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Abstract

The work of this thesis can be divided into two parts. In the first part we study

synchronization of coupled nonidentical dynamical systems and in the later part

we analyze the desynchronization bifurcation of coupled dynamical systems.

When two or more identical systems are coupled then synchronization comes

out as equality of the state variables of the coupled systems, which is known as

complete (or identical) synchronization (CS). The conditions for stability of com-

plete synchronization are well analyzed by the Master Stability Function (MSF).

For coupled nonidentical systems it is not possible to get complete synchronization,

instead one can find out a functional relationship between the state variables of the

coupled systems which is known as generalized synchronization (GS). In this thesis

we develop a theory to construct an approximate MSF for determining stability of

GS for coupled nonidentical systems. Next, by using the stability criteria provided

by the MSF we construct synchronized optimized network by rewiring the links of

a given network. In the optimized network the nodes which have extreme values

(maximum or minimum depending on the nature of MSF) of parameter mismatch

are chosen as hubs and the pair of nodes having larger parameter mismatch are

chosen to create links.

In the second part of this thesis we study desynchronization bifurcation of cou-

pled dynamical systems. In some coupled dynamical systems one can find an inter-

val of coupling strength where the synchronized state is stable. When the coupling

strength is increased beyond this stable region, the synchronized state becomes un-

stable and the coupled systems undergo desynchronization bifurcation. We analyze

this desynchronization bifurcation in coupled chaotic systems and we observe that

this desynchronization bifurcation is pitchfork bifurcation of transverse manifold.

We propose an integrable model which shows similar desynchronization bifurca-

tion. In this context we propose Systems’ Transverse Lyapunov Exponents (STLE)

for determining the stability of individual systems in a network.

Keywords: Coupled Systems, Synchronization, Master Stability Function, Opti-

mization, Desynchronization Bifurcation.
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Chapter 1

Introduction

1.1 Motivation

The analysis of synchronization phenomena in the evolution of dynamical systems

has been a subject of active investigation since the earlier days of physics. Christi-

aan Huygens was perhaps the first scientist who observed synchronization. He was

most famous for his studies in optics and construction of telescope and pendulum

clocks. In 1665, he observed that the oscillation of two pendulum clocks hanging

from the same beam coincided perfectly and they always moved in opposite direc-

tions. He wrote it as Sympathy of two clocks [1]. In 1680, another Dutch physicist

Engelbert Kaempfer observed synchronization of flashing of fireflies in south east

Asia [2]. In many natural systems synchronization occurs spontaneously. There are

several examples where scientist observed synchronization phenomena occurring in

natural and man made systems [3].

Recently, the search for synchronization has moved to chaotic systems and

is a subject of intense research[3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. In

chaotic systems the appearance of collective (synchronized) dynamics is, in general,

non trivial. Indeed, a dynamical system is called chaotic whenever its evolution

sensitively depends on the initial conditions. Two trajectories emerging from two

different closeby initial conditions separate exponentially in the course of time.

As a result, chaotic systems intrinsically defy synchronization, because even two

identical systems starting from slightly different initial conditions would evolve in

1
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time in an unsynchronized manner (the differences in the systems’ states would

grow exponentially). The setting of some collective (synchronized) behavior in

coupled chaotic systems has therefore of great importance and interest.

In the context of coupled chaotic systems many different types of synchroniza-

tion have been studied in the past years. Chaotic identical systems when coupled

in same fashion or driven by same external signal, synchronize as the coupling

strength increases, and are said to be identically or completely synchronized when

the variables of the systems become equal [6, 7, 8, 9, 17]. We can observe other

types of synchronization, such as phase synchronization [18, 19], lag synchroniza-

tion [20], generalized synchronization [21, 22, 23] etc.

For coupled identical systems the stability of the synchronized state is well anal-

ysed. Pecora and Carroll (1998) [24] introduced a master stability function (MSF)

which can be calculated from a simple set of master stability equations and then

applied it to the study of stability of the synchronous state of different networks.

However, for coupled nonidentical systems one can not get exact synchronization,

but here the synchronized state is generalized synchronization [21, 22, 23]. For

this type of network the MSF introduced in [24] does not work. In this thesis work

we consider this problem and we formulate a MSF for network of coupled noniden-

tical systems. By using the fact that the homogeneous part of a linear differential

equation dominates the exponential nature of the solution we construct an MSF,

which can predict the stability of the generalized synchronized state reasonably

well. In this context we also consider the problem of constructing synchronized

optimized network from a given random network with fixed number of nodes and

links. As the second problem for this thesis we study the nature of desynchro-

nization bifurcation in a coupled dynamical systems.An interesting situation arises

when two chaotic Rössler oscillators are coupled with each other. There are two

critical coupling constants, say, εc1, and εc2. When coupling strength is smaller

than the first critical coupling, ε < εc1, the oscillators are unsynchronized. They

are synchronized for εc1 < ε < εc2 and desynchronized for ε > εc2. We study the

nature of this desynchronization bifurcation. We introduce Systems’ Transverse

Lyapunov Exponents (STLE), which provide us the information about stability of

each individual oscillators which are couped on a network. We give a simple two
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dimensional model with quadratic nonlinearity which shows similar desynchroniza-

tion bifurcation and helps us to understand this bifurcation. The above mentioned

two problems setup the motivation of this thesis.

1.2 Synchronization: A natural phenomena

Synchronization phenomena is very common in nature. If we carefully observe

natural phenomena, we can immediately realize that synchronous behavior of in-

teracting dynamical units is an ubiquitous phenomena and it spread throughout

our daily life: from cardiac pacemaker cells to planetary motions. In human heart

about 10000 cells, called sinoatrial nodes, that generate synchronized electrical

rhythm and command rest of the heart to beat [25, 26]. Synchronization phenom-

ena has been observed between cardiac and respiratory system in human [27]. One

can witness spectacular sight of synchronized blinking of fireflies on the side of

rivers in South-East Asia [2]. The perfect synchrony of the rotation and revolution

periods of the Moon is the cause of the fact that we always observe the same face

of the Moon from the Earth. Clusters of neurons in brain exhibit synchronized

oscillations of neuron firing [28]. Some normal and abnormal behavior of the hu-

man brain (including some brain diseases) are the result of a sudden and abrupt

synchronization in the activity of a large number of neuronal populations [29]. Syn-

chronous neural activity in the brain give rise to a common chronic neurological

disorder known as epilepsy [30]. Dynamics of extended ecological systems show

synchronization [31]. Synchronization and rhythmic processes have been observed

in physiology [32]. Yeast cell suspension exhibit metabolic synchronization [33, 34].

Unison chirping of crickets lead to synchronization [35].

In laboratory experiments synchronization has been observed in electrical cir-

cuits [9, 36, 37, 38], laser systems [39, 40, 41].

Synchronization phenomena have received much attention recently. Mostly, the

synchronization is considered as the complete coincidence of the states of individual

systems or subsystems, which is known as complete (or identical) synchronization

(CS) [9] in the literature. There are other types of synchronization: phase synchro-

nization (PS) [18], lag synchronization (LS) [20], imperfect phase synchronization
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(IPS) [42], almost synchronization (AS) etc.

1.2.1 Applications of synchronization

Here we mention some applications of chaotic synchronizations.

Secure communication : to decode an encrypted signal at the receiver, chaotic

synchronization is used between the sender and receiver [37, 43].

Parameter estimation: chaotic synchronization has been used to determine

unknown parameters from a given time series of a system [44, 45].

1.2.2 Definition of synchronization

Synchronization can be defined as a process where two(or many) systems (equiv-

alent or nonequivalent) adjust a given property of their motion to a common be-

havior, due to coupling or forcing.

1.2.3 Types of synchronization

In the context of coupled chaotic systems many different synchronization states

have been studied in the past years. In many practical examples synchronization

comes out as a natural phenomena. Depending on the nature of synchronization

it has been divided in different types.

• Complete or identical synchronization: It is very simple and the most stud-

ied form of synchronization. When two identical systems are coupled the

synchronization comes out as equality of the state variables of the coupled

systems [9].

ẋ = f(x) + εh(x, y)

ẏ = f(y) + εh(y, x)

In the above example systems x and y are two identical system and they are

coupled using a linear coupling function h() and ε is the coupling strength.
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Under suitable conditions the state variables of these two coupled systems

asymptotically become equal, x = y and complete synchronization between

the coupled systems is established.

• Phase Synchronization: This type of synchronization is observed between

weakly coupled chaotic systems. In this type of synchronization the phase

of two coupled systems become locked, but their amplitudes remain uncor-

related. Unlike complete synchronization phase synchronization can be ob-

served in coupled nonidentical systems [18].

ẋ = f(x) + εh(x, y)

ẏ = g(y) + εh(y, x)

We consider the above examples of two coupled dynamical systems. Let φx

and φy be the phase of systems x and y respectively. We say that the phase

synchronization is established if |φx − φy| < const.

• Generalized synchronization: This general form of synchronization is ob-

served when nonidentical systems are coupled. The generalized synchro-

nization is established if a functional relationship develops between the vari-

ables [21].

ẋ = f(x) + εh(x, y)

ẏ = g(y) + εh(y, x)

The generalized synchronization is established between system x and system

y when Ψ(x, y) = 0, where Ψ() is some function of the arguments.

• Lag or anticipatory synchronization: This type of synchronization implies

the boundedness of state variables of one system and state variables of other

system shifted in time with a lag τlag [20].
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We consider two coupled systems given as,

ẋ = f(x) + εh(x, y)

ẏ = g(y) + εh(y, x).

In the lag synchronized state we will have x(t) = y(t + τlag).

Above we have discussed some major types of synchronization. There also exist

other types of synchronization such as imperfect phase synchronization [42], inter-

mittent lag synchronization [20, 46], and almost synchronization [47]. In this thesis

we will mostly consider complete synchronization and generalized synchronization.

1.3 Chaos

Chaos is a widely spread field that has become part of several subjects such as

mathematics, physics, engineering, biology, economics and several more [48, 49,

50, 51, 52, 53, 54]. The term ‘chaotic’ means that the long term behavior can not

be predicted even when there is no natural fluctuation of the system parameters

or influence of a noisy environment. This unpredictability results from the internal

deterministic dynamics of a system and its sensitive dependence on the initial

conditions. Two completely identical chaotic systems starting from close initial

points, will go away from each other in the course of time and their trajectories

will become uncorrelated very soon.

Here, we give the definition of chaos from the book of R. L. Devaney [52].

Definition

We conside a set V and f : V → V . f is chaotic on the set V if,

1. f has sensitive dependence on the initial conditions,i.e there exists δ > 0

such that, for any x ∈ V and any neighborhood N of x, there exists y ∈ N and

n ≥ 0 such that |fn(x) − fn(y)| > δ.

2. f is topologically transitive, i.e. for any pair of open sets U, V ⊂ J , there

exists k > 0 such that fk(U) ∩ V 6= ∅.

3. periodic points are dense in V .
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There are several systems which shows chaotic behavior, few of them are

circuits [55, 56], lasers [57, 58], plasmas [59], fluids [60, 61], semiconductor de-

vices [62, 63], mechanical devices [64, 65], chemistry [66, 67], acoustics [68, 69],

celestial mechanics [70], atmospheric physics [71].

1.4 Measure of chaos

In this section we briefly discuss methods of quantifying chaos,i.e. we will dis-

cuss the possible measures to determine how chaotic a system’s chaotic behavior

is. This measure is important to determine whether a system’s apparent chaotic

behavior is truly chaotic or it is due to the complexity and noisy nature of the

system. For detecting and quantifying chaos we consider Lyapunov characteristics

exponents [72, 73, 74, 75] of the system, which is proven to be the most useful

dynamical diagnostic for chaotic systems.

1.4.1 Lyapunov characteristics exponents

We have seen that chaotic systems have sensitive dependence on initial condi-

tions. This sensitive dependence on initial conditions can be characterized using

Lyapunov exponents [72]. In mathematics the Lyapunov exponent or Lyapunov

characteristic exponent of a dynamical system is a quantity that characterizes the

average exponential rates of divergence or convergence of nearby trajectories in

different directions in phase space.

Let us now consider two trajectories x(t) and x′(t) start from two nearby initial

conditions in the phase space x(0) and x′(0) = x(0) + δx(0) respectively. The

Euclidean distance between these two trajectories is,

d(x(0), t) =‖ x′(t) − x(t) ‖=‖ δx(t) ‖ . (1.1)

where, ‖ . . . ‖ is the Euclidean norm. Then the average rate of divergence or

convergence of these two nearby trajectories, defined as Lyapunov exponent, is
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given by [54, 76],

λ(x(0)) = lim
t→∞,δx(0)→0

1

t
log

(

d(x(0), t)

d(x(0), 0)

)

. (1.2)

For an m-dimensional system there are m-Lyapunov exponents λi, i = 1, ..., m,

and the set of m-Lyapunov exponents is known as the Lyapunov spectrum of the

system. To identify whether the motion of the dynamical system is periodic or

chaotic, it is sufficient to consider the largest Lyapunov exponent. For chaotic

systems the largest Lyapunov exponent is positive λ > 0, for fixed points it is

negative λ < 0 and for limit cycles or two-torus it is zero λ = 0.

1.4.2 Numerical calculation of Lyapunov exponents

In this section we briefly review numerical calculation of Lyapunov exponents from

a set of ordinary differential equations [73, 74, 75]. The method was developed

independently by Benettin et al. [74] and by Shimada and Nagashima [73].

Let us consider an m-dimensional dynamical system given by

dx

dt
= F (x(t)), (1.3)

where, x(t) ∈ Rm is an m-dimensional state variable of the dynamical system,

x = (x1, . . . , xm), and F : Rm → Rm is an m-dimensional vector field.

The Lyapunov exponents describe the exponential rates of divergence or con-

vergence of nearby trajectories in the phase space, so for numerical determination

of Lyapunov exponents from Eq. (1.3) we monitor long-term time evolution of an

m-dimensional infinitesimal sphere in the phase space. A “fiducial” trajectory x(t)

(center of the sphere) is created by integrating the nonlinear equations of motion

(1.3) for some post-transient initial condition. Trajectories of points on the surface

of the sphere are defined by the action of the linearized equations of motion on

points infinitesimally separated from the fiducial trajectory, and are obtained by

linearizing Eq. (1.3) about the fiducial trajectory x(t),

δẋ = DxF (x(t)) δx (1.4)
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where,δx ∈ Rm is the infinitesimal deviation from the fiducial trajectory and Dxf is

the m×m Jacobian matrix calculated at fiducial trajectory x(t), Dxfij = ∂fi/∂xj .

When the fiducial trajectory x(t) is constant (fixed point), we can calculate the

Lyapunov exponents by evaluating the eigenvalues of the Jacobian matrix Dxf

[76, 77]. However, if the fiducial trajectory is chaotic this method will not work.

In this case, along with the Eq. (1.3), we integrate the linearized equations of

motion (1.4) for m-different initial conditions located on the surface of the m-

sphere. Let, these initial conditions define an arbitrarily oriented frame of m-

orthonormal vectors (v01, . . . , v
0
m). The initial sphere evolve into an m-ellipsoid

due the locally deforming nature of the flow and the principal axis vector of the

ellipsoid diverge in magnitude. Now there are two technical problems in evaluating

Lyapunov exponents by directly using Eq. (1.2) [75]. The linearized equation has at

least one diverging solutions which leads to a storage problem in computer memory

and the orthonormal vectors evolving in time tend to fall along the local direction

of most rapid growth. Due to the finite precision of computer calculations, the

collapse toward a common direction causes the tangent space orientation of all

axis vectors to become indistinguishable. These two problems can be overcome

by the repeated use of the Gram-Schmidt reorthonormalization (GSR) procedure

on the vector frame. Let us consider that after acting on the initial frame of

the orthonormal vectors the linearized equation of motion returns a set of vectors

(v11, . . . , v
1
m). Now, we apply GSR after dt time step which give a new set of

orthonormalized vectors v21 , . . . , v
2
m:

v21 =
v11

‖ v11 ‖ ,

v22 =
v12 − 〈v12, v21〉v21

‖ v12 − 〈v12, v21〉v21 ‖
,

...

v2m =
v1m −∑m−1

j=1 〈v1m, v2j 〉v2j
‖ v1m −∑m−1

j=1 〈v1m, v2j 〉v2j ‖
,

where 〈, 〉 denotes the inner product. In this way the rate of growth of evolved

vectors can be updated by repeated use of GSR. The after N -th stage, N large
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enough, the Lyapunov exponents are give by,

λi = lim
N→∞

1

Ndt

N
∑

k=1

ln ‖ vki ‖; i = 1, . . . , m. (1.5)

For a given dynamical system, dt and N are chosen appropriately so that the con-

vergence of Lyapunov exponents is assured. A fortran code algorithm implementing

the above scheme can be found in Ref. [75].

1.5 Shadowing theorem

In the earlier sections we have seen that a chaotic system is very sensitive to the

initial conditions. A very small deviation in initial conditions can give rise to a

completely different trajectory. So, it is impossible to numerically calculate the

exact trajectory of a chaotic system, since in the numerical calculations the true

derivatives dx
dt

are replaced with finite differences x(t+dt)−x(t)
dt

. This approximation

will deviate the trajectory from its exact value. Also computer can store only finite

precision numbers, so at every step there are rounding errors which grow exponen-

tially with time. For this one can always ask whether a numerically generated

trajectory will be of any use to study a chaotic system.

A partial answer to this problem comes from the rigorous mathematical proofs

of the shadowing property of certain chaotic systems, which is known as shadowing

lemma. The shadowing lemma sates that although a numerical trajectory diverges

exponentially from the true trajectory with the same initial conditions, there exists

a true (i.e. errorless) trajectory with a sightly different initial conditions that stays

near (shadows) the numerical trajectory [50, 78, 79, 80, 81]. Thus there is a good

reason to rely on the numerically generated trajectory to study a chaotic system.

1.6 Bifurcation theory

In this section we briefly review bifurcation theory which is an important feature of

dynamical systems [82, 83]. In the bifurcation theory we study sudden qualitative

changes in the nature of motion of a dynamical system when some system param-
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eter is smoothly varied through a critical value. Typically at the critical value of

the control parameter one type solution of the dynamical system loses stability

and a new stable solution arises. Thus to understand the nature of the sudden

qualitative changes, the stability of the solutions are studied in the neighborhood

of the critical parameter value. In fact there can exists more than one critical or

bifurcation value of the parameter and as the parameter is varied through these

values the dynamical system undergoes transition of different types of motion and

can give rise to interesting dynamical situations such as chaos. In this section

we will discuss few simple bifurcations which occur in low dimensional nonlinear

continuous time dynamical systems.

• Saddle node bifurcation: we consider the following one dimensional dynami-

cal system,
dx

dt
= µ− x2 (1.6)

where, µ is some system parameter. The equilibrium points of this system are

x∗ = ±√
µ. To determine the stability of these equilibrium points we consider

linear stability analysis. The dynamics of a small deviation z = x − x∗ is

given by,
dz

dt
= −2x∗z, (1.7)

solving which will give us, z(t) = z(0)eλt, where λ = −2x∗. When, µ < 0 the

system has no stable real equilibrium point. At the parameter µ = 0, x∗ = 0

becomes the unique equilibrium point. When, µ > 0 the system has two

equilibrium points at x∗ = ±√
µ, of which x∗ = +

√
µ is stable equilibrium

point and x∗ = −√
µ is unstable equilibrium. Here we can see that as the

system parameter is varied the system undergo a transition of motion from

no equilibrium point to one stable and one unstable equilibrium points. This

type of bifurcation is known as saddle node bifurcation. In Fig. 1.1 the

systems solutions are plotted as a function of system parameter. The solid

line gives the stable solution and the dashed line gives the unstable solutions.

• Pitchfork bifurcation: In this type of bifurcation one stable solution of a

dynamical system loses stability and two new solutions arise as the parameter
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Figure 1.1: The solution of Eq. (1.6) is plotted as a function of systems parameter
µ. When, µ < 0 there exists no real solution, at the critical value µ = 0 the
system has one solution x∗ = 0. For µ > 0, there exists two solutions x∗ = ±√

µ.
The stable solution x∗ = +

√
µ is shown as the solid line and the unstable solution

x∗ = −√
µ is shown as dashed line.

is varied through a critical value. We consider a dynamical system given by,

dx

dt
= µx− x3 (1.8)

here, µ is system parameter. The systems has three solutions x∗ = 0,±√
µ.The

stability of these equilibrium points can be determined by the linear stability

analysis and in this case we have λ = −3x∗2 +µ, where λ gives the exponen-

tial nature of a small deviation to the solutions. For, µ < 0 there exists only

one stable real solution x∗ = 0. At the critical value of the parameter µ = 0,

all solutions of the system collapse to x∗ = 0. When µ > 0, there exists three

solutions x∗ = 0,±√
µ, of which x∗ = 0 is unstable solution and x∗ = ±√

µ

are the stable solutions.

Fig. 1.2 shows the nature of the solutions of Eq. (1.8) as a function of control

parameter µ. The solid line gives the stable solutions and the dashed line

gives the unstable solution. When µ < 0 the only stable solution is x∗ = 0 as

µ is increased through the critical value 0, two new stable solutions appear

x∗ = ±√
µ, while the old stable solution x∗ = 0 becomes unstable.

• Transcritical bifurcation: In this type of bifurcation the stability of solutions

of a dynamical system are exchanged. We consider a dynamical system given

by,
dx

dt
= −µx + x2 (1.9)
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Figure 1.2: This figure shows the nature of the solutions of Eq. (1.8) as a function
of the control parameter µ. The solid line gives the stable solutions and the dashed
line shows the unstable solution. When µ < 0 the only stable solution is x∗ = 0
as µ is increased through the critical value 0, two new stable solutions generate
x∗ = ±√

µ, while the old stable solution x∗ = 0 becomes unstable.

The dynamical system has two equilibrium points x∗ = 0, µ. The stability

of these equilibrium points are determined by the exponent, λ = −µ + 2x∗.

When µ < 0 the equilibrium point x∗ = 0 is unstable and x∗ = µ is stable.

When µ > 0 the stability of the equilibrium points are exchanged and x∗ = 0

become stable solution and x∗ = µ become unstable solution. Fig. 1.3 the

equilibrium points of Eq. (1.9) are plotted as function of system’s parameter

µ. The solid line gives the stable solution and the dashed line gives the

unstable solution.

Figure 1.3: The equilibrium points of Eq. (1.9) are plotted as function of system’s
parameter µ. The solid line gives the stable solution and the dashed line gives
the unstable solution. When µ < 0 the equilibrium point x∗ = 0 is unstable and
x∗ = µ is stable. When µ > 0 the stability of the equilibrium points are exchanged
and x∗ = 0 become stable solution and x∗ = µ become unstable solution.
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1.7 Complex networks

In this section we review the topic of complex networks that is used in the thesis.

Real world complex systems can be modeled as networks of interacting elements.

Complex networks describe a collection of large number of systems from physical

or biological or social worlds [84, 85, 86]. Below we provide some examples of

complex networks.

• Cell: cell can be described as a complex network of chemicals connected by

chemical reactions [87].

• Internet: the internet is a complex network of routers and computers con-

nected by various physical or wireless links [88].

• World wide web: webpages are connected by hyperlinks [89].

• Ciruits: electrical circuits are complex networks of various electrical com-

ponents such as resistors, capacitors, op-amps, etc. connected by electrical

wires [90].

• Food webs: this network consist of spices linked by predator-pray relations

[91].

• Neural networks: neurons are connected by axons and dendrites [92].

• Power grids: generators and transformers are connected by high voltage links

[93, 94].

• Polymers: atoms are linked with bonds [95].

• Co-authorship network: in this network authors are the vertices and two

authors are connected when they write a paper together [96].

• Citation network: two papers are orderly linked by the citation [97].

• Social network: fads and ideas are transported from peoples to people through

social relationship [98].
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• Actor network: two actors are connected when they have acted in a same

movie [99].

• Disease network: disease spreads when a healthy person gets connected to

an infected person [100].

• Railway network: stations are connected by rail lines [101, 102].

• Airport network: airports are linked by flights [103].

These systems represent just a few of the many examples that have recently

prompted the scientific community to investigate the mechanisms that determine

the topology of complex networks.

Graph theory [104] is a natural framework for the mathematical formulation of

complex networks. Formally, a complex network can be represented as a graph. A

graph G consist of two sets N and L, where N is a nonempty set of N vertices (or

nodes) n1, . . . , nN and L is a set of E edges (or links) l1, . . . , lE which are pairs of

elements of N . When the elements of set L consist of ordered pairs of elements of

set N then the graph G is a directed graph. Below we briefly discuss some features

of complex networks.

Adjacency matrix : It is often useful to consider a matricial representation of

a graph. The adjacency matrix A = [aij ] of graph G is an N × N matrix whose

ij-th entry is the number of edges from node j to node i.

Network Laplacian : The elements of the network Laplacian matrix G = [gij]

are defined as gij = aij − δi,j
∑N

k,k 6=i aik, where, δi,j is Kronecker delta.

Node degree and degree distribution : The number of edges incident at the nodes

is called the degree. We denote degree of node i as ki. For undirected graph degree

of node i is ki =
∑

j,j 6=i aij . Degree distribution P (k); is the probability that a

randomly selected node has exactly k edges.

In the case of directed graph the degree of a node has two components, in-

degree kin
i =

∑

j aij of node i is the number of incoming links incident on node i

and out-degree kout
i =

∑

j aji is the number of outgoing links from the node. The

total degree is then defined as, ki = kin
i + kout

i .
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Connected graph : A Graph G is said to be connected if there is at least one path

(through edges connecting a pair) between every pair of vertices in G. Otherwise,

G is disconnected. Size of a graph is the number of vertices in the graph.

Clustering coefficients : A common property of complex networks is formation

clusters. The inherent tendency to cluster is quantified by the clustering coeffi-

cient [105]. Let us consider a node i with degree ki. This node is connected to ki

other neighboring nodes, if any of these two neighboring nodes are connected then

a triangle is formed. The clustering coefficient of node i is the ratio between the

number of edges Ei that actually exist between the neighboring nodes of i and the

maximum number of possible edges ki(ki − 1)/2 between them,

Ci =
Ei

ki(ki − 1)/2

The clustering coefficients of the whole network is C = 1/N
∑

iCi.

Shortest path lengths, diameter and characteristic path length : Shortest paths

play an important role in the transport and communication within a network.

Suppose one needs to send a data packet from one computer to another through

the Internet: the geodesic provides an optimal path way, since one would achieve a

fast transfer and save system resources [106]. The shortest path between two nodes

is determined by counting the minimum numbers of edges that is needed to connect

them. This is also known as the geodesic distance. The shortest path lengths of

graph G is represented as a matrix D in which the entry dij is the length of the

geodesic from node i to node j. The maximum value of dij is called the diameter

of the graph. A measure of the typical separation between two nodes in the graph

is given by the average shortest path length, also known as the characteristic path

length. And it is defined as the mean of the geodesic length over all couples of the

nodes,

L =
1

N(N − 1)

∑

i,j,i 6=j

dij.

Graph spectra : The spectrum of a graph is the set of eigenvalues of its adjacency

matrix A [107]. A graph GN,E has N eigenvalues γi (i = 1. . . . , N), and N associated
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eigenvectors vi (i = 1, . . . , N). When the graph G is undirected then the adjacency

matrix A is real and symmetric, therefore the graphs has real eigenvalues and the

eigenvectors corresponding to distinct eigenvalues are orthogonal. For a directed

graph the eigenvalues can be complex.

Here, we briefly review some different types of graphs which we have used for

our studies,

Regular Graphs : A regular graph is a graph where each vertex has the same

number of neighbors; i.e. degree of each node is same. For a directed graph the

in-degree and out-degree of each vertex is same [108]. A regular graph with vertices

of degree k is called a kregular graph. Simple cubic lattice is an example of regular

graph. In a regular lattice of dimension d and size N the characteristic path length

is given by L ∼ N1/d.

Complete Graphs : In a complete graph every pair of distinct vertices are

connected by one unique edge. The complete graph of N vertices has N(N − 1)/2

edges and is denoted by KN [109]. A triangle is a complete graph with 3 nodes

and it is denoted as K3. If the edges of a complete graph have a direction then the

resultant directed graph is called a tournament.

Random Graphs : Random graphs were first studied by the Hungarian math-

ematicians Paul Erdös and Alfréd Rényi [110, 111]. In their classic first article

Erdös and Rényi define a random graph as N labeled nodes connected by E edges,

these edges are selected randomly from the N(N−1)/2 possible edges [110]. There

are a total of CE
N(N−1)/2 possible different graphs that can be generated from N

nodes and E edges and all configurations have equal probability. An alternative

and equivalent definition of a random graph is the binomial model. Here, we start

with N nodes and connect every pair of nodes with probability p. The total num-

ber of edges E(p) = pN(N − 1)/2. In this thesis we use this alternate method to

generate random graphs. In a random graph, with connection probability p, the

degree distribution follows a binomial distribution,

P (k) = Ck
N−1p

k(1 − p)N−1−k
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For large graphs N → ∞ and small p, the degree distribution P (k) follows Poisson

distribution. In a random graphs both the clustering coefficient and the charac-

teristic path length are very small. The clustering coefficient is, Crand ∼ k/N and

the characteristic path length is Lrand ∼ ln(n)/ln(k).

Small World Networks : Small world networks lie in between random graphs

and regular networks and several of the networks consisting of natural systems

are of this type. The real world networks have small characteristic path length as

random graphs. This is due to the existence of shortcuts in a real network. In

a regular d-dimensional lattice the characteristic path length grows with network

size as N1/d, N is the size of the network. Conversely, in most of the real networks,

despite their large size, there is a relatively short path between any two nodes.

This feature is known as small world property and is characterized by an average

shortest path length L which grows logarithmically with the network size, L ∼ lnN.

Unlike random graphs, a small world network has larger clustering coefficient,

which is a characteristic property of regular lattices. In 1998 Watts and Strogatz

proposed a model to generate the small world networks [105] which have large

clustering coefficients and small characteristic path lengths. In that model they

consider a regular ring lattice which has N vertices and each vertex is connected

to k neighboring vertices. Now each edge is rewired with a probabilty p avoiding

self and duplicate connections. This rewiring helps to tune the network between

a regular graph (p = 0) and a random graph (p = 1). The small world network

lies in the intermediate region 0 < p < 1. This model is quantified in terms

of characteristic path length L(p) and clustering coefficients C(p). As p → 0,

the characteristic path length is L ∼ N/2k >> 1 and, as p increases the path

length scales logarithmically with the network size N , L ∼ lnN. This is due to

the generation of few long edges in the network which connect distant nodes. In

addition, small world network has large clustering coefficients because of the mostly

local edges [105, 112].

Scale Free Networks :

Till now we have discussed network models that start with a fixed number

N of vertices that are then randomly connected or rewired, without modifying

N . In contrast, most real world networks describe open systems that grow by
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the continuous addition of new nodes. Starting from a small number of nodes, the

number of nodes increase throughout the lifetime of the network by the subsequent

addition of new nodes. Network models discussed so far assume that the probability

that two nodes are connected (or their connection is rewired) is independent of the

nodes degree, i.e., new edges are placed randomly. Most real networks, however,

exhibit preferential attachment, such that the likelihood of connecting to a node

depends on the nodes degree. For example, World Wide Web, when a new web-

page is created it is more likely to link with a popular web-page (which already

has large degree) than a less known web-page. Thus the webpages which have

larger degree are getting more connections than other webpages, or the citation

network, a new paper is more likely to cite well known and thus most-cited papers

than less cited papers. These two processes growth and preferential attachments

generate scale-free networks [88, 113, 114, 115]. The degree distributions of nodes

in a scale-free network follow power law,

P (k) ∼ k−γ

where γ is a constant with a typical value in the range 2 < γ < 3.

Barabási and Albert were the first to model the scale-free networks [113]. The

algorithm of Barabási and Albert model is the following,

(1). Growth : Consider a small network with m0 nodes. At every time one new

node with m(< m0) edges is added to already existing m nodes of the network.

After t time steps total number of nodes in the network will be N = t + m0.

(2). Preferential Attachments : The probability that the new node will be added

to the existing node i depends on the degree ki of node i. Thus the probability

that a new node will be connected to node i is,

π(ki) =
ki

∑

j kj

One of the most important properties of the scale-free network is that it is

topologically very robust against random node failure because of few hubs (highly

connected nodes). But these scale-free networks are very vulnerable to attacks on
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the hubs [114].

In the next sections we discuss properties of two well known chaotic systems

Lorenz systems [116] and Rössler systems [117]. In this thesis most numerical

calculations are done on these two systems.

1.8 Lorenz Systems

The Lorenz system is a classical example of a dynamical continuous system exhibit-

ing chaotic behavior. This is a three dimensional system consisting of three non-

linear ordinary differential equations. In 1963 MIT meteorologist Edward Lorenz

developed a simple set of three nonlinear ordinary differential equations to repre-

sent the forced dissipative hydrodynamic flow [116] and he discussed the feasibility

of very-long-range weather prediction in view of this model. The Lorenz system is

given as,

dx

dt
= −σx + σy

dy

dt
= −xz + rx− y (1.10)

dz

dt
= xy − bz

where, σ, r, b are parameters of the system; σ is related to Prandtl number. The

variable x(t) is proportional to the intensity of the convective motion, y(t) is pro-

portional to the temperature difference between the ascending and descending cur-

rents and z(t) is proportional to the distortion of the vertical temperature profile

from linearity.

The stability of the solutions x(t),y(t) and z(t) can be investigated by consid-

ering the behavior of small superposed deviations ξx, ξy, ξz of the solutions. The

dynamics of these deviations are given by the linearized equation,

d

dt
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The Lorenz system has three equilibrium points. The equilibrium point x∗ =

y∗ = z∗ = 0 represents the state of no convection. The characteristic equation

from Eq. (1.11) for this equilibrium point is,

[λ + b][λ2 + (σ + 1)λ− σ(1 − r)] = 0 (1.12)

This equation has three real roots for r > 0; all are negative when r < 1, but

one is positive when r > 1. The equilibrium point x∗ = y∗ = z∗ = 0 is stable for

r < 1. When r = 1, the steady convection starts. For r > 1 there exists two more

equilibrium points x∗ = y∗ = ±
√

b(r − 1), z∗ = r − 1. The characteristic equation

for these equilibrium points is,

λ3 + (σ + b + 1)λ2 + (r + σ)bλ + 2σb(r − 1) = 0 (1.13)

For r > 1, Eq. (1.13) has two complex conjugate roots and one real negative root.

The complex conjugate roots are pure imaginary when r satisfies,

r =
σ(σ + b + 3)

(σ − b− 1)
.

Eq. (1.10) starts showing chaotic behavior when r > σ(σ + b + 3)/(σ − b − 1).

As parameter r is increased the Lorenz system shows chaotic and periodic be-

havior. When r < 1, the Lorenz system is stable at the fixed point x∗ = y∗ =

z∗ = 0 and The Lyapunov exponents are (−,−,−), Typical value of parameters

are σ = 10, r = 28, b = 8/3. The Lorenz system is chaotic for these parameter

values. Lyapunov exponents of the Lorenz system for these parameter values are

0.905, 0.000,−14.572. For these parameter values the Lorenz attractor is shown in

Fig. 1.4 where labels (1), (2), (3) show the position of three equilibrium points.

In Fig. 1.5 the two largest Lyapunov exponents are plotted as a function of Loren

parameter r. When the system shows fixed point behavior all Lyapunov exponents

are negative, in the limit cycle region the largest Lyapunov exponent is zero others

are negative and for chaotic systems the largest Lyapunov exponent is positive,

second largest Lyapunov exponent is zero and the third exponent is negative.
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Figure 1.4: The solution of the chaotic Lorenz system is shown in the phase space.
The solution remains bounded on the Lorenz attractor. The equilibrium points are
shown in the figure with the labels (1) = [x∗ = y∗ = z∗ = 0], (2) = [x∗ = y∗ =
√

b(r − 1), z∗ = r − 1] and (3) = [x∗ = y∗ = −
√

b(r − 1), z∗ = r − 1]. The
parameters are σ = 10, b = 8/3 and r = 28.
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Figure 1.5: Two largest Lyapunov exponents of the Lorenz system are plotted as
a function of Lorenz parameter r.
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1.9 Rössler systems

In 1976 O. E. Rössler designed a continuous time dynamical system that exhibits

chaotic dynamics. It was intended to behave similarly as Lorenz system, but

is easier to analyze qualitatively. Rössler system is a three dimensional system

represented by a set of three ordinary differential equations which has only one

quadratic nonlinear term in the third equation,

dx

dt
= −ωy − z

dy

dt
= ωx + ary (1.14)

dz

dt
= br + z(x− cr) (1.15)

where, ω, ar, br, cr are Rössler parameters. Rössler studied a chaotic attractor for

the parameter values ω = 1, ar = 0.2, br = 0.2, cr = 5.7. The equilibrium points of

the Rössler system are,

x∗ =
c

2
± 1

2

√
ω2c2 − 4ab

y∗ = −ωc

2a
∓ ω

2a

√
ω2c2 − 4ab (1.16)

z∗ =
ω2c

2a
± ω2

2a

√
ω2c2 − 4ab

Fig. 1.6 shows the Rössler attractor in the 3-dimensional x, y, z phase space

for the Rössler parameter values ω = 1, ar = 0.2, br = 0.2, cr = 7.0. For this

parameter values Rössler system is chaotic and the three Lyapunov exponents are

0.113, 0.000,−9.773.

In Fig. 1.7 the two largest Lyapunov exponets of the Rössler systems are plotted

as a function of Rössler parameter ar. As the parameter ar is varied the Rössler

system exhibits chaotic or periodic or intermittent behavior.

1.10 Objective and scope of the thesis

After discussing the background of the thesis we now state the objectives of this

thesis. The objectives of this thesis can be divided into two general categories.
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Figure 1.6: The solution of the Rössler system Eq. (1.14) is shown in the three
dimentional x, y, z phase space. The solution is chaotic and remain bounded in the
Rössler attractor. The Rössler parameters are ω = 1.0, ar = 0.2, br = 0.2, cr = 7.0.
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Figure 1.7: The two largest Lyapunov exponents of Rössler system are plotted as
a function of parameter ar. Rössler system is chaotic when the Largest Lyapunov
exponent is positive. The other parameters of Rössler are fixed at the value ω =
1.0, br = 0.2, cr = 7.0.
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In the first part we study the stability of synchronization for coupled nonidentical

dynamical systems. In the second part we analyze the nature of desynchroniza-

tion bifurcation of coupled dynamical systems. In determining stability of the

synchronous state, we consider the criteria that all transverse Lyapunov exponents

are negative. In the later part to understand the nature of desynchronization bifur-

cation of coupled dynamical systems we introduce Systems’ Transverse Lyapunov

Exponent (STLE). These STLEs provide information regarding stability of indi-

vidual systems on a network when desynchronization bifurcation occurs. In the

stable synchronized state both largest transverse Lyapunov exponents and STLEs

are negative. In the desynchronized state the TLE is positive while the STLEs

may have positive or negative value depending on the stability of the particular

system under study. There are several methods available to calculate Lyapunov

exponents of dynamical systems. Throughout our study we calculate Lyapunov

exponents using standard Wolf’s algorithm [75].

Synchronization of coupled nonidentical dynamical systems

When two or more identical chaotic systems are coupled then complete syn-

chronization comes out as equality of the state variables of the coupled systems.

The conditions for stability of complete synchronized states are well analyzed using

Master Stability Function[24, 118]. This study only supports to find the stability

condition for a network of identical systems, but in practical life it is impossible

to find a network of exactly identical systems. In our study we make progress

to analyze the stability condition of synchronous state for nonidentical dynami-

cal systems using perturbation theory. We provide a Master Stability Function

(MSF) that can predict the stability of generalized synchronous state reasonably

well. Later we use this MSF to find the best synchronization optimized network

from any random network with fixed number of nodes and edges.

Desynchronization bifurcation of coupled dynamical systems

In the later part of this thesis we study desynchronization bifurcation of cou-

pled dynamical systems. For some specific dynamical systems an interesting phe-

nomenon is observed when they are coupled and coupling strength is increased

smoothly. As the coupling strength is increased, one can find synchronization be-

tween the systems when coupling strength crosses some critical value (say it is εc1,
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ε is scalar coupling strength). This synchronization is complete synchronization as

we are considering identical systems. When coupling strength is increased further

the systems remain synchronized for some time and the synchronous state is stable.

As coupling strength is increased beyond a second critical value (εc2) the systems

undergo a desynchronization bifurcation. We analyze this desynchronization bi-

furcation in coupled chaotic systems and we observe that this desynchronization

bifurcation is pitchfork bifurcation of transverse manifold. We propose an inte-

grable model which shows similar desynchronization bifurcation and this model

can be treated as normal form for this type of bifurcation.

1.11 Outline of the thesis

The thesis is organized as follows. In chapter 2, we briefly review the synchro-

nization of coupled identical dynamical systems and we discuss the stability of

synchronization by using master stability function. In chapter 3 we study synchro-

nization for coupled nonidentical dynamical systems and we extend the idea of

master stability function for analyzing the generalized synchronization. In chapter

4 we consider the problem of constructing synchronized optimized network from

any random network that has fixed number of nodes and links. In chapter 5 we

study the nature of desynchronization bifurcation of coupled dynamical systems.

Summary and future directions are given in chapter 6.



Chapter 2

Synchronization of coupled

identical systems

2.1 Introduction

We have seen in chapter 1 that chaotic systems are highly sensitive to the initial

conditions.Two identical chaotic systems starting from nearly same initial points

in phase space will evolve with time in a very uncorrelated manner. So, by defini-

tions chaotic systems appear to defy synchronization. So, setup of synchronization

between coupled chaotic systems is of great interest and important.

It has been shown that it is possible to synchronize chaotic systems, by intro-

ducing coupling between separate systems or forcing them together with a com-

mon signal [4, 5, 6, 7, 8, 9, 17]. In this chapter we briefly review synchronization

of coupled identical systems. When two or many identical systems are coupled

synchronization comes out as the equality of the state variables of the coupled sys-

tems which is known as complete or identical synchronization [9]. To determine the

stability of the complete synchronization we consider the criteria that the largest

transverse Lyapunov exponents are negative. In this chapter we review the master

stability approach to the synchronization of coupled identical dynamical systems.

The master stability equation allows us to calculate the stability of synchroniza-

tion for a particular choice of system (e.g., Rössler, Lorenz, etc.) and a particular

choice of component coupling (e.g., x, etc.).

27
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This chapter is organized as follows. In section 2.2 we introduce the model of

coupled identical dynamical systems and in section 2.3 we determine stability of

synchronized state and establish the criteria for analysing stability of synchronized

state by determining Master Stability Function (MSF), if MSF in negative for all

eigenvalues of the coupling matrix the synchronized state is stable. We consider a

network of coupled chaotic systems in section 2.4 and investigate the stable syn-

chronization state by determining the MSF. We summarize the chapter in section

2.5.

2.2 Model for coupled identical systems

The time evolution of any dynamical system can be represented by the equation of

motion or the dynamical euqation of that systems. Let us consider the dynamics

of an m dimensional system is given by,

ẋ = f(x) (2.1)

where, x ∈ Rm is m dimensional state variable of the system and f : Rm → Rm

provides the dynamics of the systems.

To study synchronization between identical chaotic systems we consider N cou-

pled identical systems,

ẋi = f(xi) + ε

N
∑

j=1

gijh(xj) (2.2)

where, ε is the coupling strength that can be tuned to establish synchronization

between the coupled systems, G = [gij] is the coupling matrix. If node i interacts

with node j then gij = 1 otherwise zero. And the diagonal elements of the coupling

matrix G are gii = −∑

j,j 6=i gij, i.e. the coupling matrix is related to the network

Laplacian. h : Rm → Rm is the coupling function.

For some suitable value of coupling strength ε in Eq. (2.2) the complete or

identical synchronization is established between the coupled systems. At this the

state variables of the coupled systems will be equal, x1 = x2 = . . . = xN = s(t),
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where s is solution of an isolated systems ṡ = f(s). This equality of the state

variable provides a hyperplane of dimension m which is known as synchronization

manifold M. On the synchronization manifold the contribution from the coupling

term of Eq. (2.2) will be zero since the coupling matrix G satisfies,
∑

j gij = 0.

The coupling matrix G has one eigenvalue µ1 = 0, since it satisfies the condition
∑

j gij = 0. The eigenvector of G corresponding the eigenvalue µ1 = 0 is e1 =

(1, . . . , 1)T . This eigenmode is parallel to the synchronization manifold M. Other

eigenmodes corresponding to the nonzero eigenvalues of G define the manifold

which is transverse to the synchronization manifold M.

2.3 Stability of synchronization: Master Stabil-

ity Function (MSF)

In this section we review the stability analysis of the identical synchronization [9,

10, 11, 24, 119]. To determine the stability the criteria is that the largest transverse

Lyapunov exponent is negative for stable synchronization.

For analysing the stability of the synchronization we put a small deviation to

the synchronized solution. Let, zi be the deviation of xi from the synchronized

solution s.

zi = xi − s (2.3)

The synchronization is stable when all deviations which are transverse to the

synchronization manifold go to zero as the systems evolves with time. From

Eq. (2.2) and Eq. (2.3) we can write the dynamics of the deviation, i.e. the lin-

earized equation as,

żi = Dxf zi + ε

N
∑

j=1

gijDxh zj (2.4)

where, Dxf and Dxh are partial derivatives of f and h respectively and these

quantities are calculated at the synchronized solution s. Eq. (2.4) can be written
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in a matrix form by consider a m×N deviation matrix Z,

Z = (z1 z2 . . . zN ) (2.5)

In matrix form Eq. (2.4) is,

Ż = Dxf Z + εDxh Z GT (2.6)

where, GT is transpose of connectivity matrix G. Let, ek be eigenvector of GT

corresponding to the eigenvalue µk,

GT ek = µkek.

Now we multiply Eq. (2.6) by ek from right and writing Zek = ηk we get the

dynamics of deviation along k-th eigenmode of coupling matrix GT ,

η̇k = Dxf ηk + εµkDxh ηk. (2.7)

We have seen before that matrix G has one eigenvalue µ1 = 0 and the corre-

sponding eigenvector e1 = (1 . . . 1)T . For this eigenvector Eq. (2.7) will give the

dynamics of deviations which are parallel to the synchronization manifold M and

hence, will not affect the stability of the synchronization and the rest of the eigen-

vectors of G are the transverse eigenvectors. These will provide the dynamics of

deviations which are transverse to the synchronization manifold.

Eq. (2.7) can be written in a generic form for ∀k,

φ̇ = [Dxf + αDxh]φ (2.8)

where, α = εµk and φ ∈ Rm is an m dimensional vector. Eq. (2.8) is known as

master stability equation and from this master stability equation we calculate the

maximum Lyapunov exponent as a function of α. This is know in the literature as

Master Stability Function (MSF) λmax. The synchronized state is stable when the

MSF is negative for all nonzero eigenvalue of G.
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Figure 2.1: The MSF λmax is plotted as a function of α for a network of chaotic
Rössler systems. The Rössler parameters are ar = 0.2, br = 0.2, cr = 7.0. The
synchronized state is stable in the region α1 < α < α2.

2.4 Coupled chaotic systems

For numerical experiments we consider that the dynamics of an isolated system in

Eq. (2.2) is given by chaotic Rössler systems [117],

ẋ = −ωy − z

ẏ = ωx + ary (2.9)

ż = br + z(x− cr)

where, ω, ar, br, cr are Rössler parameters. These Rössler systems are coupled in

the x-component, i.e. the coupling function is

h(x) =











x 0 0

0 0 0

0 0 0











In Fig. 2.1 the MSF λmax is plotted as a function of α for x-component coupled

chaotic Rössler systems. The synchronized state is stable in region where the MSF

λmax is negative for all transverse eigenvalues of G. In this figure the stable range

is provided by α1 < α < α2.
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In a more general case the coupling matrix G can be an asymmetric matrix

and it may have non-zero complex eigenvalues. And thus the parameter α can

be a complex quantity. In Fig. 2.2 the MSF λmax is plotted on the surface of

(Reα, Imα) for x-component coupled Rössler systems. The synchronized state is

stable where the MSF λmax is negative for all transverse eigenvalues of G. In

Fig. 2.2 the synchronization is stable under the region bounded by 0-curve.
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Figure 2.2: The MSF for coupled Rössler systems is plotted as a function of
(Reα, Imα). The region below the 0 line give the stable region. This plot is sym-
metric about the real axis. The Rössler parameters are ar = 0.2, br = 0.2, cr = 7.0.

Now, for a given network and given value coupling strength ε, we can locate

the point α = εµk on the complex surface in Fig. 2.2. The sign of λmax on that

point determine the stability of the k-th eigenmode of coupling matrix. When all

transverse eigenmodes of the coupling matrix is stable the the synchronized state

is stable for that coupling strength.

2.5 Summary

In this chapter we have introduced the model of coupled dynamical systems to

study synchronization between coupled identical systems. For coupled identi-
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cal systems the synchronization is complete synchronization for suitable coupling

strength. We review the stability analysis of complete synchronization by using

Master Stability Function. For a given network and coupling strength, we can

determine the stability of synchronization from the sign of the Master Stability

Function. If the MSF is negative for all non-zero eigenvalues of the coupling ma-

trix then the synchronized state is stable.



Chapter 3

Synchronization of coupled

nonidentical systems

3.1 Introduction

In this chapter we analyse stability of synchronous state for coupled nonidenti-

cal systems. For coupled nonidentical systems it is not possible to achieve com-

plete or identical synchronization as discussed in chapter 2. Instead of exact syn-

chronization one will get generalized synchronization where the state variables of

coupled systems are related with some functional relationship [21, 22]. In this

work we consider that the non-identity between the coupled systems is introduced

through some parameter mismatch. This parameter mismatch between the cou-

pled systems can lead to desynchronization bursts which is known as bubbling

transition [120, 121, 122, 123]. This desynchronization bursts are observed when a

periodic orbit of the dynamical system leaves the invariant synchronized manifold.

The orbit eventually returns back to its original vicinity after the desynchroniza-

tion bursts. The system returns to the synchronized state. Here we are interested

in the long term stability of the synchronization manifold. To determine stabil-

ity of synchronized state we use the criteria that the largest transverse Lyapunov

exponent is negative in stable synchronized state.

There are some earlier works motivated by the problem of determining mas-

ter stability function of generalized synchronization for coupled nonidentical sys-

34
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tems [124, 125]. In these works instead of determining stability of the coupled

nonidentical systems the authors find the deviation of trajectories of the coupled

nonidentical systems from the average trajectory as a function of parameter mis-

match. Thus these works fails to provide good stability condition of generalized

synchronization for coupled nonidentical systems. Also Sorrentino et. al. [125]

found that the parameter mismatch does not affect the stability of the synchronized

state.

Here, we extend the concept of master stability function, originally introduced

by Pecora ans Carroll [24], for coupled nonidentical systems. By considering the

fact that the exponential behavior of solutions of a linear differential equation

are dominated by the homogeneous terms we find the Master Stability Function

(MSF) for synchronized state of coupled nonidentical systems. The stability of the

generalized synchronization is provided by negative MSF.

This chapter is organized as following. In section 3.2 we introduce the model

of coupled nonidentical systems and in section 3.3 we analyse the stability of the

generalized synchronized state and we extend the concept of Master Stability Func-

tion (MSF) [24] to analyze synchronization of coupled nonidentical systems. We

compare between the actual Lyapunov exponents of coupled systems and their es-

timated values using our method in section 3.4, and we show that our MSF can

determine stability of generalized synchronized state reasonably well.

3.2 Model for coupled nonidentical systems

We consider a network of N coupled nonidentical systems. The dynamics of system

i is given by,i = 1, . . . , N

ẋi = f(xi, ri) + ε

N
∑

j=1

gijh(xj) (3.1)

where, x ∈ Rm is an m dimensional state variable of system i and f : Rm → Rm

provides the dynamics of the isolated systems. ε is scalar coupling strength. G =

[gij] is coupling matrix; if systems i and system j are connected then gij = 1, i 6= j,

otherwise gij = 0 and the diagonal elements of G are gii = −∑N
j=1;j 6=i gij . The
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elements of G satisfy
∑

j gij = 0.h : Rm → Rm is a linear coupling function.

ri is some parameter of the dynamical system i. Let, ri = r̃ + δri, where r̃ is

typical value of parameter r and δri is small parameter mismatch. In this case

the synchronization between the coupled dynamical systems will be of generalized

type, i.e. φ(xi, xj) = 0.

3.3 Stability analysis of the generalized synchro-

nization

For coupled nonidentical systems one will get generalized type of synchronization

where the state variable of the coupled systems are correlated by some function.

In most of the cases it is difficult to determine the functional relationship between

the system variables. In this section we consider first order perturbation theory

along with the observation that the exponential behavior of solutions of a linear

differential equations are determined by the homogeneous terms to determine the

stability of the generalized synchronized state. We show that this method can be

used for stability analysis of coupled nonidentical systems.

To determine stability of the generalized synchronized state we do linear stabil-

ity analysis. We consider the fact that the exponential nature of solution of a lin-

ear differential equation is dominated by the homogeneous term of that differential

equation. The effect of the parameter mismatch appears first in the homogeneous

part from the quadratic terms in Taylor’s series expansion of the function f(xi, ri)

about the solution of a typical trajectory x̃. Hence, we retains terms upto second

order in zi = xi − s and δri. The dynamics of deviations is given by,

żi = Dxf(x̃, r̃)zi + ε
N
∑

j=1

gijDxh(x̃)zj + Drf(x̃, r̃)δri +
1

2
+ D2

xf(x̃, r̃)(zi)2

+DrDxf(x̃, r̃) +
1

2
D2

rf(x̃, r̃)δr2i + . . . (3.2)

where, x̃ is the solution of a system with typical parameter value r̃. As we are

interested in the solution zi = 0 the term containing higher order in zi can be
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dropped from Eq. (3.2).

In matrix form we can write Eq. (3.2) as,

Ż = Dxf Z + εDxh Z GT + Drf R + DrDxf Z R +
1

2
D2

rf R2 + . . . (3.3)

where,Z is m × N matrix Z = (z1, . . . , zN ), GT is the transpose of connectivity

matrix G and R = diag[δr1, . . . , δrN] is n × N diagonal matrix whose diagonal

entries are the parameter mismatch.

As an equation for zi, the RHS of Eq. (3.3) contains both homogeneous and

inhomogeneous terms. The inhomogeneity won’t affect the Lyapunov exponents

or the exponential rate of convergence to the synchronous solutions though it can

shift the solution. To see this we consider a general linear equation,

Du = p(t) (3.4)

where D is a differential operator and p(t) is the inhomogeneous part. The solution

of Eq. (3.4) is,

u = uh + g(t) (3.5)

where, uh =
∑

i Aihi(t)exp(kit) is the solution of the homogeneous equation Du =

0. If p(t) does not have any exponential dependence, then g(t) cannot contain any

additional exponential other than already in uh, since the derivative of an expo-

nential is also an exponential with the same exponent. For example, we consider

a simple linear equation,

u̇ = −ku + p, (3.6)

the solution of Eq. (3.6) for constant p is,

u(t) = [u(0) − p

k
]e−kt +

p

k
. (3.7)

The inhomogeneity shifts the asymptotic solution but does not change the

exponential. Hence, to calculate Lyapunov exponent from Eq. (3.3) we consider
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the homogeneous equation obtained from Eq. (3.3),

Ż = Dxf Z + εDxh Z GT + DrDxf Z R. (3.8)

We can see from Eq. (3.8) that it is necessary to include the quadratic terms in

zi = xi − s and δri in the Taylor series expansion as the effect of the parameter

mismatch is not seen in the linear terms.

Let µk, e
R
k , k = 2, . . . , N be the nonzero eigenvalues and right eigenvectors of

GT . Acting Eq. (3.8) on eRk and using the m dimensional vectors ηk = ZeRk , we get

η̇k = [Dxf + εγkDxu]ηk + DrDxf Z R eRk . (3.9)

In general, eRk are not eigenvectors of R and hence Eq. (3.9) is not easy to treat.

To solve Eq. (3.9) we use first order perturbation theory [126] and write Eq. (3.9)

as

η̇k = [Dxf + εγkDxu + νkDrDxf ]ηk (3.10)

where νk = (eLk )TReRk is the first order correction and eRk and eLk are the right and

the left eigenvector of GT corresponding to the eigenvalue µk.

Since both µk and νk can be complex, treating them as complex parameters

α = εµk and ∆ = νk respectively, we can construct the master stability equation

as

η̇ = [Dxf + αDxh + ∆DrDxf ]η. (3.11)

here, α contains information from the coupling strength ε and the eigenvalue µk

of the connectivity matrix G and ∆ contains information about the mismatch of

the coupled systems.

For the coupled identical systems, the above equation reduces to the master

stability equation given by Pecora and Carroll [24]. We can determine the MSF

or λmax, which is the largest Lyapunov exponent for Eq. (3.11), as a surface in

the complex space defined by α and ∆. The synchronized state is stable if the

MSF is negative at each of the eigenvalues µk = α/ε and νk = ∆ (k 6= 1). This
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Figure 3.1: The figure shows the three largest Lyapunov exponents λi, i = 1, 2, 3
(red, green and blue) and their estimated values λMS

i obtained from the master
stability equation (Eq. (3.11)) (pink, cyan and black) as a function of ε for two
coupled Rössler systems with frequencies ω1 = 1.05 and ω2 = 1.07. Taking ω̃ = 1.0
we get ∆1 = ∆2 = 0.06 which are used in Eq. (3.11). Rössler parameters are
ar = br = 0.2, cr = 7.0. The synchronous state is stable in the region given by
ε1 < ε < ε2 indicated by the arrows.

ensures that all the transverse Lyapunov exponents are negative. This MSF λmax

can estimate the stability of synchronization reasonably well. In the next section

we give some numerical results showing how well this MSF can approximate the

actual value of Lyapunov exponents.

3.4 Numerical Comparison

3.4.1 Rössler system

We consider a network of N coupled nonidentical Rössler systems give by,

ẋi = −ωiy
i − zi + ε

N
∑

j=1

aij(x
j − xi)

ẏi = ωix
i + ary

i (3.12)

żi = br + zi(xi − cr)

where ar, br, cr and ω are Rössler parameters. We consider that the parameter ω

has mismatch. A = [aij ] is the adjacency matrix of the network.
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Figure 3.2: a. The figure shows the difference δλi = λi−λMS
i for the three largest

Lyapunov exponents as a function of the coupling constant ε for two coupled
Rössler systems with parameters as in Fig 1. b. The figure shows the difference
δλi for the three largest Lyapunov exponents as a function of ε for sixteen randomly
coupled Rössler systems having different internal frequencies ωi. We find that the
differences are small in the synchronization region.

We consider the simplest case of two coupled Rössler systems to examine how

well Eq. (3.11) allows the estimation of Lyapunov exponents. The frequencies of

these two coupled Rössler oscillators are ω1 = 1.05 and ω2 = 1.07. We consider the

typical value of the frequencies as ω̃ = 1.00 and this gives first order correction in

Eq. (3.11) ∆1 = ∆2 = 0.06. We calculate the Lyapunov exponents for the coupled

Rössler systems and also their estimated values from Eq. (3.11) and compare them.

Fig. 3.1 shows the three largest Lyapunov exponents λi, i = 1, 2, 3 (red, green and

blue) and their estimated values λMS
i obtained from the master stability equation

(Eq. (3.11)) (pink, cyan and black) as a function of coupling strength ε for these two

coupled Rössler systems. The synchronized state is stable in the region ε1 < ε < ε2.

In this region the third largest Lyapunov exponent and the master stability function

both are negative. From this figure we can observe that in the synchronized state

the Lyapunov exponents λi calculated by actually integrating two Rössler systems

and their estimated value λMS
I calculated from Eq. (3.11) have good matching.

To see the difference between the Lypunov exponent and their estimated values

we consider the error between them δλi = λi − λMS
i . In Fig. (3.2)a this error
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δλi is plotted as a function of coupling strength for the largest three Lyapunov

exponents of two coupled Rössler systems. The stable synchronized state is the

region indicated by arrows. From this figure we find that this difference δλi is small

in the synchronization region and close to it. In Fig. 3.2b we plot the difference

δλi as a function of ε for the three largest Lyapunov exponents and their estimated

values for a random network of sixteen Rössler systems. Here also we observe the

differences are small in the synchronization region. So, we can conclude that the

master stability function calculated from Eq. (3.11) can estimate the stability of

the synchronized state reasonably well.

3.4.2 Lorenz system

Now we consider coupled nonidentical Lorenz systems given by,

ẋi = σi(y
i − xi) + ε

N
∑

j=1

aij(x
j − xi)

ẏi = xi(r − zi) − yi (3.13)

żi = xy − bz

where, σi, r, b are Lorenz parameters, ε coupling strength, aij is adjacency matrix.

The parameter σi is considered to introduce mismatch between the coupled sys-

tems. We consider the mismatch is small so that σi = σ̃ + δσi, where δσi is small.

To see how good Eq. (3.11) can determine the stability of synchronized state we

calculate the Lyapunov exponents of this network and determine their estimated

values from Eq. (3.11).

Fig. 3.3(a) shows three largest Lyapunov exponents λi (red, green and blue) for

two coupled nonidentical Lorenz systems and their estimated values λMS
i (pink,

cyan and black) as a function of coupling strength ε. The synchronized state is

stable when the third largest Lyapunov exponent become negative. In Fig. 3.3(a)

The onset of stable synchronization is shown by an arrow for ε = εc. The Lorenz

systems have mismatch in parameter σ. We take σ1 = 11 and σ2 = 9.5 and the

typical value of the parameter as σ̃ = 10. Considering this the value of correction

in Eq. (3.11) is ∆ = 0.5 and we calculate the MSF λMS
i . In Fig. 3.3(a) we observe
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Figure 3.3: (a) The three largest Lyapunov exponents λi; i = 1, 2, 3 (red,green,blue)
and their estimated values λMS

i , i = 1, 2, 3(pink,cyan,black) from master stability
equation (Eq. (3.11)) of two coupled Lorenz systems are plotted as a function of
coupling ε. Lorenz parameters σ1 = 11.0 and σ2 = 9.5. Other parameters are
same for all systems and their values are r = 28, b = 8/3. The coupled systems are
synchronized when ε > εc. (b) The difference between the Lyapunov exponents λi

and their estimated values λMS
i , δλi = λi − λMS

i are plotted as a function of ε.

a good match between these two exponents when the coupled systems are synchro-

nized. The errors between the Lyapunov exponents and their estimated values are

better quanties to compare the results. So in Fig. 3.3(b) this difference between

the Lyapunov exponents and their estimated values δλi = λi − λMS
i is plotted as

a function of coupling constant ε. The difference become negligibly small in the

synchronized state. The onset of stable synchronization is shown in the figure with

arrows.

3.5 MSF of Rössler systems

In this section we determine MSF for nonidentical Rössler systems. The mismatch

between the coupled systems are very small and all systems are chaotic. This allows

us to calculated the mismatch parameter ∆ in Eq. (3.11) using perturbation theory.



3.5. MSF of Rössler systems 43

Here, the dynamics of an isolated node is given by,

ẋ = −ωy − z

ẏ = ωx + ary (3.14)

ż = br + z(x− cr)

where, ω, ar, br, cr are Rössler parameters. And these systems are coupled in the

x-component, i.e. the coupling function is,

h(x) =











x 0 0

0 0 0

0 0 0











.

3.5.1 Mismatch in one parameter

We have observed that the master stability equation Eq. (3.11) can approximate

the stability of synchronized state reasonably well. Now, we consider that the

non-identity between the Rössler systems in introduced through the parameter ω

and the other parameters are fixed at the values ar = 0.2, br = 0.2, cr = 7.0 and

the typical parameter value is ω̃ = 1. We can calculate the MSF, λmax, using

Eq. (3.11) as a function of α and ∆ω, where ∆ω is the correction term due the

parameter mismatch in Rössler parameter ω. In Fig. 3.4 we plot λmax in the

parameter plane (α,∆ω) as a contour plot for Rössler system. The stability region

is given by the “V” shape region bordered by the 0 curve from both sides. From the

figure we can see that the stability region increases with the mismatch parameter

∆ω.

Next, we consider another case where the parameter mismatch is in the Rössler

parameter ar and other parameters have constant values ω = 1, br = 0.2, cr = 7.0

and the typical parameter value is ãr = 0.2. Fig. 3.5 shows the master stability

function λmax for this case as a function of (α,∆a), where ∆a is the correction term

due to mismatch in Rössler parameter ar. In this case the stable synchronization

region is given by the inverted “V” shaped region bounded by the 0 curve from

both sides. The stability region decreases with increase in the correction term ∆a.
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Figure 3.4: The master stability function λmax of coupled Rössler systems is
plotted as a function of α,∆ω. Here the mismatch is in parameter ω. The stability
region given by the “V” shape region bordered by the 0 curve from both sides. The
stability region increases with the correction term ∆ω. The Rössler parameters are
ar = 0.2, br = 0.2, cr = 7.0 and the typical parameter value ω̃ = 1.

We have also studied the other two cases where the mismatch is in Rössler

parameters br and cr respectively. For both of these cases the stability of the gen-

eralized synchronization is not affected due to parameter mismatch. In Fig. 3.6(a)

we plot λmax as a function of (α,∆b) for the case where mismatch is in Rössler

parameter br and ∆b is the correction due to the mismatch. The solid line gives the

zero MSF curve, the dashed line is the contour line for λmax = .05 and the dotted

line is the contour line for λmax = −.2. In Fig. 3.6(b) the MSF λmax is plotted as a

function of (α,∆c) where ∆c is the correction due to the mismatch in Rössler pa-

rameter cr. The solid line gives the zero MSF curve, the dashed line is the contour

line for λmax = .05 and the dotted line is the contour line for λmax = −.2. In both

of these figures we can see that the zero MSF contour curve is almost vertical.
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Figure 3.5: The master stability function λmax of coupled Rössler systems is
plotted as a function of α,∆a. The Rössler systems have mismatch in the parameter
ar. The stability region given by inverted “V” shape region bordered by the 0 curve
from both sides. The stability region decreases with the increase in correction term
∆a. The Rössler parameters are ω = 1, br = 0.2, cr = 7.0 and the typical parameter
value is ãr = 0.2.

3.5.2 Mismatch in two parameters

Here we consider a more general case where the coupled nonidentical systems have

mismatch in two parameters. We take the example of Rössler systems Eq. (2.10)

and consider that mismatch is present in both of the parameters ω and ar. For

this case we can determine the master stability function λmax from Eq. (3.11) as

a function of (α,∆ω,∆a), where ∆ω and ∆a are the corrections due to mismatch

in ω and ar respectively. The other Rössler parameters are kept constant at br =

0.2, cr = 7.0 and the typical values of the parameters ω and ar are ω̃ = 1.0 and

ãr = 0.2 respectively. In Fig. 3.7 we have plotted the zero master stability surface,

λmax = 0, in phase space defined by (α,∆ω,∆a). The master stability function

λmax is negative inside the region covered by these two surfaces and the generalized

synchronization is stable in that region. From Fig. 3.7 we can see how the stability

of the generalized synchronization is affected by the combined effect due to the
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Figure 3.6: (a) The master stability function λmax of coupled Rössler systems is
plotted as a function of α,∆b. The Rössler systems have mismatch in the parameter
br. The solid line gives the zero MSF line, the dashed line and the dotted line give
the contour line for λmax = .05 and λmax = −.2 respectively. The stability region is
bounded by the 0 MSF curve from both sides and these curves are almost vertical.
The Rössler parameters are ω = 1, ar = 0.2, cr = 7.0 and the typical parameter
value is b̃r = 0.2. (b) The MSF λmax of coupled Rössler systems is plotted as a
function of α,∆c. The Rössler systems have mismatch in the parameter cr. The
solid line gives the zero MSF line, the dashed line and the dotted line give the
contour line for λmax = .05 and λmax = −.2 respectively. The stability region is
bounded by the 0 MSF curve from both sides and these curves are almost vertical.
The Rössler parameters are ω = 1, ar = 0.2, br = 0.2 and the typical parameter
value is c̃r = 0.2.

mismatch in parameters ω and ar.

We have discussed the master stabiilty analysis for determining stability of gen-

eralized synchronization considering coupled nonidentical Rössler systems. Now for

a given network of coupled nonidentical Rössler systems, if we have the information

about parameter mismatch, typical parameter value and the coupling strength ε,

then we can determine the value of α and the correction ∆ which together give

us a point in the (α,∆) phase space. Then the stability of the given network can

be determined by determining the sign of master stability function λmax at that

point. If the master stability function is negative for all transverse eigenmodes of

the coupling matrix, then the network is in stable generalized synchronization.

We have similar studies with other chaotic systems like Lorenz system [116].

In the next section we briefly discuss our study with Lorenz system.
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Figure 3.7: In this figure we plot the zero master stability surface, λmax = 0, in
phase space defined by (α,∆ω,∆a). The inside region which is bounded by these
two surfaces, (where λmax < 0,) gives the stable generalized synchronization. The
typical values of the parameters ω and ar are ω̃ = 1 and ãr = 0.2 respectively, and
other Rössler parameters are br = 0.2, cr = 7.0.

3.6 MSF of Lorenz system

Here, the dynamics of an isolated system is given by the Lorenz system [116],

ẋ = σ(y − x)

ẏ = x(r − z) − y (3.15)

ż = xy − bz.

where, σ, r, b are the Lorenz parameters. We consider that the Lorenz systems are

coupled in the x-component by the coupling function,

h(x) =











x 0 0

0 0 0

0 0 0











.

Let, the parameter mismatch be present in the Lorenz parameter σ and all

other parameters are fixed at b = 8/3, r = 28.0. For this case we can determine

the MSF λmax from Eq. (3.11) as a function of α and ∆. In Fig. 3.8 the MSF
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Figure 3.8: The MSF λmax for coupled Lorenz systems Eq. (3.13) is plotted as a
function of (α,∆). From this figure we can see that the coupled systems can be
synchronized for smaller value of α as ∆ is increased. The Lorenz parameters are
σ̃ = 10, r = 28, b = 8/3.

λmax of coupled Lorenz systems is plotted as a function of (α,∆). We can see from

Fig. 3.8, that as the mismatch parameter ∆ is increased, the coupled systems show

stable synchronization for smaller value of α.

3.7 Determining typical value r̃

In this section we discuss how to determine the typical parameter value r̃ of

Eq. (3.11), so that the error between Lyapunov exponents and their estimated

values will be least. Eq. (3.1) provides the model for coupled nonidentical systems,

where ri is the parameter of system i and ri = r̃ + δri; for small δri. r̃ provides

the typical value of parameter r. To calculate the largest Lyapunov exponent from

Eq. (3.11) the Jacobians Dxf , Dxh and DrDxf are evaluated at the typical value

of parameter r̃. The typical value should satisfy the following conditions,

(1.) the nature of the coupled dynamical systems should not change at the typical
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value; i.e. if all coupled systems are chaotic then the system should be chaotic at

parameter r̃.

(2.) the deviations of the parameter δri should be small.

Analytically, it is not possible to determine r̃ which can best predict the stability

of the synchronized state. So, we follow the numerical method to determine best

value of r̃. Consider two coupled nonidentical Rössler systems with mismatch in

parameter ω given by,

ẋ1,2 = −ω1,2y
1,2 − z1,2 + ε(x2,1 − x1,2)

ẏ1,2 = ω1,2x
1,2 + ary

1,2 (3.16)

ż1,2 = br + z1,2(x1,2 − cr)

where, ω1,2, ar, br, cr are Rössler parameters. We choose ω1 = 0.985 and ω2 = 1.015.

Other parameter are fixed and their values are ar = 0.2, br = 0.2, c2 = 7.0. For

these parameter values the coupled Rössler systems are chaotic. For this cou-

pled systems we determine the Lyapunov exponents and compare the third largest

Lyapunov exponent with its estimated value from Eq. (3.11) for different typical

parameter values r̃. We determine the difference between the third largest Lya-

punov exponent λ3 and the MSF λmax as δλ3 = λ3−λmax. The left hand column of

Fig. 3.9 shows the three largest Lyapunov exponents λi; i = 1, 2, 3 (red,green,blue)

and the master stability function λmax (pink). The stable synchronized state is

the bounded region bordered with arrows at both ends. The right part of Fig. 3.9

shows the difference δλ3 as a function of coupling strength ε. The typical values

of the parameter ω̃ are (a) ω̃ = 0.985, (b) ω̃ = 0.990, (c) ω̃ = 0.995, (d) ω̃ = 1.000,

(e) ω̃ = 1.005, (f) ω̃ = 1.010 and (g) ω̃ = 1.015.

Figure 3.9: Continued. The typical parameter values are (e) ω̃ = 1.005, (f) ω̃ =

1.010, (g) ω̃ = 1.015.

From the figures Fig. 3.9 we can see that the difference δλ3 is minimum in

Fig. 3.9(d), in which the typical parameter value ω̃ = 1.000 which is the average

value of ω1(= 0.985) and ω2(= 1.015). We find that in general the average value

gives good results in all the cases that we studied. There are other values of the
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Figure 3.9: In the left column three largest Lyapunov exponents of Eq. (3.16) and
the MSF λmax is plotted as a function of coupling strength ε. In the right column
the difference between the third largest Lyapunov exponent λ3 and the MSF λmax

with different typical parameter values ω̃ are plotted as a function of coupling
strength. The stable synchronized state is bounded with arrows from both ends.
The typical parameter values are (a) ω̃ = 0.985, (b) ω̃ = 0.990, (c) ω̃ = 0.995, (d)
ω̃ = 1.000.
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typical parameter which also reasonable results. But we could not obtain any

systematic procedure to determine such values.

3.8 Practical region of δr

In section 3.3 we have developed a theory for determining the master stability

function of coupled nonidentical systems. In this section we present numerical

evidence to support our above derivation leading to Eq. (3.11) and also we discuss

the valid range of parameter where this theory is applicable. Let us first consider

the expansion (3.2) around some typical value of the parameter (r̃) and the solution

of system (x̃) with typical parameter. For coupled identical systems one expands

around the synchronized solution which corresponds to the solution of uncoupled

dynamics, i.e. the dynamics without the coupling term. Taking hint from this, for

nearly identical systems, we consider the properties of synchronized dynamics by
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omitting the coupling term. Consider N coupled chaotic Rössler systems,

ẋi = −ωiy
i − zi + ε

N
∑

j=1

aij(x
j − xi)

ẏi = ωixi + ayi (3.17)

żi = b + zi(xi − c)

where ωi is the parameter of the i-th oscillator and aij = 1 if the nodes i and j

are connected and zero otherwise. We choose the couplings aij randomly. The

different parameters ωi are chosen randomly in an interval (ω̄ − δω/2, ω̄ + δω/2).

Now, we evolve the coupled Rössler systems. To see how the attractors of different

systems are related to each other, we define subsystem Lyapunov exponents as the

exponents calculated by the following procedure. We evolve the Rössler equations

as above with the coupling term, and then using the variables from this evolution,

we calculate subsystem Lyapunov exponents by the usual procedure of calculating

Lyapunov exponents with the coupling term omitted. Thus for each system i we

get three subsystem Lyapunov exponents, say λs
im, i = 1, . . . , N, m = 1, 2, 3. For

coupled identical systems these subsystem Lyapunov exponents will be the same

for all the systems, i.e. they will be independent of i.

Fig. 3.10(a) shows the subsystem Lyapunov exponents λs
i1, λs

i2 and λs
i3 as a

function of the parameter ω for a system of 32 coupled Rössler systems in the syn-

chronized state, with the parameters ω chosen randomly in the range (0.999, 1.001).

We see that the three Lyaponov exponents for the subsystems vary linearly with

δωi. The linear variation is in agreement with Eq. (3.3) omitting the coupling

term. We find that the subsystem Lyapunov exponents calculated from Eq. (3.3)

match with those shown in Fig. 3.10. The linear variation of the subsystem Lya-

punov exponents for different systems, supports the conjecture that the different

attractors are not significantly deformed in the synchronized state.

To see the range of ω values for which the linear variation holds, in Fig. 3.10(b)

we plot the subsystem Lyapunov exponents λs
i1, λ

s
i2 and λs

i3 as a function of the

frequency ω for a system of 32 coupled nearly identical Rössler oscillators in the

synchronized state, with frequencies chosen randomly in a wider range (0.98, 1.02).
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Figure 3.10: (a) The figure shows the subsystem Lyapunov exponents, λs
i1, λ

s
i2 and

λs
i3, for a system of 32 coupled Rössler oscillators as a function of the parameter ω

in the synchronized state (solid circles). The parameters ω are chosen randomly in
the interval (0.999, 1.001). We see that the three subsystem Lyaponov exponents
vary linearly with ω. The three stars show the Lyapunov exponents, λ̃m, for a
system with the average value of the parameter ω̄ = 1. (b) The same plot as in (a),
except that the parameters are now chosen randomly in the interval (0.98, 1.02).
We see that the subsystem Lyapunov exponents vary almost linearly in the interval
(0.99, 1.01). Nonlinearity can be seen outside this interval.

We see a linear variation in the range (0.99, 1.01) while nonlinearity can be seen

outside this range. The linear region defines the range of validity of our theory.

We now consider the choice of the typical value of the parameter ω̃. One choice

is the average value ω̃ = ω̄ = 1 and in section 3.7 we numerically demonstrate

that the average parameter value gives good estimation of Lyapunov exponents.

Here, we make some more investigation to determine the good value of the typical

parameter considering subsystem Lyapunov exponents. The three Lyapunov ex-

j = 1 j = 2 j = 3
λs
ω̄j 0.1130 0.0001 -9.6771

λ̃j 0.1130 0.0000 -9.6765

Table 3.1: The table shows the three subsystem Lyapunov exponents λs
ω̄j , j =

1, 2, 3 for the coupled Rössler system Eq. (3.17) obtained for ω = ω̄ = 1 from
linear fits in Fig. 3.10 and the corresponding values of the Lyapunov exponents
λa
j , j = 1, 2, 3 for the attractor for the average parameter ω̄.
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ponents for the uncoupled trajectory for ω̄, say λ̃j , are shown in Fig. 3.10 by stars

and they lie almost on the three lines. In Table 3.1 we give the three values λ̃j and

also the three values λs
ω̄j for ω̄ obtained from the linear fits in Fig. 3.10. There is a

good agreement between the two sets of Lyapunov exponents. Thus we conclude

that the average value of the parameter ω̄ is one good choice for the typical value

ω̃.

3.9 Summary

In this chapter we analyse stability of generalized synchronization of coupled non-

identical systems by considering the master stability function (MSF). We use the

fact the the exponential nature of solutions of a linear differential equation will be

dominated by the homogeneous part of a linear differential equation. We consider

the synchronous solution of coupled identical systems and treat the parameter

mismatch in first order perturbation theory. This allows us to construct a master

stability equation. The largest transverse Lyapunov exponent is calculated from

the master stability equation. The master stability function (MSF) is defined by

the largest transverse Lyapunov exponent as a function of coupling strength. The

synchronized state is stable when the largest transverse Lyapunov exponent is neg-

ative. We have also shown that this MSF can well approximate the stability of

synchronous state by comparing them with the Lyapunov exponents of coupled

systems.



Chapter 4

Construction of synchronization

optimized networks

4.1 Introduction

In this chapter we consider the problem of constructing synchronization optimized

network by rewiring the links of a given network that has fixed number of links and

nodes and we search for networks which shows best synchronizability property. By

best synchronizability property we mean the largest stable interval of the coupling

constant ε which shows synchronization. We consider a network of coupled non-

identical systems. To construct the synchronization optimized network we adapt

Monte Carlo optimization method [127, 128, 129] and we use the stability criteria

provided by the Master Stability Function (MSF) in chapter 3.

For a network of coupled identical systems it has been shown that a small-world

network has best synchronizability properties [130]. As we consider a network

of coupled nonidentical systems, there are other questions like which nodes are

chosen as hubs and which links are more preferable in the optimized network. We

investigate these questions here.

This chapter is divided in the following sections. In section 4.2 we briefly review

the Monte Carlo optimization method. In section 4.3 we construct synchronized

optimized networks from a given undirected network. In this section we consider

two cases, first we consider the case when the parameter mismatch is present in one

55
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parameter of coupled systems and for the second case we consider the mismatch in

two parameters of the coupled systems. In section 4.4 we consider a more general

network with directed links. We summarize the chapter in section 4.5.

4.2 Monte-Carlo optimization

The method of simulated annealing [131] is a technique that has attracted signif-

icant attention as suitable for optimization problems of large scales, particularly

where a desired global extremum is hidden among many, poorer, local extrema.

Back in 1953, Metropolis et. al. [127] first provided a numerical method which

shows simulation of stimulated annealing of a liquid. This numerical method is

based on Gibbs sampling of states from a large ensemble. When a system is

at thermal equilibrium at temperature t, the number of states with energy E is

given by Maxwell-Boltzmann distribution, Prob(E) ∼ e−E/kt, where, k is Boltz-

mann constant. Such a thermodynamic system changes its configuration from

energy E1 to energy E2 with probability p = exp[−(E2 − E1)/kt]. When E2 < E1

then, p > 1, in such a case the probability is arbitrarily assigned with probabil-

ity p = 1 and the state is chosen. Otherwise the state is chosen with probability

p = exp[−(E2−E1)/kt] by comparing p with a random number between 0 < x < 1;

if p > x the state is accepted and rejected when p < x. This general scheme, of

mostly taking a downhill step while sometimes taking uphill steps is known as

Metropolis algorithm. Here we apply this algorithm to construct synchronized

optimized network from any given network of coupled nonidentical systems.

4.3 Optimization of undirected graph

In this section we consider symmetric coupling matrix. All the links of the network

are undirected. All the eigenvalues of the coupling matrix are real. This simplifies

the problem of constructing synchronized optimized network.
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4.3.1 The Optimization Method:

We start with a connected random network with total N nodes and E randomly

chose links. We consider the links as undirected. We rewire the links of this

random network to construct a network that shows best synchronizability. We

remove a randomly selected existing link of the network and create a new link in

a link vacancy between a randomly selected pair of nodes. After doing this we

confirm that the network does not become disconnected. In the following section

we discuss the details of Metropolis algorithm for constructing synchronization

optimized networks.

4.3.2 Mismatch in one parameter

First we consider the simplest case where the coupled systems on a network have

mismatch in only one parameter. In section 3.5.1 of chapter 3 we have developed

the master stability function λmax to analyse stability of generalized synchroniza-

tion for x-component coupled nonidentical Rössler systems having mismatch in

one parameter. The generalized synchronization is stable when the master stabil-

ity function λmax is negative for all transverse eigenmode of the coupling matrix

G.

Let us consider a network of N coupled Rössler systems as in Chapter 3,

ẋi = −ωiy
i − zi + ε

N
∑

j=1

gijx
j

ẏi = ωix
i + ary

i, (4.1)

żi = br + zi(xi − cr)

where ar, br, cr and ω are Rössler parameters. We consider parameter ω has mis-

match. G = [gij] is the Laplacian of the network. We rewire this network keeping

the total number of links constant and searche for the optimal network showing

best synchronizability.

In Fig. 4.1 we plot the zero contour lines of the master stability function

λmax = 0 in the parametric space (α,∆) for coupled Rössler systems with mis-

match in parameter ω. In the “V” shaped region bounded by these two contour
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Figure 4.1: The zero master stability function λmax = 0 is plotted as a function
of (α,∆) for coupled Rössler systems with mismatch in parameter ω. The stable
region is the “V” shaped region bounded by these two curves. The other Rössler
parameters are ar = 0.2, br = 0.2, cr = 7.2 and the typical value of parameter ω is
ω̃ = 1.

lines the master stability function λmax is negative and thus provides the stability

generalized synchronization. We denote this stable interval of coupling constant

by lε. In this case the stability region increases with the parameter ∆.

Metropolis algorithm for constructing synchronization optimized net-

works

Let us start with a random network of N coupled nonidentical Rössler systems

which are connected by total E edges and the coupling matrix of this initial random

network is Gi in Eq. (4.1). From the information of parameter mismatch of the

coupled Rössler systems we can find the value of the first order correction term ∆.

Now from Fig. 4.1 we can determine the stable interval of the coupling constant ε

by calculating the difference between the two critical values of coupling constant

ε1 and ε2. These two critical values of the coupling constant can be obtained from

the two contour lines λmax = 0 which give the two ends of the stable generalized

synchronization. Let, liε = (εi2 − εi1) be the initial stable interval for the coupling

matrix Gi. Now in this network we randomly delete an existing link and create

a new link at a link vacancy. Let, the coupling matrix of the resultant network

be Gf and lfε be the new stable interval of the resultant network. We reject the

resultant network if it is disconnected. When lfε > liε we accept the network, else we
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Figure 4.2: The figure plots the correlation coefficient ρωk as a function of the
Monte Carlo steps of optimization for 32 coupled Rössler systems. We see that ρωk
increase and saturate to positive values.

accept it with a probability e(l
f
ε−liε)β , where β = 1/T , where T is a temperature-like

parameter. This rewiring procedure which defines a Monte Carlo step, is repeated

several times. We start with a high value of T (= 1). T is kept fixed for 1000

Monte Carlo steps or 10 accepted ones, whichever occurs first. Then T is decresed

by a certain factor (Tfactor < 1) so that stimulated annealing or slow cooling occurs

[128, 132, 133]. We keep on repeating this process until there are no more changes

during five successive temperature steps, assuming in this case that the optimal

network topology has been found.

Properties of the optimal networks

Now, in the optimized network we searched for the nodes which have more con-

nections than other nodes, i.e. which nodes are selected as hubs. To find this we

define the correlation coefficient between the node parameter and the node degree

as,

ρωk =
< (ki− < ki >)(ωi− < ωi >) >

√

< (ki− < ki >)2 >< (ωi− < ωi >)2 >
(4.2)

where, ki = −gii is the degree of node i.

Fig. 4.2 shows ρωk as a function of Monte Carlo steps. For the random network

ρωk = 0. We find that ρωk increases and saturates to a positive value. Thus, in

the synchronized optimized network the nodes which have larger frequencies have

more connections and are preferred as hubs. The reason for this is the “V” shape
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Figure 4.3: The figure plots the correlation coefficient ρωa as a function of the
Monte Carlo steps of optimization for 32 coupled Rössler systems. We see that ρωk
increases and saturates to positive value.

of the stability region in Fig. 3.4, i.e. the stability range increases as ∆ increases.

To investigate the question of which edges are preferred, we define the correla-

tion coefficient between the absolute parameter differences between two nodes and

the edges as,

ρωa =
< (Aij− < Aij >)(|ωi − ωj|− < |ωi − ωj| >) >

√

< (Aij− < Aij >)2 >< (|ωi − ωj|− < |ωi − ωj| >)2 >
(4.3)

where, Aij = 1 if nodes i and j are connected and 0 otherwise. For a random

network ρωa will be zero. When the nodes with larger parameter difference |ωi−ωj |
are chosen to create a link, then ρωa increases.

Fig. 4.3 shows ρωa as a function of Monte Carlo steps. We find that ρωa in-

creases from 0 (the value for the random network) and saturates. Thus, in the

synchronized optimized network the pair of nodes which have a larger relative fre-

quency mismatch are preferred as edges for the optimized network. Again, the

reason for this preference of edges is probably the conical shape of the stability

region in Fig. 3.4. The edges are to be chosen so that the parameter ∆ increases

and the stability region increases.

Next, we consider a different case where the coupled Rössler systems have

mismatch in parameter ar instead of ω. The other Rössler parameters are fixed

at ω = 1, br = 0.2, cr = 0.2 and the typical value of the parameter ar is ãr. The

master stability function of such a network is calculated as a function of network
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Figure 4.4: a The figure plots the correlation coefficient ρark as a function of the
Monte Carlo steps of optimization for 32 coupled Rössler systems. We see that
ρark decreases and saturates to negative value. b The figure plots the correlation
coefficient ρarA as a function of the Monte Carlo steps of optimization for 32 coupled
Rössler systems. We see that ρarA increases and saturates to positive value.

parameter α and mismatch parameter ∆. Fig. 3.5 in Chapter 3 shows the nature of

MSF λmax as a function of (α,∆). The stability region is provided by the inverted

“V” shaped region bounded by the 0 curve from both sides. From the figure we

can see that the stability region decreases with increase in mismatch parameter ∆.

We consider the above mentioned Monte Carlo method to construct a synchro-

nization optimized network from a random network of 32 coupled Rössler systems.

To find the nodes which are selected as hubs in the optimized network we consider

the correlation between node parameter and degree ρark given by Eq. (4.2). In

Fig.4.4a we plot ρark for such a network as a function of Monte Carlo steps. We

find that ρark decreases from 0 and saturates to a negative value. Thus, in the

synchronized optimized network the nodes which have smaller value of ar have

more connections and are preferred as hubs. The correlation coefficient between

the absolute parameter differences between two nodes ρarA and the edges given

by Eq. (4.3) will give the information about which edges are more preferable in

the optimized network. Fig. 4.4b shows the nature of ρarA as a function of Monte

Carlo steps. We find that ρarA increases from zero and saturates to a positive value,

indicating the pair of nodes which have larger parameter mismatch are selected to

create edges in the optimized network.
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4.3.3 Mismatch in two parameters

In this section we consider that the coupled Rössler systems have mismatch in

two parameters, ω ans ar. Other Rössler parameters are fixed at the values br =

0.2, cr = 7.0 and the typical values of the parameters ω and ar are ω̃ = 1 and ãr =

0.2. Fig. 3.7 of Chapter 3 shows the MSF for generalized synchronization in the

three dimensional space defined by (α,∆a,∆ω). We use Monte Carlo optimization

method to construct synchronization optimized networks. Now, in this optimal

network we investigate which nodes are selected as hubs and which pair of node are

selected to create links in the optimized network. We calculate two correlations, one

between node degree ki and parameter ωi, and the other between the node degree

ki and parameter (ar)i. In Fig. 4.5a we plot these two correlation coefficients

as a function of Monte Carlo steps. The red line in Fig. 4.5a is the correlation

coefficients between node degree ki and parameter ωi, and we can see that the

correlation increases from zero and saturates to a positive value and the blue line

of Fig. 4.5a is the correlation coefficient between the node degree ki and the node

parameter (ar)i and this curve start from zero and decreases and saturates to a

negative value. Thus, in the optimized network the nodes which have larger value

in parameter ωi and smaller value in parameter (ar)i are selected as hubs.

To find which links are more preferable we consider two correlation coefficients,

first the correlation between the absolute parameter differences between two nodes

|ωi − ωj| and the edges Aij and the correlation between the absolute parameter

differences between two nodes |(ar)i − (ar)j | and the edges Aij , from Eq. (4.3). In

Fig. 4.5b the red and blue lines show these two correlation coefficients as a function

of Monte Carlo steps. We can see from Fig. 4.5b that both of these correlation

coefficients increase from zero and saturate to a positive value. Thus, the pair of

nodes which have larger parameter mismatch both in parameter ω and parameter

ar are selected to construct the links in the optimized network.

In Fig. 4.6 the node degree is plotted as a function of node parameter ω and

ar for the optimal network. The color code represents the node degree. From the

figure we can see that the nodes which have larger value in parameter ω and smaller

value in parameter ar have larger degree and are chosen as hubs in the optimized
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Figure 4.5: a The red line shows the correlation coefficient between node degree
ki and parameter ωi and the blue line shows the correlation coefficients between
node degree ki and parameter (ar)i as a function of Monte Carlo steps. We can
see the correlation between node degree ki and parameter ωi increases from zero
and saturates to a positive value, while the correlation between the node degree ki
and node parameter (ar)i decreases from zero and saturates to a negative value. b
The red line shows the the correlation coefficient between the absolute parameter
differences between two nodes |ωi − ωj| and the edges Aij, and the blue line shows
the the correlation coefficient between the absolute parameter differences between
two nodes |(ar)i − (ar)j | and the edges Aij. We can see both of these correlation
coefficients increase from zero and saturate to a positive value.
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Figure 4.6: In this figure the node degree is plotted as a function of node parameter
ω and ar for the optimal network. The color code represents the node degree. From
the figure we can see that the nodes which have larger value in parameter ω and
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Figure 4.7: This figure plots the MSF λmax on a plane of complex α for a network
of coupled identical Rössler systems. The stable synchronized state is given by the
region under the 0 curve.

network.

4.4 Optimization in directed networks

In the previous sections we considered networks where the links are undirected;

i.e. the coupling matrix is symmetric. In this section we consider a more general

case where the coupled systems have directed links between them and so the cou-

pling matrix is asymmetric. For a directed graph both α and ∆ can be complex

quantities. In Fig. 4.7, the MSF is plotted on the complex plane of α for a directed

network of coupled identical Rössler systems, ∆ = 0. The stable synchronized

state is given by λmax < 0.
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4.4.1 The optimization method

We consider a network of N coupled nonidentical Rössler systems,

ẋi = −ωiy
i − zi + ε

N
∑

j=1

gijx
j

ẏi = ωix
i + ary

i (4.4)

żi = br + zi(xi − cr)

here, if there is a directed link from node j to node i, then gij = 1, otherwise gij = 0.

The diagonal elements gii = −∑

j gij ; j 6= i. The eigenvalue and eigenvectors of

the coupling matrix G = [gij] can be complex for directed networks. There will

be one eigenvalue µ1 = 0 of the matrix G and the corresponding eigenvector is

e1 = (1, . . . , 1)T . This eigenmode defines the synchronization manifold. The other

eigenmodes corresponds to the transverse manifold. The rest of eigenvalues of G

are µ2 < . . . < µN .

We consider that the Rössler parameter ω is different from system to system,

while other parameters ar, br, cr are same for all systems. For such a network

the MSF can be calculated (Eq. 3.11 of Chapter 3) as a function of the complex

parameter α and ∆. The typical value of the Rössler parameter ω in the given

network ( Eq. (4.4)) is ω̃ = 1. For such a random network with 10% mismatch in

the parameter ω the typical range of the first order correction, i.e. the mismatch

parameter ∆ is 0.00 < ∆ < 0.05.

We have calculated the MSF for some discrete values of complex mismatch

parameter ∆. In Fig. 4.8 the MSF λmax = 0 curve is plotted as a function of

α. The stability range loldε of any random network given by Eq. (4.4) can be

interpolated from Fig. 4.8. Now, we rewire the random network by deleting any

randomly chosen directed link and creating a new directed link in a link vacancy.

After doing this, the new stability range lnewε of the new network is determined. If

lnewε > loldε then we accept the new network, otherwise the new network is accepted

with probability eβ(l
new
ε −loldε ), where β is inverse temperature. The temperature is

reduced after certain Monte Carlo steps. In Fig. 4.9 the stability range lε is plotted

as a function of Monte Carlo steps. From Fig. 4.9 we can observe that after initial
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Figure 4.8: The MSF is plotted at some discrete values of Re∆ and Im∆ as
a function of the complex parameter α. The black curve is for the zero MSF
(λmax = 0) and below this curve the MSF is negative and the synchronized state
is stable.

increase the stability range saturates.

Now, we calculate the correlation ρωkin between the in-degree kin and parameter

ω following Eq. (4.2) and the correlation ρωkout between the out-degree kout and

parameter ω. In Fig. 4.10 the red line shows ρωkin as a function of Monte Carlo

steps and the blue line shows the correlation ρωkout as a function of Monte Carlo

steps. The correlation ρωkin increases and saturates to a positive value. Thus,

the nodes with larger value of parameter ω are prone to having more incoming

links in the optimized network. While, the correlation with the out-degree ρωkout

(blue line) remains nearly zero and we do not see any correlation between node

out-degree and node parameter.
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The out-degree kout of a node is plotted with node parameter ω. Here, we can see
there is no correlation between the node parameter and node out-degree.

This conclusion is further supported by Fig. 4.11. In Fig. 4.11a the in-degree

kin of the nodes is plotted as a function of parameter ω in the optimized network.

The nodes with larger value of parameter ω have more in-degree. In Fig. 4.11b

the out-degree kin of the nodes is plotted as a function of parameter ω in the

optimized network. In this case there is no correlation between out-degree and

parameter value of a node.

4.5 Summary

In this chapter we have constructed a synchronized optimized network from any

given network with fixed number of nodes and links. We rewire the links of a ran-

dom network by deleting an existing link and creating a new link in a link vacancy.

It has been observed in an undirected graph that the nodes with parameter values

at one extreme ends are selected as hubs in the optimized network and the pair of

nodes with larger parameter mismatch are selected to construct links in the opti-

mized network. For directed graphs the we have seen that the systems with larger

value of the parameter ω tends to have more incomining links. But we could not

find any correlation between the out-degree of a node and its parameter value.



Chapter 5

Desynchronization bifurcation of

coupled dynamical systems

5.1 Introduction

In this chapter we study the nature of desynchronization bifurcation in coupled

nonlinear systems. In the earlier chapters we studied stability of synchronization

of coupled dynamical systems. To determine stability of synchronized state we use

the criteria that the largest transverse Lyapunov exponent (TLE) is negative. For a

large number of chaotic oscillators it has been observed that the synchronized state

is stable in an interval of the coupling strength (εc1 < ε < εc2) [24, 119, 134, 135],

where ε is the coupling strength. We consider a network of such coupled systems.

As we increase the coupling strength ε, we observe establishment of synchronization

between the coupled systems when coupling strength ε crosses the first critical

coupling εc1 and the largest TLE becomes negative. When the coupling strength

is further increased the synchronized state remains stable for some time and as

the couping strength increases beyond second critical value εc2, the synchronicity

is lost, i.e. the systems undergo desynchronization bifurcation.

We consider a simple numerical experiment on two identical chaotic Rössler

oscillators which are coupled in the first component. When the coupling strength

ε is very small the Rössler systems will evolve with time in unsynchronized manner.

When coupling strength, ε, is increased beyond the first critical coupling, εc1, the

69
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oscillators synchronize and remain synchronized for εc1 < ε < εc2. In this range

the largest transverse Lyapunov exponent (TLE) is negative. When the coupling

strength exceeds the second critical value, εc2, the oscillators desynchronize. At

this point the largest TLE becomes positive.

To understand the desynchronization bifurcation, we define system transverse

Lyapunov exponents (STLE) which are specific to each system. In the synchro-

nized state the STLE and TLE have the same values and all are negative. But in

the desynchronized state one of the STLEs is positive and another is negative which

implies that the perturbation grows about one system while it dies out about the

other system, i.e. one system is trying to fly away while the other is holding it. We

present a simple integrable general model of two coupled systems with quadratic

nonlinearity which shows similar phenomena and the nature of this desynchroniza-

tion can be explored in more details with the help of this model. This simple

model shows that the desynchronization bifurcation is a pitchfork bifurcation of

the transverse manifold and one STLE is positive while the other is negative af-

ter the desynchronization bifurcation. We also study the cubic nonlinearity which

also shows a pitchfork bifurcation of the transverse manifold. However, in this

case both the STLEs are negative in the desynchronized state. The quadratic

nonlinearity gives the result corresponding to the desynchronization bifurcation in

Rössler system.We find that for ε > εc2, the attractors of the two coupled systems

split and start drifting away from each other and the rate of drift is proportional

to
√
ε− εc2.

This chapter is organized as follows. In section 5.2.1 we study linear stability

analysis of two n dimensional systems. In section 5.2.2 we define system transverse

Lyapunov exponents and develop an algorithm to calculate STLE. In section 5.2.3

we present numerical results on Rössler oscillators. We propose a simple inte-

grable model in section 5.3 which shows similar behavior to this desynchronization

bifurcation.
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5.2 Desynchronization bifurcation

We first consider the linear stability analysis of the synchronized state of two

coupled dynamical systems. Next, we introduce system transverse Lyapunov ex-

ponents. Then, these are used to study the desynchronization bifurcation in the

coupled Rössler systems. The condition for identical synchronization, or for sim-

plicity synchronization, can be obtained by linear stability analysis. The phase

space of the coupled system can be split into two manifolds, the synchronization

manifold and the transverse manifold. The synchronization takes place when all

the transverse Lyapunov exponents (TLEs) become negative [119, 134].

5.2.1 Linear stability analysis of synchronized state

Consider an n-dimensional autonomous dynamical system,

ẋ = f(x), (5.1)

and couple this system with an identical dynamical system y,

ẋ = f(x) + ε1Γ(y − x)

ẏ = f(y) + ε2Γ(x− y) (5.2)

where, ε1 and ε2 are scalar coupling parameters. Γ is known as the diffusive

coupling matrix. In general, Γ = diag(γ0, γ1, ..., γn−1), and defines the components

of x and y which are coupled. The synchronization manifold is defined by x = y =

s, where s satisfies Eq. (5.1). Let, ξx and ξy be the deviations of x and y from the

synchronized solution s. We have

ξ̇x = ∇f(s)ξx + ε1Γ(ξy − ξx)

ξ̇y = ∇f(s)ξy + ε2Γ(ξx − ξy) (5.3)
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where, ∇f(s) is the Jacobian matrix at the synchronized solution. These two

equations can be also be written as [118],

ξ̇ = ∇f(s)ξ + ΓξGT (5.4)

where, ξ = (ξx, ξy) and G is the coupling matrix. In this case

G =
(−ε1 ε1

ε2 −ε2

)

.

Let, Pk be an eigenvector of GT with eigenvalue µk; GTPk = µkPk. Operating

Eq. (5.4) on µk and defining ζk = ξPk and we can write an equation for ζk as [118],

ζ̇k = [∇f(s) + µkΓ] ζk. (5.5)

Here, the matrix G has two eigenvalues µ0 = 0 and µ1 = −(ε1+ε2). Thus, Eq. (5.5)

gives the two equations,

ζ̇0 = ∇f(s)ζ0 (5.6)

ζ̇1 = [∇f(s) − µ1Γ] ζ1. (5.7)

Here Eqs. (5.6) and (5.7) define motion of small perturbations on the synchroniza-

tion and transverse manifolds respectively and these can be used to obtain the

Lyapunov exponents for the two manifolds. The synchronized state will be stable

when all the transverse perturbations die with time, i.e. when all the transverse

Lyapunov exponents are negative.

5.2.2 System Transverse Lyapunov Exponents

We now introduce transverse Lyapunov exponents which are specific to the indi-

vidual systems x and y.

The dynamics of the difference vector z = x− y, is

ż = f(x) − f(y) − (ε1 + ε2)Γz (5.8)
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In Eq. (5.8) we can expand f(y) in Taylor’s series about the coordinate of the

first system x or f(x) about the second system y. This gives us the following two

equations.

ż = (z · ∇)f(x) − (ε1 + ε2)Γz (5.9a)

ż = (z · ∇)f(y) − (ε1 + ε2)Γz (5.9b)

where we neglect the higher order terms. In the synchronized state, Eqs. (5.9a)

and (5.9b) are identical and give the transverse Lyapunov exponents. In the desyn-

chronized state, Eqs. (5.9a) and (5.9b) in general give different exponents and we

refer to them as system transverse Lyapunov exponents (STLEs) since they are

specific to each system and denote the largest of them as λx and λy respectively.

For the synchronized state λx = λy and they are negative. For the desynchronized

state λx may not be equal to λy and tell us about how the difference vector z

behaves in the neighborhood of the two systems. Note that for the synchronized

state these STLEs belong to the actual spectrum of Lyapunov exponents of the

coupled systems, but not for the desynchronized state.

We describe in short the method to calculate STLE from Eqs. (5.9a) and (5.9b).

Eq. (5.9a) can be written in the matrix form as,

ż = Dx.z, (5.10)

where, Dx = ∇xf(x) + (ε1 + ε2)Γ is the Jacobian. When the system trajectories

are constant (solutions are fixed points) then the stability analysis can be made by

evaluating the eigenvalues (or the Floquet multipliers) of the matrix Dx [5, 76, 77].

We only need to calculate the largest transverse exponent λx which is the largest

real part of the eigenvalues. Similar calculation can be done to obtain λy by

replacing x by y in Eq. (5.10). When the system trajectories are periodic or

chaotic then one has to take a time average of the eigenvalues to find the system

transverse Lyapunov exponents. In this case, we use the algorithm of Ref. [75] for

the numerical calculation of λx,y.
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5.2.3 Two coupled Rössler systems

We now take the specific example of two coupled Rössler oscillators [117]. Denoting

the variables of the two systems by x and y the coupled equations are,

ẋ1 = −x2 − x3 + ε(y1 − x1),

ẋ2 = x1 + arx2, (5.11)

ẋ3 = br + x3(x1 − cr),

and a similar set of equations for the other system y given by,

ẏ1 = −y2 − y3 + ε(x1 − y1),

ẏ2 = y1 + ary2, (5.12)

ẏ3 = br + y3(y1 − cr).

Here, we have coupled the first component, i.e. Γ = diag(1, 0, 0) and we take

symmetric coupling, ε = ε1 = ε2.

εc1 εc2

ε

λ
m

ax

43210

0.5

0

−0.5

−1

Figure 5.1: The largest transverse Lyapunov exponent, λmax, of the two coupled
chaotic identical Rössler oscillators is plotted with the coupling parameter ε. There
are two critical couplings εc1(∼ 0.1) and εc2(∼ 3.0). In the range εc1 < ε < εc2
the synchronized state is stable. The desynchronization bifurcation takes place
when ε = εc2. The λmax is calculated from Eq. 5.7. Rössler parameters are
ar = 0.15, br = 0.2 and cr = 10.0. Note that for very large couplings the coupled
system become unstable.

Fig. 5.1 shows the variation of the largest transverse Lyapunov exponent (λmax)

with coupling strength for two mutually coupled identical Rössler oscillators. As
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discussed in the introduction there are two critical coupling constants εc1 and εc2.

The synchronized state is stable when εc1 < ε < εc2. At ε = εc2 the system

undergoes a desynchronization bifurcation. As we see in Fig 5.1, λmax is positive

when ε > εc2, which implies that the synchronous state is unstable. To understand

this phenomena in detail we calculate the system transverse Lyapunov exponents

(λx and λy) introduced in the previous subsection using Eq. (5.10). The Jacobian

Dx is given by

Dx =











−2ε −1 −1

1 ar 0

x3 0 x1 − cr
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Figure 5.2: The largest system transverse Lyapunov exponents, λx,y, of the two
coupled chaotic identical Rössler oscillators are plotted with the coupling parameter
ε. The desynchronization bifurcation is observed for large coupling (here at ε ∼ 3).
The inset shows a blowup of λx and λy just after the desynchronization takes place.
Rössler parameters are ar = 0.15, br = 0.2 and cr = 10.0.

In Fig. 5.2, the two largest system transverse Lyapunov exponents, λx and λy

are plotted as a function of the coupling strength ε. As noted before, there are two

critical coupling constants, εc1 and εc2. At both the critical points λx = λy = 0.

For 0 < ε < εc1, the coupled oscillators are desynchronized. The attractors of

the two systems overlap and are similar in nature. In this region, λx ≃ λy and

both are mostly positive. For, εc1 < ε < εc2, the two Rössler oscillators are

synchronized. Here, λx = λy and both are negative. For ε > εc2, the oscillators
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become desynchronized. Here, the largest STLEs show an interesting behavior.

One of STLEs becomes positive but the other becomes negative. Note that for

very large values of ε the coupled system becomes unstable.

To understand the result that one STLE is positive and the other is negative,

let us first look at the phase space plots of the attractors of the two coupled

oscillators in Fig. 5.3a. The two attractors are identical and overlap at ε = εc2.

As ε increases the two attractors split and start moving away from each other as

shown in Fig. 5.3a. We also look at the frequency and the phase difference between

the two oscillators after the desynchronization bifurcation. The frequency of both

the oscillators does not change after the bifurcation. The phase difference remains

constant, i.e. the two oscillators remain phase synchronized though they do not

show complete synchronization.

Figure 5.3b shows the distance D, between the centers of the two attractors as

a function of ε. For ε > εc2, the distance D shows a power law behavior,

D = γ(ε− εc2)
ν , (5.14)

The fit is shown in Fig. 5.3b and the exponent is ν = 0.474 ± 0.054 ∼ 0.5 and the

other parameters are γ = 67.38 ± 15.75, εc2 = 3.002 ± 0.000004. The power law

behavior is a characteristic feature of a second order phase transition.

Let us now come back to the result of Fig. 5.2, that for ε > εc2 one of the STLE

is positive and the other is negative. These STLEs tell us about the behavior

of the distance between the attractors as viewed from each of them in the linear

approximation. Thus, we can say that in the linear approximation one of the

attractors is trying to fly away while the other one is trying to hold them together.

The stability of the coupled system implies that the negative STLE wins the battle.

It appears that as ε increases, the hold of the negative STLE decreases and hence

the two attractors start drifting away from each other and for large values of ε the

system becomes unstable.
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Figure 5.3: a. The projection of the attractors of the two Rössler oscillators (red
and blue lines) on (x1 − x2) and (y1 − y2) planes respectively plotted on the same
graph for ε = 3.000, 3.025, 3.050, 3.100, 3.150, 3.200. Note that Eqs. (5.11) obey
the x ⇔ y exchange symmetry and hence the attractor obtained by the exchange
x ⇔ y, is also a solution. b. The distance D, between the centers of the attractors
of the two Rössler oscillators is plotted as a function of the coupling strength ε.
The continuous curve (blue) is a power law fit (Eq. (5.14)) with the exponent
ν = 0.5. Note that the distance D is also proportional to the distance between the
two solutions obtained by the x ⇔ y exchange symmetry.

5.3 Model system

Since Rössler oscillators are chaotic it is not easy to decipher the behavior of the

desynchronization bifurcation. Hence, we now propose a simple model of coupled

integrable systems showing a similar desynchronization bifurcation. For coupled

one dimensional systems the synchronized state will become stronger when cou-

pling strength is increased. We want the systems to desynchronize when coupling

strength is increased above some critical value. It is only possible when there exists

atleast one uncoupled component of the systems which will pull out the systems

from synchronized state. This is not possible for a one dimensional system and
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hence the minimum dimension is two. The proposed model is

ẋ1 = ax1 + bx2 + ε(y1 − x1)

ẋ2 = cx1 + dx2 + g(x1, x2)

ẏ1 = ay1 + by2 + ε(x1 − y1)

ẏ2 = cy1 + dy2 + g(y1, y2), (5.15)

Here, a, b, c, d, α, β are the parameters of the systems and g is a nonlinear function

of its arguments. As in the case of Rössler systems we couple the x1 component.

The model system is chosen so that the synchronized state corresponds to the fixed

point x∗ = y∗ = (0, 0) for small values of ε and we observe a desynchronization

transition as ε increases. For this to happen the parameters of the system must

obey the conditions; a + d < 0, d > 0, (ad − bc) > 0. Under these conditions,

the fixed point (0, 0) becomes unstable at the critical coupling constant εc = εc2 =

1
2
(a− bc

d
).

5.3.1 Quadratic nonlinearity

We first consider a general form of quadratic nonlinearity,

g(u1, u2) = α(u2
1 + βu1u2 + u2

2) (5.16)

With quadratic nonlinearity, the model system has three fixed points. One is

(0, 0, 0, 0) which is also a fixed point (0, 0) of the uncoupled systems. The other

two fixed points are given by

x∗
1 =

A

2
±

√
B,

x∗
2 = −a− ε

b
x∗
1 −

ε

b
y∗1,

y∗1 = A− x∗
1,

y∗2 = −a− ε

b
y∗1 −

ε

b
x∗
1 (5.17)
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where A = − b(2dε−ad+bc)
α(b2−βb(a−ε)+a(a−2ε))

, B(ε) = A2

4
− ε2A2

W
− bdεA

αW
, W = a2 + b2 + 4ε2 −

4aε− βb(a− 2ε).

For ε < εc, the fixed point (0, 0) is stable and it becomes unstable at the critical

coupling constant εc = εc2. For ε > εc the coupled system has two stable fixed

points given by Eqs. (5.17).

To determine the STLE of the synchronized state we use the transverse com-

ponent z = x− y and Eq. (5.10). The Jacobian matrix Dx is,

Dx =





(a− 2ε) b

(c + P1) (d + P2)



 (5.18)

where, P1 = (2αp∗1 + αβp∗2) and P2 = (αβp∗1 + 2αp∗2), with p∗1 = x∗
1, p

∗
2 = x∗

2 for

calculating STLE λx about system x and p∗1 = y∗1, p
∗
2 = y∗2 for calculating STLE

λy about system y. In the desynchronized state, we use the stable fixed points

(Eq. (5.17)) in Eq. (5.18) and we find that the largest STLEs by calculating the

eigenvalue of Dx having largest real part. The STLEs are given by,

λx,y ≈ ±C
√
ε− εc + O(ε− εc), (5.19)

where C =
2α
b
(a2+b2+4ε2c−4aεc+2βbεc−βad)

(a+d−2εc)+
α(2a−βb)

2b
A+α

2
(βb−2a+4εc)

√
B

√
F ,, F = 4b2d4(ad−bc)

α2GH
, G = d(a2 + b2−

βab) + (ad− bc)(βb− 2a) and H = d2(a2 + b2 − βab) − (ad− bc)(ad + bc− 2βbd).

Figure 5.4a shows the largest STLE λx,y as a function of the coupling constant ε.

For ε < εc, λx,y are negative and equal. At ε = εc, they are zero and for ε > εc,

one of the STLE is positive while the other is negative. This behavior of λx,y is

similar to that of the desynchronization transition in the coupled Rössler system

seen in Fig. 5.2.

The distance between the attractors of the two systems, i.e. between (x∗
1, x

∗
2)

and (y∗1, y
∗
2), is given by,

D =

√

(b2 + (2εc − a)2)F

b

√
ε− εc + O(ε− εc) (5.20)

Figure 5.4b plots the distance D as a function of the coupling constant ε. Thus,

for ε > εc, D ∝ √
ε− εc.
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Figure 5.4: (a). Two largest system transverse Lyapunov exponents, λx,y of the
model, Eq. (5.15) with quadratic nonlinearity, Eq. (5.16), are shown as a function
of the coupling parameter ε. Other parameters are a = −1.00, b = −2.00, c =
1.00, d = 0.50, α = −1.00, β = 2.00. (b). The distance D between the fixed points
of the two systems (Eq. (5.17)) as a function of the coupling constant ε.

At the desynchronization bifurcation in the model system the fixed point (0, 0)

becomes unstable and two new stable fixed points emerge. The distance between

the stable fixed points grows proportional to
√
ε− εc. These are the characteristic

features of the supercritical pitchfork bifurcation [82, 83]. This bifurcation takes

place in the transverse manifold. This can be seen by noting that the three fixed

points of the the model system, can also be obtained from the equation satisfied

by the transverse component z∗1 as

z∗1(B(ε) − (z∗1)2) = 0 (5.21)

This is a cubic equation and B(ε) ∝ (ε − εc) with B(εc) = 0. This equation is

exactly the normal form of a pitchfork bifurcation [82, 83]. Similar equation can

be written for z∗2 .

The proposed model with quadratic nonlinearity shows supercritical pitchfork

bifurcation when β >= (ad−bc)(a2+b2)−2ε(a2d−b2d−2abc)
a(ad−bc)+2bcε

. Otherwise it undergoes sub-

critical pitchfork bifurcation.

5.3.2 Cubic nonlinearity

We now consider cubic nonlinearity

g(u1, u2) = α1(u
3
1 + β1u

2
1u2 + β2u1u

2
2 + x3

2) (5.22)
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In Fig. 5.5 the largest transverse Lyapunov exponent (λmax) of this system is

plotted with the coupling strength. As ε crosses the critical coupling strength (εc)

the largest transverse Lyapunov exponent become positive and the synchronized

state become unstable.

In Fig. 5.6 (a) we plot the two largest systems’ transverse Lyapunov exponents

(λx and λy) of the model system given by Eq. 5.15 with cubic nonlinearity as a

function of the coupling strength ε. Here we can find that the exponents have

same value for all coupling strengths and everywhere they are negative, except at

the critical coupling strength, εc where both of them are zero.

εc

ε

λ
m

ax

1.50

1

0

−1

−2

Figure 5.5: The largest transverse Lyapunov exponent, λmax is plotted with the
coupling strength ε for the model, Eq. (5.15) with cubic nonlinearity (Eq. 5.22).
The critical coupling strength is εc = 1.5. When ε > εc the λmax is positive and
synchronous state become unstable. The system parameters are a = −1.00, b =
−2.00, c = 1.00, d = 0.50, α1 = −1.00, β1 = 3.00, β2 = 3.00.

In the desynchronized state one can calculate the stable solutions analytically

for the cubic nonlinearity (Eqs. (5.15) and (5.22)). The fixed points are given by,

x∗
1 = ±b

√

2d(ε− εc)√
F ′

x∗
2 = −(a− 2ε)

b
x∗
1

y∗1 = −x∗
1

y∗2 = −x∗
2, (5.23)

where εc = 1
2
(a− bc

d
) and F ′ = α1{(a−2ε)3−β2b(a−2ε)2+β1b

2(a−2ε)−b3}. In the

synchronized state the systems synchronize in the (0, 0) solution. When the cou-

pling strength ε crosses the critical value εc the systems undergo desynchronizaion
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Figure 5.6: (a). Two largest system transverse Lyapunov exponents, λx,y of the
model, Eq. (5.15) with cubic nonlinearity, Eq. (5.22), are shown as a function
of the coupling parameter ε. Other parameters are a = −1.00, b = −2.00, c =
1.00, d = 0.50, α1 = −1.00, β1 = 3.00, β2 = 3.00. (b). The distance D between the
fixed points of the two systems for cubic nonlinearity as a function of the coupling
constant ε.

bifurcation as depicted in Fig. 5.5, but all STLEs are negative (Fig. 5.6(a)). So,

the individual systems are stable. The distance between the two fixed points is

proportional to
√
ε− εc and is shown in Fig. 5.6b.

We can calculate the STLEs for cubic nonlinearity by considering the trans-

verse component z = x− y, The STLEs of this coupled systems are calculated by

considering the transverse component z = x − y and for this model the Jacobian

matrix of Eq. (5.10) is,

Dx =





(a− 2ε) b

(c + 3α(p∗1)
2) (d + 3α(p∗2)

2)



 (5.24)

From Eq. (5.24) we calculate the STLE λx about system x by replacing p∗1 =

x∗
1, p

∗
2 = x2∗ and determining the eigenvalue of Dx with largest real part. Similarly

we find λy.

The STLEs are give by,

λx,y ≈ 2F ′d{F ′ − (a− 2ε)G′ − bH ′}
{(a + d− 2ε)F ′ + (ε− εc)G′}(ε− εc) + higher order (5.25)

where, G′ = 3(a− 2ε)2 + β1b
2 − 2β2b(a− 2ε) and

H ′ = 3b2 + β2(a − 2ε)2 − 2β1b(a − 2ε). The STLEs for cubic nonlinearity (5.22)

have linear dependence on the parameter after the desynchronization bifurcation
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takes place and both are negative.

5.3.3 Comparison with coupled Rössler systems

We now compare the results for the model system with that of two coupled Rössler

systems. Comparing Figures 5.3b, 5.4b and 5.6b, we see that for both the model

and the coupled Rössler systems, for ε > εc, D ∝ √
ε− εc.We note that D may

be taken as the distance between the attractors of the two systems or the distance

between the two solutions obtained by the x ⇄ y exchange symmetry. For the

coupled Rössler systems these solutions are chaotic while for the model system

they are fixed points. The nature of these solutions depends on the synchronization

manifold. However, the desynchronization bifurcation takes place in the transverse

manifold were both the coupled Rössler systems and our model show a very similar

behavior.

For the coupled Rössler systems we can carry out an approximate analysis. We

write equations for the difference and sum of the variables of the two systems,

z = u(1) − u(2) and s = u(1) + u(2), and then treat z and s as constants near

the desynchronization bifurcation. This gives a cubic equation for the transverse

components as z2(B − z22) where B depends on the parameters. The condition

B = 0 gives εc2 ∼ 3.33 . . . which is somewhat larger than the observed value of

3.002 of the desynchronization bifurcation.

Thus both the transitions in the coupled Rössler systems and our model can

be identified as supercritical pitch-fork bifurcations of the transverse manifold.

The nature of the nonlinearity can be identified using STLEs defined by us.

Comparing the behavior of STLEs for ε > εc in Figs. 5.2, 5.4a and 5.6a, we see

that the behavior of STLEs for the coupled Rössler systems matches with that of

our model with quadratic nonlinearity, but not with the cubic nonlinearity.

We find that the form used in Eq. (5.15) with quadratic (Eq. (5.16)) or cu-

bic (Eq. (5.22)) nonlinearity, is the simplest form we could get for the desynchro-

nization bifurcation of the transverse manifold. The model also gives the standard

normal form (Eq. (5.21)), of the pitchfork bifurcation for the transverse component.

We note that the coupled Rössler systems and the model with quadratic nonlin-
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earity have similar properties. Hence, we can say that our model of Eq. (5.15) with

quadratic nonlinearity (Eq.(5.16)) is the simplest model for the desynchronization

bifurcation of the coupled Rössler systems.

5.4 Discussion

From the discussion above, we conclude that the desynchronization bifurcation

of the coupled model system, Eq. (5.15) as well as the coupled Rössler systems,

Eq. (5.11), are supercritical pitchfork bifurcations of the transverse manifold. The

synchronization manifold decides the nature of the attractor which is chaotic for

the coupled Rössler systems while it is periodic (fixed points) for our model system.

We have presented the analysis for symmetric coupling with ε = ε1 = ε2. If

instead we take asymmetric coupling ε1 6= ε2, the nature of the desynchronization

bifurcation does not change. This is because this bifurcation takes place in the

transverse manifold defined by the difference vector z and in the equation for z,

(Eq. (5.8)), we only have the sum ε1 + ε2. We also note that for ε1 6= ε2, the

x ⇔ y exchange symmetry exists in the transverse component though not in the

longitudinal component.

We find that the form used in Eq. (5.15) to be the simplest form we could

get for the desynchronization bifurcation and also, we get the standard normal

form (Eq. (5.21)), of the pitchfork bifurcation for the transverse component. The

model is a simple form for the desynchronization bifurcation. We can further

simplify the model by choosing a = −1, c = 1, α = ±1. We note that the coupled

Rössler systems and the model have similar properties. Hence, Eq. (5.15) with

the quadratic nonlinearity (Eq.(5.16)) is a simple model for the desynchronization

bifurcation of the coupled Rössler systems.

We can covert our model of Eq. (5.15) to a normal form by making a transfor-

mation to the central manifold [53]. This involves transforming to the coordinates

of the eigenspace so that the linear terms are diagonal. This systematic transfor-

mation and reduction will lead to the normal form of the bifurcation. However,

after this transformation the simple picture of a system of two coupled dynamical

systems showing desynchronization bifurcation is lost. Hence, we do not make this
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transformation and retain our model equations in the present form.

Let us now consider the coupled Rössler systems on a network. Consider n

coupled Rössler oscillators. Denoting the variables by u(j), j = 1, 2, . . . , N , the

equations can be written as

u̇(j) = f(u(j)) + ε
∑

k

JjkΓ(u(k) − u(j)), (5.26)

where J is the coupling matrix. The analysis of Pecora and Carrol [24] shows

that the equations for the transverse manifold can be cast into a general form of

a master equation and is the same as that for the two coupled systems. Thus,

the present analysis should be applicable for the desynchronization transition for

coupled systems on a network. How do the attractors of the different systems split

for ε > εc2? Consider three mutually coupled Rössler systems. We observe an in-

teresting phenomena of symmetry breaking. In this case at the desynchronization

bifurcation we still get splitting of the attractors into two as in Fig. 5.3a, with two

oscillators on one side and the remaining oscillator on the other side. The two os-

cillators on the same side remain synchronized We find that the distance between

the center of these oscillators varies with the coupling in the same fashion as in

Eq. (5.14). When four oscillators are coupled in a rectangle then this desynchro-

nization bifurcation takes place between two pairs of oscillators. The oscillators in

the same pair remain synchronized.

5.5 Summary

To conclude, we have analyzed the desynchronization bifurcation in the coupled

Rössler systems. We give a simple model of coupled integrable systems which shows

similar phenomena. The model may be treated as the simplest form showing the

desynchronization bifurcation in coupled systems. After the desynchronization bi-

furcation the attractors of the coupled systems split into two and start moving

away from each other. We define system transverse Lyapunov exponents corre-

sponding to the difference vector of the variables of the systems. For ε > εc and

quadratic nonlinearity, the STLE for one system becomes positive while that for
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the other system becomes negative. While for ε > εc and cubic nonlinearity, the

STLEs of both systems are negative. From the analysis of the distance between

the two attractors which is proportional to
√
ε− εc, the behavior of STLEs and

the cubic form for the transverse components, we conclude that the desynchro-

nization bifurcation in the coupled Rössler systems is a pitchfork bifurcation of the

transverse manifold and is represented by our model with quadratic nonlinearity.



Chapter 6

Summary

In conclusion, this thesis addresses two different problems. First we extend the

concept of master stability function to determine synchronization of coupled non-

identical systems. For coupled nonidentical systems, one will have generalized type

of synchronization. In practical life it is impossible to imagine a network of com-

pletely identical systems. So, it is very relevant to formulate a master stability

function to analyze generalized synchronization for coupled nonidentical systems.

By considering the fact that the exponential nature of solution of a linear differen-

tial equation is determined by the homogeneous part we formulate master stability

function for coupled nonidentical systems and this master stability function can

predict the stability of synchronization reasonably well.

Next, we consider the problem of constructing synchronized optimized network

from a given network which has fixed number of nodes and links. To understand the

structure of the optimized network we search for the nodes that are preferable as

hubs and links that are more preferable in the optimized network. For undirected

network the nodes whose parameter values lies at one of the extreme ends are

getting more connections and preferred as hubs and the pair of nodes which have

larger parameter mismatch are selected to create links. In a directed network we

observe that the nodes with extreme parameter values are prone to having more

incoming links than other nodes.

In the second problem we study the nature of desynchronization bifurcation

of coupled nonlinear dynamical systems. In this context we introduce Systems’

87
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Transverse Lyapunov Exponents (STLEs) to study stability of individual systems

on a network. We give a simple model of coupled integrable systems which shows

similar phenomena. After the desynchronization bifurcation the attractors of the

coupled systems split into two and start moving away from each other. In the

desynchronized state the STLE of one system is positive and another system is

negative indicating that one systems is trying to fly away from the synchronized

state while the other is trying to hold the synchronized state. Also we observe

that the distance between the attractors has a square root dependence on the

parameter value. This desynchronization bifurcation is a pitchfork bifurcation of

the transverse manifold and it can be represented by the proposed simple model.
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Transition from local to global phase synchrony in small world neural network

and its possible implications for epilepsy. Phys. Rev. E, 72:031909, 2005.

[31] B. Blasius, A. Huppert, and L. Stone. Complex dynamics and phase syn-

chronization in spatially extended ecological systems. Nature, 399:354, 1999.

[32] L. Glass. Synchronization and rhythmic processes in physiology. Nature,

410:277, 2001.



BIBLIOGRAPHY 92

[33] J. Aldridge and E. K. Pye. Cell density dependence of oscillatory metabolism.

Nature, 259:670–671, 1976.

[34] M. A. Aon, S. Cortassa, H. V. Westerhoff, and K. V. Dam. Synchrony and

mutual stimulation of yeast cells during fast glycolytic oscillations. Journal

of General Microbiology, 138(10):2219–2227, 1992.

[35] T. J. Walker. Acoustic synchrony: Two mechanisms in the snowy tree cricket.

Science, 166:891–894, 1969.

[36] Louis M. Pecora and Thomas L. Carroll. Driving systems with chaotic sig-

nals. Phys. Rev. A, 44(4):2374–2383, 1991.

[37] Kevin M. Cuomo and Alan V. Oppenheim. Circuit implementation of syn-

chronized chaos with applications to communications. Phys. Rev. Lett.,

71:65–68, 1993.

[38] D. V. Senthilkumar, K. Srinivasan, K. Murali, M. Lakshmanan, and

J. Kurths. Experimental confirmation of chaotic phase synchronization in

coupled time-delayed electronic circuits. Phys. Rev. E, 82:065201, 2010.

[39] Rajarshi Roy and K. Scott Thornburg. Experimental synchronization of

chaotic lasers. Phys. Rev. Lett., 72:2009–2012, 1994.

[40] Toshiki Sugawara, Maki Tachikawa, Takayuki Tsukamoto, and Tadao

Shimizu. Observation of synchronization in laser chaos. Phys. Rev. Lett.,

72:3502–3505, 1994.

[41] Kenju Otsuka, Ryoji Kawai, Siao-Lung Hwong, Jing-Yuan Ko, and Jyh-Long

Chern. Synchronization of mutually coupled self-mixing modulated lasers.

Phys. Rev. Lett., 84:3049–3052, 2000.

[42] Michael A. Zaks, Eun-Hyoung Park, Michael G. Rosenblum, and Jürgen

Kurths. Alternating locking ratios in imperfect phase synchronization. Phys.

Rev. Lett., 82:4228–4231, 1999.

[43] L. Kocarev and U. Parlitz. General approach for chaotic synchronization

with applications to communication. Phys. Rev. Lett., 74:5028–5031, 1995.



BIBLIOGRAPHY 93

[44] U. Parlitz, L. Junge, and L. Kocarev. Synchronization-based parameter es-

timation from time series. Phys. Rev. E, 54:6253–6259, 1996.

[45] Anil Maybhate and R. E. Amritkar. Use of synchronization and adaptive

control in parameter estimation from a time series. Phys. Rev. E, 59:284–

293, 1999.

[46] S. Boccaletti and D. L. Valladares. Characterization of intermittent lag syn-

chronization. Phys. Rev. E, 62:7497–7500, 2000.

[47] Ricardo Femat and Gualberto Sols-Perales. On the chaos synchronization

phenomena. Physics Letters A, 262(1):50 – 60, 1999.

[48] Robert C. Hilborn. Chaos and Nonlinear Dynamics. Oxford University Press,

1994.

[49] M. Lakshmanan and S. Rajasekar. Nonlinear Dynamics. Springer, 2003.

[50] E. Ott. Chaos in Dynamical Systems. Cambridge University Press, 1993.

[51] K. T. Alligood, T. D. Sauer, and J. A. Yorke. Chaos: An Introduction to

Dynamical Systems. Springer, 1996.

[52] R. L. Devaney. An Introduction to Chaotic Dynamical Systems. Westview

Press, 2003,.

[53] John Guckenheimer and Philip Holmes. Nonlinear Oscillations, Dynamical

Systems, and Bifurcations of Vector Fields. Springer-Verlag, 1983.

[54] Allan J. Lichtenberg and Michael A. Lieberman. Regular and chaotic dy-

namics. Springer, 1991.

[55] Paul S. Linsay. Period doubling and chaotic behavior in a driven anharmonic

oscillator. Phys. Rev. Lett., 47:1349–1352, 1981.

[56] R. W. Rollins and E. R. Hunt. Intermittent transient chaos at interior crises

in the diode resonator. Phys. Rev. A, 29:3327–3334, 1984.



BIBLIOGRAPHY 94

[57] F. T. Arecchi, R. Meucci, G. Puccioni, and J. Tredicce. Experimental ev-

idence of subharmonic bifurcations, multistability, and turbulence in a q-

switched gas laser. Phys. Rev. Lett., 49:1217–1220, 1982.

[58] J. Mørk, J. Mark, and B. Tromborg. Route to chaos and competition between

relaxation oscillations for a semiconductor laser with optical feedback. Phys.

Rev. Lett., 65:1999–2002, 1990.

[59] Xiaodong Chen and P.A. Lindsay. Oscillations and chaos in plasma-filled

diodes. IEEE Transactions on Plasma Science, 24:1005 – 1014, 1996.

[60] J. P. Gollub and S. V. Benson. Many routes to turbulent convection. J .

Fluid Mech., 100:449–470, 1980.

[61] A. Brandstater and Harry L. Swinney. Strange attractors in weakly turbulent

couette-taylor flow. Phys. Rev. A, 35:2207–2220, 1987.

[62] Kirill N. Alekseev, Gennady P. Berman, David K. Campbell, Ethan H. Can-

non, and Matthew C. Cargo. Dissipative chaos in semiconductor superlat-

tices. Phys. Rev. B, 54:10625–10636, 1996.

[63] S. W. Teitsworth, R. M. Westervelt, and E. E. Haller. Nonlinear oscillations

and chaos in electrical breakdown in ge. Phys. Rev. Lett., 51:825–828, 1983.

[64] Guanrong Chen and Xing Huo Yu. Chaos control: theory and applications.

Springer, 2003.

[65] Jan Awrejcewicz and Claude-Henri Lamarque. Bifurcation and chaos in

nonsmooth mechanical systems. World Scientific, 2003.
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