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Chapter
1

Introduction

1.1 The Standard Model of Particle PhysicsAording to the urrent understanding of partile physis, all known partiles are madeonly of fermions and the interation between the fermions is given by the mediators. Tothe best of our present knowledge, the nature seems to be equipped with four kinds ofinterations (i) strong, (ii) eletromagneti, (iii) weak and (iv) gravitational. Every in-teration has its mediator. For example, photon is the mediator of the eletromagnetifore, two W 's and a Z, are the mediator of the weak fore. Then what is the media-tor for strong fore? There are eight gluon responsible for the strong binding betweenthe quarks. Graviton(yet, to be disovered), presumably the mediator of gravitationalinteration. The Standard Model (SM) of partile physis desribes the dynamis of theelementary partiles [1�4℄. It has been onstruted to address all the three interationsnamely strong, eletromagneti and weak, other than gravity, on one platform. It is agauge theory of the strong and eletroweak interations based on the gauge symmetrygroup GST = SU(3)C × SU(2)L × U(1)Y . The weak and eletromagneti interationsbetween the fundamental partiles (quarks and leptons) was �rst proposed by Glashow-Salam-Weinberg [1℄ whih is known as the eletroweak theory. The strong interation isthe interation among the quarks of di�erent olors and �avors and they are mediatedby eight gluon. It is best desribed by the SU(3)C gauge theory alled quantum romodynamis (QCD). The olor states are on�ned and hene, only olor singlets sates an
1



2 CHAPTER 1. INTRODUCTIONexist in nature as free partiles. The strong nulear fore is the fore between the protonsand neutrons, whih is a manifestation of the underlying SU(3)C interations among thequarks. The eletromagneti interation is the fore of all harged partiles. It is desribedby quantum eletrodynamis (QED) whih is a U(1)Q gauge theory. The weak intera-tion desribes the nulear beta deay. The quarks and leptons transform aording toleft-handed doublets(LH) and right-handed(RH) singlets under SU(2)L to aount for theV-A nature of the harge urrent weak interations. The eletromagneti interation, aslike the gravitational interation, is of in�nite range but the ranges of the weak and strongnulear fores are �nite.Experiments revealed the weak gauge bosons as massive as required by the short rangebehavior of the weak interation. But the SU(2)L gauge symmetry does not permit themass term for these gauge bosons, and fermions as well, in the Lagrangian. The sponta-neous symmetry breaking mehanism is a way out to generate the weak gauge boson andfermion masses in the standard model by introduing an additional weak isodoublet om-plex salar �eld. Weak gauge bosons get masses by absorbing three Goldstone bosons, threeomponents of the salar �eld, the remaining degree of freedom orresponds to a physialpartile, the Higgs boson, the most wanted member for the present partile physis ollidersearh. One we hoose a ground state, out of in�nite possibilities, as the physial one, theeletro-weak SU(2)L × U(1)Y symmetry breaks to U(1)Q symmetry. As a result, via thespontaneous symmetry breaking, the weak gauge bosons and the fermions aquire non-zeromasses.The assignment of weak hyperharge of U(1) group to the various SU(2)L and SU(3)Cmultiplets is
Q = T3L + Y (1.1)where Q is the eletri harge, T3L, the 3rd omponent of weak isospin and Y, the weakhyperharge.The partiles are represented under the SM gauge group as shown in table[6.2℄.1.1.1 Complete Lagrangian for the standard modelThe omplete Lagrangian of the Standard Model obeying the gauge symmetry is

LSM = LKE + LYuk − VΦwhere



1.1 The Standard Model of Particle Physics 3Table 1.1: Partile ontent of the Standard ModelField SU(3)C × SU(2)L × U(1)YFermions QT
L ≡ (u, d)L (3, 2, 1/6)

uR (3, 1, 2/3)
dR (3, 1, -1/3)

ℓTL ≡ (ν, e)L (1, 2, -1/2)
eR (1, 1, -1)
Φ (1, 2, +1/2)

LKE = iΨQγ
µDµΨQ + iΨuR

γµDµΨuR
+ iΨdR

γµDµΨdR

+ iΨLγ
µDµΨL + iΨ eR

γµDµΨeR
+ (DµΦ)†(DµΦ)

− 1

4
GA

µνG
µν
A −

1

4
W i

µνW
µν
i −

1

4
BµνB

µν ,

LYuk = yuΨQΦ̃ΨuR
+ ydΨQΦΨdR

+ yeΨLΦΨeR
+ h.c.

VΦ = −µ2|Φ|2 + λ|Φ|4and the �elds are de�ned by
ΨQ ≡


 Ψu

Ψd




L

, ΨL ≡


 Ψν

Ψe




L

, ΨeR,L
≡ 1± γ5

2
Ψe and Φ̃ ≡ iτ2Φ∗ (1.2)

GA
µν = ∂µGA

ν − ∂νG
A
µ + g3f

ABCGB
µ GC

µ

W i
µν = ∂µW

i
ν − ∂νW

i
µ + gLǫ

ijkW j
µW

k
µ

Bµν = ∂µBν − ∂νBµ (1.3)where A = 1, 2....8, i = 1, 2, 3 and Dµ is the ovariant derivative. The theory as writtenhas a total of 18 parameters- the three gauge ouplings: g3, gL, gY ; the higgs-setor massand self-oupling: µ2, λ and 13 degree of freedom in the Yukawa setor.1.1.2 Spontaneous Symmetry Breaking and The Higgs MehanismSpontaneous symmetry breaking is the idea that the ground state of a system ontains onlya subset of the symmetries respeted by the underlying theory. This idea is not unique



4 CHAPTER 1. INTRODUCTIONto partile physis or the SM, but is prevalent in many areas of physis; for example,ferromagnetism.In the standard model, Spontaneous Symmetry Breaking is ahieved through the spin-0Higgs boson, Φ. The idea is that the Higgs �eld aquires a non-zero lassial bakground,alled a vauum expetation value (VEV), and the quantum theory must be written asperturbations around this lassial bakground. The theory still maintains the full sym-metry, however the ground state, the one in whih the VEV of Φ is nonzero, breaks thissymmetry and thus it is not seen in nature.The loal SU(2)L × U(1)Y gauge invariant Lagrangian, thus, an be written as
L =

[(
i∂µ − gL

~τ

2
. ~Wµ −

gY

2
Bµ

)
Φ

]† [(
i∂µ − gL

~τ

2
. ~W µ − gY

2
Bµ

)
Φ

]

−V (Φ†Φ)− 1

4
BµνB

µν − 1

4
~Wµν

~W µν , (1.4)where Y = 1/2 is used for the Higgs salar �eld.The salar potential, V (Φ†Φ), is given by
V (Φ†Φ) = µ2(Φ†Φ) + λ(Φ†Φ)2. (1.5)Writing the Higgs doublet Φ as

Φ ≡


 φ+

φ0


 (1.6)where, φ+ = 1√

2
(φ1 + iφ2) and φ0 = 1√

2
(φ3 + iφ4). Taking φ+ = 0 to preserve eletriharge onservation and with the non-zero lassial bakground being de�ned as 〈Φ〉 andhoosing

〈Φ〉 ≡


 0

v√
2


 (1.7)The ondition for the spontaneous symmetry breaking is µ2 < 0 and λ > 0. The minimaof the potential are at all those points of φis whih satisfy the following ondition

Φ†Φ =
1

2
(φ2

1 + φ2
2 + φ2

3 + φ2
4) =

v2

2
= −µ

2

2λ
, (1.8)whih implies an in�nite number of ground states. The symmetry will spontaneously



1.1 The Standard Model of Particle Physics 5break one one of it is arbitrarily hosen. Keeping in mind that any unphysial term inthe Lagrangian should not be allowed, let us write the salar �eld Φ in terms of four �elds
θ1(x), θ2(x), θ3(x) and h(x) as:

Φ(x) =
1√
2


 θ2 − iθ1

(v + h)− iθ3


 ≃ eiθa(x)τa/v


 0

1√
2
(v + h(x))


 (1.9)One we put this transformed �eld Φ in the Lagrangian, we will see that there arethe three massless unwanted bosons will disappear from the potential. These masslessgoldstone modes are eaten up by SU(2)L gauge bosons and hene,W±, Z beome massive.As a result of this SSB. we have now three massive gauge �eldsW± and Z and one massless,the photon �eld, as needed:

mW =
1

2
v gL , mZ =

1

2
v
√
g2
L + g2

Y , mA = 0. (1.10)Finally, the shift to the true vauum gives the fermions of the theory a mass through theiryukawa ouplings to the Higgs:
me =

1√
2
ye v mu =

1√
2
yu v md =

1√
2
yd vThe remaining Higgs degree of freedom obtains a non-zero, positive mass and should beseen by experiment. Furthermore, the quarks, eletron, muon, and tau pik up massesfrom the yukawa ouplings to the higgs while the neutrino remains massless.1.1.3 Shortomings of standard modelThe Standard Model of elementary partiles and interations is one of the best testedtheories in physis. It has been found to be in remarkable agreement with experiment andits validity at the quantum level has been suessfully probed in the eletroweak setor. Ithas predited the masses of W and Z bosons preisely whih is exellent agreement withthe experiment, made several preditions for testing quantum eletroweak orretions, et.whih have all been veri�ed. In SM, weak and eletromagneti interations are uni�ed andpredits CP violation with at least three generation. In spite of its experimental suesses,though, the Standard Model su�ers from a number of limitations, and is likely to be aninomplete theory.Standard model ontains many arbitrary parameters; it does not inlude gravity, the



6 CHAPTER 1. INTRODUCTIONfourth elementary interation; it does not provide an explanation for the hierarhy betweenthe sale of eletroweak interations and the Plank sale, harateristi of gravitationalinterations; and �nally, it fails to aount for the dark matter and the baryon asymmetryof the universe. It does not represent a uni�ed desription of the fundamental interations.There is no right handed neutrinos in SM and hene enfores the neutrinos to be massless.The most important thing is that the Higgs boson (whih is ruial for mass generationthrough Higgs mehanism) is not found in any of the experiments. Also one an askwhy there are only three generations of fermions ? All the fermions and Higgs bosonmasses and the gauge oupling onstants are only parameters in the standard model.The lear evidene for physis beyond the standard model is the small nonzero neutrinomass. This led partile theorists to develop and study various extensions of the StandardModel, suh as supersymmetri theories, Grand Uni�ed Theories or theories with extraspae-time dimensions; most of whih have been proposed well before the experimentalveri�ation of the Standard Model. The oming generation of experimental failities (high-energy olliders, B-physis experiments, neutrino superbeams, as well as astrophysial andosmologial observational failities) will allow us to test the preditions of these theoriesand to deepen our understanding of the fundamental laws of nature.
1.2 Beyond Standard Model of Particle Physics1.2.1 Massive NeutrinosThe Standard Model(SM) in partile physis predits stritly massless neutrinos and thereis neither mixing nor CP violation in the leptoni setor. The experimental observationthat neutrinos an osillate from one �avor to another as they propagate is the strongestindiation for nonzero neutrino masses and mixing.We will brie�y disuss the theory of neutrino osillation [5℄. We de�ne the neutrinoweak eigenstate να with �avor α (where α = e, µ, or τ) suh that it is produed in as-soiation with the harged antilepton ℓα in a tree-level interation with the W boson.These weak eigenstates are in general di�erent from the neutrino mass eigenstates νi (with
i = 1, 2, and 3), eah having a (rest) mass given by mi. One an relate the weak and masseigenstates via a unitary transformation and write να as a oherent superposition of the νi�elds:

|να〉 =
∑

i

U∗
αi |νi〉 , (1.11)



1.2 Beyond Standard Model of Particle Physics 7The Unitary mass matrix U given in the above expression is known as Ponteorvo-Maki-Nakagawa-Sakata (PMNS) matrix [5�8℄, whih is often parametrized as
UPMNS =




c12c13 s12c13 s13 e
−iδ

−s12c23 − c12s23s13 eiδ c12c23 − s12s23s13 eiδ s23c13

−s12s23 + c12c23s13 e
iδ c12s23 + s12c23s13 e

iδ −c23c13







eiα1/2 0 0

0 eiα2/2 0

0 0 1


 ,(1.12)where smn = sin θmn, cmn = cos θmn, δ is the CP violating Dira phase, while α1 and α2denote the two Majorana phases.To quantify the phenomenon of a neutrino hanging from �avor-α to �avor-β as itpropagates in vauum, we are interested in the probability with whih this happens, i.e.Pr (να → νβ), a quantity that depends on how the |να〉 state in (1.11) evolves with time.This probability is given byPr(να → νβ) ≡ |〈νβ |να〉|2 = δαβ − 4

∑

i>j

Re (
U∗

αiUβiUαjU
∗
βj

)
sin2

[
∆m2

ij L

4E

]

+ 2
∑

i>j

Im (
U∗

αiUβiUαjU
∗
βj

)
sin

[
∆m2

ij L

2E

]
, (1.13)where ∆m2

ij ≡ m2
i −m2

j . Here E, pi and mi are the energy, momentum and mass of νiomponent of neutrino, L is the soure-detetor distane as measured in the lab-frame. Allare related by the Lorentz invariant term miτi in terms of laboratory variables as
mi τi = Ei t− |pi|L , (1.14)From this result, it is quite lear that when all neutrino massesmi's are zero (or nonzerobut degenerate) and hene, the seond and third term in Eq. (1.13) disappear, neutrinoosillation is not possible. By the same token, the observation that νe and νµ do hange�avor during propagation implies that (at least two of) νi's must be massive.The solar and atmospheri neutrino osillations determined the values of two large(θ12, θ23) and one small (θ13) mixing angles , as well as, a small (∆m2sol) and a large (∆m2atm)squared mass di�erenes. Sine the sign of ∆m2atm is not known, two arrangements for theneutrino mass spetrum are possible:Normal hierarhy: ∆m2atm ≡ ∆m2

31 > 0, whih gives m1 < m2 < m3 with
m2 =

√
m2

1 + ∆m2sol , m3 =
√
m2

1 + ∆m2atm , (1.15)



8 CHAPTER 1. INTRODUCTIONInverted hierarhy: ∆m2atm ≡ ∆m2
32 < 0, implying m3 < m1 < m2 with

m1 =
√
m2

3 + ∆m2atm −∆m2sol , m2 =
√
m2

1 + ∆m2sol . (1.16)Note that in both ases, we have used ∆m2sol ≡ ∆m2
21 > 0. The best-�t values of theneutrino osillation parameters at 1σ error level in the three-�avor analysis are summarizedas follows [12℄:

∆m2sol = 7.65+0.23
−0.20 × 10−5 eV2

|∆m2atm| = 2.40+0.12
−0.11 × 10−3 eV2

sin2 θ12 = 0.304+0.022
−0.016

sin2 θ23 = 0.50+0.07
−0.06 ,

sin2 θ13 ≤ 0.01+0.016
−0.011 (1.17)Moreover,until now there is no information about the absolute neutrino masses. Onean �nd the bound on absolute sale of neutrino mass via studies of lepton number (L)violating neutrino less double β-deay (AZ [Nul]→ A

Z+2

[Nul′] + 2e−), whose observationwould imply that neutrinos are Majorana fermions [13℄. The e�etive Majorana neutrinomass found to be
mββ ≡

∣∣∣∣∣

3∑

i=1

U2
eimi

∣∣∣∣∣ . (1.18)Several groups suh as the Heidelberg-Mosow [14℄ and IGEX [15℄ ollaborations ondutedexperiments with 76Ge, while the more reent CUORICINO experiment [16℄ used 130Te totest for this. So far there are no on�rmed disoveries of the neutrinoless double β-deay,but the best upper bounds on the deay lifetimes are presently provided by CUORICINO(whih is still running), whose results are translated to
mν ≡ mββ < 0.19 − 0.68 eV (90% C.L.) , (1.19)for the neutrino mass.

The strongest bounds on the overall sale for neutrino masses ome from osmology.This is one of the important examples that illustrates the intriate onnetions betweenneutrino physis and the evolution of the early universe. The absolute upper bound for



1.2 Beyond Standard Model of Particle Physics 9eah individual neutrino mass oming from osmology is
|mi| . 0.2 eV (95% C.L.) for all i . (1.20)See-Saw MehanismThe most natural way to explain the smallness of the neutrino mass is by the use of theseesaw mehanism. The �rst ingredient in this mehanism is to add a right handed neutrino

νR(for eah generation). Next,in order to implement the seesaw mehanism, a mass saleof νR muh larger than υ(= 250) has to be introdued. This kind of seesaw is known asType I seesaw.For one generation ase:
mν =

m2
D

M
(1.21)wheremD is the Dira mass with magnitude of same order as those of the known hargedfermions and M is the mass sale of νR, and is supposed to be substantially larger than

mD.For one generation ase:
mν = mD

1

M
mT

D (1.22)The mass matrix that appear in the Lagrangian is now a 6×6 matrix as
M(6× 6) =


 0 mD

mT
D MR


 (1.23)wheremν , mD and MR are all 3× 3 matries. Like in one generation, here we require that

|MR | ≫| mD.Neutrino eletromagneti dipole momentsAs is well known, the eletri neutrality of the neutrino does not prelude its having non-zero dipole moments. And while, naively, the presene of a magneti dipole moment wouldseem to all for the presene of a nonzero mass, even this is not stritly neessary [190℄.One of the important impliations of massive neutrinos is that they an in general possessa nonzero transition magneti and eletri dipole moment (both for Dira and Majorananeutrinos), regardless of the mehanism by whih they gain their mass. If neutrinos areDira partiles, then they an also have diagonal eletromagneti dipole moments [17�20℄,unlike their Majorana ounterparts. To understand the onnetion between neutrino mass



10 CHAPTER 1. INTRODUCTIONand neutrino dipole moment, one should onsider the generi dipole moment operator:
Ldm = νj (µjk + iγ5djk)σαβ νk F

αβ , (1.24)where Fαβ denotes the photon �eld tensor, we see that the magneti (µjk) and eletri (djk)dipole moments have dimension of inverse mass. In the SM with massive Dira neutrinos,the diagonal magneti dipole moment indued by radiative orretions may be alulatedfor the mass eigenstate νj :
µνj
≃ 3eGF

8π2
√

2
mνj
≈ 3× 10−19

( mνj

1 eV)
µB , (1.25)where µB = e/2me is the Bohr magneton, GF is the Fermi onstant, mν is the massof light neutrino, µν is the magneti moment of the neutrino. This ontribution is verysmall in omparison to the experimental bound [21℄. So one need to either extend theSM or onsider new physis beyond the SM to explain orret magneti moment of theneutrinos. The urrent laboratory limits on the magneti dipole moment are obtained fromthe low-energy sattering proesses and they give a bound of about [22, 23, 23, 24℄

µν . 0.54 × 10−10µB (90% C.L.) . (1.26)Moreover, one an estimate of the ontribution to neutrino masses from the dipolemoment operators, thus gaining important insights into the size of µν in relation to mν .One neutrinos have eletromagneti dipole moments (diagonal or transition), it is learthat new interations between neutrinos and other fermions are possible. For instane, ontop of the usual weak interations, there an be a new ontribution to neutrino-eletronsattering due to photon exhange, hene modifying the ross setion.The existene of transition moments an lead to neutrino deays. In partiular, if thetransition moments between the ordinary LH and heavy RH neutrinos (from the minimallyextended SM) are non-vanishing, then the radiative deay of the heavy RH neutrinos anhave important impliations in the osmologial evolution of matter in the early universe.We will disuss these issues later on how an generate the required lepton asymmetry toexplain the matter-antimatter asymmetry of the present Universe via the deay of heavyright handed majorana neutrinos into a light SM lepton and a photon through the dipolemoment operators.



1.2 Beyond Standard Model of Particle Physics 111.2.2 Left-Right symmetri theoryWhile the standard eletroweak model based on the spontaneously broken loal symmetryhas been extremely suessful in the desription of low-energy weak phenomena, it leavesmany question unanswered. One of them has to do with understanding of the origin of theparity violation in low energy weak interation proesses while all other fores in natureare parity onserving. Why are the weak fores apparently not or are they really parityonserving at the fundamental level and we do not see it ? The seond one, of a morephenomenologial nature but an urgent one, has to do with the origin of neutrino masses,for whih now there are onvining evidene from neutrino osillation experiment. It isfound that a theory, whih is an extension of the SM, gives answer to both the questionsand this theory is known as the Left-Right theory.The left-right symmetri extension of the standard model is based on the gauge group
GLR = SU(2)L × SU(2)R × U(1)B−L [99�101℄. The SU(2)R ×U(1)B−L is broken at somehigh energy giving our low energy eletroweak theory with unbroken SU(2)L × U(1)Y .The left-handed fermions are doublets under SU(2)L while the right handed fermions aredoublets under SU(2)R. The eletri harge is related to the generators of the group as:

Q = T3L + T3R +
B − L

2
= T3L + Y . (1.27)The quarks and leptons transform under the left-right symmetri

QL =


 uL

dL


 ≡ [3, 2, 1,

1

3
], QR =


 uR

dR


 ≡ [3, 1, 2,

1

3
],

ℓL =


 νL

eL


 ≡ [1, 2, 1,−1], ℓR =


 νR

eR


 ≡ [1, 1, 2,−1] (1.28)The left-right symmetri models have an interesting feature of breaking parity symmetryspontaneously. The SU(2)L gauge bosons WL and the SU(2)R gauge bosons WR are notparity eigenstates, but they transform under parity as WL →WR. As the left-handed andright-handed fermions are related by parity operation, a disrete (Z2) symmetry relatingthe group SU(2)L → SU(2)R an now be identi�ed with the parity operator of the Lorentzgroup. Hene spontaneous breaking of left-right symmetry will also break parity sponta-neously. After the left-right symmetry breaking, the gauge oupling onstants for the two

SU(2) gauge groups an be di�erent.



12 CHAPTER 1. INTRODUCTIONThe symmetry breaking pattern in left-right models [102, 111℄ via Higgs salar is
SU(3)c × SU(2)L × SU(2)R × U(1)(B−L) [GLR]

MR→ SU(3)c × SU(2)L × U(1)Y [Gstd]

mW→ SU(3)c × U(1)Q [Gem] .The Higgs �eld whih breaks left-right symmetry an give masses to the neutrinos. The
SU(2)R symmetry is broken by a triplet salar (∆R), whih transforms under GLR as (1,1, 3, -2). The disrete parity symmetry implies there exist another triplet (∆L), whihtransforms under GLR as (1, 3, 1, -2). The SU(2)R breaks at high sale via ∆R and thevev of ∆L is onstrained by the preision experiment to be muh less than a mW . Theeletroweak symmetry an be broken by a bi-doublet Φ whih transforms under GLR as (1,2, 2, 0), whose vev an give masses to the harged fermions.1.2.3 Grand Uni�ed theoryUltimate uni�ation of all partiles and all interations is the eternal dream of theoretialphysiists. The standard model has a grand suess in unifying the two fundamental foresat high energies, namely weak and eletromagnetism. But the question arises whether thereis an another fundamental theory whih allows all fundamental fores to unify at higherenergies and Standard Model is one of it's subgroup. Suh theories are known as GrandUni�es Theories(GUT). It promises to unify the three di�erent gauge oupling onstantsof the SM. The basi idea is that the three oupling onstants vary di�erently with respetto the energy sale and their renormalization group running shows that they tend to meetat some very high energy sale (∼ 1016 GeV) known as the GUT sale. Some new physisis expeted to appear at this sale whih an be desribed by a bigger gauge group withsingle oupling onstant, i.e., the grand uni�ed group.One natural extension of the standard model is to onsider a grand uni�ed theory, inwhih all three groups will be uni�ed [98℄. There will be only one uni�ed gauge group withonly one oupling onstants [25℄. At some higher energy, whih is the sale of uni�ation(MU ), the grand uni�ed group will break down to the standard model

GU
MU→ SU(3)c × SU(2)L × U(1)YAnother motivation for grand uni�ation is to treat the quarks and leptons in the equalfooting at higher energies by putting them in the same representation of the uni�ation



1.2 Beyond Standard Model of Particle Physics 13group. This quark-lepton uni�ation implies baryon and lepton number violation andhene, predits proton deay. There are several possible grand uni�ed theories dependingon the uni�ation gauge group and the symmetry breaking pattern with di�erent predi-tions. Some of the GUT models ruled out by present experiment while none of the GUTmodels has been veri�ed so far.SU(5) Grand Uni�ed TheoriesOur main purpose in onstruting the Grand uni�ed theory is to unify the three funda-mental fores and the theory only ontains only one gauge oupling onstant. Georgi andGlashow in 1973 proposed the SU(5) GUT ontaining the gauge group of rank 4 as theuni�ed group. It gives a beautiful way of unifying all the three standard model gaugeouplings. In the standard model the �rst generation ontains �fteen fermions, the left-handed up and down quarks of three �avors, the right-handed up and down quarks, theleft-handed neutrinos and left-handed and right-handed eletrons. In this SU(5) GUTmodel there is a unique way to aommodate all the �fteen quarks and leptons in the 5̄and 10 representations. The break up of these two multiplets of the SU(5) group in termsof the SM gauge group SU(3)C × SU(2)L × U(1)Y are:
5 ≡ (3, 1,−1

3
)⊕ (1, 2,

1

2
) and 10 ≡ (1, 1, 1) ⊕ (3̄, 1,−2

3
)⊕ (3, 2,

1

6
). (1.29)The right-handed down quark d ≡ (dr, dg, db) and right-handed (e+, ν̃e) doublet an prefer-ably be put into the 5̄ representation respetively. On the other hand the singlet hargedleft-handed anti-lepton e+, the left-handed u, d quark doublet and left-handed anti-u quarksinglet uc will be in 10, the antisymmetri part of the produt of two 5-plets.Similarly, 24(= 52 − 1) gauge bosons assoiated with the SU(5) gauge group an bedeomposed as follows:

24 ≡ (8, 1, 0) + (1, 3, 0) + (1, 1, 0) + (3, 2,−5

6
) + (3̄, 2,

5

6
) (1.30)whih are the gluons, eletro-weak gauge bosons and the new heavy X,Y gauge bosons.These new gauge bosons, X and Y, mediate the proton deay. One an have, for example,for the deay mode,

M(p→ e+π0) ∼ g2

m2
X

, (1.31)



14 CHAPTER 1. INTRODUCTIONwhere g is the GUT gauge oupling onstant. Hene, the proton lifetime is
τp ∼

m4
X

g4m5
p

. (1.32)Non-observation of proton deay puts a lower limit on these heavy gauge boson masses
mX,Y > 1015 GeV (1.33)Generally, the SU(5) symmetry is broken down to the low energy SU(3)C ×U(1)Q by twoHiggs salars Φ24 and H5 whih are in the adjoint 24 and 5 of SU(5). The breakdown ofthese two Higgs multiplets in the SU(3)C × SU(2)L × U(1)Y representation are given ineqns. (1.30) and (1.29) respetively.When the neutral omponent (1, 1, 0) of the the Φ24 gets a vev at the GUT sale, SU(5)breaks to the SM gauge group while getting a nonzero vev for H5 at the eletro-weak salebreaks the SM down to SU(3)C × U(1)Q.The stepwise breakdown of the gauge symmetry in this ase, thus, is

SU(5)
Φ24→ SU(3)C × SU(2)L × U(1)Y

H5→ SU(3)C × U(1)Q. (1.34)The rank of the SU(5) group is same as the rank of SM gauge group and so it is thesmallest GUT gauge group to aommodate SM gauge group. Its non-supersymmetriminimal version, whih was initially proposed, has got very tight onstraint on parameterspae from the negative results of the proton deay experiments and moreover does notunify the three gauge oupling onstant. However, several extensions have been studiedin literature and we will disuss one interesting senario later on where one an ahieveuni�ation of three fundamental interations using gravity as a orretion to all the threegauge oupling onstants.Gauge hierarhy problemA major di�ulty of the standard model is the gauge hierarhy problem [27℄. In order torealize this hierarhy between MU and MZ and hene the problem of naturalness let usalulate the quadrati divergene for the Higgs mass due to standard model fermions.The one loop orretion to the Higgs mass mH is obtained by alulating the two pointfuntion:
Πf

hh = (−1)

∫
d4k

(2π)4
Tr

(
(
−iλf√

2
)

i

k/ −mf
(
−iλf√

2
)

i

k/−mf

)
, (1.35)



1.2 Beyond Standard Model of Particle Physics 15where f is the fermion-salar-fermion oupling onstant. The loop momentum k an takeany value from zero to in�nity. This leads to a orretion whih is in�nite and makes thetheory ill-de�ned. So, we assume that our theory is valid upto a ut-o� sale . The aboveintegration, thus, beomes
Πf

hh = −22
f

∫

0

d4k

(2π)4

[
1

k2 −m2
f

+
2m2

f

(k2 −m2
f )2

]

= −
λ2

f

8π2
Λ2 + ... (1.36)Thus the orreted Higgs (mass)2 is
m2

H = m2
H0

+ δm2
H (1.37)where the orretion m. 2

H is proportional to the Πf
hh. In GUT we have a new sale at

1016 GeV. If there is no new physis before this sale then ∼ 1016 GeV and to have aHiggs mass of O(100 GeV) a �ne-tuning of the o-e�ient λf to 1 part in 1026 is needed.1.2.4 Renormalization group equationsThe renormalization group, in quantum �eld theory (QFT), tells us how di�erent ouplingsevolve with energy. But before disussing the renormalization group equations (RGE) anobvious question is: what is renormalization [26℄ ? In QFT, Green funtion is a most im-portant thing to be alulated and, in fat, these quantities are divergent in perturbativequantum �eld theory. The systemati way to remove these divergenes is known as renor-malization. There are di�erent ways to anel these in�nities. In order to renormalise thetheory we need a referene point whih is also arbitrary. Di�erent hoies of this referenepoint lead to di�erent sets of parameters for the theory, but physis should not depend onthe arbitrary hoie of the referene point and be invariant. This invariane leads to therenormalization group. In quantum �eld theory it is a useful method to examine the behav-ior of physis at a di�erent sale knowing the same at some other sale. Thus, measuringthe observables in a low energy experiment one an ompare with the values preditedfrom a theory at a higher sale, e.g at the GUT sale and ertify about the orretness ofthe theory.It was only after the realization of the fat that strength of an interation is not anabsolute onept but varies with the energy sale of the interation that led to the idea ofuni�ation of all the oupling onstants. In the standard model, variations of the gauge



16 CHAPTER 1. INTRODUCTIONoupling onstants with energy are given by the following renormalization group equations(RGEs)
16π2E

dgi

dE
= big

3
i = βSM (gi) (1.38)where i stands for U(1)Y , SU(2)L and SU(3)C and the right-hand-side is known as the

β-funtion of the orresponding oupling. This equation is valid for the lowest one-looporder in perturbations theory. One an write this equation as
d

d ln Eαi
−1(E) = − bi

2π
. (1.39)where, αi =

g2
i

4π .Using the measured values of these oupling onstants at the sale MZ as the initialvalues one an solve these equations as,
α−1

i (MU ) = α−1
i (MZ)− bi

2π
ln
MU

MZ
. (1.40)In the above equations the o-e�ients, bi, an be alulated for any SU(N) group as

bi = −11

3
C2(G) +

2

3
nfC2(R) +

1

3
nsC2(R) (1.41)where C2(R) is the quadrati Casimir operator for the representation R while C2(G) isthat for the adjoint representation. These Casimir operators are disussed below. In theabove equation nf is the number of hiral fermions and ns is the number of omplex salarsontributing to the β-funtion.The generators of a gauge group obey the following rules

Tr[taRt
b
R] = C(R)δab, (1.42)and

∑

a

taRt
a
R = C2(R).1 (1.43)where, the proportionality onstant C2(R) is the quadrati Casimir operator for thepartiular representation. One an easily show that the quadrati Casimir operator isrelated with the fator C(R) via

C2(R)d(R) = C(R)r (1.44)



1.2 Beyond Standard Model of Particle Physics 17where, r is the number of generators (= N2−1) of the SU(N) gauge group, equivalent tothe dimension of the adjoint representation, and d(R) is the dimension of the representationR. The SU(2) generators follow the ommutation relation
Tr[

τa

2

τ b

2
] =

1

2
δab. (1.45)As stated earlier the bigger GUT SU(N) group will be hosen in suh a way thatit will ontain the SU(2) as a subgroup. The generators of the SU(N) will also followthe same normalization ondition � eqn.(1.45) � and, thus, we have C(R) = 1

2 in thefundamental representation. Immediately eqn.(1.44) implies that for R = N , i.e for thefundamental representation the quadrati Casimir operator is C2(N) = N2−1
2N . For theadjoint representation C2(G) = N . For the U(1) gauge group these values will be C2(G) =

0 and C2(R) = C(R) = (Y/2)2.
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Figure 1.1: Evolution of the gauge ouplings in the standard modelSo, for the standard model, onsidering the ontribution of all the partiles listed inTable [6.2℄ one has for the three di�erent o-e�ients for the gauge groups U(1)Y , SU(2)Land SU(3)C




bY

b2L

b3C
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−19
6

−7


 . (1.46)



18 CHAPTER 1. INTRODUCTIONwhere, the GUT normalization fator 3
5 is already multiplied to alulate the o-e�ientfor the U(1)Y gauge group. Using these values of ‘b' one an �nd the evolution of the gaugeouplings with energy from eqn(1.40) as depited in Fig. 1.1 up to one loop ontributiononly.It shows that all three standard model gauge ouplings are trying to unify at somehigher sale ∼ 1015 GeV, omparable to the predited value of MG from the proton deaylimits. Although in this ase they are not unifying exatly, they do so in the supersymmetrisenario. We shall disuss these issues later elaborately.1.2.5 SupersymmetrySupersymmetry(SUSY) is a symmetry between fermions and bosons and it uni�es theonept of fermions and bosons keeping them in a same supermultiplets. It providesa solution to gauge hierarhy problem. Sine supersymmetry has not been observed innature, it must be broken at some higher energies, if it exists. R-parity invariane isimposed to eliminate fast baryon and lepton number violating terms. One of the mainmotivations of supersymmetry is that quadrati divergenes are absent. Although the �netuning of parameters required at tree level, there are no loop orretions that may requireany �ne tuning. This is beause the salars and fermions in the loop ontribute quadratidivergenes with opposite sign and similar form, so they anel in the limit of equal massesof fermions and salars in the loop. Thus, in the limit of exat supersymmetry, there areno quadrati divergene.In addition to providing a solution to the gauge hierarhy problem and allowing uni-�ation of the spae-time symmetry with internal symmetries, we now believe that theorret quantum theory of gravity is supersymmetri. The superpartners and their inter-ations predit interesting phenomenology in the next generation aelerators, whih areadded attrations of supersymmetry. There are also many osmologial onsequenes ofsupersymmetry inluding its predition for a natural andidate of old dark matter.The minimal supersymmetri standard model (MSSM), is an extension of the standardmodel where all partiles and their interations are made supersymmetri. The Lagrangianof a SUSY theory is determined my two funtions: the Kahler potential (K) and thesuperpotential (W) as follows

LSUSY =
1

2

∫
d4θK+

∫
d2θW + h.c.The Kahler potential is a real or vetor super�eld sine K† = K and the superpotential is



1.3 Cosmological Consequences of BSM physics 19a hiral super�eld.Hene the MSSM potential are as follows
K = Q†eG

AλA+WAτA+ 1

3
BQ+ U c†eG

AλA− 2

3
BU c +Dc†eG

AλA+ 1

3
BDc

+ L†eW
AτA− 1

2
BL+ Ec†eW

AτA− 1

2
BEc

+ H†
ue

WAτA+ 1

2
BHu +H†

de
WAτA− 1

2
BHd (1.47)

W = yuQHuU
c + ydLHdE

c + µHuHd

+
1

4g2
Y

BαBα +
1

8g2
L

Tr (W αWα) +
1

12g2
C

Tr (GαGα) (1.48)Supersymmetry must be a broken symmetry, beause exat SUSY would ditate that ev-ery superpartner is degenerate in mass with its orresponding SM partile, whih is learlyruled out by experiment. Possible ways to ahieve a spontaneous breaking of supersymme-try depend on the form of the high energy theory. Supersymmetry may even be expliitlybroken without losing its ability to solve the hierarhy problem as long as the breaking isof a ertain type known as soft breaking. If supersymmetry is broken softly, the superpart-ner masses an be lifted to a phenomenologially aeptable range. The sale of the masssplitting between the two partners should be of the order of 100 GeV-1 TeV, beause itthen an be tied to the sale of eletroweak symmetry breaking. In any ase, the e�etiveLagrangian at the eletroweak sale is expeted to be parameterized by a general set ofsoft supersymmetry- breaking (SSB) terms if the attrative features of supersymmetry areto be maintained, and the Lagrangian an be separated as MSSM L = LSUSY +LSoft withthe supersymmetri part is LSUSY and the SUSY violating part is LSoft.
1.3 Cosmological Consequences of BSM physics1.3.1 Cosmologial baryon asymmetryNowadays, one speaks about a "Standard Cosmologial Model", in analogy with its verysuessful ounterpart of partile physis. The Standard Cosmologial Model tells us thatthe Universe is in a phase of aelerated expansion and that the total energy in the Universeis shared among at least four omponents whih sum to Ωtot ∼ 1, meaning that the Universeis �at to a good preision. The dominant omponent (about 73%) is alled dark energy,dark matter makes about 23%, ordinary matter (both luminous and dark) only 4% andneutrinos 0.22%, the unertainty here stemming from the unknown absolute neutrino mass
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Figure 1.2: The mass-energy budget of the Uni-verse. Figure 1.3: The antiproton-to-proton ratio atthe top of the atmosphere, as observed (points)and predited from the models (lines) [49℄.sale.The standard osmologial model has several outstanding questions, the most impor-tant ones being the nature of dark matter and dark energy, mehanism of in�ation andbaryogenesis. The existene of dark matter was originally suggested to explain the galatirotation urves; it has also beome neessary to explain struture formation. The existeneof dark matter is generally aepted, but there are many andidates for dark matter par-tile waiting for experimental on�rmation. Dark energy is postulated in order to �t thesupernovae data, whih suggests that the expansion of the universe has started to aeler-ate during the late times. Dark energy is beoming more and more aepted as an idea,though there are very few redible andidates for the soure of this mysterious energy.In everyday life, almost everything that we interat with is made of matter. Antimatteris also rare in our loal galaxy (Milky Way). Ordinary matter, whih onstitutes our bodiesas well as the Earth and the stars, does not seem at �rst to introdue any hallenge toour understanding. However, this naive pereption is wrong beause two very puzzlingquestions remain:1. Why is antimatter essentially absent in the observable Universe?2. Why is the number density of baryons so small ompared to photons or neutrinos?These two questions are puzzling beause, aording to the Standard Big-Bang Theory,



1.3 Cosmological Consequences of BSM physics 21matter and antimatter evolved in the same way in the early Universe. On the other hand,today the observable Universe is omposed almost exlusively of matter. Antimatter isonly seen in partile physis aelerators and in osmi rays. Moreover, the rates observedin osmi rays are onsistent with the seondary emission of antiprotons, np̄/np ∼ 10−4(see Fig. 1.3).It is di�ult to answer why there is an exess of matter over antimatter in the universetoday. Reent measurements of the temperature anisotropy of the Cosmi MirowaveBakground (CMB) radiation by the WMAP probe [29℄, together with studies of largesale struture [30℄, have given us a reliable estimate of the baryon-to-photon ratio at theurrent epoh:
ηCMB

B ≡ nB

nγ
= (6.1 ± 0.2)× 10−10 , (1.49)where nB and nγ denote the number density of baryons and photons respetively. Thisnumber is also well agreement with the standard Big Bang Nuleosynthesis (BBN) analysisof the primordial abundanes of 3He, 4He, (D)deuterium and standard osmology. Moreimportantly though, the amount of O (
10−10

) for this ratio signi�es that there must havebeen a primordial baryon asymmetry in the early universe. This is beause if the universewas baryon-antibaryon symmetri at T ≃ O (100) MeV, the annihilation proess B+B →
2 γ would signi�antly redue both the value of nB/nγ and nB/nγ , before they subsequentlyfroze out at T ∼ 22 MeV when the annihilations beame ine�etive. By studying theBoltzmann evolution of the number density of the (anti)baryons in this senario, one anestimate the expeted baryon-to-photon ratio for today to be [31℄

nB

nγ
=
nB

nγ
= O

(
10−18

)
. (1.50)Hene, the apparent disrepany between (1.49) and (1.50) is a lear indiation that duringprimordial times, the universe must already have been matter-antimatter asymmetri, andthe urrent sarity of antimatter is just a manifestation of that fat.Baryogenesis and Sakharov's onditionsSine it is expeted that the Universe started with equal amount of baryons and anti-baryons, some interations of partile physis should have generated this small baryonasymmetry of the Universe before nuleosynthesis. We need a suessful theory whih willexplain the matter ontent of the present universe. Starting from a baryon symmetriUniverse , the proess of generating this small amount of baryon asymmetry is alled



22 CHAPTER 1. INTRODUCTIONBaryogenesis. The mehanisms that an lead to this asymmetry, has to satisfy the threebasi onditions for baryogenesis as pointed out by Sakharov in 1967 [32℄: a dynamialmodel should ontain proesses that1. violate baryon number, B,2. violate C and CP , and3. are out of thermal equilibrium.These are often referred to as the Sakharov onditions.B-number violation: Let us assign a positive number B for baryons while the or-responding antipartiles are given a negative number B ≡ −B for their baryon number.The �rst Sakharov's riterion is obvious as no inrease or derease of baryon number Ban happen if all interations in the model are B onserving.C and CP violation: For every B violating interation whih involves a baryon,
X → qq, there will be a mirror proess, X → q q, for the orresponding antibaryon thatan reate an exat negative amount of B and hene, no net B asymmetry may result ifboth types of proesses are equally likely. Hene, Sakharov's seond ondition demandsthat C (harge onjugation) and CP (harge onjugation plus parity �ip) violations areneessary as they will lead to di�erent rates for the partile and antipartile proesses, i.e.
Γ(X → qq) 6= Γ(X → q q).Departure from thermal equilibrium: From quantum mehanis, one an showthat the thermal expetation value of B vanishes in equilibrium. So, the ondition ofdeviation from thermal equilibrium for these proesses is essential.Sphaleron e�et: anomalous B+L violationIn the SM, the baryon number and the lepton number are aidental symmetries. It isthus not possible to violate these symmetries at the lassial level. To see how B and Lviolations ome about while at the same time reoniling their apparent onservation atlow energies, it is instrutive to study the eletroweak theory at both the lassial andquantum mehanial levels. A well known fat of the lassial SM Lagrangian is that ithas global U(1)B and U(1)L symmetries and is therefore invariant under the followingtransformations of the quark and lepton �elds:

U(1)B : q(x)→ q(x) eiθ ; ℓ(x)→ ℓ(x) , (1.51)
U(1)L : q(x)→ q(x) ; ℓ(x)→ ℓ(x) eiφ , (1.52)



1.3 Cosmological Consequences of BSM physics 23where θ and φ are onstants. Noether's theorem then implies that the lassial JB
µ and JL

µurrents are onserved:
∂µJB

µ = ∂µ
∑�avorsolors 1

3

(
qLγµqL + uRγµuR + dRγµdR

)
= 0 , (1.53)

∂µJL
µ = ∂µ

∑�avors (ℓLγµℓL + eRγµeR
)

= 0 , (1.54)where we have onveniently de�ned the baryon and lepton numbers for quarks and leptonsas: Bquark = 1/3, Blepton = 0, Lquark = 0 and Llepton = 1.In 1969, it was realized [43, 44℄ that through the Adler-Bell-Jakiw triangle anomalythese symmetries are nevertheless broken and as a result, the baryoni and the leptoniurrents are anomalous. Their divergenes are then given by
∂µJB

µ = ∂µJL
µ =

Nf

32π2

(
−g2Tr[W a

µνW̃
µν
a ] + g′2Tr[BµνB̃

µν ]
)
, (1.55)where g and g′ are the gauge ouplings of SU(2)L and U(1)Y respetively, with W a

µν and
Bµν the orresponding �eld tensors, and Nf denotes the number of generations.Another important observation from (1.55) is that ∂µJB

µ and ∂µJL
µ are idential andhene,

∂µ
(
JB

µ − JL
µ

)
= 0 . (1.56)In other words, the B−L quantum number is stritly onserved in the SM. However, it isalso lear from (1.55) that B + L must be violated. To dedue the orresponding hangein the B + L quantum number, one must evaluate the Eulidean integral of ∂µ(JB

µ + JL
µ )over d4x:

∆(B + L) ≡
∫
d4x ∂µJB+L

µ =

∫
d4x

2Nf

32π2

(
−g2W a

µνW̃
µν
a + g′2BµνB̃

µν
)
, (1.57)

= 2Nf ∆Ncs , (1.58)where ∆Ncs = ±1,±2, . . . is the hange in the Chern-Simons number.In 1976, 'tHooft published an artile [50℄ in whih he estimated the rate of these baryonnumber violating proesses. He onsidered the instanton solution between two separatevaua and alulated the ation assoiated with the saddle point on�guration betweenthem. This �eld on�guration is alled Sphaleron, from the Greek word meaning ready tofall, as the saddle point on�guration is inherently unstable. The probability of tunneling



24 CHAPTER 1. INTRODUCTIONbetween the vaua is approximately
Γ ∼ e−Sinst = e−

4π
α = O(10−170).This rate is so in�nitely small that the sphaleron proess is in no ontradition with thepratial observation of the lak of violation of B or L.The energy of the saddle point on�guration an be estimated by the sphaleron on-�guration. Below the eletroweak phase transition temperature (T < TEW), the transitionrate per unit volume was found to be

Γsph

V
∼ e

MW
α T ,whih is still very muh suppressed. In the symmetri phase (T > TEW), however, thetransition rate is no longer suppressed, but rather [51℄

Γsph

V
∼ α5 lnα−1 T 4.Sphaleron proesses an be in equilibrium when the sphaleron rate Γsph exeeds theexpansion rate of the Universe (H). By omparing the sphaleron rate ΓT>TEW

sph to H =

1.67
√
g∗ (where g∗ is the e�etive relativisti degrees freedom, MPl = 1.22 × 1019 GeV, isthe Plank mass), one an hek that the temperature T lies in the range [52℄

TEW ≤ T ≤ 1013GeV.Candidates for baryogenesisTo explain the osmi baryon asymmetry, several theories and models have been sug-gested. The most pleasing alternative has been eletroweak baryogenesis, sine it requiresno physis beyond the standard model, whereas other senarios require at least some ex-tension to it.Eletroweak baryogenesis: The standard model of partile physis, perhaps surpris-ingly, ful�lls all the Sakharov's onditions. The CP-violation enters through the Cabibbo-Kobayashi-Maskaawa (CKM) matrix. So, in priniple at least, the baryogenesis problemmay be solved within the framework of the SM. But it is found that the CP violation ob-served in the quark setor [33℄ (e.g. in K0-K̄0 or B0-B̄0 mesons system) is far too small [34℄to give rise to the observed ηB . Moreover, the present empirial lower limit on the Higgs



1.3 Cosmological Consequences of BSM physics 25mass, mHiggs > 114 GeV [35℄, implies that the eletroweak phase transition annot be �rstorder [36℄, making it di�ult for the baryon number violating sphaleron proesses in theSM to go out of thermal equilibrium. Sine baryogenesis an not be explained within thestandard model, the existene of baryons in our universe an be onsidered as evidene forphysis beyond the standard model.GUT baryogenesis: The standard model desribes the interations of partiles bytwo symmetry groups, SU(3)QCD and SU(2)L × U(1)Y . The motivation for grand uni-�ed theories is to explain all these interations by a single large symmetry group, whihinludes all these groups as it's subgroups. Sine no spei� GUT theory has been found,there are many di�erent models tossed around with many ommon properties. All theSakharov's ondition are easily ful�lled in GUT models. The B-number violation is anunavoidable onsequene in grand uni�ed models, as quarks and leptons are uni�ed in thesame representation of a single group. Furthermore, su�ient amount of CP violation anbe inorporated naturally in GUT models, as there exist many possible omplex phases,in addition to those that are present in the SM. The relevant time sales of the deays ofheavy gauge bosons or salars are slow, ompared to the expansion rate of the Universeat early epoh of the osmi evolution. The deays of these heavy partiles are thus in-herently out-of-equilibrium. But the GUT baryogenesis senario has di�ulties with thenon-observation of proton deay, whih puts a lower bound on the mass of the deayingboson, and therefore on the reheat temperature after in�ation. Simple in�ation models donot give suh a high reheat temperature, whih in addition, might regenerate unwantedrelis.A�ek-Dine baryogenesis: The A�ek-Dine baryogenesis [40, 41℄. involves osmo-logial evolution of salar �elds whih arry B harges. It is most naturally implementedin SUSY theories. Nevertheless, this mehanism faes the same hallenges as in GUTbaryogenesis and in EW baryogenesis.Leptogenesis: It is another beautiful mehanism put forward by Fukugita and Yanagida[37℄ where deay of the lightest heavy Majorana neutrino produes a CP violating out-of-equilibrium deay. Our main work fouses on the motivated realization of leptogenesis:eletromagneti leptogenesis via 5D and 6D-dipole moment interations like standard lep-togenesis mediated by Yukawa ouplings.



26 CHAPTER 1. INTRODUCTION1.3.2 LeptogenesisLeptogenesis is a mehanism whih an generate a lepton asymmetry of the Universe beforethe eletroweak phase transition whih an be further onverted to the required baryonasymmetry of the Universe in the presene of Sphaleron. The failure of the minimal SMto dynamially generate the orret amount of baryon asymmetry together with the fatthat SM sphaleron stritly onserve the B−L quantum number have motivated us to lookfor new physis that an violate lepton number L when takling the baryogenesis problem.Indeed, if neutrinos are Majorana, then the indued dim-5 mass term: y2ℓL φφ
T ℓcL/Λ,will violate L by two units. Therefore, it is natural to ask whether suh lepton violatinginterations an atually lead to the observed baryon asymmetry.The expression for �nal baryon asymmetry via sphaleron transitions an be written interms B − L or L [85, 86℄ is

B =
28

78
(B − L) = −28

51
L , (1.59)from whih one an onlude that an initial B − L asymmetry an be partially onvertedinto a B asymmetry by sphaleron and other SM proesses.In this work, we are espeially interested in the leptogenesis senario involving type Iseesaw models [37℄ beause, in our opinion, it presents the most �elegant� solution to boththe smallness of neutrino masses and the observed baryon-to-photon ratio, while it onlyrequires a rather modest extension of the SM. In addition to leptogenesis in type I senario,it should be added in passing that leptogenesis based on type II [60,66,67℄, type III [68,69℄seesaw are also possible.Leptogenesis with hierarhial RH neutrinosThe generi leptogenesis senario of Fukugita and Yanagida [37℄ involves the type I seesawLagrangian of (1.60) with three heavy RH Majorana neutrinos, so that the L violatingYukawa interations between the RH neutrinos and the ordinary LH leptons an generatea B − L asymmetry during the primordial times. The spetrum of the RH neutrino isassumed to be hierarhial masses in this senario (i.e,M1 < M2 < M3), and therefore theasymmetry reated will be dominated by the deays of the lightest RH neutrinos (denoted

N1) due to the e�ient washout of anyN2,3-generated asymmetries byN1 mediated ∆L 6= 0sattering proesses in equilibrium. Also the Majorana masses of heavy neutrinos areassumed to be GUT sale and this guarantees suessful seesaw mehanism produing



1.3 Cosmological Consequences of BSM physics 27left-handed light neutrinos with the orret mass sale.We an write the Lagrangian (1.60) in the mass eigenbasis of the heavy RH neutrinos(denoting the heavy RH Majorana neutrinos with N ≡ νR
′ + (νR

′)c where νR
′ is the masseigenstate after the hange of basis from νR.) as

Lint = −yαβ ℓα φ̃ eβ − hjk ℓj φNk −
1

2
Nk Mk Nk + h.. , (1.60)where �avor indies α, β, j an be one of e, µ or τ , and k = 1, 2, 3 are labels for the lightestto heaviest RH neutrinos (with mass Mk). The SU(2)L doublets: ℓα = (νL, eL)Tα and

φ = (φ0, φ−)T have their usual meanings, with φ̃ = iσ2φ
∗ being the harge onjugateHiggs. The Yukawa ouplings hjk ℓj φNk in (1.61) an then indue heavy RH neutrinodeays via two hannels:

Nk →





ℓj + φ ,

ℓj + φ ,
(1.61)whih violate lepton number by one unit. All Sakharov's onditions for leptogenesis willbe satis�ed if these deays also violate CP and go out of equilibrium at some stage duringthe evolution of the early universe. The requirement for CP violation means that ouplingmatrix h in (1.60) must be omplex and the mass of Nk must be greater than the ombinedmass of ℓj and φ, so that interferenes between the tree-level proess (Fig. 1.4a) and the one-loop orretions (Fig. 1.4b, ) with on-shell intermediate states will be nonzero. Clearly,both of these are possible as type I seesaw mehanism naturally implies a very large Mkin order to indue small LH neutrino masses, while it does not forbid the presene of CPviolating phases in the RH neutrino setor. The ondition of thermal non-equilibrium isahieved when the expansion rate of the universe exeeds the deay rate of Nk. In pratiethis requirement is given by

ΓD|T=M1
< H|T=M1where M1 is the mass of heavy neutrino.Now the formula for CP asymmetry in the lepton number prodution due to Nk deays:

εkj =
Γ(Nk → ℓj φ)− Γ(Nk → ℓj φ)

Γ(Nk → ℓj φ) + Γ(Nk → ℓj φ)
. (1.62)Expliit alulation of the interferene terms, in ase of N1 dominated senario, will then
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(a) (b) (c)Figure 1.4: The (a) tree-level, (b) one-loop vertex orretion, and () one-loop self-energy orretiongraphs for the deay: Nk → ℓj φ.result in [38, 39℄:
ε1 =

1

8π

∑

m6=1

Im [
(h†h)21m

]

(h†h)11

{
fV

(
M2

m

M2
1

)
+ fS

(
M2

m

M2
1

)}
, (1.63)where fV (x) and fS(x) are given by

fV (x) =
√
x

[
1− (1 + x) ln

(
1 + x

x

)] and fS(x) =

√
x

1− x (1.64)whih denote the vertex and self-energy ontributions respetively. The tree-level N1 deayrate (at T = 0) used to alulate the denominator of (1.62) with j summed is given by:
Γ(N1 → ℓ φ) ≡ Γ(N1 → ℓ φ) =

(h†h)11
16π

M1 . (1.65)Suppose that |hjk| ≤ |h33| for all j and k, then in the hierarhial limit of M1 ≪M2,3,the seesaw relation gives:
m3 ≃

|h33|2 〈φ〉2
M3

, (1.66)where m3 is mass of the heaviest LH neutrino. Assuming these onditions, and using thefat that
|fV (x) + fS(x)| ≃ 3

2
√
x
, for x≫ 1 , (1.67)one an estimate the CP asymmetry as

|ε1| ≃
3

16π
|h33|2

(
M1

M3

)
sin δN , (1.68)

=
3

16π

m3M1

〈φ〉2 sin δN , (1.69)where in the last line we have used (1.66). The quantity: sin δN , is a measure of the



1.3 Cosmological Consequences of BSM physics 29amount of CP violation in the deay with δN = arg [
(h†h)213

] whih is in general di�erentfrom the CP phase appearing in neutrino osillations. Relation (1.69) implies that the sizeof |ε1| annot be arbitrarily large for a givenM1. Taking m3 ≃ 0.05 eV and 〈φ〉 ≃ 174 GeV,one gets a useful ballpark estimate of the maximum CP asymmetry as
|ε1|max ≈ 10−6

(
M1

1010 GeV)
. (1.70)Within the type I seesaw paradigm, this result atually holds in general as long as the LHneutrinos are strongly hierarhial [74℄.Boltzmann equations for leptogenesisLeptogenesis is losely related to the lassial GUT baryogenesis [31℄, where the deviationof the distribution funtion of some heavy partiles from its equilibrium distribution pro-vides the neessary departure from thermal equilibrium. The non-equilibrium proess ofbaryogenesis via leptogenesis is usually studied by means of Boltzmann equation [56, 83℄.We shall onsider the simplest ase where the initial temperature is larger than M1, themass of the lightest heavy neutrino. In priniple, one should take into aount all B- and

L-violating proesses. In this treatise, however, we onsider only deays, inverse deays,
∆L = 2 sattering and the sphalerons.Within this minimal framework, the Boltzmann equations an be written as

dYN1

d z
= −(D + S)

[
YN1
− Y eq

N1

] (1.71)
dYB−L
d z

= −ǫN1
D

[
YN1
− Y eq

N1

]
−WYB−L (1.72)where z = M1/T . There are four lasses of proesses whih ontribute to the di�erentterms of the equations: deays, inverse deays, ∆L = 1 satterings and ∆L = 2 proessesmediated by heavy neutrinos. The �rst three all modify the N1 abundane and try topush it towards its equilibrium value N eq

1 . In this ase, we have onsidered the normalizedquantity YN1
= N1/s, s is the entropy of the Universe. The term D = ΓD/(H z) aountsfor deays and inverse deays, while the sattering term S = ΓS/(H z) represents thesattering proess mediated by the heavy neutrino. Also Deays are the soure term for

B − L asymmetry generation while W = ΓW /(H z) is the wash-out term whih tries toerase the net B − L asymmetry produed by the deay proess.This oupled set of Boltzmann equations may be solved numerially or (semi-)analytiallyby asymptoti methods. Either way, the onlusion is that for a wide range of seesaw neu-
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Figure 1.6: The ∆L = ±2 s- and t-hannel sattering proesses mediated by N .trino parameters, a nonzero exess of B − L an be generated [81�83℄. Expliitly, if oneexpresses the maximum baryon-to-photon ratio generated as
ηmax

B ≃ 0.96 × 10−2 |ε1|κmaxf , (1.73)with κmaxf denoting the maximum �nal e�ieny fator obtained from solving the Boltz-mann equations, and the pre-fator of 0.96×10−2 oming from the dilution due to imperfetsphaleron onversion and photon prodution before reombination, then one may diretlyrestrit the possible neutrino parameter spae for suessful baryogenesis via |ε1| (and tosome degree κf beause the reation rates depend on the mass of N1 and the Yukawas).In the best ase senarios where a maximum e�ieny fator of about κmaxf ≈ 0.18 isahieved [81�83℄, and assuming strongly hierarhial LH neutrinos, then one obtains alower bound for the heavy RH neutrino mass M1 as
M1 & 3.5× 109 GeV , (1.74)where we have used relation (1.70) and taken the value of ηB given by (1.49).More generally, in many situations with M1 . 1014 GeV, one has, to good approxima-



1.3 Cosmological Consequences of BSM physics 31tion, κf ≃ 2× 10−2. This then implies that a raw CP asymmetry of about |ε1| ≃ 3× 10−6is required for baryogenesis to sueed.In summary, we have highlighted some of the essential features in quantitatively un-derstanding the lassi leptogenesis senario of [37℄ whih has the type I seesaw setup asits bakbone. Spei�ally, we have disussed the �standard� situation where the heavyRH Majorana neutrinos are strongly hierarhial. As a result, only the lightest of thethree RH neutrinos, N1, is expeted to ontribute signi�antly to the �nal asymmetry.This is beause the B −L violating interations mediated by N1 would still be in thermalequilibrium when N2,3 deayed away, and therefore any exess B − L produed by N2,3would be erased. When the N1's eventually deay out-of-equilibrium, an exess of B − Lis reated through CP violating loop e�ets. Subsequently, this exess is onverted into a
B asymmetry by SM sphaleron.The exat amount of B generated in this way depends ruially on the interplay betweenthe deay and washout proesses, as well as the raw CP asymmetry the neutrino modelunder onsideration ontains. By studying the Boltzmann evolution of the partile speiesand the expliitly alulating the loop diagrams, both of these ruial ingredients may beonveniently enapsulated into the e�ient fator (κf) and CP asymmetry (ε1) respetively.Consequently, variations to the standard senario an be quanti�ed by hanges in thesevalues.Over the years, there has been a dramati inrease in the sophistiation of the quanti-tative analysis of leptogenesis. Many previously negleted e�ets suh as thermal orre-tions [84℄, spetator proesses [80, 81℄ and, above all, �avor e�ets [75, 77, 79℄ have beenonsidered in reent analyses. Other variations to the general sheme, inluding asymmetryprodution dominated by the deays of the seond lightest RH neutrino N2 [76℄, resonantleptogenesis [59, 88, 89, 91�94℄ and models with more than three heavy RH neutrinos [78℄,have also reeived attention. In the next few subsetions, we will brie�y mention some ofthese ideas whih go beyond the standard senario, and hint on how they may broaden thelass of neutrino models that will lead to suessful leptogenesis.1.3.3 Resonant leptogenesisThe possibility of quasi-degenerate RH neutrinos are not exluded by any existing ex-perimental data nor they are forbidden by the generi seesaw setup. In this ase, theleptogenesis is known as resonant leptogenesis [59,88,89,91�94℄ whih an our when themass splitting between two RH neutrinos beomes small enough, leading to enhanement



32 CHAPTER 1. INTRODUCTIONof the CP asymmetry εj . One need to worry about two main issues namely: the sizeof the CP asymmetry and the �nal e�ieny fator. When onsidering the situation of
Mj ≃Mk for j 6= k more losely, we �rst realize that, qualitatively, the washout rate mustinrease at T ≃ Mj,k beause L violating sattering proesses mediated by Mj and Mkwould both be ative, providing more ways to erase the generated asymmetry. Seondly,in the expression for εj, we have either employed the approximation of Mk/Mj ≫ 1 or
Mk/Mj ≪ 1. However, a quasi-degenerate RH neutrino spetrum demands the onditionof Mk/Mj = O (1), and hene the limits on εj must be re-studied.In the expression for εj in previous ase, we see that the most interesting behavior mustome from the self-energy orretion term, fS(x) as Mj →Mk as

lim
x→1

fS(x) = lim
x→1

√
x

1− x = lim
Mj→Mk

Mj Mk

M2
j −M2

k

, with x ≡M2
k/M

2
j ,

?
=∞ . (1.75)This onlusion omes from the fat that, in the alulation of the self energy ontributionby Buhmuller and Covi, they do not have to use Pinh mehanism. One may follow there summation approah of [88, 91, 93℄ where an additional regulating absorptive term dueto the �nite deay width of Mj,k naturally emerges to overome suh onlusion. Theself-energy ontribution to the CP violation parameter, near the degenerate ase, is thenmodi�ed to [88, 91, 93℄

εj ≃
Im [

(h†h)2jk

]

(h†h)jj(h†h)kk

2(M2
j −M2

k )Mj Γj

(M2
j −M2

k )2 + 4M2
j Γ2

j

, (1.76)where j, k = 1, 2 or 2, 3 (j 6= k) and Γj = (h†h)jj Mj/16π is the generalization of thetree-level deay rate as de�ned in (1.65). From the expression of (1.76), one an see that
εj → 0 when Mj →Mk in aordane with the observation that the RH neutrino runningin the loop must be di�erent from the deaying one in order to generate an asymmetry.More importantly, Eq. (1.76) indiates that the CP asymmetry will be enhaned pro-vided that the mass splitting between the two RH neutrinos oinides with the region ofmass parameters about whih the εj funtion peaks. Spei�ally, one requires

|Mj −Mk| ∼ Γj,k , (1.77)to maximize the resonant e�et. With this, one an see that if the Yukawa ouplings are
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(h†h)2jk

]

(h†h)jj(h†h)kk
= O (1) , (1.78)then εj an be as large as O (1), hene provide a lot more leverage for suessful leptogene-sis. Indeed, the inrease in washout due to the tiny mass gap between Nj 's will eventuallysaturate when the degenerate limit reahes a ertain point and the enhanement from res-onant e�ets will be able to dominate the outome. Consequently, given the substantialenhanement by resonant leptogenesis, some of the stringent onstraints on the neutrinoproperties imposed by the standard hierarhial senario may be evaded. Most notably,the lower bound (1.74) on M1 is ompletely removed, leading to the possibility of TeVsale RH neutrinos and TeV leptogenesis [88, 94℄. In SUSY leptogenesis theories, this ispartiularly advantageous as the upper bound on the reheating temperature (Treh) dueto BBN onstraints on gravitino over-prodution, is often in on�it with the ondition,

Treh & Mj , normally required for the su�ient thermal generation of Nj 's whih partiipatein L reation. Furthermore, N2- and even N3-leptogenesis are now easily ahievable underthis senario, and hene the set of appliable seesaw models is signi�antly expanded.Certainly, this partiular model and many others that employ resonant leptogenesis anhave the RH Majorana neutrinos to be as small as 1 TeV and depending on their ouplingsto SM partiles, ollider signatures of them may also aessible in the near future [89,94℄.Reently a very interesting possibility of eletromagneti leptogenesis [193℄ has been pro-posed, wherein the soure of CP violation has been identi�ed with the eletromagnetidipole moment(s) of the neutrino(s). For a olletion of neutrino �elds of the same hiral-ity, the most general form of suh ouplings is given by νc
j (µjk + iγ5Djk)σαβνkB

αβ, where
Bαβ denotes the U(1) �eld strength tensor. The magneti and eletri transition momentmatries, µjk and Djk, eah need to be antisymmetri. For two Majorana neutrinos om-bining to give a Dira partile, the resultant matrix, learly, does not not su�er from suhrestritions. The aforementioned dimension-�ve operators are, presumably, generated bysome new physis operative beyond the eletroweak sale. With CP -violation being en-oded in the struture of the dipole moments, the deays of heavier neutrinos to lighterones and a photon, an, in priniple, lead to a lepton asymmetry in the universe. Althoughthe proposal is a very interesting one, thus far it has not been inorporated in any realistimodel. We propose a spei� model for resonant eletromagneti leptogenesis whih willbe presented in detail later on. A guiding priniple in our quest is that the new physisshould be at the TeV sale so as to render the model testable at the LHC or future LinearColliders
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1.4 Outline of our workThe observational evidene for nonzero neutrino masses, origin of parity violation, ultimateuni�ation of fundamental fores and osmologial matter-antimatter asymmetry providesa strong indiation for physis beyond the SM. The goal of the thesis is to study severallasses of non-susy and supersymmetri models to address these issues like spontaneouslyparity breaking, neutrino mass via seesaw mehanism and their onnetion to lepton asym-metry and self onsisteny with RG running of the oupling onstant.The �rst part of our work (Chapter-2) is a omprehensive analysis on supersymmetrileft-right models in the ontext of spontaneous parity breaking. We propose a novel imple-mentation of spontaneous parity breaking in supersymmetri left-right symmetri model,avoiding some of the problems enountered in previous studies by inluding a bitripletand a singlet, in addition to the bidoublets whih extend the Higgs setor of the MinimalSupersymmetri Standard Model (MSSM).In Chapter (3), we will disuss the di�erent senarios of spontaneous breaking of D-Parity in both non-Susy and Susy version of left right symmetri models. Main motivationof this work is to explore the possibility of a TeV sale SU(2)R breaking sale MR andhene TeV sale right handed neutrinos from both minimization of the salar potential aswell as the oupling onstant uni�ation point of view with spontaneous D-parity breakingsheme.In Chapter (4), we will study the question of parity breaking, neutrino mass and lep-togenesis problem in a supersymmetri left-right model, in whih the left-right symmetryis broken with Higgs doublets (arrying B − L = ±1).In Chapter (5), we analyze the SU(5) gauge oupling uni�ation and argue that thegravitational orretions to gauge oupling onstants may not vanish when higher dimen-sional non-renormalizable terms are inluded in the problem.In Chapter (6), we shall disuss the eletromagneti interations between the LH andRH neutrinos. The inlusion of heavy RH neutrinos to the SM as in type I seesaw thennaturally gives rise to new transition eletromagneti moments involving both LH and RHneutrinos. Our main goal is to �nd a realisti model that will give leptogenesis senarioby expliitly alulating the CP asymmetry oming from the out-of-equilibrium deays ofthe heavy RH neutrinos via eletromagneti interations.Finally, we onlude our entire work in Chapter (7).



Chapter
2

Spontaneous Parity breaking in

SUSYLR model

The left-right symmetri model has sine long reeived onsiderable attention as a simpleextension of the standard model and it has already been disussed in setion (1.2.2) ofhapter-[1℄. As we know, hirality is an elegant ingredient of nature whih prevents undulylarge masses for fermions, on the other hand, most of nature is left-right symmetri suggest-ing the reasonable hypothesis that parity is only spontaneously broken, a priniple builtinto the left-right symmetri models. This lass of models also provides a natural embed-ding of eletroweak hyperharge, giving a physial explanation for the required extra U(1)as being generated by the di�erene between the baryon number (B) and the lepton num-ber (L). Thus, B −L, the only exat global symmetry of SM beomes a gauge symmetry,ensuring its exat onservation, in turn leading to several interesting onsequenes.One of the attrative features of the supersymmetri models is it's ability to providea andidate for the old dark matter of the universe. This however relies on the theoryobeying R-parity onservation [112, 113℄, de�ned as R = (−1)3(B−L)+2S de�ned in termsof the gauged (B − L), in order to prevent fast proton deay whih we don't want. InMSSM, R-parity is not automati and is ahieved by imposing global baryon and leptonnumber onservation on the theory as an additional requirements. It is therefore desirableto seek supersymmetri theories where, like the standard model, R-parity onservation(Baryon and lepton number onservation) beomes automati. The supersymmetri left-
35



36 CHAPTER 2. SPONTANEOUS PARITY BREAKING IN SUSYLR MODELright theory an give explanation to all the puzzles of the Standard Model. This kindof theory implements the seesaw mehanism for neutrino masses and gives satisfatoryanswer to the parity breakdown as seen in low energy eletroweak theory [99, 100℄. Sineright handed neutrino is a automati onsequenes of supersymmetri left-right theory, itan explain the tiny neutrino mass and osmi baryon asymmetry of the present universe.The minimal supersymmetri left-right theory has its own limitations like other theoriesand we shall explain some of them in the next setion. One need a self-onsistent theorywhih an overome these drawbaks and we will give suh a set up to solve the problem.In this hapter we will disuss another interesting model, whih is self onsistent andphenomenologially rih, with one opy of bitriplet and parity odd singlet whih ahievesthe goal of spontaneous parity breaking in supersymmetri left-right model.
2.1 Discussion of spontaneous parity breaking in minimal SU-

SYLR modelWe review the partile ontent of the SUSYLR model in order to show parity an notbe spontaneously broken in the minimal model. In the left-right symmetri models, itis assumed that the MSSM gauge group SU(3)c ⊗ SU(2)L ⊗ U(1)Y is enhaned at somehigher energy, when the left-handed and right-handed fermions are treated on equal footing.The minimal supersymmetri left-right (SUSYLR) model has the gauge group SU(3)C

⊗ SU(2)L ⊗ SU(2)R ⊗ U(1)B−L whih ould emerge from a supersymmetri SO(10)grand uni�ed theory.The quark and lepton super�elds in a supersymmetri left-right [99�103℄ model is givenby their transformations are given by,
Q ≡ [3, 2, 1,

1

3
], Qc ≡ [3∗, 2, 1,−1

3
],

L ≡ [1, 2, 1,−1], Lc ≡ [1, 1, 2, 1] (2.1)where, the numbers in the brakets denote the quantum numbers under SU(3)C , SU(2)L,
SU(2)R, U(1)B−L. We have omitted the generation index for simpliity. The left-rightsymmetry ould be broken by either doublet Higgs salars or triplet Higgs salar. It hasbeen argued that for a minimal hoie of parameters, it is onvenient to break the groupwith a triplet Higgs salar. The minimal Higgs super�elds required for the symmetry



2.1 Discussion of spontaneous parity breaking in minimal SUSYLR model 37breaking is
∆ ≡ [1, 3, 1, 2], ∆̄ ≡ [1, 3, 1,−2)],

∆c ≡ [1, 1, 3,−2)], ∆̄c ≡ [1, 1, 3, 2)],

Φi ≡ [1, 2, 2∗, 0], (i = 1, 2). (2.2)As pointed out in [121℄, the bidoublets are doubled to ahieve a non vanishing Cabibbo-Kobayashi-Maskawa (CKM) quark mixing and the number of triplets is doubled for thesake of anomaly anellation. The left-right symmetry is implemented in these theories asa disrete parity transformation as
Q←→ Q∗

c , L←→ L∗
c , Φ←→ Φ†

∆←→ ∆c∗, ∆̄←→ ∆̄c∗. (2.3)The minimal supersymmetri left-right model however an not break parity spontaneously.To prove this statement, we will follow the disussions of Kuhimanhi and Mohapatralosely [115, 116℄. The superpotential for this theory is given by
W = Y (i)qQT τ2Φiτ2Q

c + Y (i)lLT τ2Φiτ2L
c

+ i(hLT τ2∆L+ h∗LcT τ2∆
cLc)

+ µ∆Tr(∆∆̄) + µ∗∆Tr(∆c∆̄c) + µijTr(τ2ΦT
i τ2Φj) (2.4)All ouplings Y (i)q,l , µij , µ∆, h in the above potential, are omplex with the additionalonstraint that µij , h and h∗ are symmetri matries. It is lear from the above eqn. thatthe theory has no baryon or lepton number violation terms. The potential obtained fromthe above superpotential via F and D �at onditions and inluding the soft-SUSY breakingterms is given by

VSUSY = VF + VD + Vsoft (2.5)where,
VF = Tr|m∆∆|2 + Tr|m∆∆

c|2 + |m∆|2Tr(∆†∆ + ∆c†∆c) + 2Tr|µΦT |2 (2.6)
VD = Tr|m∆∆|2 + Tr|m∆∆

c|2 + |m∆|2Tr(∆†∆ + ∆c†∆c) + 2Tr|µΦT |2 (2.7)



38 CHAPTER 2. SPONTANEOUS PARITY BREAKING IN SUSYLR MODEL

Vsoft =
(
M1 −m2

δ

)
Tr[∆†∆ + ∆c†∆c +

(
M2 −m2

δ

)
Tr[∆

†
∆ + ∆

c†
∆

c
]

+ M ′2Tr[∆∆̄ + ∆c∆̄c] + h.c.

+ (M2
Φij
− 4µ2)Tr(Φ†

iΦj) +

[
µ′ij
2

Tr(τ2Φ
T
i τ2Φj)

]
+ h.c. (2.8)Here one an hoose the mass-squared termsM ′2 and µ2 positive and real sine their phasean be absorbed in rede�nition of oupling onstants, triplets (∆'s) and bidoublet (Φ's).Here, we have hosen the vevs of quarks and leptons to be zero for the time being.There are various ranges of vev's of Higgs �elds whih make the susy potential boundedfrom below. Demanding that the potential should have a �nite ground state, one angenerally dedue onstraint on the mass parameters depending upon the hoie of the vev'sof Higgs �eld. The advantage of doing this is to orrelate di�erent mass sales (shown inTable(2.1)) with eah other suh as:

M ′2 = M1M2 cos 2θ, µ2 = M2
Φij

sin 2θ′ (2.9)
Vev Constraints

〈∆〉 = 〈∆c〉 = v2τ1, 〈Φ〉 = 0, M2
1,2 ≥ 0

〈∆〉 = 〈∆c〉 = 0

〈∆〉 = 〈∆c〉 = (v2/M1)τ1, 〈Φ〉 = 0, M ′2 ≤M1M2

〈∆〉 = 〈∆c〉 = −(v2/M2)τ1

〈∆〉 = 〈∆c〉 = 〈∆〉 = 〈∆c〉 = 0, 〈Φ〉 = 0 M2
Φij
≥ 0 and µ2 ≤M2

Φijand k = k′ = 0Table 2.1: Constraints on mass-squared parameters from ground state of the potentialThe Higgs potential with this hoie an be written as
VSUSY = cos2 θTr[(M1∆ +M2∆

†
)†(M1∆ +M2∆

†
)]

+ sin2 θTr[(M1∆−M2∆
†
)†(M1∆−M2∆

†
)]

+ M2
Φij

[cos2 θ′(k + k′∗)∗(k + k′∗) + sin2 θ′(k − k′∗)∗(k − k′∗)]

+ ∆→ ∆c + ∆→ ∆
c
+ VDterms



2.2 SUSYLR Model including a Bitriplet and a Singlet 39One of the most important problems is the spontaneous breaking of left-right symme-try [115, 116℄, viz., all vauum expetation values breaking SU(2)L are exatly equal inmagnitude to those breaking SU(2)R, making the vauum parity symmetri. In mathemat-ial language, this an be inferred as: the ground state of the Higgs potential is VSUSY = 0i�
〈∆〉 = 〈∆〉 = 〈∆c〉 = 〈∆c〉 = k = k′ = 0From above disussion, It turns out that left-right symmetry imposes rather strong on-straints on the ground state of this model. Also that there is no spontaneous paritybreaking for this minimal hoie of Higgs in the supersymmetri left-right model and assuh the ground state remains parity symmetri. There have been suggestions to solvethis problem by introduing additional �elds, or higher dimensional operators, or by goingthrough a di�erent symmetry breaking hain or breaking the left-right symmetry alongwith the supersymmetry breaking [115�117, 121, 121, 123, 130℄.If parity odd singlets are introdued to break this symmetry [122℄, then it was shown[115℄ that the harge breaking vaua have a lower potential than the harge-preservingvaua and as suh the ground state does not onserve eletri harge. A reent improvement[117℄ using a parity even singlet may however deviate signi�antly fromMSSM, and remainsto be explored fully for its phenomenologial onsisteny. Breaking R parity was anotherpossible solution to this dilemma of breaking parity symmetry. However, if one wantsto prevent proton deay, then one must look for alternative solutions. One suh possiblesolution is to add two new triplet super�elds Ω(1, 3, 1, 0), Ωc(1, 1, 3, 0) where under paritysymmetry Ω↔ Ω∗

c . This �eld has been explored extensively in [114,118,119,121,123,130℄.But these models has it's own disadvantage from the osmologial point of view.We propose an another model to solve the problem of spontaneous parity breaking byadding a bitriplet and parity odd singlet under SU(2) gauge group to the partile ontentof the minimal supersymmetri left-right model.
2.2 SUSYLR Model including a Bitriplet and a SingletWe now reapitulate the important features of the minimal left-right symmetri modelextended with one bitriplet and parity odd singlet salar �eld in the ontext of spontaneousparity violation and RG running of fermion masses. These extra �elds are vetor-like andhene do not ontribute to anomaly, so we onsider only one of these �elds.The gauge group of this model is SU(3)C × SU(2)L × SU(2)R × U(1)B−L × P . The



40 CHAPTER 2. SPONTANEOUS PARITY BREAKING IN SUSYLR MODELquantum numbers for the super�elds inluding the salar �elds η and σ, under the gaugegroup onsidered are given by the table [2.2℄ as follows
SU(3)c × SU(2)L × SU(2)R × U(1)B−LMatter Super�led:

Q 3 2 1 +1/3
Qc 3 1 2 −1/3
L 1 2 1 −1
Lc 1 1 2 +1Higgs Super�led:
Φa 1 2 2 0
∆ 1 3 1 +2
∆c 1 1 3 −2
∆̄ 1 3 1 −2
∆̄c 1 1 3 +2
η 1 3 3 0
σ 1 1 1 0Table 2.2: This table shows the partile ontent and their quantum number under the gauge groups

SU(3)C × SU(2)L × SU(2)R × U(1)B−L.The Q and the L are the standard quarks and leptons of the MSSM while the Qcand Lc ontain the orresponding right-handed onjugate �elds. In order to keep thismodel general, we allow for two bidoublets i.e, Φa (a = 1, 2. The harge is determined bythe equation Q = I3L + I3R + B−L
2 , where I3L, I3R are the 3rd omponent of isospin ofthe SU(2)L, SU(2)L representation of the partile ontent. The representation of thesesuper�elds in matrix form is

Q =


u
d


 ≡ [3, 2, 1,

1

3
] , Qc =


u

c

dc


 ≡ [3, 1, 2,−1

3
] ,

L =


ν
e


 ≡ [1, 2, 1,−1] , Lc =


N

c

ec


 ≡ [1, 1, 2,−1] (2.10)Unlike in MSSM, here the Higgs setor onsists of the bidoublet and triplet super�elds:

Φ1 =


 φ0

11 φ+
11

φ−12 φ0
12


 ≡ [1, 2, 2, 0], Φ2 =


 φ0

21 φ+
21

φ−22 φ0
22


 ≡ [1, 2, 2, 0] ,

∆ =




∆−
L√
2

∆0
L

∆−−
L −∆−

L√
2


 ≡ [1, 3, 1,−2], ∆̄ =




δ+

L√
2

δ++
L

δ0L − δ−
L√
2


 ≡ [1, 2, 1, 2] , (2.11)
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∆C =




∆−
R√
2

∆0
R

∆−−
R −∆−

R√
2


 ≡ [1, 1, 3,−2] , ∆̄C =




δ+

R√
2

δ++
R

δ0R − δ+

R√
2


 ≡ [1, 1, 3, 2] .These �elds transform under SU(2) as

Q→ ULQ Qc → URQ
c

L→ ULL Lc → URL
c

∆→ UL∆U †
L ∆c → UR∆cU †

R

∆̄→ UL∆̄U †
L ∆̄c → UR∆̄cU †

R

Φa → ULΦaU
†
R η → ULηU

†
R

σ → σand under Parity as
Q→ −iτ2Qc ∗ Qc → iτ2Q

∗

L→ −iτ2Lc ∗ Lc → iτ2L
∗

∆→ τ2∆
c ∗τ2 ∆c → τ2∆

∗τ2

∆̄→ τ2∆̄
c ∗τ2 ∆̄c → τ2∆̄

∗τ2

Φa → Φ†
a η → η†

σ → −σ∗The symmetry breaking pattern in this model is
SU(2)L × SU(2)R× U(1)B−L × P

〈σ〉−→ SU(2)L × SU(2)R × U(1)B−L

〈∆c〉−−→ SU(2)L × U(1)Y

〈Φ〉−→ U(1)emAt high sale (≥ 1015 GeV to Plank sale), the parity is broken by a singlet �eld σ =

(1, 1, 1, 0) and it leaves the gauge symmetry SU(3)C×SU(2)L×SU(2)R×U(1)B−L intat.2.2.1 Superpotential of the modelThe superpotential for the model is written in the more general tensorial notation is
W = W1 +W2 (2.12)where W1 = iya,q

αi Q
T
ατ2Φ

aQc
i + iy′a,ℓLT

ατ2Φ
aLc

i

+iY ∆
αβL

T
ατ2∆Lβ + iy∆c

ij L
cT
i τ2∆

cLc
j
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W2 = fηαi ∆α ∆c
i + f∗ηαi ∆̄α ∆̄c

i

+ λ1 ηαi Φam Φbn (ταǫ)ab

(
τ iǫ

)
mn

+mη ηαi ηαi

+ M
(
∆α∆̄α + ∆c

i∆̄
c
i

)
+ µ ǫab Φbm ǫmn Φan

+ mσ σ
2 + λ2 σ

(
∆α∆̄α −∆c

i∆̄
c
i

)
, (2.13)where, α, β = 1, 2, 3 and a, b = 1, 2 are SU(2)L indies, whereas i, j = 1, 2, 3 andm,n = 1, 2are SU(2)R indies. The summation over repeated index is implied, with the hange inbasis from numerial 1, 2, 3 indies to +,−, 0 indies as follows,

ΨαΨα = Ψ1Ψ1 + Ψ2Ψ2 + Ψ3Ψ3

= Ψ+Ψ− + Ψ−Ψ+ + Ψ0Ψ0, (2.14)where, we have de�ned Ψ± = (Ψ1 ± iΨ2)/
√

2 and Ψ0 = Ψ3. The vauum expetationvalues (vev) that the neutral omponents of the Higgs setor aquires are,
〈∆−〉 = 〈∆̄+〉 = vL, 〈∆c

+〉 = 〈∆̄c
−〉 = vR,

〈Φ+−〉 = v, 〈Φ−+〉 = v ′,

〈η+−〉 = u1 , 〈η−+〉 = u2 ,

〈η00〉 = u0 .

(2.15)
Assuming SUSY to be unbroken till the TeV sale implies the F and D �atness onditionsfor the salar �elds to be,

F∆α = f ηαi ∆c
i +M∆̄α + λ2 σ ∆̄α = 0,

F∆̄α
= f∗ ηαi ∆̄c

i +M∆α + λ2 σ∆α = 0,

F∆c
i

= f ηαi ∆α +M ∆̄c
i − λ2 σ ∆̄c

i = 0,

F∆̄c
i

= f∗ ηαi ∆̄i +M ∆c
i − λ2 σ∆c

i = 0,

Fσ = 2mσ σ + λ2

(
∆α∆̄α −∆c

i∆̄
c
i

)
= 0,

Fηαi
= f ∆α ∆c

i + f∗∆̄α ∆̄c
i + 2mη ηαi

+ λ1 Φam Φbn(ταǫ)ab(τ
iǫ)mn = 0,
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FΦcp = λ1 ηαiΦbn (ταǫ)cb
(
τ iǫ

)
pn

+ λ1 ηαiΦam (ταǫ)ac(τ
iǫ)mp

+ µ ǫac ǫpn Φan + µ ǫcb Φbm ǫmp = 0, (2.16)
DRi

= 2∆c†τi∆
c + 2∆̄c†τi∆̄c + ητT

i η
† + ΦτT

i Φ† = 0,

DLi
= 2∆†τi∆ + 2∆̄†τi∆̄ + η†τiη + Φ†τiΦ = 0,

DB−L = 2
(
∆†∆− ∆̄†∆̄

)
− 2

(
∆c†∆c − ∆̄c†∆̄c

)
= 0. (2.17)In the above eqns., we have negleted the slepton and squark �elds, sine they would havezero vev at the sale onsidered. We have also assumed v′ ≪ v and hene the termsontaining v′ an be negleted.

2.3 PhenomenologyAn inspetion of the minimization onditions obtained at the end of the previous setionproves two important statements we have made earlier. First, the eletromagneti hargeinvariane of this vauum is automati for any parameter range of the theory. Seondly,the R-parity, de�ned as R = (−1)3(B−L)+2S, is preserved in the present model, sine the
∆'s are R-parity even whereas the bi-doublet and the bi-triplet Higgs salars have zeroR-parity.We shall now disuss the onditions that emerge from the vanishing of the various Fterms, whih after the �elds aquire their respetive vevs, are given by,

F∆ = f u1vR + (M + λ2〈σ〉)vL = 0, (2.18)
F∆̄ = f∗u2vR + (M + λ2〈σ〉)vL = 0, (2.19)
F∆c = f u1vL + (M − λ2〈σ〉)vR = 0, (2.20)
F∆̄c = f∗ u2vL + (M − λ2〈σ〉)vR = 0, (2.21)
Fσ = mσ 〈σ〉+ λ2(v

2
L − v2

R) = 0, (2.22)
Fη = f vLvR + f∗ vLvR + λ1v

2 + 2mη(u1 + u2 + u0) = 0, (2.23)
FΦ = −2λ1(u1 + u2)v + 2λ1u0v − 2µv = 0. (2.24)At the outset we see that the Fσ �atness ondition permits the trivial solution 〈σ〉 = 0,



44 CHAPTER 2. SPONTANEOUS PARITY BREAKING IN SUSYLR MODELwhih would imply the undesirable solution vL = vR and lead to no parity breakdown. Butthis speial point an easily be destabilized one the soft terms are turned on. Away fromthis speial point, we are led to phenomenologially interesting vauum on�gurations.The F �atness onditions for the ∆ and ∆̄ �elds demand fu1 = f∗u2 whih an benaturally satis�ed by hoosing
f = f∗ and u1 = u2 ≡ u. (2.25)This is onsistent with the relation obtained from the F �atness onditions for the ∆c and

∆̄c �elds, whih may now be together read as
(M − λ2〈σ〉)vR = −f uvL. (2.26)The �rst four onditions (2.18)-(2.21) an therefore be used to eliminate the sale u andgive a relation (

vL

vR

)2

=
M − λ2〈σ〉
M + λ2〈σ〉

. (2.27)Let us assume the sale of the vev's u1, u2 and u0 to be the same. Then the vanishing of
Fη gives a relation

2fvLvR ≈ −(λ1v
2 + 6mηu). (2.28)Finally, the last ondition (2.24) has an interesting onsequene. While eletroweak sym-metry is assumed to remain unbroken in the supersymmetri phase, so that v must behosen to be zero, we see that the fator multiplying v implies a relation

µ ≈ −λ1u. (2.29)That is, taking λ1 to be order unity, the sale of the µ term determines the sale of u.We now attempt an interpretation of these relations to obtain reasonable phenomenol-ogy. The sale vR must be higher than the TeV sale. It seems reasonable to assume thatthe eq. (2.28) provides a see-saw relation between vL and vR vev's, and that this produtis anhored by the TeV sale. Sine bitriplet ontributes additional non-doublet Higgs inthe Standard Model, it is important that the vauum expetation value u is muh higheror muh smaller than the eletroweak sale, and we shall explore the latter route. In thisase u should be stritly less than 1GeV. The sale mη determines the masses of tripletmajorons and needs to be high ompared to the TeV sale. If the above see-saw relation



2.3 Phenomenology 45is not to be jeopardized, we must have mηu ≤ m2
EW . We an avoid proliferation of newmass sales by hoosing

mηu ≈ v2 = m2
EW . (2.30)This establishes eq. (2.28) as the desired hierarhy equation, with f hosen to be negative.Now let us examine the onsisteny of the assumption u≪ mEW in the light of the twoequations (2.26) and (4.17). Let us assume that (vL/vR)≪ 1 as in the non-supersymmetriase. Then eq. (4.17) means that on the right hand side,

M − λ2〈σ〉 ≪M + λ2〈σ〉 →M ∼ λ2〈σ〉. (2.31)Then eq. (2.18) an be read as
vL

vR
≈ (−f)u

2M
. (2.32)We thus see that the required hierarhies of sales an be spontaneously generated, andan be related to eah other. Finally, although only the ratios has been related in eq.(2.32) we may hoose

vL ≈ u, vR ≈M. (2.33)We see that through this hoie of individual sales and through the see-saw relation (2.28),
u and vR obey a mutual see-saw relation. A small value of u in the eV range would plae
vR in the intermediate range as in the traditional proposals for neutrino mass see-saw. Alarger range of values lose to the GeV sale would lead to vR and the resulting heavyneutrinos states within the range of ollider on�rmation.Finally, returning to eq. (2.29), we an obtain the desirable sale for u by hoosing µto be of that sale, viz., in the sub-GeV range. This solves the µ problem arising in MSSMby relating it to other sales required to keep the vR high. An interesting onsequene ofthe hoies made so far is that using eq.s (2.31) and (2.33) in eq. (4.8) yields

|mσ| ≈ λ2
v2
R

〈σ〉 ∼ λ
2
2M. (2.34)To summarize, various phenomenologial onsiderations lead to a natural hoie ofthree of the mass parameters of the superpotential, M , mσ and mη to be omparableto eah other and large, suh as to determine vR, and in turn the masses of the heavymajorana neutrinos. The sale µ whih determines the vauum expetation value u andin turn the value vL ould be anything less than a GeV. Most importantly we have thesee-saw relation eq. (2.28) whih relates these sales, and if the vR sale is to be within



46 CHAPTER 2. SPONTANEOUS PARITY BREAKING IN SUSYLR MODELa few orders of magnitude of the TeV sale, then µ should be lose to though less than aGeV.We an ontemplate two extreme possibilities for the sale M . Keeping in mind thegravitino prodution and overabundane problem, we an hoose the largest value vR ≤ 109GeV. If it an be ensured from in�ation that this is also the reheat temperature, then thethermalisation of heavy majorana neutrinos required for thermal leptogenesis at a salesomewhat lower than this an be easily aommodated. We an also try to take vR as lowas 10 TeV whih is onsistent with preserving lepton asymmetry generated by non-thermalmehanisms [124℄. Baryogenesis from non-thermal or sleptoni leptogenesis in this kindof setting has been extensively studied [125�128℄. This low value of vR is onsistent withneutrino see-saw relation, but will rely ritially on the smallness of Yukawa ouplings [124℄and may be aessible to olliders.As we have seen, at the large sale, harge onservation also demands onservation ofR-parity. The question generally arise as to what happens when heavy �elds are integratedout and soft supersymmetry breaking terms are swithed on. The analysis done in [121℄implies that if MR is very large (around 1010 GeV), the breakdown of R-parity at lowenergy would give rise to an almost-massless majoron oupled to the Z-bosons, whih isruled out experimentally. This is one of the entral aspets of supersymmetri left-righttheories with large MR: R-parity is an exat symmetry of the low energy e�etive theory.The supersymmetri partners of the neutrinos do not get any vev at any sale, whih alsoensures that the R-parity is onserved.
2.4 RG Running for gauge couplings and Fermion massesIn this setion, we will show how oupling and masses parameters evolve with energy. Theone loop renormalization group equations (RGEs) [149℄ for gauge oupling onstants inthis model an be written as

dαi

dt
= biα

2
i (2.35)where, t = 2π ln(M) (M is the varying energy sale), αi =

g2
i

4π is the oupling strength.Also bi is the one loop beta oe�ient. The indies i, j = (B − L), 2L, 2R, 3C refer to thegauge group U(1)B−L, SU(2)L, SU(2)R and SU(3)C respetively. The beta one loop betafuntions for this model are;
⋆ Below the susy breaking sale MSUSY , the beta funtions are same as those of the
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b3C = −11 +

4

3
nF , b2L = −22

3
+

4

3
nF +

1

6
nφ, bY =

4

3
nF +

nΦ

10

⋆ For Msusy < M < MB−L, the beta funtions are same as those of the MSSM
b3C = −9 + 2nF , b2L = −6 + 2nF +

n′φ
2
, bY = 2nF +

3

10
n′φ

⋆ For MR < M < MGUT :
bB−L = 2nF + 9n∆, b2L = −6 + 2nF +

nΦ

2
+ 2n∆ + 2nη

b2R = −6 + 2nF +
nΦ

2
+ 2n∆ + 2nη, b3C = −9 + 2nF.Where nF = 3, nΦ = 2, n′φ = 2, n∆ = 2, nη are the number of generations , number ofbidoublets, number of doublets in MSSM, number of doublets in SM, number of tripletsand number of bitriplets respetively. The detail analysis of RG evolution of gauge ouplingonstants will be presented in hapter (3).The renormalization group equations to one-loop order for the mass parameters of theabove theory are presented below
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48 CHAPTER 2. SPONTANEOUS PARITY BREAKING IN SUSYLR MODELFermion Masses M = MZ M = MG (Bitriplet)PDG [129℄ (|f | = 0.79)

mu(MeV) 2.33+0.42
−0.45 1.713

md(MeV) 4.69+0.60
−0.66 2.877

mc(MeV) 677+56
−61 401.370

ms(MeV) 93.4+11.8
−13.0 57.328

mt(GeV) 181 ± 13 128.888

mb(GeV) 3.0± 0.11 2.185

me(MeV) 0.48684727 ± 0.14 × 10−6 0.5526

mµ(MeV) 102.75138 ± 3.3 × 10−4 116.243

mτ (GeV) 1.74669+0.00030
−0.00027 2.070Table 2.3: RGEs for fermion mass parameters in SUSYLR model with triplets and bitriplet salar Higgs.For this numerial alulation, we have used tanβ = 10

16π2 d

dt
m2

∆ = Tr
[
4λ†λm2

∆ + 8λ†m2
Lλ

]

+ µα ∗
∆

[
2µα

∆m
2
∆ + 2µα

∆m
2
∆̄ + 2µβ

∆m
2
η
αβ

] (2.40)Similarly, we an write RGEs for all the mass parameters. One an get all the RGEs forall Yukawas, mass parameters in [149℄, though our result will be slightly di�erent beauseof extra bitriplet salar Higgs. The Table: [2.3℄ gives the running of fermion mass at GUTsale assuming their initial value at the eletroweak sale (at 100 GeV).To summarize the work, we propose an onsistent solution to the problem of spon-taneous parity breaking, whih resembles the non-supersymmetri solution, relating thevauum expetation values (vevs) of the left-handed and right-handed triplet Higgs salarsto the Higgs bi-doublet vev through a seesaw relation. The left-right symmetry break-ing sale thus beomes inversely proportional to the left-handed triplet Higgs salar thatgives the type II seesaw masses to the neutrinos. The vauum that preserves both eletriharge and R-parity an naturally be the global minimum of the full potential. The mostattrative feature of the present model is that generially it does not allow a left-right sym-metri vauum, though the latter appears as a single point within the �at diretion of theminima respeting supersymmetry. When the �at diretion is lifted all the energy sales
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Figure 2.1: RG running of fermion masses in the bitriplet model. Msusy = 500 GeV, MR = 1012 GeV,
Mσ = 1016 GeV and |f | = 0.79, tan β = 10 at M = MZrequired to explain phenomenology result naturally. Also, we have made a omplete studyof fermion masses and gauge oupling onstants in this model inluding soft-susy breakinge�ets, but the detail analytial derivation and numerial results will be presented in thenext hapter. The original alulation has been arried through by spinner et al [149℄ andwe just modify their results using extra bitriplet Higgs salar. First we run the fermionmasses up to GUT sale (MG) knowing their initial values at MZ (at 100 GeV) [129℄. Inthe Fig:(2.1), it has been shown numerially the RG evolution of fermion mass and mixing.





Chapter
3

TeV scale SUSYLR model with

spontaneous D-parity breaking

Left-Right symmetri model(LRSM) is a novel extension of the standard model of partilephysis [99�103℄. In suh models the parity is spontaneously broken and the smallness ofneutrino masses [104�107℄ arises in a natural way via seesaw mehanism [108�111℄. In-orporating supersymmetry(susy) into suh models omes with ouple of other advantagesin terms of the gauge hierarhy problem, oupling onstant uni�ation among many oth-ers. Another advantage in suh susy models is that they provide a natural andidate fordark matter in terms of the lightest super-partile (LSP). In MSSM, this LSP is stableonly if we inorporate an extra symmetry alled R-parity Rp = (−1)3(B−L)+2s. Howeverin supersymmetri left right (SUSYLR) models [114, 118, 119, 121, 123, 130℄ based on thegauge group SU(3)C × SU(2)L × SU(2)R × U(1)B−L this R-parity is a part of the gaugesymmetry and hene need not be put by hand. Sine U(1)B−L symmetry is broken by aHiggs triplet with even B − L quantum number, R-parity is still preserved at low energy.Motivation and Outlook: Sine there are many disussions exist in the literaturestudying these aspets of the left-right symmetri models, we summarize here our moti-vation for this study and how our analysis di�ers from earlier works. Before the preisionmeasurements of the weak mixing angle and the strong oupling onstants, the evolutionof the gauge oupling onstants ould allow low-sale left-right symmetry breaking [141℄.This ould be ahieved with a single stage symmetry breaking. Later it was found that by
51



52 CHAPTER 3. TEV SCALE SUSYLR MODEL WITH SPONTANEOUS D-PARITY BREAKINGinvoking more intermediate sales, it is possible to have more freedom to adjust the dif-ferent symmetry breaking sales. However, after the preision eletroweak measurementsat LEP, it was found that the simplest left-right symmetri models would not allow a left-right symmetry breaking below 1012 GeV, in both single stage symmetry breaking as wellas multi-stage symmetry breaking [142�144℄. SO(10) based models also got onstrainedwith the allowed intermediate sale in the range of 109 − 1010 GeV [145,146℄. Introduingthe Pati-Salam symmetry breaking sale would not allow lowering the left-right symmetrybreaking sale both in the supersymmetri as well as the non-supersymmetri models. Itwould be possible to break the SU(2)R to U(1)R at a higher sale and then break the group
U(1)R at a lower sale, but the breaking sale of SU(2)R ould not be lowered, keepingthe theory onsistent with the potential minimization and gauge oupling evolution.In a reent work of Mohapatra [147℄, it has been demonstrated that by introduingadditional salars it is possible to lower the sale of left-right symmetry breaking, i.e., breakthe symmetry group SU(2)R. In this work, we will study the di�erent symmetry breakingpatterns to hek the onsisteny with the potential minimization and gauge ouplingevolution and see whih of these models ould allow TeV sale left-right symmetry breaking.We restrited our analysis to only a single stage symmetry breaking, beause by introduingthe additional symmetry breaking sales it was not found to help lowering the left-rightsymmetry breaking sales. Of ourse, our analysis does not rule out other possibilities oflowering the left-right breaking sale by introduing newer symmetry breaking sales andnew physis. However, this analysis demonstrates that within the simplest framework ofsingle stage symmetry breaking, whih models are onsistent with potential minimization,gauge oupling uni�ation, and allows a TeV sale left-right symmetry breaking.
3.1 LR models with spontaneous D-parity breakingIn left-right symmetri models with spontaneous D-parity breaking, the disrete paritysymmetry gets broken (by the vev of a parity odd singlet salar �eld) muh before the
SU(2)R gauge symmetry breaks. The gauge group is e�etively SU(3)C × SU(2)L ×
SU(2)R×U(1)B−L×P , where P is the disrete left-right symmetry whih we all D-parity.This D-parity symmetry is di�erent from the Lorentz parity in the sense that Lorentzparity interhanges left handed fermions with the right handed ones but the bosoni �eldsremain the same. Whereas, the D-parity also interhanges the SU(2)L Higgs �elds with the
SU(2)R Higgs �elds. The parity odd singlet �eld breaks this gauge symmetry at high sale
∼ (1016−1019) GeV to SU(3)C×SU(2)L×SU(2)R×U(1)B−L whih further breaks down to



3.1 LR models with spontaneous D-parity breaking 53the standard model gauge group SU(3)C ×SU(2)L×U(1)Y at a lower sale. The D-paritybreaking introdues an asymmetry between left and right handed Higgs �elds and makesthe oupling onstants of SU(2)R and SU(2)L evolve separately under the renormalizationgroup. It should be noted that this D-parity breaking is di�erent from the low energyparity breaking observed in the weak interations whih arises as a result of SU(2)R gaugesymmetry breaking at a sale higher than the eletroweak sale. In suh D-parity breakingsenario the seesaw relation also gets modi�ed from usual LRSM. Although the type Iseesaw term still remains sensitive to the SU(2)R breaking sale MR, the other seesawterms namely type II and type III [135℄ beomes sensitive to the D-parity breaking sale.A very high value of parity breaking sale therefore leads to type I seesaw dominane. Inthis setion we are going to disuss various suh models with di�erent partile ontents.In the usual LRSM, the sale of parity breaking and SU(2)R gauge symmetry breakingare idential whih is not neessary. There have been lots of studies on left-right symmetrimodels where the parity symmetry gets broken muh before the SU(2)R gauge symme-try breaks by so alled spontaneous D-parity breaking [133, 134℄. In this work, we willpresent various types of susy and non-susy left-right models with spontaneous D-paritybreaking and hek whether the minimization of the salar potential allows a TeV sale
SU(2)R breaking sale (provided parity breaks at muh higher sale) as well as tiny neu-trino masses. We then hek whether suh a hoie of intermediate symmetry breakingsales uni�es the gauge oupling onstants in the SUSYLR framework. We disuss thepossible phenomenology of neutrino mass in eah ases separately.3.1.1 LRSM with Higgs doubletsWe �rst study the non-Susy left-right symmetri extension of the standard model withonly Higgs doublets. In addition to the usual fermions of the standard model, we requirethe right-handed neutrinos to omplete the representations. One of the important featuresof the model is that it allows spontaneous parity violation. The Higgs representations thenrequires a bi-doublet �eld, whih breaks the eletroweak symmetry and gives masses tothe fermions. But the neutrinos an have a Dira mass only, whih is then expeted tobe of the order of other fermion masses. To implement the see-saw mehanism and obtainthe observed tiny mass of the left-handed neutrinos naturally, one also introdues a singletfermion plus fermion triplet. However, we shall restrit ourselves to the salar setor andshall not disuss the impliations of the singlet neutrinos and the neutrino masses.



54 CHAPTER 3. TEV SCALE SUSYLR MODEL WITH SPONTANEOUS D-PARITY BREAKINGThe partile ontent of the Left-Right symmetri model with Higgs doublet is
Fermions : QL ≡ (3, 2, 1, 1/3), QR ≡ (3, 1, 2, 1/3),

ΨL ≡ (1, 2, 1,−1), ΨR ≡ (1, 1, 2,−1)

Scalars : Φa (a = 1, 2) ≡ (1, 2, 2, 0), HL ≡ (1, 2, 1, 1),

HR ≡ (1, 1, 2, 1) ρ ≡ (1, 1, 1, 0)where the numbers in the brakets are the quantum numbers orresponding to the gaugegroup SU(3)C × SU(2)L × SU(2)R × U(1)B−L. In addition to the bi-doublet salar �eld
Φ, we also introdued two doublet �elds HL and HR to break the left-right symmetry andontribute to the neutrino masses. Though HL is not neessary for the desired strutureof the symmetry breaking, we introdue it anyway along with HR so that our model anaommodate left-right symmetri models. The salar singlet ρ is a D-parity odd �eld andhanges sign under the exhange of SU(2)L with SU(2)R. Thus the symmetry breakingpattern beomes

SU(2)L × SU(2)R × U(1)B−L × P 〈ρ〉−→ SU(2)L × SU(2)R × U(1)B−L

〈HR〉−−−→ SU(2)L × U(1)Y 〈Φ〉−→ U(1)emWe denoted the vauum expetation values of the neutral omponents of the Higgs �eldsas
〈Φ1〉 = v1, v2, 〈HL〉 = vL, 〈HR〉 = vR, 〈ρ〉 = sThe salar potential with all these �elds an then be written as

V = VΦ + VH + VΦH + Vρ (3.1)where
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1τ2.To �nd a onsistent solution we now minimize the salar potential and obtain
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1 (3.8)Thus after the singlet �eld η gets a vev the left handed Higgs doublet beomes heavy anddeouple whereas the right handed Higgs an be muh lighter by appropriate �ne tuningof the parameters in (3.8). From equations (3.6), (3.7) we get
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56 CHAPTER 3. TEV SCALE SUSYLR MODEL WITH SPONTANEOUS D-PARITY BREAKINGThus a non-zero value of 〈ρ〉 = s does not allow a solution with vL = vR. The seesawrelation from the above equation is
vLvR =

µhφ(v1 + v2)(v
2
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2Ms+ (λ5 − λ6

2 )(v2
L − v2

R)Assuming vL ≪ vR ≪ s,M will give
vL =

−µhφ(v1 + v2)vR

2Ms
(3.9)Thus we an have small vL/vR by appropriately hoosing the sales ofM,s, µhφ whih willaount for tiny neutrino masses. In ontrast LRSM without D-parity breaking where theright handed sale vR has to be very high to aount for small vL/vR, here we an have vRof TeV sale also. For example, if we set µhφ = M = s = 108 GeV, and v1,2 ∼MZ then vL

vRomes out to be of the order 10−6 whih is desired for type III seesaw to dominate as wewill see when we disuss neutrino masses. The gauge oupling uni�ation has been studiedextensively in this model, so we shall not repeat them here. In the absene of D-paritybreaking the left-right symmetry breaking sale omes out to be very high, but in D-parityviolating models it is possible to lower the sale of left-right symmetry breaking with someamount of �ne tuning of parameters. However, for the supersymmetri models restritionsare more stringent, so we shall study them in details.3.1.2 LRSM with Higgs tripletsIn this setion we shall study the left-right symmetri models with a di�erent partileontents. The usual fermions, inluding the right-handed neutrinos, belong to the similarrepresentations as in the previous setion. However the salar setor now ontains tripletHiggs salars in addition to the bi-doublet Higgs salar to break the left-right symmetry.The triplet Higgs salars an then give Majorana masses to the neutrinos and allow seesawmehanism without the need for any additional singlet fermions. The parity odd singletsalar was originally introdued in this model, so we shall inlude them in our disussions.The partile ontent of LRSM with Higgs triplets is
Fermions : QL ≡ (3, 2, 1, 1/3), QR ≡ (3, 1, 2, 1/3),

ΨL ≡ (1, 2, 1,−1), ΨR ≡ (1, 1, 2,−1)
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Scalars : Φa (a = 1, 2) ≡ (1, 2, 2, 0), ∆L ≡ (1, 3, 1, 2), ,

∆R ≡ (1, 1, 3, 2) ρ ≡ (1, 1, 1, 0)The symmetry breaking pattern in this model remains the same as in the previous modelalthough the struture of neutrino masses hanges. In the symmetry breaking pattern, thesalar ∆c now replaes the role of HR, but otherwise there is no hange. The vauum ex-petation values of the neutral omponents of the Higgs �elds are denoted by Φ1,△L,△R, ρas
〈Φ1〉 = v1, v2, 〈△L〉 = vL, 〈△R〉 = vR, 〈ρ〉 = s.The omplete salar potential of this model [103℄ is given by
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VΦ∆ = α1

[Tr(Φ†
1 Φ1)[Tr(∆†

L ∆L) + Tr(∆†
R ∆R)]

]

+ α2

[Tr(Φ†
2 Φ1)Tr(∆†

R ∆R) + Tr(Φ†
1 Φ2)Tr(∆†

L ∆L)
]

+ α∗
2

[Tr(Φ†
1 Φ2)Tr(∆†

R ∆R) + Tr(Φ†
2 Φ1)Tr(∆†

L ∆L)
]

+ α3

[Tr(Φ1 Φ†
1 ∆L ∆†

L) + Tr(Φ†
1 Φ1 ∆R ∆†

R)
]

+ β1

[Tr(Φ1 ∆R Φ†
1 ∆†

L) + Tr(Φ†
1 ∆L Φ1 ∆†

R)
]

+ β2

[Tr(Φ2 ∆R Φ†
1 ∆†

L) + Tr(Φ†
2 ∆L Φ1 ∆†

R)
]

+ β3

[Tr(Φ1 ∆R Φ†
2 ∆†

L) + Tr(Φ†
1 ∆L Φ2 ∆†

R)
]
, (3.14)where Φ2 = τ2Φ

∗
1τ2. Minimizing the salar potential we now obtain various onditions

∂V

∂vL
= µ2

LvL + 2f1v
3
L + f3vLv

2
R + (β1v1v2 + β2v

2
1 + β3v

2
2)vR = 0 (3.15)

∂V

∂vR
= µ2

RvR + 2f1v
3
R + f3vRv

2
L + (β1v1v2 + β2v

2
1 + β3v

2
2)vL = 0 (3.16)where µ2

L and µ2
R are e�etive mass terms of △L and △R given by

µ2
L = µ2

△ +Ms+ λ6s
2 + 2(α2 + α∗

2)v1v2 + α1(v
2
1 + v2

2) + α3v
2
2

µ2
R = µ2

△ −Ms+ λ6s
2 + 2(α2 + α∗

2)v1v2 + α1(v
2
1 + v2

2) + α3v
2
2Thus like in the previous ase , here also the Higgs triplets △L beome heavier than △Rafter the singlet η aquires a vev at the high sale. Equations (3.15), (3.16) gives

(2Ms + (v2
R − v2

L)(f3 − 2f1))vLvR = (v2
L − v2

R)(β1v1v2 + β2v
2
1 + β3v

2
2)Thus a nonzero vev of ρ disallows those solutions for whih vL = vR. Assuming vL ≪

vR ≪ s,M will give
vL =

−vR(β1v1v2 + β2v
2
1 + β3v

2
2)

2Ms
(3.17)Thus we an have a small vL ∼ eV by appropriately hoosing vR and M,s. Here if we take

vR of TeV sale then the sale of parity breaking M,s should be low (∼ 108− 109 GeV) soas to give vL ∼ eV needed to aount for neutrino masses as we will see later.3.1.3 SUSYLR model with Higgs doubletsWe shall now study the various supersymmetri left-right symmetri models. These modelsare muh more restritive ompared to the non-Susy models. Although the spontaneous



3.1 LR models with spontaneous D-parity breaking 59parity violation is one of the most important features of the non-Susy version of the left-right symmetri models, in the Susy left-right models with triplet Higgs salars breakingparity beomes very di�ult and one has to extend the model to inorporate any naturalmehanism of parity violation. In this setion we shall disuss the model where the left-right symmetry is broken by Higgs doublet salar.In the partile ontents, the fermions belong to the fermion super�elds and we denoteall the fermions and salars by their orresponding super�elds. We an then write thepartile ontents of Supersymmetri Left-Right model with Higgs doublet in terms of theirsuper�elds as
Matter Superfield : QL = (3, 2, 1, 1/3), QR = (3, 1, 2, 1/3)

ΨL = (1, 2, 1,−1), ΨR = (1, 1, 2,−1)

Higgs Superfield : Φ1 = (1, 2, 2, 0), Φ2 = (1, 2, 2, 0)

HL = (1, 2, 1, 1), H̄L = (1, 2, 1,−1),

HR = (1, 1, 2,−1), H̄R = (1, 1, 2, 1), ρ = (1, 1, 1, 0)where Higgs partiles with �bar" in the notation, helps in anomaly anellation of themodel.In the model, a singlet salar �eld ρ is introdued, whih has the speial property thatit is even under the usual parity of the Lorentz group, but it is odd under the parity thatrelates the gauge groups SU(2)L and SU(2)R. This �eld ρ is thus a salar and not apseudo-salar �eld, but under the D-parity transformation that interhanges SU(2)L with
SU(2)R, it is odd. This kind of work is proposed in [132,133,139℄. Although all the salar�elds are even under the parity of the Lorentz group, under the D-parity the Higgs setortransforms as,

HL ↔ HR, H̄L ↔ H̄R,

Φ↔ Φ†, ρ↔ −ρ.



60 CHAPTER 3. TEV SCALE SUSYLR MODEL WITH SPONTANEOUS D-PARITY BREAKINGThe Higgs part of the superpotential relevant in our ase is
W = µijTr[τ2ΦT

i τ2Φj] +Mρρ+ f1(H
T
L ΦiHR + H̄T

L ΦiH̄R)

+mh(HT
L τ2H̄L +HT

Rτ2H̄R) + λ1ρ(H
T
L τ2H̄L −HT

Rτ2H̄R) (3.18)The salar potential is V = VF +VD +Vsoft where VF = |Fi|2, Fi = −∂W
∂φ is the F-termsalar potential, VD = DaDa/2,Da = −g(φ∗i T a

ijφj) is the D-term of the salar potentialand Vsoft is the soft supersymmetry breaking salar potential. We introdue the soft Susybreaking terms to hek if they alter relations between various mass sales in the model.The soft Susy breaking superpotential in this ase is given by
Vsoft = m2

HH
†
LHL +m2

HH̄
†
LH̄L +m2

HH
†
RHR +m2

HH̄
†
RH̄R +m2

11Φ
†
1Φ1

+m2
22Φ

†
2Φ2 +m2

ρρ
†ρ+ (B1H

T
L τ2H̄L +B2H

T
Rτ2H̄R +BµijTr[τ2Φiτ2Φj] + h.c.)

+(A1H
T
L ΦiHR +A2H̄LΦiH̄R +A3(ρH

T
L τ2H̄L − ρHT

Rτ2H̄R) + h.c.) (3.19)where all the parameters mH ,m11,m22, B,A are of the order of Susy breaking sale
Msusy ∼ TeV. We denote the vev of the neutral omponents of Φ1,Φ2,HL, H̄L,HR, H̄Rand ρ as 〈(Φ1)11〉 = v1, 〈(Φ2)22〉 = v2, 〈HL, H̄L〉 = vL, 〈HR, H̄R〉 = vR, 〈ρ〉 = s.Minimizing the potential with respet to vL, vR, we get the relations

∂V

∂vL
= −µ2

L(2vL) + 2vLv
2
Rf

2
1 + f1vR(mh + 4µ)(v1 + v2)

+(2m2
H −m2

h)vL +A1svL +
A2v1vR

2
+ λ2

1vL(v2
R − v2

L) = 0 (3.20)
⇒ vL

vR
=

f1((mh + 4µ)(v1 + v2) + A1v1

2

2µ2
L − 2f2

1 v
2
R − λ2

1(v
2
R − v2

L)−A2s

∂V

∂vR
= −µ2

R(2vR) + 2vRv
2
Lf

2
1 + f1vR(mh + 4µ)(v1 + v2)

+(2m2
H −m2

h)vR −A2svR +
A1v1vL

2
− λ2

1vL(v2
R − v2

L) = 0 (3.21)
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L, µ

2
R are given by

µ2
L =

1

4
[2(mh + λ1s)

2 − 4Msλ1 − f2
1 (v2

1 + v2
2)]

µ2
R =

1

4
[2(mh − λ1s)

2 + 4Msλ1 − f2
1 (v2

1 + v2
2)] (3.22)From equations (3.20), (3.21) we get

(A1v1 + 4(f2
1 + λ2

1)vLvR + 2f1(v1 + v2)(mh + 4µ))(v2
R − v2

L)

+ (4sA2 + 8λ1s(M −mh))vLvR = 0 (3.23)whih shows that the minimization disallows the solutions where vL = vR. Assuming
vL ≪ v1,2, µ,A≪ s,M,mh and vL ≪ vR the above expression gives rise to

vL =
vR(2f1mh(v1 + v2) + 4(f2

1 + λ2
1)vLvR +A1v1)

8(mh −M)sλ1 + 4sA2
(3.24)Thus by appropriate hoie of mh,M, s we an have TeV sale SU(2)R breaking sale vRas well as vL/vR ∼ (10−6 − 10−9) whih is neessary to aount for small neutrino massesas we will see later. For example, if we set

mh ∼M ∼ s ∼ 1016 GeV D-parity breaking saleand allow 2mh−M ∼ 108 GeV by appropriate �ne tuning then the above relation will giverise to the desired ratio vL/vR ∼ 10−6. For suh a hoie of sales we an �ne tune theparameters to get a light HR having mass µR ∼ vR ∼ TeV and a heavy HL having mass
µL ∼ s,M ∼ 1016 GeV. This will be important in the renormalization group running ofthe ouplings as we will see later.3.1.4 SUSYLR model with Higgs tripletsThe partile ontents of Supersymmetri Left-Right model with Higgs triplets in terms oftheir super�elds are

Matter Superfield : Q = (3, 2, 1, 1/3), Qc = (3, 1, 2, 1/3)

L = (1, 2, 1,−1), Lc = (1, 1, 2,−1)
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Higgs Superfield : Φ1 = (1, 2, 2, 0), Φ2 = (1, 2, 2, 0)

∆ = (1, 3, 1, 2), ∆̄ = (1, 3, 1,−2),

∆c = (1, 1, 3,−2), ∆̄c = (1, 1, 3, 2), ρ = (1, 1, 1, 0)The left-right symmetry ould be broken by either doublet Higgs salars or triplet Higgssalar. We will show that for a minimal hoie of parameters, it is onvenient to breakthe group with a triplet Higgs salar. As pointed out in [121℄ the bidoublets are doubledto ahieve a non-vanishing Cabibbo-Kobayashi-Maskawa (CKM) quark mixing and thenumber of triplets is doubled for the sake of anomaly anellation.The superpotential for this theory is given by
W = Y (i)qQT τ2Φiτ2Q

c + Y (i)lLT τ2Φiτ2L
c

+ i(fLT τ2∆L+ f∗LcT τ2∆
cLc) +Mρ2

+ m∆Tr(∆∆̄) +m∗
∆Tr(∆c∆̄c) + µijTr(τ2ΦT

i τ2Φj). (3.25)All ouplings Y (i)q,l , µij, µ∆, f in the above potential, are omplex with the the additionalonstraint that µij , f and f∗ are symmetri matries. The salar potential is V = VF +VD+

Vsoft where VF = |Fi|2, Fi = −∂W
∂φ is the F-term salar potential, VD = DaDa/2,Da =

−g(φ∗i T a
ijφj) is the D-term of the salar potential and Vsoft is the soft supersymmetrybreaking terms in the salar potential. In the partiular model, the soft-susy breakingterms are given by

Vsoft = m2
δTr[(∆†∆) + (∆̄†∆̄)] +m2

δTr[(∆c †∆c) + (∆̄c †∆̄c)]

+m2
11Φ

†
1Φ1 +m2

22Φ
†
2Φ2 +m2

ρρ
†ρ+B µij Tr(τ2Φiτ2Φj)

+Aρ
[Tr(∆∆̄)− Tr(∆c∆̄c) + h.c.

]
. (3.26)where all the parameters in the soft supersymmetry breaking salar potential is of theorder of supersymmetry breaking sale Msusy ∼ TeV. We denote the vev of the neutralomponents of Φ1,Φ2,∆, ∆̄,∆

c, ∆̄c and ρ as
〈(Φ1)11〉 = v1, 〈(Φ2)22〉 = v2, 〈∆, ∆̄〉 = vL, 〈∆c, ∆̄c〉 = vR, 〈ρ〉 = sMinimizing the salar potential with respet to vL, vR we get

∂V

∂vL
= vL[2(m∆ + λ1s)

2 + 2λ2
1(v

2
L − v2

R) +As+ 2m2
δ ] = 0
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⇒ v2
R − v2

L =
2m2

δ + (A+ 2λ1M)s+ 2(m∆ + λ1s)
2

2λ2
1

(3.27)
∂V

∂vR
= vR[2(m∆ − λ1s)

2 − 2λ2
1(v

2
L − v2

R)−As+ 2m2
δ ] = 0

⇒ v2
R − v2

L =
−2m2

δ + (A+ 2λ1M)s− 2(m∆ − λ1s)
2

2λ2
1

(3.28)Also
vR

∂V

∂vL
− vL

∂V

∂vR
= 4vLvR[2(Ms + 2m∆s)λ1 + 2λ2

1(v
2
L − v2

R) +As] = 0

⇒ v2
R − v2

L =
2λ1(Ms+ 2m∆) +As

2λ2
1

(3.29)Thus the minimization onditions disallows solutions with vL = vR. But from equations(3.27), (3.28), (3.29) it an be seen that it is di�ult to adjust the various sales M,s,m△so as to satisfy them simultaneously and giving rise to a TeV sale vR and an eV sale vL.Thus we need to add more partiles to the above partile ontent whih an give rise tospontaneous D-parity breaking with a TeV sale vR. This senario of minimal SUSYLRmodel with parity odd singlet was studied long ago and was shown [115℄ that the harge-breaking vaua have a lower potential than the harge-preserving vaua and as suh theground state does not onserve eletri harge3.1.5 SUSYLR model with Higgs triplets and bitripletIn minimal left-right supersymmetri models with triplet Higgs bosons leads to several net-tlesome obstrutions whih may be onsidered to be a guidane towards a unique onsistenttheory. One of the most important problems is the spontaneous breaking of left-right sym-metry and there are many substantial amount of work has been done to ure this problem.This an be ured either by adding some extra �elds to the minimal partile ontent [115℄or with the help of non-renormalization operator [118℄. There is another solution to theproblem, whih resembles the non-supersymmetri solution, relating the vauum expeta-tion values (vevs) of the left-handed and right-handed triplet Higgs salars to the Higgsbi-doublet vev through a seesaw relation. The novel feature onsists in the introdutionof a bitriplet Higgs and another Higgs singlet under left-right group [140℄. We will tryto extremize the full potential of this partiular model and see what are the mass sales,di�erent vevs oming out from the extremization.We now present our model, where we inlude a bi-triplet and a parity odd singlet �elds,in the minimal supersymmetri left-right symmetri model with triplet Higgs disussed in



64 CHAPTER 3. TEV SCALE SUSYLR MODEL WITH SPONTANEOUS D-PARITY BREAKINGprevious subsetion [3.1.4℄. These �elds are vetor-like and hene do not ontribute toanomaly, so we onsider only one of these �elds. The quantum numbers for the new salar�elds, bitriplet (η = (1, 3, 3, 0) ) and parity odd singlet ( ρ = (1, 1, 1, 0) ). Under parity,these �elds transform as η ↔ η and ρ↔ −ρ. The superpotential for the model is writtenin the more general tensorial notation [140℄ as follows
W = fηαi∆α∆c

i + f∗ηαi∆̄α∆̄c
i + λ1ηαiΦamΦbn(ταǫ)ab(τ

iǫ)mn

+mηηαiηαi +M∆(∆α∆̄α + ∆c
i∆̄

c
i) + µǫabΦbmǫmnΦan

+mρρ
2 + λ2ρ(∆α∆̄α −∆c

i∆̄
c
i) (3.30)where α, a, b are SU(2)L and i,m, n are SU(2)R indies. The symmetry breaking patternin this model is

SU(2)L × SU(2)R × U(1)B−L × P 〈ρ〉−→ SU(2)L × SU(2)R × U(1)B−L

〈△c〉−−→ SU(2)L × U(1)Y 〈Φ〉−→ U(1)emDenoting the vev's as 〈∆−〉 = 〈∆̄+〉 = vL, 〈∆c
+〉 = 〈∆̄c

−〉 = vR, 〈Φ+−〉 = v, 〈Φ−+〉 =

v′, 〈η+−〉 = u1, 〈η−+〉 = u2, 〈η00〉 = u0 and 〈ρ〉 = s.The salar potential is V = VF + VD + Vsoft where VF = |Fi|2, Fi = −∂W
∂φ is theF-term salar potential, VD = DaDa/2,Da = −g(φ∗i T a

ijφj) is the D-term of the salarpotential and Vsoft is the soft supersymmetry breaking terms in the salar potential. Inthe partiular model, the soft-susy breaking terms are given by
Vsoft = Vsoft(ontaining ∆ and Φ) +mη(soft)η

†
αiηαi

+(A2ηαiΦamΦbn(ταǫ)ab(τ
iǫ)mn +A3(ηαi∆α∆c

i ) + h.c.) (3.31)where Vsoft(ontaining ∆ and Φ) is given by the eqn: (3.26) in the subsetion [3.1.4℄.Minimizing the salar potential with respet to vL, vR we get
∂V

∂vL
= µ2

L(2 vL) + 2λ2
2 vL (v2

L − v2
R) + 2 (f u1 + f∗ u2)M∆ vR

+ vR (f + f∗) [2mη(u1 + u2 + u3) + λ1 v
2 + vL vR (f + f∗)]

+ 4 vLm
2
δ + 2AvL s+A3 vR (u1 + u2 + u3) = 0 (3.32)
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∂V

∂vR
= µ2

R (2 vR)− 2λ2
2 vR (v2

L − v2
R) + 2 (f u1 + f∗ u2)M∆ vL

+ vL (f + f∗) [2mη (u1 + u2 + u3) + λ1 v
2 + vL vR (f + f∗)]

+ 4 vR m
2
δ − 2AvR s+A3 vL (u1 + u2 + u3) = 0 (3.33)Where the e�etive mass terms µ2

L, µ
2
R are given by

µ2
L = (M∆ + λ2s)

2 + λ2mρs+
1

2
(f2u2

1 + f∗2u2
2) (3.34)

µ2
R = (M∆ − λ2s)

2 − λ2mρs+
1

2
(f2u2

1 + f∗2u2
2) (3.35)Thus after the singlet �eld ρ aquires a vev the degeneray of the Higgs triplets goes awayand the left handed triplets being very heavy get deoupled whereas the right handedtriplets an be as light as 1 TeV by appropriate �ne tuning in the above two expressions.Assuming vL ≪ v, v′, µ,A≪ mρ, s and vL ≪ vR we get from equations (3.32), (3.33):

vL =
−vR[M∆u2f

∗ +mη(u2 + u3)(f + f∗) + u1(fM∆ +mη(f + f∗)]
2mρsλ2 + 4M∆sλ2 + 2As

(3.36)Thus we an get a small vL(∼ eV) and a TeV sale vR by appropriate hoie ofM∆,mη,mρ, s.We take the vev of the bitriplet u ≪ MZ . Thus if we want vR ∼ 1 TeV then the aboverelation will give us an eV sale vL only if the sale of parity breaking is kept low thatis, s ∼ mρ ∼ M∆ ∼ 1010 GeV. Thus in suh a type II seesaw dominated ase, the righthanded triplets ∆c will be as light as µR ∼ vR ∼ 1 TeV and the left handed triplets ∆as heavy as µL ∼ 1010 GeV by appropriate �ne tuning of the parameters. However as wewill see later, suh a light Higgs triplet with B − L harge 2 spoils the gauge ouplinguni�ation. Hene we are fored to keep the intermediate symmetry breaking sale MRlose to the uni�ation sale.
3.2 Gauge Coupling UnificationGrand uni�ed theories (GUTs) o�er the possibility of unifying the three gauge groups viz.,
SU(3), SU(2) and U(1) of the standard model into one large group at a high energy sale
MU . This sale is determined as the intersetion point of the SU(3), SU(2) and U(1)ouplings. The partile ontent of the theory ompletely determines the variation of theouplings with energy. It is hard to ahieve low intermediate sale without taking into



66 CHAPTER 3. TEV SCALE SUSYLR MODEL WITH SPONTANEOUS D-PARITY BREAKINGaount the e�et of D-parity breaking in the RGEs. We have seen in the previous setionthat in spontaneous D-parity breaking models, the minimization of the salar potentialsimultaneously allows us to have right handed sale vR of the order of TeV and tinyneutrino masses from seesaw mehanisms. However the evolution of gauge ouplings willbe very di�erent in models with Higgs triplets and with Higgs doublets. In this setion westudy the renormalization group evolution of the gauge ouplings and see if uni�ation ata high sale (∼ 1016 GeV) allows us to have a TeV sale vR. Similar analysis were donein [147, 148℄ for Higgs doublet ase. Here we use the U(1) normalization onstant √
3
8as in [149℄. We restrit our study to the supersymmetri ase only. The gauge ouplinguni�ation in the non-supersymmetri versions of suh models were studied before and anbe found in [133, 150℄.3.2.1 Uni�ation in SUSYLR model with Higgs doubletsWe will study the evolution of ouplings aording to their respetive beta funtionswith the aount of spontaneous D-parity breaking. The renormalization group equa-tions(RGEs) for this model ane be written as

dαi

dt
= α2

i [bi + αjbij +O(α2)] (3.37)where, t = 2π ln(M) (M is the varying energy sale), αi =
g2

i

4π is the oupling strength.Also bi and bij are the one loop and two loop beta oe�ients and we will study only theone loop ontributions to RGEs [149℄. The indies i, j = 1, 2, 3 refer to the gauge group
U(1), SU(2) and SU(3) respetively.The partile ontent of SUSYLR model with Higgs doublets is shown in subsetion[3.1.3℄. It turns out that the minimal partile ontent is not enough for proper gaugeoupling uni�ation. For required uni�ation purposes we add two opies of δ ≡ (1, 1, 1, 2),
δ̄ ≡ (1, 1, 1,−2) at the SU(2)R breaking sale. The beta funtions are given as
• Below the Susy breaking sale Msusy the beta funtions are same as those of thestandard model

bs = −7, b2L = −19

6
bY =

41

10

• For Msusy < M < MR , the beta funtions are same as those of the MSSM
bs = −9 + 2ng, b2L = −6 + 2ng +

nb

2
, bY = 2ng +

3

10
nb
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Figure 3.1: Gauge oupling uni�ation with Msusy = 500 GeV, MR = 1.5 TeV, Mρ = 1016 GeV
• For MR < M < 〈ρ〉 the beta funtions are

bs = −9 + 2ng, b2L = −6 + 2ng +
nb

2

b2R = −6 + 2ng +
nb

2
+
nHR

2
, bB−L = 2ng + 3nδ +

3

4
nHR

• For 〈ρ〉 < M < MGUT the beta funtions are
bs = −9 + 2ng, b2L = −6 + 2ng +

nb

2
+
nHL

2

b2R = −6 + 2ng +
nb

2
+
nHR

2
, bB−L = 2ng + 3nδ +

3

4
(nHL + nHR)where ng is the number of fermion generations and number of Higgs bidoublets nb = 2,number of Higgs doublets nHL = nHR = 2, number of extra Higgs singlets nδ = 2. Theexperimental initial values for the ouplings at eletroweak sale M = MZ [129℄ are




αs(MZ)

α2L(MZ)

α1Y (MZ)


 =




0.118 ± 0.003

0.033493+0.000042
−0.000038

0.016829 ± 0.000017


 (3.38)



68 CHAPTER 3. TEV SCALE SUSYLR MODEL WITH SPONTANEOUS D-PARITY BREAKINGThe normalization ondition at M = MR where the U(1)Y gauge oupling merge with
SU(2)R × U(1)B−L is α−1

B−L = 5
2α

−1
Y − 3

2α
−1
L . Using all these we arrive at the gaugeoupling uni�ation as shown in (3.1). Here we have taken Msusy = 500 GeV, MR = 1.5TeV, Mρ = 1016 GeV. The ouplings seems to unify at a sale slightly above the D-paritybreaking sale. Thus the D-parity breaking sale need not be the same as the GUT sale,but an be lower also. However if we make the D-parity breaking sale arbitrarily lower,the uni�ation wont be possible as an be seen from the �gure (3.1). Sine both the lefthanded and right handed Higgs doublets will ontribute to the U(1)B−L ouplings afterthe D-parity breaking sale, the α−1

BL will ome down sharply and meet the other ouplingsat some energy below the expeted GUT sale.3.2.2 Uni�ation in SUSYLR model with Higgs tripletsThe partile ontent of SUSYLR model with Higgs triplets is shown in subsetion [3.1.4℄.It is very di�ult to ahieve uni�ation with low MR with the minimal partile ontent.We add a parity odd singlet ρ(1, 1, 1, 0) to ahieve spontaneous D-parity breaking. Thismay hange the sale of MR, but it is found that the MR remains higher that 1010 GeV.For uni�ation purposes, we need in the reent model, one heavy bidoublet χ(1, 2, 2, 0) hasbeen added whih gets mass at the SU(2)R breaking sale. Below the SU(2)R breakingsale the beta funtions are similar to the MSSM as written above. The beta funtionsabove this sale are
• For MR < M < Mρ the beta funtions are

bs = −9 + 2ng, b2L = −6 + 2ng +
nb

2
+
nχ

2

b2R = −6 + 2ng +
nb

2
+ 2n△ +

nχ

2
, bB−L = 2ng +

9

2
n△

• For 〈ρ〉 < M < MGUT the beta funtions are
bs = −9 + 2ng, b2L = −6 + 2ng +

nb

2
+ 2n△ +

nχ

2

b2R = −6 + 2ng +
nb

2
+ 2n△ +

nχ

2
, bB−L = 2ng + 9n△where number of Higgs triplets n△ = 2, number of additional Higgs �eld added for uni-�ation nχ = 1,, number of generations ng = 3, and number of Higgs bidoublets nb = 2.Using the same initial values and normalization relations like before we arrive at the gauge
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Figure 3.2: Gauge oupling uni�ation with MR = 1013 GeV, Mρ = 1016 GeVoupling uni�ation as shown in (5.1). Here the uni�ation sale MGUT oinides withthe D-parity breaking sale Mρ. Lower values of MR will make the uni�ation worse be-ause of the large ontributions of triplets to the U(1)B−L beta funtions ompared to thedoublets in the previous ase. Thus in the minimal triplet ase, both the minimizationonditions as well as uni�ation disallow a TeV sale vR. Although after adding a bitriplet,the minimization onditions allow a TeV sale vR, it wont make the uni�ation better aswe disuss in the next subsetion.3.2.3 Uni�ation in SUSYLR model with Higgs triplets and bitripletAs we saw before, the minimization of the salar potential in a SUSYLR model withHiggs triplets with spontaneous D-parity breaking does not allow a TeV sale MR. Thesame thing is true from gauge oupling uni�ation point of view as shown in the previoussubsetion. Now we onsider the SUSYLR model with Higgs triplet as well a bitriplet [140℄.For uni�ation purposes we add three heavy olored partiles χ(3, 1, 1, 0) whih deoupleafter the SU(2)R breaking sale MR. The beta funtions above MR are
• For MR < M < Mρ the beta funtions are

bs = −9 + 2ng +
nχ

2
, b2L = −6 + 2ng +

nb

2
+ 2nη
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Figure 3.3: Gauge oupling uni�ation with MR = 1012 GeV, Mρ = 1016 GeV
b2R = −6 + 2ng +

nb

2
+ 2n△ + 2nη, bB−L = 2ng +

9

2
n△

• For 〈ρ〉 < M < MGUT the beta funtions are
bs = −9 + 2ng +

nχ

2
, b2L = −6 + 2ng +

nb

2
+ 2n△ + 2nη

b2R = −6 + 2ng +
nb

2
+ 2n△ + 2nη, bB−L = 2ng + 9n△where number of Higgs triplets n△ = 2, number of olored Higgs nχ = 3, number ofgenerations ng = 3, number of Higgs bidoublets nb = 2 and number of Higgs bitriplets

nη = 1. Using the same initial values and normalization relations like before we arrive atthe gauge oupling uni�ation as shown in (5.2). Here the uni�ation sale is the sameas the D-parity breaking sale. Similar to the ase with just Higgs triplets, here alsolower value of MR makes the uni�ation look worse. Thus although minimization of thesalar potential allows the possibility of a TeV sale MR in this model, the gauge ouplinguni�ation riteria rules out suh a possibility.
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3.3 Neutrino mass in SUSYLR model with Higgs doubletsIn left-right symmetri models with only doublet salar �elds, the question of neutrinomasses has been disussed in details. We shall try to restrit ourselves as lose as possibleto these existing non-supersymmetri models, and hek the onsisteny of these solutionswhen D-parity is broken spontaneously in the present SUSYLR model.We introdued a singlet fermioni super�eld S to the partile ontent of the modeldisussed in subsetion [3.1.3℄. This kind of model has been disussed without the D-paritybreaking e�et and from the neutrino mass prospetive ite. The e�et of this singlet �eldhas been aounted in the RGEs shown in subsetion [3.2.1℄. With the addition of thissinglet fermion, the superpotential and resulting neutrino mass matrix beome
W =MijSiSj + FijΨLiSjHL + F ′

ijΨRiSjHR, (3.39)and
Wneut = (νi N c

i Si)




0 (MN )ij FijvL

(MN )ji 0 F ′
ijvR

FjivL F ′
jivR Mij







νj

N c
j

Sj


 . (3.40)whereMN is the general Dira term oming from the term (MN )ijνiN

c
j . In the above massmatrix, the mass of the singletMij and the vev of the right-handed Higgs doublet vR areheavy, while MN and vev of the left-handed Higgs doublet vL are of low sale.The resulting light neutrino mass matrix after diagonalizing the above mass matrix is

Mν = −MNM
−1
R MT

N − (MNH +HTMT
N )

(
vL

vR

)
, (3.41)where, H ≡

(
F ′ · F−1

)T
, (3.42)

MR = (F ′ vR)M−1(F ′T vR). (3.43)Here we an see that the �rst term in eqn (4.23) is the type-I seesaw ontribution and theseond term gives the type-III seesaw ontribution. The type-III ontribution to ν masswill dominate over type-I if the elements of the matrix Mij are small ompared to theontribution of H term. It is lear from the eqn (4.25) that the sale of MR found to beTeV forMij =1 TeV, vR =1 TeV whih is automatially omes from the minimization ofthe potential and onsistent with the RG evolutions whih has already studied in subsetion[3.2.1℄ and F of the order of unity. With the mass sales and MN of the order of MeV, wean found neutrino mass to be eV.



72 CHAPTER 3. TEV SCALE SUSYLR MODEL WITH SPONTANEOUS D-PARITY BREAKINGNeutrino mass in ase of Fermioni triplet:Let us introdue fermioni triplets (one for eah family) order to realize the double seesawmehanism:
ΣL =

1

2


 Σ0

L

√
2Σ+

L√
2Σ−

L −Σ0
L


 ≡ (3, 1, 1, 0),and

ΣR =
1

2


 Σ0

R

√
2Σ+

R√
2Σ−

R −Σ0
R


 ≡ (1, 3, 1, 0),Under left-right parity transformation one has the following relations

ΣL ←→ ΣR.In the ontext of lepton masses, the relevant term in the Lagrangian is
Lℓ = ℓ̄L(Y1Φ + Y2Φ̃)ℓR + h.c.where Φ̃ = τ2Φτ2. One the bidoublet Φ takes vev. i.e v1 = 〈φ0

1〉 and v2 = 〈φ0
2〉, the Diramass matrix for the neutrinos is

mD
ν = Y1v1 + Y2v2The relevant Yukawa terms that gives masses (for the double seesaw mass matrix) to thethree generations of leptons are given by

LIII
ν = hijℓ

T
iL C iσ2 ΣjL HL + gij ℓ

T
iR C iσ2 ΣjR HR

+ MΣ Tr
(
ΣT

L C ΣL + ΣT
R CΣR

)
+ h.c. (3.44)One the Higgs doublets gets vev i.e,vL = 〈H0

L〉 and vR = 〈H0
R〉, SU(2)L ⊗ SU(2)R isbroken spontaneously. Now the mass matrix in the basis (

νL, νR, Σ0
R

) reads as:
M III

ν =




0 mD
ν 0 hvL

(mD
ν )T 0 gvR 0

0 gT vR MΣ 0

hT vL 0 0 MΣ



. (3.45)



3.3 Neutrino mass in SUSYLR model with Higgs doublets 73As one expets the neutrino masses are generated through the Type I + Type III seesawmehanisms and one has a double seesaw mehanism sine the mass of the right-handedneutrinos are generated through the Type III seesaw one we integrate out Σ0
R.The neutrino mass formula derived from the above mass matrix is given by

mνL
=

1

v2
R (gT g)

[mD
ν MΣ (mD

ν )T − vR vLm
D
ν (g h)T − vR vL (g h) (mD

ν )T ] (3.46)with right handed neutrino masses
MR = v2

R g (MΣ)−1 gT . (3.47)We take the Dira mass of the all the three neutrinos to be of MeV order. This �xesthe sale of the MΣ and MR so as to give rise to eV sale neutrino masses on the left handside of above relation [3.46℄. If we assume that the �rst term of [3.46℄ will dominate thenthe seesaw relations will beome mν = m2
e

MR
. As me = 0.5 MeV, we need the values of theright handed Majorana neutrino as: MR = 103 GeV to have 0.1 eV light neutrino mass.We an arrive at the appropriate value of MR by hoosing g and MΣ. Sine we are taking

vR ∼ 1TeV hene to get MR ≥ 1TeV we must have MΣ ≤ 1TeV. One the sale of righthanded Majorana neutrino gets �xed by the light neutrino mass, we an �nd the values of
MΣ and vR. We have taken the Yukawa ouplings as g, h < 1, vR = 103 GeV in Eq. [3.47℄and these lead to triplet fermion masses :MΣ ∼ 103 GeV.IfMΣ << 1TeV and vR ∼ 1TeV, then the �rst term of the above neutrino mass formulabeomes to small to give rise to neutrino masses. In that ase the seond and the thirdterm in the equation [3.46℄ an ontribute to the neutrino masses if vL/vR ∼ 10−6. Andsuh a ratio an naturally be ahieved (even if we have a TeV sale vR) by hoosing varioussymmetry breaking sales and mass parameters as we disussed in setion [3.1℄.Role of ΣL,ΣR in uni�ation:The fermion triplets with U(1)B−L harge zero ontributes to the SU(2)L and SU(2)Rgauge oupling running. As disussed above, for the seesaw purposes we have to take lowvalues ofMΣ <= vR whih will ruin the gauge oupling uni�ation for a TeV sale SU(2)Rbreaking sale vR. Uni�ation and small neutrino mass are possible only if SU(2)R breakingsale as well as mass of the triplet fermions are lose to the uni�ation sale. However if weadd fermion singlet in plae of triplets then there is no onstraints from uni�ation point ofview on vR andMΣ. The mass matrix beomes 3×3 in this ase. Thus in Supersymmetrileft-right model with Higgs doublets, we an ahieve uni�ation with TeV sale SU(2)R



74 CHAPTER 3. TEV SCALE SUSYLR MODEL WITH SPONTANEOUS D-PARITY BREAKINGbreaking sale only if fermion singlet is added in plae of triplets as in the onventionaltype III seesaw.
3.4 Neutrino mass in SUSYLR model with Higgs triplets and bi-

tripletsThe relevant Yukawa ouplings whih leads to small non-zero neutrino mass is givenby
LII

ν = yijℓiLΦℓjR + y′ijℓiLΦ̃ℓjR + h.c.

+ f ′ij
(
ℓTiR C iσ2∆RℓjR + (R↔ L)

)
+ h.c. (3.48)The Majorana Yukawa ouplings f is same for both left and right handed neutrinos beauseof left-right symmetry. After symmetry breaking, the e�etive mass matrix of the neutrinosis

mν =
−f v2 vR

2mσ s
− v2

vR
y f−1 yT = mII

ν +mI
ν (3.49)Consider the values of y, f are of the order of unity, then the relative magnitude of mII

νand mI
ν depend on the parameters like vR, mσ, s. As disussed in setion [3.1℄, the typeII term an beome dominant (even if vR ∼ 1 TeV) if we take mσ ∼ s ∼ 108 − 1010 GeV.

3.5 Results and DiscussionsSpontaneous breaking of Lorentz parity ours via Higgs doublet in SUSYLR model withdoublet Higgs only and via Higgs triplets/bitriplet in SUSYLR model with Higgs tripletsand bitriplet. After taking into aount of spontaneous D-parity breaking, the minimizationof the salar potential also allows the possibility of MR ∼ TeV, vL ∼ eV in LRSM withHiggs triplets and SUSYLR models with Higgs triplets and Higgs bitriplet. It also allows
MR ∼ TeV, vL/vR ∼ 10−6 in both Susy and non-Susy LR models with Higgs doublets.In the SUSYLR model with Higgs doublets we an have a TeV sale MR as well as
vL/vR ∼ 10−6 by keeping the D-parity breaking sale very high ∼ 1016 GeV. The gaugeouplings also unify for the same hoie of sales although at the ost of adding extrapartiles whih ontribute to the beta funtions at high energy. However if we add fermiontriplets for seesaw, then uni�ation is not possible with TeV sale SU(2)R breaking sale.



3.5 Results and Discussions 75Adding fermion singlet for seesaw purposes an evade this di�ulty.In SUSYLR model with Higgs triplet, the minimization onditions do not allow thepossibility of a TeV sale MR and eV sale vL simultaneously although gauge ouplingsunify if we take MR as high as 1013 GeV. Thus we an not have TeV sale MR, type IIseesaw dominane and gauge oupling uni�ation simultaneously.In SUSYLR model with Higgs triplets and bitriplet, we an have TeV sale MR and eVsale vL only if we keep the D-parity breaking sale as low as 1010 GeV. However suh ahoie of parity breaking sale spoils the gauge oupling uni�ation. The gauge ouplingsunify if we takeMR = 1012 GeV and the D-parity breaking sale as 1016 GeV with inlusionof three extra olored partiles. Thus we an not have a TeV sale MR and uni�ationsimultaneously.To summarize the work, we have analyzed the di�erent senarios of spontaneous break-ing of D-Parity in both non-Susy and Susy version of left right symmetri models. We havedisussed the possibility of obtaining a TeV sale MR, gauge oupling uni�ation and typeII/type III seesaw dominane of neutrino mass within the framework of di�erent SUSYLRmodels. In all the models where we explore the possibility of a TeV sale MR, it is di�ultto ahieve uni�ation with the minimal partile ontent. We have added some extra salarpartiles as well as their superpartners with suitable transformation properties under thegauge group to ahieve uni�ation. We have shown that exept for the SUSYLR modelwith Higgs doublets, we an not have a TeV sale MR and gauge oupling uni�ation. InSUSYLR model with Higgs doublet, type III seesaw an dominate even if the D-paritybreaking sale is as high as the GUT sale whereas in SUSYLR model with Higgs tripletsand bitriplet, the D-parity breaking sale has to be kept as low as 1010 GeV for type IIseesaw to dominate. However adding fermion triplets to give rise to seesaw spoils the uni-�ation with a TeV sale MR in the SUSYLR model with Higgs doublet. Adding fermionsinglets instead of triplets do not give rise to this problem and an reprodue the neessaryseesaw without a�eting the RG evolution of the ouplings.





Chapter
4

Leptogenesis and Neutrino mass in

susyLR with Higgs doublet

The existene of massive neutrinos, the unknown origin of parity violation in the StandardModel (SM) and the hierarhy problem are some of the important motivations for physisbeyond the SM. The most natural extension of the standard model that addresses theseissues is the supersymmetri version of the left-right symmetri extension of the standardmodel, whih will treat the left-handed and right-handed partiles on equal footing, andthe parity violation we observe at low energies would be due to the spontaneous breaking ofthe left-right symmetry at some high sale [99�103℄. Another interesting feature of the left-right symmetri model is that the di�erene between the baryon number (B) and the leptonnumber (L) beomes a gauge symmetry, whih leads to several interesting onsequenes.In spite of the several virtues of the minimal supersymmetri left-right symmetri mod-els (MSLRM), we are yet to arrive at a fully onsistent model, from whih we an desenddown to the MSSM. One of the most important problems is the spontaneous breaking ofleft-right symmetry [115, 116℄. There has been suggestions to solve this problem by intro-duing additional �elds or higher dimensional operators or by going through a di�erentsymmetry breaking hain or breaking the left-right symmetry around the supersymmetrybreaking sale [115�117, 121, 121, 123, 130℄. In some ases, this problem is ured throughthe introdution of a parity-odd singlet, but the soft susy breaking terms then lead tobreaking of eletromagneti harge invariane. One of the interesting SUSYLR model is
77



78 CHAPTER 4. LEPTOGENESIS AND NEUTRINO MASS IN SUSYLR WITH HIGGS DOUBLETthe minimal SUSYLR model, whih has been studied extensively [115, 116, 121℄, and ithas been found that global minimum of the Higgs potential is either harge violating or
R-parity violating. The details of these disussion has been reviewed in seond hapterand the simplest solution is to inlude a bi-triplet �eld [140℄ and allow D-parity breakingat some high sale, whih may then allow parity violation spontaneously, allowing the saleof SU(2)R breaking to be di�erent from the SU(2)L breaking sale. We will now extendthis argument to the models involving only doublets.In this work, we will address the question of parity breaking in a supersymmetri left-right model, in whih the left-right symmetry is broken with Higgs doublets (arrying
B − L = ±1). Unlike the left-right symmetri models with triplet Higgs salars (arrying
B−L = ±2), in this model it is possible to break parity spontaneously by adding a parityodd singlet. We shall also disuss how neutrino mass of type III (as named in the work ofAlbright) seesaw or, double-seesaw, an be invoked in this model by adding extra fermionsinglets. We onsidered simple forms of the mass matries that are onsistent with theuni�ation sheme and demonstrate how they an reprodue the required neutrino mixingmatrix. In this model, the baryon asymmetry of the universe is generated via leptogenesis.The required mass sales in the model is then found to be onsistent with the gaugeoupling uni�ation.
4.1 SUSYLR with Higgs doublets with odd B-L and parity odd

singletWe onsider here a SUSYLR model with only doublet Higgs salars, whih is the simplestextension of the non-supersymmetri LR model. This inludes the bi-doublet salar �eldthat is required to give masses to the harged fermions and also to break the SU(2)Lsymmetry after the left-right symmetry is broken. The doubling of the bidoublet Higgs inprevious models was to ensure a non-vanishing CKM matrix. For the sake of simpliityof our model we forgo this ondition sine it doesn't have any bearing on parity breaking.However, extension of the present model via doubling of the bidoublet is fairly trivial.The superpotential for supersymmetri left-right theory with Higgs doublets whih isrelevant for us is
W = fΦ (χ̄LχR + χLχ̄R) +mΦΦΦ +mχ (χ̄LχL + χ̄RχR)where f is a dimensionless onstant in the theory. The Higgs �elds aquire vevs as follows
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〈χL〉 = 〈χ̄L〉 = vL, 〈χR〉 = 〈χ̄R〉 = vR and 〈Φ〉 = v. From �atness ondition, one an easilydedue the relations like
vL =

−mΦv

fvR

mχvL + fv vR = 0

mχvR + fvvL = 0 (4.1)The last two relations are not onsistent for vL ≪ vR as we are interested in the ase whereparity has to be broken spontaneously. That means we need the left-right sales should bedi�erent so that we an ahieve spontaneous parity breaking. Why the sales of left-rightsale should be di�erent is not lear from the above relations. The simplest solution forthis problem is to add a parity odd singlet.We will now present a model whih is phenomenologially onsistent and explains theneutrino mass, baryon asymmetry via leptogenesis mehanism. This model an give answerto the question of spontaneous parity breaking in the supersymmetri version of the left-right symmetri models, in whih all symmetry breaking takes plae with only doubletHiggs salars and a D-parity odd singlet salar. We will review to the ase where theeletroweak gauge group is the left-right symmetri group GLR ≡ SU(3)c × SU(2)L ×
SU(2)R × U(1)B−L and we will study susy version of this model. The �eld ontent of thesupersymmetri left right model is given by

Q =


u
d


 ≡ [3, 2, 1,

1

3
] , Qc =


u

c

dc


 ≡ [3, 1, 2,

1

3
] ,

L =


ν
e


 ≡ [1, 2, 1,−1] , Lc =


N

c

ec


 ≡ [1, 1, 2,−1] (4.2)where the numbers in the brakets denote the quantum numbers under SU(3)C⊗SU(2)L⊗

SU(2)R ⊗ U(1)B−L. The right handed neutrino is now required by the gauge group.Thus, the Higgs setor of our model is given by,
χL ≡ (1, 2, 1,−1), χL ≡ (1, 2, 1, 1),

χR ≡ (1, 1, 2,−1), χR ≡ (1, 1, 2, 1),

Φa = (1, 2, 2, 0), σ ≡ (1, 1, 1, 0).where, with usual ustom the subsript L and R denotes the left and right handedness



80 CHAPTER 4. LEPTOGENESIS AND NEUTRINO MASS IN SUSYLR WITH HIGGS DOUBLETof the Higgs partile. The Higgs partiles with �bar" in the notation, helps in anomalyanellation of the model.The gauge group of this model is SU(3)C × SU(2)L × SU(2)R × U(1)B−L × P . Thequantum numbers for the super�elds under the gauge group onsidered are given by thetable [4.1℄ as follows
SU(3)c × SU(2)L × SU(2)R × U(1)B−LMatter Super�led:

Q 3 2 1 +1/3
Qc 3 1 2 −1/3
L 1 2 1 −1
Lc 1 1 2 +1Higgs Super�led:
Φa 1 2 2 0
χL 1 2 1 +1
χR 1 1 2 −1
χL 1 2 1 −1
χR 1 1 2 +1
σ 1 1 1 0Table 4.1: This table shows the partile ontent and their quantum number under the gauge groups

SU(3)C × SU(2)L × SU(2)R × U(1)B−L.We have also inluded a singlet salar �eld σ, whih has the speial property that it iseven under the usual parity of the Lorentz group, but it is odd under the parity that relatesthe gauge groups SU(2)L and SU(2)R. This �eld σ is thus a salar and not a pseudo-salar�eld, but under the D-parity transformation that interhanges SU(2)L with SU(2)R, it isodd. This kind of work is proposed in [133, 139℄. Although all the salar �elds are evenunder the parity of the Lorentz group, under the D-parity the Higgs setor transforms as,
χL ↔ χR, χ̄L ↔ χ̄R,

Φ↔ Φ†, σ ↔ −σ.The superpotential of the model relevant in the ontext of parity breaking is given by,
W = fΦ (χ̄LχR + χLχ̄R) +mΦΦΦ

+mχ (χ̄LχL + χ̄RχR)

+mσ σ
2 + λσ (χ̄LχL − χ̄RχR). (4.3)Supersymmetry being unbroken, implies the F and D onditions are equal to zero. The F



4.1 SUSYLR with Higgs doublets with odd B-L and parity odd singlet 81�atness onditions for the various Higgs �elds are given by,
FΦ = f (χ̄LχR + χLχ̄R) + 2mΦΦ = 0,

FχL
= fΦχ̄R +mχχ̄L + λσχ̄L = 0,

Fχ̄L
= fΦχR +mχχL + λσχL = 0,

FχR
= fΦχ̄L +mχχ̄R − λσχ̄R = 0,

Fχ̄R
= fΦχL +mχχR − λσχL = 0,

Fσ = 2mσσ + λ(χ̄LχL − χ̄RχR). (4.4)Similarly, the D �atness onditions, are given by,
DRi

= χ†
RτiχR + χ̄†

Rτiχ̄R = 0,

DLi
= χ†

LτiχL + χ̄†
Lτiχ̄L = 0,

DB−L = (χ†
LχL − χ̄†

Lχ̄L)− (χ†
RχR − χ̄†

Rχ̄R) = 0. (4.5)In both the F and D �at onditions we have negleted the lepton �elds, sine they wouldhave a zero vev. The vev's for the salar �elds are given by,
〈χL〉 = 〈χ̄L〉 = vL,

〈χR〉 = 〈χ̄R〉 = vR,

〈Φ〉 = v, 〈σ〉 = s. (4.6)Here, for simpliity of the model, we have assumed χL and χ̄L to have the same vev vL.Similarly, for the right-handed �elds χR and χ̄R.Here, however, in order to determine the vauum struture of our model, we minimizethe F �at onditions and disuss about the relations that emerge from them. Suppose the�eld σ takes the vev as 〈σ〉 = s. After the salar �elds have aquired their respetive vevs,the F �atness onditions are given by,
FΦ = f(vLvR + vRvL) + 2mΦv = 0, (4.7)
Fσ = 2mσs+ λ(v2

L − v2
R) = 0. (4.8)

FχL
= fvvR + λsvL +mχvL = 0, (4.9)

Fχ̄L
= fvvR + λsvL +mχvL = 0, (4.10)
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FχR
= fvvL − λsvR +mχvR = 0, (4.11)

Fχ̄R
= fvvL − λsvR +mχvR = 0, (4.12)Solving the equations we get four relations among the vevs.

vL =
−mΦv

fvR
(4.13)

mχ + λs =
f v vR

vL
(4.14)

mχ − λs = −fvvL

vR
(4.15)

s =
λ

2mσ
(v2

R − v2
L) (4.16)The role of D-parity odd singlets σ is uni-important in left-right breaking. This an beunderstood from eqns. (4.14) and (4.15) as follows:

(
vL

vR

)2

=
M − λ s
M + λ s

(4.17)If there is no σ �eld, then s = 0. This implies vL = vR whih is a left-right symmetrisolution. Also the F-term onditions (4.9)-(4.12) are not onsistent without the inlusionof the parity odd singlet σ in the model. Hene, the parity odd singlet σ is neessary toaount for the spontaneous left-right breaking and for the onsisteny of the model.We now try to interpret these results to get a working phenomenology. Considering thelast of the relations eqn (4.16) we see that s = 0 is a trivial solution, and will put vL and
vR on equal footing thus leading to unbroken parity. However, s = 0 is a speial solutionof eqn (4.16). For s 6= 0, we have vL 6= vR and parity is violated spontaneously. We willhoose vR ≫ vL, as it is usually assumed in model building for phenomenologial reasons.Choosing the mass (mΦ) and vev (v) of Φ to be of eletroweak (EW) sale and onsideringthe dimensionless oupling onstant λ to be of order unity, we immediately ome to theonlusion, from eqn (4.15), that mχ ∼ s.In order to avoid generi susy problems like over abundane of gravitino, we assumethe mass sale of vR to be ≤ 109 GeV. This together with eqn (4.13) gives the valueof vL ≃ 10−5 GeV, where f , another dimensionless quantity, without any �ne-tuning isonsidered to be of order unity. This is also onsistent with the assumption that vR ≫ vL.Now using eqn (4.14) and the above derived relation that mχ ∼ s we get mχ ∼ s ≃ 1016GeV. Finally, from eqn (4.16) one derives the mass of σ (mσ) to be of EW sale. If one



4.1 SUSYLR with Higgs doublets with odd B-L and parity odd singlet 83Masses/Vevs Case - I (In GeV)
mχ, s 1016

vR 109

mΦ, v ,mσ 102

vL 10−5Table 4.2: Mass sales of the modelonsiders non-thermal leptogenesis, then one an onsider the alternative possibility ofhaving a low value of vR i.e. ∼ O(10) TeV. Then all the mass sales and vevs are reduedby a ouple of orders and ould be aessible to olliders. The results are summarized inTable (4.2).4.1.1 E�et of soft susy breaking termsWe introdue the soft susy breaking terms to hek if they alter relations between variousmass sales in the model. The soft susy breaking Lagrangian is
−Lsoft = M2

Q̃
Q̃†Q̃+M2

Q̃cQ̃c†Q̃c +M2
L̃
L̃†L̃+M2

L̃cL̃c†L̃c

+m2
χL
χ†

LχL +m2
χR
χ†

RχR +m2
χ̄L
χ̄†

Lχ̄L +m2
χ̄R
χ̄†

Rχ̄R

+m2
11Φ

†
1Φ1 +m2

22Φ
†
2Φ2 + (B1χ

T
Lτ2χ̄L +B2χ

T
Rτ2χ̄R +BµijTrτ2ΦT

i τ2Φj

+C ′
φχχ

†
LΦχR + C ′′

φχχ̄
†
LΦχ̄R +D′

φχχ
T
LΦχ̄R +D′′

φχχ̄
T
LΦχR

+AqφQ̃
T τ2Φiτ2Q̃

c +AℓφL̃
T τ2Φiτ2L̃

c +Aφχχ
T
LΦiχR +A′

φχχ̄
T
LΦiχ̄R

+Gaugino mass terms + h.c.) (4.18)Where all the parameters are of the susy breaking sale whih is ∼ TeV.The Higgs part of the superpotential is
W = fΦ (χ̄LχR + χLχ̄R) +mΦΦΦ

+mχ (χ̄LχL + χ̄RχR)

+mσσ
2 + λσ(χ̄LχL − χ̄RχR).We write the salar potential as

V = |F |2 +DaDa/2 + Vsoft
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ijφj), g is gauge oupling onstants, T a is the generators of the orre-sponding gauge group and φ's are hiral super�elds.The F-term salar potential is V = |Fi|2 where Fi = −∂W

∂φ . We denote the vev of theneutral omponents of Higgs �elds as: 〈Φ〉 = v, 〈χL〉 = 〈χ̄L〉 = vL, 〈χR〉 = 〈χ̄R〉 = vR and
〈σ〉 = s.Minimizing the salar potential with respet to vL, vR, we get

∂V

∂vL
= 2 vL µ

2
L + (8 f vmΦ + 8 f v mχ)vR + 2 (4 f2 − 2λ2)vL v

2
R

+ 4λ2 v3
L + (Aφχ + C ′

φχ +D′
φχ)v vR = 0and

∂V

∂vR
= 2 vR µ

2
R + (8 f vmΦ + 8 f v mχ)vL + 2 (4 f2 − 2λ2)vR v

2
L

+ 4λ2 v3
R + (A′

φχ + C ′′
φχ +D′′

φχ)v vL = 0 (4.19)where
µ2

L = m2
χL
− 4λmσs+ (mχ − λs)2 + 2 f2 v2 +B1 v

2
LOne need some �ne tuning to get the value of µL from the above relation. If one take

λ to be order of one, then allow mχ − λs ∼ 109 GeV by appropriate �ne tuning. Henethis ontribution anels with the term −4λmσ s giving µL a value of TeV range. Fromeqn.(4.19), it is lear that µR = vR as the only relevant dominant terms are 2λ2 v2
R. If wetake vR = 109 GeV, then the value of µR is also 109 GeV.From the minimization ondition vR

∂V
∂vL
− vL

∂V
∂vR

, we get the relation
vLvR =

8 f vmχ v
2
R

4λ mχ s+ 4λ mσ s
(4.20)Here we have taken the approximation: v << vR << mχ, s. The sales in our modelare s = mχ = 1016 GeV and vR = 109 GeV. From the above relation, putting these valueswe an have VEV of vL = 10−5 GeV. It is lear that the sale of vL and vR are onsistentwith the model whih we derive from the minimization ondition of the salar potential.Thus adding the soft terms do not alter the relations between various mass sales of thetheory.For suh a hoie of sales we an �ne tune the parameters to get a light χL having



4.2 Neutrino Mass 85mass µL ∼ TeV and a heavy χR having mass µR ∼ vR ∼ 109 GeV, MU ∼ 1016 GeV. Thiswill be important in the renormalization group evolution of the gauge ouplings as we willsee later.
4.2 Neutrino MassIn LR models with only doublet salar �elds, the question of neutrino masses and lepto-genesis has been disussed in details. We shall try to restrit ourselves as lose as possibleto these existing non-supersymmetri models, and hek the onsisteny of these solutionswhen parity is broken in the present SUSYLR model. We shall �rst disuss the senariowith onserved D-parity, but sine LR symmetry annot be broken without breaking D-parity we shall disuss the D-parity breaking senario afterwards.In onventional type I seesaw, neutrino mass an be realized via three right handedneutrinos N c

i where we have Majorana mass term (MR)ijN
c
i N

c
j and Dira masses withthe ordinary neutrinos (MN )ijνiN

c
j = (YN )ijνiN

c
j 〈Φ〉. After diagonalizing, the resultingneutrino mass is M I

ν = −MN M−1
R MT

N . Type II seesaw requires a SU(2)L triplet Higgs�eld T with mass of order mT . Integrating out the Higgs triplet T leads to an massoperator (MT )ijνiνj with MT ∝ YT 〈Φ〉2
mT

∼ v2

MG
. Combination of these neutrino mass arealso possible in left-right models whih ontains both type I and type-II or, type I andtype III [60, 120℄.In type III neutrino mass [135℄ three hyperharge neutral fermioni triplets Σa (a =

1, 2, 3) are added to explain the ν mass term. In our model, however, we have an extrafermioni super�eld whih give rise ν mass term whih is similar to the onventional typeIII seesaw mehanism. Thus, it is in this spirit that we an all the seesaw mehanism inour model as type III seesaw. For the review of the standard type III seesaw mehanismwe losely follow [153℄.Along with the Dira neutrino mass term (MN )ijνiN
c
j , the relevant superpotential for

ν mass term, whih is due to the extra fermion singlet (S) is given by,
W = MijSiSj + Fij lLiSjχL + F ′

ij lRiSjχR, (4.21)From the above superpotential one an see that the vev of the left-handed doublet Higgs�eld whih aquires a low sale vev 〈χL〉 = vL diretly ouples the left-handed ν ′is with
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Wneut = (νi N c

i Si)




0 (MN )ij FijvL

(MN )ji 0 FijvR

FjivL FjivR Mij







νj

N c
j

Sj


 . (4.22)In the above mass matrix, the mass of the singlet Mij and the vev of the right-handedHiggs doublet vR are heavy, while MN and vev of the left-handed Higgs doublet vL are oflow sale.Sine in our model we have more than one left-handed Higgs doublet (χL, χ̄R), the νmass is given by,

Mν = −MNM
−1
R MT

N − (MNH +HTMT
N )

(
vL

vR

)
, (4.23)where, H ≡

(
F ′ · F−1

)T
, (4.24)

MR = (F vR)M−1(F T vR). (4.25)The �rst term in eqn (4.23) is the type I seesaw ontribution and the seond term givesthe type III seesaw ontribution. Type III ontribution to ν mass will dominate over typeI if the elements of the matrixMij are small ompared to the ontribution of H term.We will partly follow the formalism and parametrization used in [153, 154℄ where theelements of the Dira mass matrix are MN 11 = ηv, MN 33 = v, MN 23 = −MN 32 = vǫ andelse are zero. Here η = 0.6 × 10−5 and ǫ ∼ 0.14.If the elements of Fij and F ′
ij are onsidered to be of the order of f , a dimensionlessparameter then from eqn. (4.24) we �nd that Hij ∼ 1 (i, j = 1, 2, 3). Thus, the ν massresulting from eqn (4.23) is
Mν =




η ǫ 1

ǫ ǫ 1

1 1 1



v vL

vR
(4.26)The neutrino mass as presented above mostly satisfy the observed neutrino mass with aminor �ne tuning in the 13 element.Another set of parameters an be hosen to explain both neutrino mass and leptogenesis



4.2 Neutrino Mass 87where both Fij and F ′
ij take the form [153℄

F,F ′ ∼




λ2 λ λ

λ 1 1

λ 1 1


 ,where λ ∼ η/ǫ. With this form of F,F ′ we have from eqns (4.23) and (4.24),

H ∼




1 ǫ/η ǫ/η

η/ǫ 1 1

η/ǫ 1 1


 ,and

Mν ∼




η ǫ ǫ

ǫ ǫ 1

ǫ 1 1



v vL

vR
.For the study of leptogenesis, a diagonal Fij would su�e better. The parameters in thisnew basis would be represented via a tilde. The right-handed neutrino and the singlethas to be transformed via a unitary transformation to attain the diagonal basis as suh

N c
i = UijÑ

c
j and Si = Vij S̃j. To attain the diagonal form of Fij the unitary matrix Uijan have the form

U =




u11 λu12 λu13

λu21 u22 u23

λu31 u32 u33


with Vij having a similar form. Here the uij elements are of O(1). For simpliity andnumerial omputation we will use the partiular form of the unitary matrix whih is

U =




1 −λ(1 +
√

2)i λ

−λ(1 +
√

2)i 1/
√

2 i/
√

2

λ i/
√

2 1/
√

2


 .The elements of the diagonalized matrix F̃ijvR = (UkiFkℓVℓj)vR an be written

F̃ vR = diag[λ2F1, F2, F3]vR ≡ diag[M1,M2,M3],
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iju and M̃ij an be parametrized as

F̃ ′u =




λ2f11 λf12 λf13

λf21 f22 f23

λf31 f32 f33


 v,

M̃ =




λ2g11 λg12 λg13

λg21 g22 g23

λg31 g32 g33


MS , (4.27)where, fij, gij ∼ 1. The assumption here is that the sale of MS ≪ vR. In the newbasis, the Dira neutrino mass matrix MN transforms as M̃N = MNU and the form of thetransformed matrix is

M̃N
∼=




ηu11 ηλu12 ηλu13

ǫλu31 ǫu32 ǫu33

λu31 u32 u33


 v ≡ Ỹ v. (4.28)After doing all the parametrization, the type III seesaw ontribution to the light neutrinomass matrix (whih dominates, sine MS ≪ vR) from eqn (4.23) is given by,

Mν
∼= −




2η
(

u11f11

F1

)
η
λ

(
u11f21

F1

)
η
λ

(
u11f31

F1

)

η
λ

(
u11f21

F1

)
2ǫ

∑
j

(
u3jf2j

Fj

) ∑
j

(
u3jf2j

Fj

)

η
λ

(
u11f31

F1

) ∑
j

(
u3jf2j

Fj

)
2
∑

j

(
u3jf3j

Fj

)




(
v2

vR

)
. (4.29)

Now we disuss the leptogenesis senario in the given form of the neutrino matrix MN ,
M, MS and U [153, 154℄. Consider the ase where the six super heavy two-omponentneutrinos have the mass matrix

(Ñ c
i , S̃i)


 0 Miδij

Miδij M̃ij





 Ñ c

j

S̃j


 ,where, M̃ij is given in eqn (4.27). The leptogenesis an be realized by the deays of thelightest pair of these super heavy neutrinos, whih have e�etively the 2× 2 mass matrix

(Ñ c
1 , S̃1)


 0 M1

M1 M̃11





 Ñ c

1

S̃1


 = (Ñ c

1 , S̃1) λ
2


 0 F1vR

F1vR g11MS





 Ñ c

1

S̃1


 .



4.2 Neutrino Mass 89Consider the senario where MS ≪ vR, then this results an almost degenerate pseudo-Dira pair or equivalently two Majorana neutrinos with nearly equal and opposite masses.These Majorana neutrinos are N± ∼= (Ñ c
1 ± S̃1)/

√
2, with masses M± ∼= ±M1 + 1

2M̃11 =

λ2(±F1vR + 1
2g11MS). These an deay into light neutrino plus Higgs via the term

Yi±(N±νi)H, where
Yi± ∼= (Ỹi1 ± F̃ ′

i1)/
√

2∓ M̃11

4M1
(Ỹi1 ∓ F̃ ′

i1)/
√

2. (4.30)Here Ỹ is the Dira Yukawa oupling matrix given in eqn (4.28). It is straightforward toshow that the lepton asymmetry produed by the deays of N± [153℄ is given by
ǫ1 =

1

4π

Im[
∑

j(Yj+Y
∗
j−)]2

∑
j [|Yj+|2 + |Yj−|2]

I(M2
−/M

2
+), (4.31)where f(M2

1+/M
2
1−) omes from the absorptive part of the deay amplitude of N± . Thisfuntion is given by

I(x) =
√
x

[
1

1− x + 1− (1 + x) ln

(
1 + x

x

)]Making use of eqns (4.30) and (4.31) one obtains
ǫ1 =

1

4π

∑
j(|Ỹj1|2 − |F̃ ′

j1|2)Im(
∑

k Ỹ
∗
k1F̃

′
k1)∑

j(|Ỹj1|2 + |F̃ ′
j1|2)

f(M2
1+/M

2
1−),or, ǫ1 ∼= λ2

4π

[
(|u31|2 − |f ′31|2)Im(u∗31f

′
31)

|u31|2 + |f ′31|2 + |f ′21|2
]
f(M2

1+/M
2
1−). (4.32)The lepton asymmetry produed by the deay on lightest Majorana neutrino is partiallydiluted by the lepton number violating deay proesses. This deay proesses try to washout the lepton asymmetry already produe before. This wash out fator is given by,

k(m̃1) ∼ 0.3

(
10−3 eV
m̃1

)(
log

m̃1

10−3 eV)−0.6The equilibrium mass of the neutrino is given by
m̃1 ≡

8πv2
uΓN1±

M2
N1±

∼= λ2 v
2
u

M1
(|u31|2 + |f ′31|2 + |f ′21|2).



90 CHAPTER 4. LEPTOGENESIS AND NEUTRINO MASS IN SUSYLR WITH HIGGS DOUBLETInput Case (III-1) Case (III-2) Case (III-3) Case (III-4)
vR (GeV) 2.7 × 1014 2.7× 1012 8.8× 1010 9.8× 108

F1 1.0 10. 31 50
F2 1.0 0.1 0.1 1.0
F3 1.0 1.0 1.0 1.0
MS(GeV) 4.3× 105 430 43 10.0
f21 -0.950 + 0.534i -0.050 + 0.0534 i -0.950 + 0.11 i -0.01+0.01 i
f22 -2.279 - 1.537i -0.227 - 0.154i -0.228 - 0.154i -0.225+0.138 i
f23 -0.194 + 1.523i -0.194 + 1.523i -0.193 + 0.573 i -0.195 + 1.23 i
f31 0.6+3.5 i -0.012 + 0.385 i -0.46 + 0.42 i 0.04 +0.04 i
f32 -0.354i -0.035i -0.035i 0.023 i
f33 0.354 0.354 0.354 0.523Table 4.3: Type III seesaw and Leptogenesis results for four asesOutput Case (III-1) Case (III-2) Case (III-3) Case (III-4)
M1 (GeV) 4.53 × 105 4.53 × 103 4.58 × 103 82.37
M2 (GeV) 2.70× 1014 2.70 × 1012 8.8× 1010 9.8× 108

M3 (GeV) 2.70× 1014 2.70 × 1012 8.8× 1010 9.8× 108

(M1+ +M1−)/M1+ 1.6 × 10−9 1.59 × 10−10 1.57× 10−10 4.08 × 10−9

ǫ1 −2.5× 10−6 −2.1× 10−4 −1.01× 10−6 −1.01× 10−4

m̃1 (eV) 0.511 0.569 4.774 0.694
κ1 5.1 × 10−4 4.5 × 10−4 4.5× 10−5 3.6× 10−4

ηB 1.11 × 10−10 1.147 × 10−10 3.911 × 10−10 1.461 × 10−10Table 4.4: Type III seesaw results for four ases4.2.1 Numerial ResultThe lepton asymmetry produed per unit entropy, taking into aount deays of Majorananeutrino and their washout fators, is given by
nL

s
∼= k ǫ1

s

gN T 3

π2

∼= 45

2π4

gN

g∗
k ǫ1We have used the expression for entropy of the omoving volume, s = 2

45
g∗π2T 3 . Here

gN = 2 for Majorana spin degrees freedom and g∗ = 228.75 is the relativistially spin



4.3 Gauge coupling unification 91degrees of freedom for supersymmetry.The orresponding B-L asymmetry per unit entropy is just the negative of nL/s, sinebaryon number is onserved in the right-handed Majorana neutrino deays.While B − Lis onserved by the eletroweak interation following those deays, the sphaleron proessesviolate B+L onservation and onvert the B−L asymmetry into a baryon asymmetry.Thebaryon asymmetry for supersymmetri ase is
nB

s
= −28

79

nL

sWith the entropy density s = 7 .04 nγ in terms of the photon density, the baryon asymmetry(ηB)of the Universe, de�ned by the ratio nB of the net baryon number to the photon number,is given in terms of the lepton asymmetry(ǫ1) and washout parameter (k) by
ηB =

nB

nγ

∼= −0.039 k ǫ1. (4.33)Suessful Leptogensis will require that the �nal result for ηB should be order of 1010.where λ = η/ǫ = 4.1× 10−5 as before.The input parameter given in the table (4.3) whih will determine the small neutrinomass, leptogenesis parameter as output given in the table (4.4) of our model.
4.3 Gauge coupling unificationGrand Uni�ed Theories (GUTs) o�er the possibility of unifying the three gauge groupsviz., SU(3), SU(2) and U(1) of the standard model into one large group at a high energysale MU . This sale is determined as the intersetion point of the SU(3), SU(2) and
U(1) ouplings. The partile ontent of the theory ompletely determines the dependeneof the ouplings with energy. Given the partile ontent of the theory one an evolve theouplings, determined at low energies, to determine whether there is uni�ation or not.In this setion we will disuss how one an obtain SU(3)C × SU(2)L × SU(2)R ×
U(1)B−L(gL = gR)(∼= G2213) intermediate gauge symmetry in R-parity onserving super-symmetri grand uni�ed theory through one-loop uni�ation of gauge ouplings. Supposewe want to evolve oupling parameter between the sales M1 and M2 (i.e, M1 ≤ µ ≤M2)orresponding to the two sales of physis, then the RGE's depend on the gauge symmetryand partile ontent at µ = M1. For this purpose, we onsider the two step breakingof the group G to the minimal supersymmetri standard model (MSSM) through G3221



92 CHAPTER 4. LEPTOGENESIS AND NEUTRINO MASS IN SUSYLR WITH HIGGS DOUBLETintermediate gauge symmetry in the so alled minimal grand uni�ed theory.
G

MU→ SU(3)c × SU(2)L × SU(2)R × U(1)(B−L) [G3221]
MR→ SU(3)c × SU(2)L × U(1)Y [G321]
MW→ SU(3)c × U(1)Q [Gem].4.3.1 RGE for SUSYLR model with doublet HiggsThe ouplings evolve aording to their respetive beta funtions. The renormalizationgroup equations(RGEs) for this model ane be written as

dαi

dt
= α2

i [bi + αjbij +O(α2)] (4.34)where, t = 2π ln(µ). The indies i, j = 1, 2, 3 refer to the gauge group U(1), SU(2) and
SU(3) respetively.Unlike the D-parity breaking ase where the intermediate left-right gauge group hasfour di�erent oupling onstants as disussed in [147℄, in the present ase G3221 has onlythree gauge ouplings, g2L = g2R , g3C , and gBL for µ ≥ MR. We now write down theRG evolution equation of gauge ouplings upto one loop order whih are given below

1

αY (MZ)
=

1

αG
+
aY

2π
ln
MR

MZ
+

1

10π

(
3a′2L + 2a′BL

)
ln
MU

MR
,

1

α2L(MZ)
=

1

αG
+
a2L

2π
ln
MR

MZ
+
a′2L

2π
ln
MU

MR
,

1

α3C(MZ)
=

1

αG
+
a3C

2π
ln
MR

MZ
+
a′3C

2π
ln
MU

MR
. (4.35)where αG = g2

G/4π is the GUT �ne-struture onstant and the beta funtion oe�ients
ai and a′i are determined by the partile spetrum in the ranges fromMZ toMR, and from
MR to MU , respetively.Here we are using PDG values, α(MZ) = 127.9, sin2 θW (MZ) = 0.2312 , and α3C(MZ) =

0.1187 [156℄. Consider the ase where SU(2)R × U(1)B−L breaks down to U(1)Y . In thatase
Y

2
= I3,R +

B − L
2

(4.36)The normalized generators are IY = (3
5 )1/2 Y

2 and IB−L = (3
2)1/2 B−L

2 . Using these, onean write
IY =

√
3

5
I3,R +

√
2

5
IB−L (4.37)Whih implies that the mathing of the oupling onstant at the sale where the left-right



4.3 Gauge coupling unification 93symmetry begins to manifest itself is given by
α−1

Y =
3

5
α−1

2R +
2

5
α−1

B−L (4.38)At the sale µ = MZ − MR, the values of beta oe�ients are: bY = 33/5, b2L = 1,
b3C = −3. Similarly, at the sale µ = MR−MU , b′BL = 16, b′2L = b′2R = 4 b′3C = b3C = −3.With these parameters, the evolution of gauge ouplings is shown in �g:(4.1).
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Figure 4.1: Evolution of oupling onstants in susylr model with Higgs doublet. The MR = 1013 GeV andUni�ation sale MU = 0.67 × 1016 GeV.This will hange one we add ontributions oming from extra partile added to theminimal supersymmetri model. One we �x the values of beta funtions, we an ahievelower values of MR. There are disussion [149, 159, 160℄, where the Uni�ation is possibleat the same energy sale around 1016 GeV, but the sale ofMR varies from 109 - 1012 GeV.We have onsidered here one senario where the MR = 109 GeV, MU = 1016 GeV and thee�et of D-parity breaking is inluded. This is possible in our model by adding three opiesof singlets harged under U(1)B−L whih is shown in �gure (4.1) to the minimal partileontent.4.3.2 ResultWe onsider the minimal partile ontent of SUSYLR model and found that uni�ation isnot possible for low sales of MR. We have given the uni�ation plot shown in �gure (4.1)
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Figure 4.2: Uni�ation plot for SUSYLR model with Higgs doublet+ three opies of singlets harged underthe U(1)B−L gauge group. The value of MR is 109 GeV and the uni�ation sale is 5.3 × 1016 GeV.for higher values of MR without taking into aount the D-parity breaking e�et. It islear from the �gure (4.1) that the gauge ouplings unify at a sale 0.67× 1016 GeV. Alsothe right handed sale MR is found to be 2.69× 1013 GeV in our model without inludingthe e�et of D-parity. But spontaneous D-parity breaking hanges the result and makes
MR = 109 GeV or even lower for ertain hoies of parameters as shown in �gure (4.2)though three singlet salar harged under B − L gauge group added to the model. Thereare models [139,147℄ where one an ahieve uni�ation of all three fundamental interationsin whih D-parity is broken at the GUT level. In this work, we have demonstrated thatone an ahieve uni�ation inluding D-parity breaking e�et and sale of µL and µRan be low. This result has been found from minimization of the salar potential of ourmodel inluding SUSY-breaking e�et and also low sale µL and µR is possible from gaugeoupling uni�ation.



Chapter
5

Gravity Correction in SU(5) gauge

coupling constants

5.1 IntroductionThe question of gravitational orretions to the evolution of the gauge oupling onstanthas attrated some attention in reent times, following the seminal paper of Robinsonand Wilzek [163℄. They studied the one-loop quantum orretions to the running ofthe gauge ouplings in an e�etive quantum theory of gravity, whih is valid at energiesbelow the Plank sale and found a quadrati divergent behavior. The harater of theorretion has been arrived at from a general onsideration, whih has been shown tohave important phenomenologial onsequenes in theories with low sale gravity [164℄.However, this result has been questioned by some authors and the result has been studiedfrom di�erent approahes. This gravitational orretion has been shown to depend on thehoie of gauge in an expliit alulation [165℄. They studied the abelian theory and useda parameter dependent gauge to arrive at their result. Subsequently a more general resulthas been obtained using a gauge invariant bakground �eld method that the gravitationalorretions to the gauge ouplings vanishes [166℄. Following the doubts raised by thesetwo referenes on the result of ref. [163℄, a one-loop diagrammatial alulation has beenperformed in the full Einstein-Yang-Mills system, whih had also on�rmed the vanishingof the one-loop ontributions of quantum gravity to the gauge oupling evolution [167℄.
95



96 CHAPTER 5. GRAVITY CORRECTION IN SU(5) GAUGE COUPLING CONSTANTSThe quantum gravity orretions to the running of gauge ouplings were alulatedfor pure Einstein-Yang-Mills system. It is not lear, however, if there is a spontaneouslybroken symmetry ( let us say in SU(5) grand uni�ed theory) with the salar �eld thenthe results of ref. [163℄ will remain valid. Reently the gravitational orretions to thegauge oupling evolution has been studied inluding a osmologial onstant and quantumgravity e�et has been found to a�et the running of the gauge ouplings [168℄. However,the one-loop ontributions in the presene of a osmologial onstant di�ers from that ofref. [163℄, whih was obtained from a general onsideration. This raises the question: whatare the other fators that would make the quantum gravity e�ets signi�ant?In this work, we argue from a phenomenologial approah that the quantum gravitye�ets should be signi�ant when higher dimensional non-renormalizable interations aretaken into onsideration. Sine quantizing the general theory of relativity for small �utu-ations around �at spae gives us a non-renormalizable �eld theory, we need to inlude anin�nite set of higher dimensional ounterterms. Sine these terms are suppressed by appro-priate powers of the Plank mass Mp ∼ 1019 GeV, at energies well below the Plank salethese higher dimensional terms may be onsidered as small perturbations in the e�etivetheory of quantum gravity [169℄. However, at the sale of grand uni�ation these terms maynot be ignored, and hene, in some version of the grand uni�ed theories dimension-5 anddimension-6 gauge invariant terms have been inluded on phenomenologial ground to seeif these terms an hange any of the onlusions for some reasonable values of the ouplingonstants [170℄. It was found that although the minimal SU(5) grand uni�ed theory failsto satisfy the gauge oupling uni�ation, inlusion of the higher dimensional terms hangethe boundary onditions and allow gauge oupling uni�ation at a higher sale [170, 171℄.Here we point out that if the gravitational ontributions to the gauge oupling evolutionvanish, then the boundary onditions appearing due to the higher dimensional terms be-ome inonsistent. We then show how the gauge oupling onstants evolve from low energyto the GUT sale and satisfy the non-renormalizable operator indued mathing onditionat the new GUT sale, if we inlude gravitational orretions to the gauge ouplings, whihdiverge quadratially near the Plank sale.
5.2 Effect of higher dimensional operators in SU(5) unificationMost of the grand uni�ed theories (GUTs) with intermediate symmetry breaking sales ansatisfy the experimentally observed onstraints on proton lifetime (τp) for the p → e+π0mode and the eletroweak mixing angle sin2 θw
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τp ≥ 3× 1032 yr, sin2 θw = 0.230 ± 0.005 .The minimal SU(5) and other GUTs with no intermediate symmetry breaking sale and nonew partiles beyond the minimal representations are ruled out as they predit signi�antlylower values. In other words, with the present range for the sin2 θw, if we evolve the threegauge oupling onstants from the eletroweak sale to the grand uni�ation sale, they donot meet at a point, and hene, there is no uni�ation. In an interesting proposal it waspointed out that sine the grand uni�ation ours at a sale MU ≥ 1015 GeV), whih islose to the Plank sale, it is natural to expet that there ould be signi�ant modi�ationto the GUT preditions by gravity-indued orretions [170℄. These orretions may allowgauge oupling uni�ation, make proton stable, give orret neutrino masses and properharged fermion mass relations at the GUT sale, even for the minimal SU(5) GUT. In thisartile we inlude the higher dimensional terms to study the gauge oupling uni�ationand infer that the evolution of the gauge oupling onstants should be modi�ed by thegravitational orretions.We start with the SU(5) Lagrangian and then the breaking of SU(5) group into theStandard Model group SU(3)C × SU(2)L ×U(1)Y via the Higgs �eld φ, whih transformsunder the 24-dimensional adjoint representation of SU(5). We write down the Lagrangianas a ombination of the usual four dimensional terms plus the new higher dimensional termswhih has been indued by the non-renormalizable interations of perturbative quantumgravity. Sine the ouplings of these terms are not known, we annot make any preditionsat this stage, so we look for onsistent solutions for a reasonable range of the unknownparameters. The SU(5) gauge invariant Lagrangian, inluding higher dimensional termsan be written as
L = L0 + Σn=1L

(n) (5.1)where
L0 = −1

2
Tr(FµνF

µν) (5.2)Where the sum is over the higher dimensional operators. For the present we shall restritourselves to only �ve- and six-dimensional operators, whih are:
L(1) = −1

2

η(1)

MP l
Tr(FµνφF

µν) (5.3)
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L(2) = −1

2

1

M2
P l

[
η(2)

a Tr(Fµνφ
2Fµν) + Tr(FµνφF

µνφ)

+η
(2)
b Tr(φ2)Tr(FµνF

µν) + η(3)
c Tr(Fµνφ)Tr(Fµνφ)

] (5.4)where
Fµν = ∂µAν − ∂νAµ − ig [Aµ, Aν ] (5.5)

(Aµ)ab = Ai
µ

[
λi

2

]a

b

(5.6)and
Tr (λiλj) =

1

2
δij . (5.7)Here Ai is the ith omponent of the gauge �eld, λi is the orresponding generator and ηn,n=1,2,... are the unknown parameters, indued by gravitational orretions.

When the salar φ aquires a vauum expetation value (vev) and breaks the SU(5)symmetry at the GUT sale, we may replae these �elds in the above expressions by its
vev. This will give us the e�etive low energy theory with only dimension-4 interations,but the e�etive gauge �elds will be modi�ed below the GUT sale. We may de�ne thenew physial gauge �elds below the uni�ation sale to be

A′
i = Ai(1 + εi)

1/2 (5.8)and the modi�ed oupling onstants inluding the higher dimensional operators as
g̃2
3(MU ) = g3

2(MU )(1 + εC)−1 (5.9)
g̃2
3(MU ) = g2

2(MU )(1 + εL)−1 (5.10)
g̃2
1(MU ) = g1

2(MU )(1 + εY )−1 (5.11)The gi are the ouplings in the absene of higher dimensional operators, whereas g̃i are thephysial ouplings whih evolve down to the lower sales. The value of the εn assoiatedwith the given operator of dimension n+4 may be expressed in the following way
εn =

[
1√
15

φ0

MP l

]n

η(n) (5.12)
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φ0 =

[
6

5παG

]1/2

MU (5.13)The hange in the oupling onstants are then related to the εns through the followingequations
εC = ε(1) + εa

(2) +
15

2
εb

(2) + .... (5.14)
εL = −3

2
ε(1) +

9

4
εa

(2) +
15

2
εb

(2) + .... (5.15)
εY = −1

2
ε(1) +

7

4
εa

(2) +
15

4
εb

(2) +
7

8
εc

(2) + .... (5.16)This shows how the e�et of higher dimensional operator modify the gauge oupling on-stants. The Uni�ation sale, MU , is now de�ned through the new boundary ondition
g3

2(1 + εC) = g2
2(1 + εL) = g1

2(1 + εY ) = g0
2 . (5.17)With this in mind, one may use the standard one loop renormalization group (RG) equa-tions

αi
−1(Mz) = αi

−1(MU ) +
bi
2π

log

(
MU

Mz

) (5.18)with the beta funtions b1 = 41
10 ,b2 = −19

6 ,b3 = −7. We have taken Nf=3 and NHiggs=1.Solving the RG equations without any higher dimensional ontributions yield
log

(
MU

Mz

)
=

6

67α

1

D

[
1− 8

3

α

αs
+ εC −

5εY + 3εL
3

α

αs

] (5.19)
sin2 θw =

1

D

[
sin2 θw

(5) − 19

134
εC +

1

67

(
21 +

41

2

α

αs

)
εL +

95

402

α

αs
εY

] (5.20)
1

αG
=

3

67

1

D

[
11

3αs
+

7

α

] (5.21)
D = 1 +

1

67
(11εC + 21εL + 35εY ) (5.22)
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(5) is the usual minimal SU(5) predition

sin2 θw
(5)

=
23

134
+

109

201

α

αs
(5.23)In this ase of minimal SU(5), the gauge oupling onstants do not meet at a point, andhene, uni�ation is not possible. We now show how this result gets modi�ed by inludinghigher dimensional terms.

We �rst onsider only the following SU(5) invariant non-renormalizable (NR) (dimen-sion �ve) interation term
LNR = −1

2

(
η

MP l

)
Tr(FµνφF

µν) , (5.24)where φ24 is the Higgs 24-plet, η is a dimensionless parameter andMP l is the Plank mass.Suppose the Higgs �eld aquires a vauum expetation value(vev)
〈φ〉 =

1√
15
φ0diag[1, 1, 1,−3

2
,−3

2
] (5.25)The SU(5) gauge symmetry breaks to SU(3)C × SU(2)L × U(1)Y at this sale beauseof non-invariane of the Higgs �eld under the SU(5) symmetry. The presene of non-renormalizable ouplings modi�es the usual kineti energy terms of the SU(3)c, SU(2)Land U(1)Y gauge boson part of the low-energy Lagrangian. The modi�ed Lagrangianbeomes

−1

2
(1 + ε)Tr(Fµν

(3)Fµν (3))− 1

2
(1− 3

2
ε)Tr(Fµν

(2)Fµν (2))− 1

2
(1− 1

2
ε)Tr(Fµν

(1)Fµν (1)) ,(5.26)where the supersripts 3,2 and 1 refer to gauge �eld strengths of SU(3), SU(2) and U(1)respetively and ε is de�ned as
ε =

[
1√
15

φ0

MP l

]
η . (5.27)We used ε(2) = ε(3) = 0 and ε(1) = ε = ηφ0/(
√

15MU ), so that εC = ε, εL = −3
2ε,

εY = −1
2ε. Now, using these expressions, we get

1

αG
=

11αs
−1 + 21α−1

67− 38ε
, (5.28)
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log

(
MU

Mz

)
=

6π

67− 38ε

[
α−1 − 8

3
αs

−1 +

(
7

3
αs

−1 + α−1

)
ε

] (5.29)
sin2 θw =

1

67− 38ε

[
23

2
+

109

3

α

αs
−

(
41 +

116

3

α

αs

)
ε

] (5.30)Taking the experimental values of αs = 0.1088, α = 1/127.54, it is possible to obtaina onsistent hoie of the parameters εC , εL, εY whih satisfy the onstraints on sin2 θwand MU . But the uni�ation sale remains low and the proton lifetime beomes lessthan the present experimental bound. For entral value of sin2 θw(= 0.2333), we obtain
ε(1) = −0.0441 and MU = 3.8 × 1013 GeV and the orresponding value of αG = 0.0245.The lifetime of proton (mp is the mass of the proton)

τp =
1

αG
2

MU
4

mp
5

(5.31)then beomes too low to be onsistent with experimental limits on τp for the given valueof MU . Hene, it is not possible to obtain a onsistent solution with the �ve Dimensionaloperator. Table 5.1: Uni�ation in SU(5) using gravity orretions
ǫC ǫL ǫY MU0.04 0.0675 0.24 1017 GeV0.3894 0.44 0.98 1018 GeV1.3894 1.445 1.98 1018.6 GeVIf we now inlude both �ve and six dimensional terms, then there are whole rangeof parameters that are onsistent with the values of sin2 θw, MU and proton lifetime.We present a few representative set of values that are onsistent with proton lifetime intable 5.1. So, from now on we shall onsider both dimension �ve and dimension six non-renormalizable terms for our disussion.

5.3 Evolution of gauge couplings including gravitational con-

tributionsIn the last setion we disussed the e�et of higher dimensional non-renormalizable inter-ation on the boundary ondition, satis�ed by the gauge ouplings. In fat, the e�etivegauge ouplings get modi�ed at the time of GUT phase transition, whih allows the gaugeoupling uni�ation for some parameter range. If we now start evolving the gauge ou-pling onstants from low energy, when the e�ets due to the higher dimensional terms are



102 CHAPTER 5. GRAVITY CORRECTION IN SU(5) GAUGE COUPLING CONSTANTSnegligible, we should be able to reah the new modi�ed boundary ondition ontinuously.In other words, the modi�ed e�etive gauge ouplings should evolve with energy in suha way that at low energy they beome the usual gauge ouplings. If we now assume thatthe gravitational orretions to the evolution of the gauge ouplings vanishes, then thistransition is not possible. On the other hand, if we onsider that the gravitational or-retions are of the quadrati nature, as reommended in ref. [163℄, then it is possible toontinuously evolve the gauge oupling onstant from the modi�ed e�etive oupling nearthe GUT phase transition sale to the low energy experimentally observed ouplings.In this setion we shall �rst argue how the non-renormalizable interations ould hangethe gravitational orretions to the gauge ouplings. Then we shall demonstrate how thegauge oupling onstants evolve from low energy to the uni�ation sale in the presene ofthe higher dimensional ontributions. Although the modi�ed boundary ondition and itse�et was studied by many authors, the running of the gauge ouplings from low energyto the uni�ation sale ould not be studied. This is beause the running of the gaugeouplings in the presene of gravitational orretions were not onsidered.As the gauge boson vertex has strength g and gravity ouple to energy momentum witha dimensional oupling ∝ 1
MPl

, dimensional analysis implies that the running of ouplingsin four dimensions will be governed by a Callan-Symanzik β funtion of the form
β(g,E) =

dg

dlnE
= − b0

4π2 g
3 + a0

E2

MP l
2 g (5.32)where the �rst term is the non-gravitational ontribution and the 2nd term is the gravita-tional ontribution, as suggested in ref. [163℄. This quadrati gravitational orretion wasthen revisited in ref. [165�167℄ and it was shown that this ontribution vanishes. We shallnow argue that in the presene of non-renormalizable interations, this ontribution maynot vanish.Following equations 8-11, we write down the e�etive oupling onstant at the GUTsale as

g̃−2 = g−2 + C, (5.33)where C is the ontribution oming from the non-renormalizable interations. We shallnow argue that although the gauge oupling evolution may not be a�eted by gravitationalorretions (as stated in refs. [165�167℄), the evolution of C is dominated by gravitationalorretion, and hene, it should evolve as suggested in ref. [163℄.In the absene of non-renormalizable interations and gravitational orretions, the



5.3 Evolution of gauge couplings including gravitational contributions 103three gauge ouplings for a partiular model evolve as inverse logarithm of E at one looporder. Although uni�ation may not be ahieved in ase of minimal SU(5), inluding non-renormalizable terms (i.e., inluding C) they may get uni�ed at a sale ≈ 1017−18 GeV.In ref. [163℄, it was shown that in absene of C, the ouplings are uni�ed near the Planksale and the value of the ouplings are zero, as shown in �gure 5.1. The negative valueof a0 in the beta funtion signi�es that the gravitational orretion works in the diretionof asymptoti freedom, i.e. it auses oupling onstants to derease at high energy (above
1016 GeV).
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Figure 5.1: Evolution of the gauge oupling onstants without higher dimensional terms, but inludinggravitational orretions [163℄.The modi�ations to the gauge ouplings arising due to non-renormalizable terms aresymbolially denoted by C in equation 33. To omply with the uni�ation onditiondesribed by equation 17, the orretion of eah of the three oupling onstants will havedi�erent weights. This would give nonzero ontribution to the oupling onstants unlikein ref. [165�167℄. One an justify this point as follows: For the purpose of a demonstrationonsider the diagramati method of ref. [167℄. Here one starts with the Einstein-Yang-MillsLagrangian
L4 =

2

κ2

√−gR− 1

2

√−ggµρgνσTr[FµνFρσ ] , (5.34)with the Rii salar R. We then expand the metri in terms of the �at metri ηµν and
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gµν = ηµν − κhµν + κ2hµβh

β
ν

√−g = 1 +
κ

2
h+

κ

8

(
h2 − 2hαβhαβ

)
. (5.35)It is then possible to write down the propagators for this theory and expliitly alulatethe one-loop diagrams to show that the gravitational orretions to the β-funtions vanish[165�167℄. It should be noted that the term of type √−ggµρgνσTr[FµνFρσ ] (in equation34) give ontribution to the oupling onstant that is quadrati in the energy [163℄.If we now inlude the salar �elds Φ in the theory, there will be interations of thesalar �elds with the graviton �eld, whih omes from the Lagrangian

LS =
√−g[DµΦDνΦ]gµν . (5.36)In this ase also there seem to be anellation of the quadrati divergenes (we onsideredthe diagrams to order κ2 for the abelian ase only) and there may not be any gravitationalorretions to the gauge oupling evolution.However, the inlusion of higher dimemsional non-renormalizable terms would om-pletely hange the senario. Suh non-renormalizable terms are expeted in a theory thatinorporates the e�et of quantum gravity. In any grand uni�ed theory, where the uni-�ation sale is only 2-3 orders of magnitude lower than the Plank sale (the prolifera-tion of partiles near the GUT sale ould also lower the Plank sale [172℄), suh non-renormalizable terms may ontribute signi�antly. Consider, for example, the dimension-5term in presene of the 24-plet salar φ of SU(5)

L5 = − 1

2MP l

√−ggµρgνσTr[FµνFρσφ] . (5.37)For the ase when E ≤MU , the salar φ aquires a vev (〈φ〉 ≡M diag[1, 1, 1,−3/2,−3/2]),this term would give ontribution to the C term in equation 33 that vary quadratiallywith the energy. However, to be onsistent with the modi�ed boundary ondition givenby equation 17, the di�erent gauge �elds with di�erent weight fators will give nonzeroontribution. It ought to be noted that the oupling onstants now meet at E ≈MU whihis lower than the Plank sale This supports our earlier inferene that the gravitationalorretions to the gauge ouplings may not vanish when the higher dimensional interationsare inluded.
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Figure 5.2: Evolution of the gauge oupling onstants in the presene of higher dimensional terms andgravitational orretions.Above the uni�ation sale MU , the salar �eld has not aquired vev and SU(5) sym-metery is exat. In this regime there will be only one gauge oupling onstant for entireSU(5) and it will evolve without any gravitational orretions as if the higher dimensionalterms were absent. It is shown in �gure (5.2) that how the oupling onstants vary withenergy in the presene of C terms in the regime E ≤MU . For the regime E ≥MU , thereis only one oupling onstant as the exat SU(5) symmetry is restored.The higher dimensional e�etive ontributions has been studied in the literature, wherebythe gauge oupling onstants get modi�ed near the grand uni�ation sale. These modi�-ations of the boundary onditions allow gauge oupling uni�ation even for the minimalSU(5) GUT. However, the running of the modi�ed gauge ouplings have not been studied.We show that this modi�ed gauge ouplings should evolve inluding the gravitational or-retions, otherwise the low energy gauge ouplings may not be onsistent with the modi�edboundary onditions. From this we infer that the gravitational orretions to the gaugeouplings may not vanish when higher dimensional non-renormalizable interations areinluded in the Einstein-Yang-Mills system.





Chapter
6

Electromagnetic leptogenesis

The reent neutrino experiments like solar and atmospheri osillation experiment as wellas long baseline aelerator and reator neutrino experiments gives enough evidene infavor of the existene of non-zero neutrino masses and mixing, and this is also the evideneof new physis beyond the Standard Model (SM). While both ould be admitted intothe Standard Model (SM) by the simple expedient of adding right-handed neutrino �elds(omitted, at the ineption of the SM, only on aount of the then apparent masslessnessof the neutrinos), many theoretial hallenges persist. Indeed, some authors have laimedneutrino masses to be the evidene of physis beyond the SM.The ouplings of neutrinoswith the photons are generi onsequenes of �nite neutrino masses, and are one of theimportant intrinsi neutrino properties to explore. The study of neutrino EMDM anprovide, in priniple, a way to distinguish between Dira and Majorana neutrinos sine theMajorana neutrinos an only have �avor hanging, transition magneti moments while theDira neutrinos an only have �avor onserving one.The seesaw mehanism and the assoiated mehanism of leptogenesis [37℄ are very at-trative means to explain the origin of the small neutrino masses and the baryon asymmetryof the universe. Leptogenesis [37℄ provides an elegant mehanism to onsistently addressthe observed Baryon Asymmetry in the Universe (BAU) [194℄ in minimal extensions ofthe Standard Model (SM) [195℄. In standard leptogenesis, there exist heavy right handedneutrino of mass lose to GUT sale 1015 GeV and it's out of equilibrium deay reates anet lepton asymmetry whih get onverted into the observed baryon asymmetry via the
107
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B + L violating sphaleron interations [84, 196℄. At the same time, the inlusion of righthanded Majorana neutrino an explain the observed smallness of light neutrinos throughthe so-alled seesaw mehanism [197℄.Although the aforementioned sheme is theoretially very attrative, it su�ers from thelak of diret detetability, e.g. at high-energy olliders, suh as the LHC or ILC, or inany other foreseeable experiment. This has, naturally, led to e�orts towards alternativeroutes to leptogenesis. A phenomenologially interesting solution to this problem may beobtained within the framework of resonant leptogenesis (RL) [88�91,93,95℄. Charaterizedby the presene of two (or more) nearly degenerate heavy Majorana neutrinos, in suhsenarios the orretions to the self-energies play a pivotal role in determining the leptonasymmetry [38℄. Indeed, if the mass di�erene be omparable to their deay widths, theresonant enhanement ould render asymmetries to be as large as O(1) [89, 91℄.Reently a very interesting possibility of eletromagneti leptogenesis [193℄ has beenproposed, wherein the soure of CP violation has been identi�ed with the eletromagnetidipole moment of the neutrinos. The general form of this dipole moment oupling of thelight neutrinos, ν, to the heavy neutrinos, N , is given by νj (µjk + i γ5Djk)σαβNkB
αβ,where µjk and Djk are the magneti and eletri transition moments, respetively. Theaforementioned dimension-�ve operators are, presumably, generated by some new physisoperative beyond the eletroweak sale. With CP -violation being enoded in the strutureof the dipole moments, the deays of heavier neutrinos to lighter ones and a photon, an,in priniple, lead to matter-antimatter asymmetry in the universe. Although the proposalis a very interesting one, so far it has not been inorporated in any realisti model. In thiswork, we propose a spei� model for resonant eletromagneti leptogenesis. A guidingpriniple in our quest is that the new physis should be at the TeV sale so as to renderthe model testable at the LHC or future Linear Colliders.To implement the idea of eletromagneti leptogenesis, one should �rst understandthe eletromagneti interation between the left-handed (LH) light neutrino ν and right-handed (RH) heavy neutrino N via the e�etive transition dipole moment operator andtheir osmologial impliations. In the subsequent disussion , we will investigate whetherthe lepton number violating radiative deay of the heavy sterile neutrinos (N → νγ) whihan explain the baryon asymmetry, in analogy to the standard leptogenesis senario where

N -deays are mediated by the Yukawa ouplings (N → νφ). We will present a generalproperties of EMDM ouplings and expliit alulation of the CP-asymmetry indued bythe deays of N through suh e�etive dipole moment operator.
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6.1 Electromagnetic properties of light and heavy neutrinosLet us understand the properties of the transition form fators µjk and Djk in the generidipole moment oupling between light (ν) and heavy (N) neutrinos:
LEM = νj (µjk + iγ5Djk)σαβ Nk Fαβ + h.. (6.1)where µjk is the transition magneti moment, Djk is the transition eletri moment. The

νj = eiϑj νc
j and Nk = eiϕk N c

k (j, k are the mass labels) are Majorana neutrino �elds withmasses mj and Mk respetively, while Fαβ denotes the photon �eld tensor as usual. Here
ϑj and ϕk are the harge onjugation phase fators assoiated with the Majorana neutrinos.We use the de�nition: σαβ = i

2 [γα, γβ ]. Rewriting νj and Nk using the Majorana ondition,we obtain
LEM ≡ (eiϑjνc

j ) (µjk + iγ5Djk)σαβ e
iϕk N c

k F
αβ + h..

= −e−i(ϑj−ϕk)νT
j C

−1 (µjk + iγ5Djk)σαβ CN
T
k F

αβ + h.. (6.2)where C is the harge onjugation operator with the following onventions:
ψc = Cψ

T
, C† = C−1 , CT = −C , C†CT = C∗C = −I , C−1γ5C = (γ5)T ,

C−1γµC = (−γµ)T , C−1σµνC = (−σµν)T , C−1PR,LC = (PR,L)T , (6.3)where PR,L ≡ (1 ± γ5)/2. Taking the transpose of the �rst term in Eqn:(6.2) and usingEqn:(6.3) to simplify the expression, one eventually gets after some algebra
LEM = −e−i(ϑj−ϕk)Nk (µjk + iγ5DN

jk)σαβ νj F
αβ + h.. (6.4)If we write out the h.. term of equation (6.1) (whih is Nk (µ∗jk + iγ5D∗

jk)σαβ νj F
αβ) andompare it with the �rst term in (6.4), we an onlude that

µjk = −ei(ϑj−ϕk)µ∗jk and Djk = −ei(ϑj−ϕk)D∗
jk . (6.5)From this, we get

µjk
2 = |µjk|2 ei(ϑj−ϕk+π) , (6.6)

⇒ µjk = |µjk| i ei(ϑj−ϕk)/2 . (6.7)



110 CHAPTER 6. ELECTROMAGNETIC LEPTOGENESISSimilarly, we have the analogous expression for Djk. An important note on this is thatalthough the relations between µjk and µ∗jk, as well as Djk and D∗
jk depends on the hoieof the harge onjugation phase fator, one ϑj and ϕk are hosen, they are �xed. Inpartiular, when ϑj = ϕk, we have the situation where µjk and Djk must be purelyimaginary. Furthermore, it is worth mentioning that if Lagrangian (6.1) is CP invariant,then only one of µjk and Djk survives. But in our work here we do not impose suhondition and the only assumptions we shall make are Hermitiity and CPT invariane.In alulations, it is often muh simpler to onsider the EMDM oupling betweenthe assoiated hiral omponents of the ν and N (instead of using the form written in(6.4)) beause the resultant Lagrangian ontains only one type of eletromagneti dipolemoment oupling rather than distint magneti (µjk) and eletri (γ5Djk) moment termsas γ5PR,L = ±PR,L. Letting νj = νLj + eiϑjνc

Lj and Nk = NRk + eiϕkN c
Rk where νL and

NR are the usual LH and RH neutrino states, then (6.4) an be rewritten into
LEM = νLj (µjk + iDjk)σαβ NRk F

αβ + e−i(ϑj−ϕk)(νLj)c (µjk − iDjk)σαβ N
c
Rk F

αβ

+ ei(ϑj−ϕk)(NRk)c (µ∗jk + iD∗
jk)σαβ ν

c
Lj F

αβ +NRk (µ∗jk − iD∗
jk)σαβ νLj F

αβ ,

= νLj (µjk + iDjk)σαβ NRk F
αβ − e−i(ϑj−ϕk)NRk (µjk − iDjk)σαβ νLj F

αβ

− ei(ϑj−ϕk)νLj (µ∗jk + iD∗
jk)σαβ NRk F

αβ +NRk (µ∗jk − iD∗
jk)σαβ νLj F

αβ , (6.8)where in the last step we have followed the same proedure as that leading to (6.4). Using(6.7) and the analogous form for Djk, the Lagrangian simpli�es to the form (after absorbingthe ommon fator of 2 into the de�nitions of µ and D):
L′EM = νLj (µjk + iDjk)σαβ NRk F

αβ + h.. , (6.9)
= νLj λjk σαβ PRNk F

αβ + h.. , (6.10)where we have de�ned λjk ≡ µjk + iDjk and it is in general a omplex matrix. As a result,we an assume that the EMDM oupling matrix λ is ompletely arbitrary in all of oursubsequent analysis. Now we shall investigate the viability of eletromagneti leptogenesis.We must �rst hek that the out-of-equilibrium deay of the RH neutrinos an give rise toa nonzero CP asymmetry under the most general situations. In addition, beause of theonstraints from other setors of the theory, it is also neessary to examine whether theparameter spae has enough degrees of freedom to produe an asymmetry of the orretmagnitude.
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6.2 Discussion of electromagnetic leptogenesis with effec-

tive dipole operatorThere is an alternate senario where leptogenesis is mediated not by the standard Yukawaouplings, but instead by eletromagneti dipole moment ouplings. In this new senarioof leptogenesis, the lepton asymmetry is generated by the CP-violating deays of heavyMajorana neutrinos either to SM lepton, photon in 2-body deay or to SM lepton, Higgsand photon in 3-body deay via eletromagneti dipole moment ouplings. In this setion,we will review the general disussion of eletromagneti leptogenesis (work of Kayser etal. [193℄) and, at the end of this setion, will give motivation towards our work.We onstrut an e�etive theory by taking the usual minimally extended SM La-grangian with three generations of heavy Majorana neutrinos, and augmenting it withEMDM operators. The dimension-5 EMDM operators involving only (the minimally ex-tended) SM �elds is of the form of (6.10). We assume that these EMDM ouplings aregenerated by some new physis at an energy sale Λ > M , where M generially denotesthe mass a heavy RH Majorana neutrino, and work with the e�etive theory that is validbelow Λ, obtained after integrating out all new heavy degrees of freedom. The EMDMinteration Lagrangian of interest is:
L5DEM = −λjk νLj σ

αβ PRNk Fαβ + h.. , (6.11)
≡ − 1

Λ
(λ0)jk νLj σ

αβ PRNk Fαβ + h.. , (6.12)where j = e, µ, τ and k = 1, 2, 3. Fαβ = ∂αAβ−∂βAα is, as before, the eletromagneti �eldstrength tensor, with Aα being the photon �eld. We have de�ned λ0 as a dimensionless
3×3 matrix of omplex oupling onstants, and Λ is the ut-o� sale of our e�etive theory,whih has dimensions of energy.An important observation is that the SM gauge symmetry, SU(2)L × U(1)Y is expli-itly broken and the model is invariant only under the eletromagneti symmetry U(1)Q.However, one major di�ulty is that the theory demands to be valid up to the sale of
Λ (i.e above M), hene only U(1)Q is unbroken, while the SM implies that eletroweaksymmetry must be restored at that sale sine Λ,M ≫ ΛEW ≃ 102 GeV.The most eonomial of suh operators involving only (the minimally extended withthree heavy right handed Majorana neutrinos) SM �elds are of dimension six and the



112 CHAPTER 6. ELECTROMAGNETIC LEPTOGENESISinteration Lagrangian of interest is
LEM = −ℓj

[
λ′jk φσ

αβ Bαβ + λ̃′jk τi φσ
αβ W i

αβ

]
PRNk + h.. , (6.13)

≡ − 1

Λ2
ℓj

[
(λ′0)jk φσ

αβ Bαβ + (λ̃′0)jk τi φσ
αβ W i

αβ

]
PRNk + h.. , (6.14)where the τi are the SU(2)L generators, ℓj = (νLj, eLj)

T is the lepton doublet, and φ =

(φ0, φ−)T is the SM Higgs doublet. The �eld strength tensors of U(1)Y and SU(2)L aregiven by Bαβ = ∂αBβ−∂βBα andW i
αβ = ∂αW

i
β−∂βW

i
α−g ǫimnW

m
α W

n
β , respetively, where

g′ and g are the orresponding oupling onstants. As before, Λ denotes the high energyut-o� of our e�etive theory, while the newly de�ned dimensionless EMDM ouplingmatries, λ′0 and λ̃′0, are in general omplex. Note that λ′0 and λ̃′0 play the exat same roleas λ0 in LagrangianThe higher dimension (non-renormalizable) operators of Eq. (6.13) are assumed to begenerated at the energy sale Λ, beyond the eletroweak sale. Although the presene ofthese operators would imply the existene of some new physis at high energies, we shallnot speulate on the nature of it here. After spontaneous breaking of SU(2)L ⊗ U(1)Y ,these operators will then give rise to the usual transition moments between Nk and νj.But, for the purposes of leptogenesis, we are of ourse interested in the regime above theeletroweak symmetry breaking sale.Eletromagneti Leptogenesiswith 5-D EMDM operator Γ1
em,5D =

(λ†0λ0)11
4π

(
M1

Λ

)2

M1

− 1
Λ(λ0)jk νLj σ

αβ PRNk Fαβ + h.. |εem, 5D
1 | ≃ 1

π

∑

m6=1

Im [(λ†0λ0)
2
1m]

(λ†0λ0)11

M1

Mm

(
M1

Λ

)2with 6-D EMDM operator Γem, 6D
1 =

1

4π
(λ′†0 λ

′
0)11M1

(
M2

1

8πΛ2

)2

− 1
Λ2 ℓj

[
(λ′0)jk φσ

αβ Bαβ

]
PRNk + h.. |εem, 6D

1 | ≃ 1

π

∑

m6=1

Im [(λ′†0 λ
′
0)

2
1m]

(λ′†0 λ
′
0)11

M1

Mm

(
M2

1

8πΛ2

)2Table 6.1: Comparison of key quantities in eletromagneti leptogenesis for both 5D and 6D-EMDM oper-ator [193℄, where λ0 and λ′
0 denote the dimensionless 5D and 6D-EMDM oupling onstants respetively.We have presented a summary of eletromagneti leptogenesis with both 5D and 6D-EMDM operator given in the table [6.1℄ from whih a ouple of general observations foreletromagneti leptogenesis an be made. For our investigation here, we are partiularlyinterested in examining if eletromagneti leptogenesis alone (i.e. when the Yukawa ou-



6.3 Realistic Model for electromagnetic leptogenesis 113plings are not taken into aount or forbidden by some symmetry) an give rise to therequired asymmetry without ontraditing any known experimental onstraints.Firstly, we will examine the senario of eletromagneti leptogenesis with 6D-dipoleoperator. In the paper of Kayser [193℄, it is lear that to obtain a reasonable size forthe CP asymmetry (e.g. O (
10−6

)), the sale for M1 must be at least O (
1012

) GeV, aresult whih is similar to that from standard N1-leptogenesis. The allowed values of theparameters: Λ ≃ 10M2,3 ≃ 20M1, λ′0 ≃ 35 are su�ient to the produe an asymmetryof |εEM1 | ∼ 10−6 ( where λ is the e�etive dimension-5 EMDM oupling and de�ned as
λ = λ0

Λ ). It is not well understood how one an get suh big number λ0 > 35 and what isthe e�etive theory ? So, qualitatively speaking, we expet that suessful eletromagnetileptogenesis is ahievable with these parameter hoies whih an in priniple realizedin a realisti model. Seondly, the 5D-dipole moment operator an not give suessfulleptogenesis in this hoie of parameters.Are there plausible models in whih a sizable amount of EDM whih links between lightand heavy neutrino ours ? A natural question we may ask is whether the introdutionof CP-violating dipole moment ouplings will allow leptogenesis to our at a lower sale,loser to experimentally aessible energies. Suppose one assumes that CP violation is dueto some sort of new physis at the TeV sale. Then one an write the e�etive low-energy,dimension-5 Lagrangian as − 1
Λ(λ0)jk νLj σ

αβ PR Nk Fαβ +h... If Λ is O (1) TeV, then oneneed to study the eletromagneti leptogenesis senario more arefully. We will present arealisti model where the resonant eletromagneti leptogenesis is possible and also explainit's intimate onnetion to the light neutrino mass.
6.3 Realistic Model for electromagnetic leptogenesisNow we shall disuss the possibility of generating a lepton asymmetry through the EMDMinterations desribed earlier. Sine we are interested in leptogenesis energy sales abovethe eletroweak phase transition, we shall identify the light neutrino in (6.10) to be amassless LH state (the same νL as appears in the SM lepton doublet), while N is assumed tohave a large Majorana mass as in type-I seesaw. The simplest model that we are onsideringontains the minimally extended SM Lagrangian with three heavy RH neutrinos augmentedby dimension-5 EMDM operators providing neutrino mass via TeV sale seesaw mehanism.The present model onsists of all SM partiles plus right-handed Majorana neutrinos (NR),a singly harged salar (H+), two extra Higgs doublets (Σ, D) and one singly hargedvetor-like fermion with omponents EL and ER. This minimal set of extra �elds is shown



114 CHAPTER 6. ELECTROMAGNETIC LEPTOGENESISto lead to (resonant) eletromagneti leptogenesis.6.3.1 The partile ontent and symmetry of the modelRetaining the gauge symmetry of the SM, we augment the fermion ontent by inludingthree right-handed singlet �elds NiR and, in addition, a singly harged vetor-like fermion
E. Also added are a singly harged salar (H+) and a pair of Higgs doublets (Σ, D). Inkeeping with our stated paradigm of only one new sale, all the new masses are assumedto be around a few TeV. While it ould be arranged that all these masses arise from thevauum expetation value of a single salar �eld, for simpliity, we inorporate expliitmass terms. The entire partile ontent, along with the quantum number assignments, isdisplayed in Table [6.2℄.At this stage, we are faed with a problem generi to eletromagneti leptogenesis.While the e�etive N̄ ℓ γ oupling has to be allowed (so as to allow the mandatory N →
ν + γ), the oupling of the fermion pair to the SM Higgs, viz. N̄ℓΦ needs to be highlysuppressed on two ounts, (i) to ensure that the light neutrino mass, aruing from theseesaw mehanism, is not too large and (ii) to prevent the N from deaying dominantlyto ℓ + Φ. While this ould, nominally, be ensured by invoking some symmetry whereinthe photon and the Φ transform di�erently, suh an assignment would adversely impatthe phenomenology of the harged partiles. We rather hoose to introdue a disrete Z2symmetry. All of the SM partiles as well as the harged singlet salar H+ are even underthis Z2 symmetry, while all other partiles are odd (see Table [6.2℄).Table 6.2: Partile ontent of the proposed ModelField SU(3)C × SU(2)L × U(1)Y Z2Fermions QL ≡ (u, d)TL (3, 2, 1/6) +

uR (3, 1, 2/3) +
dR (3, 1, -1/3) +

ℓL ≡ (ν, e)TL (1, 2, -1/2) +
eR (1, 1, -1) +
EL (1, 1, -1) -
ER (1, 1, -1) -
NR (1, 1, 0) -Salars Φ (1, 2, +1/2) +
Σ (1, 2, +1/2) -
D (1, 2, +1/2) -
H+ (1, 1, +1) +The Z2 symmetry allows both the Majorana mass terms ν ν and N N , but the former



6.3 Realistic Model for electromagnetic leptogenesis 115is preluded if we limit ourselves to a renormalizable Lagrangian. On the other hand,the oupling of the neutrinos with the SM Higgs Φ, namely a term of the form N̄ℓΦ isprevented. More importantly, the Z2 symmetry forbids an e�etive Dira mass term of theform N̄ ν as well as the the magneti moment N̄ℓγ. These an be generated only whenthe Z2 is broken. Rather than break it spontaneously, and thereby risk domain walls, wehoose to break it expliitly, but only through a soft term. While preserving the essentialfeatures of the model, this, then, allows the generation of both Dira neutrino mass termsas well as magneti moments and, thereby, driving resonant leptogenesis suessfully.While the Yukawa Lagrangian for the quarks remains unhanged from the SM, that forthe leptoni setor an be written as
LYuk ∋

[
yH NR ELH

+ + yΣℓLΣER + yDℓLDER

+ hΣℓLΣ̃NR + hDℓLD̃NR + yeℓLΦeR + h.c.

]

+

[
1

2
(NR)CMNNR −MEEREL + h.c.

] (6.15)where the last two terms (MN ,ME) represent gauge- and Z2�invariant bare mass matries.In the above, Φ̃ = iσ2Φ
∗ (similarly for D̃ and Σ̃) and yH , yΣ, yD, hΣ and hD are Yukawaoupling matries.The full salar potential in our model with the �elds Φ,Σ,D and H+ is given by

V = −µ2
Φ|Φ|2 + λ1|Φ|4 +m2

2|Σ|2 + λ2|Σ|4 +m2
3|D|2 + λ3|D|4

+ m2
h |H|2 + λh|H|4 + λΦH(Φ†Φ) |H|2 + λDH(D†D) |H|2

+ λΣH(Σ†Σ)|H|2 + λDΣH(D†Σ)|H|2 +
λΦΣ

2

[
(Φ†Σ)2 + h.c.

]

+ f1 (Φ†Φ) (D†D) + f2 (Φ†Φ) (Σ†Σ) + λDΦ(D†Σ)(Φ†Φ)

+ f4|Φ† Σ|2 + f3 |Φ†D|2 + f5 (D†D) (Σ†Σ) + f6|D† Σ|2

+
[
µs Σ ·D (H+)∗ + h.c.

]
. (6.16)The parameters are so hosen that only the standard model Higgs salar doublet aquiresa vev at this stage. The �elds D and Σ do not aquire any vev and both of them areheavier than the right-handed neutrinos, so that the right-handed neutrinos an not deayinto ν +D or ν + Σ.We now introdue a soft term to break the Z2 symmetry, so that it does not a�et the



116 CHAPTER 6. ELECTROMAGNETIC LEPTOGENESISother interations and also does not ause domain wall problem. We introdue the softterm without going into the details of its origin, whih is given by:
Vsoft = µ2

softΦ
†D + ........ (6.17)The sale of the soft symmetry breaking µsoft is lower than the eletroweak symmetrybreaking sale, and we also assume that the mass of the salar D is of the order of m3 ∼

10 TeV. Ellipses above denote other allowed soft terms that do not onern us diretly here.With suitable hoie of the parameters it is possible to arrange 〈D〉 << 〈Φ〉. The sameapplies to the �eld Σ. This will then give us the Dira mass term N̄ℓ and the magnetimoment term N̄ℓγ, as required for the present model. This will also generate the unwantedterm N̄ℓΦ due to the mixing of D and Σ with Φ, but this interation will be suppressedby a fator of 〈D〉 / 〈Φ〉, whih if O(10−3), is onsistent with the light neutrino mass aswe explain below.6.3.2 Neutrino massThe Yukawa term ℓΦN is not allowed beause of the Z2 assignment in our model. Henethere is no Dira neutrino mass at the tree level. However after the soft breaking of the Z2symmetry after the eletroweak phase transition, the �eld D gets an indued vev, whihin turn gives a Dira mass to the neutrinos:
MD = hD〈D〉 = hDvd. (6.18)There will be another ontribution to the neutrino mass oming from the mixing of Dwith the SM Higgs Φ, whih will be further suppressed by the soft Z2 breaking sale, sowe do not inlude that ontribution. The Dira mass term together with the heavy righthanded Majorana neutrino mass MN will then give rise to a light neutrino Majorana massvia type-I seesaw mehanism:
mν = M loop

D M−1
N M loop T

D .For the hoie of parameters we are interested, MD ∼ 10−3hDv ∼ 10−4 GeV, for 〈Φ〉 =

v ∼ 100 GeV and hD ∼ 0.001, and the right-handed neutrinos are lighter than the SMHiggs salar, so MN ∼ TeV. This gives the orret magnitude of the light neutrino masses
mν ∼ 10−10 GeV ∼ 0.1 eV. The hierarhy of masses ould be obtained beause of the



6.3 Realistic Model for electromagnetic leptogenesis 117di�erent values of the elements of the matries MN and hD.6.3.3 Estimation of the Dimension-5 EMDM oupling onstantFirst we present the dipole moment operator between light ν and heavy N neutrinosbefore dedue the potential impliations of the EMDM operator in leptogenesis. Due tothe Majorana nature, the diagonal omponent of the dipole moment of Majorana neutrinosis zero. There is only transition moments for them. The Lagrangian desribing the neutrinointeration between light ν and heavy N neutrinos with eletromagneti �eld due to non-zero anomalous transition moment has the form
LEM = λjk νj σαβ Nk B

αβ + h.. (6.19)The h.. term is λ∗jkNkσαβνiF
αβ . In the deay alulations, it is muh simpler toonsider the EMDM oupling between the assoiated hiral omponents of the ν and N .In terms of hiral omponent, the above expression beomes

LEM = λjk νj σαβPR NkF
αβ + h.. (6.20)The oupling λjk appearing in the EMDM operator is ompletely arbitrary and hene thematrix λ is omplex in general. Now we need to estimate the value of the oupling strength

λ in our model.
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Figure 6.1: Feynman diagrams whih estimate the e�etive EMDM oupling strength between light neu-trino νj and Nk.



118 CHAPTER 6. ELECTROMAGNETIC LEPTOGENESISThe Feynman diagrams whih will quantify the EMDM oupling strength is shown inFig. (6.3.3). The relevant term whih will give the e�etive operator is νLj λjk σαβ PRNk B
αβ.In paper of Kayser [193℄, the value of λ is λ = λ0

Λ and the suessful leptogenesis requires
Λ ∼ 1010 GeV and λ0 to be > 35. However, they did not onstrut any expliit modelto show how these numbers ould arise and, in general, it is extremely di�ult to getsuh large value of λ0. The main motivation of this work is to show that it is possible toonstrut a simple extension of the SM, where it will be possible to alulate this e�etiveoupling, whih will lead to resonant eletromagneti leptogenesis. It should be noted thatwithout the resonant ondition, it is not possible to have orret amount of leptogenesis inthese models, when the e�etive ouplings are so small.The Feynman rules and details of the alulation have been shown in appendix ex-pliitly. Here, we will only give the �nal form of the EMDM oupling strength in ourmodel. The analytial expression for EMDM oupling strength whih is responsible foreletromagneti leptogenesis is given by

λ = − (y∗Σ yH µs vD)

16π2 [M2
Σ −M2

H ]

[
Ia + Ib + Ic

] (6.21)Where Ia, Ib and Ic are ontribution oming from three diagrams shown in Fig.(6.3.3).The dominant ontribution oming from the diagrams (6.3.3 [a℄) and (6.3.3 [b℄)
Ia + Ib = 2ME
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0
dx

∫ 1−x

0
dy xn ω2

C
(n)
2 =

∫ 1

0
dx

∫ 1−x

0
dy yn ω2Also, ω1 =

1

−yM2
Σ + x(1−M2

Σ)− (1− x− y)M2
E − x(x+ y)M2

N

ω2 =
1

−yM2
Σ + x(1−M2

H)− (1− x− y)M2
E − x(x+ y)M2

N

(6.23)where n = 0, 1, 2, .. is an integer.



6.3 Realistic Model for electromagnetic leptogenesis 119Similarly, the dominant ontribution oming from the diagram (6.3.3 [℄)
Ic = ME

∫ 1

0
dx

∫ 1−x

0
dy (y − 1)[Ω1 − Ω2]

Ω1 =
1

(y − y2 − x y)M2
N − yM2

Σ − (1− y)M2
E

Ω2 =
1

(y − y2 − x y)M2
N − yM2

H − (1− y)M2
E

(6.24)The e�etive dimension-5 oupling onstant λ an thus be expressed in a simple form underthe assumption of almost equal mass for the partiles in the loop (ME ∼MH ∼MΣ ∼Meq)as:
λ = −y

∗
Σ yH µs vD

64π2 M3
eq

(6.25)For a representative reasonable sets of parameters: MN ∼ TeV, Meq ∼ TeV, yΣ = yH ∼ 1,
µs ∼ TeV and vD = 0.1 GeV, the EMDM oupling strength whih is responsible foreletromagneti leptogenesis is found to be λ ∼ 10−11. Although the sales are shown tobe of the order of TeV, it ould range from 1�10 TeV, with the ondition, MN < Meq, sothat NR an not deay into ν +D or ν + Σ.Now we shall investigate the viability of eletromagneti leptogenesis. We must �rsthek that the out-of-equilibrium deay of the RH neutrinos an give rise to a nonzero
CP asymmetry under the most general situations. In addition, it is also neessary toexamine whether the parameters onsidered in our model an produe an asymmetry ofthe orret magnitude via the dimension-�ve dipole moment operator through the self-energy enhanement.6.3.4 Resonant Eletromagneti LeptogenesisAs has been desribed above, leptogenesis, in this senario is driven by the eletromag-neti dipole moment terms appearing in the e�etive Lagrangian. Spei�ally, the leptonasymmetry generated by the CP-violating deays of heavy singlet neutrinos to the SM-likelight neutrinos and photon. A natural question we may ask is whether the introdution ofCP-violating dipole moment ouplings will allow leptogenesis to our keeping the modelonsistent with neutrino masses and the new physis will be aessible to LHC or ILC. Asshould be apparent from the disussion in the last setion, the size of the EMDM that isgenerated and the extent of CP-violation in them is inadequate for thermal leptogenesis.Indeed, this is a generi problem for all models of eletromagneti leptogenesis that seeksto be onsistent with observed physis and yet be natural. Given this, we investigate the



120 CHAPTER 6. ELECTROMAGNETIC LEPTOGENESISpossibility of a resonant enhanement. As is well-known, this mehanism is ontingentupon the existene of at least two neutrino speies that are very losely degenerate, andthis is what we shall assume. Aesthetially, the extent of degeneray needed may seemunomfortable. While it an, in priniple, be motivated on the imposition of additionalglobal symmetries, it should be noted that, in all models of resonant leptogenesis, thesubsequent breaking of the same would, naturally, lead to a lifting of the degeneray bya degree that negates the onditions for resonant enhanement. Hene, rather than intro-due additional symmetries, and a host of �elds an additional mehanisms to ompress thespetrum adequately, we just assume that the said heavy neutrinos are highly degenerate.In this lass of leptogenesis, only self-energy diagrams are important whih we will presentin the following setion.The key quantity of interest in resonant eletromagneti leptogenesis is to alulate theCP-asymmetry for the deay of Nk to a photon and a light neutrino as shown in �g:(6.3).This quantity is given by
ε
(5)
k,j =

Γ(Nk → νj γ)− Γ(Nk → νj γ)

Γ(Nk → ν γ) + Γ(Nk → ν γ)
, (6.26)where Γ(Nk → ν γ) ≡ ∑

j Γ(Nk → νj γ) denotes the deay rate (summed over �nal state�avor j). So with this in mind, we begin by alulating the lowest order ontribution tothe deay rate, Γ(Nk → νj γ). Sine we are interested in leptogenesis energy sales abovethe eletroweak phase transition, we shall identify the SM light neutrino ν to be a masslessleft-handed state while N assumed to have Majorana mass of around 1 TeV. As it is wellknown that Γ(Nk → νj γ) ≡ Γ(Nk → νj γ), the total deay rate is, Γtot = 2Γ(Nk → ν γ),to �rst order.
νj

γ

Nk

p

q

p′Figure 6.2: The Feynman graph for the lowest order deay, Nk → νj γ via the dimension-5 EMDM ouplingof Eq. (??). Here q = p − p′ and 2λjk PR σαβ qβ is the vertex fator.The Feynman diagram for the lowest order ontribution to the proess is shown in
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Γ(Nk → ν γ) =

(λ†λ)kk

4π
M3

k (6.27)For e�etively reating a lepton asymmetry of the universe, the deays of N1 → γ ν shouldbe out of equilibrium, whih is desribed by Γ . H(T ) |T=M1
where Γ = Γ (N1 → ν + γ) =

(λ† λ)11
4π M3

1 is the total deay width and H(T ) = 1.67 g
1/2
∗

T 2

MPl is the Hubble parameter withthe Plank mass MPl ≃ 1.2 × 1019 GeV and the relativisti degrees of freedom g∗ ≃ 100.In order to satisfy the out of equilibrium ondition, we should have
Γ . H(T = M1)

⇒
(
λ† λ

)

4π
M3

1 . 1.67 g
1/2
∗

M2
1

MPl (6.28)where M1 is the mass of the lightest RH heavy neutrino whih is taken to be 1 TeV. Fromthis expression, the upper bound on the EMDM ouplings reads as
√∑

m

|λ|2 < 10−20

√
1

(M1/TeV )
. (6.29)This is satis�ed by the e�etive EMDM oupling λ, for the hoie of parameters we on-sidered here.Now the next task is to alulate the interferene terms between the tree level proessand the one-loop diagrams with on shell intermediate states shown in �g. (6.3). In thispartiular senario, the EMDM oupling strength is found to be in the range from 10−10to 10−11 from our previous alulation. The usual ontributions to lepton asymmetryoming from vertex diagram is found to be very small, i.e, (ǫ1 = λ2/4πM3

1 ∼ 10−22 · 10−1 ·
M3

1 ∼ 10−17when M1 is of the order of TeV sale) and hene, an be negleted. So the selfenergy ontribution will only be onsidered during the rest of the disussion. The Feynmandiagram ontributing to the self-energy diagram is shown in �g. (6.3).For resonant leptogenesis ase, the CP-asymmetry [38, 88, 89, 91℄ in standard Yukawamediated ase is slightly di�erent from the CP-asymmetry in the present ase. The CP-asymmetry [193℄ of Nk deays via the interation of (6.20) has been alulated for the aseof hierarhial RH neutrino. In this work, we have alulated the self-energy diagrams for
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Figure 6.3: Self energy diagrams whih ontribute to the CP-asymmetry of Nk deays via the interationof (6.20).
nearly degenerate heavy RH neutrinos and in this ase, the CP-asymmetry found to be

εk = −M
2
k

2π

∑
m6=k Im

[
(λ†λ)2km

]

(λ†λ)kk

(M2
k −M2

m)MkMm

(M2
m −M2

k )2 +M2
k Γ2

m

(6.30)
= −

∑
m6=k Im

[
(λ†λ)2km

]

(λ†λ)kk (λ†λ)mm
2

(
Mk

Mm

)2 (M2
m −M2

k )MkΓm

(M2
m −M2

k )2 +M2
k Γ2

m

(6.31)Consider the ase where M1 ∼ M2 ≪ M3. From equation (6.27), it is lear that Γ1 ∼ Γ2for nearly degenerate right handed neutrino with massM1 and M2. Hene, we an put thevalue of Γ2 ∼ Γ1 = (λ†λ)22
4π M3

2 in the numerator of equation (6.30) and the expression forthe CP-asymmetry for N1 dominated ase beomes
ε1 = −M

2
1

2π

∑
m6=1 Im

[
(λ†λ)21m

]

(λ†λ)211

(M2
2 −M2

1 )M1M2

(M2
2 −M2

1 )2 +M2
1 Γ2

2

(6.32)We are interested in the ase where |M1−M2| ≫ Γ2. With this ondition, the 2nd term inthe denominator of equation (6.32) an be negleted in omparison to the �rst term. So,the the CP-asymmetry for the situation we are interested (|M1 −M2| ≫ Γ2) is
ε1 = −M

2
1

2π

∑
m6=1 Im

[
(λ†λ)21m

]

(λ†λ)211

M1M2

M2
2 −M2

1

(6.33)The senario of leptogenesis is di�erent for the ase where M1 6= M2. But in the almostdegenerate ase, the asymmetry is resonantly enhaned. The fator in the denominatoran be simpli�ed as M2
2 −M2

1 = (M2 −M1)(M2 +M1) ∼ 2M2(M2 −M1) ∼ 2M1(M2 −
M1). Under this assumption M1 ≃ M2 and using equation (6.33), one an write the
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ε1 = −M

2
1

4π

∑
m6=1 Im

[
(λ†λ)21m

]

(λ†λ)211
R (6.34)where R ≡ M1

|M1−M2| .As desribed above, the CP-violating parameter an give rise to a net lepton numberasymmetry in the Universe, provided its expansion rate is larger than the deay rate. Thenonperturbative sphaleron interation may partially onvert this lepton number asymmetryinto a net baryon number asymmetry [84℄,
YB ≃ −2.96 × 10−2 ε1 kwhere k is the e�ieny fators measuring the washout e�ets assoiated with the out-of-equilibrium deays of N1. In our model, the k is approximately 10−3 in order of magnitude.Hene the formula for baryon asymmetry of the Universe is given by
YB ≃ −2.96× 10−5 ε1 (6.35)So we need |ε1| ∼ 10−5 for suessful baryon asymmetry of the Universe. This is easilysatis�ed from equation (6.34) for R = 10+10 or |M2 −M1| = 10−7 GeV where the righthanded Majorana neutrino are of TeV sale.In this paper we shall not disuss the origin of the small mass di�erenes betweenthe degenerate right-handed neutrinos, but for ompleteness we demonstrate that a masssplitting of the order of 10−7 GeV is not unnatural for TeV sale right-handed neutrinos.Consider a diagram with a vertex λHD(D†D)(H†H) attahed to the singly harged salar

H whih runs in loop and this kind of digram gives a �nite ontribution to the masssplitting. A simple alulation gives
∆MR ∼

λHDy
∗
HyH

(4π)2
〈D〉2
4ME

(6.36)For the mass of the harged lepton to be around 1 TeV (i.e, ME ∼ 1 TeV), 〈D〉=0.1 GeVand yH ∼ 1, one an write
∆MR ∼

10−2

64π2ME
λHD (6.37)Now one an easily get the mass splitting between two right handed neutrinos of the order



124 CHAPTER 6. ELECTROMAGNETIC LEPTOGENESISof O(10−7) GeV.If we thus start with a symmetry to get a TeV Sale degenerate right-handed neutrinos,after the symmetry breaking, we get a mass splitting between the ompanion states ofright-handed neutrinos to be in the range of O(10−7) GeV, naturally through radiativeorretions.6.3.5 Numerial estimation for YBIn generi leptogenesis senario, the deviation of the distribution funtion of some heavypartiles from its equilibrium distribution distribution provides the neessary departurefrom thermal equilibrium. The non-equilibrium proess of baryogenesis via leptogenesisis usually studied by means of Boltzmann equation [31, 37, 39, 56, 83℄. We shall onsiderthe simplest ase where the initial temperature is larger than M1, the mass of the lightestheavy neutrino. In priniple, one should take into aount all B- and L-violating proesses.In this treatise, however, we onsider only deays, inverse deays, ∆L = 2 sattering andthe sphalerons.Within this minimal framework, the Boltzmann equations an be written as
dYN1

d z
= −{D(z) + S(z)}

[
YN1
− Y eq

N1

] (6.38)
dYB−L
d z

= −ǫN1
D(z)

[
YN1
− Y eq

N1

]
−W (z)YB−L (6.39)where z = M1/T . There are four lasses of proesses whih ontribute to the di�erentterms of the equations: deays, inverse deays, ∆L = 1 satterings and ∆L = 2 proessesmediated by heavy neutrinos. The �rst three all modify the N1 abundane and try topush it towards its equilibrium value N eq

1 . In this ase, we have onsidered the normalizedquantity YN1
= N1/s, s is the entropy of the Universe.The term D(z) = ΓD/(H z) aounts for deays and inverse deays and an be approx-imately written as

D(z) = z K
K1(z)

K2(z)
(6.40)where parameter K is a measure of how fast the deay rate is in omparison with theexpansion rate of the universe at temperature at T = M1 and de�ned by the relation

K =
Γ1

H(T = M1)
(6.41)
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Figure 6.4: Plot of equlibrium number densityand abundane of RH neutrino for di�erent val-ues of K = ΓN/H . 0.01 0.1 1 10 100 1000
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Figure 6.5: Abundane of RH neutrino andlepton asymmetry for di�erent values of K =
ΓN/H .

The sattering term S = ΓS/(H z) represents the sattering proess mediated by theheavy neutrino and gauge sattering terms. Also Deays are the soure term for B − Lasymmetry generation while W = ΓW/(H z) is the wash-out term whih tries to erase thenet B − L asymmetry produed by the deay proess. In our model, only deay and inversedeays are important. Sine the ∆L = 1, 2 proesses are suppressed, we shall not take intoaount them while solving the Boltzmann equation. To ignore the ∆L = 2 sattering, weneed to replae the washout term W with a washout term with ontribution only from theinverse deays. This an be written as
WID =

1

2

ΓID

H z

K1(z)

K2(z)
. (6.42)The inverse deay width, ΓID, is related to the deay width by the equilibrium numberdensities of the heavy neutrinos and lepton doublets,

ΓID = ΓN
N eq

N (z)

N eq
ℓ

. (6.43)For leptons, N eq
ℓ = 3/4 at high temperature we are onsidering, while for heavy neutrinos

N1, the equilibrium number density per omoving volume Y eq
N1

is given by
Y eq

N1
=
N eq

N1

s
=

45

2π4g∗

3ζ(3)

4
z2K2(z). (6.44)
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WID =

1

4

z K1(z) ΓN

H
=

1

4
z2D(z)K2(z) =

1

2
D(z)

N eq
N

N eq
ℓ

. (6.45)Replaing the general washout term W with WID, we arrive at the Boltzmann equationsand their solutions with only deays and inverse deays:
dYN1

d z
= −D(z)

[
YN1
− Y eq

N1

] (6.46)
dYB−L
d z

= −ǫN1
D(z)

[
YN1
− Y eq

N1

]
−WID(z)YB−L (6.47)

κ = −4

3

∫ z

zi

dz′
dYN1

d z′
e−

R z

z′
dz′′ WID(z′′) (6.48)Using the simpli�ed set of equations, the �nal baryon asymmetry asymmetry an be solvedin terms of only two parameters: ǫN1

, signifying the amount of CP-violation, and K,signifying the strength of the deay ompared to Hubble's expansion of the Universe. The
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Figure 6.6: Plot of YN = N/s and 1010 × YB as a funtion of temperature. It is important to note thatlarge baryon asymmetry is generated at T = M1, but it is dissipated by the gauge sattering proesses atlower temperatures.
Boltzmann equations are numerially solved to give the present baryon asymmetry of theUniverse as shown in �gure (6.5) and (6.6).
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6.4 Production of right-handed neutrinos through magnetic

momentMagneti moment of right-handed neutrinosDue to the Majorana nature, the diagonal omponent of the magneti moment of heavyMajorana neutrinos is zero. There is only transition moments for them. First, we willestimate the transition magneti moment in the model disussed for eletromagneti lep-togenesis. The Yukawa interations of heavy Majorana neutrinos with S and E an berewritten in the following way
LN ∋

1

2

[
N cH−Y T

HPRE
c +NH+(Y †)HPLE

]

+
1

2

[
EYHH

−PRN + EcY ∗
H H+PLN

c
]
. (6.49)

Nk
N c
j Nk N c

j

Nk N c
j Nk

N c
j

γ γ

γ γ

H

(a) (b)

(c) (d)

E Ec

H

E

H H

Ec

Figure 6.7: Expliit alulation of dipole momentsIn the model onsidered, we have four diagrams ontributing to the transitional mag-neti moment of heavy right handed neutrino, whih are depited in Fig. [6.7 (a) and (b)℄:a loop with the photon line attahed to the E and Fig. [6.7 () and (d)℄: a loop with thephoton line attahed to the salar H.Assuming that heavy Majorana neutrinos are nearly degenerate, i.e., Mj ≈ Mk ≈ M ,
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:

µNjk
=

M

64π2

[
(Y †

H)km(YH)mj − (Y T
H )km(YH)∗mj

]

×
[
I(M2

H ,M
2,ME)− I(ME ,M

2,M2
H)

] (6.50)with
I(A,B,C) =

∫
dx

x(1− x)2
(1− x)A+ x(x− 1)B + xC

,where ME and MH are the mass eigenvalues of heavy vetor-like fermion E and singlyharged salar H, respetively. In the equal mass limit (ME ∼ MH ∼ M), one an writethe transition magneti moment of heavy right handed neutrino as
µNjk

=
1

64π2

[
(Y †

H)km(YH)mj − (Y T
H )k m(YH)∗mj

] e

ME
F (x) (6.51)where the funtion F (x) is F (x) = 1

1−x + x
(1−x)2 ln(x) and the parameter x is x =

M2
H

M2
E

.The non-perturbative limit gives us [(Y †
H)km(YH)mj − (Y T

H )km(YH)∗mj ] ≤ 4π. We foundthat 1/(64π2) ∼ 10−3 and Yukawa ouplings an take the value from 0.01 − 1. With thisspetrum, one an get the large magneti moment of the order of 10−10µB for TeV saleright handed neutrinos.The most dramati e�et of a large EDM of a heavy neutrino will be in the produtionross setion and angular distribution. A disussion of the di�erential ross setion fora heavy harged lepton an be found in Ref. [198, 199℄ and we will qualitatively disusshow one an produe RH Majorana neutrinos in near future experiment. In the disussionof Esribano and Masso [200℄, one an write a U(1) invariant operator as: NRj (µjk
N +

iDjk
N )σαβ N

c
Rk B

αβ, where Bαβ is the U(1) �eld tensor. This gives a oupling to thephoton, whih we de�ne to be the EDM, as well as a oupling to the Z whih is the EDMtimes tan θW . When we inlude the e�et of Z oupling to N in the di�erential rosssetion, it turns out that the ontribution has very little e�et on the result.A disussion of the di�erential ross setion for a heavy harged lepton an be found inRef. [198,199,201℄. We are interested in the prodution of the heavy right handed neutrinousing the parameters used in the model. The di�erential ross-setion for the proess,
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e+e− → γ, Z∗ → NkNj (k 6= j), is given by
dσ

dΩ
=
α2

4s

√
1− 4M2

s

(
F1 +

1

8 sin4 2θW
PZ Z F2

)

+

(
(1− 4 sin2 θW ) tan θW

sin2 2θW
Pγ Z F3

) (6.52)where the values of F1, F2, F3, PZZ and Pγ Z

F1 = µ2
N s sin2 θ

(
1 +

4M2

s

)
,

F2 = 1 + cos2 θ − 4M2

s
sin2 θ + 8CV cos θ

+ µ2
N s tan2 θW

[
sin2 θ +

4M2

s

(
1 + cos2 θ

)]
,

F3 = 4µ2
N s

[
sin2 θ +

4M2

s

(
1 + cos2 θ

)]
,

PZZ =
s2

(s−M2
Z)2 + Γ2M2

Z

,

PγZ =
s(s−M2

Z)

(s−M2
Z)2 + Γ2M2

Z

. (6.53)with µkj
N is the transition magneti moment of heavy Majorana neutrino, CV = 1

2 −
2 sin2 θW , and we have dropped the numerially negligible C2

V terms, for simpliity.
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Figure 6.8: The di�erential ross setion for the proess e+e− → γ, Z∗ → NiNj (i 6= j), for a given heavyMajorana mass sale M = 200 GeV and a �xed enter of ollider energy √
s = 500 GeV as a funtion ofsattering angle cos θ.The di�erential and the total ross setions for the prodution of heavy right handed



130 CHAPTER 6. ELECTROMAGNETIC LEPTOGENESISMajorana neutrino are shown in Fig. (6.8), (6.9) and (6.10). In Fig. 6.8, it is shown thedi�erential ross setion for the proess, e+e− → γ, Z∗ → NiNj (i 6= j), for a given heavyMajorana mass sale M = 200 GeV and a �xed enter of ollider energy √s = 500 GeV asa funtion of sattering angle cos θ.In Fig. 6.9, it is shown the total ross setion for the proess, e+e− → γ, Z∗ →
NiNj (i 6= j), for varied heavy Majorana mass sales M = 200, 300, 400, 500 GeV as afuntion of enter of ollider energy √s. In Fig. 6.10, it is shown the total ross setionfor the proess, e+e− → γ, Z∗ → NiNj (i 6= j), for varied enter of ollider energies
√
s = 500, 700, 800, 1000 GeV as a funtion of heavy Majorana mass sale M . In theseplots, we have used an approximation that the �nal state right-handed neutrinos havealmost the same masses with eah other, whih is denoted by M . It an be seen that thetotal ross setion for the prodution of TeV right-handed neutrinos an reah a few fb,

σ ∼ 5 fb. After the prodution of a right-handed neutrino, it deays into a left-handedneutrino (νj) and a photon (γ), Nk → νj + γ.
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Figure 6.9: The total ross setion for heavyright handed neutrino e+e− → γ, Z∗ →
NkNj (k 6= j) for various EDMs, in units ofBohr magneton. The ross setion is shown as afuntion of enter of ollider energy √

s and herewe have varied the masses of heavy right handedneutrino as M = 300, 400, 500 GeV from the topto the bottom urves.
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Figure 6.10: The total ross setion for heavy righthanded neutrino e+e− → γ, Z∗ → NkNj (k 6= j)for various EDMs, in units of Bohr magneton. Theross setion is shown as a funtion of heavy Majo-rana neutrino mass M and here we have varied theenter of ollider energy as √s = 500, 700, 800, 1000GeV from left to right.We have onsidered the dipole moment interations between the heavy right handedneutrino and their light ounterparts. As a onsequenes of this, the heavy right handedneutrino deays to photon and light neutrino resulting required amount of lepton asymme-try to explain the matter-antimatter asymmetry of the Universe. We have onsidered themagneti moments of right-handed neutrinos, whose masses are set at around TeV sale.Beause of the saling rule of magneti moment of neutrinos, the heavy right-handed



6.4 Production of right-handed neutrinos through magnetic moment 131neutrinos an, in general, have a large amount of magneti moments evading a hiral sup-pression. Suh large magneti moments an enhane the prodution ross setion of TeVsale right-handed neutrinos though the Drell-Yan proess, e+e− → γ, Z∗ → NiNj (i 6= j),whih is within the reah of the future linear ollider (ILC).





Chapter
7

Summary of the Thesis

As we have illustrated throughout this hapter, the observational evidene for nonzeroneutrino masses, the origin of parity violation at low energy theory and osmologialmatter-antimatter asymmetry provides a strong indiation for physis beyond the SM.Although many proposals have been suggested, a partiularly attrative way (in our opin-ion) of breaking parity spontaneously in supersymmetri left-right model is possible. Withthis in mind, our work involves studying several lasses of supersymmetri models to havespontaneously parity breaking, neutrino mass via seesaw mehanism and their onnetionto lepton asymmetry and self osisteny with RG running of the oupling onstant.The �rst part of our work is a omprehensive analysis on supersymmetri left-rightmodels in the ontext of spontaneous parity breaking. We propose a novel implementa-tion of spontaneous parity breaking in supersymmetri left-right symmetri model, avoid-ing some of the problems enountered in previous studies by inluding a bitriplet anda singlet, in addition to the bidoublets whih extend the Higgs setor of the MinimalSupersymmetri Standard Model (MSSM). The supersymmetri vaua of this theory areshown to lead generially to spontaneous violation of parity, while preserving R parity.The model is shown to reprodue the see-saw relation for vauum expetation values,
vLvR ≈ m2

EW relating the new mass sales vL, vR to the eletroweak sale mEW , justas in the non-supersymmetri version. The sale vR determines the mass sale of heavyMajorana neutrinos, whih gets related to the observed neutrino masses through type IIsee-saw relation.
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134 CHAPTER 7. SUMMARY OF THE THESISWe have disussed the di�erent senarios of spontaneous breaking of D-Parity in bothnon-Susy and Susy version of left right symmetri models. We explore the possibility of aTeV sale SU(2)R breaking saleMR and hene TeV sale right handed neutrinos from bothminimization of the salar potential as well as the oupling onstant uni�ation point ofview. We show that although minimization of the salar potential allows the possibility of aTeV sale MR and tiny neutrino masses in LRSM with spontaneous D-parity breaking, thegauge oupling uni�ation at a high sale ∼ 1016 GeV does not favor a TeV sale symmetrybreaking exept in the SUSYLR with Higgs doublet and bidoublet. The phenomenologyof neutrino mass is also disussed.The question of parity breaking in a supersymmetri left-right model, in whih the left-right symmetry is broken with Higgs doublets (arrying B−L = ±1) instead of triplet Higgssalars (arrying B−L = ±2) has been presented. Unlike the left-right symmetri modelswith triplet Higgs salars (arrying B − L = ±2), in this model it is possible to breakparity spontaneously by adding a parity-odd singlet. We then disussed how neutrinomass of type-III seesaw an be invoked in this model by adding extra fermion singlets.We onsidered simple forms of the mass matries that are onsistent with the uni�ationsheme and demonstrate how they an reprodue the required neutrino mixing matrix.In this model, the baryon asymmetry of the Universe is generated via leptogenesis. Therequired mass sales in the model are then found to be onsistent with the gauge ouplinguni�ation.We have analyzed the SU(5) gauge oupling uni�ation and argue that the gravitationalorretions to gauge oupling onstants may not vanish when higher dimensional non-renormalizable terms are inluded in the problem.We have onstruted an expliit model to implement the idea of eletromagneti lep-togenesis, a simple extension of the standard model with few extra salars and fermionsand a disrete symmetry, whih an explain non-zero light neutrino mass and generate abaryon asymmetry of the universe through leptogenesis at the TeV sale, where the CPviolation omes from the eletri dipole moment of the neutrinos. The usual deays of theright-handed neutrinos are forbidden, but there is an e�etive oupling between the left-handed and right-handed neutrinos, through the eletronmagneti dipole moment, whihallows orret leptogenesis with resonant enhanement. In this model light neutrino massesoriginate from the seesaw mehanism, although the right-handed neutrinos have Majoranamasses of the order of TeV. All the new physis introdued are in the TeV sale, so thatthe model may have detetable signals at LHC or ILC.



Chapter
8

Appendix

8.1 Feynman Rules for Majorana NeutrinosWe will disuss the simplest Feynman Rules involved in alulation of various digrams,relevant for eletromagneti leptogenesis, used in Chapter-6. In partiular, the simpli�edset of Feynman rules for Majorana fermions used in our alulations will be disussed.We shall follow the approah outlined in [56℄ and write down the orresponding rules forMajorana fermions based on a four-omponent version (rather than the usual two) of theWeyl spinor �eld, Ψ ≡ ΨR + eiϕΨc
R (i.e. the Majorana �eld).There are basially two types of interations whih are relevant for leptogenesis. Firstly,we have the Yukawa oupling between ℓL and NR, and seondly, we have the eletromag-neti dipole interation between νL and νR. To be onsistent with the notation used in thelast setion, let us again begin by writing down the interation Lagrangian in terms of thehiral �eld νR

Lint = −ℓL Y νR φ− νL λ̃ σαβ νR F
αβ + h.. , (8.1)where ℓL = (νL, eL)T and φ = (φ0, φ−)T are doublets of SU(2)L.The interations whih are relevant for eletromagneti leptogenesis are as follows: (i,e.the Yukawa oupling between ℓL and NR and the eletromagneti dipole interation)

Lint = −yH NRELH
+ − yΣ (ℓL)c (EL)c Σ− νL λ̃ σαβ νR F

αβ + h.. , (8.2)
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136 CHAPTER 8. APPENDIX8.1.1 Majorana fermion propagatorSine the Majorana fermion of interest in eletromagneti leptogenesis is the RH neutrino
νR, let us �rst disuss the Majorana propagator. To begin with, we write down the theory interms of the two-omponent RH neutrino �eld, νR = (νR1, νR2, νR3)

T , where the subsriptsare indies in �avor spae:
LνR

= i νR /∂ νR −
1

2
(νR)cMR νR −

1

2
νRM

∗
R (νR)c . (8.3)To diagonalise MR, we let νR = η∗V †NR, where η = diag(eiϕ1/2, eiϕ2/2, eiϕ3/2) and V is aunitary matrix. Note that one an always selet V in suh a way that the eigenvalues for

MR are all real and positive. We have pulled out the phase ϕk, and will identify it as theharge onjugation phase fator later. So, LνR
beomes

LNR
= iNR /∂ NR −

1

2
(NR)cDM (η∗)2NR −

1

2
NRDM η2N c

R , (8.4)where DM = diag(M1,M2,M3) is the diagonal mass matrix for the RH neutrinos. At thispoint, it is onvenient to swith to index form and rewrite LNR
as follows:

LNR
=

1

2

[
iNRk /∂ NRk + i (NRk)c /∂ N c

Rk −Mk e
−iϕk(NRk)cNRk −Mk e

iϕkNRkN
c
Rk

]
,

=
1

2

[
i (NRk + e−iϕk(NRk)c) /∂ NRk + i (NRk + e−iϕk(NRk)c) /∂ eiϕkN c

Rk

−Mk (NRk + e−iϕk(NRk)c)NRk −Mk (NRk + e−iϕk(NRk)c)eiϕkN c
Rk

]
,

=
1

2

[
iNk /∂ Nk −Mk Nk Nk

]
, (8.5)where we have introdued the four-omponent Majorana �eld, Nk = NRk +eiϕkN c

Rk whihsatis�es Nk ≡ eiϕkN c
k. Using the harge onjugation onventions of (6.3), we note that

Nk = eiϕkN c
k = −e−iϕkNT

k C
†. Therefore, one may rewrite (8.5) as

LNR
= −1

2
e−iϕkNT

k C
† [
i /∂ −Mk

]
Nk . (8.6)From this, the Majorana propagator for Nk an be readily read o� as

p

B A
: [SNk

(p)]AB =

[−i (/p +Mk)C

p2 −M2
k + iǫ

]

AB

, (8.7)



8.1 Feynman Rules for Majorana Neutrinos 137where A,B are spinor indies and p is the four-momentum. Note that this is the one andonly Majorana fermion propagator arising in this approah.
8.1.2 Vertex fators involving a Majorana fermionUsing νR = η∗V †NR to write (8.1) in the mass eigenbasis for the RH neutrinos, where allsymbols are as de�ned in the previous setion, the Lagrangian beomes

Lint = −η∗ ℓL hNR φ− η∗ νL λσαβ NR F
αβ + h.. , (8.8)where we have set h = Y V † and λ = λ̃V †. Writing this in index form and introduing thefour-omponent Majorana �eld, Nk = NRk + eiϕkN c

Rk, we then get
Lint = −e−iϕk hjk ℓLj PRNk φ− eiϕk h∗jkNk PL ℓLj φ

†

− e−iϕk λjk νLj σαβ PRNk F
αβ − eiϕk λ∗jkNk σαβ PL νLj F

αβ , (8.9)
= e−iϕk

[
−hjk ℓLj PRNk φ+ h∗jkN

T
k C† PL ℓLj φ

†

−2λjk νLj σαβ PR Nk ∂
αAβ + 2λ∗jkN

T
k C† σαβ PL νLj ∂

αAβ
] (8.10)where in the last step we have used the fat that Fαβ = ∂αAβ − ∂βAα with A being thephoton �eld, and σαβ = −σβα, to simplify the expression. It is important to note thatthe transition EMDM term displayed in (8.10) has the same form as Eq. (6.10), heneeverything that we have disussed regarding the oupling λjk remains valid.Returning to (8.10), the vertex fators for the four proesses are given by :

Nk → ℓLj φ̄ : N

ℓ

φ̄

= −i hjk PR (8.11)
Nk → ℓ̄Lj φ : N

ℓ

φ

= i h∗jk C
†PL (8.12)

Nk → νLj A
ρ : N

ν

γq

= 2λjk PR σ
αρqα (8.13)

Nk → ν̄Lj A
ρ : N

ν

γq

= −2λ∗jk C
†σαρqαPL (8.14)where we have again dropped the phase fator for onveniene.



138 CHAPTER 8. APPENDIX8.1.3 External lines for Majorana fermionBeause of the self-onjugay of Majorana fermions, there are several possible hoies inassigning spinor wave funtions to the external lines. We selet one onvention that isonsistent and use it for all diagrams. Spei�ally, our assignment is as followsinoming N : N

p

= uc(p) (8.15)outgoing N : N

p

= u(p) (8.16)8.1.4 Propagators and external �eldssalar partile φ : D(p) =
i

p2 −m2
φ + iǫ

(8.17)massless spin-1 partile : Dµν(p) =
−igµν

p2 + iǫ
(8.18)Dira fermion ℓ : [Sℓ(p)]AB =

[
i(p/+mℓ)

p2 −m2
ℓ + iǫ

]

AB

(8.19)external salar partile : 1 (8.20)inoming/outgoing photon : εµ(p) / ε∗µ(p) (8.21)inoming/outgoing Dira fermion : u(p) /u(p) (8.22)inoming/outgoing Dira anti fermion : v(p) / v(p) (8.23)In the above, p denotes four-momentum as usual.8.1.5 Polarization sums and deay ratesIn alulations, the following results are often useful:
∑

s

uu = p/+m ,
∑

s

vv = p/−m ,
∑pol ε∗µεν = −gµν ,

C

[
∑

s

uu

]T

C† = C
(
p/T +m

)
C† = −p/+m ,

(uc)T = uCT , (uc)† = −uTC†γ0 , (uc)∗ = C∗γ0u ,

γµ† = γ0γµγ0 , σµν† = γ0σµνγ0 , (8.24)
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8.2 Decay rate calculation Nk → νjγThe EMDM interation Lagrangian is
L5DEM = −λjk νLj σ

αβ PR Nk Fαβ + h.. , (8.25)where j = e, µ, τ and k = 1, 2, 3. Fαβ = ∂αAβ − ∂βAα is the eletromagneti �eld strengthtensor, with Aα being the photon �eld.
νj

γ

Nk

p

q

p′Figure 8.1: The Feynman graph for the lowest order deay, Nk → νj γ via the dimension-5 EMDM ouplingof Eq. (8.25). Here q = p − p′ and 2λjk PR σαβ qβ is the vertex fator.Now we will alulate the lowest order ontribution to the deay rate, Γ(Nk→ν γ) andfrom now onwards we shall all it as tree level diagram. The tree-level diagram for thisproess is depited in Fig. 8.1. The amplitude for the tree level proess is as follows
−iM = ūj(2λjkPRσ

αρqα)uc
kε

∗
ρ , (8.26)

⇒ |M|2 = ūj(2λjkPRσ
αρqα)uc

kε
∗
ρ

[
ūj(2λjkPRσ

βσqβ)uc
kε

∗
σ

]†
,

= 4(λ∗jkλjk)ūjPRσ
αρqαu

c
kε

∗
ρεσ(−uT

kC
†γ0)γ0σβσqβγ

0PRγ
0uj ,

= −4(λ∗jkλjk)ūjPR
i

2
[γα, γρ] qαCū

T
k u

T
kC

† i
2

[
γβ , γσ

]
qβPLuj ε

∗
ρεσ .(8.27)Averaging initial and summing �nal polarizations, we obtain

|M|2 = (λ∗jkλjk)PR (q/γρ − γρq/)C

[
1

2

∑

s

ukūk

]T

C†(q/γσ − γσq/)PL

∑

s′

uj ūj

∑pol ε∗ρεσ ,
=

1

2
(λ∗jkλjk) Tr [

PR (q/γρ − γρq/)(−p/+Mk)(q/γ
σ − γσq/)PL q

′/ (−gρσ)
]
,...

= (λ∗jkλjk)
[
16(p · q)(p′ · q)− 4(p · p′)(q · q)

]
. (8.28)where we have taken the masses of the light neutrino and photon to be zero. Working in



140 CHAPTER 8. APPENDIXthe entre-of-mass frame where
p = (Mk , ~0) , p′ = (Mk/2 , −~q) , q = (Mk/2 , ~q) , |~q| = Mk/2 , and
p · p′ = p · q = p′ · q = M2

k/2 , p2 ≡ (p · p) = M2
k , q2 = (p′)2 = 0 , (8.29)Eq. (8.28) beomes

|M|2 = 4 (λ∗jkλjk)M
4
k . (8.30)

Γ(Nk → ν γ) =
|~q|

8πE2m |M|2 ,
=

1

8π

Mk

2

1

M2
k

4 (λ†λ)kk M
4
k ,

=
(λ†λ)kk

4π
M3

k (8.31)where we have summed over j. Sine we must neessarily have Γ(Nk → ν γ) ≡ Γ(Nk →
ν γ), the total deay rate is, Γtot = 2Γ(Nk → ν γ), to �rst order.
8.3 One loop Self-energy calculation for CP asymmetryIn this setion, we present the alulational details of the self-energy ontributions to the
CP asymmetry in standard leptogenesis with the help of simpli�ed Majorana Feynmanrules, as well as to on�rm that the known results an be obtained this way. Note thatthere are atually two separate self-energy graphs that ontribution to the interfereneterm when �nal state �avor j whih is not summed over.Interferene term involving the self-energy orretion of Fig. [8.2℄(a)Firstly, let us onsider the self-energy ontributions. Applying the Feynman rules developedfor the EMDM ouplings, we an write down the interferene term of between the tree leveldiagram [8.1℄ and the self energy diagram [8.2℄ as
I5Dself-(a) =

∫
d4q1
(2π)4

(16λ∗jkλjmλnmλ
∗
nk) [uj ]1C [PRσ

ανqα]CA [SNm(p)]AB

[
PRσ

βσ(−q2β)
]
FB

× [Sℓ(−q1)]EF

[
C†σδµq2δPL

]
DE

[uc
k]D1 [Dσµ(q2)ε

∗
ν ]11

[
−uT

kC
†σηρqηPLujερ

]
11
,
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Figure 8.2: Feynman diagram for the self energy ontribution to the CP-asymmetry of Nk deay via dim-5EMDM oupling with νn as the intermediate state.
where the −q2β in [· · · ]FB omes from the fat that photon momentum, q2β is �owing intothe vertex. Letting A(5)

λ = λ∗jkλjmλnmλ
∗
nk and using matrix form, we then have

I5Dself-(a) = 16A
(5)
λ

∫
d4q1
(2π)4

uj PRσ
ανqα(−i)(/p +Mm)C (−σβσq2β)TP T

R (i)(−/q1
)T

(p2 −M2
m + iǫ)(q21 + iǫ)(q22 + iǫ)

× P T
L (σδµq2δ)

TC∗uc
k(−i)gσµ ε

∗
νερ(−1)uT

kC
†σηρqηPLuj ,

= 8iA
(5)
λ

∫
d4q1
(2π)4

PRσ
ανqα(/p +Mm)σβσq2βPR/q1PLσ

δµq2δC [
∑

s ukuk]
T C†

(p2 −M2
m + iǫ)(q21 + iǫ)(q22 + iǫ)

× σηρqηPLgσµ

∑

s′

ujuj

∑pol ε∗νερ ,...
= − iA

(5)
λ MmMk

2

∫
d4q1
(2π)4

1

(p2 −M2
m + iǫ)(q21 + iǫ)(q22 + iǫ)

×Tr [
PR(/qγ

ν − γν
/q)(/q2

γσ − γσ
/q2

)/q1
(/q2

γσ − γσ/q2
)(/qγν − γν/q)/p

′
]
,

= iA
(5)
λ MmMk

∫
d4q1
(2π)4

(p′ · q)
[
−256(q · q2)(q1 · q2) + 64(q · q1)q22

]

(p2 −M2
m + iǫ)(q21 + iǫ)(q22 + iǫ)

. (8.32)The disontinuity of the integral
I5Ds-(a) ≡ iMmMk

∫
d4q1
(2π)4

(p′ · q)
[
−256(q · q2)(q1 · q2) + 64(q · q1)q22

]

(p2 −M2
m + iǫ)(q21 + iǫ)(q22 + iǫ)

, (8.33)may be determined by the utting rules as desribed before, heneDis [
I5Ds-(a)] = iMkMm

∫
d4q1
(2π)4

(−2πi)2δ(q21)δ
[
(p− q1)2

]
Θ(E1)Θ(Mk − E1)

p2 −M2
m

×M2
k

[
−128(q · q2)(q1 · q2) + 32(q · q1)q22

]
, (ǫ→ 0) .



142 CHAPTER 8. APPENDIXUsing q1 = (E1, ~q1), q2 = p− q1 and (8.29) to simplify, we eventually getDis [
I5Ds-(a)] =

−iM4
kMm

4π2(M2
k −M2

m)

∫
d3q1dE1

1

2|~q1|
δ(E1 − |~q1|)δ

[
(Mk − E1)

2 − |~q1|2
]
Θ(E1)

×Θ(Mk − E1)
[
−64 (Mk − E1 + |~q1| cos θ) (MkE1 − E2

1 + |~q1|2)

+16 (E1 − |~q1| cos θ)
(
(Mk − E1)

2 − |~q1|2
)]

,where θ is the smaller angle between ~q1 and ~q. Performing the integrals using all thestandard triks, we obtainDis [
I5Ds-(a)] =

−iM4
kMm

8π2(M2
k −M2

m)

∫
|~q1|2d|~q1|dΩ δ

[
M2

k − 2Mk|~q1|
]
Θ(Mk − |~q1|)

×
[
−64 (Mk − |~q1|+ |~q1| cos θ) (Mk) + 16 (1− cos θ)

(
M2

k − 2Mk|~q1|
)]

,...
=

−iM4
kMm

16π2(M2
k −M2

m)

∫
dΩ

M2
k

4

[
−64

(
Mk

2
+
Mk

2
cos θ

)
+ 16 (1− cos θ)

]
,

=
2iM7

kMm

π(M2
k −M2

m)
. (8.34)The imaginary part of this interferene term and its orresponding phase spae, Vϕ aregiven by Im [

I5Ds-(a)] =
M7

kMm

π(M2
k −m2

Nm)
, Vϕ =

|~q|
8πE2m =

1

16πMk
. (8.35)Note that unlike standard leptogenesis, there are no extra fators of 2 in the phase spae forthis diagram beause only one intermediate (and �nal) state is possible. Putting everythingtogether, the CP asymmetry due to this interferene term is

ε5Dself-(a)-k,j = − 4

Γtot ∑

m6=k

∑

n

Im [
A

(5)
λ

] Im [
I5Ds-(a)Vϕ

]
,

= − M2
k

2π(λ†λ)kk

∑

m6=k

Im [
λ∗jkλjm(λ†λ)km

] √z
1− z , (8.36)where z ≡M2

m/M
2
k .Interferene term involving the self-energy orretion of Fig. [8.3℄(b)Now we will alulate the interferene term between the tree level diagram [8.1℄ and theself energy diagram [8.3℄(b) whih is
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Figure 8.3: Feynman diagram for the self energy ontribution to the CP-asymmetry of Nk deay via dim-5EMDM oupling with νn as the intermediate state.
I5Dself-(b) =

∫
d4q1
(2π)4

16B
(5)
λ [uj]1C [PRσ

ανqα]CA [SNm(p)]AB

[
C†σβσ(−q2β)PL

]
BE

× [Sℓ(q1)]EF

[
PRσ

δµq2δ

]
FD

[uc
k]D1 [Dσµ(q2)ε

∗
ν ]11

[
−uT

kC
†σηρqηPLuj ερ

]
11
.where B(5)

λ = λ∗jkλjmλ
∗
nmλnk,

= 16B
(5)
λ

∫
d4q1
(2π)4

uj PRσ
ανqα(−i)(/p +Mm)CC† σβσ(−q2β)PL(i)/q1

PRσ
δµq2δu

c
k

(p2 −M2
m + iǫ)(q21 + iǫ)(q22 + iǫ)

× (−i)gσµ ε
∗
νερ(−1)uT

kC
†σηρqηPLuj ,

= −8iB
(5)
λ

∫
d4q1
(2π)4

PRσ
ανqα(/p+Mm)σβσq2βPL/q1PRσ

δµq2δC [
∑

s ukuk]
T C†

(p2 −M2
m + iǫ)(q21 + iǫ)(q22 + iǫ)

× σηρqηPLgσµ

∑

s′

ujuj

∑pol ε∗νερ ,
= B

(5)
λ

∫
d4q1
(2π)4

−iTr[PR(/qγν − γν/q)/p(/q2γ
σ − γσ/q2)/q1

(/q2
γσ − γσ/q2

)/p(/qγν − γν/q)/p
′]

2 (p2 −M2
m + iǫ)(q21 + iǫ)(q22 + iǫ)

,

= B
(5)
λ

∫
d4q1
(2π)4

32iM4
k

[
4(q · q2)(q1 · q2)− (q · q1)q22 − 4(p · q2)(q1 · q2) + (p · q1)q22

]

(p2 −M2
m + iǫ)(q21 + iǫ)(q22 + iǫ)

,(8.37)Fousing on the integral:
I5Ds-(b) ≡ 32iM4

k

∫
d4q1
(2π)4

4(q · q2)(q1 · q2)− 4(p · q2)(q1 · q2)− (q · q1)q22 + (p · q1)q22
(p2 −M2

m + iǫ)(q21 + iǫ)(q22 + iǫ)
.(8.38)The disontinuity of this integral is determined by utting through the propagators withmomenta q1 and q2, whih then results in (q2 = p− q1, q1 ≡ (E1, ~q1)):Dis(I5Ds-(b)) =

32iM4
k

M2
k −M2

m

∫
d4q1
(2π)4

(−2πi)2δ(q21)δ
[
(p− q1)2

]
Θ(E1)Θ(Mk − E1)

×
[
4(q · q2)(q1 · q2)− 4(p · q2)(q1 · q2)− (q · q1)q22 + (p · q1)q22

]
,
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=
32iM4
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k −M2

m
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(−2πi)2δ(q21)δ
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(p − q1)2

]
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×
[
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]
,

=
−8iM4

k

π2(M2
k −M2
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∫
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2
1 − |~q1|2)δ

[
(Mk − E1)

2 − |~q1|2
]
Θ(E1)Θ(Mk − E1)

×
[
4(MkE1 − E2

1 + |~q1|2)
(
M2

k

2
− Mk

2
(E1 − |~q1| cos θ)−M2

k +MkE1

)

+

(
MkE1 −

Mk

2
(E1 − |~q1| cos θ)

)
((Mk − E1)

2 − |~q1|2)
]
,where θ is the smaller angle between ~q and ~q1,Dis(I5Ds-(b)) =

−2iM5
k

π2(M2
k −M2

m)

∫
|~q1|2d|~q1|dΩ

1

|~q1|
δ
[
(Mk − |~q1|)2 − |~q1|2

]
Θ(Mk − |~q1|)

×
[
4Mk|~q1| (−Mk + |~q1|+ |~q1| cos θ) + |~q1| (1 + cos θ) ((Mk − |~q1|)2 − |~q1|2)

]
,

=
−2iM5

k

π2(M2
k −M2

m)

∫
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1

| − 2Mk|
δ

[
|~q1| −

Mk

2

]
Θ(Mk − |~q1|)

× [4Mk (−Mk + |~q1|+ |~q1| cos θ) +Mk (1 + cos θ) (Mk − 2|~q1|)] ,

=
−iM5

k

π2(M2
k −M2

m)

∫
dφ

∫
d(cos θ)

M2
k

4
× 4×−Mk

2
(1− cos θ) ,

=
2iM8

k

π(M2
k −M2

m)
. (8.39)So, the the imaginary part is given byIm [

I5Ds-(b)] =
1

2i
Dis [

I5Ds-(b)] =
M8

k

π(M2
k −M2

m)
. (8.40)The total deay rate is given by the twie of (8.31) and phase spae is same as for Fig.[8.2℄(a) with Vϕ = 1/16πMk . Therefore,

ε5Dself-(b)-k,j = − 4

Γtot ∑

m6=k

∑

n

Im(B
(5)
λ ) Im(I5Ds-(b)Vϕ) ,

= − M2
k

2π(λ†λ)kk

∑

m6=k

Im [
λ∗jkλjm(λ†λ)mk

] 1

1− z (8.41)where we have summed over all heavy Majorana neutrino speies m 6= k, as well as internallepton speies n. This expression is valid for the hierarhial neutrinos (i.e, forMk ≪Mj).



8.3 One loop Self-energy calculation for CP asymmetry 145Resonant enhanement: When two RH neutrinos are nearly degeneratein massWhen we start alulating the imaginary part of the interferene term, we did not on-sider that right handed Majorana neutrinos are unstable and hene an be deay. In thissituation, one should take into aount the deay width of the heavy Majorana neutrinosin the propagator. So one should write p2 −M2
m + iMkΓm instead of p2 −M2

m + iǫ. Withthis, the expression for Disontinuity relation beomesDis(I5Dself-res:(b)) = B
(5)
λ

∫
d4q1
(2π)4

× 32iM4
k

[
4(q · q2)(q1 · q2)− (q · q1)q22 − 4(p · q2)(q1 · q2) + (p · q1)q22

]

(p2 −M2
m + iMkΓm)(q21 + iǫ)(q22 + iǫ)...

=
iM5

k

π2(M2
k −M2

m + iMkΓm)

∫
dφ

∫
d(cos θ)

M2
k

4
× 4×−Mk

2
(1− cos θ)

=
2i

π

M8
k (M2

k −M2
m − iMkΓm)

(M2
k −M2

m)2 +M2
kΓ2

m

(8.42)So, the the imaginary part is given byIm [
I5Dself-res:(b)] =

1

2i
Dis [

I5Dself-res:(b)] =
1

π

M8
k (M2

k −M2
m)

(M2
k −M2

m)2 +M2
kΓ2

m

. (8.43)The ontribution to the CP asymmetry due to this self-energy enhanement is
ε5Dself-res:(b)-k,j = − 4
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∑

n

Im(A
(5)
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λ∗jkλjm(λ†λ)mk

] (M2
k −M2

m)M2
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(M2
k −M2

m)2 +M2
kΓ2

m

(8.44)
= − 2

(λ†λ)kk(λ†λ)mm

∑

m6=k

Im [
λ∗jkλjm(λ†λ)mk

]

×
(
Mk

Mm

)3 (M2
k −M2

m)Mk Γm

(M2
k −M2

m)2 +M2
kΓ2

m

(8.45)Similarly, the the imaginary part oming from the interferene diagram [8.2(a)℄ is given byIm [
I5Dself-res:(a)] =

1

2i
Dis [

I5Dself-res:(a)] =
1

π

M7
kMm (M2

k −M2
m)

(M2
k −M2

m)2 +M2
kΓ2

m

. (8.46)
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ε5Dself-res:(a)-k,j = − 4
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n

Im(A
(5)
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] (M2
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(8.47)
= − 2

(λ†λ)kk(λ†λ)mm

∑

m6=k

Im [
λ∗jkλjm(λ†λ)mk
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×
(
Mk

Mm

)2 (M2
k −M2

m)Mk Γm

(M2
k −M2

m)2 +M2
k Γ2

m

(8.48)where the tree level (lowest order) deay rate is Γ(Nk → νγ) = (λ†λ)kk

4π M3
k .Hene, the total ontribution to the CP-asymmetry due to self-energy enhanement,when the heavy right handed neutrinos are nearly degenerate in mass, is the sum of theseterms (8.47) and (8.44) and is given by

ε5Dself-res-k,j = ε5Dself-res:(a)-k,j + ε5Dself-res:(b)-k,j (8.49)
8.4 Calculation involving 5D-EMDM coupling strengthIn this setion, we will present the detailed alulation for the �ve-dimensional dipolemoment oupling between light ν and heavy N neutrinos before dedue the potentialimpliations of these EMDM operators for the eletromagneti leptogenesis as disussedin hapter-[6℄. The general form of this dipole moment oupling of the light neutrinos,
ν, to the heavy neutrinos, N , is given by νλσαβNB

αβ, where λ is the �ve-dimensionEMDM oupling onstant (λ mainly gives information about the magneti and eletritransition moments). In the subsequent disussion , we will evaluate whether the leptonnumber violating radiative deay of the heavy sterile neutrinos (N → νγ) through this5D-dipole operator whih an explain the baryon asymmetry of our present universe. Forthis alulation, we have onsidered a minimal extension of the SM with right-handedneutrinos, one vetor like harged fermion E−, a harged salar H+, two extra Higgsdoublets (Σ, D). The Feynman digram for this 5D-EMDM oupling onstant is shown in�gure (8.4). The amplitude for this loop diagram is
M = uj(p

′) Γµ uc(p)Aµ(q) (8.50)
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Figure 8.4: Feynman diagrams whih estimate the e�etive EMDM oupling strength between light neu-trino νj and Nk.The vertex ontribution from the diagram (8.4[a℄, [b℄, [℄) is given by
Γµ

[a] =

∫
d4k

(2π)4
(i y∗Σ PR)

i

k/−ME + i ǫ
(−i yH PR)

i

[(p− k)2 −M2
H + i ǫ]

× (i e [p − p′]µ)
i

[(p′ − k)2 −M2
H + i ǫ]

(i µs vD)
i

[(p′ − k)2 −M2
Σ + i ǫ]

(8.51)
Γµ

[b] =

∫
d4k

(2π)4
(i y∗Σ PR)

i

k/−ME + i ǫ
(−i yH PR)

i

[(p− k)2 −M2
H + i ǫ]

× (i µs vD)
i

[(p− k)2 −M2
Σ + i ǫ]

(i e [p − p′]µ)
i

[(p′ − k)2 −M2
Σ + i ǫ]

(8.52)
Γµ

[c] =

∫
d4k

(2π)4
(i y∗Σ PR)

i

k/− q/−ME + i ǫ
(i e γµ)

i

[k/−ME + i ǫ]
(−i yH PR)

× i

[(p− k)2 −M2
H + i ǫ]

(i µs vD)
i

[(p′ − k)2 −M2
Σ + i ǫ]

(8.53)Let us onsider the vertex ontribution oming from the diagram (8.4[℄). This an bewritten as
Γµ

[c] = (e y∗Σ yH µs vD)

∫
d4k

(2π)4
D−1 PR[k/− q/+ME]γµ [k/+ME ]PR (8.54)
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D−1 =

[
{(k − q)2 −M2

E ]} {k2 −M2
E ]} {(p − k)2 −M2

H}{(p′ − k)2 −M2
Σ}

]−1 (8.55)Now, these loop integrals an be alulated using the standard triks of Feynmanparametrization and dimensional regularization sheme.Some useful formula in dimensional regularization shemeThe standard integrals whih will be useful in the alulation are given below
1

a b c
= 2

∫ 1

0
dx

∫ 1

0
dy

∫ 1

0
dz
δ(1 − x− y − z)
[ax+ b y + c z]3

= 2

∫ 1

0
dy

∫ 1−x

0
dz

1

[a+ (b− a) y + (c− a) z]3 (8.56)
1

a b
=

1

b− a

∫ b

a

d t

t2
=

∫ 1

0

d z

[b+ (a− b) z]2 (8.57)
1

a b
=

1

b− a

∫ b

a

d t

t2
=

1

b− a

(
1

a
− 1

b

) (8.58)The dimensional regularization modi�es the dimensionality of the loop integrals so thatthe expressions beome �nite. Firstly, we have to hange 4-dimensional integral to D-dimensional integral (where D = 4 − η and for η → 0, we will revert bak to originalthing). Corresponding to the standard integrals in 4-dimension, the integral formulas inD-dimension is
∫
dD k

1

[k2 + S + iǫ]n
= i πD/2 Γ(n−D/2)

Γ(n)

1

Sn−D/2
(8.59)

∫
dD k

kµ

[k2 + S + iǫ]n
= 0 (8.60)

∫
dD k

kµkν

[k2 + S + iǫ]n
= i πD/2 Γ(n−D/2− 1)

2Γ(n)

gµν

Sn−D/2−1
(8.61)

∫
dD k

k2

[k2 + S + iǫ]n
= i πD/2 Γ(n−D/2− 1)

2Γ(n)

D

Sn−D/2−1
(8.62)Similarly, the expression for gµν , trae of gamma matries and gamma identities will behanged aordingly.Finally, after doing the simple algebra, the analytial expression for EMDM oupling
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λ = − (y∗Σ yH µs vD)

16π2 [M2
Σ −M2

H ]

[
Ia + Ib + Ic

] (8.63)Where Ia, Ib and Ic are ontribution oming from three diagrams shown in Fig.(8.4). Thedominant ontribution oming from the diagrams (8.4 [a℄) and (8.4 [b℄)
Ia + Ib = 2ME
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(0)
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1
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(0)
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]) (8.64)
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0
dy xn ω1
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∫ 1
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0
dy yn ω1
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(n)
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dx
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0
dy xn ω2

C
(n)
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∫ 1

0
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0
dy yn ω2 (8.65)where n = 0, 1, 2, .. is an integer and the value of ω1 and ω2 is given by

ω1 =
1

−yM2
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N
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−yM2
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(8.66)Similarly, the dominant ontribution oming from the diagram (8.4 [℄)
Ic = ME

∫ 1

0
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0
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(8.67)The e�etive dimension-5 oupling onstant λ an thus be expressed in a simple form underthe assumption of almost equal mass for the partiles in the loop (ME ∼MH ∼MΣ ∼Meq)as:
λ = −y

∗
Σ yH µs vD

64π2 M3
eq

(8.68)
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