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Abstract

In chapter 1, the basic theory of radiation-matter interaction is introduced.
Some properties of density matrix equations and derivation of interaction
Hamiltonian are discussed. In Sec. 1.2 an overview of important atomic
coherence effects like coherent population trapping, electromagnetically in-
duced transparency etc. is presented. In Sec. 1.3 master equation formalism
for the treatment of spontaneous emission is introduced. Conditions for ob-
serving coherence effects via spontaneous emission in near-degenerate V and
A systems are also discussed.

In chapter 2, the probe absorption spectra of a strongly driven A system with
arbitrary spacing between the two lower levels is analyzed. The key findings
of this chapter are: (a) Prediction of gain regions arising from the cross talk
among optical transitions. (b) Demonstration of the possibility of superlumi-
nal propagation due to cross talk. An analysis based on dressed states is
presented to explain our numerical results.

In chapter 3, new coherence effects due to interfering decay channels in the
V systems are reported. The presence of new gain features in the absorption
spectra are predicted, and this gain is shown to arise due to a vacuum induced
quasi-trapped-state. It is also shown that the quasi-trapped-state gives rise
to a spectral region where the refractive index is large but the absorption is

minimum.

In chapter 4, it is shown that the dynamical equations for the interaction
between a heat bath and a near-degenerate V system can give rise to new
coherence terms. We address the question as to whether such equations are
consistent with the principles of thermodynamic equilibrium. Our key find-
ings are that the coherences affect the dynamics but the steady states condi-
tions are still characterized by Boltzmann factors. It is also shown that such
coherences in the dynamical equations can be probed via the spectrum of
fluorescence.

We next investigate the characteristics of near-degenerate A systems, where

vii



additional coherence terms can arise due to interaction with a common mode
of vacuum field. In chapter 5, a simple test is proposed to demonstrate and
detect the presence of vacuum induced coherence (VIC) in the A systems. It
is shown that the probe field absorption is modulated due to the presence of
such a coherence which is unobservable in the fluorescence. In chapter 6, the
effects of VIC on the formation of trapped state is reported. The key findings
in this chapter are: (a) VIC can preserve both electromagnetically induced
transparency and coherent population trapping. (b) VIC increases the time
scale for the formation of trapped state. (c) Phase dependent line shapes arise

due to the VIC.
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Chapter 1

Introduction

The beginning of the twentieth century saw a major revolution in science, and
in physics, in particular. The development of quantum mechanics was a major
boon in understanding the behavior of particles at microscopic level. Later, the
discovery of lasers in 1960 [1] accelerated the pace of development and opened
up the previously unexplored regimes of light-matter interaction. By the end of
the twentieth century, lasers had found application in almost all facets of life like
bio-science, space science, defence, computing, communication etc. For experi-
mentalists, lasers are setting a new benchmark in high precision measurements.
As newer techniques are being developed, lasers are becoming the key instru-
ment in controlling and developing tailor made optical properties of matter. The
Bose-Einstein condensation, quantum teleportation, coherent control of a chemi-
cal reaction, ultra-slow group velocity of light (8 m/s), also group velocity greater
than the velocity of light in vacuum etc. are now possible via controlled laser-
matter interaction. The list of such new developments continues to grow and the

dawn of the twenty-first century is heading for a second revolution.

1.1 Radiation-Matter Interaction

The early work of Planck and Einstein had shown that radiation should not be
treated just as waves, but also as a flow of packets (quanta) of energies [2]. These
quanta of radiation were later named as photons [3]. A significant contribution
towards understanding radiation-matter interaction was made by Einstein [4] in
1917. Though his theory was based on phenomenological considerations, he

was able to predict correctly the basic quantities like absorption and emission
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probabilities which are still in use. Later on, rigorous quantum mechanical cal-
culations were able to prove these results. Consider two discrete energy levels of
atom, namely the excited state |1) and the ground state |2). Einstein classified

interaction of radiation with matter into three important processes:

1. Stimulated absorption: The atom absorbs a photon and jumps up from
ground state |2) to excited state |1) due to an input radiation flux with a

proportionality coefficient By;.

2. Stimulated emissiorn: The atom jumps down from excited state |1) to ground
state |2) via photon emission stimulated due to an input radiation flux with
a proportionality coefficient B;;. The emitted photon will have the same

frequency and phase characteristics as that of the stimulating photon.

3. Spontaneous emission: Random emission of photon from excited state |1)

with a probability A, due to background fluctuations.

The important point is that none of these A, B coefficients, by definition, depend
on the applied field. They are the properties of the medium. For thermal equilib-
rium, Einstein’s theory predicted that

By = g_2B217 (1.1a)
g1
hiws

Ap = ﬁBzh (1.1b)
o

where ¢, g; are the degeneracies of the excited and ground levels and hw is the
energy of the photon. Thus all Einstein’s coefficients are interrelated. Consider a
collection of N atoms with N; atoms in excited state and N, atoms in ground state.
The first result above shows that for g, = g, = 1, if N; > N; then absorption will
dominate and if Ny > N, then stimulated emission will dominate. The basic idea
of lasing action involves having a medium with population inversion (N; > Nj)
and thus the radiation emitted is stimulated rather than spontaneous emission.
Since all photons in stimulated radiation have similar phase and frequency char-
acteristics, such a radiation is highly coherent (thus directional) and number of
photons per mode can be very high. Typically, a mercury lamp will have 102
photons/mode while a continuous wave laser can have 10'° photons/mode. It
should be noted that stimulated absorption/emission are equiprobable at ther-

mal equilibrium [ see (1.1a)] which gives the requirement of population inversion
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for lasing action. It has now been realized that such a requirement may not be
always essential as we will see later.
A complete quantum mechanical calculation for the two levels |1) and |2) with

energy separation iw;; will show that (in C.G.S units)

472|dy |?
21 = 3h2 ) (123)
403y | i
Ay, = 1220 1.2b
12 Shed ( )

Here the parameter dj; = (1|e2) is the dipole matrix element. The above results
show that the spontaneous emission rate increases rapidly with increasing energy
spacing hwiy. Thus it is difficult to have population inversion at higher frequencies
like VUV, X-rays and beyond. But in the last ten years or so it has been demon-
strated that it is possible to control spontaneous emission. The Fermi golden rule
in quantum mechanics will show that the transition rate from a discrete atomic

level to a continuum of electromagnetic modes is given by [5]
27
7= F[VIPp(w). (1.3)

Here |V|? is the coupling strength of the electromagnetic field with atomic levels
and p(w) is the density of modes available to the emitted photon. Thus by chang-
ing the density of modes or the coupling strength the spontaneous emission rate

can be modified or controlled.

1.1.1 Classical Electromagnetic Field Theory

For any medium the electromagnetic (em) field propagation is governed by the

four fundamental Maxwell equations (in C.G.S. units) given by [6],

6-5:4%@, 6-3‘:0, (1.4a)
T 10B
F=——— 1.4
V x e (1.4b)
G xgodrl 19D (1.4c)
c c Ot

where E, B are the averaged electric, magnetic induction field vectors at some
space-time point and c is the velocity of these fields in vacuum. The freely moving

charges in the medium contribute via the charge density ¢ and current density .J.
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The components of averaged displacement vector (13) and magnetic field (ﬁ ) are

given by
D,’ZE,’-}-47TP,’—47TZ%+..., H;=B; —4xM; + ... (1.5)
F ar;
Here P, M, @Q;;. ... are respectively the averaged electric dipole, magnetic dipole,

electric quadrupole and the higher order moments per unit volume. The bound
charges and currents in the medium contribute via these moments. For the re-
sults to be reported in this thesis, we consider interaction of em field with a gas
of non-interacting neutral atoms. Thus the medium is charge-free (¢ = 0), non-
conducting (J = 0). For such a gas electric polarization (P) is the most dominant
contribution at optical frequencies and the other moments can be neglected in
comparison. Using the curl equations (1.4b) and (1.4c) and time derivatives it can

be shown that
Sxx B+ L L (BianP) =0 (1.6)
c? ot?
For a medium with only bound charges, V - D = 0 and thus V - E = 0, because
D = ¢E where ¢ is the electric permittivity tensor. Equation (1.6) can be simplified
as below:

v LOPE_4rd°P
2 otz 2 o

Though the above inhomogeneous wave equation is difficult to solve, in practice

(1.7)

the working equations are simpler to handle. For example, consider a laser field
at central frequency w, traveling along the z-axis, incident on a medium. The
variation of the field along transverse directions is typically small on the optical

wavelength scale. The input field can be written as
Ein(z, t) = éEy(z, t)ei(kz_“’t) +c.c., (1.8)

where ¢ is the direction of the field vector and Ej is a slowly varying pulse ampli-
tude. For a continuous wave (cw) field the time dependence of F; can be neglected.

The linear response of the medium will result in an induced polarization given by,
P(z,t) = éPy(z,t)e*>=9t) 4 c.c. (1.9)

Substituting these solutions in (1.7) and using the slowly-varying-envelop approx-

imation which implies

0 EO 0 2 EO 0 2 E 0
ot?

0P,

0%P,
WPy > ‘w— 0

ot?

Ll el EE L v o7 (110

.

-

‘ dFE,

s
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the wave equation reduces to a first order partial differential equation,

0Ey 10E, _ .
5. + o = 2wk Py. (1.11)
For a steady state propagation
E
% = 27iky(w)Eo, (1.12)

where the linear relation ) = x(w)Ey is used and x(w) is the complex susceptibility
of the isotropic medium. In general, x(w) is a tensor of rank 2 for an anisotropic

medium. For a medium of length L the output field will be

Eout(z, t) = ¢ Epel2mikxL) gilkz—wt) | c.c., (1.13)
and as seen from (1.13) the linear refractive index of the medium is n(w) =
1+ 27Re{x(w)}. The absorption coefficient will be a(w) = 4rkIm{x(w)} where the

output intensity is given by
Iout = Iinexp (—al). (1.14)

Note that y may also contain information of any other strong laser field present
in the medium, provided the laser field amplitude has not changed much in the
medium. This is possible if the medium is an atomic beam or the field is acting on
levels which are less populated. Also, by appropriate selection of atomic density
and medium length, the effect of medium polarization on a strong field can be
minimized. At various sections in the thesis we will discuss the effect of a strong
field on the medium. The modified properties of the medium will be obtained by
evaluating x(w) for a probe (weak) field. This is done by using density matrix
calculations for the discrete energy levels of the medium which take part in the

interaction.

1.1.2 Density Matrix Formalism

A given physical system can be described by a quantum mechanical state |)

(Dirac notation) where |} will satisfy the Schrédinger equation

o) _ i
S0 — ). (1.15)

Here H is the Hamiltonian describing the system. The state |¢) can be expressed

¥) = 3. ¢li). The density

in terms of some orthonormal basis states |[i), i.e.,
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operator for the state |¢) is p = |¢)(¥|. When represented in a {|:)} basis, p
is given by a matrix called the density matrix. The elements of this matrix are
pij = (ilplj) = cje;. Clearly, Tr(p) = 1, which is a statement of conservation of
probability. The expectation value of any operator A in terms of p is given by

(A) = (Y| Al|v) = Tr(pA) = Tr(Ap). (1.16)

Note that the expectation value is linear in p, but quadratic in |¢/). The major

advantage of the density matrix formalism is in dealing with statistical mixtures.

Statistical mixture: In many situations one may have collection of such identical
systems [¢;). It is possible that the state |¢;) is not known, but the probability p;
that the system is in state [¢;) is known. To give an example, the momentum
of a collection of atoms which may be given by Maxwellian distribution at some

temperature 7. The density operator for such an ensemble is defined as
p=>_ i)l (1.17)
1

where ), p; = 1. It can be shown further from Schrédinger equation (1.15) that p
will satisfy the differential equation

. 1
p=—7IH,pl. (1.18)
Equation (1.18) is often called as Liouville or Von Neumann equation of motion

for the density matrix. The elements of p in the basis {|i)} are now given by
pij =Y Picicu, (1.19)
1

and p will still satisfy (1.16), but now (4) would mean the ensemble averaged
value. If the system is in one of the states |¢;) with p; = 1, then Tr(p?) = 1 and the
state is called a pure state. From (1.19) following properties of p may be noted:
Tr(p?) < 1, it is Hermitian and it is positive definite i.e. Tr{pU'U} > 0,V U. The
diagonal elements in (1.19) are the ensemble averaged probability to be in some
state |i) and are referred as populations. The cross terms c;cu represent coher-
ence terms between two different states |i) and |j). These terms are complex in
general and if p;; = 0(¢ # j) then it means that the average (1.19) has cancelled
the coherence terms. If p;; # 0 (i # j) then some kind of coherent addition of in-

terference terms exist. For this reason the off-diagonal elements are often called
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coherences. The above equation (1.18) is more general than the Schrédinger equa-
tion (1.15), because one can derive both statistical as well as quantum mechanical
information from (1.18). For example, one can conveniently handle spontaneous
emission, collisional decay, fluctuations in laser fields etc. with density matrix
formalism. In practice, the interest will be in some observable in the presence
of environmental effects as for example, measuring absorption of a laser field in
a medium in the presence of background electromagnetic fluctuations and colli-
sions. The density matrix in such cases is expressed as,

p= 1 1H o+ L(p) (1.20)

where L£(p) is the matrix involving decay terms. In section 1.3 master equation
formalism will be discussed which can be used to derive the explicit form of £(p)
[7]. In general practice, the decay terms are phenomenologically added in equa-
tion (1.18).

1.1.3 Interaction Hamiltonian

Consider an em field (plane wave) interacting with an electron bound to a nucleus
(assumed to be motionless) by a central potential V' (r). In quantum mechanics
the classical variables are replaced by their corresponding quantum mechanical

operators. The Hamiltonian for the field at a distance 7 from the origin will be

H= %[ﬁ— LA 07 + V() + 4@(71). (1.21)
Here A(7,t) [®(F,t)] is the vector [scalar], potential for the external field and P is
the momentum operator for the electron. The Hamiltonian (1.21) will satisfy the
Schrodinger equation (1.15). If (7, ¢) is a solution of (1.15) so is (7, t) exp (ig),
where ¢ is some arbitrary constant phase. The probability density remains un-
affected by the arbitrary choice of phase. However, if the phase is space-time de-
pendent, the Schrodinger equation (1.15) is no longer satisfied. To satisfy phase
(or gauge) invariance the following transformation of vector and scalar potentials
should be inserted in (1.21).

- B
AF ) — AFt) - =V ), (1.22a)
q

d'(rt) — <I>(ﬁt)+%88—f(ﬁt). (1.22b)
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Clearly, the vector and scalar potentials are gauge-dependent and the gauge-
independent quantities are the electric field and magnetic induction given by
E=-Vd— %%—f and B = V x A, respectively. Generally, it is convenient to work
in the Coulomb gauge which implies & = 0 and V - A = 0. Further, for em fields
of wavelength greater than or equal to the optical wavelengths one can invoke the
dipole approximation for (1.21). The atoms have radius of the order of Bohr radius
and the positional variation of em field within this distance can be neglected. The
vector potential near the atomic radius R can be written as A(t) exp {ik - (R + r/)}.
In the dipole approximation A(7,t) ~ A(t) exp {ik - R}. Now consider a gauge trans-

formation

_ q4 + 5 _
o(rt) = —A(R,t) - T. 1.2
o 1) = L A(R,1) -7 (1.23)
Using (1.22) and the relation E= —Z /c the Hamiltonian (1.21) can be written as

1
2m

H=_—P*4+V(r)—d-E, (1.24)

where d = ¢7 is the atomic dipole moment operator. Writing the interaction term
as —d - E is called the dipole approximation. If the dipole term is zero then the
higher order terms in the expansion of exp (i - ') becomes important. A semiclas-
sical treatment of radiation-matter interaction would imply that the electric field
in (1.24) is treated as a classical field and the atomic variables as operators. Such
an analysis is very reliable for laser fields because of the large photons/mode. It is
extensively used in nonlinear optics and laser spectroscopy. A more rigorous the-
ory would require both field and atomic variables to be treated as operators. Such
a treatment is required, for example, to study nonclassical effects like squeezed
light, sub-Poissonian statistics etc. Most parts of this thesis will involve semiclas-
sical treatment which works well for optical properties of matter in the presence

of laser fields.

1.2 Atomic Coherence Effects

The phenomenal development in new experimental techniques and theoretical in-
sight have led to a very precise control over properties of radiation and matter.
Atomic coherence, which is a manifestation of coherent superposition of atomic

levels, plays a central role in controlling the optical properties of matter. In the
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following, some of the important atomic coherence effects are discussed. Most of
these effects have found important applications in laser spectroscopy and quan-

tum optics.

1.2.1 Two-Level Atom: Rabi Sidebands

When a strong coherent light is near-resonant with an atomic transition, then the
interaction of light with the two concerned atomic states sufficiently explains the
response of a medium. The other levels present in the medium can be neglected
and the atom is called a two-level atom. The very early works on two-level atom
driven by a strong field have shown that sidebands will appear in emission spec-
trum [8, 9], now known as Rabi splitting. Consider a two-level atom with excited
state |1) and ground state |2); then by closure theorem, |1){(1| 4+ [2)(2] = 1. The

atomic Hamiltonian Hj in term of its eigenstates |1}, |2) will be

Hy

(1)L + 12)2[) Ho(|1)(1] + [2)(2])
B |1)(1] + Fiwn|2) (2], (1.25)

where hw;, hw, are the absolute energies corresponding to the excited and ground

levels. Similarly, the atomic dipole moment operator can be written as
d = dy21)(2] + dy1|2)(1], (1.26)

where d;,, = (I|d]m) is zero for diagonal elements due to parity reasons. The off-
diagonal elements of d will be non-zero only if |1) and |2) have different parities.

Let this two-level system be driven by a control laser field

— —

B.(Ft) = BgelFmwet) | e, (1.27)
of frequency w.. The total Hamiltonian in dipole approximation will be
H = hwiyA11 — (65‘121412 + 07211421) : Ea (1.28)

where A4;,, = |I){(m| and hwyy = h(w; — w3). In writing (1.28), level |2) is considered
as the zero of energy. The Hamiltonian (1.28) will satisfy the Schrodinger equa-
tion (1.15). Making a unitary transformation |¢) = exp (iw.A411t)|¢) in (1.15), the

effective Hamiltonian will be

Heg/h = AcAy — (GrA12 + Hee)) — (GlpAgie™ %" £ Hoel), (1.29)
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where the coupling strengths are

— — . - —'* .
Con = dia- Eq i ;o din B kg
125 e, 2= "7 € )

and A. = w3 — w, is the control field detuning. The rapidly oscillating terms in
(1.29) are also called anti-resonant terms. A perturbative analysis (in terms of E.()
will show that they contribute in orders of G,/w. in the probability amplitudes
and thus are important only when G, ~ w. [5]. At optical frequencies this would
imply an intensity ~ 10'*W/cm?. Thus at normal intensities one can neglect such
anti-resonant terms and this is called the rotating-wave-approximation (RWA). If
the medium length is small compared to the optical wavelength, for example for
atomic beams, the position dependence of coupling strengths can be neglected.
The coupling strength 2G,; is called the Rabi frequency - an optical analogue of
frequency in magnetic resonance described by I. I. Rabi [10]. With the above ap-
proximations the equation of motion for the density matrix elements using (1.18)
will be

,511 = —,522 =1G12p21 + c.c.y ,512 = —iAp12 + 1Gra(p22 — p11), (1.30)

where p denotes p in the rotating frame. Using the initial condition that the atoms
are in ground state |2) at ¢+ = 0, the above set of equations (1.30) can be readily

solved. The solution will be,

2
P22 = COS2 (let/2) + §C sin2(912t/2), (13 la)
12
P12 = 2521122 2670 — (Qp + Ap)e et M)l () — A e W2l (1.31D)

and p;; = 1 — pyy due to probability conservation. Here Q5 = (4|G12|? + A2)'/? is
called the generalized Rabi frequency. The result (1.31a) shows that for A. = 0

the probability oscillates with an angular frequency 2|G;;|, thus the name Rabi

frequency. As the detuning A, is increased, the frequency of oscillation increases,

but the amplitude decreases. The average induced dipole moment is given by

<cf> = Tr(p(jj = (fﬂplz +c.c.. (1.32)
From (1.31b) it is clear that the dipole will oscillate at frequencies w. + Q5 apart
from w.. Thus the fluorescence spectrum will have new frequency side-bands

corresponding to w. + ©;5. In the above analysis we have not taken spontaneous
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decay, collisional decay, Doppler broadening ! etc. into account. However, for a
strong control field (G, > decays rates) the sidebands still appear at w.+;5. The

decays change the height and width of these emission bands.

Probe Absorption: Steady State Solution. The above driven two-level system
can also be probed by scanning over the probe frequency w, and measuring the
probe absorption. If the excited level decays only to the ground state then the
system is referred as a closed two-level system, otherwise it is an open system. In
the case of a closed system, due to the presence of decay, the Rabi oscillations will
finally decay to a constant value. Thus a steady state solution is possible (p = 0)
with the condition Tr(p) = 1. In the case of an open system, the total probability
is not conserved. For a closed two-level system [e.g., the D, hyperfine sub-levels
of Na: [1) = 3P3/5(F = 3,Mp = +3) and |2) = 2S,/5(F = 2,Mf = +2).] it was shown
by Mollow [11] that the absorption and emission spectrum are asymmetric. He
showed that the probe field gets amplified at w, = w. — ;2 and absorbed at w, =
w.+Q12) when A, > 0. The reverse behaviors occur for A, < 0. Mollow’s work led to
a series of theoretical [12] and experimental [13] investigations. The gain observed
is a result of atomic coherence term, p;;, and there is no population inversion
among the levels |1) and |2). It has been demonstrated that this gain can show
lasing action [14]. A physical understanding of these interesting behaviors are
seen in the dressed atom picture developed by Cohen-Tannoudji and coworkers
[15]. In the absorption spectra, a dispersive type feature appears around w, ~ w.,
which is a kind of stimulated Rayleigh scattering. The physical origin of this
feature is more involved [16] and the gain associated with this feature has been
utilized for optical parametric oscillators [17].

The two-level atom interacting with a field (classical or quantized) is a generic
model explaining a large number of quantum optical and nonlinear effects [18].
The resonance fluorescence from such a system was predicted to show squeezing
[19] and was recently demonstrated [20]. Phase dependent features were shown
to appear in the resonance fluorescence when a driven two-level atom is placed
in a squeezed vacuum [21]. When a two-level atom is driven by strong bichro-
matic fields, the result is a more complicated Rabi splitting [22, 23]. The exact

solutions for two-level atom interacting with a single mode quantized field was

'"Doppler broadening is due to atoms moving with a velocity distribution. Details can be seen in
Ref. [5], pg. 72.
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provided by Jaynes and Cummings [24]. The Jaynes-Cummings model is known
to exhibit non-classical effects like collapse and revival in a lossless medium [25].
Sanchez-Mondragon, Narozhuy, and Eberly [26] and Agarwal [27] have shown
that a strong coupling of a single mode quantized field with a two-level atom gives

rise to vacuum Rabi splitting which was verified by Thompson and coworkers [28].

1.2.2 Coherent Population Trapping

In comparison to the two-level systems, three-level systems interacting with two
monochromatic fields have an enhanced atomic coherence effects. The develop-
ment of monochromatic and tunable laser sources has produced a large variety
of high-resolution spectroscopic investigations on three-level systems in differ-
ent configurations. Among these coherent population trapping (CPT) has been
extensively studied due to its immense applications. This phenomenon was first
observed by Alzetta et al. [29] as decrease in fluorescence emission from Sodium
atoms on application of two fields with certain frequency difference. Theoretical
[30] and experimental [31] analysis showed that when two resonant laser fields
acted on two coupled transitions, the atomic populations got trapped in certain
states due to interference. Physically, the applied radiation creates an atomic co-
herence such that the atom’s evolution is out of phase with the incoming radiation
and no absorption takes place [32]. Coherence between quantum states is known
to be important in quantum mechanics due to the superposition principle, but
macroscopic effect of coherence like zero absorption, suppression of fluorescence
etc. is unusual.

In the absence of spontaneous emission all the three laser configurations
shown in Fig. 1.1 are equivalent. However, in practice, A system (Fig. 1.1(a)) is the
most stable configuration. Here the population is trapped among the two ground
states (which are metastable), and the atomic coherence among them has a large
life time. A theory for A systems with two coherent fields of arbitrary strength was
developed by Cohen-Tannoudji and Reynuad [33] using dressed state approach
and by Agarwal and Jha [34] using master equation approach. Consider two laser
fields of frequency w.; and w.; acting on transitions |1) «+ [3) and |1) « |2) of a A

system, respectively. The Hamiltonian for this system will be:

H/h = (.J13A11 —|— w23A22 — (G12A12 exp (—’iwcgt) —|— G13A13 exp (—iwclt) —|— HC) (133)
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Figure 1.1: Figures show the three possible configurations in three-level system
with two laser fields of frequency w.; and w.. (a) A system. (b) V system (c) =
system. The laser field is coupling (dipole coupling) states of different parity.

Here hwy, is the energy separation between the levels |/) and |m), the Rabi fre-
quency for the transition |l) + |m) is denoted as 2Gy,,, and A;,,, = |I){m|. Making a
unitary transformation |¢) = exp {iw.1 A11f + i(wer — wez) Agat}9) in the Schrédinger

equation (1.15) the effective Hamiltonian is obtained as below.
He/h = A1c A1+ (A1 — Age)Azg — (G12412 + GisAi3 + Heel), (1.34)

where Aj. = w3 — we and Ag. = wiz — weg. In writing (1.34) the RWA has been
made to remove the explicit time dependence. The corresponding equation for the
density matrix p will be

) 1
p=—7[He,p] — v13(A11p—2As3p11+ pA11)

h
— vi2(A11p — 2A2p11 + pA11), (1.35)

where 2v;3 and 27,5 are the radiative decay rates from |1) to |3) and |2), respec-
tively. Here the decay terms are added by hand and a proper derivation of such
terms will follow in section 1.3. The above Hamiltonian (1.34) will resultin a 3 x 3
matrix which can be diagonalized. When A;. = A,. one of the eigenvalues will be

zero. The corresponding eigenstate is

G13|2) — G12]3)
luc) = a , where, Q=./Gi,+Gi,. (1.36)

It implies that H.g|uc) = 0 (for A;. = A,.) and the electrons in the (dark) state |uc)
are uncoupled from the applied field. If a basis {|1), |uc), |¢)} is considered, where

_ G12]2) + G3)3)
|C> - Q Y

(1.37)
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then using (1.35) it can be shown that for Ay, = Ay, =0,

Pucuc = (713 + Y12) P11, (1.38a)
P = (m3+ 712)p11 + 1Qp1c — iQper- (1.38b)

As seen from the above equations, the spontaneous emission from |1) populates
the dark state. The external field couples the states |c) and |1) with an effective
Rabi frequency 2. Thus irrespective of the initial condition, under Raman reso-
nance condition (A;. = Ay, = 0), the steady state populations will be in the CPT
state (or dark state).

However, in practice, creation of the CPT state is affected by finite laser linewidth,
atomic collisions, Doppler broadening etc. When atomic motion is taken into ac-

count, the Raman resonance condition is given by
AlU - A2U = Alc - A2c - (El - E2) : 67

where 7 is the velocity of the atom and &'s are the propagation vectors for the two
fields. Thus for a A system Doppler broadening can be reduced by using coprop-
agating laser fields and || ~ |k;|. Several authors have investigated the effect of
Doppler broadening and relaxation processes on CPT [32]. Phase fluctuations of
the laser fields are also known to affect the absorption and emission processes
[35] and such fluctuations in the context of CPT have also been examined [36].
Further, it is difficult to find an ideal closed three-level system. The simplest
atomic level configuration for CPT is J =1 — J = 1 kind of transitions with circu-
larly polarized fields. More general level schemes have been discussed [37], and
the basic requirement is odd number of total levels (> 3), with ground levels be-
ing one more than the excited levels. Agarwal has shown [38] that the quantized
fields give rise to novel field properties under trapping conditions [38].

Various authors have investigated different aspects of CPT [39, 40, 41], and
over the years important applications of CPT have been realized. Some of the
early applications were in metrology [42], optical bistability [43] and laser cooling
[44]. In molecules, population trapping effect has been used for adiabatic popu-
lation transfer [45]. A recent work has shown generation of coherent microwave
field in Cs vapor under CPT conditions [46]. Many recent phenomena like lasing
without inversion, field induced transparency, pulse matching, enhanced nonlin-
ear optical effects are closely related to CPT and a brief introduction to some of

them follows.
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1.2.3 Lasing Without Inversion

One of the most elaborately studied applications of atomic coherence effect is
lasing without inversion (LWI). The main motivation for this study is to create co-
herent (“table-top”) sources of short wavelengths, which will allow new regime of
spectroscopic investigations and biological imaging (X-ray lasers). The underlying
principle of LWI is to create asymmetry in absorption and emission processes.
Though some early proposals were known to exist [47, 48], the concept got atten-
tion after the work of Kocharovskaya and Khanin [49] and Harris [50]. Ref. [49]
found that ultra short pulses got amplified without inversion in a three-level A
system due to CPT. Harris [50] discovered that decay from a discrete state to an
identical continuum resulted in an interference in absorption, whereas the emis-
sion probability remained intact. This interference was of Fano-type [51] which
arises due to several quantum mechanical paths for the same final continuum
level. Imamoglu and Harris showed how similar interference can be generated
using a control field [52]. Another interesting proposal by Scully and cowork-
ers [53] showed that the A systems with coherent superposition of ground levels
can give rise to LWI. Classically, the absorption from a coherent superposition of
ground levels is like driving two dipoles. When they oscillate at 180° out of phase,
absorption will be absent. The situation is different if the atom begins life from
excited state, where the phase of oscillation is governed by the applied field, which
adds up the emission probability. Agarwal has shown [54] that lasers based on
LWI may have interesting properties like ultra-narrow linewidths due to reduced
spontaneous emission noise.

These proposals led to a series of theoretical [55, 56, 57, 58] and experimental
activities [60, 61, 62, 63, 64, 65, 66]. In many of these proposals [49, 53], al-
though there was no inversion in the bare basis, there did exist an inversion in
the dressed basis. On the other hand, in some schemes [48, 50, 55, 56, 58] there
was no inversion in any basis. Agarwal [59] showed that in such cases the gain
arises due to coherence among dressed states.

The earliest experimental indication of gain without inversion (GWI) was in a
four level model by Gao et al. [60]. Using coherent pulse along 3S, /; <+ 3P;/, in Na
they created atomic coherence among the ground hyperfine levels F =1 and F = 2.
They observed gain of a probe field along 3S,/, ++ 3P;/,. This work was based on
the model proposed by Narducci et al. [57], but the experiment did not have any
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concrete evidence that the gain was in fact without inversion. Nonetheless, the
results did show atomic coherence effect. An unambiguous demonstration of GWI
was given by Fry et al. [61] in a A system in Na. The gain they observed was due
to population trapping and thus due to inversion in a dressed basis. Nottelmann
et al. [62] demonstrated GWI in Samarium vapor. They used picosecond pulses to
create population trapping among Zeeman sublevels. Transient GWI was shown
by van der Veer et al. [63] in '2Cd.

The first proof-in-principle of LWI was given by Zibrov et al. [64] in 8"Rb.
This was the first experiment to use low power cw diode laser as control field,
and they used D;, D, lines of 8Rb in a V configuration. They applied control
field along |P3/,, F = 2) <+ [S; /5, F = 1) transition and generated lasing action along
IPi/2,F=2) & [Sy/5,F =1). Another demonstration by Padmabandu et al. [65]
used Na beams. They used a A-type configuration and their model was similar
to the one proposed in Ref. [56]. The lasing action in both these cases can be

understood in terms of coherence in the dressed basis [59].

1.2.4 Electromagnetically Induced Transparency

It is known in quantum mechanics that if several transition amplitudes exist for
a process, then these transition amplitudes can interfere among themselves to
give rise to either constructive or destructive interference. An example of such a
process in atomic system is the well known Fano interference [51]. The principle
of electromagnetically induced transparency (EIT) is to deliberately induce Fano
type destructive interference in absorption via an external control field [52, 67].
As a result an initially opaque medium can be rendered transparent for a probe
field.

Harris and coworkers were the first to demonstrate EIT in a A system in
Strontium vapor [68]. As shown in Fig. 1.2(a), a control field at 570.3 nm
was applied on the |1)(4d5d'D;) « |2)(4d5p'D,) transition. The probe transition
|1) ¢ |3)(5s5p'Py), which was rendered transparent, had a wavelength 337.1 nm.
The probe laser had an intensity 10 times less than the control laser, which is
generally the situation for EIT studies. Thus from (1.36) the corresponding dark
state will be the bare state |3). This is the major difference between EIT and CPT,
though the physical basis for EIT is trapping. CPT is usually explained in terms of

interference due to both the applied fields, while EIT is better understood in terms
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Figure 1.2: a) Schematic for EIT in the A systems. The control (probe) field fre-
quency is denoted as w, (wp) and is detuned from resonance by an amount A, (A,).
b) The dressed states created by the strong control field.

of interference among dressed states created by the control field. The control field

when on resonance will produce states

1

V2

The probe absorption has transition amplitudes corresponding to the transitions

+) (12) £ 11)). (1.39)

|£) < |3), which interfere destructively when the Raman resonance condition is
met. The |+) states give rise to new resonances in absorption and this effect
is known as Autler-Townes splitting [69]. Though the transparency region lies
at the center of these Autler-Townes components, it should not be confused as
a result of new resonances. The Autler-Townes splitting occurs for control field
Rabi frequencies much larger than the spontaneous emission rate, but EIT can, in
principle, be observed even for small control fields [70]. Agarwal [71] has shown
that the new resonances appear as Lorentzian contributions in the absorption
profiles, whereas interference terms appear as dispersive terms.

Different groups have demonstrated EIT effects using various configurations
[72, 73, 74, 75, 76], and a comparative study of these configurations (A, V and
= systems) were also carried out in different contexts [74]. EIT in laser-cooled
samples has also been observed [75]. The concept of EIT has also been extended
to observe transparency below the cut-off in an ideal plasma [77], and opening
the bandgap in dielectric media [78].

Among the different applications of EIT, Kasapi [79] has shown that EIT can
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be used for isotope discrimination. Laser pulse matching and soliton-like propa-
gation, which have applications in optical communication, can be observed under
EIT like situations [80]. EIT has also been shown to be useful as coherent switch
[61], and electromagnetic field grating [81]. Agarwal and Harshawardhan [82]
have generalized the idea of EIT to control two-photon processes, and based on
a similar idea, Harris and Yamamoto [83] have proposed the idea of a photon
switch.

Both radiative and non-radiative decay among trapping states (|2) and |3) in
Fig. 1.2) can strongly affect EIT and CPT. This decay along with inhomogeneous
broadening reduces the number of atoms in the trapped state. In atomic vapors,
the leak from the trapped state can be minimized using strong control fields. (In
Appendix A analytical results are derived which explains the effect of such decay
terms on the EIT-spectra.) In solids, these incoherent processes are so strong
that the observation of EIT in solid systems is limited to a few cases [84, 85].
Zhao et al. [84] demonstrated microwave induced changes in absorption in a
Ruby sample cooled at liquid Helium temperature. The other experiments were

done in Y,SiO5 crystal doped with Pr*3,

1.2.5 Dispersion Management and Giant Nonlinear Optics

Ultra-High Refractive Index: In atomic vapors, near resonance, refractive index
of the medium is very high, but at the same time absorption is also high. Using
the idea of atomic coherence and quantum interference, Scully [86] has shown
that it is possible to have spectral regions where absorption can be suppressed,
whereas the refractive index can be kept intact. Such a medium has potential
applications in optical microscopy, magnetometry, magneto-optical rotation etc.
For example, in an optical microscope, its resolving power depends linearly on the
refractive index of the medium. Kocharovskaya and coworkers [88] have shown
that spontaneous emission can be drastically modified with a strong control field,
if one of the dynamic Stark levels has energy below the ground state. This gives
rise to spontaneous emission from ground state to the Stark shifted level, and
as a result, they found large refractive index along with transparency. Recently,
Zibrov et al. [89] gave an experimental demonstration of large refractive index
with vanishing absorption in Rb vapor.

Magnetometry: Another application of refractive index modification is in mea-
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suring extremely weak magnetic fields using EIT. In the transparency region in
EIT spectrum, the dispersion increases linearly with probe frequency (normal dis-
persion) and the refractive index is close to unity. For a probe field (in A system)
this linear region will correspond to a phase shift

3A,NLy

APy ————
47T|G12|2

(A, — Ap), (1.40)

where N is the atomic density, L is the medium length, and v is the population
decay rate. This phase change can be measured by keeping such a medium in
one arm of a Mach-Zehnder interferometer. Using this property of EIT, Scully
and Fleischhauer [90] have shown that (A, — A.)min of the order of 10~°Hz can
be detected. Such precise measurement of frequency shifts have applications
in frequency standard and magnetometry. Very small Zeeman splittings due to
weak magnetic fields can be measured using this technique. They have shown
that magnetic fields of the order of 107!2G can be measured, which otherwise will

need large superconducting devices.

Slow Light: As already noted, normal dispersion occurs in the transparency win-
dow. The group velocity of a pulse in a dispersive media is given by
C

s ey (1.41)
where the refractive index n ~ 1+ 27Re{x(w,)} for atomic vapors. In the trans-
parency window x = 0, but Re(dx/dw,) depends on the width of the transparency
window. Thus for a sub-natural transparency window, steeper dispersion curve
will be seen, and hence low group velocity. Attaining a sub-natural transparency
window will require a weak control field. For weak control fields, in atomic va-
pors, (mainly) inelastic collisions with the walls and inhomogeneous broadening,
if significant, can suppress EIT effects (for details see Appendix A). For a large
control field intensity of 283kW /cm? in 2°®Pb vapor, Harris et al. [91] showed that
a group velocity of ¢/250 can be observed in the EIT window. However, with re-
cent development of experimental techniques, the above limitations are no more
barriers. In a remarkable experiment Hau et al. [92] have shown in a Sodium
condensate that group velocity of a probe field under EIT conditions can be as
low as 17 m/s. They used a control field intensity as low as 1mW /cm?. This was
followed by experiments in hot gases [93] and at room temperature [94] where

special techniques were used to suppress collisional effects. Budker et al. have



Introduction 20

[94] reported a group velocity of 8 m/s in ®*Rb vapor. The ground state relaxation
in this experiment was as low as 1 Hz due to an anti-relaxation coating on the
walls of the vapor cell. This coating suppresses the inelastic collisions with the
walls of the cell.

Using the idea of slow light, Fleischhauer and Lukin [95] have shown that
quantum light pulses can be decelerated and trapped in a medium. This will al-
low transfer of quantum correlations from light field to the collective atomic states
[96]. The stored quantum states can be transfered back to light by reversing the
storage process, and thus in principle can have applications is quantum informa-
tion processing. They have also demonstrated a technique for this using cavity
fields [95]. This phenomena will allow generation of atomic squeezed states, en-
tanglement and teleportation of atomic states etc, which till date has been seen

only for optical fields.

Polarization Control: Control field induced modification of refractive index has
also been used for demonstrating electric field polarization rotation. Among two
transitions which absorb left and right circularly polarized light, a control field
can be applied to modify the refractive index of either of these two field polar-
izations. Thus the plane of polarization of a linearly polarized probe field can
undergo rotation as shown by Wielandy and Gaeta [97]. Such an electromagnet-
ically induced birefringence has also been observed in Thallium vapor [98], and
can be used for studies of atomic parity violating effects. Combining the ideas of

EIT and Faraday rotation, magneto-optical rotation can be enhanced [99].

Giant Nonlinear Optical Effects
Nonlinear optical techniques and devices are now extensively used to generate
new wavelengths and to make possible new types of measurement. The nonlinear
susceptibility near resonance in atomic vapors is very high, but at the same time
dispersion and absorption is also very high. Tewari and Agarwal [100] had shown
that by using a control field, VUV generation is a three-level system can be en-
hanced by orders of magnitude. They showed that the control field was modifying
the phase matching conditions in four-wave-mixing process. Based on EIT prin-
ciples, Harris et al. [101] have shown that EIT results in destructive interference
in y(1), but constructive interference in y(®). The efficiency of a four-wave-mixing

process critically depends on the ratio |y(®|/x(!), thus reduction of x(!) increases
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the efficiency drastically. Both these proposals were closely related, and it was
found that large efficiencies arise from the same mechanism [102].

The demonstration of constructive interference in nonlinear susceptibility was
done in a series of experiments by Hakuta and coworkers [103, 104]. A reso-
nantly enhanced second-harmonic generation accompanied with reduced absorp-
tion was achieved by coupling the 2s and 2p states of Hydrogen using a dc electric
field [103]. This work has implicitly shown the possibility of EIT with a dc control
field. Zhang et al. [104] demonstrated sum-frequency generation by applying a
strong coupling laser on the 2s-3p transition. This coupling led to continuous
growth of the 103 nm (VUV) radiation, without suffering resonant absorption and
dispersion. Phase matching due to control field was observed in an off-resonance
four-wave mixing scheme in 2°*Pb [105]. In this experiment A. ~ 5GHz was used
and so transparency had little role in the enhancement. In the experiment by
Jain et al. [106], due to CPT, the phase coherent atoms acted as a local oscillator
that is involved in mixing with a third laser at 425 nm. This generated a new field
at 293 nm with an exceptionally high conversion efficiency of about 40 %.

There is now considerable literature on nonlinear optics with atomic coher-
ence. In addition to those discussed above, other examples include giant Kerr
nonlinearity [107], efficient phase conjugation [108] and new types of nonlinear
spectroscopy [109]. One recent discovery is the realization that, in media with
ultra-slow group velocity [92, 93, 94], the nonlinear susceptibility is very high.
In the experiment of Hau et al. [92], they found an effective nonlinear refractive
index ~ 0.18cm/W~!, which is a million times greater than the one found in usual
cold atoms. This happens because, due to slow group velocity an externally long
pulse shrinks in the medium with a very high energy density. Such a high nonlin-
ear cross-section can be used for nonlinear processes at extremely low light-levels
(few photons per atomic cross section or equivalently at nJ/cm?) [110]. Recently,
mirrorless parametric self-oscillation under conditions of slow group velocity has
been observed [111].

1.3 Vacuum Induced Atomic Coherence

Most of the experiments discussed above had atomic coherence created by an ex-

ternal coherent field. However, it is also known for sometime that coherence can
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also be created by environmental effects. For example, the vacuum (zero-point)
fluctuations of electromagnetic fields, which gives rise to spontaneous emission,
is also known to give rise to atomic coherence. Agarwal [112] showed that if
two degenerate levels are coupled to a common ground level (V system) via same
mode of vacuum field, spontaneous emission from such levels can be partially
suppressed. In fact this result, in principle, shows the possibility of population
trapping among excited levels. The coherence thus created among the excited lev-
els is termed as vacuum induced coherence (VIC). Unlike a coherent field, vacuum
field has infinite modes present, with very small correlation time, and coherence
via vacuum field seems to be counter-intuitive. Conceptually, this coherence is
generated because two probability amplitudes interfere due to two energy levels
coupled to the same mode of electromagnetic field. The effect of such coherence
terms can be conveniently handled using master equation treatment for sponta-

neous emission [7].

1.3.1 Master Equation Techniques

Master equation technique is useful in extracting the effect of an environment on
a sub-system. Take for example the effects of random fluctuating radiation field
(reservoir) on a collection of atoms. The density operator for the statistical states
of such a system can be denoted as p4,r, where A stands for atomic variables
and R for reservoir variables. The Liouville equation in the Schroédinger picture
can be written as below.

%Aa;f(t) = —=[H, parr()] = —ipasr(t), (1.42)
where £ = (1/h)[H,...] is the commutation operator often called Liouville operator.
In this total system A + R, in practice one is interested either on atomic variables
A or the effect of atoms on reservoir R. Thus we consider a (time independent)
projection operator p such that p? = p, and it will project the relevant part ppsir
from p44r. The interest here is to find the effect of vacuum fluctuations on atomic
variables. Thus we can select p = pr(0)Trr, and the reduced density operator will
be pa(t) = Trr{pa+r(t)}. The density operator for the system in terms of p can be

written as

pa+r(t) =pparr+ (1 —9)pa+r, (1.43)
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where the second term on the right hand side is the unimportant term for the
present problem. If one is interested in the statistical properties of the emitted
radiation then the second term becomes relevant. Transforming (1.42) in interac-
tion picture, £(¢) will become time dependent, and multiplying p and (1 — p) from

left in (1.42), we get,

papgsz = —ipL(t)ppatr(t) — pL()(1 - p)patrr(t), (1.44a)

(1-p) 8”5‘:R — (1= p)(O)ppasn(t) — i1 — p)E()(1— p)pasr(t).  (1.44b)
At t = 0 the initial state will be p4+r(0) = p4(0)pr(0) where pr(0) = |[{0})({0}] is

the vacuum state of field. Formally integrating (1.44b) and substituting in (1.44a)

and on setting
exp [—i(l - p)/ S(t’)dt’] =U(r),
0
the result will be

t
LR — _ip2(t) [ U(r)2(0 ~ Dppasalt - 7). (1.45)
ot 0

In writing (1.45), we have used (1 —p)p4+r(0) = 0 and moreover since £(¢) is linear

in as and a};, annihilation and creation operators for vacuum field, p£(t)p =
0. The lowest order approximation (Born approximation) is obtained by taking
U(r) — 1. This limit holds good for spontaneous emission treatment, because
coupling of vacuum field with atomic transition is generally weak, unless atoms

are in some high Q cavity. Thus we obtain

OPpAa+R , !
5 —1pL(t) / Lt — 7)ppatr(t — 7)dr. (1.46)
0

Note that p4(t) at any time ¢ depends on all its previous times. For a reservoir like

vacuum field which has a very short correlation time, Markoff or short memory
approximation holds good. This would imply replacing p4(t — 7) ~ pa(t) inside
the integral in (1.46). Equation (1.46) is a simplified form of Zwanzig’s master
equation [7]. In the subsection below, an explicit form of the master equation for
the V and A systems is derived. Conditions under which VIC can be observed, is

also discussed.

1.3.2 Vacuum Induced Coherence in V and A systems

In V Systems : Consider N identical, noninteracting V type atoms in a bath of

vacuum field. The excited states |1) and |2) decay to a common ground state |3).
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The Hamiltonian for this system in dipole approximation will be

H = hwizAqq + hwosAgg + Z hwksa};saks
ks

—(di3A13 + dy3Ags + Hec.) - E (). (1.47)

Here A;, = |l){m| and the energy between states |/) and |m) is denoted as hwy,,.

The vacuum state em field operator in a quantization volume L? is given by

= , orck\ /% R
E(f) =1 Z T érsarse’” " + H.c., (1.48)
ks

where ay, (a}LS] is the field annihilation (creation) operator for the mode &k with
polarization index s. The field polarization is denoted as é;,. The Hamiltonian
(1.47) in the interaction picture and RWA will be

Heg/h == [(grsAr3€™"*" + frsAsae™ )arse ™" + Hocl, (1.49)
ks
where we write,
[ 2mck 1z . TR [ 27ck 1z e
gks =1 ( L3 ) d13 ° Gkselk.rj fk‘s =1 ( L3 ) d23 . fksetk.r.
Substituting (1.49) in the master equation (1.46) and considering the fact that

TrR{pR(O)aksa};,S,} = Oksk/s
Trr{pr(0)aj s} = Trr{pr(0)aj,aj,} = Trr{pr(0)arsars} = 0,

the following master equation is obtained

0
8_,1[5) = _Pia[Anp - A33,011] - 1ﬂ§3[1‘122,0 - A33,022]
: I'Cscosf :
—Pg3dr COS 0[141210 — A33p21]€lw12t - IST[AQLO - A33p12]6_2w12t + I’I.C7 (150)

where I'f; = vi3 + i3 (I = 1,2). In deriving (1.50), Markoff approximation and long

time limit were taken [7], and the relation

/ el(wlm—wks)tdt _ 775(0-’lm _ wks) + 4P (7> 7
0

Wim — Wks

was used. In (1.50) d, = |dy3|/|das

elements cflg,, d;3 and

, 8 is the angle between the two dipole matrix

2|063|2‘*“’133
= —1 1.51
i3 3h03 3 ( )

QJ‘ 2 oo 3
Qs = |’3|/ Y dw (1.52)
0

3rhc3 w— w3
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The master equation (1.50) is more general than the usual perturbative calcula-
tions, where the cos# terms are absent. In the absence of such terms, 2v;3 are the
Einstein A-coefficients and ;3 are the energy shift terms connected with Lamb
shift calculations. The energy shift terms are generally absorbed in the unper-
turbed Hamiltonian via renormalization procedures [7]. Cardimona and Stroud
[113] have shown that the explicit mention of even the generalized energy shift
terms in (1.50) can be removed in an ‘atom+vacuum field’ dressed state basis,
and in physical terms they affect the ratio of spectral intensities from the two ex-
cited levels. However, we will report new effects that arise due to interfering decay
terms. Assuming that appropriate renormalization has been carried out, we avoid
explicit mention of ;3 terms. For near-degenerate excited levels, wy3/w.3 &~ 1 and
the master equation (1.50) will be

dp

ot = —m3[A11p — Azzp11] — Y23[A22p — Az3p20]

—\/713723c0s 0[A19p — A33p21]eiw12t — V713723 cos 0[Agip — A33p12]e_i“’12t + H.c., (1.53)

In terms of its various matrix elements, p will be

P11 = —2713p11 — \/V13723 COS 0(,0126_"“"12'f + pglei“’IQt), (1.54a)
P2z = —2723p22 — /V13723 €08 B(prae 12! + pyre™2t), (1.54b)
P12 = — (713 + Y23 + twi2)p12 — /113723 cos B(p11 + Pzz)eiwwt, (1.54c¢)
P23 = —Y23P23 — v/ 13723 COS Bp e~ w12t (1.54d)
P13 = —Y13P13 — /13723 COS fpozeir2t, (1.54€)

Here 27,3 and 27,3 denote the spontaneous emission rates from |1) and |2) respec-
tively. The cos# terms which couple the diagonal elements with the off-diagonal
elements are the interference terms. They are important when w;; ~ /713723, and
when the dipole matrix elements are nearly parallel. When w,, is large, the rapid
oscillation in the off-diagonal elements in (1.54) will average out the interference
effect. Neglecting interference terms in such a situation is often called secular
approximation.

When non-secular terms are important, coupling of off-diagonal terms will give
rise to evolution of p;3 even when p;2(0) = 0. Intuitively, this happens because
spontaneous emission from one state can couple with the neighboring transition
and vice-versa. This coherence is thus termed as vacuum induced coherence or

VIC. As noted earlier, Agarwal [112] has shown that this coherence can give rise to
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partial trapping in the degenerate V systems. For the non-degenerate V systems,
Cardimona et al. [114] showed that probe absorption at certain frequencies can
go to zero due to VIC. It was also shown [115] that the emission spectrum in the
presence of VIC is drastically modified in V systems.

In recent times, interest in this kind of coherence has been rejuvenated be-
cause atomic coherence can be created without the use of a coherent field. It is
now known that VIC can give rise to LWI [116] and quantum beats [117]. Scully,
Zhu and coworkers [118] showed the possibility of population trapping among ex-
cited levels in a four-level model. They considered coupling of two non-degenerate
vacuum coupled excited levels with an auxiliary metastable level via laser field.
They showed that an entire spectral component from the emission spectrum dis-
appeared as a result of this trapping, and thus possibility of quenching sponta-
neous emission noise was realized. Subsequently, Xia et al. [119] experimentally
demonstrated quenching of spontaneous emission is Sodium dimers. Zhou and
Swain showed the existence of ultra-narrow resonances [120] and GWI [121] due
to VIC. Such a narrowing was also observed in four-level models, and Keitel [122]
has studied the effect of incoherent pumping on sub-natural resonances. Pas-
palakis, Knight and coworkers have shown the possibility of phase control of
spontaneous emission [123] and undistorted pulse propagation [124] via VIC. A
recent work by Savchenko et al. [125] studies the effect of VIC on thermal photons
and thermodynamic equilibrium. The effect of VIC on thermodynamic equilibrium

will be discussed later at length in Chapter. IV.

In A Systems : In the A systems, the decay is from an excited level |1) to the
ground levels |2) and |3). The Hamiltonian for this system can be written as

below.

H = hwizAq1 + hwogzAdgo + Z hwksa}‘maks
ks

—(di3A13 + di2 A1 + Hee.) - E(P). (1.55)

The electric field is as given in (1.48) and all the notations are as defined previ-

ously. In the interaction picture (1.55) can be written as

Heg/h == [(grsA13™"*" + frsA126™* arse " + Hocl, (1.56)
ks
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where now the coupling constants will be,

. 2mwck 1z N T [ 2wck 1z . B
gks =1 ( L3 ) d13 : Ek‘selkr7 fks =1 ( L3 ) d12 * fksezkr.

Using the master equation (1.46) and the procedure discussed above, the follow-

ing master equation in the interaction picture is obtained:

0
ep = —713[A11p - A33,011] - 712[1411,0 - A22,011]

ot
—|—2 COS 0g/713712A32p11€_iw23t + H.c. (157)

Here 2v;3 and 27;; are the spontaneous emission rates from the state |1) to the
states |3) and |2), respectively. The vacuum coupling affects the coherence be-

tween the two ground levels as shown below.

p23 = 2 cos Oy/T13712p11€ 2. (1.58)

Very few studies on effects of VIC in the A systems have been reported [126, 127].
Chapter V and VI of this thesis will discuss in detail the effects of VIC in a A

system.

1.4 Outline of the Thesis

Different chapters in the thesis develop the framework and models for vacuum
field and laser field induced coherences in systems with near-degenerate levels.
We predict many new effects arising from different types of coherences. We also
discuss connection to some of the current experiments. The motivation and im-

portant results reported in various chapters are briefly outlined below.

Chapter II : When a strong field couples both the arms of a A system, Raman and
Rayleigh kind of features appear in the absorption and emission spectra. How-
ever, when the control field Rabi frequency is of the order of separation between
the two ground levels, the usual perturbation theory breaks down [128]. In this
domain, interference between Raman and Rayleigh processes takes place. Fur-
ther, in usual studies dealing with LWI and EIT both the pump and the probe act
on different transitions of a A system.

In this chapter we analyze the probe response of strongly driven A systems

with arbitrary spacing between the two ground levels. We consider a very general
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situation where the pump and the probe fields couple with both the arms of a A
system (cross talk) [129]. In the presence of cross talk, new coherence effects like
LWI, polarization dependent response, modified dispersive properties are seen.
We use density matrix approach [34], and interpret results in terms of dressed
states [128]. We report strong anomalous dispersion between two closely spaced
gain peaks. Such a region of dispersion can be used for observing superluminal
(velocity greater than ¢) propagation, which was recently demonstrated by Wang

et al. [130] for an optical pulse.

Chapter III : Autler-Townes splitting occurs in a V system when a strong control
field drives one transition and it is probed along the other transition. It is a well
known effect in laser spectroscopy, and has been observed in both solids and
gases. However, the effect of VIC on the Autler-Townes splitting has remained
unexplored.

In this chapter we study the effect of VIC on the well-known Autler-Townes
doublet in the V systems. We demonstrate that VIC in a V system can produce
gain at frequencies where otherwise absorption would occur [131]. We consider the
usual situation where the control (strong field) and the probe beams couple to the
different transitions of a V system. We show that in the presence of strong driv-
ing, VIC effects can be important even when the separation between the excited
levels is greater than their natural linewidth. This removes one of the hurdles of
observing the VIC effect with extremely closely spaced levels. We also show the
parameter regime where one of the absorption peaks can be suppressed or where
both the Autler-Townes resonances can produce gain. We introduce the concept

of quasi-trapped-states (QTS) to explain the above results.

Chapter IV : In the presence of thermodynamic equilibrium, one would not ex-
pect any coherences in the system as the density matrix has the form exp[-3H]
which is clearly diagonal in a basis in which the Hamiltonian H is diagonal. A
fully quantized treatment, as shown in section 1.3, leads to coherence terms in
equations of populations if the levels are near-degenerate. Clearly, one needs to
demonstrate that such dynamical equations lead to a steady state consistent with
the thermodynamic equilibrium.

In this chapter, we address a fundamental question of compatibility of ther-

modynamic principles with VIC [132]. We consider a V system with VIC among
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the two excited levels. We show that though the system may evolve in a different
way in the presence of such coherences, the steady state populations are given
in accordance with the Boltzmann distribution. Further, we discuss cases where
steady state solution can be at variance with thermodynamic equilibrium. We
also give an example of pumping with a broadband field where different steady
states are possible. We show that the observational effect of coherences arise in

the emission spectrum.

Chapter V : Unlike a V system, where VIC affects the emission spectrum, in a
A system the effect is more subtle. Thus the question of detection of VIC in a A
system arises. Further, the origin of VIC and its consequence on entropy in a A
system has also remained unexplored.

We address these questions in this chapter. We show that VIC results in oscil-
lation of coherence among the two ground levels in a A system. A weak probe field
can pick-up such an oscillation. We propose a four-level model to monitor VIC
[133]. Spontaneous emission from an excited level generates coherence among
the ground levels, and a probe absorption to a new excited level is measured.
Numerical results show that the probe absorption will be modulated due to VIC.

We also present analytical results in support of the numerical results.

Chapter VI : As discussed earlier the coherent population trapping (CPT) in A
systems has led to immense development in the field of light-matter interaction.
This phenomenon has been the basis for some recent experiments on laser cool-
ing, enhancement of nonlinear signals, lasing without inversion etc. However, if
the two lower levels of the A system are nearly degenerate then we must generalize
the theory by inclusion of the effects of VIC.

In this chapter we report the effects of VIC on CPT and EIT in a A system. We
consider two fields under a situation analogous to the usual studies on CPT [134].
Our results show a scheme to keep coherent population trapping intact even in
the presence of VIC. However, VIC results in changes in the time scales associated
with the formation of the CPT state, and brings in quantitative changes in the line
profiles. We explain these results in terms of the uncoupled and coupled states.
We also report the dependence of the line shapes on the relative phase between

the two applied fields.



Chapter 2

Gain From Cross Talk Among Optical

Transitions

In usual studies on LWI and EIT, one considers the interaction of a strong co-
herent drive and a weak probe field with different transitions of a system, i.e.,
control and probe (cw) fields act on different transitions. There are however situ-
ations where one has to relax the above assumption, particularly when the control
field is intense. Consider for example the hyperfine levels of 3°K, the excited level
4P;/3(F = 1) and the two ground levels 4S;/,(F = 2) and 4S,,,(F = 1), where the
ground level splitting is of the order of 462 MHz. In solid states systems like
Prt3:Y,Si0O5, ground level separation as low as 17 MHz is known to exist [84].
In such cases, a strong control field can couple with more than one transition
and gives rise to several interesting phenomena. We report the possibility of LWI.
We also find that such a system can lead to superluminal propagation in certain
frequency regions.

In what follows, we consider the A systems driven by a strong control field
which couples both the transitions. Cohen-Tannoudji and Reynaud [128] have
calculated the fluorescence spectrum for such a system. They studied various
perturbative limits and showed that for a strong control field new Raman and
Rayleigh features appear in the emission spectrum. However, these perturbative
treatments fail when the control field Rabi frequency is of the order of separation
between the two ground levels. In this regime, the Raman and Rayleigh com-
ponents interfere, and we show that atomic coherence effects become inevitable.
With recent experimental and theoretical studies on atomic coherence effects in

the A systems, a proper theoretical and numerical study in this regime has be-

30
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come imperative. The emphasis of this chapter is on new coherence effects gen-
erated in this regime, when probed through a weak field. We refer to the cross

coupling of control and probe fields on different transitions as cross talk.

2.1 Model System

Consider a A system with one excited state,

1) and two ground levels,

2) and |3)
(see Fig. 2.1) with arbitrary spacing hwy3 between them. Such a configuration of
levels with two fields is well studied by assuming that a given field is driving only
one transition. This can be achieved either by selecting levels with large spacing
hwys or by suitable arrangement of field polarization. However, in this particular

case we allow the same field to act on both the transitions, i.e. to say, the control

Figure 2.1: Schematic diagram of a three-level A system with arbitrary spacing
hwqz between the two ground levels. The control (coupling strengths G5 and G13)
and probe fields (coupling strengths g3 and ¢;2) act on both the transitions.

field, E. = E.e ™! + c.c., which is driving |1) « |2) transition (Rabi frequency,
2G1y = 2E. - cfn/h), can also couples with |1) « |3) transition (Rabi frequency,
2G13 = 2E,q - (1713/ h). Similarly, the weak probe field, Ep = Epoe‘iwpt + c.c., applied
on |1) «+ |3) transition (Rabi frequency, 2¢,3 = 2Epo . aTlg/h] can also drive |1) « |2)
transition (Rabi frequency, 2g:, = QEPO dio /h). Here d;,, is the electric transition
dipole moment between the states |/) and |m). The Hamiltonian, H for this system

in the dipole approximation is

H = hwizdi + hwesAs
—(CﬁzA12 + (ﬂ3A13 +H.c.)- (Ecoe_iwct + Epoe_iwpt +c.c.), (2.1)
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where hwy,, is the energy difference between the states |/) and |m). Here the fields
are treated classically, and A;,,, = |[)(m| are the atomic operators. The state |’) of
this system is the solution of the Schrédinger equation (1.15). Under a unitary
transformation, |¢) = e'“<41t|y), the Schrédinger equation for |¢) will have the
effective Hamiltonian, H.g = —hw.Ay; + e“eAntHe—weAut which can be further

written as

Heg/h = (Ac+ wes3/2)A11 + wosAg
(G2 + 9126_i6t)A12 - (Giz+ 913€_i6t)A13 +H.c., (2.2)
where A, = (w13+w12)/2 —w, is the control field detuning with respect to the center

of the two ground levels and § = w, — w.. In writing (2.2), we have made RWA to

neglect rapidly oscillating terms. The density matrix equations for (2.2) will be

p11 = —2(vis+vi2)pnn +i(Giz + 913€_i6t),031 +i(Gi2 + 9126_i6t)921

—i(GTy + gfzeiét)PIZ —i(Gls+ 9f3€i6t),0137 (2.39)
P2z = 2712p11 + (G + gfzem),ﬂu —i(G12+ 912€_i5t),0217 (2.3b)
prz = —{mz+vi2+i(Ac — w23/2)}p12 + 1(Gi3 + gize ) paa

~i(Grz + g12¢7%) (p11 — paz), (2.3¢)
p13 = —{7s+ 712+ 1(Ac+wes/2)}pis+ 1(Giz + !]126_i5t)[)23

—i(G1s + 9136_i6t)(2,011 + p22 — 1), (2.3d)
P23 = —iwgzpes+ i(Gly+ gfzeiét)pw —i(Giz3+ 913€_i6t),0217 (2.3¢)

where +’s are the spontaneous emission rates. Note that the density matrix ele-
ments in the original frame are given by pie ™™, p13e™"“<*, py3, p11, p22 and pss.
The above model in the absence of probe field can be connected with the well
known Raman and Rayleigh lines in the fluorescence spectrum when G;; < 11 €
wa3, (J = 2,3). Cohen-Tannoudji and Reynaud [128] have studied the perturbative
limits when w3 > Gi; > 7; and Gij > 71, > wes. They noted the mixing of
Raman and Rayleigh lines in the latter case. Our interest lies in the case when
was &~ G1j > 71;. Such a situation can be realized in the D, lines of 3K or ®Rb
using a Ti:sapphire laser of intensity around 200-250 W /cm?. Other possibilities
will include Zeeman levels in the presence of magnetic field and linearly polarized

electromagnetic fields. Expanding the solutions of equations (2.3) in terms of the
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harmonics of 4§,
Plm = Z p;i,ll)e_in&7 (24)

(n)

Im

the set of equations for p, ’ can be solved for the steady state. Since the probe
field is assumed to be weak enough (Gi; > 71; > ¢1;), a perturbative solution
up to n = 0,41 will suffice. However, note that G;; and wy3 are treated up to all
orders. The probe field absorption A per unit volume due to the average induced

polarization P is known to be [6]

. 9P

A=E, S (2.5)

where bar denotes the time average. The average polarization for N atoms per

unit volume is
P= N{(Emme—wct + @1P13€_iwct +c.c.}. (2.6)

Here p;,,’s are the steady state solutions of equation (2.3). The probe absorption
using (2.4), (2.5) and (2.6) is

A = Nafiw[gispl;” + g2 — graplEY — 97,0

Fiwe[ (13051 + 91205) e — (973013 — giapt e} (2.7)

Thus the energy absorption per unit volume is

. *(+1 *(+1 x (+1 * (+1
A= ZNh“p[glsmg ) + 912,01(2 ) - 913,053 ) - 912/’(12 )]7 (2.8)
where we use the fact that p;,,, = p7,;. The probe absorption coefficient o per unit

length (the ratio of A and the input probe intensity c|E,o|?/2x) is

(8%
o= TO[QIS’YmIm(Pgl)) + 912713Im(,05g1))]7 (2.9)
13

where we treat the probe Rabi frequencies as real, oy = 477pr|d13|2 /cyish and e
is the velocity of light in vacuum. Note that the absorption now involves both
Im(,ogl)) and Im(,ogl)) because the probe is acting on both the transitions.

We take the polarization of both control and probe fields along (¢, + é3)/v/2 [ex-
cept in Fig. 2.4(b)] where ¢, and é; are the unit vectors along diy and dy3 (dyo L dy3),
respectively. For simplicity, we take v2 = 713 = 7. In Fig. 2.2(a), the probe absorp-

tion coefficient is plotted in units of oy as a function of § for wy3 = G153 = G13. The
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negative absorption in the profile corresponds to stimulated emission. The solid
curve in Fig. 2.2(a) shows the remarkable result that the cross talk between dif-
ferent optical transitions gives rise to gain provided the energy separation between
the two ground levels is of the order of one half the control field Rabi frequency.
When cross talk is not taken into account, as shown in the figure, the usual
Autler-Townes components [69] are seen.

The complex linear susceptibility x (P = Xﬁpo) is given by

_ N|dis?
7137&9%3

+1
[913’713,053 )

+ g1\t (2.10)

The dispersion properties of the medium corresponding to the real part of y are
plotted in Fig. 2.2(b), both in the presence and absence of cross talk. Clearly, the
cross talk significantly changes the dispersion characteristics also. The imaginary
part of y corresponds to absorption as can be seen from (2.9).

Three gain peaks along with an absorption peak and a central dispersive profile
are the clear features of the solid curve in Fig. 2.2 (a). The dispersive gain around
wp, & w. is a kind of stimulated Rayleigh gain, also seen in a driven two-level
system. The origin of such dispersive features are known [16], and lasing based
on similar dispersive gain mechanism has been observed [17]. The features at
the two extreme shows gain or absorption depending on the A.. They appear as
dispersive profiles when A, = 0, as shown in Fig. 2.3. The spectra is symmetric
about § = 0 for this detuning. On the other hand the two intermediate gain
regions depend significantly on the control field Rabi frequency. These gains
are maximum for wy3 ~ G2 = G13, and disappears for both we3 > G12,G13 and
we3 K G12,G13. The gain is observed for both § > 0 and § < 0 for a given A,
and this supplements to the recently observed gain by Brown et al. in 3°K vapor
[135] as a result of atomic coherence. It should be noted that these gains are not
because of any inversion in the bare states. The steady state population in the

three bare states and the ground state coherence in the absence of probe field are

p(o) . 2G2w§3

H 8G* + 8w2, + 2G2w2, + wyy
N0 4G s+ Gl (2.11b)
22 8G* + 8w, + 2G2w2, + wiy’ )

(2.114a)
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Figure 2.2: (a) Probe absorption coefficient, o in dimensionless units as a function
of §/v. The parameters are G, = G13 = w3 = 107, g13 = ¢12 = 0.1y, and A. = 57.
For comparison we also plot (dashed curve) the usual Autler-Townes components
when G5 = g12 = 0. For large separation between |2) and |3), w3 = 5007, the gain
disappears (dot-dashed) and the standard Autler-Townes splitting emerges. The
X-axis for the dot-dashed curve is taken as § — wy3 and Y-axis as «/ag + 0.05 for
comparison and clarity. (b) Real y in units of N|d;32/v%:. The parameter for the
solid and the dashed curves are same as the solid and the dashed curves in (a).

p(o) _ AG* 4 wis + dwiy — GPwiy (2.11¢)
33 8G* + 8w, + 2G2w2, + wyy
2 2 _ 4 2 41
p(z(;) _ G (w23 G + Zw23) (211(1)

8G* + 8w2, + 2G2w2, + wiy’

where we take G = G132 = G13, A, = wq3/2, and v = 1 as in Fig. 2.2. Comparing the
numerators, it can be shown from the above three expressions that (i) pg%) > p(l(i)

all values w3 and (ii) pgg) > pg(i) for wy3 < 2G. The coherence |Re(p(2%))| is significant

for

only for the range of wy3 < 2G, and is negligible for wy3 > 2G. We show in the next

section that this coherence is giving rise to gain.

2.2 New Interference Effects

We next analyze the spectra in the Fig. 2.2 and will isolate the new features as
due to interference effects arising from cross talk among optical transitions. For
this, we separate the different effects of the probe field on the two transitions
|1) +» |2) and |1) + |3) by writing, pl(;l) = §1301m + g120},, and pg;l) = g130),; + 91200,
Here we use the fact that p;,, = pJ,, to write the latter part and treat the probe
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Figure 2.3: Probe absorption spectra for various values of wy3 when A, = 0. The
solid curve is for wy3 = G, the dashed curve for wy3 = 2G and the dot-dashed curve
for wy3 = 3G. The parameters are G = G5 = Gy13 = 107, ¢13 = ¢g12 = 0.1y. The two
intermediate gains appear as dispersive profiles when w3 = 2G and for wy3 > 2G;
these regions show absorption features.

Rabi frequency as real. The probe absorption coefficient « in this case will be

o= %[gfglm(am) + g121m(073) + giagizlm(o12) + giagialm(a73)]. (2.12)
In (2.12) the first two terms correspond to absorption along |1) < |3) and |1) « |2)
transitions. The last two terms correspond to an interference among the probe
field along the two transitions - a result of cross talk among the two transitions.
As observed, this interference term plays a prominent role for small wy3 and dis-
appears for large w,3. For our numerical results we separate out the contribution
of the direct absorption term and the interference term in equation (2.12). In Fig.
2.4(a) we plot the net absorption coefficient along with the contribution of ab-
sorption and interference terms. Note that the gain peaks around ¢/y = -16.8
and 13.5 are enhanced by the interference. On the other hand, the strong ab-
sorptions around ¢/v = -13.3 and 16.6 are almost nullified by the interference,
though the refractive index [see Fig. 2.2(b), especially in the region 17 < §/v < 25]
is still large. The interference thus leads to dispersion enhancement in the re-
gion of very low absorption as has been realized earlier by Scully and coworkers
[86, 88, 89] for a different model. The interference term is also sensitive to the

relative orientation of the probe and control field polarizations. In Fig. 2.4(b) we
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Figure 2.4: (a) Probe absorption spectra for wy3 = G13 = G153 = 10y. The inter-
ference term (dot-dashed curve) and the absorption term (dashed curve) as in
equation (2.12) are separated to see their individual contribution on the net re-
sult (solid curve). The other parameters are A, = 5y, g12 = ¢g13 = 0.17. (b) Probe
absorption for different orientation of probe field Ep with respect to the control

field E.. The solid curve is for gi12 = —g13, the dashed curve for ¢, = 0 (shifted
by -0.05 units along the Y-axis for clarity) and the dot-dashed curve for g3 = 0.
For all the cases E. is along an axis at 45° to both dy» and dy3. The remaining
parameters are as in frame (a).

show the probe absorption for various probe polarizations. For control and probe
fields perpendicular to each other (f = —g), the interference term will flip to give
rise to strong absorption. We also show in Fig. 2.4(b) the result when probe acts
only on transition |1) + [3) (f = 0) or |1) < |2) (¢ = 0).

The origin of interference can be understood by explicitly writing down the

equations of density matrix elements appearing in (2.12):

Gla = —{ms+ 72+ i(Ac — w/2 = §)}oly + G305,

—iG12(01y — 0%y) — i(P(l(i) - ng))v (2.13a)
12 = —{m+ 72+ i(Ac —we3/2 — d)}org + iG13032

—1G12(011 — 022) + ipfo,%), (2.13b)
13 = —{73+ 712+ 1(Ac +w23/2 — 6}o13 + iG12093

—iG13(U11 - 033) - i(P(l(i) - P:(),%))y (2.13¢)
o13 = {13+ 72+ i(Ac+wi3/2 - 8)}oi3+ G093

—iG13(0}, — ohs) +ip'y. (2.13d)
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The elements in the interference term (0,2, 0};) are governed by the zeroth order
coherence between the states |2) and |3), created by the control field. On the other
hand, the elements in the absorption term depends on the zeroth order inversion
terms.

In order to explore the contribution of the interference term further, we look
at large and intermediate values of wy3 with respect to the control field Rabi fre-
quency. For w. tuned to |1) « |2) transition and large w;3, the coherence due to
control field is not expected due to the feeble cross talk effect. Figure 2.5(a) shows
the Autler-Townes components at § = wy3 + G12. At § = wq3 the figure shows the
transparency point due to CPT [32]. The dot-dashed curve in the figure represents
the cross talk contribution which is negligible as expected. For intermediate val-
ues of wy3, the control field driving both the transitions is to be considered, and
one expects two set of Autler-Townes components as shown in Fig. 2.5(b). The

transparency points will appear at § = +w;3 due to the two three-level configu-

05 - (@) ] 03l (t;n)“\/J |
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Figure 2.5: Probe absorption spectra for large and intermediate values of w,3. The
interference term (dot-dashed curve) is displaced by -0.05 units and the usual
absorption term (dashed curve) by +0.05 units along the Y-axis for clarity. The
net result is the solid curve. In frame (a) wy3 = 100y and in (b) w3 = 40v. The other
parameters are as in Fig. 2.4(a). In frame (b) two set of Autler-Townes doublets
are observed around ¢ = +w,3 and Mollow type features (see inset) around § =
+2G12, 0.

rations (Gis, g12) and (G13, g13) possible in Fig. 1.1. Also seen in Fig. 2.5(b) are
the Mollow [11] kind of features around ¢ = +2G12(= 2G;3),0. This is the result

of two coupled two-level systems (G2, g12) and (G13, g13) present in Fig. 1.1. Since
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both these set of two levels are like open systems, the resulting feature is very di-
minished. In the fluorescence spectrum these features were identified as modified
Rayleigh scattering due to strong control field [128]. For |A.| > G2, G13, instead of
Autler-Townes splitting, the usual Stokes and anti-Stokes Raman features appear
at § = twy3. In Fig. 2.5(b) the gain in the Autler-Townes doublet at § = —w,3 is the
modified stimulated Raman gain due to resonant control field. Recently, Bowie et
al. [136] measured stimulated Raman gain in ®Rb for different values of control

field intensity in the presence of cross talk effect. They considered the ground

1

—— 1.=20Wicm
- =~ 1,=40 Wicm’
— — 1, =60 W/cm’
—--1_=100 W/cm’

=1,

a(cm?)

(6 —wy,) in MHz.

Figure 2.6: Stimulated Raman gain as observed in Ref. [136] for different values
of control field intensity I. as shown in the frame. The control field detuning is
kept 22.6rad.GHz above the |1) + |2) resonance.

levels 55, /5(F = 2), 5S;/3(F = 3) and the excited level 5P, (F = 2). For these levels
w3 = 18.216 rad.GHz, 2 ~ 7.43 rad.MHz, v;3 ~ 1.85 rad.MHz and oy ~ 1455 cm™!,

where N = 5 x 10''atoms/cm?

in their experiment. Using the model discussed
above, we observe similar Raman gain as shown in Fig. 2.6. In these calculations
we have not taken into account, the hyperfine magnetic sublevels, Doppler broad-
ening etc. Nonetheless, the Raman gain shown in Fig. 2.6, qualitatively agrees
well with their experimental results.

For wy3 close to G2, G153 the Raman and Mollow type features discussed above
are important and they superpose over each other. The coherence between states
|2) and |3) also increases due to cross talk. Thus the interference term plays a

dominant role as noted in Fig. 2.4(a), giving rise to enhanced stimulated emission.
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If wy3 is reduced further, strong absorption and interference features are seen
around ¢ ~ \/G%, + G?;. At wy3 = 0 the interference term completely cancels the

absorption as a result of CPT [32].

2.3 Semiclassical Dressed States

In this section we examine the impact of the coherence created by cross talk in
a dressed basis. In particular, to understand the presence of pronounced gain
features around w3 = G132 = G13. We first ignore all the incoherent terms in (2.3).

We can thus work with the state |¢) of the system given by
¢) = C1(1)[1) + Ca(t)[2) + C5(2)[3). (2.14)

Here C,,(t) are the probability amplitudes of the states |m), m = 1,2,3. For sim-
plicity, we take G = G2 = G113 and w. = w;3. However, we will present numer-
ical results for the symmetric case (A. = 0) as well. Substituting (2.14) in the
Schrodinger equation along with the Hamiltonian (2.2) with only the control field

terms, we arrive at the matrix equation
iC = HgC (2.15)

where C and H.g are 3 x 1 and 3 x 3 matrices:

Cl (t) W3 -G -G
C= Cz(t) s Heff = -G Wa3 0 . (2 16)
Cs(t) G 0 0

The dressed state analysis involves the evaluation of stationary states for the
‘atom + control field’ system. The matrix Hamiltonian in (2.16) can be diagonalised
by taking det|H.q — I\| = 0. This will result in a cubic equation of the form \* +
AXN? 4+ BA+C =0, where A = —2wy3, B = wi; — 2G? and C = wy3G?. The two extreme

roots of the above cubic equation are

A= —A/3+ %M(A? —3B) cos[é cos™ (FL)], (2.17)

where L = (27C +24°% —9AB)/2(A% — 3B)*/? and the third root is \g = -4 — Ay — A_.
In Figs. 2.7(a,b) we plot the eigenvalues as a function of wq3 for A, = wy3/2,0. For

small wq3, A\g = 0. At we3 = 0 the eigenvalues Ay are symmetrically situated about
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Ao for case (a), but for case (b) this symmetry is maintained for the entire range
of wy3. For large wy3 either Ay or A_ goes to zero and hence the corresponding
eigenstate becomes the ground state |3). The two remaining excited eigenstates
give rise to the Autler-Townes doublet. Physically the above eigenvalue analysis
means a unitary transformation of the Hamiltonian H.g — SH.gS" where S is the
unitary matrix given by
—GA Ny (A4 (A —was) - GHNL G2V,
S=| @My (Mo(ho—wns) —GHNy  G2N, || (2.18)
—GA_N_ (A_(AL —wy3) —GHN_ G*N_
where A}’s (b = 0,4) are the normalization factors given by A, = [AJG? + (Ap(Xs —
w3) — G)? + G4~/ . Population in the three dressed states will be the diagonal
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Figure 2.7: Eigenvalues )\; and the corresponding dressed state populations pp
as a function of spacing w,3. Here G = 10y and A, = w,3/2 for (a,al) while A, =0
for (b,b1). Note that most of the population is in state |0) for wy3 < 2G, giving rise
to stimulated emissions as shown later in Fig. 2.8(b).

elements py, = (b|p|b) where |b)’s are the three orthonormal dressed eigenstates.
Explicitly, these dressed states are given by
|B) = N {G?|3) — GXp|1) + (Ap(Ap — wa3) — G?)|2)]. (2.19)

We evaluate the steady state population in the three dressed states in the presence

of dissipation terms by using (2.3) (without the probe field terms) and (2.19). In
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Fig. 2.7(al,bl) we plot the steady state population in the three dressed states
as a function of wy3. For wy3 = 0 only the state |0) is occupied due to population
trapping; but for wy3 # 0 there is still population inversion for we3 < 2G, thus
giving rise to the possibility of stimulated emission from state |0). We also plot
the population for the symmetric case when A. = 0 and note that for this case,
population in both the dressed states |[+) and |—) are the same for all values of
wq3. It can be shown from (2.19) that the weight factor for the state |1) is small in
the state |0) compared to states |1) for the range of wy3 < G.

The various peaks in the absorption spectrum correspond to the transitions
among the dressed states, and this can be seen from the quantized dressed state
description where the control field is quantized. The classical nature of the laser
modes is still preserved by taking mean number of photons (n) very large, and
(n) > An > 1, where An is the fluctuation about the mean value (r). The Hamil-

tonian H, of the system without the interaction term is given by
HO = h(wlgAH —|— w23A22) —|— hwc(a‘\a —|— 1/2), (220)

where a and «' are the annihilation and creation operators, respectively for the
laser mode at frequency w.. The uncoupled eigenstates for the above Hamilto-
nian with positive wy3 are shown in Fig. 2.8(a). The two manifolds M(n-1) and
M(n) are shown and their centers have energy separation of hw.. The interaction
with the field results in the mixing of various uncoupled eigenstates in a given
manifold and the eigenvalues for each manifold can be evaluated as done above.
The control field mixing the uncoupled eigenstates of two different manifolds can
be neglected by invoking RWA [15]. In a strict sense, all the atomic variables,
the coupling strengths G’s and the eigenvalues will be different for different man-
ifolds, but since we have assumed a laser mode with a large mean number of
photons and a relatively narrow distribution, the difference between » and »n + 1
can be neglected. The dressed states in a given manifold, say M(n-1), can be gen-
2) and |3) by the eigenstates of (2.20),

2,n), and |3, n), respectively. The sequence of dressed states for two

eralized from (2.19) by replacing states |1),
ie. |l,n—1),

adjacent manifolds are shown in Fig. 2.8(b). Populations in the states |6, n—1) and

|b,n) can be considered equal in the semi-classical limit and a transition among

these states correspond to the the control frequency w..

Case - I: Emission from |0, n) states
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Figure 2.8: Quantized dress state picture: (a) The uncoupled eigenstates of two
adjacent manifolds, M(n) and M(n-1) separated by w.(% = 1). (b) The corresponding
dressed states when coupling is included. The arrows indicate various absorp-
tion and emission processes among the dressed states. As noted in Fig. 2.4(a),
the interference minimizes the absorption from states |0,n — 1) but enhances the
stimulated emission from states |0, n).

As shown in Fig. 2.7 the population in state |0) is greater than that in |+) for
lwas| < 2G. This gives rise to the possibility of stimulated emission from states
|0,n) to states |+, n — 1) at probe frequencies w, = w. + Ag — Ax. For wy3 = G = 10y
and A, = 5y, A; = 22.46, Ay = 5.549, and A_ = -8.02. Thus there is a possibility
of gain around ¢/v =-16.9 and 13.5, and this is in tune with the numerical result
in Fig. 2.4(a). The small discrepancy in the numerical and analytical values arise
because of the inclusion of dissipative terms in the the numerical results.

Apart from inversion it is the coupling of the dressed atom with the probe
field that governs the enhancement of gain, and as we see for |we3| < G, though
there is population inversion, the coupling strength reduces because the system
is close to the CPT state. The coupling strength of the probe field will depend on

the induced transition dipoles among the dressed states given by,
dup = =NuNpAG{G d13 + [Mo( Mo — waz) — GPldyp}e!(“etra= )t (2.21)

Here the indices ¢ and b are 0,4+. The above expression explains the existence
of seven frequencies at which the dipole moment of the dressed atom will oscil-
late. This explains the seven different features at § = A\, — A\ in Fig. 2.4 (around
§ ~ 0,413.5,+16.9,4+30.4). From the above expression it is evident that the gain
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components w. + Ag — A+ will have a coupling strength proportional to A\y. As seen
in Fig. 2.7(a,b) A\g — 0 for |wes| < G, and hence the coupling strength reduces
in this region. The coupling is absent at wy3 = 0. For |wy3| > G, the population
inversion reduces, and as an interplay between these two the optimum gain is
observed only around |wq3| ~ G. To further clarify the existence of specific char-

acteristic around |wq3| &~ G, we plot one of the gain components § = A\g — A_ as a
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Figure 2.9: (a) Absorption coefficient for different values of probe frequencies
as a function of wy3. The solid curve is for § = \g — A_, dotted curve for § =
A_ — A;. Other parameters include G = 107, ¢13 = ¢12 = 0.1y and w. = w;3. (b)
Absorption coefficient for one of the transparency components at § = Ay — g as
a function of we3. The interference term (dot-dashed curve) almost nullifies the
absorption (dashed curve) for a range of |wy3| approximately up to G. There is a
net transparency of around 99% in this range. The other parameters are as in
frame (a).

function of wy3 in Fig. 2.9(a), and compare it with the component at § = A_ — A4,
the transition among extreme dressed states. Note that the gain features are
prominent at |wy3| & G for § = Ay — A_, and no such special features are seen for
probe frequency at § = A_ — \,. This validates the point that stimulated emission

from |0, n) is optimum only around |wy3| ~ G.

Case - II: Absorption from [0, — 1) states
In Fig. 2.4(a), it was noted that the possibility of strong absorption at § =-13.3
and 16.6, is minimized by the interference term. This corresponds to the probe
frequencies at w, = w. + A1 — A¢ [the dotted arrows in Fig. 2.8(b)] and we show

here the reasons for this kind of transparency. In Fig. 2.9(b) we plot one of the
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components, § = Ay — ¢ as a function of wy3. As seen, the strong absorption is
nullified by the interference term. The net absorption is zero at w,3 = 0 due to the
formation of CPT state, and continues to remain minimum for a range of |wq3| < 2G
due to state |0) being close to a CPT like state. Physically this can be understood
in terms of destructive interference leading to small dipole matrix elements for
these transitions. This can be seen from the expression (2.21) where we see that
the frequency component at w.+ A1 — Ag will have an induced dipole moment given
by

~NoNEALG{G2dys + [No(No — was) — G*dya}, (2.22)

where we have verified that A\g(\o—wq3) — G? < 0 for all values of wy3. This gives rise
to opposite contributions from the dipoles oscillating along |1) +» |2) and |1) + |3)
transitions and the amplitudes along these transitions hardly differ for |w.3| < G.
For frequency components at w. + A\g — A+ and w. + A+ — Ay, the dipoles add up in
phase because we find that Ay (Ay — wy3) — G? > 0 for all values of wy3. Thus the
net coupling for these components are important for any w;3 > 0. On the other
hand, retaining the control field polarization and taking the probe polarization
along (& — 83)/\/5 (912 = —g13) the coupling at § = Ay — Ay will be the strongest

compared to the other components.

Case - III: The transition among |+) states

In Fig. 2.4(a) the gain peak at 6 = -30.4 and the absorption peak at 6 = 30.4
arise because of transition among the dressed states |+) shown in Fig. 2.8(b) with
dashed lines. They correspond to the probe frequencies w, = w. + A+ — Ax. The
gain at w, = w. + A_ — A} is because of the small population inversion as seen in
Fig. 2.7(al) at wy3 = 10/7. Also note from Figs. 2.7(al,b1) that the population in
|t) states, unlike in state |0), is very sensitive to the A.. The gain will appear at
§ = A_ — Ay for A, > 0, and at wi, = Ay — A_ for A, < 0. This is because unlike
state |0) which has a major contribution from coherence due to cross talk, both
|+) states have contributions from optical coherences pgg) and pgfi}.

When A, = 0 the plot for eigenvalues in Fig. 2.7(b) shows that A, —\g = Ag—A_,
because of the eigenvalues A1 placed symmetrically about A for all values of wys.
This explains the presence of very symmetric profiles about § = 0 in Fig. 2.3. Also,
as shown in Fig. 2.7(b1) the population in the states |+), for this case, are same

for all values of we3. This gives rise to the dispersive kind of profiles as noted in
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Fig. 2.3 at § = A4+ — Ay due to transition among dressed states of equal population.
These dispersive profiles can be explained by taking into account the non-secular
terms in the dressed state analysis [16]. The gain observed here is not because
of any inversion, either in dressed states or in bare states, but due to coherence
among dressed states [59]. Further, when w3 = 2G in Fig. 2.7(b1) the population
in all the three dressed states are equal. This explains the presence of dispersive

profiles even at § = +(\g — A;) for this particular case.

2.4 Superluminal Propagation

In this section we report the unusual effect of cross talk on the propagation of a
pulse of light. An important parameter characterizing propagation of a pulse is

its group velocity which as noted in (1.41) is given by

c

In a spectral region of steep anomalous dispersion (0n/dw, < 0) it is clear that
abnormal group velocity like v, > ¢, 00, —ve is possible [137, 138]. It is also known
that such velocities need not be unphysical, and within the frame work of special
relativity and principles of causality, such a phenomenon can be explained. For
example a negative group velocity would mean that a new pulse center is formed
at the output of the medium before the previous pulse center (as defined in vac-
uum) has entered the medium [130, 138]. Bolda and Chiao [139] have shown
that in any dispersive dielectric, there will exist a spectral region where group
velocity will be abnormal, the simplest example begin the region where attenu-
ation is maximum [137, 138]. Anomalous dispersion near an amplifying region
is also known to give rise to abnormal group velocity [140]. But most of these
proposals and demonstrations were based on spectral regions where pulse dis-
tortion is inevitable. Recently, Chiao and coworkers [141] noted that in the region
between two gain doublet, there exist a point of zero dispersion and large anoma-
lous dispersion. Thus they predicted transport of narrow band, analytic pulses
with abnormal group velocity without much distortion. Following this proposal,
Wang et al. [130] created two Raman gain doublet with a well resolved separation
of few MHz in Cs vapor. In the region between these gain peaks they observed a

group index n, = —330 (v, = ¢/n,) for a Gaussian pulse of bandwidth of ~ 100KHz.
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This is the highest negative group velocity observed till date in the optical region.
But it should be noted that the limitation on bandwidth and pulse shape does not

allow any information to travel faster than the velocity of light in vacuum [142].

F=2
4P, HF=1 A iO.SESrad.GHz
(9]

A =769.9nm

F=2

4S ey T ] 2.9 rad.GHz

Figure 2.10: Energy level diagram of *°K, D; transition. The separation between
the hyperfine levels are as noted in the figure. The control field is tuned between
the two excited and ground levels.

In Fig. 2.2(a) it was already noted that due to cross talk two close gain peaks
can arise when wy3 ~ G. For A, = 0 (Fig. 2.3) these gains appear symmetrically
about 4§ = 0. The separation between these two gain peaks depends crucially on
we3 and G, and for appropriate parameters it is possible to observe superluminal
effects due to cross talk. In the following we predict the possibility of superluminal
propagation for a system like 3*K. We consider the experimental situation reported
in previous experiments [135] where *°K was maintained as vapor at temperature
T = 150°C. The Doppler broadening at this temperature is ~ 5.76GHz and we
include the Doppler effect in this calculation. The inclusion of Doppler broadening
will imply a velocity dependent detuning A, = A. — v.k. where Z is the direction
of propagation of the control field. We consider the control and probe field as co-
propagating to reduce the Doppler broadening effect. Thus § remains unchanged
since k, =~ k.. Doppler averaging of atomic variables is done for a Maxwellian

velocity distribution as shown below.

24/In 2 *®
plnz(57 Ac) = - /ﬂ- / Plm (67 Av) exp [_4 In 2(AU - A0)2/L*')2D]dAm (2.24)
wp .

where wp ~ 1/81n2w2KT/c2M is the Doppler width, K is the Boltzmann constant
and M is the mass of each atom. A control field Rabi frequency G = 2.2GHz is

considered which can be achieved with an intensity around I. = 200W /cm?. The
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energy levels and their separations are shown in Fig. 2.10. Since the control field
is strong, we also include the correction from the excited level 4P ,(F = 2). In Fig.
2.11 the probe absorption coefficient and refractive index change are plotted as a
function of §. For these calculations we have considered v = 20MHz and collisional
dephasing rate ~ 10MHz. The decay of the ground and excited state coherences

are taken as 0.1 MHz and 1 MHz, respectively. As can be noted from Fig. 2.11,
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Figure 2.11: Absorption (solid, left scale) and dispersion (dashed, right scale)
curve for the levels shown in Fig. 2.10 as a function of 6. The parameters are

given in the text.

in the region around ¢ ~ 0, the dispersion is close to zero and the slope is -ve.
The separation between the two gain peaks is of the order of GHz range, and thus
a pulse of this bandwidth can travel with superluminal velocity in this spectral
region. We have measured an average group index n, = —60 for a number density
of N = 10'3atoms/cm? in this region. A detail investigation will need inclusion of all
the 2F 4+ 1 magnetic sublevels, laser linewidth and propagation effects. However,
one can work with selective magnetic sublevels and static magnetic fields [92, 94,
130]. In any case, these effects will not change the qualitative results discussed
above. Further, there exist a vast parameter regime for various atomic vapors
like Rb, Cs, Na, and superluminal behavior via cross talk in these systems need

further investigation.
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2.5 Summary

In summary, we have shown new features in the probe absorption spectra that
arise in the A systems due to cross talk. In Sec. 2.1 we have shown the pos-
sibility of gain without inversion and new dispersive features that arise due to
cross talk. In Sec. 2.2 we explain these new features in terms of new coherence
effects that arise due to cross talk. We show the possibility of both gain and
weak transparency as a result of interfering terms. We also connect our results
with the previously well studied regimes where cross talk effects were negligible,
and show that new coherence effects arise when the Rayleigh and Raman kind
of phenomena interfere. The physical explanation to the gain and transparency
is given in Sec. 2.3 in terms of the dressed basis. We give a general analytical
expression for the position of various features in the spectra. We show that gain
arise due to inversion in the dressed basis, and transparency as a result of weak
coupling among dressed states. Finally, in Sec. 2.4 we discuss the possibility of
superluminal propagation due to cross talk. For the parameters of *°K vapor, we
evaluate the group index with the inclusion of Doppler broadening and collisional

effects.



Chapter 3

Gain Components in Autler-Townes
Doublet

It is well known that the absorption spectrum of a probe tuned to one of the tran-
sition of a V system will show new resonances when a strong coherent field is driv-
ing the other transition. The strong drive splits the absorption resonance into two
components known as the Autler-Townes components [69]. Various experiments
in gases [143] and in solid state systems [144] have studied the Autler-Townes
splitting of absorption lines in different contexts. Such a three-level model is not
known to give rise to gain unless additional fields are introduced. For example,
an incoherent pumping along the probing transition of a V system will give rise to
gain [58, 64]. In this chapter, we demonstrate that the VIC in the V systems can

produce gain at frequencies where usually one expects absorption.

3.1 Basic Equations

Consider the control and probe field set-up shown in Fig. 3.1(a). The transition
dipole moments d;3 and dy; are assumed to be non-orthogonal. It was noted in
section 1.3 that non-orthogonal dipole matrix elements are essential for observing
the VIC effects. Let # denote the angle between the two dipole matrix elements. To
study the situation as much parallel to the usual case where control and probe
fields act on two different arms of the V system, we consider an arrangement
of field polarization as shown in Fig. 3.1(b). This enables us to study the VIC
effects as well as compare it with the usual situation. Thus the control field
(E, = E.ge~i*t + c.c.) with a Rabi frequency 2Gy3 = 2y - Eco/h drives |2) < |3)

50



Gain Components in Autler-Townes Doublet 51

Ap W, ‘ 2 >
-
\ 7A = - CT23
\ 2Y13 dig
913 \\\ ”
\\\ ¢ G 0
\ 3) Ep Ee
(@ (b)

Figure 3.1: (a) Schematic diagram of a three-level V system. The control and
probe fields have a frequency detunings A, and A,, respectively. The 7’s denote
the spontaneous emission rates from the respective levels. (b) The arrangement
of field polarization required for single field driving one transition when dipoles
are non-orthogonal.

transition (d;;, -E.o = 0) and similarly the probe field (Ep = qpoe""”?t + c.c.) with a
Rabi frequency 2¢,3 = 2d,3 - Epo/h drives |1) < |3) transition (dys - Epo = (). We note
here that the Rabi frequencies will also depend on 6. But for comparisons we keep
the Rabi frequencies same for different values of 4. In practice this can be done
by suitably increasing/decreasing the field strength.

The Hamiltonian for this system in the RWA will be

H = hw13|1><1|—|—hw23|2><2|
—h(G23|2><3|6_iwct + 913|1><3|€—iwpt —|— I‘I.C.)7 (3 1)
where hwis (I = 1,2) is the energy of the state |/) when measured with respect to

the state |3). Making appropriate canonical transformations, the density matrix

equations with inclusion of all the decay terms will be

P11 = —2v13p11 — n(p12 + pa1) + i913€_i5t,031 - i913€i6t,0137 (3.2a)
,522 = —27v3p22 — 77(,012 + ,021) + iG23,032 - Z'G23,023, (3.2b)
pr1z = —(713+ v23 + iwi2)p1z — nlp11 + p22) + i913€_i6t,032 — 1G23p13, (3.2¢)
p13 = —(113+ (A4 wiz2))p1s — np2s — 1Gaspiz

+i913€_i5t(1 — 2p11 — p22), (3.2d)
prs = —(723+iAc)pas — np1s — igize " par +iGas(1 — p11 — 2p22),  (3.2€)

where § = w, —w.. The probe detuning A, = w;3 —w, and the control field detuning

A, = w3 — w, are related by A, — A, = w2 — 4. The elements p;3 and p,3 in the
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original frame are given by p;3e™*“<! and py3e~*“<*. We also use the trace condition
p11 + p22 + p33 = 1. Here n = /713723 cos @ is the VIC parameter, which is nonzero
when 6 # 90°. Note that for the kind of geometry shown in Fig. 3.1(b), 6 is always
nonzero, though it could be small. In the absence of external fields, as noted
in equations (1.54), the VIC effects are important when the separation between
the two excited levels is of the order of their natural line width. However, this
condition may be relaxed when the system is being driven by external fields as we
will see later.

Let us first consider the case when 6 = 90°. Making a further canonical trans-
formation on p;3 and p;2, we can get rid of the explicit time dependence. The
imaginary part of p;3 yields the probe absorption. In the limit of a weak probe
field (913 < 713, 723), we obtain

_ 91s{(v35+ AZ+ GF3) (Ac — Ap +i(m13 + 723)) + GR5(Ac — i723)}
(733 + A2 +2G35)[GR5 + (Ap — im13) (Ac — Ap + (713 + 723))]

(3.3)

P13

The above expression shows that two complex poles exists at A, = (A, + ivy23 +
2iy13 £ \/(AC + 1793)% + 4G2; )/2. In the limit G3 > 723, the probe absorption will
have two resonances at A, = (A, + /A2 4 4G3;)/2. These are the two Autler-

Townes components in the absorption spectrum. It can be further shown that
Im(pq3) > 0.

We now consider the effects of VIC (f # 90°) [in Appendix B we show the pos-
sible systems where dipole matrix elements are non-orthogoanl]. The system of
Egs. (3.2) have been previously studied under different conditions. We would
now recall what has been done and in what ways our current work differs from
the existing works. (a) We could first consider the case when control field is also
replaced by the probe field (Eo = Epo, wp, = wy). Here the effects of VIC mani-
fest both in emission [117, 120] and absorption spectrum [114, 121, 145]. Zhou
and Swain demonstrated the existence of ultra-narrow spectral lines in emission
[120]. Cardimona et al. showed vanishing of absorption under certain conditions
[114] whereas Zhou and Swain demonstrated the possibility of gain with no con-
trol field present [121]. (b) Another case which is extensively studied by Knight
and coworkers corresponds to degenerate control and probe fields, i.e., Eco #* Epo,
but w, = w. (§ = 0). Here the control field can have arbitrary strength while the
probe is kept relatively weak. Paspalakis et al. showed how VIC can lead to gain

without inversion [145]. (c) In the present work we study the general case of non-
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degenerate control and probe fields, ch0 # Eco, wp # we. We show how the VIC can
invert the traditional Autler-Townes component in the absorption spectrum.

The non-degenerate case has a major complication due to explicit time de-
pendence in the equations of motion (3.2). Since the time dependence in (3.2) is
periodic, we can solve these equations by Floquet analysis. The solution can be

written as
pim =Y pleminot, (3.4)

Thus the absorption and emission spectra get modulated at various harmonics
of §. The dc component in probe absorption spectrum is related to pgl). The
absorption coefficient o per unit length can be shown to be

Ap7Y13 +1
= 228 m (piEY)
913

) (3.5)

where ag = 47N |d13|2wp /hy13¢ and N denotes the atomic density. Note that in (3.5)
only one term from the entire series (3.4) contributes. For the degenerate case
(6 = 0), all the terms in the series (3.4) are important (but numerically easy to

evaluate).

3.2 Numerical Results

In order to obtain the probe absorption spectra we solve (3.2) numerically using
(n)
]
can be computed to first order in g3,

the series solution (3.4) and the steady state condition p;.” = 0. The situation is
(+1)
]

otherwise we use Floquet method. In Fig. 3.2 we plot the probe absorption as

much simpler for a weak probe when p

a function of probe detuning. The dashed curves in Fig. 3.2(a,b) are the usual
Autler-Townes components in the absence of VIC effects. The solid curves show
the absorption spectra when VIC is included. We observe that one of the Autler-
Townes component flips sign to give rise to significant gain. This type of behavior is
seen for any value of wy, provided the control field strength satisfies the condition
Gz = |wig| for A, = 0. When wy; = G323 and A, = 0, the gain appears at A, = —G3.
The solid curve in Fig. 3.2(b) shows that the effect of VIC is observed even for
large wy, compared to 713, v23. This is in contrast to the situation that exist in the
absence of external fields where one finds that VIC effects are important when

the separation between vacuum coupled levels is of the order of their natural
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Figure 3.2: The probe absorption spectra both in the presence and in the absence
of VIC. In both the frames the dashed curves show the usual Autler-Townes com-
ponents in the absence of VIC (4 = 90°) and the solid curves are for # = 15°. The
common parameters are g;3 = 0.01v, 723 = v13 = 7, and A, = 0. Note that « will
depend on w;; only when VIC is present and we take w;; = —Gq3 for the solid
curves. In frame (a) we take G,3 = 10y and in frame (b) we take Gy3 = 50v. The
solid curve in frame (b) shows that the effect of VIC is retained even for large wys.

line-width. As can be seen from the Fig. 3.2(b), for strong control fields, such
a restriction can be relaxed. Also, one of the Autler-Townes component can be
almost suppressed for certain set of parameters as shown in Fig. 3.3. It can be
seen that the parameter # controls the spectra in presence of VIC. The dot-dashed
curve in Fig. 3.3 also shows the effect of unequal decays. For 733 > 27,3 both
the Autler-Townes components flip. We analyze the origin of these features in the

following sections.

3.3 Quasi-Trapped-States

For a very weak probe field (913 < 713, 723) We can solve equations (3.2) perturba-
tively with respect to the strength of the probe field. To the lowest order in g3,

the solution may be written as

0 —idt — _idt
Plm = O, + g13al‘:ne "+ gi30,, € (3.6)
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Figure 3.3: Plots show the important role § and unequal +’s play in the presence
of VIC. The common parameters are Gy3 = 107, g13 = 0.01y, A, = 0, and w2 = —Gas.
The solid curve presents the case when 7,3 = 713 = v and 6 = 35°. The dot-dashed
curve arises when vy3 = 67, v13 = v and 6 = 15°.

We first examine the behavior of the system in the presence of control field alone
(913 = 0). In the absence of VIC effects the system reduces to the well known
case of coherently driven two-level atom. But the behavior is quite different in the
presence of VIC effects as we show in the following.

It is clear that field G5 creates a coherent mixing of states |2) and |3). The new

eigenvalues will be

A, + /A2 +4G3,
At (3.7)

— 5 7

and the corresponding dressed energy states can be written as

|[+) = cos®|2) 4+ sin|3), (3.8a)
|-) = —sin®|2) 4+ cosv|3), (3.8b)

where tan ¢ = —G23/A;. The crucial point to note is that the level |1) is coupled
with |+) because of the presence of VIC. Thus the population in |+) also depends
on the VIC. When [1) is degenerate with either |1), i.e., when wy; = Ay, the degen-
erate levels get strongly coupled via VIC, giving rise to trapping. When |1) and |-)

are degenerate, we show that the dynamical behavior of the system can be best
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analyzed in the basis given below:

4, o) = V273(1) + 723l ) luc) = Vzll) = V27sl-)
7 VY +27s V723 + 2713

Using the transformations (3.8), (3.9) and Eqgs. (3.2) with ¢g;3 = 0, we numerically

(3.9)

compute the steady state population in the states (3.9). In Fig. 3.4 we plot the
population of these states as a function of A.. Note that in the presence of VIC,
a2 .. approaches unity at A, = 0, i.e., when the states |1) and |-) are degenerate,

ucuc

because wi; = —G23. A similar kind of trapping will occur when |1) is degenerate

1.0
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Figure 3.4: The atomic population in the basis (3.9) as a function of control de-
tuning A./v in the presence [frame (b), # = 15°] and in the absence [frame (a),
6 = 90°] of VIC. The parameters are Go3 = 207, w13 = —Ga3, and vi3 = 723 = 7. The
solid curves denote ¢°_ ., the dashed curves are for ¢2. and the dot-dashed curves
denote o _ .

with |[+). When |wi3] # Ga3, the trapping occurs for an off-resonant control field.
Trapping also requires § to be small. We show later that ¢2_, . cannot approach
unity, and for this reason we refer to it as ‘quasi-trapped-state’ (QTS). Figure
3.4 also shows that for A, <« —Gs3, all the population remains in |+). This is
not an interference effect and happens irrespective of whether VIC is present or

absent. When A, € —Gg3, A+ — 0 and siny — 1 (cosy» — 0) in (3.8). Thus the
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level |+) ~ |3) is the ground state and most of the population remains here if the
control is highly off-resonant. The building up of population in |uc) is a result of
interference among decay channels of |1) and |-) levels. As a consequence, even
if w5 is large in bare basis, strong VIC effects can appear when a dressed state is
degenerate with the bare state |1).

We next examine how the quasi-trapped-state is formed. For this purpose we

transform the equations of motion (3.2) of the density matrix elements in basis

(3.9). For A, = 0 and w;; = —Gs3, a tedious calculation leads to
50— _Hnsvas(ns o)L -cosh) o Y13(47fs + 47137930080 +735)
ucuc (2713 _|_723)2 ucuc (2713_}_723)2 cc
2 — 1- 0
713723 Ui+ B 723\/713723( Y13 723)( cos )(Ugcc n Ucouc)7 (3.10a)
2713 + Y23 V2(2713 + 723)2
50— Unst ) (4713 + 4713723 cos 0 + 735) 0 2713733(1 — cosb) 0
« 2(2913 + 723)? « (2913 4+ y23)2 "
2 2 — 2 1-— 6
s 0 713(2713 — 723) V ’7137223( cos 6) (69 40 }(3.10b)
2(2v13 + 723) (2913 + v23)
-0 _ Y23 o (4’7123 + 4713723 cos § + 7%3) o, 2713723(1 —cosf)
Or+ = ~5 04t Tee Tucuc
2 2(2913 + 723) (2713 + 723)
2 — 1- 0
-I-( 713 ’723)\/713723( €os ) (Ugcc n Ogm% (3.100)
V2(2713 + 723)
0 4v73723(1 — cosf) | yi37y23c08 6 + 733 0 V23713723 ¢
Owee = — 2 + Y13 Cuwee = 72 944+
(2713 + 723) (2713 + 723) V2(2713 + 723)
_7s723(1 —cosO)(2y13 —723) o V713723(1 — cos ) 50
(2713 + 723)2 cuc /2 ucuc
Vv Y13723 0
—[872 (1 —cosf) + (2vi3+ 723)2 cos ] lopo (3.10d)
9 V2(2713 + 723)?
.0 Y23 0
Orge = ——o———— + 1+ 6v2 — cosh)]ol,.
+ 2(2v13 + 7Y23) 2 + sl o
v Y13723 0
——=—————[2713+ 723080 — 27,3]0] , (3.10¢)
V2(2713 + 723) +
.0 V2713723 0
0y, = —To———— 1—cosf) — Ot ue
+ @715 + 723) [713( ) — 72sloy
2 2 ‘73—
—[2 14+ cosf)+4 +3 — T (3.101)
[2713723( ) Y13 ’723]2(2%3_'_723)

The above equations were derived by neglecting terms rotating at e*%%23* (secular
approximation). Note that the above equations are not the usual rate equations
because the diagonal elements are coupled with the off-diagonal elements as in

(1.54). It is this coupling which leads to quasi-trapping even though 2. . decays
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at a rate

_ 4713723(713 + 7v23) (1 — cos )
(2713 + 723)? '

| (3.11)

Also note that for small non-zero ¢ the decay from state |uc) is very small, which
makes it a highly ‘stable’ state. We solve Egs. (3.10) numerically with the initial
condition ¢9;(0) = 1. In Fig. 3.5 we plot the time evolution of the population

in states |+),

c), and |uc). Note that both |+) and |¢) decay very rapidly, while
population gets accumulated in |uc). Here complete trapping will occur [02,,,.(t —
oo) = 1] when I',. = 0. This is not possible for the geometry shown in Fig. 3.1(b).
However, we have a quasi-trapped-state for small 4.

It should be noted that trapped states were shown to occur in presence of
VIC under several conditions [112, 114, 118, 119, 121]. Recently, new trapping
states in the presence of VIC have been found for four-level systems [146, 147].
However, the QTS discussed above is due to a control field G35 coupling |2) + |3)

transition and thus is different from all the previous works.

1.0

population

0.2 r N

0.0 F==——g==- Hm—————— e Yy Y Yy Yy

Figure 3.5: Time evolution of the atomic population in the states |+), |c), and |uc)
when A. = 0, wi; = —G33 and § = 15°. The other parameters are Gy3 = 207, and
713 = 723 = 7. The solid curve represents o0, ., the dashed curve is for ¢% and the
dot-dashed curve shows evolution of 69, .
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3.4 Effect of Quasi-Trapping on the Control Field

We now show the effect of the above trapping on the absorption and dispersion
profiles of the control field. The trapping leads to an increase in the refractive
index and drastically reduces the absorption of the control field. Various models
in the past have demonstrated and discussed the importance of such a medium
[86, 87, 88, 89]. However, in the present case we show how VIC can be used
to control the refractive index of a medium. It is known that a large population
difference between the dressed states can result in large dispersion with vanishing
absorption [88]. For our system the population of dressed states depends on 7
and hence in principle we can get a situation where large population difference
between dressed states can exist. Consider the case when A, = 0 and w;y =
—Ga3. The coherence 09, can be evaluated using Eqgs. (3.2) and (3.6). The optical

coherence to all orders in the control field is found to be

095 = [G3n{G33(2713 + v23) 113 + (n° — m3723) (713 + 723) %}
+iGas (713723 — 1°){Ava3 — 1’ 113(713 + 723) 2}/ B, (3.12)
where
A = G§3’Y223 + 4G§3713723 + ’71237223 + 4G§3’Y123 + 27?3723 + 71137
B = (713723 - 772){14(7%3 + 2G%3) + 772G§3713(723 + 2713)} + U2G33(723 + 2713)2

+7° (713 + 723)* (3v13723m° — 2713735 — 7). (3.13)

It is known that the Re(c9;) corresponds to the dispersion and Im(c9;) corresponds
to absorption. When the alignment parameter 6 is small, we have 7? ~ 37,3 (for

example when 6 = 15°, n? = 0.93v,3723), then we can approximate (3.12) by

0 M3 S(isyas — ) {A = 7i3(13 +723)%) (3.14)

ag ~ )
B yo3 4+ 2713 G337v13(723 + 2713)2

with the constraint that G,3 # 0. Thus for 73 > 723, one can have Re(0c);) as
high as 0.5, while the absorption remains low. In Fig. 3.6 we plot the absorption
and dispersion parts of ¢, as a function of detuning A./y. For comparison, the
dashed curves show the result in the absence of VIC. These curves are obtained
from the steady state numerical solutions of (3.2) with g;3 = 0. Note that in the

presence of the VIC, there is a dip in the absorption and a peak in the dispersion



Gain Components in Autler-Townes Doublet 60

0.04

(@

Re(©°5)

Figure 3.6: Plots show the absorption and dispersion curves for the control field in
dimensionless units as a function of control detuning A./~. The solid curves show
the effect of VIC, § = 15°, and the dashed curves are for # = 90°. The parameters
are (o3 = 207, and 7,3 = 107, 723 = 7. For the solid curve wy; = —Ga3.

curve. Due to trapping, most of the population tend to remain in states |1) and
|-). For w2 = —G33 and A, = 0 the population in the three dressed states and the

coherence 03_ were evaluated to be

0
011

UO

0
T4+

0
oy

G§3n2(713 + 723)2(772 — Y13723) — G%3ﬁ2723(723 + 2v13) 7 (3.15a)
B

{(v33 + 2G33) A(13723 — 0°) — °Ga3(713723 — 1°) (3735 + 5713723 + 7ia)

+4G33n V13723 + 1 (723 + 713)° (377113723 — 2775733 — 1) }/2B, (3.15b)

(113723 — 1°){A(733 + 2G%3) + Go3n’*113(723 + 2713)

+7% (713 + 723)* (G35 — 271723 + 1°) }/2B, (8.15¢)

[(n® = 713723) (Avds — Gs(V3s + 113723 — Yia)n7) — 17 (713 + Y23)* (3v137237°
—279{5735 — 1) — 2iGa3(n® — y13723) (Av23 — 7*y13(713 + 723)%)]/2B, (3.15d)

which under the condition 7% a~ v;3723 reduce to

2
T e - N PV . L H (3.164)
v23 + 2713 v23 + 2713

ol & (maves— 1) {A(V3s+ 2G33) + Gogvis723(723 + 2713)

+’Y13723(713 + 723)2((;%3 - 713723)}/(2G%3713723(723 + 2713)2)7 (3.16b)
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Im(o?_) (13723 — 1°){A — 7{5(ns + 723)2}‘

(3.16¢)
G§3713(723 + 27v;3)?

Because of the factor (yi3723 — 7?), ¢, and Im(c{_) are very small compared to

o), and ¢?_. One can equally write 09, as
093 = (02_ —0%,)/2+ilm(c]_), at A, =0. (3.17)

Thus the large difference in population between states |—) and |+) gives rise to
the large dispersion. This large difference of population arises because |1) and
|—) form the QTS. When 6 = 90°, we find from (3.15b), (3.15c) and (3.15d) that,
0?_ =09, and Im(c}_) # 0. Thus the dispersion at A, = 0 is zero with substantial
absorption which is consistent with the well known power-broadened absorption

and dispersion profiles for a two-level atom.

3.5 Origin of Gain through Quasi-trapped-states

The origin of the Autler-Townes doublet in the absorption spectrum is well un-
derstood. The control field dresses the states |2) and |3). The absorption from
the dressed states |+) leads to the Autler-Townes doublet. The situation changes
drastically in presence of VIC which as shown in Sec. 3.3, for a suitable choice of
parameters, leads to a quasi-trapped-state |uc). For A, = 0, w12 = —Ga3, 713 = Y23
and small values of # the dressed state |+) is almost empty whereas ¢°_ > o},
[Eq. (8.164a)]. Thus the probe can be absorbed in the transition |-) — |1) whereas
the probe will experience gain in the transition |1) — |+). We also note that in
principle the coherence between two dressed states |+) can also contribute to the
gain [59]. As discussed in the Sec. 3.3 , the population in the states |+) and |1)
depend on the angle # between the two dipole matrix elements. For intermediate
values of # the population in |1) and |+) can be almost same. This can suppress
one of the Autler-Townes components as shown by the solid curve in Fig. 3.3.
When 733 > 2713, it is possible to have ¢y, > ¢%_ for small § [see result (3.16a)].
Thus both the Autler-Townes components will show gain. This behavior is shown
by the dot-dashed curve in Fig. 3.3.
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3.6 Summary

In summary, we have studied the non-degenerate spectroscopy of the V systems
in the presence of VIC effects. In Sec. 3.1 the basic working equations were de-
rived. In Sec. 3.2 the numerical results were presented and comparisons were
made with the usual Autler-Townes spectra in a V system. Here the possibility
of controlled modification of the Autler-Townes spectra was also shown. In Sec.
3.3 the concept of Quasi-Trapped-States has been introduced, and results were
explained in terms of quasi-trapping. We have shown that interference in the
dressed basis gives rise to quasi-trapping. In Sec. 3.4 we have discussed a con-
sequence of quasi-trapping on the control field. We have shown the possibility of
a spectral region where refractive index is large, but absorption is minimum due
to quasi-trapping. Finally, in Sec. 3.5 the gain in Autler-Townes components was

explained in terms of quasi-trapped-states.



Chapter 4

Quantum Interferences and

Thermodynamic Equilibrium

It is shown in section 1.3 that the quantum coherences can be created in in-
teractions involving a common bath with a set of closely lying states. However,
one would like to understand the role of coherences if the bath is at a finite
temperature. At the outset one would not expect any coherences if the system
is in thermodynamic equilibrium as the density matrix has the form exp (-5H)
[6 = 1/KT] which is clearly diagonal in a basis in which H is diagonal. But
a microscopic derivation of the master equation for a system interacting with a
heat bath does show the appearance of coherence terms in dynamical equations.
Clearly, one needs to demonstrate the consistency of the dynamical equation with
thermodynamic equilibrium. This then raises a very interesting question: What
could be the observational consequence of such coherence terms in the master
equation ? The present chapter deals with such aspects. Following the procedure
discussed in section 1.3, we derive from first principles the dynamical equation
for systems which exhibits coherences and which we show to be consistent with

thermodynamic equilibrium.

4.1 Equations of Motion

We consider a collection of three-level atoms, the excited levels |1), |2) and ground
level |3) (V system) in a bath of thermal field. Following Sec. 1.3 [see Eq. (1.49)]

63
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.

Figure 4.1: Schematic of a V system in a thermal bath. The 74’s denote the sponta-

neous emission rates and the excited levels are assumed to be coupled via vacuum
field.

the Hamiltonian for this system in the interaction picture and RWA will be
Hp=— Z[{gksz‘lmew”’t + frsAgze @ ay ekt L Hocll. (4.1)
ks

However, unlike in section 1.3, here the atoms are in thermal bath and the initial

state of the radiation field is given by

1-
pr(0) = exp (=03 hwgsay aks) (4.2)

a Tr {exp (—p Ewksa};saks)} .

The master equation derived in the Born and Markov approximation reads as

below:
dp .
E = —2[w13A11 + wozAgs, P] - I‘13[1411P - A33P11] - F23[1422,0 - A33P22]
I'iz3cosf
—T'y3d, cos 9[A12P - A33P21] - BT[AHP - A33,012] - 713”1[1433,0 - A11P33]
Y1311

—Ya3n2[As3p — Azapss] + ( + y23n2d,) cos 8 Ay p33 + H.c. (4.3)

T

Here 2v;3 = 4|@3|2w§?3/3hc3 (j = 1,2) is the natural line-width of the level |j) which
comes due to the zero-point fluctuation of electromagnetic field, n; = (exp [Shw; 3] —
1)~! is the mean number of thermal photons on the transition |j) «+ [3) at tem-
perature T and, I'; = v;(n; +1). The angle between the two dipole matrix elements
dy3, dos is denoted as 6, and d, = |(f13| / |cf23|. As discussed is section 1.3 the above
master equation was derived without any secular approximation. The cos#f terms

in the above equation are the cross (interference) terms which arise due to the two
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transitions |1) < |3) and |2) « |3) coupling with the same mode of the bath field.
Unlike other chapters, for generality, here we do not approximate the interfering
decay terms as /T'13T'23, as shown in section 1.3. The equations of motion for the

various density matrix elements in Schrédinger picture are

p11 = —2Ti3p11 + 2v13n1p33 — Dasd, cosO(p12 + p21), (4.4a)
P22 = —2D93paa + 2v23n9p33 — Fl%rosg(pm + p21), (4.4b)
p1z2 = —[Tiz3+4 Tes + iwiz]p1z — FBTC:)SH,OH — T'y3d, cos Opyg

+(v23d,ng + 71;711 ) cos 8p3s, (4.4¢c)
p13 = —[[13+ v23m2 +T’V13n1 + 1wi3]p13 — T3d, cos Opy3, (4.4d)
p2z = —[[a3 4 1311 + Ya3no + iwos]paz — Fl%rosopw- (4.4¢€)

Traditionally one has the rate equations for population and coherences as simple
decay. In such cases in the long time limit, the density matrix is well known to be
diagonal and the elements are given by Boltzmann factors. This is in accordance
with what one expects in the case of thermodynamic equilibrium. However, in
(4.4) the dynamics of the coherence p,, is coupled with the diagonal elements and
vice versa. The crucial question is: Does this system evolve into a thermodynamic

equilibrium even in the presence of such coherences in the density matrix equations
2

4.2 Recovering Thermodynamic Equilibrium: Steady State

Behavior

We evaluate the steady state for the set of equations (4.4). After a tedious calcu-

lation we arrive at the following simplified result.

['2371371
= , (4.5a)
i (T13T23 4+ T'azyizng + Cizyesne)
r
P22 = 13723M2 (4.5b)

(T13T23 + Ta3vizng + Tizvyasna)
The remaining elements are zero. A clear demonstration of thermodynamic equi-
librium can be seen by taking the ratio of populations,

P11 _ exp [—Bhws]

= 4.6
P22 €xXp [—ﬁhwza] 7 ( )
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which is in accordance with Boltzmann distribution. Note that one arrives at the
same set of results (4.5) even in the absence of interference terms. This essentially
means that, though the system may evolve in a different way, in steady state, the
thermodynamic equilibrium is obtained even in the presence of coherence terms
in the master equation. To show that the steady state conditions are the same
both in the presence and in the absence of interference, we measure the entropy

of the system. The entropy is defined as
3
S(t) ==Y AilnA,, (4.7)
i=1

where A;’s are the eigenvalues of the density matrix p. At ¢t = 0 we have ps33(0) =
1, which is a pure state and the entropy will be zero. To numerically evaluate
the entropy we make a canonical transformation of p;3 = pj;3exp [—i(wi3 + wo3)t/2]
(7 = 1,2) in equations (4.4). Note in Fig. 4.2 that both in the presence and
in the absence of interference, the system evolves to the same value of entropy.

We have also verified that the time derivative of entropy continuously decreases.
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0.002

S(t)

0.001
i

0.000 ! ! !
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Yis t

Figure 4.2: Figure shows the dynamical evolution of entropy. The parameters are
Y13 = Y23 = wig, N1 = ny = 107°, and d, = 1. The solid line is in the presence of
interference (¢ = 0°) and the dashed curve is in the absence (§ = 90°). In both the
cases the long time behaviors are same.

Note that the time taken to reach the equilibrium value is more in the presence of
interference. This happens because the interference terms pump the system back
to excited levels, and thus the populations decay with an effective life time which

is more than the life time in the absence of interference. We note here that the
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analysis of Savchenko et al. [125] based on Green’s functions seems to imply the
existence of coherence under equilibrium conditions. We have shown above that
though non-diagonal elements are present in the equations for populations, they
do not contribute in steady state. In Appendix C we show that, in general, for the
non-degenerate multilevel atoms in a thermal bath, the steady state populations
are given by Boltzmann factors.

An exception to the above occurs for the degenerate case, wy = 0, which is am-
biguous when ¢ = 0°. A unique straightforward steady state solution of equations
(4.4) does not exist. In fact, p;; and py; remain arbitrary. This situation arises

because there exists a constant of motion in this case [112]. Consider the states

oo Ml = 1del2) sl + [dsll2)

luc) y T y , (4.8)

where d2 = |dy3|2 + |da3|?. It is easy to see that pucuc(t) = po Where pg is a constant.
In general the steady state solution is given by

n(1+po) + po _ n(1—3po) — po
2o1+2n) 2T T 31+2n)

P11 = P22 = 0<po<1, (4.9)

where n; = ny = n. Clearly, a unique steady state solution exists for a given value
of py. The above result may seem to violate equilibrium conditions, but it is not
surprising as the state |uc) is decoupled from the bath. Thus if we initially start
with p, = 1, then the system always remains in |uc). The state |uc) is an example
of a trapped state [32] and is very much of current interest in the context of
quantum computing using decoherence free subspace [148]. However, there are
other situations where the steady state could be different from the one determined

by thermodynamic equilibrium. An example is given below.

Asymmetric treatment of spontaneous vs stimulated processes
The decays I'y3, I'y3 contain the contribution of both spontaneous (y;3, 723) and
stimulated (y3n1, v23n2) emission processes. Thus the interference exists in both
these processes. If we associate a parameter « for interference in stimulated

emission and b for interference in spontaneous emission, the master equation in
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this case will be
0 )
a—'Z = —Z[w13A11 + wozAgg, ,0] - 1113[1411,0 - A33,011] - F23[1‘122,0 - A33,022]

y13(any + b) cos

—723(0711 + b)dr Cos 9[A12P - A33,021] - [A21P - A33,012]

d,
—713711[1433,0 - A11,033] - 723712[A33P - A22,033]
+a (71;; + 723712(1 ) COS 0A21p33 + H.c. (4- 10)

It implies that ¢« = 0,5 = 1 would mean interference only in spontaneous process
and ¢ = 1,b = 0 would mean interference only in stimulated process. Such a
segregation is not just of theoretical interest, but we will show later that there are
other kinds of baths where such conditions can be realized. However for a thermal
field, a correct physical situation would imply eithera = b=1or e = b = 0. It turns
out that the neglect of any one interference term (¢ or b) results in a steady state,
which is at variance from thermal equilibrium. We found the following steady

state when ¢ = 0,56 = 1.

p11 = {((T1z3 4 Ta3)% +wi)Tosyi3ng
493 cos® O(T13 + T'g3) (v23d%ny — visn1)}/ Dy, 4.11a)
paz = {((T134T23)? + wiy)T137237m2
4713 cos? O(T13 + P23)(712§;n1 — y33m2)}/ Dy, (4.11b)
—(T13 + Doz — dwi2) (T13v33m2d, + 1123713 ~) cos
1 = 5 , 4.110)
where
Dy = {(T13+T23)? 4+ w?)(T13T23 + Tazvizng + Dizyesng) — 13723 cos? (T3 + Ta3)?
—(T13 4 Ta3) cos® B(yz3d; — 713)(7%;61 — 733m2)}
When ¢ = 1,b = 0 we find:
p11 = {((T134 T3)? + wiy)Tozyi3ny — Y13n17y23ng cos® (T3 + T'y3)
X (T23 + y1311 + 23d 2 )}/D27 (4.12a)
p2 = {((T13+T23)*+ wlz)F13’Yz3n2 — y1311723m2 (13 + Tg3) cos® 6
X (T'13 + v237n2 -|- 713 - )}/D27 (4.12b)

T34+ Tog — twqo) (T vl31—|—F 2.nyd,) cosf
P12 = (T 2 12)( ZSDdT 137252r) ) (4.12¢)
2
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where

Dy = {((T134T23)? + wiy)(T13T93 + Ti3723m2 + Tazyizng) — (T3 + o)
7123”1 ’7223d?”2 2
Xv13117Y2372 (2013 + 223 + Y1311 + Y23n2 + 5 cos” 6}.
Yoznod? Y13M1

In both the cases the steady state coherence among excited levels is non-zero. In

Fig. 4.3 we show the dynamics of |p;s| for various values of ¢ and b. We take

the initial state as [3). Thus for « = b = 0, p;2(t) = 0. As seen in the Fig. 4.3,
for « = b = 1 the steady state coherence is absent. In the case of asymmetric

treatment, equilibrium conditions are violated.
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Figure 4.3: Plotted are the absolute values of coherence p;; as a function of time.
The parameters are as in Fig. 4.2.

We now explain why thermodynamic equilibrium does not permit such an
asymmetric treatment. We note that the emission (absorption) processes are de-
termined by the antinormally ordered (normally ordered) correlation functions of
the electromagnetic field. In thermodynamic equilibrium both these correlations
are connected via the fluctuation-dissipation theorem and therefore both stimu-
lated and spontaneous processes are to be treated on the same footing. In order

to treat them asymmetrically one needs extra freedom and we show in Sec. 4.4

that pumping by broadband lasers provides such a freedom.
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4.3 Interference in Emission Spectrum via Thermal Bath

In the previous section we showed that the long time effect of coherence on atomic
variables is absent. In this section, we show the effect of coherence on the emitted
radiation. We derive the emission spectrum and show the existence of a dark line
as a result of atomic coherence via decay terms.

All the nine elements of p can be written in a compact matrix equation as below

o
55 = MU, (4.13)

where

Tt = [pi1, pi2, P13, P21, P22, Po3s P31, P32, P33] (4.14)

and M is a 9 x 9 matrix corresponding to the coefficients of p in (4.4). The positive
frequency part of the radiated electric field operator at a distance |r|7, in the far
field region is given by
w? - . w? - .
Et(Ft) = —671;’[72 X 7 X dy3) Az (t)e™F — 672;“3[12 X 7 X do3) Ay (t)e ™. (4.15)

The emission spectrum is given by

S(w) = lim h Re{exp (—iwr)(E~(t + 1) - ET(t))}dr, (4.16)

t—o0 0

and the two-time field correlation is

(E~(Ft+7)- E* (7 t)) =
w§3|(fgg|25in2 o

cir?

(cos @ — cos ¢ cos Pa){(Aas(t + 7)As1(t)) + (A13(t + 7)As2(t))}. (4.17)

wf3|(f13|25in2 sl

cir?

(A1s(t +7)As1(2)) +

(Azs(t +7)As2(1))

w%s“%3|‘£3| |J’13|

cir?

Here ¢, ¢, are the angles between 7 and cflg, Jgg, respectively. From (4.13) we can
write

Y(t+71)=L(1)¥(¢), (4.18)

where the matrix L(r) = exp (M7) and the elements of ¥(¢) are given in (4.14).

Using equation (4.18) and regression theorem [7] we find the two time correlation

functions in the limit ¢t — oo as below:

(Ar3(t+ 1) A31(t)) = Lrr(7)pri(o0),  (Aus(t +7)As2(t)) = Lrs(7)p22(00),
(A23(t + 7)As2(t)) = Las(7)paz(00),  (A2s(t + 7)As31(t)) = Ler(7) p11(o0).
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The elements of matrix L required for the above expression are given by Lz7(7) =
p31(7), Ls7(T) = ps2(7), solved with the initial condition p3;(0) = 1, and Lgg(7) =
p32(7), Ls7(T) = ps3i(r), with the initial condition ps3(0) = 1. Taking one-sided

Fourier transform we get

(T23 + v13m1 + Y23n2 — 1(bem — w12/2))

L = 4.1
77(w) Ds ! (4.19a)
-Tr 6
L) = —252, (4.19b)
Ds
Les(w) = (T13 + 71371 + Y2312 — i(dem + w12/2))7 (4.19¢)
Ds
Ler(w) = _Luscosb/a (4.19d)
Ds
where
D3 = (T34 71371 + 7v23n2 — i(dem + w12/2))

X (T23 + v13m1 + Y232 — 1(Fem — wi2/2)) — D13T93 cos? 6,

and dem = (w13 + w23)/2 — w is the detuning of the emitted radiation with respect to

the center of the two excited levels. The final expression for the spectrum is

“f3|‘£3|2 .2 w§3|‘£3|2 .2
S(w) = Re — 4z S ¢1Lrr(w)prn + a2 Sl ¢aLss(w)p2z

W%3W%3|JIS| |J23|

2 (cos @ — cos ¢y cos ¢p3){ Lrg(w)p22 + Ls7r(w)p11}| - (4.20)
Here p’s denote the steady state value. The first two terms above denote the
emission from the two excited levels and the last term is due to interference. If we
take the ratio wy3/wy3 ~ 1 and assume that the difference I'i3 — '3 is negligible, the
spectrum can be written in a simpler form as a sum of Lorentzian and dispersive

contributions as below:

Y0 Yo
S(w)/C = A +A_[ ]
)/ '4®m+wﬁ+%ﬁ Gom —0) 7+ 77
5em — Wo 5em + wo :|
1B - , 4.21
[(5em —w0)24+ 72 (bem +wo)? + 7 ( )

where we take ¢1 = ¢y = 7/2, Ax = {713(2w0 F wi2)p11 + 723(2w0 £ wi2)p22]}/4wo,
B = {(F13723p11 —+ F23713p22) COS2 0}/2&)0 Here Wy = \/(wf2 — 4F13P23 COS2 0)/2, Yo =
(Flg + F23)/2 + Y1311 + Ya23Na, and C = 3hw13/20r2. The above result (421] is valid
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for wi;y > 24T 3l3cosf. Note that the interference terms appear as dispersive
contributions which is a general feature observed among such interference effects
[71]. A deviation from this behavior can be seen in certain cases, as observed here,
when w;y < 24/T 3093 cos §. The spectrum in this case will be

Yo+ 7' ] [ Yo — 7' ]
S ¢ = B B_
)/ T ot ) T B [ o
(723,022 - 713,011)0112 [ dem dem ]
— . (4.22
* = ot (072 @t (ot 2] 22

where By = {y'v13p11 + 7 723p22 £ (T13723p11 + T23713p22) cos? 8} /2" and wy = iv'.
Here even the interference terms appear as Lorentzian. In both the cases the
contribution of interference is a sharp dip in the spectrum at averaged frequency
of the two excited levels. Thus in the presence of interference the two levels can
be resolved even when the two excited levels have separation much less than
their line-width. We show the spectrum both in the presence and in the absence
of interference in Fig. 4.4. The dark line (at ., = 0) in the spectrum is the
observational effect of interference which arises for the system in thermodynamic

equilibrium. For v3 = v33 = v, ny = ny = n at d., = 0 the spectrum is proportional
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Figure 4.4: The emission spectrum is plotted in dimensionless units. The param-
eters are ;3 = 723, W12 = 713, 71 = ng = 107°. The solid curve is for § = 0° and the
dashed curve for 8 = 90°.
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to

S(w)/C = — ™

— 4.2
(143n) (¢ +wd)’ *+29)

when ¢ = 0°. Thus the observation of dark line at 4., = 0 depends on n. The

smaller the value of n, the better will be the observed interference effect.

4.4 Interference Effects via Broadband Pumping

We have shown earlier that an asymmetric treatment of spontaneous emission
and stimulated emission could lead to a variety of different steady states. How-
ever, this is not valid for interaction with a thermal bath. We now show that there
are other types of baths where such situations could be realized in practice. Con-
sider, for example, the pumping by a broadband pumping laser, where the field is

given by
E(t) = &e(t)e™™ 1t 4+ c.c,, (4.24)

and the field amplitude is delta-correlated, (¢(t)e*(t — 7)) = 2Ré(7). The pumping
field is polarized along ¢,. Below we show the two cases which correspond to
a=1,b=0and ¢« =0,b=1 as in Sec. 4.2.

Case I: a =1, b = 0. As discussed in Sec. 4.2 this would correspond to no
interference in spontaneous emission, while interference in stimulated process
persists. For this we consider the dipole matrix elements as orthogonal (dy; L d;53).
We take a single broadband field, polarized along ¢, which makes an angle ®,
with d;5 and the central frequency tuned midway between the two excited levels.
The master equation for such a bath, in Schrodinger picture can be derived as
below.

dp

% —ilwizAr1 + waz Aoz, p] — (713 + p1)[A11p — Aszpi1]

—(723 + Pz)[Azz,O - A33,022] - M [A33,0 - A11,033] — P2 [A33,0 - A22,033]
+2./p1p2A21p33 — /P1P2[A12p + A21p — Asspiz — Aszpai]l + Hee,,  (4.25)

where 2p; = 2R|afj3-é1 |2/h?, (j = 1,2) is the radiative broadening due to the pumping
field. For simplicity we have taken the dipole matrix elements as real. Note from
the equation (4.25) that ,/pp; terms are the new coherence terms. This coherence

arises due to a polarized broadband field coupling to both the transitions. The
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coherence will be important for separation w;, less than the spectral width of the
pumping field [87, 117]. Here the interference in spontaneous emission is absent.
Case II: a = 0, b = 1. This would correspond to a situation where interference
in stimulated emission is absent, but interference in spontaneous emission is
present. Consider a situation where dipole matrix elements are at an angle 4
where 6 # 0, 7/2. Both the transitions are now pumped by two different broadband
fields of the same central frequency w;, but of different polarizations ¢; and é;
such that cfz3 -é; =0 and d}, -é, = 0[131, 145]. This would imply that we have two
different pumping strengths along the two arms of the V system given by 2p; =
2R|cfj3 -¢j|2/h?, (j = 1,2). Further, if the pumping fields ¢ and ¢, are uncorrelated
then the master equation will be
dp

% —ilwizArr + was Aoz, p] — (713 + p1)[A11p — Aszpi1]

—(723 + pz)[Azz,O - A33,022] - M [A33,0 - A11,033] — P2 [A33,0 - A22,033]
—/ 13723 cos 0[A12p + A1 p — Azzpra — Aszpar] + Hue,, (4.26)

which clearly has else interference in spontaneous emission. For simplifying the
interference term, we have taken w3/wq3 = 1.

In both the above cases either spontaneous or stimulated emission has in-
terference. Thus as seen in Sec. 4.2, steady state coherence will be present. If
we consider a single, unpolarized, broadband pumping field and nonorthogonal
dipole matrix elements, then that will correspond to a situation ¢« = b = 1. The ob-
servational effect will be a dark line in the emission spectrum as seen in the case
of thermal equilibrium. In the case of asymmetric treatment, the observational
effects will vary due to the steady state coherence. The dark line arises only for
the case of symmetric treatment of spontaneous vs stimulated emission (results

not shown).

4.5 Summary

In summary, the consistency of thermal bath induced interference effect with
thermodynamic equilibrium has been shown above. In Sec. 4.1 the microscopic
equations of motion have been derived for a V system in a thermal bath. We have
shown that under appropriate situation interference terms arise in the density

matrix equations due to thermal field. In Sec. 4.2 the steady state solutions
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of density matrix equations were obtained and the consistency of interference
phenomenon with thermodynamic equilibrium has been shown. We have cal-
culated the entropy of the system. In the long time limit entropy is same both
in the presence and absence of interference. We have also explained the situ-
ations where thermodynamic equilibrium can be violated. We have shown that
both spontaneous and stimulated processes should be treated on equal footing
for compatibility with thermodynamic principles. In Sec. 4.3 we have shown the
effect of interference term in the emission spectrum. We have given analytical
expression for the emission spectrum and have shown the presence of a dark
line in the emission spectrum due to interference. Finally, in Sec. 4.4 we have
considered the case of a broadband pumping instead of a thermal field. We have
shown that one can selectively have interference in either spontaneous emission
or in stimulated emission. This is an example where coherences exist even under

steady state conditions.



Chapter 5

Probing the Vacuum Induced Coherence

in the A systems

Unlike the V systems, studies of VIC effects in the A systems are limited to few
cases [126, 127]. In the A systems as shown in Sec. 1.3 the coherence is created
between the two ground levels. We show below that because of this reason, VIC
effect is not observed in the spontaneous emission spectrum of the A systems.
The aim of the present chapter is to show the origin and consequence of VIC in

the A systems. We also present a four-level model for probing VIC in a A system.

5.1 Origin of VIC in A Systems

Consider the A system as shown in Fig. 5.1. Following (1.57) the density matrix

elements in the Schrédinger picture obey the equations

p11 = —2T1p11,  p22 = 2712p11, (5.1a)
p12 = —(T1 + iw12)p12,  p13 = —(T'1 + iwis) p1s, (5.1b)
P23 = —iwa3zp23 + 24/712713 cos B p11, (5.1c)

where I'; = 713 + v13, and 6, is the angle between the dipole matrix elements cflz
and cﬂ3. Note that the equation for the ground state coherence p,3 is coupled to
the population of the excited state. Solving for the coherence p,3 with the initial

population in |1), we get

2, /712713 cos Oy (e w28t — =2t
pas(t) = V12713 —_ _ (5.2)

76
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Figure 5.1: Schematic diagram of a three-level A system. The +’s denote the
spontaneous emission rates and hwsy3 is the separation between the two ground
levels.

As the equation reads, this coherence is non-zero as a result of interference term.
Even in the long time limit (¢ > 1/I'; ) this coherence is finite and oscillates with a

frequency wss

2./ cos By e~ iwast
pas(t — 00) = Wgrlf_m;) . (5.3)

The magnitude of this coherence is especially significant when wy3 < 2I'y and if
the dipole matrix elements are parallel. We next address the questions: (a) What
leads to the coherence (5.2), and (b) how such a coherence can be measured ?

In the long time limit, the non-zero density matrix in (5.1) will be

P22 = 712/P17 P33 = 713/F17 P23 = \/,022,0333, (5.4)

where B = 2T';cosf;/(2I'1 — iwy3). The oscillation in p;3 has been removed by
writing it in the interaction picture. Thus the density matrix p can be reduced to

an effective matrix p, where

_ | P22 pas | _ P22 V/P22p33B (5.5)
P32 P33 V/P22p33B” P33

To measure the purity of the state, we calculate Tr(p?) :

_ Yh 13, 812713082 6

L ~2
TP =" Y Tt o) 66




Probing the Vacuum Induced Coherence ... 78

For wy3 = 0 and cos#; = 1, we get
Tr(p%) =1, (5.7)

which means that the atom would be in a pure state when the VIC is maximum.
Generally, one would find the system in a mixed state [Tr(p?) < 1] as |B| # 1. The
entropy of the final state depends on the parameter B.

The case when the atom is left in a pure state is especially interesting as we

can introduce the coupled (|c¢)) and uncoupled (|uc)) states given by

o = [ 413[12) — [di2][3)

o = 1d12][2) +[di3][3)

C o u : (5.8)
|c) il |uc) i
where |d| = \/|d12|? + |d13|?. The Hamiltonian (1.56) can be written as

H = hons|1)(1+ Y wial ars — Y (gka|1){clar, + Heeo), (5.9)

ks ks

where g, = (2rwck/hL3)'/2|d|d - érs€*7 is the vacuum coupling between state [1)
and |c) and d is the unit vector parallel to both dy, and d;3. Note that the state
|uc) is not directly coupled to |1). Thus |uc) never gets populated if p;1(0) = 1. The
spontaneous emission from state |1) occurs to the coherent superposition state
|c) and not just to the individual states |2) and |3). Clearly, under these conditions
the final state will be |c¢) which agrees with the result (5.4) for wy3 =0, 6; = 0.

For w3 # 0, the proper basis corresponds to the two eigenstates |¢4) of (5.5)

and the steady state will be an incoherent mixture of |, ) and [¢_).

5.2 Emission spectrum in the presence of VIC

We now come to the question as to how can one probe the existence of VIC in a
A system. Thus one naturally think of the spectrum of spontaneous emission. In
a V system the spontaneous emission is significantly affected by the presence of
VIC [112, 114, 115]. But for a A system, as we show, the emission spectrum is
independent of VIC. The emission spectrum corresponds to the normally ordered
two-time correlation function of electric field amplitudes [7]. The radiated fields

at space-time points 7}, ¢; (j = 1, 2) will have a correlation given by

<E(_)(F17t1) : E(+)(F2,t2)> = (7"17"2)_1 Z M (A1 (t1) A (t2)), t1 > t2, (5.10)

I,m=2,3
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where

) T x (1 x ] - [F2 X (72 X )],

and r; is much greater than the size of the source. Using quantum regression
theorem and equations (5. 1), it can be shown that the two-time atomic correlation

functions are given by

<A1m (tl)Aml(t2)> = exp [(iwlm — Fl)(tl — tz)] exp (—2F1t2), tl > tz, (5 11)

and (All(tl)Aml(t2)> =0 for l 7£ m.
Using (5.11) in (5.10) we get the correlation function of the radiated field

(ECNF, 1) - EF) (R, 1)) =

(rlfrz)_l Z M exp [(twrm — T1) (81 — t2)]exp (—20'1t2), £ > to. (5.12)
m=2,3

This correlation function is the sum of incoherent emissions along the two tran-

sitions,

1) — |2) and [1) — |3). Thus we conclude that the spontaneous emission
spectrum in a A system is not affected by VIC. Therefore one has to consider other

types of probes to study VIC in such a system.

5.3 Modulated absorption as a probe of VIC

The above result is not surprising because the coherence is created after the
spontaneous emission has occurred. An alternative approach to monitor VIC will
be to study the absorption of a probe field tuned close to some other transition
in the system. We now show that a unique feature in probe absorption appears
due to the presence of VIC. The model scheme is as shown in Fig. 5.2. Here the
spontaneous emission from state |1) creates VIC between the two near-degenerate
ground levels |2) and |3). We now consider another excited probe state |p), well
separated from |1). A weak coherent field is tuned between state |p) and the two
ground states to monitor VIC. The Hamiltonian in the dipole approximation will
be

H = hwyzAg + hwizAr + hwpsdpp
—{(d;gAp;g + ngzApg) . Epoe_iwpt + I’I.C}7 (5 13)
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Figure 5.2: Schematic diagram of a four level model proposed for monitoring
vacuum induced coherence. The coherence created by spontaneous emission
from |1) can be observed in the probe absorption along |p) < [2), |3).

where the counter-rotating terms in the probe field have been dropped. The probe

field is treated classically here and has a frequency w, and a complex amplitude

E,,. The equations for the various density matrix elements can be derived as

below.
p11 = —2[p1, (5.14a)
oo = —2Dpppp + il(gpap2p + gppsp)e ™" — cc, (5.14b)
Pz = 2v12p11 + 2Vp2ppp — ilgpae TP pap — ], (5.14¢)
pap = —(Tp — iwp2)pap — ig53€"" pas + g2 (ppp — p22), (5.144d)
p3p = —(Tp— iwps)psp — igzzeiwptp32 + ig;:’,@%t(zppp +p11+p22 — 1), (5.14¢)
par = —(I'1 —iwia)par + iggzeiwptppl, (5.141)
ps1 = —(I'1 —iwis)ps1 + ig;3€iwptpp17 (5.14¢g)
pp1 = —(L14+Tp —i(wis — wps))ppt + t(gp2p21 + 9p3,031)€_%t, (5.14h)
P23 = TP+ NpPpp — 1Wasp2s — igpze P pop + iggzeiwptppg,, (5.14i)

where we have used the trace condition ), pym = 1 for (5.14€). Here

. 4“22|d‘p2|2

5 4“23 |dps| ?
2T T g

e (5.15)

and 27p3 =

define the spontaneous emission rates from |p) to states |2) and |3), respectively

and we write I',, = 7,2 + 7,3. The Rabi frequencies

29}02 = 2Ep0 . J;jg/h, 291)3 = QEpO . (293/7& (5 16)
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are for the probe field acting on transitions |p) < |2) and |p) < |3), respectively.
Further we can write g, = |gp2|e™'?? and g,3 = |g,3]e”'%, where ¢ = ¢, — ¢3 gives
the relative phase between the complex dipole matrix elements afpg and (fpg. The

VIC parameters are

M = 24/v12713 cos by, Np = 2/7p27Yp3 €OS . (5.17)

We thus include vacuum induced coherence on all possible transitions.
In order to study probe absorption we solve Egs. (5.14) perturbatively. We
need to know p,,(t) to second order in the probe field, assuming that the atom

was prepared in the state |1) at ¢+ = 0. Using (5.14b) we get

p0 =i [ e lgyalemp)r) + lgpale™ o) (e e, . (5.1
0

The first order contribution obtained by integrating (5.14d) is given below:

t . .
Py = i [ are s gl o))
—[gp2l€® [0 (r) — p{3) (r)]ye= Triwn)t=7), (5.19)

It can be easily shown that pl(g?g)(t) = 0 and the other zeroth order terms are known
from Sec. 5.1. The VIC contribution arises from non-zero pg%)(t) in (5.19). Simi-
larly integrating for pgz)(t) and combining with Egs. (5.18) (5.19), and on simplifi-
cation we find our key result

—i(wast+)
PRt > T TS = _ mlgpsllgpale .
(2Fp — ZW23) (2F1 — ZW23) (Fp — Z(Ap + w23/2))
t(wast+)
_I_ : 771|gp3||:gp2|€ : (5.20)
(2Fp —|— zw23) (2F1 + 'lw23) (Fp — Z(Ap — w23/2))
T |gp2|2 T |9103|2 + c.c.
ATp[Tp — 1(Ap — was/2)] * ATp[L, — i(Ap + wa3/2)]
When 7, — 0
(2) -1 -1y — |gp2|? |9p3|*
Py (t>T7 ,Fp )= + +c.c., (5.21)

ATp[02 — i(Ap —w3/2)] 4T[0, — i(Ay 4 wa3/2)]
which is the sum of the individual absorptions corresponding to the transitions

2) = |p),
detuning defined with respect to the center of level |2) and |3). The modulated term

3) — |p), as expected. The parameter A, = w,3 — wy3/2 — w, is the probe

in probe absorption (5.20) is the result of VIC. This modulation is the signature of
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Figure 5.3: The excited state population p,, as a function of scaled time ~¢. Here
the probe field is tuned to the center of states |2) and |3), and we take ;2 = 713 =
Yp2 = Yp3 = 7. The parameters are g,3 = gp2 = 0.1/7 and w,3 = 27, and phase ¢ = 0.
The dashed oscillating curve is in the presence of VIC and the solid curve in the
absence of VIC. This observed modulation is consistent with the analytical result
(5.20). Very weak oscillation appears in the solid line because the probe is not
exactly tuned to the two transitions.

the VIC produced by the two paths of spontaneous emission |1} — |2), |1} — [3).
Note the interesting phase dependence that arises in the probe absorption due
to non-zero 7;. This phase dependence is another outcome of the presence of
VIC in a system. Since the probe is treated to second order in its amplitude, the
result is independent of the coherence parameter 7, for the transition [p) — |2),
|p) — |3). Needless to say that the Egs. (5.14) can be integrated numerically to
obtain the probe absorption for arbitrary times. For this purpose it is useful to
remove the optical frequencies by making the transformations pi, = pime™'mf,
Pom = ppme™ ¥t (m = 2,3) and py, = py,e'“»~“13) etc. We solve these using fifth-order
Runge-Kutta-Verner method with the initial condition that p;;(0) = 1. We take
the probe Rabi frequencies g3, g,2 much smaller than I''s. The numerical results
for excited state population p,,(t) as a function of time for both the cases when
7y is zero and non-zero are plotted in Fig. 5.3. The figure shows the significant
difference that arises due to the presence or absence of VIC. The oscillation in
the probe absorption is a reflection of oscillation in the coherence p,3 [see (5.2)]
and this confirms the analytical result (5.20). The numerical result shows a very

slow decay of the envelop of the oscillations. This arises from terms which are of
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0.20

Figure 5.4: The cosine (dashed) and sine (solid) components of the excited state

population p;f) x 10? as a function of probe detuning. Plot (a) is for w3 = 2y and

(b) is for we3 = 5v. The parameters are as in Fig. 5.3.

higher order in probe strength.
Finally, we discuss the changes in absorption spectrum that arise due to VIC.

The modulated component of the population (5.20) can be written as

2
pz(n?v) = W[{errz + 2F1(Afj — w3y /4) — Tpwis} cos(wast + ¢)
—|—WQ3{2F1PP + F?D + A?) — w§3/4} Sin(a)zzgt + ¢)], (522)

where
D = (4T% 4+ w33)[T2 4 (Ap + w23/2)°I[T2 + (A, — wa3/2)?)].

Since it is possible to separate the sine and cosine terms by a phase sensitive
detection, we plot these in Fig. 5.4 as a function of probe detuning. These two

components of the absorption spectrum behave quite differently.
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5.4 Summary

In summary, we have studied the origin and problem of detection of VIC in the A
systems. In Sec. 5.1 we have shown that VIC can result in a non-zero coherence
among the ground levels. We have also shown that such a coherence arises be-
cause the system tends to remain close to a pure state due to interference, which
explains the origin of VIC. In Sec. 5.2 we have evaluated the spontaneous emis-
sion spectrum and have shown that VIC does not affect the emission spectrum in
the A systems. In Sec. 5.3 we have shown that VIC can be monitored via probe
absorption. The oscillations of VIC modulates the probe absorption and we show
that the sine and cosine components of absorption spectra behave quite differ-
ently in the presence of VIC. We have given analytical expressions to substantiate

our numerical results.



Chapter 6

Effects of Vacuum Induced Coherence on

Coherent Population Trapping

It is now clear as to how the decay of a system of closely lying states induced by
interaction with a common bath leads to new types of coherences. In a A system,
as noted in the previous chapter, this coherence is created among the two ground
levels. Javanainen [126] discussed the possibility of VIC effects in the A systems.
In particular, he examined the case of maximal coherence via VIC in a A system
driven by a single field of arbitrary intensity. He demonstrated the absence of
CPT state in such a situation. More recently, Martinez et al. [127] showed the
existence of phase dependent spontaneous emission line shapes when the lower
levels in a A system, coupled by VIC, are driven by a microwave field. The aim of
the present chapter is to study the effect of VIC on CPT and EIT in the A systems,
using the control and probe field geometry. Unlike the previous study [126], we
study the response of the probe field on one arm of a A system, driven by a control
field on the other arm. We study both the cases when the probe field is weak (as
in EIT studies) and when the probe field is strong (as in CPT studies).

6.1 Absorption and Dispersion Line Shapes

To study a situation more parallel to the usual CPT and EIT models, we consider
a control field E, coupling to |1) « |2) transition and the probe field E, coupling to
|1) « |3) transition. Since we allow the separation between the two ground levels
hwys to be arbitrarily small, the arrangement of the field polarization as shown

in Fig. 6.1(b) will be required. This will avoid the complications that arise due
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to cross talk among optical transitions as discussed in chapter 2. The control

iy

Figure 6.1: (a) Schematic diagram of a three-level A system driven by two co-
herent fields of same frequencies but with Rabi frequencies 2¢,5 (probe) and 2G,
(control), respectively. (b) Arrangement of field polarizations required so that one
field drives only one transition.

(probe) field frequency is denoted as w. (w,) and the detuning as A, = w3 — w,

(A, = w13 — wp). The basic equations describing such a model in the RWA will be

p11 = —2(v13+ 712)p11 + iGrap21 — 1G op12 + 1913P31 — 1973013, (6.1a)
P22 = 2712p11 + 1G1ap12 — iG12p21, (6.1b)
piz = —(mi3+712+1A0)p12 + 1g13p32 — 1Gr2(p11 — p22), (6.1c)
piz = —(miz3+712+14,)p13 + iGr2p23 — 1g13(2p11 + p22 — 1), (6.1d)
P23 = —i1(Ap— Ac)paz+ 2/ 71371208 Op1y + iGTop13 — ig13p21- (6.1¢)

Here we have taken the control and probe fields of same frequency and thus A, —
A, = w3 . In such a model, CPT and EIT can be studied by scanning over
the separation between the two ground levels. In (6.1) the Rabi frequencies are
denoted as 2Gqy = 2dy - ELo /h and 2gy3 = dys - Epo/h, where Eco(po) are the electric
field amplitudes. It should be noted that for the arrangement in Fig. 6.1(b), both
the Rabi frequencies will be §-dependent. However, we will not explicitly consider
this #-dependence, because Rabi frequencies for different # can be kept same by
adjusting the field intensity.

The general steady state solution for p;3 in all orders of probe and control field
is found to be

_ 913G (Ap — Ac)[—gi5 + 2c0s0g13G12 — Gy + Ap(Ap — Ac) +2i(A, — A)]
B D

P13 , (6.2)
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where

D = [(913+ G1)% (913 — 2cos0G2g13 + GTy) + (2973 + 2GT5 — 2 co8 G 1213)
X (9%3 - G%z)Ac(Ap - Ac) + (4G%2 + 49%3 + 4G%29$3 + 2cos 9913Gi1)’2 - 2G£112
+(9%3 + G%2)Ag)(Ap - AC)2 + 2G%2AC(AP - AC)S + G%z(Ap - AC)4]7

where we have set 13 = 712 = 7, and all the parameters are reduced to dimen-

Figure 6.2: Energy absorption from probe Im(p;3) for G13 = 7y, A. = 0 and v;3 =
~v12 = 7. For the dashed curve § = 45° and the solid curve is the usual case § = 90°.
For frame (a) g;3 = 2.12y and frame (b) g3 = 77.

sionless units by scaling with v. For a weak probe (g3 < G132)

_QIS(A[) - Ac)
G%z + (Ap - AC) (Qi - Azu)]7

P13 = [ (6.3)

which is independent of the VIC parameter. We also note from (6.2) that Im(p3) =
0 when A, = A, for all values of § allowed by Fig. 6.1. For the arrangement in Fig.
6.1(b), the term G2, — 2cos8G12913 + 9?5 is non-zero (for # = 0, both the fields are
perpendicular to the dipoles). Thus CPT and EIT phenomena are preserved for the
arrangement shown in Fig. 6.1(b), even in the presence of VIC. From (6.2) we also

see that the line profiles will start showing significant deviations if the probe field
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becomes large so as to saturate the transition. These features are demonstrated
in Figs. 6.2 and 6.3. In Figs. 6.2 and 6.3 we also show, for comparison, the
results when the VIC effect is absent. Note that Im(p;3) = 0 at A, = A, in all
the cases, however, the width of the transparency window is reduced when probe
field is strong. For large values of A, — A, the difference between the two profiles
disappear. As noted earlier, this is because the effect is important only for small
values of energy separation between |2) and |3). Similar results are obtained for

unequal v’s.

Figure 6.3: Plots for Re(p;3) as a function of probe detuning. The parameters are
the same as in Fig. 6.2.

6.2 Effect of VIC on the Dynamics

We also study the dynamic evolution of this system to the CPT state by solving
equations (6.1) numerically with initially all the atoms in state |3). The time evolu-
tion of the ground state coherence is shown in Fig. 6.4. We perform an eigenvalue

analysis of the 8x8 matrix in equations (6.1) to ascertain the time scales involved
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with both strong and weak probes. Typically, for Gi2 = g13 = 7y, Ac = A, =0
and equal decay rates, we diagonalise the matrix with § = 45° (§ = 90°) and obtain
the eigenvalues: -2.85+19.95i, -2.85-19.95i, -1.0-9.95i, -1.0-9.95i, -1.0+9.95i, -
1.0+9.95i, -1.99, -0.288 (-2.5+19.9i, -2.5-19.9i, -1.0-9.95i, -1.0+9.95i, -1.0-9.95i,
-1.0+9.95i, -2.0, -0.99). It is observed that the lowest eigenvalue, which is in-
versely related to time scale, reduces from -0.99 to -0.28 in the presence of VIC.
Thus the time scale to evolve to the CPT state increases as shown in Fig. 6.4. For
smaller probe strength (g,3 = 0.077) the lowest eigenvalue changes form -0.985 to
-0.97, hardly affecting the time scale.

-0.6

-0.5F

-0.1

\ \ \ \ \ \ \
0 2 4 6 8 10 12 14 16
Timne

Figure 6.4: Dynamic evolution of the system to the CPT state. The solid (dashed)
curve is in the presence (absence) of VIC. The parameters are Gi3 = ¢13 = 77,
A, =A.=0, 713 =712 =17, and # = 45°. Time is measured in units of v~

6.3 Coupled and Uncoupled States

We now show how the above numerical results can be understood by analyzing

the original density matrix equations (6.1) in a field dependent basis given by

_ g13|2) — G12/3)
Q b

_ G1212) + ¢13]3)

0, o= TR 6.4)

where Q = /G2, + g%, and |c) and |uc) refer to the coupled and uncoupled states
as discussed previously. We assume the CPT condition A, = A, throughout this
section. Note that the basis (6.4) is different form the dressed state basis which

also involves mixing of |1) and |c) states. For understanding the numerical results,
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the basis (6.4) turns out to be useful. We can now transform the density matrix

equations (6.1) using

Pcc = (G%2P22 + 9%3,033 + Gi2g13p23 + G12913,032)/Q2, (6.5a)
pucue = (gisp22 + Glapss — Grag13pas — Grag13psz) /7, (6.5Db)
pic = (Gi2p12 + g13p13)/92, (6.5¢)
Pluc = (!]13,012 - G12,013)/Q- (6.5d)

In the new basis we get the equations

p11i = —2Ip11 +1iQpa — 1Qp1e, (6.6a)
prc = —Tpic+iQpec — p11), (6.6Db)
pec = (L+T)p11 +1iQp1c — iQpe, (6.6¢)
pucuc = (F - F/)Pn, (6.6d)
Pruc = —Ipruc +12pcuc, (6.6€)
Pouc = 8P1yc — F/M,ﬁh (6.61)

2G12013

where " = 2I'G12913cos/Q?. Equation (6.6) can be interpreted in terms of the
diagram shown in Fig. 6.5. We note that the CPT state |uc) is populated at the

rate I'cpr, where

2G12g13 COSO) ‘ (67)

FCPT - F (1 - QZ

It is important to see that for the geometry considered in the Fig. 6.1(b), this rate

)

juc) c)

Figure 6.5: Equivalent level scheme of Fig. 6.1(a) in the new basis |1), |¢) and
|uc). The population oscillates between the state |1) and |c¢) with an effective Rabi
frequency 2 and decays to the CPT state |uc) at the rate I — I,

of change of population of the CPT state can never be zero, i.e., I'cpt # 0. Note
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further that the population gets cycled between the levels |1) and |¢) because of
the effective pumping field Q. It is clear form this physical picture that optical
pumping would lead to the state |uc), i.e., the CPT would occur.

This analysis also explains why Javanainen [126] finds a very different result
for the case of a single field. His case corresponds to setting g;3 = G2, 6 = 0
leading to I'cpt = 0. Thus the CPT state does not get populated and no optical

pumping to this state occurs. In this case one has a conservation law

Thus the final population in |uc) state is the same as that given by the initial
condition. The case considered by Javanainen is equivalent to that of a two level
system with state |1) and |c).

Finally, the above equations also enable us to understand the numerical re-
sults of the Fig. 6.4. In the absence of VIC, I = 0 and the CPT state |uc) is
populated at the rate I', i.e, the CPT state is populated slowly in the presence
of VIC. This is precisely what our numerical results of Fig. 6.4 show. The field
dependence of I’ should be borne in mind.

) 2I" cos 0(g13/G12)
1+ (g13/G12)?

Thus important changes in time scales would occur only when ¢;35 and G;; are

(6.9)

comparable.

6.4 Phase Dependent Absorption Line Shapes.

The usual EIT experiments with well separated ground levels in the A systems do
not depend on the relative phase between the two applied fields. But, in case of a
closely spaced levels, as our numerical simulation reveals, VIC makes the system
quite sensitive to the relative phase between the two applied fields. Explicitly, we
consider phases ¢, and ¢, of the control and probe fields, respectively. Then one
can rewrite the Rabi-frequencies as G1; = Gi¢7'% and g3 = g13¢7'?7. Redefining
the atomic variables in (6.1) as j12 = p12€'®e, p13 = p13€'®?, and pa3 = pa3e’®, where
® = ¢, — ¢., we get equations for the redefined density matrix elements p;; which
are found to be identical to (6.1) with the VIC term replaced by

V12713 cos 8 = /Y1213 COS He'®. (6.10)
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Figure 6.6: Figures show dependence of line profiles on the relative phase & be-
tween the two applied fields. Frame (a) shows an appreciable difference in the line
profiles corresponding to & = 90° (dashed curve) and ® = 0° (solid curve). Frame

(b) is normalized probe absorption maxima % as a function of ® in the

presence of VIC. Solid (dashed) curve is for maxima in the region A, > 0 (A, < 0).
Other parameters are G5 = 77, ¢13 = 2.127, § = 45° and A, = 0 for both (a) and (b).

The absorption of the probe is now obtained from the imaginary part of pi3. Clearly
as long as line shapes depend on the parameter 6, it would also depend on the
relative phase between the two fields. We display this dependence of the line
shapes on the relative phase of the control and probe fields in Fig. 6.6. It should
be noted that the parameters like v;3, 712 are independent of the phases of the
dipole matrix elements, whereas the VIC being cross term, depends on the phases

of the two dipole matrix elements.

6.5 Summary

In summary, we have studied the effect of VIC on CPT and EIT in the A systems.

In Sec. 6.1 we have derived the basic equations and analytical expression for
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p13 which corresponds to the absorption and dispersion of the probe field. We
have numerically shown the presence of CPT/EIT and the quantitative changes
in the line profiles due to the VIC. In Sec. 6.2 we have presented the dynamics
of CPT in the presence of VIC. We have shown the changes in time scales in the
formation of CPT state due to VIC. In Sec. 6.3 we have performed a coupled
and uncoupled state analysis to explain our numerical results. We have given
analytical expression for the new decay rates, which explains the changes in time
scales and formation of CPT state in the presence of VIC. We have also explained
the results of Javanainen [126]. In Sec. 6.4 we have studied the phase dependent
behavior of VIC. We have shown the possibility of different EIT signatures that
can be obtained in the presence of VIC by just changing the phase of the external
control field.



Concluding Remarks

In conclusion, this thesis reports new atomic coherence effects in systems with
near-degenerate levels. New quantum optical effects are predicted in various
chapters and in chapters 4 and 5 fundamental questions are also addressed.
Both numerical and analytical results are provided to substantiate our claims.
Important conclusions from various chapters and future outlook regarding these
problems are given below.

In chapter 2, we have shown the possibility of new gain features via cross
talk among optical transitions in the A systems. We have elucidated a detailed
numerical study of probe absorption and dispersion characteristics under vari-
ous parameter regimes. We have also presented the effect of relative control and
probe field polarization on the response of the medium. We have explained vari-
ous features of the absorption spectra via a dressed state basis, and have shown
certain spectral regions where transparency and high refractive index is observed.
We have given examples of atomic systems where our predictions can be demon-
strated. We have also shown the possibility of superluminal propagation via cross
talk and the example of 3°K vapor was considered to measure the negative group
index. Nonetheless, many related problems need further investigation. These
include, for example, replacement of control field by a modulated field, effect of
cross talk on nonlinear phenomena like four wave mixing, and extension of cross
talk effect in the V-type and =-type systems.

In chapter 3, we have presented the effect of VIC on the standard Autler-
Townes doublet in the V systems. We have shown new gain features that arise in
the absorption spectra due to quasi-trapped-states. It has been shown that the
quasi-trapping generates a spectral region with low absorption and high disper-
sion. We also arrive at an important conclusion that in the presence of strong
control field, VIC effects can be observed even when the separation between the

two excited levels is much larger than their natural line width. This opens up
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new possibilities for experimental study of VIC in alkali vapors, where observa-
tion of VIC is hindered by the large separation between states of same F or J (see
Appendix B for a detailed discussion).

In chapter 4 we have addressed the fundamental question of compatibility
of thermal bath induced coherence with thermodynamic equilibrium. We have
shown that for time scales greater than the inverse decay rate of the systems,
thermodynamic equilibrium will be attained irrespective of such coherences in
the dynamical equations. We have given analytical and numerical results and
have shown that the thermal bath induced coherence can be probed via emission
spectrum. The coherence gives rise to a dark-line in the emission spectrum. We
have also discussed the possibility of thermal bath replaced by a broadband laser
field. The extra freedom with broadband pumping gives rise to non-zero steady
state coherence, unlike thermal field. The rich parameter regime due to tailored
baths can allow modification of spectral features in a controlled way.

In chapter 5 we have addressed the question of detection of VIC in the A sys-
tems. We have shown that the emission spectrum remains unaffected due to VIC.
However, a probe absorption gets modulated via VIC, and can be used to monitor
VIC in A systems. In chapter 6 the effect of VIC on population trapping was eluci-
dated. We arrive at the important conclusion that both CPT and EIT phenomena
remain intact even in the presence of VIC. We have presented a physical picture to
explain all our numerical results and our analysis also explains previous studies
in this context. Note that the coherence created between two ground levels via
external field in the A systems is known to give rise to highly efficient four-wave-
mixing process [106] and it would be interesting to analyze the role of VIC in four

wave mixing processes.



Appendix: A

Temperature Dependence of EIT-Spectra in the A Systems

Under normal circumstances collisional and thermal fields are the major cause
for broadening the EIT window for a weak control field. For example, in a A
system, if the relaxation rates among the two lower level is larger than the Rabi
frequency of the applied fields, the transparency window will be unobservable.
Such relaxation rates are one of the major hurdles in observing trapping effects
in solid state systems [84] and molecules. Moreover, weak control field is essential
for observing subluminal group velocity [92, 93, 94], and hence a large nonlinear-
ity with few photons [110, 111]. In this appendix, the effect of such incoherent
processes in the A systems is elucidated. An analytically expression for the probe
response of such a system in the presence of both homogeneous and inhomo-
geneous broadening is derived below. Such a result can be useful in trapping
related experiments in A systems where temperature effects are inevitable. The
schematic of a A system is shown in Fig. A.1. The energy separation between
states |/) and |m) is denoted as hw;,,. The control (probe) field have Rabi frequen-
cies 2G1; (2¢13) and frequency detuning A, = w;; — we (A, = w13 — wp), respectively.

The density matrix elements in the RWA will be

P11 = —2(v3+ 712)p11 + 1Girapar — 1GIap12 + Lg13p31 — 1973P13, (A.2a)
P2 = 2v12p11 — 1G12p21 + 1Gap12 — 2v1p2g + 2v2p33, (A.2Db)
P12 = —(yi3+ 712+ 1 + 1A p12 + ig13p32 — 1G12(p11 — p22), (A.2¢)
p13 = —(ms+ 72 +ve +iA,)p13+ i1Giapas — 1913(2p11 + p22 — 1), (A.2d)
p2z = —(v1+rva+i(A,— Al))pas+ iGTap13 — 1g13p21- (A.2¢)

Here v’s denote the incoherent population transfer rate among the two ground

levels due to finite temperature. In general, v can be expressed as

V = Vrad + Vnon, (AS)
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Figure A.1: Schematic of a A system with control and probe fields. The v’s denote
the spontaneous emission rates.

with both radiative (thermal photons) and non-radiative (inelastic collisions) con-
tributions. In atomic vapors, the two lower levels are dipole forbidden and thus
only the non-radiative effects are important. In solid state and molecular systems,
both radiative and non-radiative effects can be significant. Agarwal and Jha [34]
have show the effect of such relaxation rates on the spontaneous Ramam spec-
trum. In particular, they have show that when Rabi frequencies of the coherent
fields are weak compared to the such relaxation rates, the splitting of spectral
lines due to coherent fields disappear. In principle, one can also have a thermally
induced transition rate between the optically separated levels like |1) and |3). But
such rates would be negligible small for laboratory cases. In the absence of any
external fields, at thermal equilibrium one can write

1) P22 hw23
22 Pes — A.4
e (a2

where the last term comes due to thermal distribution of population in the two
ground levels. In Cs the hyperfine separation between the two ground levels
(F =1,2) is approximately 9 GHz. For T = 500°K, v, ~ v, and it is true even for T

as low as 50°K.

Steady State Solution

The probe absorption linear in ¢,3 will be given by the imaginary part of the optical

coherence pg?. The final result of such a calculation is given below.

Y1308 _ i13/Gra2 (0] — o) il + va (A, = AJ](201) + %) — 1)
= - — . (A.H)
913 Ar(y13+ 712 + 1 — 1A,) Ay
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where

Al = (i3 + 2 v HiAY) (i F v+ i(A, — AL)) + |Gral? (A.6)

The zeroth order response was found to be

p(O) _ v2|Gi2*(v13 + 112 + 1)

H (713 + 712)(7/1 + V2)[(713 + Y12 + V1)2 + Ag] + |G12|2(713 + Y12 + 1/1)(713 + vy + 21/2)
p(O) _ va(y13 + v12) [(713 + 712 +V1)2 +A3] +V2|G12|2(’Y13+712+V1)

22 =

(v1i3 4+ 712) (1 + v2) (V13 + 12 + v1)2 + A2] + |Gra2(vis + Y12 + 1) (Y13 + 1 + 212)
From (A.6) the resonances in probe absorption can be found. In the limit v, v;3 >

G192 and Y12, Y13 > Vi, V2 the roots of Ap in (A.6) are given by

|G1a|?
(Ms+v2—11)

|G12|?
(viz+ 713 — 1)

T'eir = (1 +wve)+ (A.7a)

Tiotal = (7124 713 +12) — (A.7Db)

Here I'grr is the width of the transparency window and Ty, is the width of the
total absorption spectrum. It is clear from (A.7a) that the transparency window
will broaden due to decay among the ground levels. Such a broadening is a
major hurdle is observing subluminal group velocities, and techniques are being
developed to create ultra-narrow transparency window [93, 94]. In Fig. A.2 we
plot the probe absorption for different values of vy, v,. The increasing values of
v can be realized as increasing temperature. It is clear from the plots that for
increasing v the transparency at A, = A, decreases and the transparency window

broadens.

Analysis with the Inclusion of Doppler Broadening

When both the pump and probe beams are co-propagating (Ep I k. || z-axis), we can
rewrite the above equations in the presence of Doppler broadening by replacing
A, by A,, and A, by A., where

Apy = Ay — vywp/c and Aoy = Ar — v, /c.

Here v, is the velocity of the atom along z axis. By taking w. ~ w, and A, = 0, we

get A, = A,, — A,. Doppler averaging of coherence ,0(1? is given be

2\/1112 T
PIRITN 2y/n2/x / P (A1) exp[—41n 2(Aps — Ap)2/wd] dAp,, (A.8)
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Figure A.2: Normalized probe absorption as a function of probe detuning in di-
mensionless units from the analytical result (A.5). The parameters v;3 = v12 = v,
G113 = 0.3y and A. = 0. The solid curve is for v; = v, = 0, the dashed curve is for
v1 = v = 0.01v and the dot-dashed curve is for v; = v, = 0.17.

where wp = (81n2w2KT/c*M)'/? is the Doppler FWHM.
In the limit v > v (where, for simplicity we take v = vi3 = vi2 and v = vy = 1),
one can write
(1) i +iAy) i|GrePyu+iAp) |Gl P2y + i(Apy — Ap)]
P1a(Bp) = ==+ 94,45 B AzAs

where

(A.9)

A2 = (27 —|— iApU) (21/ —|— 2Ap) + |C;12|27
Az = w4y 4 (Ap — Ap)Y]+7IGral”.
When wp > v (eg. D; and D, lines of Rb) the above integration (A.8) can be

analytically evaluated in the Doppler limit [exp{-4In2(A;. — A,)?/wh} ~ 1. We
find that

. 2 . 2 2.
,Og)(Ap) _ Wrln2 [1 N VV|G1al i|G12*y (A, + 2iv)

- A.10
wp A5 2A4A5 k ( )
where

2 1/2
444 — (@ +472V) ’

As = {(A,— 2i)V/Y — iAHA, — 2iv) — VU|Gral2.
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The complex poles for solution (A.10) exist at

Ap=i(y+ Ae/2v7 +v) £ /|GI? = (7 + As/205 — v)? (A.11)

For (v + A4/2v — v)? > |G12|? the roots are
Y

) i|G1a]?
Tpr = 2 , A.12a
EIT ZV+2(7—1/—|-A4/2\/17) ( )
. i|G1a]?
Fictal = 1(2v+ A v) — . A.12b
total (7 4/\/_) 2(’)/—I/+A4/2\/;) ( )

In Fig. A.3 below we show the comparisons between the analytical result (A.10)
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Figure A.3: Plots show the probe absorption in dimensionless units as a function
of probe detuning. The frame (a) is for Gi» = 0.1y and frame (b) for G, = 0.37.
The Doppler width wp is increased in direct proportion with v; for » = 0.001y,
wp = 100y and for v = 0.003y, wp = 300vy. In both the frames the solid curve
corresponds to the analytical result (A.10). The dashed curve corresponds to the

numerical integration (A.8) with velocity dependent ,0(1? obtained from (A.5).

and the numerical integration of (A.8). The parameters are as given in the figures.
Comparing the numerical and analytical result in Fig. A.3, it is clear that the
Doppler limit invoked in deriving (A.10) holds good for v # 0.
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In this appendix we note the possible systems where the VIC effects can be stud-
ied. As shown previously, the VIC will be observed when the energy levels have
non-orthogonal dipole matrix elements. In alkali vapor there exist many tran-
sitions involving hyperfine magnetic sublevels where dipole matrix elements are
non-orthogonal: For example, the excited hyperfine sublevels |F = 3, mp = +3),
|F =4, mp = +3) in the 6P/, level and the ground level [6S, /5, F = 4, mp = +4) in
133Cs. Here the two allowed dipole matrix elements will be along (& + ifj)/v/2 if 2
is the quantization axis. However, all such transitions encountered in alkali va-
pors are open systems. When all the mp (or mj;) sublevels of a given F (or J) level
are taken into account, it has been shown that [114, 116] both the excited levels
should have the same F and mp levels for VIC to be effective in V-type systems.
Generally, levels with the same F have separation much larger than their natural
line-width. However, Rydberg states and molecular levels have a more compli-
cated structure, and near-degenerate levels with the same F (or J) are possible.
Xia et al. [119] used Rydberg levels of Na-dimer, and here the spin-orbit coupling
gave rise to VIC effect. Also, recently experiments involving atoms in specific mag-
netic sublevels [92, 94, 130] were performed very efficiently. Thus the stringent
requirement of same F and mp levels can be surpassed with the use of atoms in
specific magnetic sublevels and optical pumping.

Another possibility of observing non-orthogonal matrix elements is by mixing
of energy levels. Harris and Imamoglu [52] have shown that a laser field coupling
a metastable state with an excited state gives rise to dressed levels with interfering
decay channels. It can be shown the such a mixing gives rise to non-orthogonal
dipole matrix elements and have been studied in different contexts [149]. A classic
example of non-orthogonal matrix elements is via de-Stark mixing of energy levels

in hydrogen. A dc electric field of 4kV/cm or greater can give rise to mixing of |2s)
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and |2p) levels [103] given by

|1) = sin ¢|2s) + cos ¢|2p), (B.1a)
|2) = —sin¢|2p) + cos ¢|2s). (B.1b)

It is straight forward to see that d13 and dys will be parallel where |3) = |1s) is the
ground state of Hydrogen atom. Various authors [118, 150] have proposed the
use of Stark mixed levels to observe VIC kind of effects. In general, the mixing
between two levels will not give rise to parallel dipole matrix elements. When
spontaneous emission is taken into account, the angle between dressed dipole
matrix elements will be
sin ¢ cos ¢(Yb3 — Va3)

{’Yas’rbs + sin? ¢ cos® ¢ (Vb3 — Ya3) }1/2
where |2s) and |2p) are replaced by |e¢) and |b), respectively in (B.1). If the decay

cosf =

(B.2)

a3 < Yp3 as in the case of |2s) and |2p) levels of hydrogen, cosf =~ 1. It should be
noted that v,3 may also denote non-radiative decay like collisions. Thus the angle
# can in practice be tailored using appropriate buffer gas or doping such atoms
in crystals where local effects can modify the decay rates. The mixing (B.1) in
general can arise due to different possibilities like transverse static magnetic field
[151], via stray fields in solid state systems, or spin-orbit coupling as in the case
of [119].

There exists a vast range of phenomena where interference effect is similar to
the VIC but the conditions are different. The VIC occurs due to two probability
amplitudes leading to the same final electromagnetic field state. Similar inter-
ference can also occur in autoionizing and tunneling processes. As noted in the
early work of Harris [50], all these interference effects give rise to asymmetry in
absorption and emission processes. Experiments have been done involving in-
terference effects in both autoionizing levels [152] and tunneling processes [153].
The results discussed in this thesis need to be further analyzed for interfering
autoionizing levels and tunneling processes. They will be considered for future
investigation. Further, there also exists a wide variety of problems where interfer-
ing terms arise due to modified environment. Tailored environment allows one to
relax the requirement of non-orthogonal dipole matrix elements as in the case of
broadband pumping [87], optical cavities [154] and photonic crystals [155]. Re-
cently, Agarwal [156] has given a general treatment, which shows that anisotropic

vacuum field will give rise to interfering terms analogous to the VIC.
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Multilevel atom in a thermal bath

In this appendix we prove a general result on the equilibrium state of a multilevel
atom interacting with a thermal bath. The Hamiltonian for a multi-level atom in

a thermal bath can be written as below

H=Y E A+ hwgal ars + > Vi A, (C.1)
Iz ks H#v
where
orek\/? - ' '
Vi (t) = =iy ( ;% ) Dy - (Epatpae™ " — &5 al ehal) (C.2)

ks

The generalized reduced master equation for this Hamiltonian in the Born-Markoff

approximation is given by [157]

dp .
T ZM: E, A, p]
+ Z (Am/p/\y - A[J/\p(SlIK)F:VK}\ + (A,u/\pwc - pAmz(S/\/J)P,:,\mﬂ (CS]

HVKA

where

T = [ 0V 0) exp (-iat)
(C.4)

Do = / (Vix(0) Vo (2)) exp (—twpnt) dt,
0
(Vi (t)Vir(0)) = Trr{pr(0) V. (t)Vkr(0) } is the reservoir correlation function, hw,, =
(E, — E,), and §,, is the Kronecker delta function. Here the energy spacings are

assumed to be non-degenerate. In dealing with degenerate levels one needs to be

careful about states decoupled with the reservoir as discussed at the end of Sec.
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III. The reservoir initially has a thermal distribution of photons given by (4.2). It
should be noted here that the above master equation (C.3) is a generalized form
which includes the non-secular terms as well as the terms usually dropped under

rotating wave approximation. From (C.4) and (4.2) we find that

2 (iy-(i:; w?
_— ( M3hcg) A N (wiea); wer > 0, (C.5)
HoEX T Y 2(dpy-din)ed :
T(l—}-N(w/\m)); wiex < 0,

(C.6)

Q(duy-dﬂx)wiﬁ N

2 (ilpd_,; w3
r- = %(1 + N(wer)); wier >0,
’ Thed (W Wi < 0,

Let us assume that a solution of the form p = exp (-83%_, E,A,,) exists for equa-
tion (C.3). Substituting this solution in (C.3) we find that

Z AMV exp (_ﬁEﬂ) [F:u,un + P;u,un - F:Iilil/ exp (_ﬁhwlﬁi)

HVK

_F;KKV exp (_ﬁhw;m)] =0. (C7)

From (C.5) and (C.6) it can be shown that

F:u,um = P;KKU €xp (_/@hwﬂfi) (08]
- — +
Pm/,ma - F;AKKU exp (_ﬁhwllﬁ) : (Cg)

Using (C.8) and (C.9) we find that (C.7) is satisfied. Thus it shows that the steady
state solution is in fact Boltzmann distribution for populations. And as far as
there are no atomic states decoupled from the reservoir, the steady state solution

is unique.
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