or in the non-Gaussianities the perturbations entering the horizon today

should have left the de-Sitter horizon at a temperature T not too small compared to

H (the Hubble parameter at the time of inflation). If there were a large number of e-

foldings prior to the present perturbation modes leaving the inflation horizon then

the effect of the pre-inflationary thermal era would be unobservable. In models

where the total number of e-foldings are just enough to solve the flatness and

horizon problems, there can be a imprint of the spatial curvature at the time of

inflation on the power spectrum [85]. A natural model where inflation commences

just as the temperature falls below a critical temperature and is of limited duration

is where a fermion pair forms a scalar condensate which acts as the inflaton. Such

models have been studied in [23, 24].

In [86] we study non-Gaussianities in the primordial perturbations in single field

inflation where there is radiation era prior to inflation. The thermal background

of inflaton, gravitons and other fields is decoupled from the actual dynamical evo-

lution of the inflaton unlike in the warm inflation models [87], where there can be

large non-Gaussianities [88, 89] due to dissipative coupling between the inflaton

and the radiation bath. In this model the temperature of the decoupled radiation

bath goes down as Tph = T/a where T is the constant comoving temperature. The

thermal distribution functions which depend on the ratio
kph

Tph
= k

T
(where k is the

comoving wavenumber of the perturbations) retain the same form during inflation.

We will first discuss the effect of such a pre-radiation era on comoving curvature

perturbation and TT anisotropy spectrum of CMBR.

5.2 Thermal average of inflaton power spectra

If there was a radiation era prior to inflation one expects a thermal distribution of

inflatons to be present which might have decoupled from other fields prior to infla-

tion. It has been shown in [31] that this thermal distribution of inflaton modifies

the power spectrum of inflaton fluctuations and the curvature power spectrum will

have an additional temperature depended term. In this section we compute the
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two point correlation of inflaton perturbations taking this thermal distribution of

inflatons into consideration.

The Fourier expansion of inflaton fluctuations in de Sitter space is

δφ(x, t) =

∫
d3k

(2π)
3
2

(
bkϕk(t) + b†−kϕ

∗
k(t)
)
eik·x, (5.1)

where ϕk(t) are the mode functions which satisfy the Klein-Gordon equation in

Fourier space and bk and b†k are the annihilation and creation operators respectively.

In Fourier space the inflaton fluctuations can be written as

δφ(k, t) = bkϕk(t) + b†−kϕ
∗
k(t). (5.2)

The canonical commutation relation satisfied by these creation and annihilation

operators is

[
bk1
, b†k2

]
= δ3(k1 − k2), (5.3)

with the vacuum satisfying bk|0〉 = 0 at zero temperature, which ensures that the

vacuum has zero occupation Nk|0〉 = 0 where Nk ≡ b†kbk is the number operator

and the power spectrum of inflaton fluctuations Pδφ(k) will be (as has been defined

in Eq. (2.44))

Pδφ(k) ≡ k3

2π2
〈δφ(k, t)δφ(k, t)〉 , (5.4)

where k ≡ |k|.
This scenario changes when there is a radiation era prior to inflation, as in

this case the inflaton will have a thermal distribution during inflation. Due to

this distribution the thermal vacuum |Ω〉 ≡ |nk1
, nk2

, · · · 〉 will now contain real

particles yielding

Nk|Ω〉 = nk|Ω〉, (5.5)

where nk is the number of particles with momentum k present in the thermal vac-

uum. In general, i.e. for creation-annihilation operators with different momenta,

one gets

b†k1
bk2

|Ω〉 = δ3(k1 − k2)nk1
|Ω〉. (5.6)
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For further discussions we will consider non-interacting real scalar fields for which

the chemical potential µ = 0. For a single inflaton with momentum k the partition

function will be

z =
∞∑

nk=0

e−βnkk =
1

1 − e−βk
, (5.7)

where β is the inverse of the comoving temperature T . Due to this thermal dis-

tribution of the inflaton fluctuation a thermal statistical average of the two-point

correlation function will determine the power spectrum

P th
δφ(k) =

k3

2π2
〈Ω|δφ(k, t)δφ(k, t)|Ω〉β =

k3

2π2

∑

εk

p(εk) 〈Ω|δφ(k, t)δφ(k, t)|Ω〉 . (5.8)

Here p(εk) is the probability of the system to be in the state εk ≡ nkk which is

defined as

p(εk) ≡
e−βnkk

∑
nk
e−βnkk

=
e−βnkk

z
, (5.9)

where z is given in Eq. (5.7). However, due to the thermal distribution of the

inflaton field the inflaton fluctuations will follow the relations given in Eq. (5.3)

and Eq. (5.5) which yield

〈Ω|δφ(k, t)δφ(k, t)|Ω〉 = |ϕk(t)|2 〈Ω| (1 + 2Nk) |Ω〉 = |ϕk(t)|2 (1 + 2nk) . (5.10)

Hence the power spectrum given in Eq. (5.8) will be

P th
δφ(k) =

k3

2π2
|ϕk(t)|2

1

z

∑

nk

e−βnkk (1 + 2nk) =
k3

2π2
|ϕk(t)|2 (1 + 2fB(k)), (5.11)

where fB(k) ≡ 1
eβk−1

is the Bose-Einstein distribution. To get the last equality in

the above equation the following relation is used [90]

∞∑

n=0

nqn =
q

(1 − q)2 . (5.12)

Now for a light inflaton (m≪ H , m being the mass of the inflaton and H being the

Hubble parameter during inflation) the mode function has the solution as given in

Eq. (2.42)[50] :

|ϕk| ≃
H√
2k3

(
k

aH

) 3
2
−νϕ

, (5.13)
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where a is the cosmic scale factor and νϕ ≃ 3
2
− m2

φ

H2 . In a generic single field

inflationary model this mode function solution along with the k3 factor in the power

spectrum gives a nearly scale invariant spectra for inflaton fluctuations. But due to

the thermal distribution of the inflaton fluctuations, expression for power spectrum

in Eq. (5.11) contains an additional temperature dependent factor of (1+2fB(k)) =

coth(βk/2). Thus the thermal power spectrum of inflaton fluctuations is given by

P th
δφ(k) = coth(βk/2)Pδφ(k), (5.14)

and hence the thermal average of the power spectrum for comoving curvature

perturbations defined in Eq. (2.48) will be

Pth
R (k) = coth(βk/2)PR(k), (5.15)

as has been already stated in [31].
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Figure 5.1: The TT anisotropy spectrum of CMBR for a inflationary scenario with
prior radiation era, taken from the original paper [31]

In Fig. (5.1) the CMB power spectrum generated using the thermal comoving

curvature power spectrum is compared with WMAP data and a constraint on

comoving temperature has been put from Fig. (5.2) as T < 1.0 × 10−3 Mpc−1
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Figure 5.2: The TT anisotropy spectrum of CMBR for a inflationary scenario with
prior radiation era, taken from the original paper [31]

(with the convention that the present scale factor a0 ≡ 1). Such a bound is also

found in [84] from thermal primordial gravitational waves. Since T = aiTph where

Tph and ai are the physical temperature and the scale factor when our current

horizon scale crossed the de-Sitter horizon during inflation, this constraint can be

rewritten as T0 < 4.2H . As the comoving wavenumber k = aiH one can put a

lower bound on βk as

βk =
aiH

aiTph
> 0.238. (5.16)

This lower bound on βk will be used in following sections to quantify the maximum

value of non-Gaussianity in thermal bispectrum and thermal trispectrum.
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5.3 Non-Gaussianity in bispectrum from ther-

mal distribution of inflaton

The three point correlation function of comoving curvature perturbations R or the

bispectrum is defined in Eq. (2.55) and the non-linear parameter for bispectrum

in the case of single field slow-roll model is given in Eq. (2.69). In presence of a

pre-inflationary radiation era the bispectrum will also receive a modification as in

the case of the power spectrum just discussed in the previous section. Hence in this

case the three point correlation function of the non-linear curvature perturbation

will be

〈RNL(k1)RNL(k2)RNL(k3)〉β =
1

2

(
H

φ̇

)2
∂

∂φ

(
H

φ̇

)∫
d3p

(2π)
3
2

×
[
〈δφL(p)δφL(k1 − p)δφL(k2)δφL(k3)〉β + perms

]
, (5.17)

where R.H.S. of the above equation contains the thermal average of four-point

correlation functions of the inflaton perturbations.

We will first generalize the case of thermal average of the two-point correlation

function to derive the thermal average of the four-point correlation function of

scalar perturbations with arbitrary four momenta ki. The thermal average of any

higher order correlation function of inflaton perturbation will be of the form

〈φk1
φk2

φk3
· · · 〉β =

∑

{nki
}
p(k1, k2, k3, · · · ) 〈Ω|φk1

φk2
φk3

· · · |Ω〉, (5.18)

where the thermal probability of the occupancy of different momenta ki and ε ≡
∑

nkr
nkr

kr is

p(k1, k2, k3, · · · ) ≡
∏

r e
−βnkr kr

∏
r

∑
nk
e−βnkr kr

=

∏
r e

−βnkr kr

Z
. (5.19)

Here Z is the grand partition function of massless inflatons with energies Ekr
=

√
kr

2 = kr which is given as

Z =
∏

r

∞∑

nkr=0

e−βnkr kr =
∏

r

1

1 − e−βkr
, (5.20)

where r is the index for different energy levels.
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The four-point correlation function of inflaton fluctuations with four different

momenta contains six different combinations of two creation and two annihilation

operators and thermal average of one of these combinations can be derived as

follows :

Let us consider the thermal average of
(
b†−k1

bk2
b†−k3

bk4

)
which yields

〈
b†−k1

bk2
b†−k3

bk4

〉
β

=
∑

ε

p(k1, k2, k3, k4)
〈
Ω
∣∣∣b†−k1

bk2
b†−k3

bk4

∣∣∣Ω
〉

= δ3(k1 + k2)δ
3(k3 + k4)

1

Z

∑

nk1

∑

nk2

e−β(nk1
k1+nk3

k3)nk1
nk3

,

(5.21)

where Z =
(

1
1−e−βk1

)(
1

1−e−βk3

)
. The summations in the above equation yields

〈
b†−k1

bk2
b†−k3

bk4

〉
β

= δ3(k1 + k2)δ
3(k3 + k4) [fB(k1)fB(k3)] , (5.22)

where the identity stated in Eq. (5.12) is used. Similarly the thermal average of

other combinations of the two creation and two annihilation operators will be

〈
bk1
bk2
b†−k3

b†−k4

〉
β

= δ3(k1 + k4)δ
3(k2 + k3) [1 + fB(k1)] + δ3(k1 + k3) ×

δ3(k2 + k4) [1 + fB(k1) + fB(k2) + fB(k1)fB(k2)] ,(5.23)
〈
bk1
b†−k2

bk3
b†−k4

〉
β

= δ3(k1 + k2)δ
3(k3 + k4) ×

[1 + fB(k1) + fB(k3) + fB(k1)fB(k3)] , (5.24)
〈
bk1
b†−k2

b†−k3
bk4

〉
β

= δ3(k1 + k2)δ
3(k3 + k4) [fB(k3) + fB(k1)fB(k3)] , (5.25)

〈
b†−k1

bk2
bk3
b†−k4

〉
β

= δ3(k1 + k2)δ
3(k3 + k4) [fB(k1) + fB(k1)fB(k3)] , (5.26)

〈
b†−k1

b†−k2
bk3
bk4

〉
β

= −δ3(k1 + k4)δ
3(k2 + k3)fB(k1)

+δ3(k1 + k3)δ
3(k2 + k4) [fB(k1)fB(k2)] . (5.27)

Hence the thermal average of a general four-point correlation function with four

different momenta will be

〈δφ(k1, t)δφ(k2, t)δφ(k3, t)δφ(k4, t)〉β = |ϕk1
(t)|2 |ϕk2

(t)|2 ×
[
δ3(k1 + k4)δ

3(k2 + k3) + δ3(k1 + k3)δ
3(k2 + k4) {1 + fB(k1)+

fB(k2) + 2fB(k1)fB(k2)}] + |ϕk1
(t)|2 |ϕk3

(t)|2 δ3(k1 + k2)δ
3(k3 + k4)

×{1 + 2fB(k1) + 2fB(k3) + 4fB(k1)fB(k3)} . (5.28)
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With this general result one can calculate the thermal average of the three-point

correlation function of the comoving curvature perturbations using Eq. (5.17) as

〈RNL(k1)RNL(k2)RNL(k3)〉β ≃ (2π)−
3
2 δ3(k1 + k2 + k3)(2m

2
Plǫ)

∂

∂φ

(
H

φ̇

)

×
[
PR(k1)

k3
1

PR(k2)

k3
2

(
1 +

1

2
fB(k1) +

1

2
fB(k2) + fB(k1)fB(k2)

)

+
PR(k2)

k3
2

PR(k3)

k3
3

(
1 +

1

2
fB(k2) +

1

2
fB(k3) + fB(k2)fB(k3)

)

+
PR(k3)

k3
3

PR(k1)

k3
1

(
1 +

3

2
fB(k3) +

3

2
fB(k1) + 3fB(k3)fB(k1)

)]
, (5.29)

where PR(k) is defined in Eq. (2.56). The three momenta form a triangle due to

the presence of the delta function. The non-linear parameter fNL for these three

momenta configurations are discussed below :

• Squeezed triangle case : For a “squeezed” triangle the configuration suggests

|k1| ≈ |k2| ≈ k ≫ |k3|. In this configuration the fNL will be

f th
NL =

5

6
(δ − ǫ)

(
2 + 2fB(k3) coth

(
βk

2

))
. (5.30)

At low temperature β → ∞ and fB(k3) → 0, yielding the same contribution

to the fNL for super-cool inflation. The minimum value k3 can obtain when

the corresponding wavelength is of Hubble size while crossing the horizon

such that λ3 = 1
k3

∼ H−1 which implies βk3 ∼ 0.238. Hence it yields

f th
NL =

5

6
(δ − ǫ) × 2

(
1 + 3.72 coth

(
βk

2

))

= fNL × 2

(
1 + 3.72 coth

(
βk

2

))
. (5.31)

A lower bound on βk can be given from thermal power spectrum which is

given in Eq. (5.16) and for this constraint fNL will be maximum yielding

f th
NL = 64.82fNL ∼ 0.65.

• Equilateral triangle case : For a “equilateral” triangle we have |k1| = |k2| =

|k3| = k and in this case the fNL will be

f th
NL =

5

6
(δ − ǫ)

(
3 +

5

4 sinh2
(

βk
2

)
)

= fNL

(
3 +

5

4 sinh2
(

βk
2

)
)
. (5.32)
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This implies that for the modes corresponding to our present horizon βk >

0.238 and the f th
NL = 90.85fNL ∼ 0.9.

• Folded triangle case : For “flattened” isosceles triangle or the “folded” tri-

angle case we have |k1| = |k3| = 1
2
|k2| = k and in this case the fNL will

be

f th
NL =

5

6
(δ − ǫ)

(
3 +

1

sinh2
(

βk
2

)
)

= fNL

(
3 +

1

sinh2
(

βk
2

)
)
. (5.33)

In this configuration the non-linearity will be f th
NL = 73.28fNL ∼ 0.73 at

horizon crossing for the modes corresponding to our current horizon.
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Figure 5.3:
fth

NL

fNL
as a function of βk for different triangle configurations of the three

momenta.

In Fig. (5.3) the thermal enhancement factor
fth

NL

fNL
is plotted as a function of βk

for three different triangle configurations of the three momenta. From the above

discussion it is seen that the maximum contribution for fNL comes from the “equi-

lateral” configuration, though the contribution from the other two configurations

are of the same order. Non-Gaussianity in all these three cases may be measurable

by the 21-cm background radiation observations [45].
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5.4 Non-Gaussianity in trispectrum from ther-

mal distribution of inflaton

In this model of slow-roll inflation with a radiation era prior to inflation, the anal-

ysis for trispectrum turns out to be quite different from the super-cool inflationary

scenario. In a generic single-field slow-roll inflationary scenario, with no prior

radiation era, the trispectrum non-Gaussianity is of the order of ǫ2 and the non-

Gaussianity arising from trispectrum turns out to be smaller than that of from

bispectrum. The reason that the non-Gaussianities arising from single-field slow-

roll model depends upon the slow-roll parameters is due to the non-linear evolution

of R whose co-efficients are function of slow-roll parameters (see Eq. (2.65)).

In presence of a pre-inflationary radiation era the four point correlation function

which contributes to the non-Gaussianity will be thermal averaged as in the case

of power spectrum and bispectrum. It is worth pointing out that due to thermal

averaging, in the case of slow-roll inflation with prior radiation era, the four-point

function of linear comoving curvature perturbations is not just the square of the

two-point function as that would have been the case at zero temperature. Following

Eq. (2.61) the connected part of the four-point correlation function of comoving

curvature perturbation will be

〈R(k1)R(k2)R(k3)R(k4)〉c = 〈R(k1)R(k2)R(k3)R(k4)〉

− (〈RL(k1)RL(k2)〉 〈RL(k3)RL(k4)〉 + 2 perm) .

(5.34)

So in this case, by connected part of the four-point function, as defined in above

equation, we will simply mean the excess of the thermal averaged of four-point

function than the square of its two-point Gaussian part. We will now define the

non-linear parameter τNL in the following way

〈RL(k1)RL(k2)RL(k3)RL(k4)〉c ≡ 〈RL(k1)RL(k2)RL(k3)RL(k4)〉β
−
(
〈RL(k1)RL(k2)〉β 〈RL(k3)RL(k4)〉β + 2 perm.

)

= τNL

[
PR(k1)

k3
1

PR(k2)

k3
2

δ3(k1 + k3)δ
3(k2 + k4) + 2 perm

]
. (5.35)
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Hence in this case τNL will not depend upon the slow-roll parameters as the non-

linear R is not contributing to give rise to trispectrum non-Gaussian features. The

thermal average of the four-point correlation function of inflaton fluctuation has

been calculated in the last section in Eq. (5.28). Using this equation the thermal

average of the four-point correlation of curvature perturbation can be derived as

〈RL(k1)RL(k2)RL(k3)RL(k4)〉β =
PR(k1)

k3
1

PR(k2)

k3
2

[
δ3(k1 + k4)δ

3(k2 + k3)+

δ3(k1 + k3)δ
3(k2 + k4) {1 + fB(k1) + fB(k2) + 2fB(k1)fB(k2)}] +

PR(k1)

k3
1

×

PR(k3)

k3
3

[
δ3(k1 + k2)δ

3(k3 + k4) {1 + 2fB(k1) + 2fB(k3) + 4fB(k1)fB(k3)}
]
,

(5.36)

and the thermal average of two-point function can be given in terms of the power

spectrum as

〈RL(k1)RL(k2)〉β =
PR(k1)

k3
1

(1 + 2fB(k1)) δ
3(k1 + k2). (5.37)

Hence the connected part will be

〈RL(k1)RL(k2)RL(k3)RL(k4)〉c = −PR(k1)

k3
1

PR(k2)

k3
2

[
δ3(k1 + k3)δ

3(k2 + k4)

{fB(k1) + fB(k2) + 2fB(k1)fB(k2)} + 2δ3(k1 + k4)δ
3(k2 + k3) ×

{fB(k1) + fB(k2) + fB(k1)fB(k2)}] (5.38)

The four momenta in this case will not form a quadrilateral as in other trispectrum

cases. But due to the presence of two delta functions on the R.H.S. of the above

equation the non-linear parameter τNL can be calculated in the following two cases

1. k1 = −k3, k2 = −k4 and ki = k (i = 1, 2, 3, 4) :

τ th
NL = − 1

cosh(βk) − 1
. (5.39)

The maximum observable value of
∣∣τ th

NL

∣∣ can be obtained using the constraint

on the comoving temperature as βk > 0.238. Hence for βk ∼ 0.238 one finds

that τ th
NL ∼ −35.14.

2. k1 = −k4, k2 = −k3 and ki = k (i = 1, 2, 3, 4) :

τ th
NL = −2

1 − 2eβk

(eβk − 1)2 . (5.40)

The maximum value of τ th
NL for this case will be τ th

NL ∼ −42.58.
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Case 1 :
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Case 2 :
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Figure 5.4: Plot of τ th
NL for two different momenta configurations as a function of

βk

In Fig. (5.4) we have plotted τ th
NL as a function of βk. We find that the maximum

value of non-Gaussianity comes from the configuration when k1 = −k4, k2 = −k3

and ki = k (i = 1, 2, 3, 4) which is ∼ −42. We do not compare this contribution

to non-Gaussianity due to thermal initial states with the zero temperate case as

there is no contribution from the later at this order and the leading order τNL in

zero temperature is O(ǫ2).

5.5 Conclusion

We studied the effect of a decoupled thermal spectrum of inflatons (which exist

in the scenario where the inflation is preceded by a prior thermal era) on the

non-Gaussianity of the primordial perturbation. We found that thermal infla-

tons can enhance the bispectrum non-Gaussianity parameter fNL by a factors of

(65 − 90) depending upon the momentum configuration. The zero temperature

non-Gaussianity parameter fNL in single field inflation models is proportional to

the slow roll parameters and is expected to be of order ∼ 10−2. Therefore the

observed value of fNL in thermal history models will be of ∼ 1. This is too small

to be measured by WMAP or even the forthcoming PLANCK experiment. Mea-

surements of anisotropies in the Hydrogen 21-cm radiation background can detect
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non-Gaussianities as low as fNL ∼ 0.1 [45], and this may be the ideal experiment

in which non-Gaussianities with a thermal origin can be observed. The 21-cm

observations may also be able to measure the non-Gaussianity in the trispectrum

τNL ∼ O(10) and for which the prediction from thermal history inflation scenarios

is 0 > τNL > −43. We conclude that a signature of thermal inflaton background

at the time of inflation is a large trispectrum non-Gaussianity compared to the

bispectrum non-Gaussianity.



Chapter 6

Conclusion

Phenomenology of early Universe has become an active field of research in last

few decades as several satellite experiments like COBE, WMAP and very recently

PLANCK have opened new vistas to look into the dynamics of early Universe by

determining their imprints on several features of CMBR. Quantum Field Theory

plays a major role in analyzing early Universe phenomena like inflation [8], re-

heating [91] of Universe after inflation, Baryogenesis [92] and Letpogenesis [93]

and Big Bang Nucleosynthesis [94]. We focus mainly in the inflationary dynamics

and its signatures in CMBR in this thesis. We have applied several methods of

Quantum Field Theory to extend the already existing inflationary scenarios by

including interesting features like inflaton’s short-ranged interactions of the and

thermal distribution of the inflaton due to a radiation era preceded by inflation.

The pleasingly simple and widely accepted single-field slow-roll inflationary

model has been extensively discussed in Chapter 2. In such a scenario inflation

is driven by one scalar field, with canonical kinetic term, which slowly rolls along

its potential driving the Universe to inflate exponentially. The preferred initial

vacuum chosen for inflaton field is the Bunch-Davies vacuum. Such a model pre-

dicts a nearly scale invariant power spectrum (as given in Eq. (2.48)) and almost

Gaussian distribution of the primordial perturbations which are consistent with

the CMBR data [2]. The amount of primordial non-Gaussianity predicted by such

a model of inflation are tiny : non-Gaussianity arising from the bispectrum is of

the order of the slow roll parameter ǫ (Eq. (2.69)) whereas that of from trispectrum

78
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is of the order of ǫ2 (Eq. (2.73)). Such tiny non-Gaussianities are not likely to be

measured either by the present experiments like WMAP or PLANCK or by future

experiments where the non-Gaussianities imprinted in the 21-cm background will

be measured.

Including interactions of the inflaton field is the simplest extension of the above

mentioned inflationary scenario and it is being done most generally by modifying

the inflaton’s potential. Many such Particle Physics motivated potentials have

been studied in the literature [20]. In Quantum Field Theory, one way of treating

interacting fields is by using methods of Källén-Lehmann spectral representation

which is a non-perturbative method of calculating two-point correlation functions

of quantum fields such as Feynman propagator, Wightman function etc. In Chap-

ter 3 we apply the same formalism of Källén-Lehmann spectral representation to

calculate the power spectrum of an interacting scalar field as power spectrum of

an inflaton is nothing but a equal-time Wightman function of inflaton field in a

curved background. Though we calculate the power spectrum in quasi-de Sitter

background, which is a curved background, one can use the flat space spectral

function of interacting scalar field to determine the power spectrum because these

kind of interactions, being short-ranged, can avoid the effect of gravity at short

wavelength limit. We derive a general method of calculating power spectrum of

interacting scalar field using Källén-Lehmann spectral function and the form of the

comoving curvature power spectrum for interacting inflaton is given in Eq. (3.13).

In Chapter 3 we analyze two cases where such method can be applied. First we

consider the case of a decaying inflaton where the decay width, Γ, of the inflaton

is smaller than H/N (H being the Hubble constant during inflation and N being

the number of e-foldings inflation lasts for). Such a scenario is natural to take into

account as the inflaton must decay at the end of inflation to reheat the Universe.

Again as the lifetime of the inflaton is of the same order of the duration of inflation,

the correction due to the inflaton’s decay width will not reflect into the inflaton’s

potential. We observe that the decay width of the inflaton yields suppression of

long distance correlations and thereby a loss in the quadrupole anisotropy of the

TT anisotropy spectrum of CMBR. Secondly we analyze a scenario where the

inflaton is not a fundamental scalar but is a composite of fundamental fermionic
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constituents. The fact that a fundamental scalar is still unobserved in nature

motivates such a scenario. If the compositeness scale of the condensate inflaton

is of the order of the scale of perturbations then also the features due to the

composite nature of inflaton will not reflect into the potential. We observe that due

to the composite nature of the inflaton the power spectrum shows more interesting

variations yielding oscillatory features in the low l region of the TT anisotropy

spectrum of the CMBR. Wavelet analysis of WMAP data reveals that the actual

data may have such oscillatory features [52]. These kind of suppression of power

or the oscillatory features in the low l region of CMBR anisotropy spectrum may

be vindicated in the WMAP data and confirmed in future by PLANCK.

Scalar fields, being naturally homogeneous and isotropic, became the most

favorable candidate for inflaton. In spite of that attempts were made in the litera-

ture to look for other quantum fields to play the role of an inflaton, such as vectors

fields [21], classical and homogeneous spinor fields [22], condensate of spinor fields

[23, 24]. In Chapter (4) we deal with an exotic quantum field, the unparticle [25],

which has peculiar properties like its anomalous dimensions due to which it yields

long range forces while exchanged between two systems. Tensor unparticle, gener-

ating long range forces through the coupling with energy-momentum tensor, can

mimic gravity [26] and thus often named as ungraviton in literature. Due to its

anomalous dimension, the potential yielded due to exchange of such ungravitons

gives rise to forces which deviates from usual Newtonian inverse square law force.

Thus if such ungravitons are being exchanged between Sun and planets in the Solar

system, it can give rise to extra perihelion precession of planetary orbits. Vector

unparticles can also be exchanged in such Solar system bodies as it couples to bary-

onic matter present in the Sun and the planet. We put bounds on the coupling

of the unparticles from Mercury’s perihelion precession and showed in Chapter (4)

that unparticle coupling is more stringent when its anomalous dimension du . 1.4.

In this chapter we also vindicate the possibility of having scalar unparticle as in-

flaton. Such a scenario also results in suppression of power in the low multipole

region which can be confirmed by WMAP or PLANCK data in future.

We discuss in Chapter (2) that if the number of scalar fields present during in-

flation is grater than one [28] or the inflaton field has higher derivative interacting
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terms yielding non-canonical kinetic term for the inflaton [29] then such scenarios

yield large primordial non-Gaussianity compared to that of single-field slow-roll

inflationary model. In [30] it has been shown that non-Bunch-Davies vacuum can

give rise to large non-Gaussianities. Such a scenario can arise when there is a

radiation era preceded by inflation. Inflation takes place when the energy density

of radiation drops below the value of the potential of a coherent scalar field. Due

to the initial thermal vacuum yielding thermal distribution of the inflaton fluc-

tuations, we use the techniques of Thermal Field Theory to perform the thermal

averaging of the two, three and four-point correlation functions of inflaton fluctu-

ations. We show that the thermal averaging enhances the fNL by a factor of at

most 90 (in the equilateral configuration) from its value obtained from single-field

slow-roll inflationary model. This amount of primordial non-Gaussianity arising

from bispectrum is in the range of detectability with the 21-cm anisotropy mea-

surements [45]. On the other hand the four-point function in this case appears

due to the thermal averaging and the fact that thermal averaging of four-point

correlation is not the same as the square of the thermal averaging of the two-point

function. Due to this fact τNL is not proportional to the slow-roll parameters and

can be as large as -42. Non-Gaussianities in the four-point correlation of the order

of 10 can be detected by 21-cm background observations [46] and thus the trispec-

trum non-Gaussianity appearing in this case is in the rage of its detectability. As

the single-field slow-roll inflationary model predict fNL > |τNL|, then measure-

ment of larger trispectrum non-Gaussianity than bispectrum can be considered as

a signature of such a pre-inflationary radiation era.

To conclude, we have applied several methods of Quantum Field Theory to an-

alyze different dynamics of early Universe. But the features we thus obtained, like

suppression of power (due to resonant or unparticle inflaton) or oscillatory features

in the low l region of TT anisotropy of CMBR (due to composite inflaton) can be

confirmed by more precise measurements of CMBR anisotropy by PLANCK. On

the other hand, the primordial non-Gaussianity measurement which can confirm

the existence of pre-inflationary radiation era should await till the low-frequency

21-cm observation becomes possible by advent of adequate technology.



Appendix A

Basics of FLRW Cosmology

In this section we briefly describe the essential features of Friedmann-Lemâitre-

Robertson-Walker (FLRW) cosmology which is described by FLRW metric, con-

sidered as the background metric of our Universe. This homogeneous and spatially

isotropic (i.e. the 3-surface of constant curvature) metric has its unique line ele-

ment in spherical spatial coordinates as

ds2 = dt2 − a2(t)

[
dr2

1 − kr2
+ r2

(
dθ2 + sin2 θdφ2

)]
. (A.1)

The 3-dimensional space (4-dimensional space-time) can be elliptical (closed), Eu-

clidean (flat) or hyperbolic (open) depending on whether k = 1, 0, or −1 respec-

tively. This metric is able to describe an expanding universe through its dynamical

parameter a(t) known as the scale factor.

The Einstein field equation in General Relativity connects the background met-

ric with the matter content of the universe as

Gµν = 8πGTµν , (A.2)

where the Einstein tensor Gµν is derived from the background metric and Tµν being

the energy-momentum tensor of the matter content of the Universe. The perfect

fluid, in its rest frame and under the assumption of homogeneity and isotropy, is

described by a energy-momentum tensor as

T µ
ν = diag (ρ(t),−p(t),−p(t),−p(t)) , (A.3)

ρ and p being the energy density and pressure of the fluid respectively. With the

FLRW metric (Eq. A.1) along with a perfect fluid as the content of the Universe,
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the Einstein field equations given in Eq. (A.2) lead to which is known as the

Friedmann equation given as

H2 ≡
(
ȧ

a

)2

=
8πG

3
ρ− k

a2
. (A.4)

Here the overdot refers to a time derivative ˙≡ ∂t and H being the Hubble param-

eter. This equation can be re-written in terms of physically measurable quantities

as

Ω − 1 =
k

a2H2
, (A.5)

where Ω ≡ ρ
ρcrit

is the ratio of total to the critical density and the critical density of

Universe at time t is defined as ρcrit ≡ 3H2

8πG
. The subscript 0 will refer to the current

epoch and the curvature density of Universe at present is defined as Ωk = Ω0 − 1

which includes contributions from matter, radiation and any form of energy such

as a cosmological constant. Observations show that −0.0178 < Ωk < 0.0063 for

WMAP+BAO+SNa and −0.0133 < Ωk < 0.0084 for WMAP+BAO+H0 [2] which

implies that our present Universe is very flat (Ωk ∼ 0). Hence, for simplicity, we

will consider k = 0 for the rest of our discussion. In the same spirit the line element

for FLRW metric convenient for further discussion will be

ds2 = dt2 − a2(t)
[
dr2 + r2

(
dθ2 + sin2 θdφ2

)]
= dt2 − a2(t)dx2, (A.6)

where the last equality is written in terms of Cartesian coordinates. At this point

it is important to introduce the concept conformal time τ as

dτ =
dt

a
. (A.7)

Then line element becomes conformally flat and can be written as

ds2 = a2(τ)
(
dτ 2 − dx2

)
. (A.8)

Now let us go back and discuss the features of Einstein field equations in FLRW

cosmology with a perfect fluid as the matter content of the Universe. The conser-

vation of energy-momentum leads to the equation

ρ̇ = −3H(ρ+ p), (A.9)
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which also yields the evolution of energy density with scale factor as

ρ = ρ0

(a0

a

)3(1+ω)

, (A.10)

defining the state parameter as ω ≡ p
ρ
. Eq. (A.9) along with the Friedmann

equation (Eq. (A.4)) yields the acceleration equation

ä

a
= −4πG

3
(ρ+ 3p). (A.11)

This equation shows that for an accelerating Universe (ä > 0), the fluid dominating

the energy density of the Universe should have an equation of state as

p < −1

3
ρ. (A.12)

Any conventional physical fluid, having positive pressure, is unable to drive the

Universe to accelerate. But inflation is such a scenario during which Universe

accelerates and inflates exponentially. Hence to yield inflation Quantum theory

comes in to rescue. The existence of scalar fields in Quantum theory allows the

Universe to accelerate by slow-rolling of a scalar field through its potential.



Appendix B

Dynamics of single-field slow-roll

inflationary model

We will briefly summarize the essential features of inflationary dynamics in terms

of its simplest model known as the single-field slow-roll inflation. An inflationary

model is defined by specifying inflaton’s kinetic and potential term along with its

coupling to gravity. In its simplest model the inflaton field is minimally coupled to

gravity. In general, the total action of a minimally coupled scalar field φ(t, ~x) can

be written as a sum of gravitational Einstein-Hilbert action SEH and the action of

the scalar field S(φ), with canonical kinetic term, as

S =

∫
d4x

√−g
[
−M

2
Pl

2
R +

1

2
gµν∂µφ∂νφ− V (φ)

]

= SEH + S(φ). (B.1)

Here MPl ≡ 1√
8πG

is the reduced Planck mass and R is the Ricci curvature scalar.

The field equation of motion is obtained by varying the scalar action with field

δS(φ)
δφ

= 0, which yields

φ̈+ 3Hφ̇− ∇2φ

a2
+ V,φ = 0, (B.2)

where V,φ ≡ ∂V
∂φ

. The energy-momentum of the field is obtained by varying the

action with the metric gµν as

Tµν ≡ − 2√−g
δS (φ)

δgµν
= ∂µφ∂νφ− gµν

(
1

2
∂αφ∂αφ− V (φ)

)
. (B.3)
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Under the assumption of a perfect fluid, defined in Eq. (A.3), the energy-momentum

tensor of a scalar field takes the form

ρφ =
1

2
φ̇2 +

1

2

(∇φ)2

a2
+ V (φ)

pφ =
1

2
φ̇2 − 1

6

(∇φ)2

a2
− V (φ) (B.4)

Hence a scalar field is able to accelerate the Universe if the configuration satisfies :

1

2

(∇φ)2

a2
≪ V (φ), (B.5)

1

2
φ̇2 ≪ V (φ), (B.6)

which allow a equation of state for the scalar field as pφ = −ρφ, good enough to

drive inflation. Since in the first condition the gradient redshifts as the universe

expands, this condition will always be satisfied if it is initially satisfied. Hence

the scalar field which drives inflation will be a homogeneous field (i.e. a scalar

field varies only with time). In this spirit one can decompose a scalar field in its

“classical part” φ0, which is the expectation value of the field and responsible for

driving inflation, and quantum fluctuations around φ0 as

φ(t, ~x) = φ0(t) + δφ(t, ~x). (B.7)

Hence the equation of motion of inflaton field will be

φ̈0 + 3Hφ̇0 + V,φ = 0, (B.8)

which can be obtained from Eq. (B.2).

B.1 Conditions for slow-rolling of the inflaton

The second condition given in Eq. (B.6) tells us that the kinetic term of the inflaton

field is negligible with respect to its potential, which signifies that the field is slow-

rolling its potential. This condition also demands that V,φ ≫ φ̈, which yields the

equation of motion for a inflaton field during slow-roll as

3Hφ̇0 ∼ −V,φ . (B.9)
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The slow-roll of inflaton depends up on the shape of the potential. Defining the

slow-roll parameters during inflation as

ǫ ≡ M2
Pl

2

(
V,φ
V

)2

,

η ≡ M2
Pl

V,φφ

V
, (B.10)

the slow-roll of inflaton is ensured by having ǫ, |η| ≪ 1 and inflation ends when

the slow-roll conditions are violated i.e. ǫ ∼ 1.

As during inflation the energy density of Universe is dominated by the inflaton

field, the Friedmann equation given in Eq. (A.4) will take the form

H2 ≡
(
ȧ

a

)2

=
8πG

3
V (φ). (B.11)

Another two useful form of the slow-roll parameter ǫ required for further discussions

are

ǫ = − Ḣ

H2
=

1

2M2
Pl

φ̇2

H2
, (B.12)

which can be derived from the definition of ǫ given in Eq. (B.10) and using Eq. (B.9)

and Eq. (B.11).

The duration of inflation is quantified by the number of e-folds which is defined

as

N(φ) = ln
aend

a
∼ 1

M2
Pl

∫ φ

φend

V

V,φ
dφ. (B.13)

Inflation should last for at leastNtotal = ln aend

abegin
∼ 60 to solve the severe pathologies

of Big Bang model like the Horizon problem and the Flatness problem.



Appendix C

Perturbations during Inflation

In this section we will discuss the perturbations in the Einstein field tensor and in

the Klein-Gordon equation generated during inflation. The scalar perturbations in

the FLRW metric given in Eq. (2.4) are not invariant quantities but change under

a change of coordinates. Consider a coordinate change as

x̃0 = x0 + ξ0

x̃i = xi + δijβ,j . (C.1)

The invariance of line element in both the coordinate systems demands

ds2 = g̃µνdx̃
µdx̃ν = gµνdx

µdxν , (C.2)

where we can relate the two coordinate systems as :

ã2(x̃0) = a2(x0)

(
1 + 2

a′

a
ξ0′
)
,

dx̃0 = (1 + ξ0′)dx0 + ∂iξ
0dxi,

dx̃i = dxi + ∂iβ ′dx0 + ∂j∂
iβdxj. (C.3)

Thus up to first order in perturbations one gets

(
dx̃0
)2 ≃ (1 + 2ξ0′)

(
dx0
)2

+ 2∂iξ
0dx0dxi,

dx̃idx̃j ≃ dxidxj + ∂iβ ′dx0dxj + ∂jβ ′dx0dxi + ∂k∂
jβdxkdxi + ∂k∂

iβdxkdxj .

(C.4)

In the longitudinal gauge gµν and g̃µν are diagonal yielding vanishing mixed terms

like dx̃0dx̃i. Thus putting these values of ã2(x̃0), (dx̃0)
2

and dx̃idx̃j into Eq. (C.2)
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and equating one gets

Ã = A− a′

a
ξ0 − ξ0′,

ψ̃ = ψ +
a′

a
ξ0. (C.5)

These transformations will be required in deriving the gauge-invariant quantities

later on in this chapter.

The gauge transformations also changes scalar quantities other than the scalar

metric perturbations. Let us consider a background scalar quantity f(t) which is

defined independently of the coordinates at a given space-time point. If we only

change the slicing then only the time coordinate will be affected as

τ̃ (τ,x) = τ + ξ0(τ,x). (C.6)

This change of slicing will not change the form of f(t) at a given spatial position

but will change the perturbations around it. This implies

f(τ) + δf(τ,x) = f(τ̃) + δ̃f(τ̃ ,x) = f(τ̃) + δ̃f(τ,x), (C.7)

where we have used Eq. (C.6) in getting the last equality. Thus one gets

δ̃f(τ,x) = δf(τ,x) − (f(τ̃) − f(t)) ≃ δf(τ,x) − f ′ξ0. (C.8)

If we consider a change in threading there will be no change in the perturbation

as the background value f(t) is independent of position.

C.1 Perturbed Einstein field equations

In the longitudinal gauge the perturbed metric will take the form as

gµν = g0
µν + δgµν = a2(τ)


 1 + 2A 0

0 −(1 − 2ψ)δij


 , (C.9)

whose inverse metric will be

gµν = gµν
0 + δgµν =

1

a2(τ)


 1 − 2A 0

0 −(1 + 2ψ)δij


 . (C.10)
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• Perturbed affine connections :

Assuming the affine connections to be symmetric under exchange of its lower

indices, the affine connections can be derived from a metric as

Γα
βγ =

1

2
gασ
0

[
g0

σβ,γ + g0
σγ,β − g0

γβ,σ

]
, (C.11)

where the perturbed affine connections will be

δΓα
βγ =

1

2
δgασ

[
g0

σβ,γ + g0
σγ,β − g0

γβ,σ

]
+

1

2
gασ
0 [δgσβ,γ + δgσγ,β − δgγβ,σ] .(C.12)

Hence for the metric given in Eq. (C.9), the non-zero affine connections will

be

Γ0
00 = a′

a
, Γi

0j = a′

a
δi

j , Γ0
ij = a′

a
δij ,

δΓ0
00 = A′, δΓ0

0i = ∂iA, δΓ0
ij = −

(
2a′

a
(A + ψ) + ψ′) δij ,

δΓi
00 = ∂iA, δΓi

0j = −ψ′δi
j, δΓi

jk = ∂iψδjk − ∂kψδ
i
j − ∂jψδ

i
k.

(C.13)

• Perturbed Ricci tensors :

Knowing the affine connections of a given metric the Ricci tensors of the

space-time can be calculated as:

Rµν = ∂αΓα
µν − ∂µΓα

αν + Γα
σαΓσ

µν − Γα
σνΓ

σ
µα, (C.14)

and perturbing which one gets

δRµν = ∂αδΓ
α
µν − ∂µδΓ

α
αν + δΓα

σαΓσ
µν + Γα

σαδΓ
σ
µν − δΓα

σνΓ
σ
µα − Γα

σνδΓ
σ
µα.

(C.15)

Hence for the perturbed FLRW metric the Ricci tensors will be

R00 = −3a′′

a
+ 3

(
a′

a

)2
, R0i = 0, Rij =

[
a′′

a
+
(

a′

a

)2]
δij , (C.16)

where the perturbed ones are

δR00 = ∂i∂
iA + 3ψ′′ + 3

(
a′

a

)
(ψ′ + A′),

δR0i = 2∂iψ
′ + 2

(
a′

a

)
∂iA,

δRij =

[
−2

a′′

a
(A+ ψ) − 2

(
a′

a

)2

(A+ ψ) − a′

a
(A′ + 5ψ′) − ψ′′ + ∂k∂

kψ

]
δij

+∂i∂j(ψ − A). (C.17)
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• Perturbed Ricci scalars :

The Ricci scalar or the curvature scalar of a space-time is

R = gµνRµν , (C.18)

and the perturbation of the Ricci scalar is

δR = δgµνRµν + gµνδRµν . (C.19)

Hence for the perturbed FLRW metric the Ricci scalar and the perturbed

Ricci scalar are

R = − 6

a2

(
a′′

a

)
,

δR =
1

a2

[
12
a′′

a
A+ 2∂i∂

iA+ 6
a′

a
A′ + 6ψ′′ + 18

a′

a
ψ′ − 4∂i∂

iψ

]
(C.20)

respectively.

• Perturbed Einstein tensor :

The Einstein tensor Gµν is constructed by the Ricci tensor and Ricci scalar

as

Gµν = Rµν −
1

2
Rgµν , (C.21)

and its linear order perturbation yields

δGµν = δRµν −
1

2
δRgµν −

1

2
Rδgµν . (C.22)

In components the Einstein tensor is

G00 = 3
(

a′

a

)2
, G0i = 0, Gij =

{
−2a′′

a
+
(

a′

a

)2}
δij , (C.23)

and the components of the perturbed Einstein tensor are

δG00 = 2∂i∂
iψ − 6

a′

a
ψ′,

δG0i = 2∂iψ
′ + 2

a′

a
∂iA,

δGij =

[
4
a′′

a
(A + ψ) − 2

(
a′

a

)2

(A+ ψ) + 2
a′

a
(A′ + 2ψ′) + 2ψ′′

+∂k∂
k(A− ψ)

]
δij − ∂i∂j(A− ψ). (C.24)
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For requirement, we also compute the linear perturbation of the mixed com-

ponent Einstein tensor Gµ
ν ≡ gµαGαν as

δGµ
ν = δgµαGαν + gµαδGαν , (C.25)

which can be written in components as

δG0
0 =

2

a2

[
∂i∂

iψ − 3
a′

a
ψ′ − 3A

(
a′

a

)2
]
,

δG0
i =

2

a2

[
∂iψ

′ +
a′

a
∂iA

]
,

δGi
0 = − 2

a2

[
∂iψ′ +

a′

a
∂iA

]
,

δGi
j = − 1

a2

[
4
a′′

a
A− 2

(
a′

a

)2

A+ 2
a′

a
(A′ + 2ψ′) + 2ψ′′ + ∂k∂

k(A− ψ)

]
δi

j

−∂i∂j(A− ψ). (C.26)

It is important to note here that as a perfect fluid has stress part, i.e. T i
j ∝

δi
j, thus according the Einstein field equations δGi

j cannot have any stress

part implying

∂i∂j(A− ψ) = 0 ⇒ A = ψ. (C.27)

Hence we are left with only one degree of scalar perturbation ψ in the per-

turbed FLRW metric.

• Perturbed stress energy-momentum tensor of inflaton :

Note that the inflaton field φ0 is a homogeneous field φ0 ≡ φ0(τ) and the

quantum fluctuations around it is both function of space and time δφ ≡
δφ(τ,x). Thus the stress energy-momentum tensor, given in Eq. (B.3), for

the inflaton filed will be

T00 = 1
2
φ′2

0 + a2(τ)V (φ), T0i = 0, Tij =
(

1
2
φ′2

0 − a2(τ)V (φ)
)
δij.(C.28)

Perturbing linearly the stress energy-momentum tensor, given in Eq. (B.3),

one gets

δTµν = ∂µδφ∂νφ+ ∂µφ∂νδφ− δgµν

(
1

2
∂αφ∂αφ− V (φ)

)

− gµν

[
1

2
δgαβ∂αφ∂βφ+

1

2
gαβ∂αδφ∂βφ+

1

2
gαβ∂αφ∂βδφ− ∂V (φ)

∂φ
δφ

]
,

(C.29)
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which can be written in components as

δT00 = δφ′φ′
0 + 2Aa2(τ)V (φ) + a2(τ)V,φ δφ,

δT0i = ∂iδφφ
′
0,

δTij =
[
δφ′φ′

0 − Aφ′2
0 − a2(τ)V,φ δφ− ψφ′2

0 + 2a2(τ)ψV (φ)
]
δij .

(C.30)

The linear perturbation of the mixed stress energy-momentum tensor T µ
ν ≡

gµαTαν can be written as

δT µ
ν = δgµαTαν + gµαδTαν , (C.31)

and its components are

δT 0
0 =

1

a2

[
δφ′φ′

0 −Aφ′2
0 + a2(τ)V,φ δφ

]
,

δT 0
i =

1

a2
∂iδφφ

′
0,

δT i
0 = − 1

a2
∂iδφφ′

0,

δT i
j = − 1

a2

[
δφ′φ′

0 − Aφ′2
0 − a2(τ)V,φ δφ

]
δi

j. (C.32)

• Perturbed Einstein field equations :

Einstein field equations, described in Eq. (A.2), relates the space-time geom-

etry with the matter content of the Universe. Thus the perturbations in the

metric and as well as in the matter are studied by perturbing the Einstein

field equations as

δGµν =
1

M2
Pl

δTµν . (C.33)

Using Eqs. (C.26) and Eqs. (C.32) and equating the components of the above

equations one gets the following field equations as

∇2ψ − 3Hψ′ − 3H2ψ =
1

2M2
Pl

[
δφ′φ′

0 − ψφ′2
0 + a2(τ)V,φ δφ

]
,

ψ′ + Hψ =
1

2M2
Pl

δφφ′
0,

ψ′′ + 3Hψ′ +
(
2H′ + H2

)
ψ =

1

2M2
Pl

[
δφ′φ′

0 − ψφ′2
0 − a2(τ)V,φ δφ

]
.

(C.34)

Here H ≡ a′

a
is the conformal Hubble parameter and we have used the con-

strain A = ψ in deriving the above equations.
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C.2 Perturbed Klein-Gordon Equation

The Klein-Gordon equation of a canonical scalar field is obtained by varying the

scalar action given in Eq. (B.1) with respect to the field δS(φ)
δφ

= 0 which yields

1√−g∂µ

(√−ggµν∂νφ
)

+ V,φ = 0. (C.35)

An equivalent form of this equation is given in Eq. (B.2) where gµν is the unper-

turbed FLRW metric. Perturbing the Klein-Gordon equation linearly one gets

δ

(
1√−g

)
∂µ

(√−ggµν
0 ∂νφ0

)
+

1√−g∂µ

(
δ
(√−g

)
gµν
0 ∂νφ0

)
+

1√−g∂µ

(√
−gδgµν∂νφ0

)
+

1√−g∂µ

(√
−ggµν

0 ∂νδφ
)

+ V,φφ δφ = 0.

(C.36)

The perturbed terms in the above equation are δ
(

1√−g

)
, δ (

√−g), δgµν and δφ.

Now the derivative of an invertible matrix A can be computed as

d detA

dα
= det(A)tr

(
A−1dA

dα

)
. (C.37)

Thus one gets

δ
(√

−g
)

= − δg

2
√−g = −g0g

µν
0 δgµν

2
√−g = a4(A− 3ψ),

δ

(
1√−g

)
=

δg

2 (−g)
3
2

=
g0g

µν
0 δgµν

2 (−g)
3
2

= − 1

a4
(A− 3ψ). (C.38)

where g0 = det g0
µν . Hence the first, second, third and the fourth term of Eq. (C.36)

will be

δ

(
1√−g

)
∂µ

(√−ggµν
0 ∂νφ0

)
= − 1

a2
(A− 3ψ)

(
φ′′

0 − 2
a′

a
φ′

0

)
,

1√−g∂µ

(
δ
(√

−g
)
gµν
0 ∂νφ0

)
=

1

a2
(A− 3ψ)

(
φ′′

0 − 2
a′

a
φ′

0

)
+

1

a2
(A′ − 3ψ′)φ′

0,

1√−g∂µ

(√
−gδgµν∂νφ0

)
= − 2

a2

(
Aφ′′

0 + 2
a′

a
Aφ′

0 + A′φ′
0

)
,

1√−g∂µ

(√−ggµν
0 ∂νδφ

)
=

1

a2

(
δφ′′ + 2

a′

a
δφ′ − ∂i∂

iδφ

)
. (C.39)

Now, using the Euler-Lagrange equation of motion for the scalar field in conformal

metric

φ′′
0 + 2

a′

a
φ′

0 + a2V,φ = 0, (C.40)
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one gets from Eq. (C.36) the perturbed Klein-Gordon equation as

δφ′′ + 2
a′

a
δφ′ − ∂i∂

iδφ+ a2V,φφ δφ− (A′ + 3ψ′)φ′
0 + 2a2AV,φ = 0, (C.41)

and putting the constrain A = ψ one gets from the above equation

δφ′′ + 2
a′

a
δφ′ − ∂i∂

iδφ+ a2V,φφ δφ = 4ψ′φ′
0 − 2a2V,φ ψ. (C.42)

C.3 Equation of motion of metric scalar pertur-

bation ψ

To derive the equation of motion for ψ one can use the perturbed Einstein field

equations given in Eqs. (C.34). Adding the first two equations of Eqs. (C.34) one

gets

ψ′′ + 6Hψ′ + 2
(
H′ + 2H2

)
ψ −∇2ψ = − 1

M2
Pl

a2(τ)V,φ δφ. (C.43)

Now the equation of motion for the inflaton field given in Eq. (C.40) yields

− a2V,φ = φ′′
0 + 2

a′

a
φ′

0 (C.44)

and the second equation of Eqs. (C.34) yields

1

2M2
Pl

δφ =
1

φ′
0

(ψ′ + Hψ) . (C.45)

Substituting the above two equations in Eq. (C.43) we gets the equation of motion

for ψ as

ψ′′ + 2

(
H− φ′′

0

φ′
0

)
ψ′ + 2

(
H′ − φ′′

0

φ′
0

H
)
ψ −∇2ψ = 0. (C.46)



Appendix D

Essentials of de Sitter spacetime

Here we will briefly review the essential features of the de Sitter spacetime. The de

Sitter background is described by the flat FLRW metric given in Eq. (A.6) where

the scale factor grows exponentially with time

a(t) = a0e
Ht. (D.1)

Here the Hubble parameter H > 0 is constant of time. A Universe dominated by

fluid with a state parameter ω = −1 (e.g. a scalar field slow-rolling its potential)

can lead to such an exponential expansion. For such a fluid the energy density

remains constant with time (which can be seen from Eq. (A.10)) and the Friedmann

equation given in Eq. (A.4) yields an exponentially expanding scale factor with

H =
√

8πGρ0

3
. The conformal time defined in Eq. (A.7) and the corresponding

scale factor in de Sitter spacetime are given as

τ = − 1

H
e−Ht, a(τ) = − 1

Hτ
. (D.2)

The cosmic time t goes from −∞ to ∞ implying that the conformal time τ changes

from −∞ to 0.

D.1 Horizon in de Sitter spacetime

One important feature of de Sitter spacetime is the presence of horizons. The

trajectories of light follow null worldline which is given by ds2 = 0 implying

a(t)ẋ(t) = 1. (D.3)
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This, in de Sitter spacetime, yields a solution

|x(t)| =
1

H

(
e−Ht0 − e−Ht

)
, (D.4)

for trajectories starting at the origin, x(t0) = 0. This implies that the trajectories

started at the origin at t0 asymptotically approach the sphere with radius rhor(t0) ≡
1
H
e−Ht0 . This sphere is called the horizon for the observer at the origin. On the

other hand signals originating at t0 from |x| > rhor will never reach the observer

sitting at the origin.

D.2 Quasi de Sitter spacetime

During inflation, as the inflaton slow-rolls its potential, the Hubble parameter does

not remain constant but varies with time

Ḣ = −ǫH2, (D.5)

which can be seen from Eq. (B.12). This shows that in quasi de Sitter spacetime

H = 1
ǫt

and thus the scale factor a(τ) will be

a(τ) = − 1

(1 − ǫ)Hτ
. (D.6)



Appendix E

Uniqueness of mode functions in

Minkowski spacetime

Here we will discuss how different choice of mode functions can be made and how

one can choose an unambiguous and thus physical vacuum in Minkowski space

time. The derivations here will closely follow [32].

E.1 Bogolyubov transformation

Consider the following mode function

vk(τ) = αkuk(τ) + βku
∗
k(τ), (E.1)

where αk and βk are complex numbers and vk, thus constructed, also satisfies the

equation of motion of mode function given in Eq. (2.23). This transformation

between mode functions and the coefficients αk and βk are called the Bogolyubov

transformation and Bogolyubov coefficients respectively. The normalization condi-

tion of the mode function given in Eq. (2.24) is satisfied if the Bogolyubov coeffi-

cients satisfy the condition

|αk|2 − |βk|2 = 1. (E.2)

In terms of vk now the mode expansion given in Eq. (2.19) can be written as

χ̂(τ,x) =

∫
d3k

(2π)
3
2

[
vk(τ)bke

ik·x + v∗k(τ)b
†
ke

−ik·x
]
. (E.3)
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Hence one cannot prefer one mode function over the other at this point. The

Bogolyubov transformations between the two sets of creation and annihilation

operators can be given as

ak = α∗
kbk + βkb

†
k, a†k = αkb

†
k + β∗

kbk. (E.4)

Both sets of operators generate a basis of states in the Hilbert space:

ak|0〉a = 0, bk|0〉b = 0, (E.5)

which imply that the b-vacuum contains a−particles which can be seen as

b〈0|Na
k|0〉b = |βk|2δ(0), b〈0|N b

k|0〉b = 0, (E.6)

and similarly it can be shown that the a-vacuum contains b−particles.

E.2 Preferred mode functions in Minkowski space

In Minkowski spacetime a(τ) = 1 and considering a case of a massless scalar the

equation of motion for the mode functions given in Eq. (2.23) becomes

u′′k + k2uk = 0. (E.7)

In the Minkowski spacetime a preferable set of mode functions will be such that the

expectation value of the Hamiltonian in the vacuum state is minimized. Writing

the Hamiltonian given in Eq. (2.21) in terms of the mode function uk one gets

Ĥ(τ) =
1

4

∫
d3k

[
aka−kF

∗
k + a†ka

†
−kFk + (2a†kak + δ(0))Ek

]
, (E.8)

where

Ek ≡ |u′k|2 + k2|uk|2,

Fk ≡ u′2k + k2u2
k. (E.9)

Then the expectation value of the instantaneous Hamiltonian is

u〈0|Ĥ(τ)|0〉u =
δ(0)

4

∫
d3kEk. (E.10)
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Using the parameterization uk = rke
iαk , where rk(τ) and αk(τ) are real, the nor-

malization condition of the mode functions given in Eq. (2.24) yields

r2
kα

′
k = −1

2
, (E.11)

and we get from Eq. (E.9)

Ek = r′2k +
1

4r2
k

+ k2r2
k. (E.12)

Minimizing the energy with respect to r′2k and rk yields that r′k = 0 and rk = 1√
2k

and these also give αk = −kτ . Thus the mode function which minimizes the

Hamiltonian will be

uk =
e−ikτ

√
2k
. (E.13)

This defines the preferred mode functions for a scalar field in Minkowski space.

For this mode functions Ek = k ≡ ωk and Fk = 0 which yields the familiar form of

the Hamiltonian as

Ĥ(τ) =

∫
d3k ωk

(
a†kak +

1

2
δ(0)

)
. (E.14)



Appendix F

Three-point and connected

four-point correlation function of

RNL in single field slow-roll model

We will calculate in detail the three-point and connected four-point correlation

function of non-linear comoving curvature perturbations RNL in single field slow-

roll model.

F.1 Calculating three-point correlation function

of RNL

The non-vanishing three-point correlation function of comoving curvature pertur-

bation R arises from terms like 〈RL(t,ki)RL(t,kj)RNL(t,kk)〉, which due to the

presence of RNL eventually turns out to be a four-point function of inflaton’s fluc-

tuations δφL. Therefore, one can write the non-vanishing three-point function as

〈RNL(t,k1)RNL(t,k2)RNL(t,k3)〉 ≃ 〈RL(t,k1)RL(t,k2)RNL(t,k3)〉

+〈RL(t,k1)RNL(t,k2)RL(t,k3)〉 + 〈RNL(t,k1)RL(t,k2)RL(t,k3)〉. (F.1)
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The first term on the right hand side of the equation yields

〈RL(t,k1)RL(t,k2)RNL(t,k3)〉 =

(
H

φ̇

)2
1

2

∂

∂φ

(
H

φ̇

)∫
d3p

(2π)
3
2

〈δφL(t,k1)δφL(t,k2)δφL(t,p)δφL(t,k3 − p)〉

=

(
H

φ̇

)2
1

2

∂

∂φ

(
H

φ̇

)∫
d3p

(2π)
3
2

[〈δφL(t,k1)φL(t,p)〉〈δφL(t,k2)δφL(t,k3 − p)〉

+ 〈δφL(t,k2)φL(t,p)〉〈δφL(t,k1)δφL(t,k3 − p)〉] .

(F.2)

The last equality in the above equation could be written as the inflaton’s fluc-

tuations are Gaussian primordially and the four-point correlation of δφL can be

written in terms of product of two two-point correlation functions. Now one can

use the definition of power spectrum given in Eq. (2.44) and Eq. (2.56) as

〈δφL(t,k1)δφL(t,k2)〉 ≡
1

k3
1

Pδφ(k1)δ
3(k1 + k2), (F.3)

to get from Eq. (F.1)

〈RL(t,k1)RL(t,k2)RNL(t,k3)〉 =

(
H

φ̇

)2
1

2

∂

∂φ

(
H

φ̇

)
Pδφ(k1)

k3
1

Pδφ(k2)

k3
2

×
∫

d3p

(2π)
3
2

[
δ3(k1 + p)δ3(k2 + k3 − p) + δ3(k2 + p)δ3(k1 + k3 − p)

]

=

(
H

φ̇

)2
∂

∂φ

(
H

φ̇

)
1

(2π)
3
2

δ3(k1 + k2 + k3)
Pδφ(k1)

k3
1

Pδφ(k2)

k3
2

. (F.4)

Using the relation between the power spectrum of the comoving curvature per-

turbation PR and the inflaton’s fluctuations Pδφ as given in Eq. (2.48) and the

definition of the slow-roll parameter ǫ as given in Eq. (B.12) one can rewrite the

above equation as

〈RL(t,k1)RL(t,k2)RNL(t,k3)〉 = δ3(k1 + k2 + k3)
2M2

Plǫ

(2π)
3
2

∂

∂φ

(
H

φ̇

)
×

PR(k1)

k3
1

PR(k2)

k3
2

. (F.5)

Therefore, calculating the other two terms on the right hand side of Eq. (F.1)

following the same steps as before the three-point correlation function of RNL
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turns out to be

〈RNL(k1)RNL(k2)RNL(k3)〉 = (2π)−
3
2 δ3(k1 + k2 + k3)(2M

2
Plǫ)

∂

∂φ

(
H

φ̇

)

×
(
PR(k1)

k3
1

PR(k2)

k3
2

+ 2 perms.

)
. (F.6)

F.2 Calculating connected four-point correlation

function of RNL

The non-vanishing connected part of the four-point correlation of the comov-

ing curvature perturbation R in single field slow-roll inflationary scenario, which

yields maximum non-Gaussianity due to non-linear evolution of R, appears from

terms like 〈RL(t,ki)RL(t,kj)RNL(t,kk)RNL(t,kl)〉. Thus the four-point correla-

tion function of RNL can be written as

〈RNL(t,k1)RNL(t,k2)RNL(t,k3)RNL(t,k4)〉 ≃

〈RL(t,k1)RL(t,k2)RNL(t,k3)RNL(t,k4)〉 + 5 perm. (F.7)

Let us derive the first term of the right hand side of the above equation :

〈RL(t,k1)RL(t,k2)RNL(t,k3)RNL(t,k4)〉 =

〈RL(t,k1)RL(t,k2)RL(t,k3)RL(t,k4)〉 +

(
H

φ̇

)2(
∂

∂φ

(
H

φ̇

))2 ∫
d3p

(2π)
3
2

∫
d3q

(2π)
3
2

〈δφL(t,k1)δφL(t,k2)δφL(t,p)δφL(t,k3 − p)δφL(t,q)δφL(t,k4 − q)〉 .

(F.8)

As the inflaton’s fluctuations δφ are Gaussian initially, the vacuum expectation

value of six inflaton’s perturbations in the above equation can be written in terms



Chapter F. Three-point and connected four-point function of RNL 104

of several combinations of product of three two-point correlation functions as

〈δφL(t,k1)δφL(t,k2)δφL(t,p)δφL(t,k3 − p)δφL(t,q)δφL(t,k4 − q)〉

= 〈δφL(t,k1)δφL(t,p)〉〈δφL(t,k2)δφL(t,q)〉〈δφL(t,k3 − p)δφL(t,k4 − q)〉

+〈δφL(t,k1)δφL(t,p)〉〈δφL(t,k2)δφL(t,k4 − q)〉〈δφL(t,k3 − p)δφL(t,q)〉

+〈δφL(t,k1)δφL(t,q)〉〈δφL(t,k2)δφL(t,p)〉〈δφL(t,k3 − p)δφL(t,k4 − q)〉

+〈δφL(t,k1)δφL(t,q)〉〈δφL(t,k2)δφL(t,k3 − p)〉〈δφL(t,p)δφL(t,k4 − q)〉

+〈δφL(t,k1)δφL(t,k3 − p)〉〈δφL(t,k2)δφL(t,k4 − q)〉〈δφL(t,p)δφL(t,q)〉

+〈δφL(t,k1)δφL(t,k3 − p)〉〈δφL(t,k2)δφL(t,q)〉〈δφL(t,p)δφL(t,k4 − q)〉

+〈δφL(t,k1)δφL(t,k4 − q)〉〈δφL(t,k2)δφL(t,k3 − p)〉〈δφL(t,p)δφL(t,q)〉

+〈δφL(t,k1)δφL(t,k4 − q)〉〈δφL(t,k2)δφL(t,p)〉〈δφL(t,k3 − p)δφL(t,q)〉.

(F.9)

Using the form of power spectrum given in Eq. (F.3) and after performing the

integrations in Eq. (F.8) one gets

〈RL(t,k1)RL(t,k2)RNL(t,k3)RNL(t,k4)〉 =

〈RL(t,k1)RL(t,k2)RL(t,k3)RL(t,k4)〉 + δ3(k1 + k2 + k3 + k4)
2

(2π3)

(
H

φ̇

)2

(
∂

∂φ

(
H

φ̇

))2
Pδφ(k1)

k3
1

Pδφ(k2)

k3
2

(
Pδφ(k13)

k3
13

+
Pδφ(k23)

k3
23

+
Pδφ(k14)

k3
14

+
Pδφ(k24)

k3
24

)
,

(F.10)

where kij ≡ |ki + kj |. Hence each of the other five similar terms on the right

hand side of Eq. (F.7) will have four such combinations of product of three power

spectrums, yielding 24 of such terms in the final expression. Thus the ‘connected’

part of the four-point correlation function of RNL will be

〈RNL(t,k1)RNL(t,k2)RNL(t,k3)RNL(t,k4)〉c = 2δ3(k1 + k2 + k3 + k4) ×

(2π)−3

(
H

φ̇

)2(
∂

∂φ

(
H

φ̇

))2 [
Pδφ(k1)

k3
1

Pδφ(k2)

k3
2

Pδφ(k13)

k3
13

+ 23 perm.

]
. (F.11)

Using the relation between the power spectrum of the comoving curvature per-

turbation PR and the inflaton’s fluctuations Pδφ as given in Eq. (2.48) and the

definition of the slow-roll parameter ǫ as given in Eq. (B.12) one can rewrite the
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above equation as

〈RNL(t,k1)RNL(t,k2)RNL(t,k3)RNL(t,k4)〉c = 2δ3(k1 + k2 + k3 + k4) ×

(2π)−3
(
2M2

Plǫ
)2
(
∂

∂φ

(
H

φ̇

))2 [
PR(k1)

k3
1

PR(k2)

k3
2

PR(k13)

k3
13

+ 23 perm.

]
. (F.12)



Appendix G

Propagator for interacting scalar

field in Minkowski space using KL

representation

KL representation is a non-perturbative way to derive propagator for interacting

fields. Here a brief description of deriving the Feynman propagator and the Wight-

man function of interacting real scalar fields is being discussed. A more detailed

derivation can be found in [95]. Considering a generic scalar field Φ(x), the vac-

uum expectation value of the time-ordered product 〈0|T {Φ(x)Φ(y)}|0〉 gives the

complete Feynman propagator for the scalar field in Fourier space

− i∆′(p) =

∫
d4x exp[ip · (x− y)]〈0|T {Φ(x)Φ(y)}|0〉, (G.1)

while the vacuum expectation value of product of two scalar fields is known as the

Wightman function

W ′(x− y) = 〈0|Φ(x)Φ(y)|0〉. (G.2)

Inserting a complete set of momentum eigenstates in between the two field opera-

tors the vacuum expectation value of Φ(x)Φ(y) can be written as

〈0|Φ(x)Φ(y)|0〉 =
∑

n

〈0|Φ(x)|n〉〈n|Φ(y)|0〉. (G.3)

Translational invariance in Minkowski space yields

Φ(x) = exp(ip · x)Φ(0) exp(−ip · x), (G.4)

106



Chapter G. KL representation in Minkowski space 107

where

〈0|Φ(x)|n〉 = exp(−ipn · x)〈0|Φ(0)|n〉

〈n|Φ(y)|0〉 = exp(ipn · y)〈n|Φ(0)|0〉. (G.5)

In Minkowski space therefore Eq. (G.3) can be written as

〈0|Φ(x)Φ(y)|0〉 =
∑

n

exp(−ipn · (x− y))|〈0|Φ(0)|n〉|2. (G.6)

|〈0|Φ(0)|n〉|2 encapsulating the interacting features of the scalar field can be re-

placed by a spectral function ρ(q2) defined as

θ(q0)ρ(q2) = (2π)3
∑

n

δ4(q − pn)|〈0|Φ(0)|n〉|2. (G.7)

The spectral function ρ(q2) is a function of q2 due to Lorentz invariance and is

real, positive and vanishes for q2 < 0. With this definition of spectral function

Eq. (G.3) can be expressed as

〈0|Φ(x)Φ(y)|0〉 =

∫ ∞

0

dσ2ρ(σ2)∆(x− y; σ2), (G.8)

where

∆(x− y; σ2) =
1

(2π)3

∫
d4q exp[−iq · (x− y)]θ(q0)δ(q2 − σ2), (G.9)

and σ is known as the mass parameter. Similarly one can find

〈0|Φ(y)Φ(x)|0〉 =

∫ ∞

0

dσ2ρ(σ2)∆(y − x; σ2), (G.10)

where

∆(y − x; σ2) =
1

(2π)3

∫
d4q exp[−iq · (y − x)]θ(q0)δ(q2 + σ2). (G.11)

G.1 Feynman propagator for interacting scalar

field

The vacuum expectation value of two time-ordered field operators is

〈0|T {Φ(x)Φ(y)}|0〉 = Θ(x0 − y0)〈0|Φ(x)Φ(y)|0〉 + Θ(y0 − x0)〈0|Φ(y)Φ(x)|0〉.

(G.12)
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Inserting Eq. (G.12), Eq. (G.8) and Eq. (G.10) in Eq. (G.1) gives the propagator

for interacting scalar field as

− i∆(int)(p) = −i
∫
d4x exp[ip · (x− y)]

∫ ∞

0

dσ2ρ(σ2)∆F (x− y; σ2), (G.13)

where the Feynman propagator ∆F (x− y; σ2) for the scalar field is

− i∆F (x− y; σ2) = Θ(x0 − y0)∆(x− y; σ2) + Θ(y0 − x0)∆(y − x; σ2)

=
−i

(2π)4

∫
d4q exp[−iq · (x− y)]

1

q2 − σ2 − iε
. (G.14)

To derive the last equality the form of the step function

Θ(t) = − 1

2πi
lim
ε→0

∫ +∞

−∞

e−ist

s+ iε
ds (G.15)

is to be used. This yields the form of the full propagator for the interacting scalar

field in terms of the spectral function as

∆(int)(p) =

∫ ∞

0

dσ2ρ(σ2)
1

p2 − σ2 + iε
. (G.16)

1
p2−σ2+iε

can be recognized as the propagator for a free scalar field with the mass

m of the scalar field replaced by the mass parameter σ. Hence one can write the

above equation as

∆(int)(p) =

∫ ∞

0

dσ2ρ(σ2)∆0(p; σ2), (G.17)

where ∆0(p; σ2) ≡ 1
p2−σ2+iε

is the free propagator of the scalar field.

G.2 Wightman function for interacting scalar field

For a free scalar field with mass m the Wightman function defined in Eq. (G.2) is

W 0(x− y) =
1

(2π)3

∫
d3k

2ωk

e−iωk(x0−y0)+ik·(x−y). (G.18)

where ωk ≡
√

k2 +m2. For the interacting scalar field the Wightman function can

be derived using Eq. (G.8) which turns out to be

W (int)(x− y) =

∫ ∞

0

dσ2ρ(σ2)∆(x− y; σ2), (G.19)
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where ∆(x− y; σ2) given in Eq. (G.9) can be written as

∆(x− y; σ2) =
1

(2π)3

∫
d3q

2ωq

e−iωq(x0−y0)+iq·(x−y). (G.20)

This can be identified as the Wightman function for the free scalar field given in

Eq. (G.18) where the mass m of the scalar field is replaced by the mass parameter

σ and ωq ≡
√

q2 + σ2 and hence Eq. (G.19) can be written as

W (int)(x− y) =

∫ ∞

0

dσ2ρ(σ2)W 0(x− y; σ2). (G.21)

The equal-time Wightman function (x0 = y0) for the interacting scalar field has

the form

W
(int)
ET (x− y) =

1

(2π)3

∫ ∞

0

dσ2ρ(σ2)

∫
d3q

2ωq
eiq·(x−y)

=

∫ ∞

0

dσ2ρ(σ2)W 0
ET(x− y; σ2). (G.22)
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