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CHAPTER

Intfroduction

1.1 The Standard Model of Particle Physics

According to the current understanding of particle physics, all known particles are made
only of fermions and the interaction between the fermions is given by the mediators. To
the best of our present knowledge, the nature seems to be equipped with four kinds of
interactions (i) strong, (ii) electromagnetic, (iii) weak and (iv) gravitational. Every in-
teraction has its mediator. For example, photon is the mediator of the electromagnetic
force, two W’s and a Z, are the mediator of the weak force. Then what is the media-
tor for strong force? There are eight gluon responsible for the strong binding between
the quarks. Graviton(yet, to be discovered), presumably the mediator of gravitational
interaction. The Standard Model (SM) of particle physics describes the dynamics of the
elementary particles [1-4]. It has been constructed to address all the three interactions
namely strong, electromagnetic and weak, other than gravity, on one platform. It is a
gauge theory of the strong and electroweak interactions based on the gauge symmetry
group Gsr = SU(3)c x SU(2)r, x U(1)y. The weak and electromagnetic interactions
between the fundamental particles (quarks and leptons) was first proposed by Glashow-
Salam-Weinberg [1] which is known as the electroweak theory. The strong interaction is
the interaction among the quarks of different colors and flavors and they are mediated
by eight gluon. It is best described by the SU(3)c gauge theory called quantum cromo

dynamics (QCD). The color states are confined and hence, only color singlets sates can
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exist in nature as free particles. The strong nuclear force is the force between the protons
and neutrons, which is a manifestation of the underlying SU(3)¢ interactions among the
quarks. The electromagnetic interaction is the force of all charged particles. It is described
by quantum electrodynamics (QED) which is a U(1)g gauge theory. The weak interac-
tion describes the nuclear beta decay. The quarks and leptons transform according to
left-handed doublets(LH) and right-handed(RH) singlets under SU(2);, to account for the
V-A nature of the charge current weak interactions. The electromagnetic interaction, as
like the gravitational interaction, is of infinite range but the ranges of the weak and strong

nuclear forces are finite.

Experiments revealed the weak gauge bosons as massive as required by the short range
behavior of the weak interaction. But the SU(2); gauge symmetry does not permit the
mass term for these gauge bosons, and fermions as well, in the Lagrangian. The sponta-
neous symmetry breaking mechanism is a way out to generate the weak gauge boson and
fermion masses in the standard model by introducing an additional weak isodoublet com-
plex scalar field. Weak gauge bosons get masses by absorbing three Goldstone bosons, three
components of the scalar field, the remaining degree of freedom corresponds to a physical
particle, the Higgs boson, the most wanted member for the present particle physics collider
search. Once we choose a ground state, out of infinite possibilities, as the physical one, the
electro-weak SU(2)y, x U(1)y symmetry breaks to U(1)g symmetry. As a result, via the
spontaneous symmetry breaking, the weak gauge bosons and the fermions acquire non-zero

masses.

The assignment of weak hypercharge of U(1) group to the various SU(2)r, and SU(3)¢
multiplets is

Q=T +Y (1.1)

where Q is the electric charge, 137, the 3rd component of weak isospin and Y, the weak

hypercharge. The particles are represented under the SM gauge group as shown in table[6.2].

1.1.1 Complete Lagrangian for the standard model

The complete Lagrangian of the Standard Model obeying the gauge symmetry is

Lsym = Lkg + Lyuk — Vo

where
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Table 1.1: Particle content of the Standard Model

\ Field | SUB)e x SU2) x U(D)y |
Fermions 1= (u,d)g (3,2,1/6)
UR (37 17 2/3)
dR (37 ]-7 _1/3)
=@, e (1, 2,-1/2)
€R (17 ]-7 _1)
i) (1,2, +1/2)
LKE = Z'EQ’Y“DHEPQ + Z'EUR’Y“D#LPUR + Z'EdR’y‘uD“!de
+ WD+ W,y D e, + (D, @) (D, ®)
1 L1
o ZGﬁz/GZ - ZWZLI/WiM - ZBHVBHV’
Ly = YuPQO®VW, + ya¥o®Wy, + ye¥ OV, , + h.c.
Vo= —p?|® + @
and the fields are defined by
v, v, 1+ -
vo=| " |, w= W, =— 0, and & = iryd*
v ) Ve | ’ 2

Gi, = 0, Git — 9, Git + gs fAPOGE Y
Wi, =0,W)— 0,W},+ gre"Wiwpy
By, = 8,B, — 8,B,

(1.2)

(1.3)

where A = 1,2....8, i = 1,2,3 and D,, is the covariant derivative. The theory as written

has a total of 18 parameters- the three gauge couplings: g3, g1, gy; the higgs-sector mass

and self-coupling: 12, A and 13 degree of freedom in the Yukawa sector.

1.1.2 Spontaneous Symmetry Breaking and The Higgs Mechanism

Spontaneous symmetry breaking is the idea that the ground state of a system contains only

a subset of the symmetries respected by the underlying theory. This idea is not unique
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to particle physics or the SM, but is prevalent in many areas of physics; for example,

ferromagnetism.

In the standard model, Spontaneous Symmetry Breaking is achieved through the spin-0
Higgs boson, ®. The idea is that the Higgs field acquires a non-zero classical background,
called a vacuum expectation value (VEV), and the quantum theory must be written as
perturbations around this classical background. The theory still maintains the full sym-
metry, however the ground state, the one in which the VEV of ® is nonzero, breaks this

symmetry and thus it is not seen in nature.

The local SU(2), x U(1)y gauge invariant Lagrangian, thus, can be written as

- t -
L= [(z’@u —gr5 Wy~ %BH> <1>] KW — gLz W — %BM) @}

1 1 - -
—V(®Td) — 1 BB = Z W W, (1.4)

where Y = 1/2 is used for the Higgs scalar field.

The scalar potential, V(®1®), is given by
V(®T®) = 1% (®Td) + \(DTD)2. (1.5)
Writing the Higgs doublet ® as

+
D= ¢0 (1.6)
¢
where, ¢t = %(qﬁl +ige) and @ = %(gﬁg +i¢4). Taking ¢ = 0 to preserve electric
charge conservation and with the non-zero classical background being defined as (®) and

choosing

(®) = (1.7)
V2
The condition for the spontaneous symmetry breaking is 42 < 0 and A > 0. The minima,

of the potential are at all those points of ¢;s which satisfy the following condition

2 2

1 v W
Ole = (67 + 05+ 03 +0]) = 5 = -5, (1.8)

which implies an infinite number of ground states. The symmetry will spontaneously
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break once one of it is arbitrarily chosen. Keeping in mind that any unphysical term in
the Lagrangian should not be allowed, let us write the scalar field ® in terms of four fields

01(x), O2(x), O3(x) and h(x) as:

B(z) = 1 02 — 16, ~ (i0a()7/v 0
V2 \ (v+h)—iby J5(v+h(x)

(1.9)

Once we put this transformed field ¢ in the Lagrangian, we will see that there are
the three massless unwanted bosons will disappear from the potential. These massless
goldstone modes are eaten up by SU(2)r, gauge bosons and hence, W*, Z become massive.
As a result of this SSB. we have now three massive gauge fields W* and Z and one massless,

the photon field, as needed:

1 1
mwzing, mzziv\/g%—}—g%, my = 0. (1.10)

Finally, the shift to the true vacuum gives the fermions of the theory a mass through their

yukawa couplings to the Higgs:

1 1 1
Me = —= My = —= mg = ——

v v v

The remaining Higgs degree of freedom obtains a non-zero, positive mass and should be
seen by experiment. Furthermore, the quarks, electron, muon, and tau pick up masses

from the yukawa couplings to the higgs while the neutrino remains massless.

1.1.3 Shortcomings of standard model

The Standard Model of elementary particles and interactions is one of the best tested
theories in physics. It has been found to be in remarkable agreement with experiment and
its validity at the quantum level has been successfully probed in the electroweak sector. It
has predicted the masses of W and Z bosons precisely which is excellent agreement with
the experiment, made several predictions for testing quantum electroweak corrections, etc.
which have all been verified. In SM, weak and electromagnetic interactions are unified and
predicts CP violation with at least three generation. In spite of its experimental successes,
though, the Standard Model suffers from a number of limitations, and is likely to be an
incomplete theory.

Standard model contains many arbitrary parameters; it does not include gravity, the
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fourth elementary interaction; it does not provide an explanation for the hierarchy between
the scale of electroweak interactions and the Planck scale, characteristic of gravitational
interactions; and finally, it fails to account for the dark matter and the baryon asymmetry
of the universe. It does not represent a unified description of the fundamental interactions.
There is no right handed neutrinos in SM and hence enforces the neutrinos to be massless.
The most important thing is that the Higgs boson (which is crucial for mass generation
through Higgs mechanism) is not found in any of the experiments. Also one can ask
why there are only three generations of fermions 7 All the fermions and Higgs boson
masses and the gauge coupling constants are only parameters in the standard model.
The clear evidence for physics beyond the standard model is the small nonzero neutrino
mass. This led particle theorists to develop and study various extensions of the Standard
Model, such as supersymmetric theories, Grand Unified Theories or theories with extra
space-time dimensions; most of which have been proposed well before the experimental
verification of the Standard Model. The coming generation of experimental facilities (high-
energy colliders, B-physics experiments, neutrino superbeams, as well as astrophysical and
cosmological observational facilities) will allow us to test the predictions of these theories

and to deepen our understanding of the fundamental laws of nature.

1.2 Beyond Standard Model of Particle Physics

1.2.1 Massive Neutrinos

The Standard Model(SM) in particle physics predicts strictly massless neutrinos and there
is neither mixing nor CP violation in the leptonic sector. The experimental observation
that neutrinos can oscillate from one flavor to another as they propagate is the strongest

indication for nonzero neutrino masses and mixing.

We will briefly discuss the theory of neutrino oscillation [5]. We define the neutrino
weak eigenstate v, with flavor o (where o = e, pu, or 7) such that it is produced in as-
sociation with the charged antilepton /¢, in a tree-level interaction with the W boson.
These weak eigenstates are in general different from the neutrino mass eigenstates v; (with
i = 1,2, and 3), each having a (rest) mass given by m;. One can relate the weak and mass
eigenstates via a unitary transformation and write v, as a coherent superposition of the v;

fields:
va) =Y Uiilvi) (1.11)
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The Unitary mass matrix U given in the above expression is known as Pontecorvo-

Maki-Nakagawa-Sakata (PMNS) matrix [5-8|, which is often parametrized as

€12€13 512€13 s13e7 0 [elor/? 0 0
Upmns = | —s12co3 — 12523513 €0 1023 — S12523513 €0 sa3¢13 0 elaz/2 ()
i i
—512523 + 12023513 €' 12523 + S12¢23513 €' —C23C13 0 0 1
(1.12)

where S;,, = sin O, Cmn = €08 Oy, 0 is the C'P violating Dirac phase, while a; and as

denote the two Majorana phases.

To quantify the phenomenon of a neutrino changing from flavor-a to flavor-3 as it
propagates in vacuum, we are interested in the probability with which this happens, i.e.
Pr(vo — v3), a quantity that depends on how the |v,) state in (1.11) evolves with time.

This probability is given by

_ 2 * * .2 AmgjL
Pr(ve — v3) = |(v3]va)|? = 6us — 4 Z: Re (Un,UpiUasUp;) sin® | —
i>j
Am? L
+2)  Im (U},UpiUa;Us;) sin 25 , (1.13)
1>7

2 _ 9 2
where Amij = m; —mj.

Here E, p; and m; are the energy, momentum and mass of v;
component of neutrino, L is the source-detector distance as measured in the lab-frame. All

are related by the Lorentz invariant term m;7; in terms of laboratory variables as
miTiZEit—‘pi’L, (1.14)

From this result, it is quite clear that when all neutrino masses m;’s are zero (or nonzero
but degenerate) and hence, the second and third term in Eq. (1.13) disappear, neutrino
oscillation is not possible. By the same token, the observation that v, and v, do change

flavor during propagation implies that (at least two of) v;’s must be massive.

The solar and atmospheric neutrino oscillations determined the values of two large

2
sol

) and a large (Am2, )

(012, 023) and one small (f13) mixing angles , as well as, a small (Am i

2

Ztm 1S not known, two arrangements for the

squared mass differences. Since the sign of Am

neutrino mass spectrum are possible:

Normal hierarchy: Am2,,, = Am3; > 0, which gives m; < my < mg with

mo = \/mi + Am2 | ms = y\/m2 + Am2, . (1.15)
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Inverted hierarchy: Am2, = Am3, <0, implying m3 < mj < mg with

myp = \/mg + AmZ,, — Am2, |, my = \/m3 + Am2,, . (1.16)

Note that in both cases, we have used Am2, = Am3; > 0. The best-fit values of the

neutrino oscillation parameters at 1o error level in the three-flavor analysis are summarized

as follows [12]:
AmZ) = T7.651033 x 1077 eV?
|Am2,,| = 2407012 x 1073 &V?
sin” 015 = 0.30410 072
sin? fg3 = 0.507057

sin” 015 < 0.0170079 (1.17)

Moreover,until now there is no information about the absolute neutrino masses. One
can find the bound on absolute scale of neutrino mass via studies of lepton number (L)
violating neutrino less double S-decay (4 [Nucl] — 4142 [Nucl’| 4 2¢7), whose observation
would imply that neutrinos are Majorana fermions [13]. The effective Majorana neutrino
mass found to be

3
2
> Uami

i=1

Several groups such as the Heidelberg-Moscow [14] and IGEX [15] collaborations conducted
experiments with "®Ge, while the more recent CUORICINO experiment [16] used '39Te to
test for this. So far there are no confirmed discoveries of the neutrinoless double (3-decay,
but the best upper bounds on the decay lifetimes are presently provided by CUORICINO

(which is still running), whose results are translated to
my, =mgg < 0.19 —0.68 eV (90% C.L.), (1.19)

for the neutrino mass.

The strongest bounds on the overall scale for neutrino masses come from cosmology.
This is one of the important examples that illustrates the intricate connections between

neutrino physics and the evolution of the early universe. The absolute upper bound for



1.2 Beyond Standard Model of Particle Physics

each individual neutrino mass coming from cosmology is
lm;| < 0.2eV (95% C.L.) foralli. (1.20)

See-Saw Mechanism

The most natural way to explain the smallness of the neutrino mass is by the use of the
seesaw mechanism. The first ingredient in this mechanism is to add a right handed neutrino
vr(for each generation). Next,in order to implement the seesaw mechanism, a mass scale
of vg much larger than v(= 250) has to be introduced. This kind of seesaw is known as
Type I seesaw.

For one generation case: )
m
m, = WD (1.21)
wheremp is the Dirac mass with magnitude of same order as those of the known charged
fermions and M is the mass scale of vg, and is supposed to be substantially larger than

mp.
For one generation case: )

my, = mDMm:g (1.22)

The mass matrix that appear in the Lagrangian is now a 6x6 matrix as

0 mp

M(6 x 6) = . R
mp M

(1.23)
wherem,, , mp and Mp are all 3 x 3 matrices. Like in one generation, here we require that

|MR| >>|mD.

Neutrino electromagnetic dipole moments

As is well known, the electric neutrality of the neutrino does not preclude its having non-
zero dipole moments. And while, naively, the presence of a magnetic dipole moment would
seem to call for the presence of a nonzero mass, even this is not strictly necessary [190].
One of the important implications of massive neutrinos is that they can in general possess
a nonzero transition magnetic and electric dipole moment (both for Dirac and Majorana
neutrinos), regardless of the mechanism by which they gain their mass. If neutrinos are
Dirac particles, then they can also have diagonal electromagnetic dipole moments [17-20],

unlike their Majorana counterparts. To understand the connection between neutrino mass
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and neutrino dipole moment, one should consider the generic dipole moment operator:
LI =75 (uje + i djy) 0ap v F*7 (1.24)

where F*? denotes the photon field tensor, we see that the magnetic (i) and electric (d;)
dipole moments have dimension of inverse mass. In the SM with massive Dirac neutrinos,
the diagonal magnetic dipole moment induced by radiative corrections may be calculated

for the mass eigenstate v;:

3€GF ~19 my;
lu’Vj ~ mm,,j ~ 3 x 10 <ﬁ> UB (125)

where up = e/2m, is the Bohr magneton, G is the Fermi constant, m, is the mass
of light neutrino, p, is the magnetic moment of the neutrino. This contribution is very
small in comparison to the experimental bound [21]. So one need to either extend the
SM or consider new physics beyond the SM to explain correct magnetic moment of the
neutrinos. The current laboratory limits on the magnetic dipole moment are obtained from

the low-energy scattering processes and they give a bound of about [22,23,23,24]

ty <054 x 10795 (90% C.L.) . (1.26)

Moreover, one can estimate of the contribution to neutrino masses from the dipole
moment operators, thus gaining important insights into the size of y, in relation to m,,.
Once neutrinos have electromagnetic dipole moments (diagonal or transition), it is clear
that new interactions between neutrinos and other fermions are possible. For instance, on
top of the usual weak interactions, there can be a new contribution to neutrino-electron

scattering due to photon exchange, hence modifying the cross section.

The existence of transition moments can lead to neutrino decays. In particular, if the
transition moments between the ordinary LH and heavy RH neutrinos (from the minimally
extended SM) are non-vanishing, then the radiative decay of the heavy RH neutrinos can
have important implications in the cosmological evolution of matter in the early universe.
We will discuss these issues later on how can generate the required lepton asymmetry to
explain the matter-antimatter asymmetry of the present Universe via the decay of heavy
right handed majorana neutrinos into a light SM lepton and a photon through the dipole

moment operators.
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1.2.2 Left-Right symmetric theory

While the standard electroweak model based on the spontaneously broken local symmetry
has been extremely successful in the description of low-energy weak phenomena, it leaves
many question unanswered. One of them has to do with understanding of the origin of the
parity violation in low energy weak interaction processes while all other forces in nature
are parity conserving. Why are the weak forces apparently not or are they really parity
conserving at the fundamental level and we do not see it 7 The second one, of a more
phenomenological nature but an urgent one, has to do with the origin of neutrino masses,
for which now there are convincing evidence from neutrino oscillation experiment. It is
found that a theory, which is an extension of the SM, gives answer to both the questions

and this theory is known as the Left-Right theory.

The left-right symmetric extension of the standard model is based on the gauge group
GLr =SU(2)L x SU2)gr x U(1)p—r, [99-101]. The SU(2)r x U(1)p_r, is broken at some
high energy giving our low energy electroweak theory with unbroken SU(2); x U(1)y.
The left-handed fermions are doublets under SU(2);, while the right handed fermions are
doublets under SU(2)g. The electric charge is related to the generators of the group as:

2

Q=131+ T3, + =131, +Y. (127)

The quarks and leptons transform under the left-right symmetric

ur, 1 UR 1
QL - = [3727 17 _]7 QR - = [37 1727 _]7
dr, 3 dr 3
1% 1%
b = " = [1?251?_1]’ lp = " = [1’1a2’_1] (128)
€L €R

The left-right symmetric models have an interesting feature of breaking parity symmetry
spontaneously. The SU(2)., gauge bosons Wy, and the SU(2)r gauge bosons Wx are not
parity eigenstates, but they transform under parity as Wi — Wg. As the left-handed and
right-handed fermions are related by parity operation, a discrete (Z2) symmetry relating
the group SU(2);, — SU(2)r can now be identified with the parity operator of the Lorentz
group. Hence spontaneous breaking of left-right symmetry will also break parity sponta-
neously. After the left-right symmetry breaking, the gauge coupling constants for the two
SU(2) gauge groups can be different.
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The symmetry breaking pattern in left-right models [102,111] via Higgs scalar is

SUB)ex SUQ2), x  SUQ2)rxUQ1)p-1) [GLR]
M SUB)e x SU©2)L x ULy [Gitd]

"W SU3). x U(1)g [Gem] -

The Higgs field which breaks left-right symmetry can give masses to the neutrinos. The
SU(2)r symmetry is broken by a triplet scalar (Ag), which transforms under Grr as (1,
1, 3, -2). The discrete parity symmetry implies there exist another triplet (Ap), which
transforms under Grr as (1, 3, 1, -2). The SU(2)r breaks at high scale via Ar and the
vev of Ay is constrained by the precision experiment to be much less than a my. The
electroweak symmetry can be broken by a bi-doublet ® which transforms under Gy as (1,

2, 2, 0), whose vev can give masses to the charged fermions.

1.2.3 Grand Unified theory

Ultimate unification of all particles and all interactions is the eternal dream of theoretical
physicists. The standard model has a grand success in unifying the two fundamental forces
at high energies, namely weak and electromagnetism. But the question arises whether there
is an another fundamental theory which allows all fundamental forces to unify at higher
energies and Standard Model is one of it’s subgroup. Such theories are known as Grand
Unifies Theories(GUT). It promises to unify the three different gauge coupling constants
of the SM. The basic idea is that the three coupling constants vary differently with respect
to the energy scale and their renormalization group running shows that they tend to meet
at some very high energy scale (~ 10'6 GeV) known as the GUT scale. Some new physics
is expected to appear at this scale which can be described by a bigger gauge group with
single coupling constant, i.e., the grand unified group.

One natural extension of the standard model is to consider a grand unified theory, in
which all three groups will be unified [98]. There will be only one unified gauge group with
only one coupling constants [25]. At some higher energy, which is the scale of unification

(My), the grand unified group will break down to the standard model
Go ™ SU(3), x SU©2)1 x U(1)y

Another motivation for grand unification is to treat the quarks and leptons in the equal

footing at higher energies by putting them in the same representation of the unification
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group. This quark-lepton unification implies baryon and lepton number violation and
hence, predicts proton decay. There are several possible grand unified theories depending
on the unification gauge group and the symmetry breaking pattern with different predic-
tions. Some of the GUT models ruled out by present experiment while none of the GUT

models has been verified so far.

SU(5) Grand Unified Theories

Our main purpose in constructing the Grand unified theory is to unify the three funda-
mental forces and the theory only contains only one gauge coupling constant. Georgi and
Glashow in 1973 proposed the SU(5) GUT containing the gauge group of rank 4 as the
unified group. It gives a beautiful way of unifying all the three standard model gauge
couplings. In the standard model the first generation contains fifteen fermions, the left-
handed up and down quarks of three flavors, the right-handed up and down quarks, the
left-handed neutrinos and left-handed and right-handed electrons. In this SU(5) GUT
model there is a unique way to accommodate all the fifteen quarks and leptons in the 5
and 10 representations. The break up of these two multiplets of the SU(5) group in terms
of the SM gauge group SU(3)c x SU(2)r, x U(1)y are:

Ly and 0= L)@@, -2) @ (3,2,2). (1.29)

1
—= 1,2
)@(”2 3 6

5= (3,1,
(3,1, -5

The right-handed down quark d = (d", d9, d®) and right-handed (e*, 7,) doublet can prefer-
ably be put into the 5 representation respectively. On the other hand the singlet charged
left-handed anti-lepton e™, the left-handed u, d quark doublet and left-handed anti-u quark

singlet u¢ will be in 10, the antisymmetric part of the product of two 5-plets.

Similarly, 24(= 5% — 1) gauge bosons associated with the SU(5) gauge group can be

decomposed as follows:

5. _ 5
24 = (8,1,0) + (1,3,0) + (1,1,0) + (3,2, _6) + (3,2, 6) (1.30)

which are the gluons, electro-weak gauge bosons and the new heavy X,Y gauge bosons.
These new gauge bosons, X and Y, mediate the proton decay. One can have, for example,

for the decay mode, )
M(p — etn%) ~ =, (1.31)
X
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where g is the GUT gauge coupling constant. Hence, the proton lifetime is

4
mx

'Tp ~

. 1.32
pi (132

Non-observation of proton decay puts a lower limit on these heavy gauge boson masses
myy > 10" GeV (1.33)

Generally, the SU(5) symmetry is broken down to the low energy SU(3)c x U(1)g by two
Higgs scalars ®94 and Hs which are in the adjoint 24 and 5 of SU(5). The breakdown of
these two Higgs multiplets in the SU(3)c x SU(2)r x U(1)y representation are given in
eqns. (1.30) and (1.29) respectively.

When the neutral component (1, 1,0) of the the ®o4 gets a vev at the GUT scale, SU(5)
breaks to the SM gauge group while getting a nonzero vev for Hj at the electro-weak scale

breaks the SM down to SU(3)c x U(1)q.

The stepwise breakdown of the gauge symmetry in this case, thus, is
SUGB) 2 SUB)e x SUR)L x U(l)y B SUB)e x U(1)o. (1.34)

The rank of the SU(5) group is same as the rank of SM gauge group and so it is the
smallest GUT gauge group to accommodate SM gauge group. Its non-supersymmetric
minimal version, which was initially proposed, has got very tight constraint on parameter
space from the negative results of the proton decay experiments and moreover does not
unify the three gauge coupling constant. However, several extensions have been studied
in literature and we will discuss one interesting scenario later on where one can achieve
unification of three fundamental interactions using gravity as a correction to all the three

gauge coupling constants.

Gauge hierarchy problem

A major difficulty of the standard model is the gauge hierarchy problem [27]. In order to

realize this hierarchy between My and My and hence the problem of naturalness let us

calculate the quadratic divergence for the Higgs mass due to standard model fermions.
The one loop correction to the Higgs mass my is obtained by calculating the two point

function:

4 —1IA 7 —1IA 7
My, = (_1)/ (;lw];“Tr <( \/if)k/—mf( \/if)k/—mf>’ (1.33)
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where  is the fermion-scalar-fermion coupling constant. The loop momentum % can take
any value from zero to infinity. This leads to a correction which is infinite and makes the
theory ill-defined. So, we assume that our theory is valid upto a cut-off scale . The above

integration, thus, becomes

d*k 1 2m’
mf, = —22/ + !
hh f o (2m)4 [kQ _m? (k2 — mi)z
)\2
= L2 1
52 + .. (1.36)

Thus the corrected Higgs (mass)2 is

m¥ = m¥;, + omj; (1.37)

where the correction m%{ is proportional to the Hih. In GUT we have a new scale at

10'® GeV. If there is no new physics before this scale then ~ 10 GeV and to have a
Higgs mass of O(100 GeV) a fine-tuning of the co-efficient As to 1 part in 10?° is needed.

1.2.4 Renormalization group equations

The renormalization group, in quantum field theory (QFT), tells us how different couplings
evolve with energy. But before discussing the renormalization group equations (RGE) an
obvious question is: what is renormalization [26] ? In QFT, Green function is a most im-
portant thing to be calculated and, in fact, these quantities are divergent in perturbative
quantum field theory. The systematic way to remove these divergences is known as renor-
malization. There are different ways to cancel these infinities. In order to renormalise the
theory we need a reference point which is also arbitrary. Different choices of this reference
point lead to different sets of parameters for the theory, but physics should not depend on
the arbitrary choice of the reference point and be invariant. This invariance leads to the
renormalization group. In quantum field theory it is a useful method to examine the behav-
ior of physics at a different scale knowing the same at some other scale. Thus, measuring
the observables in a low energy experiment one can compare with the values predicted
from a theory at a higher scale, e.g at the GUT scale and certify about the correctness of
the theory.

It was only after the realization of the fact that strength of an interaction is not an
absolute concept but varies with the energy scale of the interaction that led to the idea of

unification of all the coupling constants. In the standard model, variations of the gauge
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coupling constants with energy are given by the following renormalization group equations

(RGEs)

dg;

16m2F -2
dE

= big} = Bsn(gi) (1.38)

where i stands for U(1)y, SU(2)r, and SU(3)¢c and the right-hand-side is known as the
[-function of the corresponding coupling. This equation is valid for the lowest one-loop

order in perturbations theory. One can write this equation as

d
dinE

o HE) = —zb—w (1.39)

g2
where, o; = 4.

Using the measured values of these coupling constants at the scale My as the initial

values one can solve these equations as, b M
U

o (My) = a; 1 (Mz) — %mM—Z (1.40)

In the above equations the co-efficients, b;, can be calculated for any SU(N) group as
11 2 1
b; = —?CQ(G) + gnfCQ(R) + gnsCQ(R) (1.41)

where C3(R) is the quadratic Casimir operator for the representation R while Co(G) is
that for the adjoint representation. These Casimir operators are discussed below. In the
above equation ny is the number of chiral fermions and n, is the number of complex scalars

contributing to the g-function.

The generators of a gauge group obey the following rules

Tr(thts] = C(R)6?, (1.42)

and

Zt t% = Cy(R).1 (1.43)

where, the proportionality constant Cy(R) is the quadratic Casimir operator for the
particular representation. One can easily show that the quadratic Casimir operator is

related with the factor C(R) via

Cs(R)(R) = C(R)r (1.44)
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where, 7 is the number of generators (= N2—1) of the SU(N) gauge group, equivalent to
the dimension of the adjoint representation, and d(R) is the dimension of the representation

R. The SU(2) generators follow the commutation relation

pa 7_b

1
Trls 5= 55‘“’. (1.45)
As stated earlier the bigger GUT SU(N) group will be chosen in such a way that
it will contain the SU(2) as a subgroup. The generators of the SU(N) will also follow
the same normalization condition — eqn.(1.45) — and, thus, we have C(R) = 3 in the
fundamental representation. Immediately eqn.(1.44) implies that for R = N, i.e for the
fundamental representation the quadratic Casimir operator is Cy(NN) = % For the
adjoint representation Co(G) = N. For the U(1) gauge group these values will be Co(G) =

0 and Cy(R) = C(R) = (Y/2)2.

|
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Figure 1.1: Evolution of the gauge couplings in the standard model
So, for the standard model, considering the contribution of all the particles listed in

Table [6.2] one has for the three different co-efficients for the gauge groups U(1)y, SU(2)L,
and SU(3)¢

by 4
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where, the GUT normalization factor % is already multiplied to calculate the co-efficient
for the U(1)y gauge group. Using these values of ‘0’ one can find the evolution of the gauge
couplings with energy from eqn(1.40) as depicted in Fig. 1.1 up to one loop contribution
only.

It shows that all three standard model gauge couplings are trying to unify at some
higher scale ~ 105 GeV, comparable to the predicted value of Mg from the proton decay
limits. Although in this case they are not unifying exactly, they do so in the supersymmetric

scenario. We shall discuss these issues later elaborately.

1.2.5 Supersymmetry

Supersymmetry(SUSY) is a symmetry between fermions and bosons and it unifies the
concept of fermions and bosons keeping them in a same supermultiplets. It provides
a solution to gauge hierarchy problem. Since supersymmetry has not been observed in
nature, it must be broken at some higher energies, if it exists. R-parity invariance is
imposed to eliminate fast baryon and lepton number violating terms. One of the main
motivations of supersymmetry is that quadratic divergences are absent. Although the fine
tuning of parameters required at tree level, there are no loop corrections that may require
any fine tuning. This is because the scalars and fermions in the loop contribute quadratic
divergences with opposite sign and similar form, so they cancel in the limit of equal masses
of fermions and scalars in the loop. Thus, in the limit of exact supersymmetry, there are
no quadratic divergence.

In addition to providing a solution to the gauge hierarchy problem and allowing uni-
fication of the space-time symmetry with internal symmetries, we now believe that the
correct quantum theory of gravity is supersymmetric. The superpartners and their inter-
actions predict interesting phenomenology in the next generation accelerators, which are
added attractions of supersymmetry. There are also many cosmological consequences of
supersymmetry including its prediction for a natural candidate of cold dark matter.

The minimal supersymmetric standard model (MSSM), is an extension of the standard
model where all particles and their interactions are made supersymmetric. The Lagrangian
of a SUSY theory is determined my two functions: the Kahler potential () and the
superpotential (W) as follows

1
Lsusy = 3 / d*OK + / d*0W + h.c.

The Kahler potential is a real or vector superfield since KT = K and the superpotential is
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a chiral superfield.Hence the MSSM potential are as follows

K = QTBQA)\A-FWATA-F%BQ + UcTeg.AAA_glch n DCTegA)\.A‘F%BDC
+ LteW " ta=3B], + EctWATa—35B e

+ HiV'matabh, ¢ HieV b E, (1.47)

W = y.QHU®+y,LH;E® + uH,Hy

1 1
BB, + —Tr (WW,
12" e + 892 r o) + 1242

+ Tr (G*Gy) (1.48)

Supersymmetry must be a broken symmetry, because exact SUSY would dictate that ev-
ery superpartner is degenerate in mass with its corresponding SM particle, which is clearly
ruled out by experiment. Possible ways to achieve a spontaneous breaking of supersymme-
try depend on the form of the high energy theory. Supersymmetry may even be explicitly
broken without losing its ability to solve the hierarchy problem as long as the breaking is
of a certain type known as soft breaking. If supersymmetry is broken softly, the superpart-
ner masses can be lifted to a phenomenologically acceptable range. The scale of the mass
splitting between the two partners should be of the order of 100 GeV-1 TeV, because it
then can be tied to the scale of electroweak symmetry breaking. In any case, the effective
Lagrangian at the electroweak scale is expected to be parameterized by a general set of
soft supersymmetry- breaking (SSB) terms if the attractive features of supersymmetry are
to be maintained, and the Lagrangian can be separated as MSSM £ = Lgysy + Lsoft with

the supersymmetric part is Lsysy and the SUSY violating part is Lgoft-

1.3 Cosmological Consequences of BSM physics

1.3.1 Cosmological baryon asymmetry

Nowadays, one speaks about a "Standard Cosmological Model", in analogy with its very
successful counterpart of particle physics. The Standard Cosmological Model tells us that
the Universe is in a phase of accelerated expansion and that the total energy in the Universe
is shared among at least four components which sum to Q¢ ~ 1, meaning that the Universe
is flat to a good precision. The dominant component (about 73%) is called dark energy,
dark matter makes about 23%, ordinary matter (both luminous and dark) only 4% and

neutrinos 0.22%, the uncertainty here stemming from the unknown absolute neutrino mass
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Figure 1.2: The mass-energy budget of the Uni- Figure 1.3: The antiproton-to-proton ratio at
verse. the top of the atmosphere, as observed (points)
and predicted from the models (lines) [49].

scale.

The standard cosmological model has several outstanding questions, the most impor-
tant ones being the nature of dark matter and dark energy, mechanism of inflation and
baryogenesis. The existence of dark matter was originally suggested to explain the galactic
rotation curves; it has also become necessary to explain structure formation. The existence
of dark matter is generally accepted, but there are many candidates for dark matter par-
ticle waiting for experimental confirmation. Dark energy is postulated in order to fit the
supernovae data, which suggests that the expansion of the universe has started to acceler-
ate during the late times. Dark energy is becoming more and more accepted as an idea,
though there are very few credible candidates for the source of this mysterious energy.

In everyday life, almost everything that we interact with is made of matter. Antimatter
is also rare in our local galaxy (Milky Way). Ordinary matter, which constitutes our bodies
as well as the Earth and the stars, does not seem at first to introduce any challenge to
our understanding. However, this naive perception is wrong because two very puzzling

questions remain:
1. Why is antimatter essentially absent in the observable Universe?
2. Why is the number density of baryons so small compared to photons or neutrinos?

These two questions are puzzling because, according to the Standard Big-Bang Theory,
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matter and antimatter evolved in the same way in the early Universe. On the other hand,
today the observable Universe is composed almost exclusively of matter. Antimatter is
only seen in particle physics accelerators and in cosmic rays. Moreover, the rates observed
in cosmic rays are consistent with the secondary emission of antiprotons, ng/n, ~ 1074
(see Fig. 1.3).

It is difficult to answer why there is an excess of matter over antimatter in the universe
today. Recent measurements of the temperature anisotropy of the Cosmic Microwave
Background (CMB) radiation by the WMAP probe [29], together with studies of large
scale structure [30], have given us a reliable estimate of the baryon-to-photon ratio at the
current epoch:

pEMB — Z—B = (6.140.2) x 10710 (1.49)
Y

where np and n, denote the number density of baryons and photons respectively. This
number is also well agreement with the standard Big Bang Nucleosynthesis (BBN) analysis
of the primordial abundances of 3He, *He, (D)deuterium and standard cosmology. More
importantly though, the amount of O (10_10) for this ratio signifies that there must have
been a primordial baryon asymmetry in the early universe. This is because if the universe
was baryon-antibaryon symmetric at 7 ~ O (100) MeV, the annihilation process B+ B —
2y would significantly reduce both the value of ng/n, and ngz/n.,, before they subsequently
froze out at T ~ 22 MeV when the annihilations became ineffective. By studying the
Boltzmann evolution of the number density of the (anti)baryons in this scenario, one can
estimate the expected baryon-to-photon ratio for today to be [31]

BT 010718 (1.50)

Ny Ty
Hence, the apparent discrepancy between (1.49) and (1.50) is a clear indication that during
primordial times, the universe must already have been matter-antimatter asymmetric, and

the current scarcity of antimatter is just a manifestation of that fact.

Baryogenesis and Sakharov’s conditions

Since it is expected that the Universe started with equal amount of baryons and anti-
baryons, some interactions of particle physics should have generated this small baryon
asymmetry of the Universe before nucleosynthesis. We need a successful theory which will
explain the matter content of the present universe. Starting from a baryon symmetric

Universe , the process of generating this small amount of baryon asymmetry is called
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Baryogenesis. The mechanisms that can lead to this asymmetry, has to satisfy the three
basic conditions for baryogenesis as pointed out by Sakharov in 1967 [32]: a dynamical

model should contain processes that

1. violate baryon number, B,
2. violate C' and C'P, and

3. are out of thermal equilibrium.

These are often referred to as the Sakharov conditions.

B-number violation: Let us assign a positive number B for baryons while the cor-
responding antiparticles are given a negative number B = —B for their baryon number.
The first Sakharov’s criterion is obvious as no increase or decrease of baryon number B
can happen if all interactions in the model are B conserving.

C and CP violation: For every B violating interaction which involves a baryon,
X — qq, there will be a mirror process, X — gg, for the corresponding antibaryon that
can create an exact negative amount of B and hence, no net B asymmetry may result if
both types of processes are equally likely. Hence, Sakharov’s second condition demands
that C' (charge conjugation) and C'P (charge conjugation plus parity flip) violations are
necessary as they will lead to different rates for the particle and antiparticle processes, i.e.
['(X —qq) # (X — 79).

Departure from thermal equilibrium: From quantum mechanics, one can show
that the thermal expectation value of B vanishes in equilibrium. So, the condition of

deviation from thermal equilibrium for these processes is essential.

Sphaleron effect: anomalous B-+L violation

In the SM, the baryon number and the lepton number are accidental symmetries. It is
thus not possible to violate these symmetries at the classical level. To see how B and L
violations come about while at the same time reconciling their apparent conservation at
low energies, it is instructive to study the electroweak theory at both the classical and
quantum mechanical levels. A well known fact of the classical SM Lagrangian is that it
has global U(1)p and U(1); symmetries and is therefore invariant under the following

transformations of the quark and lepton fields:

Ul)p: qlz)—qx)e?; ((z)—lx) (1.51)
U q@) —ale) 5 0a) — ) e (152)
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where 6 and ¢ are constants. Noether’s theorem then implies that the classical J, 5 and J, ;f

currents are conserved:

1 _ . _
17 =0" ) 5 ([@war + Trur + drvdr) =0, (1.53)
flavors
colors

Tl =0" > (Cyule +Eryuer) =0, (1.54)

flavors
where we have conveniently defined the baryon and lepton numbers for quarks and leptons
as: Bquark = 1/3, Blepton =0, Lquark =0 and Llepton =1

In 1969, it was realized [43,44] that through the Adler-Bell-Jackiw triangle anomaly
these symmetries are nevertheless broken and as a result, the baryonic and the leptonic

currents are anomalous. Their divergences are then given by

N — ) _
I = 0 = L (—g W, W) + g Te( B, B ) (1.55)
where g and ¢’ are the gauge couplings of SU(2)r, and U(1)y respectively, with W, and

B, the corresponding field tensors, and Ny denotes the number of generations.

Another important observation from (1.55) is that (9“J5 and (9“1];’;4 are identical and
hence,

oM (JZ—Jk)=0. (1.56)

In other words, the B — L quantum number is strictly conserved in the SM. However, it is
also clear from (1.55) that B + L must be violated. To deduce the corresponding change
in the B + L quantum number, one must evaluate the Euclidean integral of 0/ (.J 5 +J ;f )

over d*z:

2N . N

AB+L)= / diz ot JEHE = / d*z 32—1; <—92W§VWC§“’ + g'QBWBW) . (157)
T

— 2Ny AN, (1.58)

where AN, = 41,42, ... is the change in the Chern-Simons number.

In 1976, ’tHooft published an article [50] in which he estimated the rate of these baryon
number violating processes. He considered the instanton solution between two separate
vacua and calculated the action associated with the saddle point configuration between
them. This field configuration is called Sphaleron, from the Greek word meaning ready to

fall, as the saddle point configuration is inherently unstable. The probability of tunneling
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between the vacua is approximately
[ ~e St = g0 = O(107170),

This rate is so infinitely small that the sphaleron process is in no contradiction with the

practical observation of the lack of violation of B or L.

The energy of the saddle point configuration can be estimated by the sphaleron con-
figuration. Below the electroweak phase transition temperature (7' < Tgw ), the transition

rate per unit volume was found to be

which is still very much suppressed. In the symmetric phase (T > Tgw), however, the

transition rate is no longer suppressed, but rather [51]

Fsph 5 —1 4
— ~a’lna” " T
Vv
Sphaleron processes can be in equilibrium when the sphaleron rate I's,, exceeds the
expansion rate of the Universe (H). By comparing the sphaleron rate FSTPTITEW to H =
1.67y/g* (where g* is the effective relativistic degrees freedom, Mp; = 1.22 x 10' GeV, is

the Planck mass), one can check that the temperature T lies in the range [52]

Tew < T < 103GeV.

Candidates for baryogenesis

To explain the cosmic baryon asymmetry, several theories and models have been sug-
gested. The most pleasing alternative has been electroweak baryogenesis, since it requires
no physics beyond the standard model, whereas other scenarios require at least some ex-

tension to it.

Electroweak baryogenesis: The standard model of particle physics, perhaps surpris-
ingly, fulfills all the Sakharov’s conditions. The CP-violation enters through the Cabibbo-
Kobayashi-Maskaawa (CKM) matrix. So, in principle at least, the baryogenesis problem
may be solved within the framework of the SM. But it is found that the C'P violation ob-
served in the quark sector [33] (e.g. in K9-K° or BY-B° mesons system) is far too small [34]

to give rise to the observed np. Moreover, the present empirical lower limit on the Higgs
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mass, Miggs > 114 GeV [35], implies that the electroweak phase transition cannot be first
order [36], making it difficult for the baryon number violating sphaleron processes in the
SM to go out of thermal equilibrium. Since baryogenesis can not be explained within the
standard model, the existence of baryons in our universe can be considered as evidence for

physics beyond the standard model.

GUT baryogenesis: The standard model describes the interactions of particles by
two symmetry groups, SU(3)qcp and SU(2)r, x U(1)y. The motivation for grand uni-
fied theories is to explain all these interactions by a single large symmetry group, which
includes all these groups as it’s subgroups. Since no specific GUT theory has been found,
there are many different models tossed around with many common properties. All the
Sakharov’s condition are easily fulfilled in GUT models. The B-number violation is an
unavoidable consequence in grand unified models, as quarks and leptons are unified in the
same representation of a single group. Furthermore, sufficient amount of CP violation can
be incorporated naturally in GUT models, as there exist many possible complex phases,
in addition to those that are present in the SM. The relevant time scales of the decays of
heavy gauge bosons or scalars are slow, compared to the expansion rate of the Universe
at early epoch of the cosmic evolution. The decays of these heavy particles are thus in-
herently out-of-equilibrium. But the GUT baryogenesis scenario has difficulties with the
non-observation of proton decay, which puts a lower bound on the mass of the decaying
boson, and therefore on the reheat temperature after inflation. Simple inflation models do
not give such a high reheat temperature, which in addition, might regenerate unwanted

relics.

Affleck-Dine baryogenesis: The Affleck-Dine baryogenesis [40,41]. involves cosmo-
logical evolution of scalar fields which carry B charges. It is most naturally implemented
in SUSY theories. Nevertheless, this mechanism faces the same challenges as in GUT

baryogenesis and in EW baryogenesis.

Leptogenesis: It is another beautiful mechanism put forward by Fukugita and Yanagida
[37] where decay of the lightest heavy Majorana neutrino produces a CP violating out-of-
equilibrium decay. Our main work focuses on the motivated realization of leptogenesis:
electromagnetic leptogenesis via 5D and 6D-dipole moment interactions like standard lep-

togenesis mediated by Yukawa couplings.
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1.3.2 Leptogenesis

Leptogenesis is a mechanism which can generate a lepton asymmetry of the Universe before
the electroweak phase transition which can be further converted to the required baryon
asymmetry of the Universe in the presence of Sphaleron. The failure of the minimal SM
to dynamically generate the correct amount of baryon asymmetry together with the fact
that SM sphaleron strictly conserve the B — L quantum number have motivated us to look
for new physics that can violate lepton number L when tackling the baryogenesis problem.
Indeed, if neutrinos are Majorana, then the induced dim-5 mass term: y2ZLq§¢T€i /A,
will violate L by two units. Therefore, it is natural to ask whether such lepton violating
interactions can actually lead to the observed baryon asymmetry.

The expression for final baryon asymmetry via sphaleron transitions can be written in

terms B — L or L [85,86] is

2 2
BB o=

= L 1.
78 51 (1.59)

from which one can conclude that an initial B — L asymmetry can be partially converted
into a B asymmetry by sphaleron and other SM processes.

In this work, we are especially interested in the leptogenesis scenario involving type I
seesaw models [37] because, in our opinion, it presents the most “elegant” solution to both
the smallness of neutrino masses and the observed baryon-to-photon ratio, while it only
requires a rather modest extension of the SM. In addition to leptogenesis in type I scenario,
it should be added in passing that leptogenesis based on type II [60,66,67], type III [68,69]

seesaw are also possible.

Leptogenesis with hierarchical RH neutrinos

The generic leptogenesis scenario of Fukugita and Yanagida [37] involves the type I seesaw
Lagrangian of (1.60) with three heavy RH Majorana neutrinos, so that the L violating
Yukawa interactions between the RH neutrinos and the ordinary LH leptons can generate
a B — L asymmetry during the primordial times. The spectrum of the RH neutrino is
assumed to be hierarchical masses in this scenario (i.e, M7 < My < M3), and therefore the
asymmetry created will be dominated by the decays of the lightest RH neutrinos (denoted
N1) due to the efficient washout of any N 3-generated asymmetries by N mediated AL # 0
scattering processes in equilibrium. Also the Majorana masses of heavy neutrinos are

assumed to be GUT scale and this guarantees successful seesaw mechanism producing
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left-handed light neutrinos with the correct mass scale.

We can write the Lagrangian (1.60) in the mass eigenbasis of the heavy RH neutrinos
(denoting the heavy RH Majorana neutrinos with N = vg’ + (vg’)¢ where vg’ is the mass

eigenstate after the change of basis from vg.) as
_ o~ _ 1__
[fint == _yozﬁ fa gbeﬁ - h]’k Ej ¢Nk — 5 Nk Mk Nk + h.c. s (160)

where flavor indices «, 3,7 can be one of e, or 7, and k = 1,2, 3 are labels for the lightest
to heaviest RH neutrinos (with mass Mj). The SU(2);, doublets: £, = (vp,er) and
¢ = (¢°,¢7)T have their usual meanings, with gz~5 = i09¢* being the charge conjugate
Higgs. The Yukawa couplings hjx ;¢ Nj in (1.61) can then induce heavy RH neutrino

decays via two channels:

Ne—{ Gt (1.61)

Li+ao,

which violate lepton number by one unit. All Sakharov’s conditions for leptogenesis will
be satisfied if these decays also violate C' P and go out of equilibrium at some stage during
the evolution of the early universe. The requirement for C'P violation means that coupling
matrix i in (1.60) must be complex and the mass of Nj must be greater than the combined
mass of £; and ¢, so that interferences between the tree-level process (Fig. 1.4a) and the one-
loop corrections (Fig. 1.4b, c¢) with on-shell intermediate states will be nonzero. Clearly,
both of these are possible as type I seesaw mechanism naturally implies a very large M
in order to induce small LH neutrino masses, while it does not forbid the presence of C'P
violating phases in the RH neutrino sector. The condition of thermal non-equilibrium is
achieved when the expansion rate of the universe exceeds the decay rate of Ni. In practice

this requirement is given by
Uplr=m, < Hlr=p,
where M is the mass of heavy neutrino.

Now the formula for C'P asymmetry in the lepton number production due to Ny decays:

D(Ng — £; ) — T(Ng — € ¢)
L(Ny = 4;¢) + D(Ny — € ¢)

Erj = (1.62)

Explicit calculation of the interference terms, in case of N1 dominated scenario, will then
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Figure 1.4: The (a) tree-level, (b) one-loop vertex correction, and (c) one-loop self-energy correction
graphs for the decay: N — ¢; ¢.

result in [38,39]:

where fy(z) and fg(z) are given by

1+

@ =va - aram ()] ma g = 2

1—=x

(1.64)

which denote the vertex and self-energy contributions respectively. The tree-level Ny decay

rate (at 7" = 0) used to calculate the denominator of (1.62) with j summed is given by:

(hth)11

I'(Ny =€) =T(Ny — {¢) = Ton

M . (1.65)

Suppose that |hj;| < |hss| for all j and k, then in the hierarchical limit of M; < My 3,

the seesaw relation gives:

_ sl (97

1.
Tt (1.66)

ms3

where mg is mass of the heaviest LH neutrino. Assuming these conditions, and using the

fact that

3
|fv(z)+ fs(x)| ~ NG forx>1, (1.67)
one can estimate the C'P asymmetry as
3 M\ .
le1]| ~ Tor ]h33]2 <—M;> sin Oy , (1.68)
3 ms M1
= T6m e noy , (1.69)

where in the last line we have used (1.66). The quantity: sin dy, is a measure of the
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amount of C'P violation in the decay with 6y = arg [(hTh)};] which is in general different
from the C'P phase appearing in neutrino oscillations. Relation (1.69) implies that the size
of |e1] cannot be arbitrarily large for a given M;. Taking mg ~ 0.05 eV and (¢) ~ 174 GeV,
one gets a useful ballpark estimate of the maximum C'P asymmetry as

My
male -6 (__ L ) 1.
1™ ~ 10 (ww GeV) (1.70)

Within the type I seesaw paradigm, this result actually holds in general as long as the LH

neutrinos are strongly hierarchical [74].

Boltzmann equations for leptogenesis

Leptogenesis is closely related to the classical GUT baryogenesis [31], where the deviation
of the distribution function of some heavy particles from its equilibrium distribution pro-
vides the necessary departure from thermal equilibrium. The non-equilibrium process of
baryogenesis via leptogenesis is usually studied by means of Boltzmann equation [56,83].
We shall consider the simplest case where the initial temperature is larger than Mj, the
mass of the lightest heavy neutrino. In principle, one should take into account all B- and
L-violating processes. In this treatise, however, we consider only decays, inverse decays,
AL = 2 scattering and the sphalerons.

Within this minimal framework, the Boltzmann equations can be written as

dy, .

N~ —(D+9) [YN1 - YNjf] (1.71)
dYs ¢ )
L - e D Y — YR - WY, (1.72)

where z = M;/T. There are four classes of processes which contribute to the different
terms of the equations: decays, inverse decays, AL = 1 scatterings and AL = 2 processes
mediated by heavy neutrinos. The first three all modify the N; abundance and try to
push it towards its equilibrium value N7“. In this case, we have considered the normalized
quantity Y, = Ni/s, s is the entropy of the Universe. The term D =I'p/(H z) accounts
for decays and inverse decays, while the scattering term S = I's/(H z) represents the
scattering process mediated by the heavy neutrino. Also Decays are the source term for
B — L asymmetry generation while W = I'yy /(H z) is the wash-out term which tries to
erase the net B — £ asymmetry produced by the decay process.
This coupled set of Boltzmann equations may be solved numerically or (semi-)analytically

by asymptotic methods. Either way, the conclusion is that for a wide range of seesaw neu-
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Figure 1.5: The AL = +1 processes thfxt can influence ny, and np—r: (a) s-channel scattering N¢ «— qrtr,
(b) t-channel scattering Nitr < qrf, (c) t-channel scattering Nqr < trf. Here ¢;, denotes the 3rd
generation of the quark doublet.
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Figure 1.6: The AL = +2 s- and t-channel scattering processes mediated by N.

trino parameters, a nonzero excess of B — L can be generated [81-83]. Explicitly, if one

expresses the maximum baryon-to-photon ratio generated as

NEAX ~ 0,96 x 1072 |1 | KX, (1.73)

with £{"® denoting the maximum final efficiency factor obtained from solving the Boltz-

mann equations, and the pre-factor of 0.96 x 10~2 coming from the dilution due to imperfect
sphaleron conversion and photon production before recombination, then one may directly
restrict the possible neutrino parameter space for successful baryogenesis via |e1| (and to
some degree x! because the reaction rates depend on the mass of Ny and the Yukawas).
In the best case scenarios where a maximum efficiency factor of about x{"** ~ 0.18 is
achieved [81-83|, and assuming strongly hierarchical LH neutrinos, then one obtains a

lower bound for the heavy RH neutrino mass M; as
My > 3.5 x 107 GeV (1.74)

where we have used relation (1.70) and taken the value of np given by (1.49).

More generally, in many situations with M; < 10'* GeV, one has, to good approxima-
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tion, k' ~ 2 x 1072, This then implies that a raw C'P asymmetry of about |e1| ~ 3 x 1076
is required for baryogenesis to succeed.

In summary, we have highlighted some of the essential features in quantitatively un-
derstanding the classic leptogenesis scenario of [37] which has the type I seesaw setup as
its backbone. Specifically, we have discussed the “standard” situation where the heavy
RH Majorana neutrinos are strongly hierarchical. As a result, only the lightest of the
three RH neutrinos, Np, is expected to contribute significantly to the final asymmetry.
This is because the B — L violating interactions mediated by N; would still be in thermal
equilibrium when Nj 3 decayed away, and therefore any excess B — L produced by N3
would be erased. When the Ni’s eventually decay out-of-equilibrium, an excess of B — L
is created through C'P violating loop effects. Subsequently, this excess is converted into a
B asymmetry by SM sphaleron.

The exact amount of B generated in this way depends crucially on the interplay between
the decay and washout processes, as well as the raw C'P asymmetry the neutrino model
under consideration contains. By studying the Boltzmann evolution of the particle species
and the explicitly calculating the loop diagrams, both of these crucial ingredients may be
conveniently encapsulated into the efficient factor (kf) and C' P asymmetry (e;) respectively.
Consequently, variations to the standard scenario can be quantified by changes in these
values.

Over the years, there has been a dramatic increase in the sophistication of the quanti-
tative analysis of leptogenesis. Many previously neglected effects such as thermal correc-
tions [84], spectator processes [80,81] and, above all, flavor effects [75,77,79] have been
considered in recent analyses. Other variations to the general scheme, including asymmetry
production dominated by the decays of the second lightest RH neutrino Ny [76], resonant
leptogenesis [59,88,89,91-94] and models with more than three heavy RH neutrinos [78],
have also received attention. In the next few subsections, we will briefly mention some of
these ideas which go beyond the standard scenario, and hint on how they may broaden the

class of neutrino models that will lead to successful leptogenesis.

1.3.3 Resonant leptogenesis

The possibility of quasi-degenerate RH neutrinos are not excluded by any existing ex-
perimental data nor they are forbidden by the generic seesaw setup. In this case, the
leptogenesis is known as resonant leptogenesis [59,88,89,91-94| which can occur when the

mass splitting between two RH neutrinos becomes small enough, leading to enhancement
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of the C'P asymmetry ;. One need to worry about two main issues namely: the size
of the C'P asymmetry and the final efficiency factor. When considering the situation of
M; ~ Mj, for j # k more closely, we first realize that, qualitatively, the washout rate must
increase at 1" ~ M because L violating scattering processes mediated by M; and M}
would both be active, providing more ways to erase the generated asymmetry. Secondly,
in the expression for €;, we have either employed the approximation of Mj/M; > 1 or
My, /M; < 1. However, a quasi-degenerate RH neutrino spectrum demands the condition

of My, /M; = O (1), and hence the limits on €; must be re-studied.

In the expression for €; in previous case, we see that the most interesting behavior must
come from the self-energy correction term, fs(x) as M; — M}, as
M; M,

. Y . . a2
W Sse) = = iy g VR = MM

?

00 . (1.75)

This conclusion comes from the fact that, in the calculation of the self energy contribution
by Buchmuller and Covi, they do not have to use Pinch mechanism. One may follow the
re summation approach of [88,91,93| where an additional regulating absorptive term due
to the finite decay width of M naturally emerges to overcome such conclusion. The
self-energy contribution to the C'P violation parameter, near the degenerate case, is then

modified to [88,91,93]

Im [(hTh)ﬁk} 2(M? — M2) M, T;
(hTh)jj(hTh)kk (]\4]2 — ]\4]?)2 + 4M]~2 F? '

€5 =~ (176)
where j,k = 1,2 or 2,3 (j # k) and I'; = (hTh);; M;/167 is the generalization of the
tree-level decay rate as defined in (1.65). From the expression of (1.76), one can see that
ej — 0 when M; — M;, in accordance with the observation that the RH neutrino running

in the loop must be different from the decaying one in order to generate an asymmetry.

More importantly, Eq. (1.76) indicates that the C'P asymmetry will be enhanced pro-
vided that the mass splitting between the two RH neutrinos coincides with the region of

mass parameters about which the €; function peaks. Specifically, one requires
|Mj — M| ~Tj , (1.77)

to maximize the resonant effect. With this, one can see that if the Yukawa couplings are
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such that

Im [(fﬁh)?k}
(AFR) 55 (W Ry — oW, )

then €; can be as large as O (1), hence provide a lot more leverage for successful leptogene-
sis. Indeed, the increase in washout due to the tiny mass gap between N;’s will eventually
saturate when the degenerate limit reaches a certain point and the enhancement from res-
onant effects will be able to dominate the outcome. Consequently, given the substantial
enhancement by resonant leptogenesis, some of the stringent constraints on the neutrino
properties imposed by the standard hierarchical scenario may be evaded. Most notably,
the lower bound (1.74) on M; is completely removed, leading to the possibility of TeV
scale RH neutrinos and TeV leptogenesis [88,94]. In SUSY leptogenesis theories, this is
particularly advantageous as the upper bound on the reheating temperature (Tien) due
to BBN constraints on gravitino over-production, is often in conflict with the condition,
Tren 2, Mj, normally required for the sufficient thermal generation of N;’s which participate
in L creation. Furthermore, N»- and even N3-leptogenesis are now easily achievable under
this scenario, and hence the set of applicable seesaw models is significantly expanded.

Certainly, this particular model and many others that employ resonant leptogenesis can
have the RH Majorana neutrinos to be as small as 1 TeV and depending on their couplings
to SM particles, collider signatures of them may also accessible in the near future [89,94].
Recently a very interesting possibility of electromagnetic leptogenesis [193] has been pro-
posed, wherein the source of CP violation has been identified with the electromagnetic
dipole moment(s) of the neutrino(s). For a collection of neutrino fields of the same chiral-
ity, the most general form of such couplings is given by V_J‘?(ujk + i’y5Djk)aaﬁukBaﬁ , where
B8 denotes the U(1) field strength tensor. The magnetic and electric transition moment
matrices, u;i and Djg, each need to be antisymmetric. For two Majorana neutrinos com-
bining to give a Dirac particle, the resultant matrix, clearly, does not not suffer from such
restrictions. The aforementioned dimension-five operators are, presumably, generated by
some new physics operative beyond the electroweak scale. With C P-violation being en-
coded in the structure of the dipole moments, the decays of heavier neutrinos to lighter
ones and a photon, can, in principle, lead to a lepton asymmetry in the universe. Although
the proposal is a very interesting one, thus far it has not been incorporated in any realistic
model. We propose a specific model for resonant electromagnetic leptogenesis which will
be presented in detail later on. A guiding principle in our quest is that the new physics
should be at the TeV scale so as to render the model testable at the LHC or future Linear
Colliders
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1.4 Oulline of our work

The observational evidence for nonzero neutrino masses, origin of parity violation, ultimate
unification of fundamental forces and cosmological matter-antimatter asymmetry provides
a strong indication for physics beyond the SM. The goal of the thesis is to study several
classes of non-susy and supersymmetric models to address these issues like spontaneously
parity breaking, neutrino mass via seesaw mechanism and their connection to lepton asym-
metry and self consistency with RG running of the coupling constant.

The first part of our work (Chapter-2) is a comprehensive analysis on supersymmetric
left-right models in the context of spontaneous parity breaking. We propose a novel imple-
mentation of spontaneous parity breaking in supersymmetric left-right symmetric model,
avoiding some of the problems encountered in previous studies by including a bitriplet
and a singlet, in addition to the bidoublets which extend the Higgs sector of the Minimal
Supersymmetric Standard Model (MSSM).

In Chapter (3), we will discuss the different scenarios of spontaneous breaking of D-
Parity in both non-Susy and Susy version of left right symmetric models. Main motivation
of this work is to explore the possibility of a TeV scale SU(2)r breaking scale Mp and
hence TeV scale right handed neutrinos from both minimization of the scalar potential as
well as the coupling constant unification point of view with spontaneous D-parity breaking
scheme.

In Chapter (4), we will study the question of parity breaking, neutrino mass and lep-
togenesis problem in a supersymmetric left-right model, in which the left-right symmetry
is broken with Higgs doublets (carrying B — L = £1).

In Chapter (5), we analyze the SU(5) gauge coupling unification and argue that the
gravitational corrections to gauge coupling constants may not vanish when higher dimen-
sional non-renormalizable terms are included in the problem.

In Chapter (6), we shall discuss the electromagnetic interactions between the LH and
RH neutrinos. The inclusion of heavy RH neutrinos to the SM as in type I seesaw then
naturally gives rise to new transition electromagnetic moments involving both LH and RH
neutrinos. Our main goal is to find a realistic model that will give leptogenesis scenario
by explicitly calculating the C'P asymmetry coming from the out-of-equilibrium decays of
the heavy RH neutrinos via electromagnetic interactions.

Finally, we conclude our entire work in Chapter (7).
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Spontaneous Parity breaking in
SUSYLR model

The left-right symmetric model has since long received considerable attention as a simple
extension of the standard model and it has already been discussed in section (1.2.2) of
chapter-[1]. As we know, chirality is an elegant ingredient of nature which prevents unduly
large masses for fermions, on the other hand, most of nature is left-right symmetric suggest-
ing the reasonable hypothesis that parity is only spontaneously broken, a principle built
into the left-right symmetric models. This class of models also provides a natural embed-
ding of electroweak hypercharge, giving a physical explanation for the required extra U(1)
as being generated by the difference between the baryon number (B) and the lepton num-
ber (L). Thus, B — L, the only exact global symmetry of SM becomes a gauge symmetry,
ensuring its exact conservation, in turn leading to several interesting consequences.

One of the attractive features of the supersymmetric models is it’s ability to provide
a candidate for the cold dark matter of the universe. This however relies on the theory
obeying R-parity conservation [112,113|, defined as R = (—1)3(B~1)+29 defined in terms
of the gauged (B — L), in order to prevent fast proton decay which we don’t want. In
MSSM, R-parity is not automatic and is achieved by imposing global baryon and lepton
number conservation on the theory as an additional requirements. It is therefore desirable
to seek supersymmetric theories where, like the standard model, R-parity conservation

(Baryon and lepton number conservation) becomes automatic. The supersymmetric left-
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right theory can give explanation to all the puzzles of the Standard Model. This kind
of theory implements the seesaw mechanism for neutrino masses and gives satisfactory
answer to the parity breakdown as seen in low energy electroweak theory [99,100]. Since
right handed neutrino is a automatic consequences of supersymmetric left-right theory, it

can explain the tiny neutrino mass and cosmic baryon asymmetry of the present universe.

The minimal supersymmetric left-right theory has its own limitations like other theories
and we shall explain some of them in the next section. One need a self-consistent theory
which can overcome these drawbacks and we will give such a set up to solve the problem.
In this chapter we will discuss another interesting model, which is self consistent and
phenomenologically rich, with one copy of bitriplet and parity odd singlet which achieves

the goal of spontaneous parity breaking in supersymmetric left-right model.

2.1 Discussion of spontaneous parity breaking in minimal SU-
SYLR model

We review the particle content of the SUSYLR model in order to show parity can not
be spontaneously broken in the minimal model. In the left-right symmetric models, it
is assumed that the MSSM gauge group SU(3). ® SU(2), ® U(1)y is enhanced at some
higher energy, when the left-handed and right-handed fermions are treated on equal footing.
The minimal supersymmetric left-right (SUSYLR) model has the gauge group SU(3)¢
® SU(2)r ® SU(2)r ® U(1)p—r which could emerge from a supersymmetric SO(10)
grand unified theory.

The quark and lepton superfields in a supersymmetric left-right [99-103] model is given

by their transformations are given by,

1 1
=1[3,2,1, ©=[3*21,—=

Q [7 9 73]7 Q [ 9y <y Ly 3]7

L=[1,21,-1], L¢=[1,1,2,1] (2.1)

where, the numbers in the brackets denote the quantum numbers under SU(3)¢, SU(2)p,
SU(2)r, U(1)p_r. We have omitted the generation index for simplicity. The left-right
symmetry could be broken by either doublet Higgs scalars or triplet Higgs scalar. It has
been argued that for a minimal choice of parameters, it is convenient to break the group

with a triplet Higgs scalar. The minimal Higgs superfields required for the symmetry
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breaking is

A=1,31,2], A=1,31,-2)],
A°=[1,1,3,-2)], A =11,1,3,2)],
®; = [1,2,2%,0], (i=1,2). (2.2)

As pointed out in [121], the bidoublets are doubled to achieve a non vanishing Cabibbo-
Kobayashi-Maskawa (CKM) quark mixing and the number of triplets is doubled for the
sake of anomaly cancellation. The left-right symmetry is implemented in these theories as

a discrete parity transformation as
Q— Qi Le—Lf5 &0l

A — A A —— A, (2.3)

The minimal supersymmetric left-right model however can not break parity spontaneously.
To prove this statement, we will follow the discussions of Kuchimanchi and Mohapatra

closely [115,116]. The superpotential for this theory is given by

W =Y D1QT Q¢ + YO LT ry®;my L
+ i(hLT AL + h* LTy A°LE)
+ paTr(AR) + pATr(AA) + i Te(r2 @] 72®;) (2.4)

All couplings Y Wat, Mij, kA, h in the above potential, are complex with the additional
constraint that p;;, h and h* are symmetric matrices. It is clear from the above eqn. that
the theory has no baryon or lepton number violation terms. The potential obtained from
the above superpotential via F' and D flat conditions and including the soft-SUSY breaking
terms is given by

Vsusy = Vi + Vb + Veott (2.5)

where,

Vi = TrlmaA|? + Te|maA’)? + [ma>Tr(ATA + ATA®) 4+ 2Tr|pud” |2 (2.6)

Vp = Tr|maA? + Tr|maA + [maTr(ATA + ATA) + 2Ty | T2 (2.7)



38 CHAPTER 2. SPONTANEOUS PARITY BREAKING IN SUSYLR MODEL

Vit = (My —m3) Te[ATA + ATTAC 4 (M, — m3) T[A'K + A7)
+ M"PTr[AA 4+ A°AY] + h.c.

/
‘L[/”
+ (M3, —4p?)Tr(®f0)) + %TI"(TQ@ZTTQCI)J') + h.c. (2.8)

Here one can choose the mass-squared terms M’ and p? positive and real since their phase
can be absorbed in redefinition of coupling constants, triplets (A’s) and bidoublet (®’s).

Here, we have chosen the vevs of quarks and leptons to be zero for the time being.

There are various ranges of vev’s of Higgs fields which make the susy potential bounded
from below. Demanding that the potential should have a finite ground state, one can
generally deduce constraint on the mass parameters depending upon the choice of the vev’s
of Higgs field. The advantage of doing this is to correlate different mass scales (shown in

Table(2.1)) with each other such as:

M"? = MiMscos20, pu?= Mq%“ sin 26 (2.9)
Vev Constraints
<A> = <Ac> = 1)2’7'1, <(1>> =0, M12,2 >0
(A)=(@A" =0
(A) = (A) = (v*/My)71, (B) =0, M" < My M,

(A)=(a)=(2)=(A")=0,(2)=0[ M >0and p* < Mg

and k=% =0

Table 2.1: Constraints on mass-squared parameters from ground state of the potential

The Higgs potential with this choice can be written as

Vevsy = cos?0Te[(MiA + MyAD (M A + MoAT)
+ sin? OTe[(MiA — MoA ) (M A — MoA)]

_|_

Mg, [cos® 0 (k + k™*)* (k + k™) + sin® 0 (k — k™) (k — k"))
+ A - AC+Z—>ZC+VDtermS
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One of the most important problems is the spontaneous breaking of left-right symme-
try [115,116], viz., all vacuum expectation values breaking SU(2); are exactly equal in
magnitude to those breaking SU(2)r, making the vacuum parity symmetric. In mathemat-
ical language, this can be inferred as: the ground state of the Higgs potential is Vsysy = 0
iff

(A) = (&) = (A% = B) = k=K =0

From above discussion, It turns out that left-right symmetry imposes rather strong con-
straints on the ground state of this model. Also that there is no spontaneous parity
breaking for this minimal choice of Higgs in the supersymmetric left-right model and as
such the ground state remains parity symmetric. There have been suggestions to solve
this problem by introducing additional fields, or higher dimensional operators, or by going
through a different symmetry breaking chain or breaking the left-right symmetry along
with the supersymmetry breaking [115-117,121,121,123,130].

If parity odd singlets are introduced to break this symmetry [122], then it was shown
[115] that the charge breaking vacua have a lower potential than the charge-preserving
vacua and as such the ground state does not conserve electric charge. A recent improvement
[117] using a parity even singlet may however deviate significantly from MSSM, and remains
to be explored fully for its phenomenological consistency. Breaking R parity was another
possible solution to this dilemma of breaking parity symmetry. However, if one wants
to prevent proton decay, then one must look for alternative solutions. One such possible
solution is to add two new triplet superfields ©(1,3,1,0), Q.(1,1,3,0) where under parity
symmetry Q < QF. This field has been explored extensively in [114,118,119,121,123,130].
But these models has it’s own disadvantage from the cosmological point of view.

We propose an another model to solve the problem of spontaneous parity breaking by
adding a bitriplet and parity odd singlet under SU(2) gauge group to the particle content

of the minimal supersymmetric left-right model.

2.2 SUSYLR Model including a Bitriplet and a Singlet

We now recapitulate the important features of the minimal left-right symmetric model
extended with one bitriplet and parity odd singlet scalar field in the context of spontaneous
parity violation and RG running of fermion masses. These extra fields are vector-like and
hence do not contribute to anomaly, so we consider only one of these fields.

The gauge group of this model is SU(3)c x SU(2), x SU(2)g x U(1)p_1, x P. The
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quantum numbers for the superfields including the scalar fields n and o, under the gauge

group considered are given by the table [2.2] as follows

\ SUB)® x SU@2)L x SUQRr x U)p_y |

Matter Superfiled:

Q 3 2 1 +1/3
Q° 3 1 2 ~1/3
L 1 2 1 -1
Le 1 1 2 +1
Higgs Superfiled:

D, 1 2 2 0
A 1 3 1 +2
A 1 1 3 -2
A 1 3 1 -2
A¢ 1 1 3 +2
n 1 3 3 0

o 1 1 1 0

Table 2.2: This table shows the particle content and their quantum number under the gauge groups
SU(?))C X SU(Q)L X SU(Q)R X U(I)B_L.

The @Q and the L are the standard quarks and leptons of the MSSM while the Q¢
and L¢ contain the corresponding right-handed conjugate fields. In order to keep this
model general, we allow for two bidoublets i.e, ®, (a = 1,2. The charge is determined by
the equation QQ = I3y, + I3p + %, where I3, I3g are the 3rd component of isospin of
the SU(2)r, SU(2)r, representation of the particle content. The representation of these

superfields in matrix form is

U 1 u® 1
Q: 5[372717_] ) QC: 5[371727__]7
d 3 de 3
v N¢
L= =[1,2,1,-1] , L= =[1,1,2, 1] (2.10)
e e

Unlike in MSSM, here the Higgs sector consists of the bidoublet and triplet superfields:

0 + 0 5
oo () cpean w9 ) Spaea,
bla P Do P22
AL A0 . 3L s+t
A= Y2 T )=ms,-2, A= V2 R | =[1212, (211
AT -2k 0y =%
L V2 L 2
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Az A0 ) Sp gt

Ac=| Y2 1 l=n13-2 , Ac=| V2 . | =[1,1,32.
A7 —=£ 50 _°r
R NG R NG

These fields transform under SU(2) as

Q—UL@Q QR — UrQ"

L—ULL L¢ — UplL*
A - UAUL  AC — UrAUS,
A - UAU}  A° — UgA°U},
@, — U ®,U}, n— UpnU},

O —0

and under Parity as

Q— —imQ” Q= inQ”

L — —irL°* L — impL*

A — ATy A€ — 7 A¥Ty

A — 7 A* Ty A¢ — T A*Ty
b, — @} =
o— —o*

The symmetry breaking pattern in this model is

SU(Q)LXSU(Q)RX U(l)B,LXP
@) SU(2)LXSU(2)RXU(1)3_L
(Ac> SU(Q)L X U(l)y

—
®) U(l)em

~

At high scale (> 10'® GeV to Planck scale), the parity is broken by a singlet field o =
(1,1,1,0) and it leaves the gauge symmetry SU(3)c x SU(2)r, x SU(2)r x U(1) p—, intact.
2.2.1 Superpotential of the model
The superpotential for the model is written in the more general tensorial notation is

W = Wi+Ws, (2.12)

where W, = iyg’tingfban + iy’“’ngTgcbaLf
HY LI AL + iy LiT o ACLS



CHAPTER 2. SPONTANEOUS PARITY BREAKING IN SUSYLR MODEL

Wo = fijai Da A + [0 Do A

+ )\1 N (I)am cI)bn (Tae)ab (Tie) mn + My Nai Mo
+ M (AaAa + AZCAZC) + 1 €ab Pom €mn Pan

+ Mmoo + Ao (Aalg — AFAY),

(2.13)

where, a, f =1,2,3 and a,b = 1,2 are SU(2), indices, whereas i,j = 1,2,3 and m,n = 1,2

are SU(2)g indices. The summation over repeated index is implied, with the change in

basis from numerical 1,2, 3 indices to +, —, 0 indices as follows,

V¥, = UV + WUy + W33

= U,U_ +U_TU, + Ty,

(2.14)

where, we have defined W. = (¥; +4W0y)/y/2 and ¥y = ¥3. The vacuum expectation

values (vev) that the neutral components of the Higgs sector acquires are,

Ay =(Ay)=vr,  (AS)=(A%) =g,

(

(@) =, (@)=,
(ny—) = g, (N—+) = ug,
(100) = ug

(2.15)

Assuming SUSY to be unbroken till the TeV scale implies the F' and D flatness conditions

for the scalar fields to be,

= f?]aiAg—FMAa—{—)\QO'Aa:O,
FAa = f*nm‘Af—i-MAa—i-)\QO'Aa:O,
Fae = faiDa+MAS — )Xo Al =0,
Fae = f"nai i+ MA] = X0 A7 =0,

F, = 2mgso+ A\ (Aaﬁa — Afﬁf) =0,

F.. = anAf—kf*AaAf—Fannm

+ A\ q)am (I)bn(Tae)ab(TiE)mn = 07
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Fo,, = AM02i®pn (T79€) e (Tie)pn

+ M\ naiq)am (Tae)ac(TiE)mp

+ He€qe €pn Dy + H€Ech q)bm Emp = 0, (216)
Dpg, = AT AC + 2A T A + nTiTnT + <I>TZ-T<I>T =0,
Dy, = IATLA + 2ATLA + nTTm +ofr,® =0,
Dpy = 2(AtA-ATA) -2 (Actac— AAY) — 0. (2.17)

In the above eqns., we have neglected the slepton and squark fields, since they would have
zero vev at the scale considered. We have also assumed v <« v and hence the terms

containing v’ can be neglected.

2.3 Phenomenology

An inspection of the minimization conditions obtained at the end of the previous section
proves two important statements we have made earlier. First, the electromagnetic charge
invariance of this vacuum is automatic for any parameter range of the theory. Secondly,
the R-parity, defined as R = (—1)3(3*1‘)*25, is preserved in the present model, since the
A’s are R-parity even whereas the bi-doublet and the bi-triplet Higgs scalars have zero
R-parity.

We shall now discuss the conditions that emerge from the vanishing of the various F

terms, which after the fields acquire their respective vevs, are given by,

Fan = fuvrp+ (M + X (o))vr, =0, (2.18)
Fx = ffugvrp + (M + Xo(0o))vr, =0, (2.19)
Fae = fujvp + (M — Xao(o))vg =0, (2.20)
Fxe = [Yugvp + (M — Xo(0))vr =0, (2.21)
F, = my{o)+ (v —v%) =0, (2.22)
F, = fopor+ f~ VLUR + M2 + 2my (u1 + u2 + ug) = 0, (2.23)
Fs = —2\(ug + uz)v + 2 \ugv — 2uv = 0. (2.24)

At the outset we see that the F, flatness condition permits the trivial solution (o) = 0,
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which would imply the undesirable solution v;, = vg and lead to no parity breakdown. But
this special point can easily be destabilized once the soft terms are turned on. Away from

this special point, we are led to phenomenologically interesting vacuum configurations.

The F flatness conditions for the A and A fields demand fu; = f*us which can be
naturally satisfied by choosing

f=r and U] = Uy = U. (2.25)

This is consistent with the relation obtained from the F' flatness conditions for the A¢ and

A fields, which may now be together read as
(M — Xo(o))vp = — fuvg. (2.26)

The first four conditions (2.18)-(2.21) can therefore be used to eliminate the scale u and

vy, 2 . M — )\2<0'>
(E) =TTl (2.27)

give a relation

Let us assume the scale of the vev’s uj, uo and ug to be the same. Then the vanishing of
F, gives a relation

2fvpvr = —(Mv? 4 6myu). (2.28)

Finally, the last condition (2.24) has an interesting consequence. While electroweak sym-
metry is assumed to remain unbroken in the supersymmetric phase, so that v must be

chosen to be zero, we see that the factor multiplying v implies a relation
IR —A\u. (2.29)

That is, taking A; to be order unity, the scale of the pu term determines the scale of w.

We now attempt an interpretation of these relations to obtain reasonable phenomenol-
ogy. The scale vr must be higher than the TeV scale. It seems reasonable to assume that
the eq. (2.28) provides a see-saw relation between vy, and vy vev’s, and that this product
is anchored by the TeV scale. Since bitriplet contributes additional non-doublet Higgs in
the Standard Model, it is important that the vacuum expectation value w is much higher
or much smaller than the electroweak scale, and we shall explore the latter route. In this
case u should be strictly less than 1GeV. The scale m, determines the masses of triplet

majorons and needs to be high compared to the TeV scale. If the above see-saw relation
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is not to be jeopardized, we must have m,u < m%w. We can avoid proliferation of new
mass scales by choosing

myu & v? = miy. (2.30)

This establishes eq. (2.28) as the desired hierarchy equation, with f chosen to be negative.
Now let us examine the consistency of the assumption u << mpgyy in the light of the two
equations (2.26) and (4.17). Let us assume that (vz,/ur) < 1 as in the non-supersymmetric

case. Then eq. (4.17) means that on the right hand side,
M — Xo(0) < M + Xo(0) — M ~ Xo(0). (2.31)

Then eq. (2.18) can be read as
v (=f)u
VR 2M

(2.32)

We thus see that the required hierarchies of scales can be spontaneously generated, and
can be related to each other. Finally, although only the ratios has been related in eq.
(2.32) we may choose

v = Uu, VR =~ M. (233)

We see that through this choice of individual scales and through the see-saw relation (2.28),
u and vR obey a mutual see-saw relation. A small value of u in the eV range would place
vg in the intermediate range as in the traditional proposals for neutrino mass see-saw. A
larger range of values close to the GeV scale would lead to vg and the resulting heavy
neutrinos states within the range of collider confirmation.

Finally, returning to eq. (2.29), we can obtain the desirable scale for u by choosing
to be of that scale, viz., in the sub-GeV range. This solves the p problem arising in MSSM
by relating it to other scales required to keep the vgr high. An interesting consequence of

the choices made so far is that using eq.s (2.31) and (2.33) in eq. (4.8) yields

|mg| ~ Azﬁ ~ \3M. (2.34)
(o)

To summarize, various phenomenological considerations lead to a natural choice of
three of the mass parameters of the superpotential, M, m, and m, to be comparable
to each other and large, such as to determine vp, and in turn the masses of the heavy
majorana neutrinos. The scale p which determines the vacuum expectation value u and
in turn the value vy, could be anything less than a GeV. Most importantly we have the

see-saw relation eq. (2.28) which relates these scales, and if the vg scale is to be within
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a few orders of magnitude of the TeV scale, then p should be close to though less than a
GeV.

We can contemplate two extreme possibilities for the scale M. Keeping in mind the
gravitino production and overabundance problem, we can choose the largest value vg < 10°
GeV. If it can be ensured from inflation that this is also the reheat temperature, then the
thermalisation of heavy majorana neutrinos required for thermal leptogenesis at a scale
somewhat lower than this can be easily accommodated. We can also try to take vy as low
as 10 TeV which is consistent with preserving lepton asymmetry generated by non-thermal
mechanisms [124]. Baryogenesis from non-thermal or sleptonic leptogenesis in this kind
of setting has been extensively studied [125-128]. This low value of vg is consistent with
neutrino see-saw relation, but will rely critically on the smallness of Yukawa couplings [124]
and may be accessible to colliders.

As we have seen, at the large scale, charge conservation also demands conservation of
R-parity. The question generally arise as to what happens when heavy fields are integrated
out and soft supersymmetry breaking terms are switched on. The analysis done in [121]
implies that if Mp is very large (around 10'% GeV), the breakdown of R-parity at low
energy would give rise to an almost-massless majoron coupled to the Z-bosons, which is
ruled out experimentally. This is one of the central aspects of supersymmetric left-right
theories with large Mp: R-parity is an exact symmetry of the low energy effective theory.
The supersymmetric partners of the neutrinos do not get any vev at any scale, which also

ensures that the R-parity is conserved.

2.4 RG Running for gauge couplings and Fermion masses

In this section, we will show how coupling and masses parameters evolve with energy. The
one loop renormalization group equations (RGEs) [149] for gauge coupling constants in

this model can be written as
dt

(2.35)

where, t = 27 In(M) (M is the varying energy scale), a; = % is the coupling strength.
Also b; is the one loop beta coefficient. The indices i,j = (B — L),2L,2R, 3C refer to the
gauge group U(1)p_r, SU(2)r, SU(2)r and SU(3)¢ respectively. The beta one loop beta

functions for this model are;

% Below the susy breaking scale Mgrrgy, the beta functions are same as those of the
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standard model. So, for Mpw < M < Mgysy:

4 22 4 1 4 ne
3C +37”LF, 2L 3 +3nF+6n¢, Y 3nF+ 10

% For Mg,sy < M < Mp_y, the beta functions are same as those of the MSSM

!/

n 3
bsc = —-942np, b2L=—6+2nF+7¢7 by =2np + — 10
% For Mpr < M < Mgyr:

n
bp—L =2np +9na, bop= —64-2711?%-7<I> + 2na + 2n,,

n
bop = —6+2np+7q)+2nA+2nn, b = —9 + 2np

Where np = 3,ne = 2,71;5 = 2,na = 2,n, are the number of generations , number of

bidoublets, number of doublets in MSSM, number of doublets in SM, number of triplets

and number of bitriplets respectively. The detail analysis of RG evolution of gauge coupling

constants will be presented in chapter (3).

The renormalization group equations to one-loop order for the mass parameters of the

above theory are presented below

5 d
1672 d—mQ = 2manqu +yl [Qy‘“mQ + 4bemq,ab + 4chygq

d
167725m2Qc = Qchyquygq + y'qJr [an ch + 4yb My + 4mQy ]

d
167?2%771% — Gm%)\)\T + A [GATm% + 127"11%T)\Jr + 12)\Tm2A]

1
+ 2mLy£y£ + ya [ v mi + 4mLcya + 4ybbm<1> b:|

d
1672 Zmic = 6mE AT N [GA*m% v 12m2 T 12)\*m24

i i
+ 2miyl [Qy m3, + 4m7 eyl + dyimg b}

(2.36)

(2.37)

(2.38)

(2.39)
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Fermion Masses M = My M = Mg (Bitriplet)
PDG [129] (If] = 0.79)
My (MeV) 2.3310-42 1.713
maq(MeV) 4.6910:38 2.877
me(MeV) 67730 401.370
ms(MeV) 93.41718 57.328
my(GeV) 181+ 13 128.888
my(GeV) 3.0+£0.11 2.185
me(MeV) 0.48684727 + 0.14 x 1076 0.5526
m,(MeV) 102.75138 4+ 3.3 x 10~* 116.243
m.(GeV) 1746691000030 2.070

Table 2.3: RGEs for fermion mass parameters in SUSYLR model with triplets and bitriplet scalar Higgs.
For this numerical calculation, we have used tan 5 = 10

d
16772am2A = Tr [4)\T)\m2A + SATm%A]

TS [mgmi +2u&m? + 2um2™’ (2.40)

Similarly, we can write RGEs for all the mass parameters. One can get all the RGEs for
all Yukawas, mass parameters in [149], though our result will be slightly different because
of extra bitriplet scalar Higgs. The Table: [2.3] gives the running of fermion mass at GUT
scale assuming their initial value at the electroweak scale (at 100 GeV).

To summarize the work, we propose an consistent solution to the problem of spon-
taneous parity breaking, which resembles the non-supersymmetric solution, relating the
vacuum expectation values (vevs) of the left-handed and right-handed triplet Higgs scalars
to the Higgs bi-doublet vev through a seesaw relation. The left-right symmetry break-
ing scale thus becomes inversely proportional to the left-handed triplet Higgs scalar that
gives the type II seesaw masses to the neutrinos. The vacuum that preserves both electric
charge and R-parity can naturally be the global minimum of the full potential. The most
attractive feature of the present model is that generically it does not allow a left-right sym-
metric vacuum, though the latter appears as a single point within the flat direction of the

minima respecting supersymmetry. When the flat direction is lifted all the energy scales
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Running fermion masses in SUSYLR model with Higgs triplets
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Figure 2.1: RG running of fermion masses in the bitriplet model. Msysy, = 500 GeV, Mr = 10'? GeV,
M, = 10'® GeV and |f| = 0.79,tan 8 = 10 at M = M

required to explain phenomenology result naturally. Also, we have made a complete study
of fermion masses and gauge coupling constants in this model including soft-susy breaking
effects, but the detail analytical derivation and numerical results will be presented in the
next chapter. The original calculation has been carried through by spinner et al [149] and
we just modify their results using extra bitriplet Higgs scalar. First we run the fermion
masses up to GUT scale (M) knowing their initial values at Mz (at 100 GeV) [129]. In

the Fig:(2.1), it has been shown numerically the RG evolution of fermion mass and mixing.
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TeV scale SUSYLR model with
spontaneous D-parity breaking

Left-Right symmetric model(LRSM) is a novel extension of the standard model of particle
physics [99-103]. In such models the parity is spontaneously broken and the smallness of
neutrino masses [104-107| arises in a natural way via seesaw mechanism [108-111|. In-
corporating supersymmetry(susy) into such models comes with couple of other advantages
in terms of the gauge hierarchy problem, coupling constant unification among many oth-
ers. Another advantage in such susy models is that they provide a natural candidate for
dark matter in terms of the lightest super-particle (LSP). In MSSM, this LSP is stable

B-L)+2s  However

only if we incorporate an extra symmetry called R-parity R, = (—1)%
in supersymmetric left right (SUSYLR) models [114,118,119,121,123,130] based on the
gauge group SU(3)c x SU(2)r, x SU(2)r x U(1)p_r, this R-parity is a part of the gauge
symmetry and hence need not be put by hand. Since U(1)p_ symmetry is broken by a
Higgs triplet with even B — L quantum number, R-parity is still preserved at low energy.

Motivation and Outlook: Since there are many discussions exist in the literature
studying these aspects of the left-right symmetric models, we summarize here our moti-
vation for this study and how our analysis differs from earlier works. Before the precision
measurements of the weak mixing angle and the strong coupling constants, the evolution

of the gauge coupling constants could allow low-scale left-right symmetry breaking [141].

This could be achieved with a single stage symmetry breaking. Later it was found that by

51
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invoking more intermediate scales, it is possible to have more freedom to adjust the dif-
ferent symmetry breaking scales. However, after the precision electroweak measurements
at LEP, it was found that the simplest left-right symmetric models would not allow a left-
right symmetry breaking below 10'2 GeV, in both single stage symmetry breaking as well
as multi-stage symmetry breaking [142-144]. SO(10) based models also got constrained
with the allowed intermediate scale in the range of 10° — 1019 GeV [145,146]. Introducing
the Pati-Salam symmetry breaking scale would not allow lowering the left-right symmetry
breaking scale both in the supersymmetric as well as the non-supersymmetric models. It
would be possible to break the SU(2)r to U(1)g at a higher scale and then break the group
U(1)r at a lower scale, but the breaking scale of SU(2)r could not be lowered, keeping
the theory consistent with the potential minimization and gauge coupling evolution.

In a recent work of Mohapatra [147], it has been demonstrated that by introducing
additional scalars it is possible to lower the scale of left-right symmetry breaking, i.e., break
the symmetry group SU(2)g. In this work, we will study the different symmetry breaking
patterns to check the consistency with the potential minimization and gauge coupling
evolution and see which of these models could allow TeV scale left-right symmetry breaking.
We restricted our analysis to only a single stage symmetry breaking, because by introducing
the additional symmetry breaking scales it was not found to help lowering the left-right
symmetry breaking scales. Of course, our analysis does not rule out other possibilities of
lowering the left-right breaking scale by introducing newer symmetry breaking scales and
new physics. However, this analysis demonstrates that within the simplest framework of
single stage symmetry breaking, which models are consistent with potential minimization,

gauge coupling unification, and allows a TeV scale left-right symmetry breaking.

3.1 LR models with spontaneous D-parity breaking

In left-right symmetric models with spontaneous D-parity breaking, the discrete parity
symmetry gets broken (by the vev of a parity odd singlet scalar field) much before the
SU(2)r gauge symmetry breaks. The gauge group is effectively SU(3)c x SU(2)r x
SU(2)r xU(1)p—r x P, where P is the discrete left-right symmetry which we call D-parity.
This D-parity symmetry is different from the Lorentz parity in the sense that Lorentz
parity interchanges left handed fermions with the right handed ones but the bosonic fields
remain the same. Whereas, the D-parity also interchanges the SU(2), Higgs fields with the
SU(2)r Higgs fields. The parity odd singlet field breaks this gauge symmetry at high scale
~ (1016 —10') GeV to SU(3)c x SU(2), x SU(2) g xU(1) g_1, which further breaks down to
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the standard model gauge group SU(3)c x SU(2)r, x U(1)y at a lower scale. The D-parity
breaking introduces an asymmetry between left and right handed Higgs fields and makes
the coupling constants of SU(2)g and SU(2)r, evolve separately under the renormalization
group. It should be noted that this D-parity breaking is different from the low energy
parity breaking observed in the weak interactions which arises as a result of SU(2)r gauge
symmetry breaking at a scale higher than the electroweak scale. In such D-parity breaking
scenario the seesaw relation also gets modified from usual LRSM. Although the type I
seesaw term still remains sensitive to the SU(2)r breaking scale Mp, the other seesaw
terms namely type IT and type III [135] becomes sensitive to the D-parity breaking scale.
A very high value of parity breaking scale therefore leads to type I seesaw dominance. In

this section we are going to discuss various such models with different particle contents.

In the usual LRSM, the scale of parity breaking and SU(2)r gauge symmetry breaking
are identical which is not necessary. There have been lots of studies on left-right symmetric
models where the parity symmetry gets broken much before the SU(2)r gauge symme-
try breaks by so called spontaneous D-parity breaking [133,134]. In this work, we will
present various types of susy and non-susy left-right models with spontaneous D-parity
breaking and check whether the minimization of the scalar potential allows a TeV scale
SU(2)g breaking scale (provided parity breaks at much higher scale) as well as tiny neu-
trino masses. We then check whether such a choice of intermediate symmetry breaking
scales unifies the gauge coupling constants in the SUSYLR framework. We discuss the

possible phenomenology of neutrino mass in each cases separately.

3.1.1 LRSM with Higgs doublets

We first study the non-Susy left-right symmetric extension of the standard model with
only Higgs doublets. In addition to the usual fermions of the standard model, we require
the right-handed neutrinos to complete the representations. One of the important features
of the model is that it allows spontaneous parity violation. The Higgs representations then
requires a bi-doublet field, which breaks the electroweak symmetry and gives masses to
the fermions. But the neutrinos can have a Dirac mass only, which is then expected to
be of the order of other fermion masses. To implement the see-saw mechanism and obtain
the observed tiny mass of the left-handed neutrinos naturally, one also introduces a singlet
fermion plus fermion triplet. However, we shall restrict ourselves to the scalar sector and

shall not discuss the implications of the singlet neutrinos and the neutrino masses.
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The particle content of the Left-Right symmetric model with Higgs doublet is

Fermions : Qr =(3,2,1,1/3), Qr=(3,1,2,1/3),
U, =(1,2,1,-1), Yp=(1,1,2,-1)

Scalars : @, (a =1,2) =(1,2,2,0), Hp=(1,2,1,1),
Hr=(1,1,2,1) p=(1,1,1,0)

where the numbers in the brackets are the quantum numbers corresponding to the gauge
group SU(3)c x SU(2)r, x SU(2)r x U(1)p—r. In addition to the bi-doublet scalar field
®, we also introduced two doublet fields Hy, and Hp to break the left-right symmetry and
contribute to the neutrino masses. Though Hj, is not necessary for the desired structure
of the symmetry breaking, we introduce it anyway along with Hp so that our model can
accommodate left-right symmetric models. The scalar singlet p is a D-parity odd field and
changes sign under the exchange of SU(2); with SU(2)g. Thus the symmetry breaking
pattern becomes

SU(Q)L X SU(Q)R X U(l)B,L x P ( > SU(Q)L X SU(Q)R X U(l)B,L

—

(Hr) SUR2)LxU)y () Ul)em

—_— —

We denoted the vacuum expectation values of the neutral components of the Higgs fields

as
<(I)1> = V1, V2, <HL> =vrL, <HR> = UR, <p> =S
The scalar potential with all these fields can then be written as
V=Ve+Vug+Vou+V, (3.1)
where

Vo = —p2Tr <<I>{ q>1> _y [Tr(cbgcﬂ) + m@;@l)] Y [Tr(tﬂfbl)r
+ 2 [ [Tr(@20])? + Tr(@h@ )] + X [Tr(@2 @) Tr(@} @)

+ A [Tr(@] @) [Tr(@,0]) + Tr(@fa)]] | (3.2)
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Vir = —puf (HHy + HHg) + X5 [(H] HL)? + (H]Hp)?

TPy [(H;HL)(H;HR)} (3.3)

Vo = on Te(@] @1) |HJ Hy + H} Hp| + oy [H] @1 @] H, + 1], @] @1 H|
o ol bt o ol t ol
+ a3 HL(I)Q(I)zHL—l-HRq)Q(I)QHR + oy HL(I)l(I)QHL+HR(I)1(I)2HR
ol [H} ®, ] Hy + Hi, o) o, HR} + lha, [H} o, Hy + Hi, ®f HL}

+ th o, [H} By Hp + H}, ) HL} (3.4)

Vp = —p2p* + +Arpt+ M p [H) Hy — ], Hp]
+ Ag p? [Hz Hy + H}, HR}

4 o P2 (@] @) + Ay p? [Det(@l) + Det(@{)} (3.5)

where ®g = TP 7.

To find a consistent solution we now minimize the scalar potential and obtain

oV A

Do = piup + Asvs + —6va% + phg(v1 + v2)vp =0 (3.6)
v, 2

ov A

oon HRUR + Asv, + ?61)3@% + pne(v1 + v2)vr, =0 (3.7)

where p2 and ,u%% are effective mass terms of Hy, and Hp given by

W3 = pj, + Ms + Ags” + (q + af)orvg + a1 (0] + 03) + @203 + azv?

ph = i — Ms+ Ags® + (g + af)vivg + aq (V3 4+ v3) + agvs + azv? (3.8)
Thus after the singlet field n gets a vev the left handed Higgs doublet becomes heavy and
decouple whereas the right handed Higgs can be much lighter by appropriate fine tuning
of the parameters in (3.8). From equations (3.6), (3.7) we get

A6

vLvr(2Ms) + (As — ) (VI = VR)VLVR + png(v1 + v2) (VR — ) = 0
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Thus a non-zero value of (p) = s does not allow a solution with v; = vg. The seesaw

relation from the above equation is

~ ng(v1 4 v2) (v — vR)
ULUR = X6\ ()02 2
2M s+ (A5 — ) (vi — vg)

Assuming vy, < v < s, M will give

_ —phg(v1 + v2)UR

9N (3.9)

vL

Thus we can have small vy, /vg by appropriately choosing the scales of M, s, j4 which will
account for tiny neutrino masses. In contrast LRSM without D-parity breaking where the
right handed scale vy has to be very high to account for small vy, /vg, here we can have vg
of TeV scale also. For example, if we set g = M = s = 10% GeV, and v12 ~ Mz then :—;
comes out to be of the order 1076 which is desired for type III seesaw to dominate as we
will see when we discuss neutrino masses. The gauge coupling unification has been studied
extensively in this model, so we shall not repeat them here. In the absence of D-parity
breaking the left-right symmetry breaking scale comes out to be very high, but in D-parity
violating models it is possible to lower the scale of left-right symmetry breaking with some
amount of fine tuning of parameters. However, for the supersymmetric models restrictions

are more stringent, so we shall study them in details.

3.1.2 LRSM with Higgs triplets

In this section we shall study the left-right symmetric models with a different particle
contents. The usual fermions, including the right-handed neutrinos, belong to the similar
representations as in the previous section. However the scalar sector now contains triplet
Higgs scalars in addition to the bi-doublet Higgs scalar to break the left-right symmetry.
The triplet Higgs scalars can then give Majorana masses to the neutrinos and allow seesaw
mechanism without the need for any additional singlet fermions. The parity odd singlet

scalar was originally introduced in this model, so we shall include them in our discussions.

The particle content of LRSM with Higgs triplets is

Fermions : Qr =(3,2,1,1/3), Qr=(3,1,2,1/3),
U, =(1,2,1,-1), Yp=(1,1,2,-1)
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Scalars : @, (a =1,2) =(1,2,2,0), Ap=(1,3,1,2),,
Ap=(1,1,3,2) p=(1,1,1,0)

The symmetry breaking pattern in this model remains the same as in the previous model
although the structure of neutrino masses changes. In the symmetry breaking pattern, the
scalar A, now replaces the role of Hg, but otherwise there is no change. The vacuum ex-
pectation values of the neutral components of the Higgs fields are denoted by &1, A, AR, p

as

(1) =wv1,v2, (Ar)=wvr, (Ag)=vr, (p)=s.

The complete scalar potential of this model [103] is given by
V=Vo+Va+Vor+V, (3.10)
where
Vo = —p2Tr (qﬂ @1) — 2 [T‘r(@z@}) + Tr(cbgqn)} + A [T‘r(@{%)r
+ A [ [Tr(®,@1)2 + Tr(cbgcpl)]?] T [Tr(cpg o) Tr(o} @1)}

+ M\ [T&(@{@Q[T&«(%@D - Tr(@éfbl)ﬂ ; (3.11)

Va = -4 [Te(A] AL) + Tr(Af AR)] + fi [[Tr(A] AL + [Te(A) Ap)?
+ o | Te(Ar AL) Tr(AL A}) + Tr(AR Ap) Tr(Af Al

+ /s [Tr(ALAL) Tr(ARAR)]

+ fa | Tr(AL AL) TH(A}, Af) + Tr(Ar Ap) Tr(A] A])] (3.12)

V= —p20* + s p* + M p [Tr(ATL Ap) — Tr(Af AR)}
+ 2 g [Tr(A] Ap) + Te(A] Ap)|

4 A PP Te(@] @) + Ag p? [Det(qn) + Det(cp{)] (3.13)



58

CHAPTER 3. TEV SCALE SUSYLR MODEL WITH SPONTANEOUS D-PARITY BREAKING

Vaa = on [Tr(®] 01)[Tr(A] Ap) + Tr(A}, An)]|
+an [Tr ®f &) Tr(AL Ag) + Tr(@f &) Tr(A] AL)]
+ o Tr(qﬂ ®y) Tr(Al, Ag) + Tr(® &) Tr(AT AL)}
+ag | Te(@ @] AL AL) + Tr(@] @1 Ag AL)|
+ 5 _Tr(fbl Ap®l ALY + Tr(@] AL @, Ag)_

+ | Te(®2 Ap @] A]) + Tr(9) A, &1 Af)|

+ B3 [Tr(@1 Ag @) AL) + Tr(@] AL &y A (3.14)

where ®9 = 7 ®]75. Minimizing the scalar potential we now obtain various conditions

ov
50r = M%UL + 2f1v% + fngv%g + (Brvvg + ﬁgv% + ﬁgvg)vR =0 (3.15)
ov
% = ,U%UR + 2f11)% + fg?}RU% + (ﬁﬂ)ﬂ)Q + /32?)% + 631)%)1),; =0 (3.16)

where p? and ,u% are effective mass terms of Ay and Ag given by

P2 = pA + Ms + Mgs® 4 2(an + ab)vive + oy (v3 + v3) + azvs

ph = ph — Ms+ Aes® + 2(az + a3)v1vy + a1 (0] + v3) + a3

Thus like in the previous case , here also the Higgs triplets Az become heavier than Ap

after the singlet 7 acquires a vev at the high scale. Equations (3.15), (3.16) gives

(2Ms + (vF — v1)(f3 — 2f1))vrvr = (v — v8)(B1v1ve + Bovi + B3v3)

Thus a nonzero vev of p disallows those solutions for which v;, = vg. Assuming vy, <

vR < s, M will give
—vR(B1v1vs + B2vf + [303)
_ -].
UL 9Ms (3.17)

Thus we an have a small vy, ~ eV by appropriately choosing vg and M, s. Here if we take
vg of TeV scale then the scale of parity breaking M, s should be low (~ 10% — 10? GeV) so

as to give vy, ~ eV needed to account for neutrino masses as we will see later.

3.1.3 SUSYLR model with Higgs doublets

We shall now study the various supersymmetric left-right symmetric models. These models

are much more restrictive compared to the non-Susy models. Although the spontaneous
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parity violation is one of the most important features of the non-Susy version of the left-
right symmetric models, in the Susy left-right models with triplet Higgs scalars breaking
parity becomes very difficult and one has to extend the model to incorporate any natural
mechanism of parity violation. In this section we shall discuss the model where the left-

right symmetry is broken by Higgs doublet scalar.

In the particle contents, the fermions belong to the fermion superfields and we denote
all the fermions and scalars by their corresponding superfields. We can then write the
particle contents of Supersymmetric Left-Right model with Higgs doublet in terms of their

superfields as

Matter Superfield : Qr=1(3,2,1,1/3), Qr=(3,1,2,1/3)

U, =(1,2,1,-1), Up=(1,1,2,—1)

Higgs Superfield : o =(1,2,2,0), P2=(1,2,2,0)
HL = (152,151)5 -HL = (1?2’1,_1)5

HR = (171727_1)7 gR = (171727 )7 P = (17 17170)

where Higgs particles with “bar" in the notation, helps in anomaly cancellation of the

model.

In the model, a singlet scalar field p is introduced, which has the special property that
it is even under the usual parity of the Lorentz group, but it is odd under the parity that
relates the gauge groups SU(2);, and SU(2)gr. This field p is thus a scalar and not a
pseudo-scalar field, but under the D-parity transformation that interchanges SU(2);, with
SU(2)r, it is odd. This kind of work is proposed in [132,133,139]. Although all the scalar
fields are even under the parity of the Lorentz group, under the D-parity the Higgs sector

transforms as,
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The Higgs part of the superpotential relevant in our case is

W = i Tr[ro®] 72®,] + Mpp + f1(HE®;Hr + HL ®;Hp)

—i—mh(HgTQHL + HZ;TQHR) + Alp(HgTQHL — HZ;TQHR) (318)

The scalar potential is V' = Vp 4 Vp + Vo5 where Vi = |F;|2, F; = —%—‘2: is the F-term

scalar potential, Vp = D*D®/2, D* = —g(¢;T}%¢;) is the D-term of the scalar potential

]
and V,p; is the soft supersymmetry breaking scalar potential. We introduce the soft Susy
breaking terms to check if they alter relations between various mass scales in the model.

The soft Susy breaking superpotential in this case is given by

Viost = myHL Hp + m% H} Hy +m% HLHp + m% HHg + m?, 1@,
2 T 21 T _ 1 T _ 1 - ) .
+mae®y®a + myp'p + (B1HpmHp + BoHpmoHp + Bpuij Tr[ma®;10®;] + h.c.)

+(A HE®;Hp + Ay H ®;Hp + As(pHEmH, — pHEmHR) + h.c.) (3.19)

where all the parameters mp,mq1,maos, B, A are of the order of Susy breaking scale
Mgysy ~ TeV. We denote the vev of the neutral components of Oy, Py, Hy,Hr,Hp, Hp
and p as (®1)11) = v1, ((P2)22) =vo, (Hr,Hr) =vr, (Hg, Hg) = vr, (p) =s.

Minimizing the potential with respect to vy, vg, we get the relations

ov
3—1)L = —,U%(QUL) + 21)1;1)%3]012 + fror(mpy + 4p) (vy + vo)
2 2 Asvivg ) ) ,
+(2my —mp)vr + Arsvg + 5 N 2000 —02) =0 (5.20)
v fillma+4p) (v 4 o) + A5

VR 2,u% — 2f12v12% — )\%(v% — v%) — Ays

oV
oon = —pp(2uR) + 20gV7 [ + frog(my, + 4p) (v + v2)

Ajvivg,

+(2m3; — m3)vg — Agsvg + — Moup(vh —v) =0 (3.21)
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where 2, ,u%% are given by

1
Hi = 7 20mn + Ais)® — AMshy — fE (07 + )
1
uhy = 7[20mn = A1s)” +4Mshi — f(vf +3) (322)

From equations (3.20), (3.21) we get

(Arvr + 4(fF + M)vrvr + 2f1 (v + v2) (my, + 4p)) (vh — v7)

+ (4542 + 8A1s(M — myp))vLvr =0 (3.23)

which shows that the minimization disallows the solutions where vy, = vgr. Assuming
v, L vi2, i, A < s, M, my and vy, < vg the above expression gives rise to
—or(2fimp(v1 + va) +4(fF + AD)vror + Avr)

= 24
L 8(myp, — M)sA; + 4sAs (324)

Thus by appropriate choice of my,, M, s we can have TeV scale SU(2)g breaking scale vg
as well as v, /vg ~ (1076 — 107%) which is necessary to account for small neutrino masses

as we will see later. For example, if we set
mp ~ M ~ s ~ 10 GeV  D-parity breaking scale

and allow 2my, — M ~ 10® GeV by appropriate fine tuning then the above relation will give
rise to the desired ratio vy /vg ~ 1075, For such a choice of scales we can fine tune the
parameters to get a light Hp having mass ur ~ vg ~ TeV and a heavy Hj having mass
pr ~ s, M ~ 10'6 GeV. This will be important in the renormalization group running of

the couplings as we will see later.

3.1.4 SUSYLR model with Higgs triplets

The particle contents of Supersymmetric Left-Right model with Higgs triplets in terms of

their superfields are

Matter Superfield : Q=(3,2,1,1/3), Q°=(3,1,2,1/3)
L=(1,21,-1), L°=(1,1,2,—1)
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Higgs Superfield : ®; =(1,2,2,0), P2 =(1,2,2,0)
A=(1,3,1,2), A=(1,3,1,-2),

A°=(1,1,3,-2), A°=(1,1,3,2), p=(1,1,1,0)

The left-right symmetry could be broken by either doublet Higgs scalars or triplet Higgs
scalar. We will show that for a minimal choice of parameters, it is convenient to break
the group with a triplet Higgs scalar. As pointed out in [121] the bidoublets are doubled
to achieve a non-vanishing Cabibbo-Kobayashi-Maskawa (CKM) quark mixing and the

number of triplets is doubled for the sake of anomaly cancellation.

The superpotential for this theory is given by

W = Y(i)qQTTQCI)Z’TQQC =+ Y(i)ZLTTQ(bZ‘TQLC
+ i(fLT AL + f* LT ALY) + M p?
=+ mATr(AA) + m*ATI‘(ACAC) + MijTI‘(Tzq)ZTTQ‘I)j). (325)

All couplings Y Dat, Mij, b, [ in the above potential, are complex with the the additional
constraint that y;;, f and f* are symmetric matrices. The scalar potential is V' = Vp+Vp+
Vsoft where Vi = |F;|?, F; = —%—I;/ is the F-term scalar potential, Vp = D*D%/2, D* =
—g((ﬁfﬂ}‘;(ﬁj) is the D-term of the scalar potential and Vi, is the soft supersymmetry

breaking terms in the scalar potential. In the particular model, the soft-susy breaking

terms are given by

Viots = m3Tr[(ATA) + (ATA)] + m3Tr[(A°TA) 4 (A°TA)]
+ m%lq)J{‘I)l + m%zq);q)g + msz,o + B i TI'(TQ(I)Z‘TQ‘I)]')
+ Ap [Tr(AA) — Tr(A°A°) + h.c]. (3.26)

where all the parameters in the soft supersymmetry breaking scalar potential is of the
order of supersymmetry breaking scale Mgy, ~ TeV. We denote the vev of the neutral

components of ®1, Py, A, A, A°, A¢ and p as
(®)1) =v1, ((P2)22) =v2, (A A)=wg, (A°AY) =wg, (p)=s

Minimizing the scalar potential with respect to vy,vr we get

ov

Do = vr[2(ma + A18)? + 2203 (v — %) + As +2m2] =0
vL
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2m3 + (A4 22\ M)s + 2(ma + \15)?

2 _ 2
:>'UR—’UL = 2)\% (327)
o _ 2 920,22 _ .2y 21 _
= vgp[2(ma — A15)* — 2A\{ (v} —vR) — As+2mj| =0
31)]{
—2mj 4+ (A +2X\1 M)s — 2(ma — Ais)?
Lol g2 = 2ma (A 2N 33 (ma = A1s) (3.28)
Also
vRa—V - vLa—V = durvg[2(Ms + 2mas) A + 20\ (v — %) + As] =0
8’UL (%R
22 (M 2 A
= v%h — v = A(Ms + 2ma) + As (3.29)

2)3
Thus the minimization conditions disallows solutions with vy, = vg. But from equations
(3.27), (3.28), (3.29) it can be seen that it is difficult to adjust the various scales M, s, ma
S0 as to satisfy them simultaneously and giving rise to a TeV scale vg and an eV scale vy.
Thus we need to add more particles to the above particle content which can give rise to
spontaneous D-parity breaking with a TeV scale vg. This scenario of minimal SUSYLR
model with parity odd singlet was studied long ago and was shown [115] that the charge-
breaking vacua have a lower potential than the charge-preserving vacua and as such the

ground state does not conserve electric charge

3.1.5 SUSYLR model with Higgs triplets and bitriplet

In minimal left-right supersymmetric models with triplet Higgs bosons leads to several net-
tlesome obstructions which may be considered to be a guidance towards a unique consistent
theory. One of the most important problems is the spontaneous breaking of left-right sym-
metry and there are many substantial amount of work has been done to cure this problem.
This can be cured either by adding some extra fields to the minimal particle content [115]
or with the help of non-renormalization operator [118]. There is another solution to the
problem, which resembles the non-supersymmetric solution, relating the vacuum expecta-
tion values (vevs) of the left-handed and right-handed triplet Higgs scalars to the Higgs
bi-doublet vev through a seesaw relation. The novel feature consists in the introduction
of a bitriplet Higgs and another Higgs singlet under left-right group [140]. We will try
to extremize the full potential of this particular model and see what are the mass scales,
different vevs coming out from the extremization.

We now present our model, where we include a bi-triplet and a parity odd singlet fields,

in the minimal supersymmetric left-right symmetric model with triplet Higgs discussed in
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previous subsection [3.1.4]. These fields are vector-like and hence do not contribute to
anomaly, so we consider only one of these fields. The quantum numbers for the new scalar
fields, bitriplet (n = (1,3,3,0) ) and parity odd singlet ( p = (1,1,1,0) ). Under parity,
these fields transform as 7 «<» n and p <+ —p. The superpotential for the model is written

in the more general tensorial notation [140] as follows

W = fnaiAaAg + f*"?aiAaAf + Al"?aiq)amq)bn(Tae)ab(TiE)mn
+ MnyNailoi + MA(AaAoc + ASAS) + Meabq)bmemnq)an
+mpp? + Aap(AnAy — ALAY) (3.30)

where «,a,b are SU(2), and i,m,n are SU(2)g indices. The symmetry breaking pattern

in this model is

SU(Q)L X SU(Q)R X U(l)B,L x P ( > SU(Q)L X SU(Q)R X U(l)B,L

(Ac) SUR)LxU)y (®) U(l)em

Denoting the vev’s as (A_) = (Ay) = vp, (AS) = (A%) = vp, (P4_) = v, (P_) =

/

vy (4—) = w1, (n—4) = u2, (moo) = uo and (p) = s.

The scalar potential is V = Vg + Vp + Vyopr where Vg = |F|%, F, = —%—g/ is the
F-term scalar potential, Vp = D*D?/2,D% = —g(¢;T};¢;) is the D-term of the scalar

potential and V. is the soft supersymmetry breaking terms in the scalar potential. In

the particular model, the soft-susy breaking terms are given by

Vioft = Vsope(containing A and @) + mn(sgﬁ)nlinai

+(A277ai(1)amq)bn(Tae)ab(Tie)mn + A3(77aiAaAg) + hC) (331)

where V. (containing A and @) is given by the eqn: (3.26) in the subsection [3.1.4].

Minimizing the scalar potential with respect to vy, vr we get

oV .
507 = pi(2vL) +2A3 v (v — vR) + 2 (fur + fFu2) Ma v

+vr (f + %) [2my(u1 + us + us) + A v* +vp v (f + )]

+40Lm§+2AvLs+Ang(u1—i—ug—i-ug):0 (3.32)
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ov

% :,u%(QvR)—2)\31)3(1)%—v%)+2(fu1+f*u2)MAvL

+or (f + f) [2my (w1 + ug +ug) + A 0* + o vg (f + )]

+4vpmi —2Avg s+ Azvr (ug +ug +uz) =0 (3.33)
Where the effective mass terms u%, ,u% are given by
1
p = (Ma + A2s)? + Xamys + §(f2uf + f*2u3) (3.34)

1
Hr = (Ma = Aos)” = Aamps + o (f*ui + f*u3) (3.35)

Thus after the singlet field p acquires a vev the degeneracy of the Higgs triplets goes away
and the left handed triplets being very heavy get decoupled whereas the right handed
triplets can be as light as 1 TeV by appropriate fine tuning in the above two expressions.

Assuming vy, < v,v’, 1, A < m,, s and vy, < vg we get from equations (3.32), (3.33):

oo — “URIMauaf* + my(uz + us)(f + f*) + ur(fMa + my(f + £7)] (3.36)
L= 2mpso +4Mashg + 2As '

Thus we can get a small vz, (~ eV) and a TeV scale vg by appropriate choice of Ma,m,,, m,, s.

We take the vev of the bitriplet ©w < Myz. Thus if we want vp ~ 1 TeV then the above
relation will give us an eV scale vy, only if the scale of parity breaking is kept low that
is, s ~m, ~ Ma ~ 10’ GeV. Thus in such a type II seesaw dominated case, the right
handed triplets A¢ will be as light as ug ~ vg ~ 1 TeV and the left handed triplets A
as heavy as pr, ~ 10'° GeV by appropriate fine tuning of the parameters. However as we
will see later, such a light Higgs triplet with B — L charge 2 spoils the gauge coupling
unification. Hence we are forced to keep the intermediate symmetry breaking scale Mp

close to the unification scale.

3.2 Gauge Coupling Unification

Grand unified theories (GUTS) offer the possibility of unifying the three gauge groups viz.,
SU(3), SU(2) and U(1) of the standard model into one large group at a high energy scale
M. This scale is determined as the intersection point of the SU(3), SU(2) and U(1)
couplings. The particle content of the theory completely determines the variation of the

couplings with energy. It is hard to achieve low intermediate scale without taking into
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account the effect of D-parity breaking in the RGEs. We have seen in the previous section
that in spontaneous D-parity breaking models, the minimization of the scalar potential
simultaneously allows us to have right handed scale vy of the order of TeV and tiny
neutrino masses from seesaw mechanisms. However the evolution of gauge couplings will
be very different in models with Higgs triplets and with Higgs doublets. In this section we
study the renormalization group evolution of the gauge couplings and see if unification at
a high scale (~ 106 GeV) allows us to have a TeV scale vz. Similar analysis were done
in [147,148] for Higgs doublet case. Here we use the U(1) normalization constant \/g
as in [149]. We restrict our study to the supersymmetric case only. The gauge coupling
unification in the non-supersymmetric versions of such models were studied before and can

be found in [133,150].

3.2.1 Unification in SUSYLR model with Higgs doublets

We will study the evolution of couplings according to their respective beta functions
with the account of spontaneous D-parity breaking. The renormalization group equa-

tions(RGEs) for this model cane be written as

dOéi
dt

= aZ[b; + a;jb; + O(a?)] (3.37)

where, t = 2w in(M) (M is the varying energy scale), a; = % is the coupling strength.
Also b; and b;; are the one loop and two loop beta coefficients and we will study only the
one loop contributions to RGEs [149]. The indices 4,5 = 1,2, 3 refer to the gauge group
U(1), SU(2) and SU(3) respectively.

The particle content of SUSYLR model with Higgs doublets is shown in subsection
[3.1.3]. It turns out that the minimal particle content is not enough for proper gauge
coupling unification. For required unification purposes we add two copies of 6 = (1,1, 1,2),

§ = (1,1,1,—2) at the SU(2)g breaking scale. The beta functions are given as

e Below the Susy breaking scale M,,s, the beta functions are same as those of the

standard model

19 41
bs = —7, b2L—_€ bY—E

e For My,sy < M < Mpg , the beta functions are same as those of the MSSM

3
by = —9+2ny, by = —6+2n9+%, by = 2ng + <5mp
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Figure 3.1: Gauge coupling unification with Ms,s, = 500 GeV, Mz = 1.5 TeV, M, = 10'® GeV

e For Mpr < M < (p) the beta functions are

by = —9 + 2n,, bQL:—6+2ng+%
ny NHR 3
b2R:_6+2ny+?+T’ bB,L:2ng—{—3n5—|—ZnHR
e For (p) < M < Mgy the beta functions are
n n
bs = —9 + 2n,, bQL:—6+2ng+5”+%
n n 3
bzR:—G—{—QTlg—{—Eb—{—%, bB,L:2ng—|—3n(5+Z(TLHL—|—nHR)

where n, is the number of fermion generations and number of Higgs bidoublets n; = 2,
number of Higgs doublets ny; = ngr = 2, number of extra Higgs singlets ng = 2. The

experimental initial values for the couplings at electroweak scale M = My [129] are

as(My) 0.118 +0.003
agr(Myz) | = 0.03349310 000032 (3.38)
ary (Mz) 0.016829 + 0.000017
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The normalization condition at M = Mp where the U(1)y gauge coupling merge with
SU@2)r x U(l)p_1, is ag-, = ga;l - %a;l. Using all these we arrive at the gauge
coupling unification as shown in (3.1). Here we have taken Mg,s, = 500 GeV, Mg = 1.5
TeV, M, = 106 GeV. The couplings seems to unify at a scale slightly above the D-parity
breaking scale. Thus the D-parity breaking scale need not be the same as the GUT scale,
but can be lower also. However if we make the D-parity breaking scale arbitrarily lower,
the unification wont be possible as can be seen from the figure (3.1). Since both the left
handed and right handed Higgs doublets will contribute to the U(1)p_ couplings after

the D-parity breaking scale, the aE;lL will come down sharply and meet the other couplings

at some energy below the expected GUT scale.

3.2.2 Unification in SUSYLR model with Higgs triplets

The particle content of SUSYLR model with Higgs triplets is shown in subsection [3.1.4].
It is very difficult to achieve unification with low Mg with the minimal particle content.
We add a parity odd singlet p(1,1,1,0) to achieve spontaneous D-parity breaking. This
may change the scale of Mg, but it is found that the Mp remains higher that 10'° GeV.
For unification purposes, we need in the recent model, one heavy bidoublet x(1,2,2,0) has
been added which gets mass at the SU(2)gr breaking scale. Below the SU(2)r breaking
scale the beta functions are similar to the MSSM as written above. The beta functions

above this scale are

e For Mpr < M < M, the beta functions are

bs = =9 + 2ny, 52L=—6+2n9+%+%

n n 9
b2R2—6+2ng+?b+2nA+7X, bB,LZQ’I’Lg—}—iTLA
e For (p) < M < Mgyt the beta functions are

by = —9 + 2n,, b2L2—6+2n9+%+2%+%

g Ny
b2R2—6+2ng+?+2nA+7, bB,LZQ’I’Lg—}—QTLA

where number of Higgs triplets na = 2, number of additional Higgs field added for uni-
fication n, = 1,, number of generations n, = 3, and number of Higgs bidoublets n; = 2.

Using the same initial values and normalization relations like before we arrive at the gauge
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Gauge coupling unification in SUSYLR model with Higgs triplets
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Figure 3.2: Gauge coupling unification with Mz = 10'* GeV, M, = 10' GeV

coupling unification as shown in (5.1). Here the unification scale Mgyr coincides with
the D-parity breaking scale M,. Lower values of My will make the unification worse be-
cause of the large contributions of triplets to the U(1)p_y, beta functions compared to the
doublets in the previous case. Thus in the minimal triplet case, both the minimization
conditions as well as unification disallow a TeV scale vg. Although after adding a bitriplet,
the minimization conditions allow a TeV scale vg, it wont make the unification better as

we discuss in the next subsection.

3.2.3 Unification in SUSYLR model with Higgs triplets and bitriplet

As we saw before, the minimization of the scalar potential in a SUSYLR model with
Higgs triplets with spontaneous D-parity breaking does not allow a TeV scale Mp. The
same thing is true from gauge coupling unification point of view as shown in the previous
subsection. Now we consider the SUSYLR model with Higgs triplet as well a bitriplet [140].
For unification purposes we add three heavy colored particles x(3,1,1,0) which decouple

after the SU(2)g breaking scale Mp. The beta functions above Mp are
e For Mpr < M < M, the beta functions are

n n
bs = =9+ 2ng + =, bgL:—6+2ng+7b+2n?7
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Gauge coupling unification in SUSYLR model with Higgs triplets and bitriplets
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Figure 3.3: Gauge coupling unification with Mz = 10'% GeV, M, = 10'S GeV

n 9
bor = —6 + 2n4 + Eb +2na +2n,, bp_r =2n4+ §nA

e For (p) < M < Mgyt the beta functions are

Ny g
bs:—9+2ng+7, bgL:—6+2ng—|—5—|—2nA—|—2n77

n
bor = —6 + 2n4 + Eb +2na +2n,, bp_p =2n4s+9np

where number of Higgs triplets no = 2, number of colored Higgs n, = 3, number of
generations ngy = 3, number of Higgs bidoublets n; = 2 and number of Higgs bitriplets
n, = 1. Using the same initial values and normalization relations like before we arrive at
the gauge coupling unification as shown in (5.2). Here the unification scale is the same
as the D-parity breaking scale. Similar to the case with just Higgs triplets, here also
lower value of Mp makes the unification look worse. Thus although minimization of the
scalar potential allows the possibility of a TeV scale Mp in this model, the gauge coupling

unification criteria rules out such a possibility.
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3.3 Neutrino mass in SUSYLR model with Higgs doublets

In left-right symmetric models with only doublet scalar fields, the question of neutrino
masses has been discussed in details. We shall try to restrict ourselves as close as possible
to these existing non-supersymmetric models, and check the consistency of these solutions
when D-parity is broken spontaneously in the present SUSYLR model.

We introduced a singlet fermionic superfield S to the particle content of the model
discussed in subsection [3.1.3]. This kind of model has been discussed without the D-parity
breaking effect and from the neutrino mass prospective cite. The effect of this singlet field
has been accounted in the RGEs shown in subsection [3.2.1]. With the addition of this

singlet fermion, the superpotential and resulting neutrino mass matrix become

W = M;;SiS; + FijV1;S;HL, + F;; U R;S;Hp, (3.39)
and
0 (Mn)ij  Fijor vj
Wneut = (Vi NZC S@) (MN)ji 0 FinUR N]c . (340)
Fyivp,  Fjur M Sj

where My is the general Dirac term coming from the term (MN)Z']'VZ'NJ-C. In the above mass
matrix, the mass of the singlet M;; and the vev of the right-handed Higgs doublet vy are
heavy, while My and vev of the left-handed Higgs doublet vy, are of low scale.

The resulting light neutrino mass matrix after diagonalizing the above mass matrix is

M, = —MyMp'M§ —(MyH+ H"MJ) (”—L> (3.41)

UR
where, H = (F’-F_l)T7 (3.42)
Mr = (F'og) MY (F'Tug). (3.43)

Here we can see that the first term in eqn (4.23) is the type-I seesaw contribution and the
second term gives the type-III seesaw contribution. The type-III contribution to v mass
will dominate over type-I if the elements of the matrix M;; are small compared to the
contribution of H term. It is clear from the eqn (4.25) that the scale of Mg found to be
TeV for M;; =1 TeV, vg =1 TeV which is automatically comes from the minimization of
the potential and consistent with the RG evolutions which has already studied in subsection
[3.2.1] and F of the order of unity. With the mass scales and My of the order of MeV, we

can found neutrino mass to be eV.
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Neutrino mass in case of Fermionic triplet:

Let us introduce fermionic triplets (one for each family) order to realize the double seesaw

mechanism:

1 20 Vexf
Y = - L ol = 3,1,1,0),

2\ vy %)

and

1 »0 V2%t
Sp== r Rl = (1,3,1,0),

2\ vesp -3h

Under left-right parity transformation one has the following relations

EL — ER.

In the context of lepton masses, the relevant term in the Lagrangian is
Ly = EL(qu) + YQ‘f)gR + h.c.

where ® = 75 ®75. Once the bidoublet ® takes vev. i.e v; = (¢9) and vy = (¢9), the Dirac

mass matrix for the neutrinos is
=Y + Y-
m,, 1V1 202

The relevant Yukawa terms that gives masses (for the double seesaw mass matrix) to the

three generations of leptons are given by
ﬁill = hwf;rL C iog E]’L Hi, —{—gl-j f;-rR C iog EJ'R Hp
+ My Tr (2] CYp + 5% CER) + hee (3.44)

Once the Higgs doublets gets vev i.e,v, = (HY) and vg = (HY), SU(2), ® SU(2)g is

broken spontaneously. Now the mass matrix in the basis (I/L, VR, E%) reads as:

(3.45)



3.3 Neutrino mass in SUSYLR model with Higgs doublets

73

As one expects the neutrino masses are generated through the Type I + Type III seesaw
mechanisms and one has a double seesaw mechanism since the mass of the right-handed

. . 0
neutrinos are generated through the Type III seesaw once we integrate out Xp.

The neutrino mass formula derived from the above mass matrix is given by

1

7 (4T9) (m2 Ms; (m2)" —vpvrm?P (gh)T —vrvr (gh) (m2)7] (3.46)

my,, =
with right handed neutrino masses

Mg =vhg (Ms)™' g". (3.47)

We take the Dirac mass of the all the three neutrinos to be of MeV order. This fixes
the scale of the My, and Mg so as to give rise to eV scale neutrino masses on the left hand

side of above relation [3.46]. If we assume that the first term of [3.46] will dominate then

the seesaw relations will become m, = erni As m. = 0.5 MeV, we need the values of the
right handed Majorana neutrino as: Mp = 10% GeV to have 0.1 eV light neutrino mass.
We can arrive at the appropriate value of Mg by choosing g and Ms,. Since we are taking
vr ~ 1TeV hence to get Mpr > 1TeV we must have My, < 1TeV. Once the scale of right
handed Majorana neutrino gets fixed by the light neutrino mass, we can find the values of
My, and vr. We have taken the Yukawa couplings as g,h < 1, vg = 103 GeV in Eq. [3.47]
and these lead to triplet fermion masses :Ms; ~ 103 GeV.

If My, << 1TeV and vg ~ 1TeV, then the first term of the above neutrino mass formula
becomes to small to give rise to neutrino masses. In that case the second and the third
term in the equation [3.46] can contribute to the neutrino masses if vz, /vg ~ 1075. And

such a ratio can naturally be achieved (even if we have a TeV scale vg) by choosing various

symmetry breaking scales and mass parameters as we discussed in section [3.1].
Role of ¥, Y in unification:

The fermion triplets with U(1)p_z, charge zero contributes to the SU(2)y, and SU(2)r
gauge coupling running. As discussed above, for the seesaw purposes we have to take low
values of My <= vg which will ruin the gauge coupling unification for a TeV scale SU(2)r
breaking scale vg. Unification and small neutrino mass are possible only if SU(2)r breaking
scale as well as mass of the triplet fermions are close to the unification scale. However if we
add fermion singlet in place of triplets then there is no constraints from unification point of
view on v and My. The mass matrix becomes 3 x 3 in this case. Thus in Supersymmetric

left-right model with Higgs doublets, we can achieve unification with TeV scale SU(2)r
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breaking scale only if fermion singlet is added in place of triplets as in the conventional

type III seesaw.

3.4 Neutrino mass in SUSYLR model with Higgs triplets and bi-
triplets

The relevant Yukawa couplings which leads to small non-zero neutrino mass is given

by

Ll = yilin®lir + yitin g + h.c.

+ fz/ (K?R C Z‘O'QAR@R + (R — L)) + h.c. (3.48)

The Majorana Yukawa couplings f is same for both left and right handed neutrinos because
of left-right symmetry. After symmetry breaking, the effective mass matrix of the neutrinos
is

B —fv2uR B v?

my = yf iyt =m)+m (3.49)

2mgs s VR

Consider the values of y, f are of the order of unity, then the relative magnitude of m?!
and m{, depend on the parameters like vg, m,, s. As discussed in section [3.1], the type

IT term can become dominant (even if vg ~ 1 TeV) if we take my, ~ s ~ 10% — 100 GeV.

3.5 Results and Discussions

Spontaneous breaking of Lorentz parity occurs via Higgs doublet in SUSYLR model with
doublet Higgs only and via Higgs triplets/bitriplet in SUSYLR model with Higgs triplets
and bitriplet. After taking into account of spontaneous D-parity breaking, the minimization
of the scalar potential also allows the possibility of Mp ~ TeV,v; ~ eV in LRSM with
Higgs triplets and SUSYLR models with Higgs triplets and Higgs bitriplet. It also allows
Mg ~ TeV,vr,/vg ~ 1079 in both Susy and non-Susy LR models with Higgs doublets.

In the SUSYLR model with Higgs doublets we can have a TeV scale Mg as well as
vr,/ur ~ 1075 by keeping the D-parity breaking scale very high ~ 10'® GeV. The gauge
couplings also unify for the same choice of scales although at the cost of adding extra
particles which contribute to the beta functions at high energy. However if we add fermion

triplets for seesaw, then unification is not possible with TeV scale SU(2)g breaking scale.
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Adding fermion singlet for seesaw purposes can evade this difficulty.

In SUSYLR model with Higgs triplet, the minimization conditions do not allow the
possibility of a TeV scale Mp and eV scale vy, simultaneously although gauge couplings
unify if we take Mg as high as 103 GeV. Thus we can not have TeV scale Mg, type II
seesaw dominance and gauge coupling unification simultaneously.

In SUSYLR model with Higgs triplets and bitriplet, we can have TeV scale Mgz and eV
scale vy, only if we keep the D-parity breaking scale as low as 10'® GeV. However such a
choice of parity breaking scale spoils the gauge coupling unification. The gauge couplings
unify if we take Mr = 10" GeV and the D-parity breaking scale as 10'® GeV with inclusion
of three extra colored particles. Thus we can not have a TeV scale Mg and unification
simultaneously.

To summarize the work, we have analyzed the different scenarios of spontaneous break-
ing of D-Parity in both non-Susy and Susy version of left right symmetric models. We have
discussed the possibility of obtaining a TeV scale Mg, gauge coupling unification and type
IT/type III seesaw dominance of neutrino mass within the framework of different SUSYLR
models. In all the models where we explore the possibility of a TeV scale Mg, it is difficult
to achieve unification with the minimal particle content. We have added some extra, scalar
particles as well as their superpartners with suitable transformation properties under the
gauge group to achieve unification. We have shown that except for the SUSYLR model
with Higgs doublets, we can not have a TeV scale Mp and gauge coupling unification. In
SUSYLR model with Higgs doublet, type III seesaw can dominate even if the D-parity
breaking scale is as high as the GUT scale whereas in SUSYLR model with Higgs triplets
and bitriplet, the D-parity breaking scale has to be kept as low as 10'© GeV for type II
seesaw to dominate. However adding fermion triplets to give rise to seesaw spoils the uni-
fication with a TeV scale Mp in the SUSYLR model with Higgs doublet. Adding fermion
singlets instead of triplets do not give rise to this problem and can reproduce the necessary

seesaw without affecting the RG evolution of the couplings.






CHAPTER

Leptogenesis and Neutrino mass in
susyLR with Higgs doublet

The existence of massive neutrinos, the unknown origin of parity violation in the Standard
Model (SM) and the hierarchy problem are some of the important motivations for physics
beyond the SM. The most natural extension of the standard model that addresses these
issues is the supersymmetric version of the left-right symmetric extension of the standard
model, which will treat the left-handed and right-handed particles on equal footing, and
the parity violation we observe at low energies would be due to the spontaneous breaking of
the left-right symmetry at some high scale [99-103|. Another interesting feature of the left-
right symmetric model is that the difference between the baryon number (B) and the lepton
number (L) becomes a gauge symmetry, which leads to several interesting consequences.
In spite of the several virtues of the minimal supersymmetric left-right symmetric mod-
els (MSLRM), we are yet to arrive at a fully consistent model, from which we can descend
down to the MSSM. One of the most important problems is the spontaneous breaking of
left-right symmetry [115,116]. There has been suggestions to solve this problem by intro-
ducing additional fields or higher dimensional operators or by going through a different
symmetry breaking chain or breaking the left-right symmetry around the supersymmetry
breaking scale [115-117,121,121,123,130]. In some cases, this problem is cured through
the introduction of a parity-odd singlet, but the soft susy breaking terms then lead to

breaking of electromagnetic charge invariance. One of the interesting SUSYLR model is

77
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the minimal SUSYLR model, which has been studied extensively [115,116,121], and it
has been found that global minimum of the Higgs potential is either charge violating or
R-parity violating. The details of these discussion has been reviewed in second chapter
and the simplest solution is to include a bi-triplet field [140] and allow D-parity breaking
at some high scale, which may then allow parity violation spontaneously, allowing the scale
of SU(2)g breaking to be different from the SU(2);, breaking scale. We will now extend
this argument to the models involving only doublets.

In this work, we will address the question of parity breaking in a supersymmetric left-
right model, in which the left-right symmetry is broken with Higgs doublets (carrying
B — L = £1). Unlike the left-right symmetric models with triplet Higgs scalars (carrying
B — L = +2), in this model it is possible to break parity spontaneously by adding a parity
odd singlet. We shall also discuss how neutrino mass of type ITT (as named in the work of
Albright) seesaw or, double-seesaw, can be invoked in this model by adding extra fermion
singlets. We considered simple forms of the mass matrices that are consistent with the
unification scheme and demonstrate how they can reproduce the required neutrino mixing
matrix. In this model, the baryon asymmetry of the universe is generated via leptogenesis.
The required mass scales in the model is then found to be consistent with the gauge

coupling unification.

4.1 SUSYLR with Higgs doublets with odd B-L and parity odd
singlet

We consider here a SUSYLR model with only doublet Higgs scalars, which is the simplest
extension of the non-supersymmetric LR model. This includes the bi-doublet scalar field
that is required to give masses to the charged fermions and also to break the SU(2)L
symmetry after the left-right symmetry is broken. The doubling of the bidoublet Higgs in
previous models was to ensure a non-vanishing CKM matrix. For the sake of simplicity
of our model we forgo this condition since it doesn’t have any bearing on parity breaking.
However, extension of the present model via doubling of the bidoublet is fairly trivial.
The superpotential for supersymmetric left-right theory with Higgs doublets which is

relevant for us is

W = f®(XLXR + XLXR) + MaeP® + m, (XLXL + XRXR)

where f is a dimensionless constant in the theory. The Higgs fields acquire vevs as follows
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(xr) = {xr) =vr, (XR) = (XR) = vR and (®) = v. From flatness condition, one can easily

deduce the relations like

—Maev
for

vy, =

myvr, + fovg =0

myvr + fovr =0 (4.1)

The last two relations are not consistent for v;, << v as we are interested in the case where
parity has to be broken spontaneously. That means we need the left-right scales should be
different so that we can achieve spontaneous parity breaking. Why the scales of left-right
scale should be different is not clear from the above relations. The simplest solution for
this problem is to add a parity odd singlet.

We will now present a model which is phenomenologically consistent and explains the
neutrino mass, baryon asymmetry via leptogenesis mechanism. This model can give answer
to the question of spontaneous parity breaking in the supersymmetric version of the left-
right symmetric models, in which all symmetry breaking takes place with only doublet
Higgs scalars and a D-parity odd singlet scalar. We will review to the case where the
electroweak gauge group is the left-right symmetric group Gpr = SU(3). x SU(2)p x
SU(2)r x U(1)p—r, and we will study susy version of this model. The field content of the

supersymmetric left right model is given by

1 u‘ 1
Q: :[3,251’ ] 9 Qc_ 5[351,25 _]’
3 e
v N¢
L= =[1,2,1,-1] , L°= =[1,1,2,—1] (4.2)
e e

where the numbers in the brackets denote the quantum numbers under SU(3)c®SU(2)®
SU(2)r ® U(1)p—r. The right handed neutrino is now required by the gauge group.
Thus, the Higgs sector of our model is given by,

XL = (152’ 1, _1), X1 = (152, 1, 1)5
XR = (17 1727 _1)7 YR = (17 1727 1)7
o, = (1,2,2,0), o=(1,1,1,0).

where, with usual custom the subscript L and R denotes the left and right handedness
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of the Higgs particle. The Higgs particles with “bar" in the notation, helps in anomaly
cancellation of the model.

The gauge group of this model is SU(3)c x SU(2), x SU(2)g x U(1)g_1, x P. The
quantum numbers for the superfields under the gauge group considered are given by the

table [4.1] as follows

\ SUB) x SU@2)L x SURr x U)p_y |

Matter Superfiled:

Q 3 2 1 +1/3
Q° 3 1 2 ~1/3
L 1 2 1 -1
Le 1 1 2 +1
Higgs Superfiled:

D, 1 2 2 0
Yr 1 2 1 +1
XR 1 1 2 -1
XL 1 2 1 ~1
Xk 1 1 2 +1
o 1 1 1 0

Table 4.1: This table shows the particle content and their quantum number under the gauge groups
SU(3)C X SU(2)L X SU(2)R X U(l)BfL.

We have also included a singlet scalar field o, which has the special property that it is
even under the usual parity of the Lorentz group, but it is odd under the parity that relates
the gauge groups SU(2)r, and SU(2)g. This field o is thus a scalar and not a pseudo-scalar
field, but under the D-parity transformation that interchanges SU(2);, with SU(2)g, it is
odd. This kind of work is proposed in [133,139]. Although all the scalar fields are even
under the parity of the Lorentz group, under the D-parity the Higgs sector transforms as,

XL <7 XR; )ZL = )ZR7

P — <I>T, o —0.
The superpotential of the model relevant in the context of parity breaking is given by,

W = f®(XLXR+ XLXR) + MaePP
+my (XLXL + XRXR)

+me 0?4+ Ao (XLXL — XRXR)- (4.3)

Supersymmetry being unbroken, implies the ' and D conditions are equal to zero. The F
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flatness conditions for the various Higgs fields are given by,

Fs
F

XL
F)ZL
F

XR
Fy

R

Fy

= f(XeXr + XLXR) +2me® =0,
= fOXRr+myXL + AoxL =0,
= [f®xr+myxr + Aoxr =0,
= f®XL+myXr — AoXr =0,
= f®xr+myxr—Aoxr =0,

= 2myo + NXLXL — XRXR)- (4.4)

Similarly, the D flatness conditions, are given by,

Xer{TiXR + XETZXR =0,

Xhrixe + X5 v = 0,
(xXExe = xExn) = Ohxr — xhvr) = 0. (4.5)

In both the F' and D flat conditions we have neglected the lepton fields, since they would

have a zero vev. The vev’s for the scalar fields are given by,

xr) = (xv)=vrL,
(Xr) = (XRr) =g,
() = v, (0)=s. (4.6)

Here, for simplicity of the model, we have assumed x; and x; to have the same vev vy.

Similarly, for the right-handed fields yr and xg.

Here, however, in order to determine the vacuum structure of our model, we minimize

the F' flat conditions and discuss about the relations that emerge from them. Suppose the

field o takes the vev as (o) = s. After the scalar fields have acquired their respective vevs,

the F' flatness conditions are given by,

Fy

Fy
F,

XL

F)ZL

= f(vrvr + vRrvr) 4 2mev = 0, (4.7)
= 2mgs + Avi —v%) = 0. (4.8)
= fovr + Asvg + myvr =0, (4.9)
= fovr + Asvp, + myvr = 0, (4.10)
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Fyp = fovp — Asvr +myvr =0, (4.11)
Fy, = fovup —Asvg+myvp =0, (4.12)

Solving the equations we get four relations among the vevs.

—Mmaev

= 4.13
o for ( )
my+xs = LUUR (4.14)
vL
My —As = AL (4.15)
UR
A
s = o (vh —v%) (4.16)

The role of D-parity odd singlets ¢ is uni-important in left-right breaking. This can be
understood from eqns. (4.14) and (4.15) as follows:

2
vy, M —Xs
—) =—— 4.17
<1)R> M+ s (4.17)

If there is no o field, then s = 0. This implies vy, = v which is a left-right symmetric
solution. Also the F-term conditions (4.9)-(4.12) are not consistent without the inclusion
of the parity odd singlet ¢ in the model. Hence, the parity odd singlet o is necessary to

account for the spontaneous left-right breaking and for the consistency of the model.

We now try to interpret these results to get a working phenomenology. Considering the
last of the relations eqn (4.16) we see that s = 0 is a trivial solution, and will put vy, and
vr on equal footing thus leading to unbroken parity. However, s = 0 is a special solution
of eqn (4.16). For s # 0, we have vy, # vgr and parity is violated spontaneously. We will
choose vr > vy, as it is usually assumed in model building for phenomenological reasons.
Choosing the mass (mg) and vev (v) of ® to be of electroweak (EW) scale and considering
the dimensionless coupling constant A\ to be of order unity, we immediately come to the

conclusion, from eqn (4.15), that m, ~ s.

In order to avoid generic susy problems like over abundance of gravitino, we assume
the mass scale of vg to be < 10° GeV. This together with eqn (4.13) gives the value
of v, ~ 1075 GeV, where f, another dimensionless quantity, without any fine-tuning is
considered to be of order unity. This is also consistent with the assumption that vg > vy.
Now using eqn (4.14) and the above derived relation that m, ~ s we get m, ~ s ~ 10'6

GeV. Finally, from eqn (4.16) one derives the mass of o (m,) to be of EW scale. If one
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Masses/Vevs | Case - I (In GeV)
My, S 1016
VR 10°
M,V , My 102
v 107

Table 4.2: Mass scales of the model

considers non-thermal leptogenesis, then one can consider the alternative possibility of
having a low value of v i.e. ~ O(10) TeV. Then all the mass scales and vevs are reduced

by a couple of orders and could be accessible to colliders. The results are summarized in

Table (4.2).

4.1.1 Effect of soft susy breaking terms

We introduce the soft susy breaking terms to check if they alter relations between various

mass scales in the model. The soft susy breaking Lagrangian is

~Loop = MEQ'Q+M2E.Q' Qe+ MELVL + M2, Le' [e

+m? xExe +m? xhxr +m2 X+ m2 Xhe

+m%1<I>J{<I>1 + m%QCI);(I)Q + (BlX,{TQXL + BQX%TQXR + B,u,ijTI‘TQ(I)ZTTQ(I)j

+Cl XEPXR + CY XL YR + Dy X1 ®XR + Dl XL PXR

+ A QT Ta®imaQ° + Agg LT 0@ L + Agy X1 Pixr + Al X1 PiXr

+Gaugino mass terms + h.c.)

Where all the parameters are of the susy breaking scale which is ~ TeV.

The Higgs part of the superpotential is

W = f®(XLXR+ XLXR) + MmaDP
+ my (XLXL + XRXR)

+moo? + Ao (XLXL — XRXR)-
We write the scalar potential as

V = |F|*+ D*D*/2 4 Vyop
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where D% = —g((bj]}‘j-@), g is gauge coupling constants, 7% is the generators of the corre-
sponding gauge group and ¢’s are chiral superfields.

The F-term scalar potential is V = |F;|? where F; = —%—‘g. We denote the vev of the
neutral components of Higgs fields as: (®) = v, (x1) = (X#) = vz, (Xr) = (Xr) = vr and
(o) = s.

Minimizing the scalar potential with respect to vy, vg, we get

ov
9o = 2vp pi + (8 fvme +8 fumy)vg +2 (4 f2 — 2\ vF
+ 4)\2 U% —|— (A¢X —|— C(;X —|— bex)v VR = 0
and
ov 9 2 2 2
dor 2ur ukr + 8 fvme +8 fomy)vr +2(4 f7 =2 )vguy
+ AN R+ (Al + CY 4 DY Jvup =0 (4.19)
where

u2 :miL —4)\mgs+(mx—)\s)2+2f2v2 + By v?

One need some fine tuning to get the value of uy from the above relation. If one take
A to be order of one, then allow m, — As ~ 10° GeV by appropriate fine tuning. Hence
this contribution cancels with the term —4 Am, s giving py, a value of TeV range. From
eqn.(4.19), it is clear that ur = vg as the only relevant dominant terms are 2 \? 1)12%. If we

take vg = 10° GeV, then the value of up is also 107 GeV.

From the minimization condition v Rc?aT‘i —v Lg}—‘;, we get the relation

8fvmxvi2
4Xmys+4Amgs

VLVR = (4.20)

Here we have taken the approximation: v << wr << m,, s. The scales in our model
are s = m, = 10'6 GeV and vp = 10° GeV. From the above relation, putting these values
we can have VEV of v;, = 107° GeéV. It is clear that the scale of vy, and vp are consistent
with the model which we derive from the minimization condition of the scalar potential.
Thus adding the soft terms do not alter the relations between various mass scales of the

theory.

For such a choice of scales we can fine tune the parameters to get a light yr having
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mass 7, ~ TeV and a heavy yg having mass pr ~ vg ~ 10° GeV, My ~ 1016 GeV. This
will be important in the renormalization group evolution of the gauge couplings as we will

see later.

4.2 Neutrino Mass

In LR models with only doublet scalar fields, the question of neutrino masses and lepto-
genesis has been discussed in details. We shall try to restrict ourselves as close as possible
to these existing non-supersymmetric models, and check the consistency of these solutions
when parity is broken in the present SUSYLR model. We shall first discuss the scenario
with conserved D-parity, but since LR symmetry cannot be broken without breaking D-

parity we shall discuss the D-parity breaking scenario afterwards.

In conventional type I seesaw, neutrino mass can be realized via three right handed
neutrinos NN where we have Majorana mass term (Mpg);; NS N5 and Dirac masses with
the ordinary neutrinos (My)i;viN5 = (Yn)ijvilN;(®). After diagonalizing, the resulting
neutrino mass is M = —My Mlgl MY, Type II seesaw requires a SU(2),, triplet Higgs
field T" with mass of order my. Integrating out the Higgs triplet 7' leads to an mass
operator (Mr);;vvy with My o %’?2 ~ ]\1/’[—2(; Combination of these neutrino mass are
also possible in left-right models which contains both type I and type-II or, type I and

type III [60, 120].

In type III neutrino mass [135] three hypercharge neutral fermionic triplets X (a =
1,2,3) are added to explain the v mass term. In our model, however, we have an extra
fermionic superfield which give rise v mass term which is similar to the conventional type
ITT seesaw mechanism. Thus, it is in this spirit that we can call the seesaw mechanism in
our model as type III seesaw. For the review of the standard type III seesaw mechanism

we closely follow [153].

Along with the Dirac neutrino mass term (Mpy);;v; N ¢, the relevant superpotential for

v mass term, which is due to the extra fermion singlet (5) is given by,

W = M;;S;S; + FijlriSixr + Fj;lriSixr, (4.21)

From the above superpotential one can see that the vev of the left-handed doublet Higgs

field which acquires a low scale vev (xL) = vy, directly couples the left-handed v/s with
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the singlet S;. The mass matrix for the neutral leptons has the form,

0 (My)y Fjor vj
Wneut = (Vi NZC Sz) (MN)ji 0 Fiij N]c . (4.22)
Fjivy,  Fyor My S;

In the above mass matrix, the mass of the singlet M;; and the vev of the right-handed
Higgs doublet vy are heavy, while My and vev of the left-handed Higgs doublet vy, are of

low scale.

Since in our model we have more than one left-handed Higgs doublet (xr,xr), the v

mass is given by,

M, = —-MyMp'ML — (MyH + H"MY) (”—L> (4.23)

VR
where, H = (F'.F )7, (4.24)
Mr = (Fug)M Y (FTug). (4.25)

The first term in eqn (4.23) is the type I seesaw contribution and the second term gives
the type III seesaw contribution. Type III contribution to » mass will dominate over type

I if the elements of the matrix M;; are small compared to the contribution of H term.

We will partly follow the formalism and parametrization used in [153,154] where the
elements of the Dirac mass matrix are My, = nv, Mpy33 = v, Moz = —Mpy35 = ve and

else are zero. Here = 0.6 x 107° and € ~ 0.14.

If the elements of Fj; and leg are considered to be of the order of f, a dimensionless
parameter then from eqn. (4.24) we find that H;; ~ 1 (¢,j = 1,2,3). Thus, the v mass
resulting from eqn (4.23) is

n e 1
vU
My=| ¢ ¢ 1 | —=£ (4.26)
UR
111

The neutrino mass as presented above mostly satisfy the observed neutrino mass with a

minor fine tuning in the 13 element.

Another set of parameters can be chosen to explain both neutrino mass and leptogenesis
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where both Fj; and Fy; take the form [153]

)\2
F, F' ~

e D
e D

A
A

where A ~ n/e. With this form of F, F’ we have from eqns (4.23) and (4.24),

L e/n ¢/n
H~1 n/e 1 1 ,
nje 1 1
and
n € €
VU
M, ~ e € 1 —L-
VR

For the study of leptogenesis, a diagonal Fj; would suffice better. The parameters in this
new basis would be represented via a tilde. The right-handed neutrino and the singlet
has to be transformed via a unitary transformation to attain the diagonal basis as such
Nf = UZ-jN]? and S; = Vijgj. To attain the diagonal form of Fj; the unitary matrix U;;

can have the form
Uil Aule Augs

U= Muar uga uss

Augr  uza U3z

with Vj; having a similar form. Here the wu;; elements are of O(1). For simplicity and

numerical computation we will use the particular form of the unitary matrix which is

1 A1 +V2)i A
U= | =M1+ v2)i 1/V2 i/V?2
A i/\/?2 1/v2

The elements of the diagonalized matrix Eij = (UMFMng)vR can be written

Fug = diag[\F1, Fy, F3|vg = diag[M;, My, Ms),
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where F; ~ 1. In this basis the matrices FZ’]u and /\;ll-j can be parametrized as

Mfir Afiz AMfis
Flu = Ao fa2o faz |V
Afsi fs2 fs3
Mg Mgz Agi3
M= g1 g2 g3 | Ms, (4.27)
Agsi g32 933

where, fi;,g9;; ~ 1. The assumption here is that the scale of Mg < vgr. In the new
basis, the Dirac neutrino mass matrix My transforms as M ~N = MyU and the form of the

transformed matrix is

nuil  NAU12 NAUL3

MN = 6)\U31 6u32 GU33 v = Y’U. (428)

Auzp us u33

After doing all the parametrization, the type III seesaw contribution to the light neutrino

mass matrix (which dominates, since Mg < vg) from eqn (4.23) is given by,

2 <U11f11) n <U11f21> n (U11f31>
n\—F M\ TE N\ T )
o s v
M, >~ — g\z (u111?{21> % Zj (W;«{QJ) Zj (W;«{QJ) <E> ) (4_29)
g\z (ul;{?;l) Zj <u3i{2j) 223‘ (“3;{3j>

Now we discuss the leptogenesis scenario in the given form of the neutrino matrix My,
M, Mg and U [153,154]. Consider the case where the six super heavy two-component
neutrinos have the mass matrix

0 M;d; N¢

where, /\;lij is given in eqn (4.27). The leptogenesis can be realized by the decays of the

lightest pair of these super heavy neutrinos, which have effectively the 2 x 2 mass matrix

0 M Ny (FE 5) 22 0  Fug Ny
= 1,91

(Nlc7‘§1) ~ ~ -
M, My S Fiog 911 Mg S
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Consider the scenario where Mg < vpg, then this results an almost degenerate pseudo-
Dirac pair or equivalently two Majorana neutrinos with nearly equal and opposite masses.
These Majorana neutrinos are N4y = (Nf + 51)/\/5, with masses My = +M; + %/\;111 =
N (£Fvg + %gnMS). These can decay into light neutrino plus Higgs via the term
Yit (N1v;)H, where

Yie & (Vi £ FL)/V2 M”m:F V. (4.30)

Here Y is the Dirac Yukawa coupling matrix given in eqn (4.28). It is straightforward to
show that the lepton asymmetry produced by the decays of Ny [153] is given by

1 Im[y; (Y4 Y )P
A 3211V + 1Y -]

I(M? /M2), (4.31)

61_

where f(M¢, /M?_) comes from the absorptive part of the decay amplitude of Ny . This

function is given by

I(x) =V

X

ix+1—(1+x)ln<1+x>}

Making use of eqns (4.30) and (4.31) one obtains

13 (¥l | ~’1\2)Im(Zk Vi F)

€T = - f(M12+/M12—)5
A S (Yl + [F41?)
A2 (]u31\2 - ’f?,l‘ )Im(u31f31) 2 2
or, € = — F(M7/Mi). 4.32
S TR ey RS (432

The lepton asymmetry produced by the decay on lightest Majorana neutrino is partially
diluted by the lepton number violating decay processes. This decay processes try to wash

out the lepton asymmetry already produce before. This wash out factor is given by,

3 10-36V my O\ 0C
~ 0. 1
k(i) ~ 03 ( T > ( 103 eV)

The equilibrium mass of the neutrino is given by

~ 3FN1i ~ 2 U 3 2 ’ 2 ’ 2
my = ——5—— =\ 1(|u31| + 1 f31]" + [far %)
+
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Input Case (ITI-1) Case (ITI-2) Case (ITI-3) Case (ITI-4)
vgr (GeV) 2.7 x 1014 2.7 x 102 8.8 x 1010 9.8 x 108
Fy 1.0 10. 31 50
F 1.0 0.1 0.1 1.0
Fy 1.0 1.0 1.0 1.0
Ms(GeV) 4.3 x 10° 430 43 10.0
fo1 -0.950 + 0.534i | -0.050 + 0.0534 1 | -0.950 + 0.11 i -0.01+0.01 i
fa2 -2.279 - 1.537i -0.227 - 0.154i -0.228 - 0.154i | -0.225+0.138 i
fos3 -0.194 + 1.523i | -0.194 + 1.5231 | -0.193 + 0.573 1 | -0.195 + 1.23 i
f31 0.6+3.51 -0.012 + 0.385 1 -0.46 + 0421 0.04 +0.04 1
f32 -0.354i -0.035i1 -0.035i1 0.023 i
f33 0.354 0.354 0.354 0.523

Table 4.3: Type III seesaw and Leptogenesis results for four cases
Output Case (III-1) | Case (III-2) Case (III-3) Case (III-4)
M (GeV) 4.53 x 10° 4.53 x 10° 4.58 x 10° 82.37
My (GeV) 2.70 x 10" | 2.70 x 102 8.8 x 1010 9.8 x 108
Mz (GeV) 2.70 x 104 | 2.70 x 10'2 8.8 x 1010 9.8 x 108
(Myy + My )/Myy | 1.6x1072 | 1.59 x 10710 | 1.57 x 10710 | 4.08 x 107*
€1 —25x1076 | —21x107* | —=1.01 x 1076 | —1.01 x 10~*
my (eV) 0.511 0.569 4.774 0.694
K1 5.1 x 1074 4.5 %1074 4.5 x 107° 3.6 x 1074
nB 1.11 x 10710 | 1.147 x 10710 | 3.911 x 10719 | 1.461 x 10~10
Table 4.4: Type III seesaw results for four cases
4.2.1 Numerical Result

The lepton asymmetry produced per unit entropy, taking into account decays of Majorana

neutrino and their washout factors, is

nr

S

We have used the expression for entropy of the comoving volume, s =

gy = 2 for Majorana spin degrees freedom and g, = 228.75 is the relativistically spin

given by

~

s w2

~ 45 gn

ke gn T3

——ke

274 g,

2
45

g2 T9. Here
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degrees of freedom for supersymmetry.

The corresponding B-L asymmetry per unit entropy is just the negative of ny /s, since
baryon number is conserved in the right-handed Majorana neutrino decays.While B — L
is conserved by the electroweak interaction following those decays, the sphaleron processes
violate B+ L conservation and convert the B — L asymmetry into a baryon asymmetry.The

baryon asymmetry for supersymmetric case is

np 28nL

s 79 s

With the entropy density s = 7.04 n, in terms of the photon density, the baryon asymmetry(np)
of the Universe, defined by the ratio np of the net baryon number to the photon number,

is given in terms of the lepton asymmetry(e;) and washout parameter (k) by

np = "2 = 0,039k ;. (4.33)

Ny
Successful Leptogensis will require that the final result for np should be order of 10°.
where A = n/e = 4.1 x 1075 as before.
The input parameter given in the table (4.3) which will determine the small neutrino

mass, leptogenesis parameter as output given in the table (4.4) of our model.

4.3 Gauge coupling unification

Grand Unified Theories (GUTs) offer the possibility of unifying the three gauge groups
viz., SU(3), SU(2) and U(1) of the standard model into one large group at a high energy
scale M. This scale is determined as the intersection point of the SU(3), SU(2) and
U(1) couplings. The particle content of the theory completely determines the dependence
of the couplings with energy. Given the particle content of the theory one can evolve the
couplings, determined at low energies, to determine whether there is unification or not.
In this section we will discuss how one can obtain SU(3)c x SU(2)r x SU(2)r X
Ul)p-r(9z = gr)(= Go213) intermediate gauge symmetry in R-parity conserving super-
symmetric grand unified theory through one-loop unification of gauge couplings. Suppose
we want to evolve coupling parameter between the scales My and My (i.e, My < p < Ms)
corresponding to the two scales of physics, then the RGE’s depend on the gauge symmetry
and particle content at ¢ = M;. For this purpose, we consider the two step breaking

of the group G to the minimal supersymmetric standard model (MSSM) through Gsao1
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intermediate gauge symmetry in the so called minimal grand unified theory.
M
G —l>] SU(?))C X SU(Q)L X SU(Q)R X U(l)(BfL) [G3221]
]\@ SU(?))C X SU(Q)L X U(l)y [G321]
Ty sU3). x U1)g [Gem)-

4.3.1 RGE for SUSYLR model with doublet Higgs

The couplings evolve according to their respective beta functions. The renormalization

group equations(RGEs) for this model cane be written as

dOél'
dt

= Oél2 [bl + Oéjbij + O(Oé2)] (434)

where, t = 2w in(u). The indices 4,j = 1,2,3 refer to the gauge group U(1), SU(2) and
SU (3) respectively.

Unlike the D-parity breaking case where the intermediate left-right gauge group has
four different coupling constants as discussed in [147], in the present case Gg291 has only
three gauge couplings, gor, = ¢or , 93¢ , and gpp, for p > Mpr. We now write down the

RG evolution equation of gauge couplings upto one loop order which are given below

1 1 ay MR 1 , / MU
= —4+—h—4+—(3 2 In —

ay (Mzg) QG+27T DMZ+107T( dar aBL) DMR’

1 1 M ! M
OéQL(MZ) (67 2 MZ 2 MR

1 1 asc . Mpg aéc My;
—_ = — 4+ —In—+=In— 4.35
asc(Mz) ag + 2w nMZ + 2w nMR ( )

where ag = g& /4 is the GUT fine-structure constant and the beta function coefficients
a; and @} are determined by the particle spectrum in the ranges from My to Mg, and from
Mg to My, respectively.

Here we are using PDG values, a(Myz) = 127.9, sin? Oy (Mz) = 0.2312 , and azc(Myz) =
0.1187 [156]. Consider the case where SU(2)r x U(1)p_1, breaks down to U(1)y. In that
case

Y B-L

g T BRT TS

(4.36)

The normalized generators are Iy = (%)1/2% and Ip_j = (%)1/2%. Using these, one

3 2
Iy = \/gl?;,R + \/gIBL (4.37)

Which implies that the matching of the coupling constant at the scale where the left-right

can write
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symmetry begins to manifest itself is given by
_ 3 _ 2 _
ozyl = ga%lz + 3ozBl_L (4.38)

At the scale p = My — Mg, the values of beta coefficients are: by = 33/5, bop, = 1,
bsc = —3. Similarly, at the scale 4 = Mr— My, bz, =16, by, = b, =4 by = b3c = —3.

With these parameters, the evolution of gauge couplings is shown in fig:(4.1).

|
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Figure 4.1: Evolution of coupling constants in susylr model with Higgs doublet. The Mz = 10*® GeV and
Unification scale My = 0.67 x 10'® GeV.

This will change once we add contributions coming from extra particle added to the
minimal supersymmetric model. Once we fix the values of beta functions, we can achieve
lower values of Mp. There are discussion [149,159, 160], where the Unification is possible
at the same energy scale around 10'® GeV, but the scale of My varies from 107 - 10'? GeV.
We have considered here one scenario where the Mg = 10° GeV, My = 106 GeV and the
effect of D-parity breaking is included. This is possible in our model by adding three copies
of singlets charged under U(1)p_;, which is shown in figure (4.1) to the minimal particle

content.

4.3.2 Result

We consider the minimal particle content of SUSYLR model and found that unification is

not possible for low scales of Mp. We have given the unification plot shown in figure (4.1)
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Figure 4.2: Unification plot for SUSYLR model with Higgs doublet+ three copies of singlets charged under
the U(1)5_1 gauge group. The value of Mg is 10° GeV and the unification scale is 5.3 x 10'® GeV.

for higher values of Mg without taking into account the D-parity breaking effect. It is
clear from the figure (4.1) that the gauge couplings unify at a scale 0.67 x 106 GeV. Also
the right handed scale My is found to be 2.69 x 10'3 GeV in our model without including
the effect of D-parity. But spontaneous D-parity breaking changes the result and makes
Mpr = 10° GeV or even lower for certain choices of parameters as shown in figure (4.2)
though three singlet scalar charged under B — L gauge group added to the model. There
are models [139,147] where one can achieve unification of all three fundamental interactions
in which D-parity is broken at the GUT level. In this work, we have demonstrated that
one can achieve unification including D-parity breaking effect and scale of p; and ug
can be low. This result has been found from minimization of the scalar potential of our
model including SUSY-breaking effect and also low scale py, and ppg is possible from gauge

coupling unification.
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Gravity Correction in SU(S) gauge
coupling constants

5.1 Introduction

The question of gravitational corrections to the evolution of the gauge coupling constant
has attracted some attention in recent times, following the seminal paper of Robinson
and Wilczek [163]. They studied the one-loop quantum corrections to the running of
the gauge couplings in an effective quantum theory of gravity, which is valid at energies
below the Planck scale and found a quadratic divergent behavior. The character of the
correction has been arrived at from a general consideration, which has been shown to
have important phenomenological consequences in theories with low scale gravity [164].
However, this result has been questioned by some authors and the result has been studied
from different approaches. This gravitational correction has been shown to depend on the
choice of gauge in an explicit calculation [165]. They studied the abelian theory and used
a parameter dependent gauge to arrive at their result. Subsequently a more general result
has been obtained using a gauge invariant background field method that the gravitational
corrections to the gauge couplings vanishes [166]. Following the doubts raised by these
two references on the result of ref. [163], a one-loop diagrammatical calculation has been
performed in the full Einstein-Yang-Mills system, which had also confirmed the vanishing

of the one-loop contributions of quantum gravity to the gauge coupling evolution [167].

95
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The quantum gravity corrections to the running of gauge couplings were calculated
for pure Einstein-Yang-Mills system. It is not clear, however, if there is a spontaneously
broken symmetry ( let us say in SU(5) grand unified theory) with the scalar field then
the results of ref. [163] will remain valid. Recently the gravitational corrections to the
gauge coupling evolution has been studied including a cosmological constant and quantum
gravity effect has been found to affect the running of the gauge couplings [168]. However,
the one-loop contributions in the presence of a cosmological constant differs from that of
ref. [163], which was obtained from a general consideration. This raises the question: what
are the other factors that would make the quantum gravity effects significant?

In this work, we argue from a phenomenological approach that the quantum gravity
effects should be significant when higher dimensional non-renormalizable interactions are
taken into consideration. Since quantizing the general theory of relativity for small fluctu-
ations around flat space gives us a non-renormalizable field theory, we need to include an
infinite set of higher dimensional counterterms. Since these terms are suppressed by appro-
priate powers of the Planck mass M, ~ 10 GeV, at energies well below the Planck scale
these higher dimensional terms may be considered as small perturbations in the effective
theory of quantum gravity [169]. However, at the scale of grand unification these terms may
not be ignored, and hence, in some version of the grand unified theories dimension-5 and
dimension-6 gauge invariant terms have been included on phenomenological ground to see
if these terms can change any of the conclusions for some reasonable values of the coupling
constants [170]. It was found that although the minimal SU(5) grand unified theory fails
to satisfy the gauge coupling unification, inclusion of the higher dimensional terms change
the boundary conditions and allow gauge coupling unification at a higher scale [170,171].
Here we point out that if the gravitational contributions to the gauge coupling evolution
vanish, then the boundary conditions appearing due to the higher dimensional terms be-
come inconsistent. We then show how the gauge coupling constants evolve from low energy
to the GUT scale and satisfy the non-renormalizable operator induced matching condition
at the new GUT scale, if we include gravitational corrections to the gauge couplings, which

diverge quadratically near the Planck scale.

5.2 Effect of higher dimensional operators in SU(5) unification

Most of the grand unified theories (GUTs) with intermediate symmetry breaking scales can
satisfy the experimentally observed constraints on proton lifetime (7,) for the p — etz

mode and the electroweak mixing angle sin? 6,
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7, >3 x10% yr,  sin?6,, = 0.230 + 0.005.

The minimal SU(5) and other GUTs with no intermediate symmetry breaking scale and no
new particles beyond the minimal representations are ruled out as they predict significantly
lower values. In other words, with the present range for the sin?f,,, if we evolve the three
gauge coupling constants from the electroweak scale to the grand unification scale, they do
not meet at a point, and hence, there is no unification. In an interesting proposal it was
pointed out that since the grand unification occurs at a scale My > 101 GeV), which is
close to the Planck scale, it is natural to expect that there could be significant modification
to the GUT predictions by gravity-induced corrections [170]. These corrections may allow
gauge coupling unification, make proton stable, give correct neutrino masses and proper
charged fermion mass relations at the GUT scale, even for the minimal SU(5) GUT. In this
article we include the higher dimensional terms to study the gauge coupling unification
and infer that the evolution of the gauge coupling constants should be modified by the

gravitational corrections.

We start with the SU(5) Lagrangian and then the breaking of SU(5) group into the
Standard Model group SU(3)¢ x SU(2)r, x U(1)y via the Higgs field ¢, which transforms
under the 24-dimensional adjoint representation of SU(5). We write down the Lagrangian
as a combination of the usual four dimensional terms plus the new higher dimensional terms
which has been induced by the non-renormalizable interactions of perturbative quantum
gravity. Since the couplings of these terms are not known, we cannot make any predictions
at this stage, so we look for consistent solutions for a reasonable range of the unknown
parameters. The SU(5) gauge invariant Lagrangian, including higher dimensional terms
can be written as

L=1Lo+%,_ LM (5.1)

where

1
Lo = =5 Te(Fu F™") (5.2)

Where the sum is over the higher dimensional operators. For the present we shall restrict
ourselves to only five- and six-dimensional operators, which are:
1
@_ 12"

— -1 v
L QMPlTr(FWngF ) (5.3)
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1@ — 1l Lenr ey mE, e
= 372 | v (Fu¢ )+ Tr(FuoFH ¢)
Pl
() Te(Fy ) + 0 T (Fa 6) Tr(F )| (5.4)
where
FH =0,A, —0,A, —ig[Au, Al (5.5)
a 7 )‘Z ¢
(Ap)y = A, [5} (5.6)
b
and
1
Tr (Aidj) = 50 (5.7)

Here A’ is the ith component of the gauge field, ); is the corresponding generator and 7",

n=1,2,... are the unknown parameters, induced by gravitational corrections.

When the scalar ¢ acquires a vacuum expectation value (vev) and breaks the SU(5)
symmetry at the GUT scale, we may replace these fields in the above expressions by its
vev. This will give us the effective low energy theory with only dimension-4 interactions,
but the effective gauge fields will be modified below the GUT scale. We may define the

new physical gauge fields below the unification scale to be

and the modified coupling constants including the higher dimensional operators as

93(My) = gs*(My)(1 +ec) ™ (5.9)
95 (My) = g2*(My)(1 +eg) ™! (5.10)
9i(My) = g1*(My)(1 +ey) ™! (5.11)

The g; are the couplings in the absence of higher dimensional operators, whereas g; are the
physical couplings which evolve down to the lower scales. The value of the €™ associated

with the given operator of dimension n+4 may be expressed in the following way

n_ [ 1 ¢ ] m
e = [\/l—BMpz] n (5.12)
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The vev ¢ is related to My

6 11/2
= M, 5.13
%0 [5770@] v ( )
The change in the coupling constants are then related to the £™s through the following
equations
15
ec=eW) 4,2 4 Egb@) + ... (5.14)
3 9 15
e, = —55(1) + Zaa(Q) + ?ab@) + ... (5.15)
1 7 15 7
ey = —55(1) + Zsa@) + Zeb@) + 550(2) + ... (5.16)

This shows how the effect of higher dimensional operator modify the gauge coupling con-

stants. The Unification scale, My, is now defined through the new boundary condition
2 _ 2 _ 2 _ 2
93" (Ltec)=g2"(1+er)=g1"(1+ey)=go0" - (5.17)

With this in mind, one may use the standard one loop renormalization group (RG) equa-

tions

b; M
1 — ! 2 U
a; (M) =«a; (My) + 5 log <Mz> (5.18)

with the beta functions by = %,bg = _Tlg,bg = —7. We have taken Ny=3 and Npg;ggs=—1.

Solving the RG equations without any higher dimensional contributions yield

My 6 1 8 « Sey + 3¢, «
1 S e I i 5.19
Og<Mz> 6704D[ 3o, | C 3 as] (5.19)
1 19 1 41 « 95 «
) .2, (5)
20, = — [sin20p") — —ec + — (21 4+ =& o a 2
S Pe = [Sm w 134€C+67< T3 as>€L+402 afy] (5:20)
1 3111 7
_31 ! 5.21
ag 67D [3(13 a] ( )
1
D =1+ —(1lec + 21er, + 35ey) (5.22)

67
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Where the sin? Hw(S) is the usual minimal SU(5) prediction

(5) 23 109 o

= 13—4 + ﬁa_s (5.23)

sin? 0,,
In this case of minimal SU(5), the gauge coupling constants do not meet at a point, and

hence, unification is not possible. We now show how this result gets modified by including

higher dimensional terms.

We first consider only the following SU(5) invariant non-renormalizable (NR) (dimen-
sion five) interaction term

L.
Lyp=—=|—-— ) Tr(F,,¢F" 24
sn =5 (i ) TlEwoF™). (5:24)

where ¢4 is the Higgs 24-plet, 7 is a dimensionless parameter and M p; is the Planck mass.
Suppose the Higgs field acquires a vacuum expectation value(vev)

1 3 3
= ——¢pdiag[1,1,1,—=, —=
N gl

2
- (5.25)
The SU(5) gauge symmetry breaks to SU(3)c x SU(2)r, x U(1)y at this scale because

(9)

of non-invariance of the Higgs field under the SU(5) symmetry. The presence of non-
renormalizable couplings modifies the usual kinetic energy terms of the SU(3)., SU(2)r
and U(1)y gauge boson part of the low-energy Lagrangian. The modified Lagrangian

becomes

1 1 1 1
S+ TR O P O) - 21 ;a)Tr(FW(Q)F’“’(Q)) (1= S Tr(F, W)
(5.26)
where the superscripts 3,2 and 1 refer to gauge field strengths of SU(3), SU(2) and U(1)

respectively and ¢ is defined as

L o ]
e=|l—=—1|17. 5.27
[\/15 Mpy 7 (5.27)
We used € = @) = 0 and eV = & = npg/(VI5My), so that e¢ = ¢, e, = —%6,
ey = —%s. Now, using these expressions, we get

1 1la,t + 2107t
R N o (5.28)
ac 67 — 38
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MU 67T —1 8 —1 7 —1 —1
1 — )= — - - 5.29
og<M2> o738 {a 3% +<3a5 +a e (5.29)
1 23 109 « 116 «
.2
Op = —— | — 4 = (4l —— 5.30
S 67—385[2 T3 ( T3 as>€} (5:30)

Taking the experimental values of a, = 0.1088, o = 1/127.54, it is possible to obtain
a consistent choice of the parameters ec, €1, €y which satisfy the constraints on sin? 6,
and My. But the unification scale remains low and the proton lifetime becomes less
than the present experimental bound. For central value of sin? 0., (= 0.2333), we obtain
e = —0.0441 and My = 3.8 x 10" GeV and the corresponding value of ag = 0.0245.

The lifetime of proton (m,, is the mass of the proton)

1 Myt
ag? myd

Tp =

(5.31)
then becomes too low to be consistent with experimental limits on 7, for the given value

of M. Hence, it is not possible to obtain a consistent solution with the five Dimensional

operator.

Table 5.1: Unification in SU(5) using gravity corrections
€C €1, €y My
0.04 |0.0675 | 0.24 | 10*" GeV

0.3894 | 0.44 | 0.98 | 10'® GeV

1.3804 | 1.445 | 1.98 | 10'86 GeV

If we now include both five and six dimensional terms, then there are whole range
of parameters that are consistent with the values of sin?#,, My and proton lifetime.
We present a few representative set of values that are consistent with proton lifetime in
table 5.1. So, from now on we shall consider both dimension five and dimension six non-

renormalizable terms for our discussion.

5.3 Evolution of gauge couplings including gravitational con-
tributions

In the last section we discussed the effect of higher dimensional non-renormalizable inter-
action on the boundary condition, satisfied by the gauge couplings. In fact, the effective
gauge couplings get modified at the time of GUT phase transition, which allows the gauge
coupling unification for some parameter range. If we now start evolving the gauge cou-

pling constants from low energy, when the effects due to the higher dimensional terms are
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negligible, we should be able to reach the new modified boundary condition continuously.
In other words, the modified effective gauge couplings should evolve with energy in such
a way that at low energy they become the usual gauge couplings. If we now assume that
the gravitational corrections to the evolution of the gauge couplings vanishes, then this
transition is not possible. On the other hand, if we consider that the gravitational cor-
rections are of the quadratic nature, as recommended in ref. [163], then it is possible to
continuously evolve the gauge coupling constant from the modified effective coupling near

the GUT phase transition scale to the low energy experimentally observed couplings.

In this section we shall first argue how the non-renormalizable interactions could change
the gravitational corrections to the gauge couplings. Then we shall demonstrate how the
gauge coupling constants evolve from low energy to the unification scale in the presence of
the higher dimensional contributions. Although the modified boundary condition and its
effect was studied by many authors, the running of the gauge couplings from low energy
to the unification scale could not be studied. This is because the running of the gauge
couplings in the presence of gravitational corrections were not considered.

As the gauge boson vertex has strength g and gravity couple to energy momentum with

1

a dimensional coupling o< ——
bung Mp;

, dimensional analysis implies that the running of couplings

in four dimensions will be governed by a Callan-Symanzik § function of the form

p— _ ——— a
dinE 4227 T 02

B(g, E) g (5.32)

where the first term is the non-gravitational contribution and the 2nd term is the gravita-
tional contribution, as suggested in ref. [163]. This quadratic gravitational correction was
then revisited in ref. [165-167] and it was shown that this contribution vanishes. We shall
now argue that in the presence of non-renormalizable interactions, this contribution may

not vanish.

Following equations 8-11, we write down the effective coupling constant at the GUT
scale as

g =9g7+C, (5.33)

where C' is the contribution coming from the non-renormalizable interactions. We shall
now argue that although the gauge coupling evolution may not be affected by gravitational
corrections (as stated in refs. [165-167]), the evolution of C' is dominated by gravitational

correction, and hence, it should evolve as suggested in ref. [163].

In the absence of non-renormalizable interactions and gravitational corrections, the
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three gauge couplings for a particular model evolve as inverse logarithm of E at one loop
order. Although unification may not be achieved in case of minimal SU(5), including non-
renormalizable terms (i.e., including C) they may get unified at a scale ~ 1017718 GeV.
In ref. [163], it was shown that in absence of C, the couplings are unified near the Planck
scale and the value of the couplings are zero, as shown in figure 5.1. The negative value
of ag in the beta function signifies that the gravitational correction works in the direction
of asymptotic freedom, i.e. it causes coupling constants to decrease at high energy (above

106 GeV).

g
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Figure 5.1: Evolution of the gauge coupling constants without higher dimensional terms, but including
gravitational corrections [163].

The modifications to the gauge couplings arising due to non-renormalizable terms are
symbolically denoted by C' in equation 33. To comply with the unification condition
described by equation 17, the correction of each of the three coupling constants will have
different weights. This would give nonzero contribution to the coupling constants unlike
in ref. [165-167]. One can justify this point as follows: For the purpose of a demonstration
consider the diagramatic method of ref. [167]. Here one starts with the Einstein-Yang-Mills
Lagrangian

2 1
Li=5V=gR = 5V=99"" 9" Tx[Fu Fyo] (5.34)

with the Ricci scalar R. We then expand the metric in terms of the flat metric 7, and



104 CHAPTER 5. GRAVITY CORRECTION IN SU(5) GAUGE COUPLING CONSTANTS

the graviton field h,, to write

I = N — Khy, + KQhWhg

V=g = 1+ gh + g (h2 - thﬁhaﬁ) . (5.35)

It is then possible to write down the propagators for this theory and explicitly calculate
the one-loop diagrams to show that the gravitational corrections to the S-functions vanish
[165-167]. It should be noted that the term of type /—gg"”¢"° Tr[F),, F),] (in equation
34) give contribution to the coupling constant that is quadratic in the energy [163].

If we now include the scalar fields ¢ in the theory, there will be interactions of the

scalar fields with the graviton field, which comes from the Lagrangian
Ls=+/—g[D,®D,®]g"" . (5.36)

In this case also there seem to be cancellation of the quadratic divergences (we considered
the diagrams to order 2 for the abelian case only) and there may not be any gravitational

corrections to the gauge coupling evolution.

However, the inclusion of higher dimemsional non-renormalizable terms would com-
pletely change the scenario. Such non-renormalizable terms are expected in a theory that
incorporates the effect of quantum gravity. In any grand unified theory, where the uni-
fication scale is only 2-3 orders of magnitude lower than the Planck scale (the prolifera-
tion of particles near the GUT scale could also lower the Planck scale [172]), such non-
renormalizable terms may contribute significantly. Consider, for example, the dimension-5

term in presence of the 24-plet scalar ¢ of SU(5)

1

Ls = —c—V—99"" 9" Tx[F,, F)s 9] . (5.37)
2Mp;

For the case when E < My, the scalar ¢ acquires a vev ((¢) = M diag[1,1,1,—-3/2,—3/2]),
this term would give contribution to the C' term in equation 33 that vary quadratically
with the energy. However, to be consistent with the modified boundary condition given
by equation 17, the different gauge fields with different weight factors will give nonzero
contribution. It ought to be noted that the coupling constants now meet at £ ~ M which
is lower than the Planck scale This supports our earlier inference that the gravitational
corrections to the gauge couplings may not vanish when the higher dimensional interactions

are included.
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Figure 5.2: Evolution of the gauge coupling constants in the presence of higher dimensional terms and
gravitational corrections.

Above the unification scale My, the scalar field has not acquired vev and SU(5) sym-
metery is exact. In this regime there will be only one gauge coupling constant for entire
SU(5) and it will evolve without any gravitational corrections as if the higher dimensional
terms were absent. It is shown in figure (5.2) that how the coupling constants vary with
energy in the presence of C terms in the regime E < M. For the regime E > My, there
is only one coupling constant as the exact SU(5) symmetry is restored.

The higher dimensional effective contributions has been studied in the literature, whereby
the gauge coupling constants get modified near the grand unification scale. These modifi-
cations of the boundary conditions allow gauge coupling unification even for the minimal
SU(5) GUT. However, the running of the modified gauge couplings have not been studied.
We show that this modified gauge couplings should evolve including the gravitational cor-
rections, otherwise the low energy gauge couplings may not be consistent with the modified
boundary conditions. From this we infer that the gravitational corrections to the gauge
couplings may not vanish when higher dimensional non-renormalizable interactions are

included in the Einstein-Yang-Mills system.






CHAPTER

Electromagnetic leptogenesis

The recent neutrino experiments like solar and atmospheric oscillation experiment as well
as long baseline accelerator and reactor neutrino experiments gives enough evidence in
favor of the existence of non-zero neutrino masses and mixing, and this is also the evidence
of new physics beyond the Standard Model (SM). While both could be admitted into
the Standard Model (SM) by the simple expedient of adding right-handed neutrino fields
(omitted, at the inception of the SM, only on account of the then apparent masslessness
of the neutrinos), many theoretical challenges persist. Indeed, some authors have claimed
neutrino masses to be the evidence of physics beyond the SM.The couplings of neutrinos
with the photons are generic consequences of finite neutrino masses, and are one of the
important intrinsic neutrino properties to explore. The study of neutrino EMDM can
provide, in principle, a way to distinguish between Dirac and Majorana neutrinos since the
Majorana neutrinos can only have flavor changing, transition magnetic moments while the

Dirac neutrinos can only have flavor conserving one.

The seesaw mechanism and the associated mechanism of leptogenesis [37] are very at-
tractive means to explain the origin of the small neutrino masses and the baryon asymmetry
of the universe. Leptogenesis [37] provides an elegant mechanism to consistently address
the observed Baryon Asymmetry in the Universe (BAU) [194] in minimal extensions of
the Standard Model (SM) [195]. In standard leptogenesis, there exist heavy right handed
neutrino of mass close to GUT scale 10" GeV and it’s out of equilibrium decay creates a

net lepton asymmetry which get converted into the observed baryon asymmetry via the

107
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B + L violating sphaleron interactions [84,196]. At the same time, the inclusion of right
handed Majorana neutrino can explain the observed smallness of light neutrinos through

the so-called seesaw mechanism [197].

Although the aforementioned scheme is theoretically very attractive, it suffers from the
lack of direct detectability, e.g. at high-energy colliders, such as the LHC or ILC, or in
any other foreseeable experiment. This has, naturally, led to efforts towards alternative
routes to leptogenesis. A phenomenologically interesting solution to this problem may be
obtained within the framework of resonant leptogenesis (RL) [88-91,93,95]. Characterized
by the presence of two (or more) nearly degenerate heavy Majorana neutrinos, in such
scenarios the corrections to the self-energies play a pivotal role in determining the lepton
asymmetry [38]. Indeed, if the mass difference be comparable to their decay widths, the

resonant enhancement could render asymmetries to be as large as O(1) [89,91].

Recently a very interesting possibility of electromagnetic leptogenesis [193] has been
proposed, wherein the source of CP violation has been identified with the electromagnetic
dipole moment of the neutrinos. The general form of this dipole moment coupling of the
light neutrinos, v, to the heavy neutrinos, NN, is given by 7 (ujr + i7s Djk)aagNkBaﬁ,
where pj, and Dji are the magnetic and electric transition moments, respectively. The
aforementioned dimension-five operators are, presumably, generated by some new physics
operative beyond the electroweak scale. With C' P-violation being encoded in the structure
of the dipole moments, the decays of heavier neutrinos to lighter ones and a photon, can,
in principle, lead to matter-antimatter asymmetry in the universe. Although the proposal
is a very interesting one, so far it has not been incorporated in any realistic model. In this
work, we propose a specific model for resonant electromagnetic leptogenesis. A guiding
principle in our quest is that the new physics should be at the TeV scale so as to render

the model testable at the LHC or future Linear Colliders.

To implement the idea of electromagnetic leptogenesis, one should first understand
the electromagnetic interaction between the left-handed (LH) light neutrino v and right-
handed (RH) heavy neutrino N via the effective transition dipole moment operator and
their cosmological implications. In the subsequent discussion , we will investigate whether
the lepton number violating radiative decay of the heavy sterile neutrinos (N — v+y) which
can explain the baryon asymmetry, in analogy to the standard leptogenesis scenario where
N-decays are mediated by the Yukawa couplings (N — v¢). We will present a general
properties of EMDM couplings and explicit calculation of the CP-asymmetry induced by

the decays of N through such effective dipole moment operator.
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6.1 Electromagnetic properties of light and heavy neutrinos

Let us understand the properties of the transition form factors pj; and Dy in the generic

dipole moment coupling between light (v) and heavy (N) neutrinos:
Len = T (wjk + iv5Dji) 0ap Niy F*° + hec. (6.1)

where p1; is the transition magnetic moment, Djy is the transition electric moment. The
vj = eVi v and Nj = e’k Nf (j,k are the mass labels) are Majorana neutrino fields with
masses m; and M), respectively, while F*? denotes the photon field tensor as usual. Here
¥; and ¢y, are the charge conjugation phase factors associated with the Majorana neutrinos.
We use the definition: 045 = % [ya,vs]. Rewriting v; and Ny, using the Majorana condition,

we obtain

Leyv = (e 1/]0) (jk +iv5Djk) 0ap 'k Ng F% 4 he.
= —eii(ﬁji@k)l/}ﬂcil (,ujk + i'y5Djk) 0ag Cﬁz Fos + h.c. (6.2)

where C' is the charge conjugation operator with the following conventions:

ye=cp', ct=c', cT=-C, cicT=c"C=-1, CYC=()T,
OO = ()T, Ol C = (<o) O PRaC = (Pra)T L (63)

where Pr = (1 ++°)/2. Taking the transpose of the first term in Eqn:(6.2) and using

Eqn:(6.3) to simplify the expression, one eventually gets after some algebra
LeM = —efi(ﬂjﬂpk)wk (,ujk + Z"Y5D§\]2) OaB Vj FoP + h.c. (64)

If we write out the h.c. term of equation (6.1) (which is N, (1jk +i5Djg) oap V) FB) and

compare it with the first term in (6.4), we can conclude that
it = _ei(ﬂrw)ﬂ;k and D = _ez’(ﬂrw)p;fk ) (6.5)
From this, we get

it = |y e'Pimertm (6.6)

= = gl 0T (6.7)
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Similarly, we have the analogous expression for Dj;. An important note on this is that
although the relations between p;;, and ,u;*.k, as well as Dj;, and D;k depends on the choice
of the charge conjugation phase factor, once ¥; and ¢, are chosen, they are fixed. In
particular, when 9; = ¢, we have the situation where p;; and D;; must be purely
imaginary. Furthermore, it is worth mentioning that if Lagrangian (6.1) is C'P invariant,
then only one of p;; and Dj survives. But in our work here we do not impose such

condition and the only assumptions we shall make are Hermiticity and C'PT invariance.

In calculations, it is often much simpler to consider the EMDM coupling between
the associated chiral components of the v and N (instead of using the form written in
(6.4)) because the resultant Lagrangian contains only one type of electromagnetic dipole
moment coupling rather than distinct magnetic (y1j;) and electric (y°D;;) moment terms
as ’75PR7L = +Pr . Letting v; = vp; + ewiyzj and N, = Ngi + ew’fo% where vy, and

Np are the usual LH and RH neutrino states, then (6.4) can be rewritten into

Lent = Trj (i + iDjk) 0ap Nk F*P + e 7720 ()¢ (1, — iDjp) 003 Ny, F°
+ €7 (N ) (13, + D}y) 0ap vi; FP + N i, (15 — iDy) oapvr; F*P
=Vrj (,u]'k + iDjk) Oap Npgg Faﬁ — eii(ﬁjﬂpk)ﬁlgk (,u]-k — Z"Djk) OaB VLj Faﬁ

— TG (1, + D) 0ap Nak F*P + Ny (03 — iD3) 0ag v F*P . (6.8)

where in the last step we have followed the same procedure as that leading to (6.4). Using
(6.7) and the analogous form for Djj,, the Lagrangian simplifies to the form (after absorbing

the common factor of 2 into the definitions of p and D):

‘CfEM =7r; (,ujk —i—i'Djk) Oaf Npp Faﬁ +h.c., (6.9)

= UL Ak 0ap Pr Ny F*P +hec. (6.10)

where we have defined \;, = pj5, + 1Dy, and it is in general a complex matrix. As a result,
we can assume that the EMDM coupling matrix A is completely arbitrary in all of our
subsequent analysis. Now we shall investigate the viability of electromagnetic leptogenesis.
We must first check that the out-of-equilibrium decay of the RH neutrinos can give rise to
a nonzero C'P asymmetry under the most general situations. In addition, because of the
constraints from other sectors of the theory, it is also necessary to examine whether the
parameter space has enough degrees of freedom to produce an asymmetry of the correct

magnitude.
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6.2 Discussion of electromagnetic leptogenesis with effec-
tive dipole operator

There is an alternate scenario where leptogenesis is mediated not by the standard Yukawa
couplings, but instead by electromagnetic dipole moment couplings. In this new scenario
of leptogenesis, the lepton asymmetry is generated by the CP-violating decays of heavy
Majorana neutrinos either to SM lepton, photon in 2-body decay or to SM lepton, Higgs
and photon in 3-body decay via electromagnetic dipole moment couplings. In this section,
we will review the general discussion of electromagnetic leptogenesis (work of Kayser et

al. [193]) and, at the end of this section, will give motivation towards our work.

We construct an effective theory by taking the usual minimally extended SM La-
grangian with three generations of heavy Majorana neutrinos, and augmenting it with
EMDM operators. The dimension-5 EMDM operators involving only (the minimally ex-
tended) SM fields is of the form of (6.10). We assume that these EMDM couplings are
generated by some new physics at an energy scale A > M, where M generically denotes
the mass a heavy RH Majorana neutrino, and work with the effective theory that is valid
below A, obtained after integrating out all new heavy degrees of freedom. The EMDM

interaction Lagrangian of interest is:

L = =Xk VL 0™ Pr Ny Fop + hoc. (6.11)
1
= _K()\O)jk 71 0% PR Ny, Fap +hec. (6.12)

where j = e,pu,7and k = 1,2,3. F,3 = 0,Ag—03A, is, as before, the electromagnetic field
strength tensor, with A, being the photon field. We have defined Ay as a dimensionless
3 x 3 matrix of complex coupling constants, and A is the cut-off scale of our effective theory,

which has dimensions of energy.

An important observation is that the SM gauge symmetry, SU(2); x U(1)y is explic-
itly broken and the model is invariant only under the electromagnetic symmetry U(1)q.
However, one major difficulty is that the theory demands to be valid up to the scale of
A (i.e above M), hence only U(1)q is unbroken, while the SM implies that electroweak
symmetry must be restored at that scale since A, M > Apw ~ 10 GeV.

The most economical of such operators involving only (the minimally extended with

three heavy right handed Majorana neutrinos) SM fields are of dimension six and the
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interaction Lagrangian of interest is

N [A}k 60 Bog + Ny 71 60 Wéﬁ] Pg Ny +h.c. (6.13)
1 = ~ .
=57 [()\lo)jk 60 Bog + () 71 0™ Wéﬁ] Pr Ny +he. , (6.14)

where the 7; are the SU(2),, generators, {; = (vp;,er;)T is the lepton doublet, and ¢ =
(#°,¢7)T is the SM Higgs doublet. The field strength tensors of U(1)y and SU(2);, are
given by B,g = 0,B3—03B, and Wéﬁ = BaWé—aﬁWCi— g eimnW(;”Wg, respectively, where
¢ and g are the corresponding coupling constants. As before, A denotes the high energy
cut-off of our effective theory, while the newly defined dimensionless EMDM coupling
matrices, A, and X,, are in general complex. Note that Aj and X{) play the exact same role
as Ao in Lagrangian

The higher dimension (non-renormalizable) operators of Eq. (6.13) are assumed to be
generated at the energy scale A, beyond the electroweak scale. Although the presence of
these operators would imply the existence of some new physics at high energies, we shall
not speculate on the nature of it here. After spontaneous breaking of SU(2);, @ U(1)y,
these operators will then give rise to the usual transition moments between N and v;.
But, for the purposes of leptogenesis, we are of course interested in the regime above the

electroweak symmetry breaking scale.

Electromagnetic Leptogenesis
A M \?
with 5-D EMDM operator I, em5D — Qoo (M M,
47 A
_ 1 Im[(A)h0)2,] My (M2
—L(Xo)jr T 0% Pg Nj, Fop + hec. &P e = $ [(TO 0)1m] Ml <T1>
Tzt (Agro)u Mm
. em, 6D 1 "ty M12 ?
with 6-D EMDM operator Iy = (Ao Ap)11 My SA2
_ 1 Im [(AJN)2 ] My [ M2 \?
— L7 T\ B em, 6Dy, = 010/1m] 41 1
i [(Ay)jk @0 Bag| Pr Nk +hec. | |e | ~
e (00 ) ' m%:l NNy M \87A?

Table 6.1: Comparison of key quantities in electromagnetic leptogenesis for both 5D and 6D-EMDM oper-
ator [193], where Ao and ){ denote the dimensionless 5D and 6D-EMDM coupling constants respectively.

We have presented a summary of electromagnetic leptogenesis with both 5D and 6D-
EMDM operator given in the table [6.1] from which a couple of general observations for
electromagnetic leptogenesis can be made. For our investigation here, we are particularly

interested in examining if electromagnetic leptogenesis alone (i.e. when the Yukawa cou-
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plings are not taken into account or forbidden by some symmetry) can give rise to the
required asymmetry without contradicting any known experimental constraints.

Firstly, we will examine the scenario of electromagnetic leptogenesis with 6D-dipole
operator. In the paper of Kayser [193], it is clear that to obtain a reasonable size for
the CP asymmetry (e.g. O (107°)), the scale for M; must be at least O (10'?) GeV, a
result which is similar to that from standard Nj-leptogenesis. The allowed values of the
parameters: A ~ 10My3 ~ 20M;, A, ~ 35 are sufficient to the produce an asymmetry
of |efM| ~ 1076 ( where ) is the effective dimension-5 EMDM coupling and defined as
A= %) It is not well understood how one can get such big number Ay > 35 and what is
the effective theory 7 So, qualitatively speaking, we expect that successful electromagnetic
leptogenesis is achievable with these parameter choices which can in principle realized
in a realistic model. Secondly, the 5D-dipole moment operator can not give successful
leptogenesis in this choice of parameters.

Are there plausible models in which a sizable amount of EDM which links between light
and heavy neutrino occurs 7 A natural question we may ask is whether the introduction
of CP-violating dipole moment couplings will allow leptogenesis to occur at a lower scale,
closer to experimentally accessible energies. Suppose one assumes that C'P violation is due
to some sort of new physics at the TeV scale. Then one can write the effective low-energy,
dimension-5 Lagrangian as _%()\O)jk UL o8 Pp Ny, Fop+h.c.. If Ais O (1) TeV, then one
need to study the electromagnetic leptogenesis scenario more carefully. We will present a
realistic model where the resonant electromagnetic leptogenesis is possible and also explain

it’s intimate connection to the light neutrino mass.

6.3 Readlistic Model for electromagnetic leptogenesis

Now we shall discuss the possibility of generating a lepton asymmetry through the EMDM
interactions described earlier. Since we are interested in leptogenesis energy scales above
the electroweak phase transition, we shall identify the light neutrino in (6.10) to be a
massless LH state (the same vy, as appears in the SM lepton doublet), while N is assumed to
have a large Majorana mass as in type-I seesaw. The simplest model that we are considering
contains the minimally extended SM Lagrangian with three heavy RH neutrinos augmented
by dimension-5 EMDM operators providing neutrino mass via TeV scale seesaw mechanism.
The present model consists of all SM particles plus right-handed Majorana neutrinos (Ng),
a singly charged scalar (H™"), two extra Higgs doublets (X, D) and one singly charged

vector-like fermion with components E;, and Er. This minimal set of extra fields is shown
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to lead to (resonant) electromagnetic leptogenesis.

6.3.1 The particle content and symmetry of the model

Retaining the gauge symmetry of the SM, we augment the fermion content by including
three right-handed singlet fields IN;r and, in addition, a singly charged vector-like fermion
E. Also added are a singly charged scalar (H") and a pair of Higgs doublets (X, D). In
keeping with our stated paradigm of only one new scale, all the new masses are assumed
to be around a few TeV. While it could be arranged that all these masses arise from the
vacuum expectation value of a single scalar field, for simplicity, we incorporate explicit
mass terms. The entire particle content, along with the quantum number assignments, is
displayed in Table [6.2].

At this stage, we are faced with a problem generic to electromagnetic leptogenesis.
While the effective N £~ coupling has to be allowed (so as to allow the mandatory N —
v + ), the coupling of the fermion pair to the SM Higgs, viz. N/® needs to be highly
suppressed on two counts, (i) to ensure that the light neutrino mass, accruing from the
seesaw mechanism, is not too large and (i7) to prevent the N from decaying dominantly
to £ + ®. While this could, nominally, be ensured by invoking some symmetry wherein
the photon and the ® transform differently, such an assignment would adversely impact
the phenomenology of the charged particles. We rather choose to introduce a discrete Zs
symmetry. All of the SM particles as well as the charged singlet scalar H' are even under

this Zy symmetry, while all other particles are odd (see Table [6.2]).

Table 6.2: Particle content of the proposed Model

\ Field | SUB)c x SU@2), xU()y | Zy |

Fermions | Q = (u,d)T (3,2, 1/6) +
UR (3,1,2/3) +

dr (3,1,-1/3) +

(=, et (1, 2,-1/2) +

R (1,1,-1) +

Ey (1,1, -1) ;

Eg (1,1,-1) -

Ng (1,1, 0) }

Scalars o (1,2, +1/2) +
)y (1,2, +1/2) -

D (1,2, +1/2) -

HT (1,1, +1) +

The Z; symmetry allows both the Majorana mass terms v v and N N, but the former
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is precluded if we limit ourselves to a renormalizable Lagrangian. On the other hand,
the coupling of the neutrinos with the SM Higgs ®, namely a term of the form N/® is
prevented. More importantly, the Zy symmetry forbids an effective Dirac mass term of the
form N v as well as the the magnetic moment N¢vy. These can be generated only when
the Z5 is broken. Rather than break it spontaneously, and thereby risk domain walls, we
choose to break it explicitly, but only through a soft term. While preserving the essential
features of the model, this, then, allows the generation of both Dirac neutrino mass terms

as well as magnetic moments and, thereby, driving resonant leptogenesis successfully.

While the Yukawa Lagrangian for the quarks remains unchanged from the SM, that for

the leptonic sector can be written as

Lyuk 2 [yH Nr ELH" +ysl XEg + ypl DER

+ thiNR + hDElN)NR + yeEq)eR + h.C.:|

+ | 5(Nr)*MyNg — MpEREL + h.c. (6.15)

1
2

where the last two terms (My, Mg) represent gauge- and Z—invariant bare mass matrices.
In the above, ® = iogy®* (similarly for D and ¥) and yg, ys, yp, hs and hp are Yukawa

coupling matrices.

The full scalar potential in our model with the fields ®, 3, D and HT is given by

v

—pp|®* + M@+ m3 S + Ao [T+ mi| DI + As|D*
mj, [H* + M| H|* + Ao (27®) [H|> + App (DT D) |H|?
Aeu (ST8)H|? + Apsy (DTS)|H|? + % (@%)% + h.c.]
f1(219) (D'D) + fo (¢T®) (RX) + Ape(D'E)(21®)
fI®T S + f3|@TD” + f5 (DTD) (1%) + f¢| DI 2P

+ o+ + 4+ o+

(s XD (HY)* + hcl]. (6.16)

The parameters are so chosen that only the standard model Higgs scalar doublet acquires
a vev at this stage. The fields D and ¥ do not acquire any vev and both of them are
heavier than the right-handed neutrinos, so that the right-handed neutrinos can not decay

intov+ D or v+ 3.

We now introduce a soft term to break the Zs symmetry, so that it does not affect the
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other interactions and also does not cause domain wall problem. We introduce the soft

term without going into the details of its origin, which is given by:
Viost = 12 @D+ oo (6.17)

The scale of the soft symmetry breaking jisf; is lower than the electroweak symmetry
breaking scale, and we also assume that the mass of the scalar D is of the order of mgs ~
10 TeV. Ellipses above denote other allowed soft terms that do not concern us directly here.
With suitable choice of the parameters it is possible to arrange (D) << (®). The same
applies to the field ¥. This will then give us the Dirac mass term N/ and the magnetic
moment term N/¢v, as required for the present model. This will also generate the unwanted
term N/® due to the mixing of D and ¥ with ®, but this interaction will be suppressed
by a factor of (D) / (®), which if O(1073), is consistent with the light neutrino mass as

we explain below.

6.3.2 Neutrino mass

The Yukawa term ¢®N is not allowed because of the Z assignment in our model. Hence
there is no Dirac neutrino mass at the tree level. However after the soft breaking of the Z
symmetry after the electroweak phase transition, the field D gets an induced vev, which

in turn gives a Dirac mass to the neutrinos:
Mp = hp(D) = hpvg. (6.18)

There will be another contribution to the neutrino mass coming from the mixing of D
with the SM Higgs ®, which will be further suppressed by the soft Z, breaking scale, so
we do not include that contribution. The Dirac mass term together with the heavy right
handed Majorana neutrino mass My will then give rise to a light neutrino Majorana mass

via type-I seesaw mechanism:
m, = M5 MG M5

For the choice of parameters we are interested, Mp ~ 1073hpv ~ 107* GeV, for (®) =
v ~ 100 GeV and hp ~ 0.001, and the right-handed neutrinos are lighter than the SM
Higgs scalar, so My ~ TeV. This gives the correct magnitude of the light neutrino masses

my, ~ 10719 GeV ~ 0.1 eV. The hierarchy of masses could be obtained because of the
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different values of the elements of the matrices My and hp.

6.3.3 Estimation of the Dimension-5 EMDM coupling constant

First we present the dipole moment operator between light v and heavy N neutrinos
before deduce the potential implications of the EMDM operator in leptogenesis. Due to
the Majorana nature, the diagonal component of the dipole moment of Majorana neutrinos
is zero. There is only transition moments for them. The Lagrangian describing the neutrino
interaction between light v and heavy N neutrinos with electromagnetic field due to non-

zero anomalous transition moment has the form
Lev = )\jkvj Oap Ny, BP + h.c. (6.19)

The h.c. term is )\;kﬁkaaguiFaﬁ . In the decay calculations, it is much simpler to
consider the EMDM coupling between the associated chiral components of the v and V.

In terms of chiral component, the above expression becomes
Lrvm = )‘jk Iz O’aﬁPR NkFOéﬁ + h.c. (620)

The coupling Aji appearing in the EMDM operator is completely arbitrary and hence the
matrix A is complex in general. Now we need to estimate the value of the coupling strength

A in our model.

Ny, ! E ! vy

" %

Figure 6.1: Feynman diagrams which estimate the effective EMDM coupling strength between light neu-
trino v; and Nj.
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The Feynman diagrams which will quantify the EMDM coupling strength is shown in
Fig. (6.3.3). The relevant term which will give the effective operator is Tr; A\j, 0a3 Pr Nk BB,
In paper of Kayser [193], the value of A is A = % and the successful leptogenesis requires
A ~ 10'9 GeV and )¢ to be > 35. However, they did not construct any explicit model
to show how these numbers could arise and, in general, it is extremely difficult to get
such large value of A\g. The main motivation of this work is to show that it is possible to
construct a simple extension of the SM, where it will be possible to calculate this effective
coupling, which will lead to resonant electromagnetic leptogenesis. It should be noted that

without the resonant condition, it is not possible to have correct amount of leptogenesis in

these models, when the effective couplings are so small.

The Feynman rules and details of the calculation have been shown in appendix ex-
plicitly. Here, we will only give the final form of the EMDM coupling strength in our
model. The analytical expression for EMDM coupling strength which is responsible for

electromagnetic leptogenesis is given by

_ s yupsvp)
1672 [M2 — M3

[Ia + T, +Ic} (6.21)

Where Z,, Z;, and Z. are contribution coming from three diagrams shown in Fig.(6.3.3).

The dominant contribution coming from the diagrams (6.3.3 [a]) and (6.3.3 [b])

T, +T,=2Mg ([BP ~-BW - C}l)} - [Bgm —- B\ - CS)D (6.22)

Ty ME+a(1 - MZ) - (1 -z —y)ME — a(z +y) MF,
1
—yM% + z(1 —MIQJ) -1 —x—y)M% —x(ﬂ:—}—y)M?\,

w9y =

(6.23)

where n = 0,1, 2,.. is an integer.



6.3 Realistic Model for electromagnetic leptogenesis

119

Similarly, the dominant contribution coming from the diagram (6.3.3 [c|)

1
(y—y?—ay) MG —yME —(1—y)M}
1
(y—y?—ay MG —yMi — (1 —y)ME

1 1—x
ICZME/ d.%'/ dy(y—l)[Ql—Qg]
0 0

0 =

Qo =

(6.24)

The effective dimension-5 coupling constant A can thus be expressed in a simple form under
the assumption of almost equal mass for the particles in the loop (Mg ~ My ~ My, ~ Mcg)

as:
\_ _YSYHMsUD
6472 M3,

(6.25)
For a representative reasonable sets of parameters: My ~ TeV, My, ~ TeV, ys = yg ~ 1,
s ~ TeV and vp = 0.1 GeV, the EMDM coupling strength which is responsible for
electromagnetic leptogenesis is found to be A ~ 1071, Although the scales are shown to
be of the order of TeV, it could range from 1-10 TeV, with the condition, My < Mcg4, so
that Ngr can not decay into v+ D or v + X.

Now we shall investigate the viability of electromagnetic leptogenesis. We must first
check that the out-of-equilibrium decay of the RH neutrinos can give rise to a nonzero
CP asymmetry under the most general situations. In addition, it is also necessary to
examine whether the parameters considered in our model can produce an asymmetry of
the correct magnitude via the dimension-five dipole moment operator through the self-

energy enhancement.

6.3.4 Resonant Electromagnetic Leptogenesis

As has been described above, leptogenesis, in this scenario is driven by the electromag-
netic dipole moment terms appearing in the effective Lagrangian. Specifically, the lepton
asymmetry generated by the CP-violating decays of heavy singlet neutrinos to the SM-like
light neutrinos and photon. A natural question we may ask is whether the introduction of
CP-violating dipole moment couplings will allow leptogenesis to occur keeping the model
consistent with neutrino masses and the new physics will be accessible to LHC or ILC. As
should be apparent from the discussion in the last section, the size of the EMDM that is
generated and the extent of CP-violation in them is inadequate for thermal leptogenesis.
Indeed, this is a generic problem for all models of electromagnetic leptogenesis that seeks

to be consistent with observed physics and yet be natural. Given this, we investigate the
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possibility of a resonant enhancement. As is well-known, this mechanism is contingent
upon the existence of at least two neutrino species that are very closely degenerate, and
this is what we shall assume. Aesthetically, the extent of degeneracy needed may seem
uncomfortable. While it can, in principle, be motivated on the imposition of additional
global symmetries, it should be noted that, in all models of resonant leptogenesis, the
subsequent breaking of the same would, naturally, lead to a lifting of the degeneracy by
a degree that negates the conditions for resonant enhancement. Hence, rather than intro-
duce additional symmetries, and a host of fields an additional mechanisms to compress the
spectrum adequately, we just assume that the said heavy neutrinos are highly degenerate.
In this class of leptogenesis, only self-energy diagrams are important which we will present

in the following section.

The key quantity of interest in resonant electromagnetic leptogenesis is to calculate the
CP-asymmetry for the decay of Ny to a photon and a light neutrino as shown in fig:(6.3).
This quantity is given by

) D(Np —vj7) —T(Ny = 7;7)

e’
BT (Ng = v ) + T(Ny — 779)

: (6.26)

where I'(N, — vv) = >, I'(Ny, — v;7) denotes the decay rate (summed over final state
flavor j). So with this in mind, we begin by calculating the lowest order contribution to
the decay rate, I'(N, — v;y). Since we are interested in leptogenesis energy scales above
the electroweak phase transition, we shall identify the SM light neutrino v to be a massless
left-handed state while N assumed to have Majorana mass of around 1 TeV. As it is well
known that I'(N, — v;v) = I'(Ny — 7; ), the total decay rate is, I'yoy = 2I'(Ny — v ),

to first order.

Figure 6.2: The Feynman graph for the lowest order decay, N, — v; v via the dimension-5 EMDM coupling
of Eq. (7). Here ¢ = p — p’ and 2\;;, Pro®” g5 is the vertex factor.

The Feynman diagram for the lowest order contribution to the process is shown in
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fig:(6.2). The lowest order decay rate is given by

AFA
(N, —»vry) = %M,ﬁ’ (6.27)

For effectively creating a lepton asymmetry of the universe, the decays of Ny — ~ v should
be out of equilibrium, which is described by I' < H(T') |p=p;, whereI' =T (N; — v +7) =
(/\Z%Mf is the total decay width and H(T') = 1.67 91/2 T - is the Hubble parameter with
the Planck mass Mp; ~ 1.2 x 10'? GeV and the relat1v1st1c degrees of freedom g, ~ 100.

In order to satisfy the out of equilibrium condition, we should have

I <H(T = M)

2
2 My

()\T A) 1
= Y B <1674
Ar ~ERGe

(6.28)
where M is the mass of the lightest RH heavy neutrino which is taken to be 1 TeV. From

this expression, the upper bound on the EMDM couplings reads as

1/ZIAI2 <107% ar /1Tev) (6.29)

This is satisfied by the effective EMDM coupling A, for the choice of parameters we con-

sidered here.

Now the next task is to calculate the interference terms between the tree level process
and the one-loop diagrams with on shell intermediate states shown in fig. (6.3). In this
particular scenario, the EMDM coupling strength is found to be in the range from 10719
to 107! from our previous calculation. The usual contributions to lepton asymmetry
coming from vertex diagram is found to be very small, i.e, (e; = A2 /47 M; ~ 10722.107 .
M3 ~ 10~ "when M; is of the order of TeV scale) and hence, can be neglected. So the self
energy contribution will only be considered during the rest of the discussion. The Feynman

diagram contributing to the self-energy diagram is shown in fig. (6.3).

For resonant leptogenesis case, the CP-asymmetry [38,88,89,91] in standard Yukawa
mediated case is slightly different from the CP-asymmetry in the present case. The CP-
asymmetry [193] of Nj, decays via the interaction of (6.20) has been calculated for the case

of hierarchical RH neutrino. In this work, we have calculated the self-energy diagrams for
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Figure 6.3: Self energy diagrams which contribute to the CP-asymmetry of N;, decays via the interaction
of (6.20).

nearly degenerate heavy RH neutrinos and in this case, the CP-asymmetry found to be

M 3z I [(MNE] (2 = M2) MM,

= OV (M2 — 2P+ MPTE, (6.30)
D I (NN M\ (M2 — MP)M,T, (6.31)
(AT ke (ATA) mm My, ) (M2 — MZ2)? 4+ M2T2, '

Consider the case where M; ~ My < Ms. From equation (6.27), it is clear that I'y ~ I'y

for nearly degenerate right handed neutrino with mass M; and Ms. Hence, we can put the
t . : :

value of T'g ~ I'; = % M3 in the numerator of equation (6.30) and the expression for

the CP-asymmetry for N; dominated case becomes

M I (W] (M3 — M2)M ML
™ WNE (M- P+ MET

g1 = (632)

We are interested in the case where | My — Ms| > I'y. With this condition, the 2nd term in
the denominator of equation (6.32) can be neglected in comparison to the first term. So,

the the CP-asymmetry for the situation we are interested (|M; — Ms| > I'y) is

_%12 > my1 Im [ATN3,] M
o (ATA)2, M2 — M?

£ = (6.33)

The scenario of leptogenesis is different for the case where M7 # Ms. But in the almost
degenerate case, the asymmetry is resonantly enhanced. The factor in the denominator
can be simplified as M2 — M? = (My — My)(My + My) ~ 2May(Mo — My) ~ 2M; (Mo —

My). Under this assumption M7 ~ Ms and using equation (6.33), one can write the
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CP-asymmetry parameter as

(6.34)

where R = ﬁ

As described above, the CP-violating parameter can give rise to a net lepton number
asymmetry in the Universe, provided its expansion rate is larger than the decay rate. The
nonperturbative sphaleron interaction may partially convert this lepton number asymmetry

into a net baryon number asymmetry [84],
Vg~ —2.96 x 1021 k

where k is the efficiency factors measuring the washout effects associated with the out-of-
equilibrium decays of N;. In our model, the & is approximately 1073 in order of magnitude.

Hence the formula for baryon asymmetry of the Universe is given by
Y~ —2.96 x 10 % ¢, (6.35)

So we need |e1| ~ 1075 for successful baryon asymmetry of the Universe. This is easily
satisfied from equation (6.34) for R = 1010 or |[My — M;| = 1077 GeV where the right

handed Majorana neutrino are of TeV scale.

In this paper we shall not discuss the origin of the small mass differences between
the degenerate right-handed neutrinos, but for completeness we demonstrate that a mass
splitting of the order of 10~7 GeV is not unnatural for TeV scale right-handed neutrinos.
Consider a diagram with a vertex A\gp(DTD)(H'H) attached to the singly charged scalar
H which runs in loop and this kind of digram gives a finite contribution to the mass

splitting. A simple calculation gives

_ AupypyH (D)2

AMp (47)2  4Mp

(6.36)

For the mass of the charged lepton to be around 1 TeV (i.e, Mg ~ 1 TeV), (D)=0.1 GeV
and yg ~ 1, one can write

102

AMp ~v —
R 64r2My

AHD (6.37)

Now one can easily get the mass splitting between two right handed neutrinos of the order
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of O(10~7) GeV.

If we thus start with a symmetry to get a TeV Scale degenerate right-handed neutrinos,
after the symmetry breaking, we get a mass splitting between the companion states of
right-handed neutrinos to be in the range of O(10~7) GeV, naturally through radiative

corrections.

6.3.5 Numerical estimation for Yp

In generic leptogenesis scenario, the deviation of the distribution function of some heavy
particles from its equilibrium distribution distribution provides the necessary departure
from thermal equilibrium. The non-equilibrium process of baryogenesis via leptogenesis
is usually studied by means of Boltzmann equation [31,37,39,56,83]. We shall consider
the simplest case where the initial temperature is larger than M7, the mass of the lightest
heavy neutrino. In principle, one should take into account all B- and L-violating processes.
In this treatise, however, we consider only decays, inverse decays, AL = 2 scattering and

the sphalerons.

Within this minimal framework, the Boltzmann equations can be written as

d;/;vl = —{D(E) +S5(=)} [V - V] (6.38)
dZB; £ = —emD(2) [YNl - Yz@ﬂ — W(2)Ys-¢ (6.39)

where z = M;/T. There are four classes of processes which contribute to the different
terms of the equations: decays, inverse decays, AL = 1 scatterings and AL = 2 processes
mediated by heavy neutrinos. The first three all modify the N7 abundance and try to
push it towards its equilibrium value N7?. In this case, we have considered the normalized
quantity Yy, = Ni/s, s is the entropy of the Universe.

The term D(z) = I'p/(H z) accounts for decays and inverse decays and can be approx-

imately written as

Ki(2)

D(z) =z K o (2)

(6.40)

where parameter K is a measure of how fast the decay rate is in comparison with the

expansion rate of the universe at temperature at 7' = M; and defined by the relation

I'

K= H(T = M)

(6.41)
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Figure 6.4: Plot of equlibrium number density Figure 6.5: Abundance of RH neutrino and
and abundance of RH neutrino for different val- lepton asymmetry for different values of K =
ues of K =T'ny/H. I'n/H.

The scattering term S = I'g/(H z) represents the scattering process mediated by the
heavy neutrino and gauge scattering terms. Also Decays are the source term for B — L
asymmetry generation while W = I'y/(H z) is the wash-out term which tries to erase the
net B — £ asymmetry produced by the decay process. In our model, only decay and inverse
decays are important. Since the AL = 1,2 processes are suppressed, we shall not take into
account them while solving the Boltzmann equation. To ignore the AL = 2 scattering, we
need to replace the washout term W with a washout term with contribution only from the

inverse decays. This can be written as

1 PID ICl(z)

Wb =5 HzKy(2)

. (6.42)
The inverse decay width, I'ip, is related to the decay width by the equilibrium number

densities of the heavy neutrinos and lepton doublets,

Ny'(2)
NI

o = T (6.43)
For leptons, N;% = 3/4 at high temperature we are considering, while for heavy neutrinos

N1, the equilibrium number density per comoving volume Y57 is given by

yeo _ NN _ 45 33)

A |

22 Ko (2). (6.44)
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Combining these results, we get

12K(2)Ty 1, 1 N
Wip=-"2""1 — ~>»2D(2)K =-D . 4

Replacing the general washout term W with Wip, we arrive at the Boltzmann equations

and their solutions with only decays and inverse decays:

dYn e
—dzl = —D(z) [YN1 - YNﬂ (6.46)
dYp_ e
% — —en, D(2) [le _YNZ] — Win(2) Ye_r (6.47)
. 4 z IdYNl 7fz/ dz" WID(Z”)
K = —3/1 dz P (6.48)

Using the simplified set of equations, the final baryon asymmetry asymmetry can be solved
in terms of only two parameters: ep,, signifying the amount of CP-violation, and K,

signifying the strength of the decay compared to Hubble’s expansion of the Universe. The

0.001

Yn/Ye

1061

10°°

10~ 12

0.1 1 10 100

Figure 6.6: Plot of Yy = N/s and 10'° x Y5 as a function of temperature. It is important to note that
large baryon asymmetry is generated at 7' = M, but it is dissipated by the gauge scattering processes at
lower temperatures.

Boltzmann equations are numerically solved to give the present baryon asymmetry of the

Universe as shown in figure (6.5) and (6.6).
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6.4 Production of right-handed neutrinos through magnetic
moment

Magnetic moment of right-handed neutrinos

Due to the Majorana nature, the diagonal component of the magnetic moment of heavy
Majorana neutrinos is zero. There is only transition moments for them. First, we will
estimate the transition magnetic moment in the model discussed for electromagnetic lep-
togenesis. The Yukawa interactions of heavy Majorana neutrinos with S and E can be

rewritten in the following way
U ey T po e+ N+ vt
Ly 33 [NCH Y PrEC + NHY(Y )HPLE]

1 — _
+3 [EYyH PrN + E°Yj; H" P N¢] . (6.49)

Figure 6.7: Explicit calculation of dipole moments

In the model considered, we have four diagrams contributing to the transitional mag-
netic moment of heavy right handed neutrino, which are depicted in Fig. [6.7 (a) and (b)]:
a loop with the photon line attached to the F and Fig. [6.7 (c) and (d)]: a loop with the
photon line attached to the scalar H.

Assuming that heavy Majorana neutrinos are nearly degenerate, i.e., M; ~ M} ~ M,
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we derive the expression of uy;,:

e = 5z | Vi) = Vi (Vi i

x [Z(Mf, M? Mg) — I(Mg, M?, Mf)] (6.50)

with

(1 —x2)?
(1—-2)A+z(z—1)B+zC’

I(A,B,C) = / da

where Mg and My are the mass eigenvalues of heavy vector-like fermion E and singly
charged scalar H, respectively. In the equal mass limit (Mg ~ My ~ M), one can write

the transition magnetic moment of heavy right handed neutrino as

1 e
i = 1z | VI (Vithms = Ve Vit )i | 5 F (@) (6.51)
2
where the function F(z) is F(z) = & + §E=mE In(z) and the parameter x is z = %
E
The non-perturbative limit gives us [( Ig)km(YH)mj - (Yg)km(YH);m] < 4. We found

that 1/(6472) ~ 1073 and Yukawa couplings can take the value from 0.01 — 1. With this
spectrum, one can get the large magnetic moment of the order of 10~ °up for TeV scale

right handed neutrinos.

The most dramatic effect of a large EDM of a heavy neutrino will be in the production
cross section and angular distribution. A discussion of the differential cross section for
a heavy charged lepton can be found in Ref. [198,199] and we will qualitatively discuss
how one can produce RH Majorana neutrinos in near future experiment. In the discussion
of Escribano and Masso [200], one can write a U(1) invariant operator as: N g, (,ug\lf +
z'Dg\f)aag N, B*5, where B®Y is the U(1) field tensor. This gives a coupling to the
photon, which we define to be the EDM, as well as a coupling to the Z which is the EDM
times tanfy,. When we include the effect of Z coupling to N in the differential cross

section, it turns out that the contribution has very little effect on the result.

A discussion of the differential cross section for a heavy charged lepton can be found in
Ref. [198,199,201]. We are interested in the production of the heavy right handed neutrino

using the parameters used in the model. The differential cross-section for the process,
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ete™ — v, Z* — NiNj (k # 7), is given by

%:Z_j 1—% <F1+MPZZ-7:2>
(e )
where the values of Fi, F2, F3, Pzz and P, 7
Fi = p3 s sin? 6 (1 + 4]\52> ,
Fo=1+cos?0 — %SHPH—FSC\/COSH

s
4M*>
+ 13 s tan? Oy {sin2 0+ — (1 + cos? 6)} )
s

2

AN
Fs = 4pk s {sim2 0+

2
. (1—|—CO§ 9)} ,

32

(s—M§)2+F2M% ’
s(s—M%)
Pyz = 212 2072 "
(s = MZ7)? +T12M7

Pzz =

with ,u?“‘\? is the transition magnetic moment of heavy Majorana neutrino, Cy

(6.52)

(6.53)

L
2

2sin? Oy, and we have dropped the numerically negligible C‘Q/ terms, for simplicity.
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Figure 6.8: The differential cross section for the process e

Te~ — v, 2% — N;N; (i # j), for a given heavy

Majorana mass scale M = 200 GeV and a fixed center of collider energy /s = 500 GeV as a function of

scattering angle cos 6.

The differential and the total cross sections for the production of heavy right handed
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Majorana neutrino are shown in Fig. (6.8), (6.9) and (6.10). In Fig. 6.8, it is shown the
differential cross section for the process, ete™ — v, Z* — N;N; (i # j), for a given heavy
Majorana mass scale M = 200 GeV and a fixed center of collider energy /s = 500 GeV as

a function of scattering angle cos 6.

In Fig. 6.9, it is shown the total cross section for the process, ete™ — 7, 2% —
N;Nj (i # j), for varied heavy Majorana mass scales M = 200, 300, 400, 500 GeV as a.
function of center of collider energy /s. In Fig. 6.10, it is shown the total cross section
for the process, efe™ — ~,Z* — N;N; (i # j), for varied center of collider energies
V/s = 500, 700, 800, 1000 GeV as a function of heavy Majorana mass scale M. In these
plots, we have used an approximation that the final state right-handed neutrinos have
almost the same masses with each other, which is denoted by M. It can be seen that the
total cross section for the production of TeV right-handed neutrinos can reach a few fb,
o ~ 5 fb. After the production of a right-handed neutrino, it decays into a left-handed
neutrino (v;) and a photon (), Ny — v; + 7.

O (fb)

L | I I I I |
200 250 300 350 400 450 500

Figure 6.9: The total cross section for heavy Figure 6.10: The total cross section for heavy right
right handed neutrino ete”™ — v, 2% — handed neutrino ete™ — v, Z* — NyN; (k # §)
NiN; (kK # j) for various EDMs, in units of for various EDMs, in units of Bohr magneton. The
Bohr magneton. The cross section is shown as a cross section is shown as a function of heavy Majo-
function of center of collider energy /s and here rana neutrino mass M and here we have varied the
we have varied the masses of heavy right handed center of collider energy as /s = 500, 700, 800, 1000
neutrino as M = 300, 400, 500 GeV from the top GeV from left to right.

to the bottom curves.

We have considered the dipole moment interactions between the heavy right handed
neutrino and their light counterparts. As a consequences of this, the heavy right handed
neutrino decays to photon and light neutrino resulting required amount of lepton asymme-
try to explain the matter-antimatter asymmetry of the Universe. We have considered the
magnetic moments of right-handed neutrinos, whose masses are set at around TeV scale.

Because of the scaling rule of magnetic moment of neutrinos, the heavy right-handed
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neutrinos can, in general, have a large amount of magnetic moments evading a chiral sup-
pression. Such large magnetic moments can enhance the production cross section of TeV
scale right-handed neutrinos though the Drell-Yan process, ete™ — v, Z* — N;N; (i # j),
which is within the reach of the future linear collider (ILC).






CHAPTER

Summary of the Thesis

As we have illustrated throughout this chapter, the observational evidence for nonzero
neutrino masses, the origin of parity violation at low energy theory and cosmological
matter-antimatter asymmetry provides a strong indication for physics beyond the SM.
Although many proposals have been suggested, a particularly attractive way (in our opin-
ion) of breaking parity spontaneously in supersymmetric left-right model is possible. With
this in mind, our work involves studying several classes of supersymmetric models to have
spontaneously parity breaking, neutrino mass via seesaw mechanism and their connection

to lepton asymmetry and self cosistency with RG running of the coupling constant.

The first part of our work is a comprehensive analysis on supersymmetric left-right
models in the context of spontaneous parity breaking. We propose a novel implementa-
tion of spontaneous parity breaking in supersymmetric left-right symmetric model, avoid-
ing some of the problems encountered in previous studies by including a bitriplet and
a singlet, in addition to the bidoublets which extend the Higgs sector of the Minimal
Supersymmetric Standard Model (MSSM). The supersymmetric vacua of this theory are
shown to lead generically to spontaneous violation of parity, while preserving R parity.
The model is shown to reproduce the see-saw relation for vacuum expectation values,
VLUR & m%w relating the new mass scales vy, vg to the electroweak scale mgy, just
as in the non-supersymmetric version. The scale vg determines the mass scale of heavy
Majorana neutrinos, which gets related to the observed neutrino masses through type II

see-saw relation.
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We have discussed the different scenarios of spontaneous breaking of D-Parity in both
non-Susy and Susy version of left right symmetric models. We explore the possibility of a
TeV scale SU(2) g breaking scale M and hence TeV scale right handed neutrinos from both
minimization of the scalar potential as well as the coupling constant unification point of
view. We show that although minimization of the scalar potential allows the possibility of a
TeV scale MR and tiny neutrino masses in LRSM with spontaneous D-parity breaking, the
gauge coupling unification at a high scale ~ 106 GeV does not favor a TeV scale symmetry
breaking except in the SUSYLR with Higgs doublet and bidoublet. The phenomenology
of neutrino mass is also discussed.

The question of parity breaking in a supersymmetric left-right model, in which the left-
right symmetry is broken with Higgs doublets (carrying B—L = +1) instead of triplet Higgs
scalars (carrying B — L = 42) has been presented. Unlike the left-right symmetric models
with triplet Higgs scalars (carrying B — L = +2), in this model it is possible to break
parity spontaneously by adding a parity-odd singlet. We then discussed how neutrino
mass of type-III seesaw can be invoked in this model by adding extra fermion singlets.
We considered simple forms of the mass matrices that are consistent with the unification
scheme and demonstrate how they can reproduce the required neutrino mixing matrix.
In this model, the baryon asymmetry of the Universe is generated via leptogenesis. The
required mass scales in the model are then found to be consistent with the gauge coupling
unification.

We have analyzed the SU(5) gauge coupling unification and argue that the gravitational
corrections to gauge coupling constants may not vanish when higher dimensional non-
renormalizable terms are included in the problem.

We have constructed an explicit model to implement the idea of electromagnetic lep-
togenesis, a simple extension of the standard model with few extra scalars and fermions
and a discrete symmetry, which can explain non-zero light neutrino mass and generate a
baryon asymmetry of the universe through leptogenesis at the TeV scale, where the CP
violation comes from the electric dipole moment of the neutrinos. The usual decays of the
right-handed neutrinos are forbidden, but there is an effective coupling between the left-
handed and right-handed neutrinos, through the electronmagnetic dipole moment, which
allows correct leptogenesis with resonant enhancement. In this model light neutrino masses
originate from the seesaw mechanism, although the right-handed neutrinos have Majorana
masses of the order of TeV. All the new physics introduced are in the TeV scale, so that
the model may have detectable signals at LHC or ILC.
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Appendix

8.1 Feynman Rules for Majorana Neutrinos

We will discuss the simplest Feynman Rules involved in calculation of various digrams,
relevant for electromagnetic leptogenesis, used in Chapter-6. In particular, the simplified
set of Feynman rules for Majorana fermions used in our calculations will be discussed.
We shall follow the approach outlined in [56] and write down the corresponding rules for
Majorana fermions based on a four-component version (rather than the usual two) of the

Weyl spinor field, ¥ = ¥ g + eV (i.e. the Majorana field).

There are basically two types of interactions which are relevant for leptogenesis. Firstly,
we have the Yukawa coupling between ¢; and Np, and secondly, we have the electromag-
netic dipole interaction between vy, and vgr. To be consistent with the notation used in the
last section, let us again begin by writing down the interaction Lagrangian in terms of the
chiral field vp

Ling = LY vRd —TpNogsvr F*P +hec. (8.1)

where £;, = (vp,er)T and ¢ = (¢°,¢~)T are doublets of SU(2).

The interactions which are relevant for electromagnetic leptogenesis are as follows: (i,e.

the Yukawa coupling between ¢;, and N and the electromagnetic dipole interaction)

Lint = _yHN—REL Ht — ys (EL)C (EL)CE — Uy, S\Uag VR Faﬁ +h.c., (82)
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8.1.1 Majorana fermion propagator

Since the Majorana fermion of interest in electromagnetic leptogenesis is the RH neutrino
VR, let us first discuss the Majorana propagator. To begin with, we write down the theory in
terms of the two-component RH neutrino field, vg = (vp1, Vre, vr3)T , where the subscripts

are indices in flavor space:

P 1 1_ . c
Ly, =iVrPvR - 5 WR)* MpvR — VR M (vR)" . (8.3)

To diagonalise Mg, we let vgp = 7*VINg, where n = diag(e¥1/2, €'#2/2 ¢¥#3/2) and V is a
unitary matrix. Note that one can always select V' in such a way that the eigenvalues for
Mp are all real and positive. We have pulled out the phase yg, and will identify it as the

charge conjugation phase factor later. So, £, becomes
— 1—- N 1—
Ly, :zNR(?NR—i(NR)CDM (n )QNR—iNRDanNf%, (8.4)

where D); = diag(M;, My, M3) is the diagonal mass matrix for the RH neutrinos. At this

point, it is convenient to switch to index form and rewrite Ly, as follows:

17 — P P R
L =5 [iNred N+ (Nae )@ Nig, = My (N "Nk — My N N |

T2 {Z (Nr + e (Npk)©) @ Ny, + @ (N gr, + e 9% (Npp)©) @ ' N,
—Mk (NRk + e‘“"’“ (NRk)C)NRk — Mk (NRk + e‘“"’“ (NRk)c)eiSOkNl%k} ,

[iNp @ Ny — M NNy (8.5)

N |

where we have introduced the four-component Majorana field, N, = Ngy, + €9k N B Which
satisfies Ny = ei*"kN,‘;. Using the charge conjugation conventions of (6.3), we note that

Ny = ei#e N¢ = —e~ e NI CT. Therefore, one may rewrite (8.5) as

ENR = —% eiiipkNgCT [Za — Mk] Ny . (8.6)

From this, the Majorana propagator for N can be readily read off as

. : [—z’ (p+Mk)CLB , 8.7

(SN, (D) a5 = p? — M2+ ie



8.1 Feynman Rules for Majorana Neutrinos 137

where A, B are spinor indices and p is the four-momentum. Note that this is the one and

only Majorana fermion propagator arising in this approach.

8.1.2 Vertex factors involving a Majorana fermion

Using vg = n*VTNR to write (8.1) in the mass eigenbasis for the RH neutrinos, where all

symbols are as defined in the previous section, the Lagrangian becomes
Ling = =" lLhNr ¢ — 1" T Aoas Np F*P 4+ hec. | (8.8)

where we have set h = YV and A = AV, Writing this in index form and introducing the

four-component Majorana field, N, = Npy, + €% Ng,,, we then get

Ling = —e_i‘p’“ hjk ZL]' Pr N ¢ — eiwk h;k Nk P ng ¢T
— € \jp UL 0ap Pr N FOP — 9% X5y Ny 0 P F7 (8.9)
= e ¥k |:_hjk; (rj PR Ny ¢ + [ NI CTPyr;f

_2>\jk Vrjoag Pr Ni 9~ AP + 2>‘;k le lell oap Prvrj o° AP (8.10)

where in the last step we have used the fact that F®8 = 9*A8 — 9% A% with A being the
photon field, and 0,3 = —0g,, to simplify the expression. It is important to note that
the transition EMDM term displayed in (8.10) has the same form as Eq. (6.10), hence

everything that we have discussed regarding the coupling \;; remains valid.

Returning to (8.10), the vertex factors for the four processes are given by :

l

Ny, —>ij¢_5 : N J = —ihjkPR (811)
l

Ny, —>ZL]‘¢ : N J :ih;k CTPL (8.12)
14

Nj, — VL AP N { = 2)\jk Pro%q, (8.13)
g\

1%
Ny — vr; AP - N % = —2)\;,~C Cto®rq,Pr, (8.14)

where we have again dropped the phase factor for convenience.

IS
-2
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8.1.3 External lines for Majorana fermion

Because of the self-conjugacy of Majorana fermions, there are several possible choices in
assigning spinor wave functions to the external lines. We select one convention that is

consistent and use it for all diagrams. Specifically, our assignment is as follows

incoming N : N 4@ = u(p) (8.15)

outgoing N CO—=nN  =ulp) (8.16)

8.1.4 Propagators and external fields

1 ticl : D(p) = 8.17
scalar particle ¢ (p) T mi i (8.17)
massless spin-1 particle : D,.(p) = — (8.18)

. p? + i€
, , i(p + me)
Dirac f 0 S = |5 8.19

irac fermion Siplap = | o <] e
external scalar particle : 1 (8.20)
incoming/outgoing photon : en(p) / €,(p) (8.21)
incoming/outgoing Dirac fermion : u(p) /u(p) (8.22)
incoming/outgoing Dirac anti fermion : o(p) /v(p) (8.23)

In the above, p denotes four-momentum as usual.

8.1.5 Polarization sums and decay rates

In calculations, the following results are often useful:
Sumepem, Ywepom, Yein = o,
s s pol

T
C > uu| Ct=C@p +m)Cl=—p+m,

W)t =uct, (u)' = —-uTC™°, (u)* =C*y'u,

P =9t ot =400 (8.24)
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8.2 Decay rate calculation N, — vy
The EMDM interaction Lagrangian is
ﬁ%]l?/[ = _)\jkﬁLj O'OCBPR]\/Y]C Faﬁ+h-C- , (825)

where j = e, u, 7 and k = 1,2,3. F,3 = 0,Ag — 03A, is the electromagnetic field strength
tensor, with A, being the photon field.

Figure 8.1: The Feynman graph for the lowest order decay, N, — v; «y via the dimension-5 EMDM coupling
of Eq. (8.25). Here ¢ = p — p’ and 2\j; Pr 0% gp is the vertex factor.

Now we will calculate the lowest order contribution to the decay rate, I'\y, _., ) and
from now onwards we shall call it as tree level diagram. The tree-level diagram for this

process is depicted in Fig. 8.1. The amplitude for the tree level process is as follows

—iM = ﬁj(2)\jkPRaapqa)u25; , (8.26)
T
= M2 = Uj (20, PRO 0 )uje), [ﬂj(ZAjkPRaﬁg%)uiei] ,
= 4(A;k)\jk)ﬁjPRaapqau2€;€a(—ugCT’yO)’yOaﬁ"qﬁfyOPR’youj ,

* _ [ _ i -
= —4(NjpAji)u; P 3 v, 7°] 4o Cut ul CT 5 {76,7 ] qpPruj ,e4(8.27)

Averaging initial and summing final polarizations, we obtain

T
TP = (5w Prh? —#0C | 5 | Ol —2"Pe 3 gy e
s s’ pol
= SO0 T [Pr (4 —4#) (—b + M) — A D Pr (~gp0)]
= (\jpdjr) [16(0- ) (0" - @) = 4(p - 1')(a - 9)] - (8.28)

where we have taken the masses of the light neutrino and photon to be zero. Working in
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the centre-of-mass frame where

p= (M, 0), p'=(M/2, -0, a=(M/2,9, |qdl=M/2, and

p=pq=p-q=M2, pPP=(p-p =M, =) =0, (8.29)

Eq. (8.28) becomes
[M|? = 4 (Njedj) Mj; - (8.30)

q -
PN —vy) = [P
cm

1M, 1
= — 2 AW\ M

AfA
_ O 473’“’“ M (8.31)

)

where we have summed over j. Since we must necessarily have I'(N, — vv) = I'(N, —

v 7), the total decay rate is, I'yor = 2I'( N, — v7y), to first order.

8.3 One loop Self-energy calculation for C P asymmetry

In this section, we present the calculational details of the self-energy contributions to the
CP asymmetry in standard leptogenesis with the help of simplified Majorana Feynman
rules, as well as to confirm that the known results can be obtained this way. Note that
there are actually two separate self-energy graphs that contribution to the interference

term when final state flavor j which is not summed over.

Interference term involving the self-energy correction of Fig. [8.2](a)

Firstly, let us consider the self-energy contributions. Applying the Feynman rules developed
for the EMDM couplings, we can write down the interference term of between the tree level

diagram [8.1] and the self energy diagram [8.2] as

d'q \ N av .
= [ Gyt XX m A i) [l PR ™ Goloa 15w (D) [ Pro™ (~a29)]

< [Se(=a)lpr |CTo™asPL] | [uf] oy [Dou(@2)el)yy |—uf Clo™ e, Pruge, |

FB
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Figure 8.2: Feynman diagram for the self energy contribution to the CP-asymmetry of N; decay via dim-5
EMDM coupling with 7, as the intermediate state.

where the —gog in [- - - |z 5 comes from the fact that photon momentum, go3 is flowing into

(3)

the vertex. Letting A" = )‘;k)‘jm)‘nm)‘;k and using matrix form, we then have

ISD _ 1614(5) / d4ql Hj PRUQVQa(_i)(p + Mm)C (_UBJQQB)TPE(i)(_ﬁl)T
self-(a) A (2m)4 (p? — M2 +i€)(q? + i€) (g3 + i€)

X PLT(U5HQ25)TC*UE(_i)90u evep(—1)ui CTa"q, Pru; ,

—8i A / d*qr Pro® qa(p + M) g25Prd, PLo®qasC 2, uyin]" C1

(2m)t (p? — M3, + i€) (qf + i€) (g3 + ie)
x 0" 4 Pr.goyp Z u;T; Z E,Ep 5
s’ pol
i A M,,, My, / diq 1
- )T (2 — M2, + i@ 1 i@ + i
x Tr [PRWVV =7 D477 =7 b, (470 — Vo d,) (dn — %%)}75/] ;
A v / d*qr (1 q) [-256(q - q2)(q1 - q2) + 64(q - q1)43 ] (8.32)
AR et (02 = M2+ ie) (@] + ie) (g3 + i) '
The discontinuity of the integral
g, (' - q) [~256(q - : 64(q - q1)g3
I, = Z.Mka/ d'qr (¢ - q) [-256(q qg)(ch a) + : (- 01)43) 7 (8.33)
(2m)* (p? — M2, +ie)(q7 + ie) (g3 + ie)

may be determined by the cutting rules as described before, hence

Disc [Ig’_]()a)} = ZMka/ (653)14 (—2mi)25(q2)6 [(pp—2 q_l);};)(El)G(Mk — E)

x M7 [—128(q - q2)(q1 - @2) + 32(q - q1)@3] . (e—0).
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Using ¢1 = (F1,q1), g2 = p — q1 and (8.29) to simplify, we eventually get
}  —iM}M,,

Ar?(MP - M2,

X O(My, — Ey) [—64 (Mg — Ey + |q1| cos ) (MyEy — ET + |q1]?)

+16 (Ey — |q1| cos 0) (M, — Ev)* = |@1]?)]

Disc [Ig}(?a) )/d?’qldEl S 0B — 1)) [(My — E1)? — |@i 2] ©(E)

where 6 is the smaller angle between ¢; and ¢. Performing the integrals using all the

standard tricks, we obtain

MM
Disc [155_]()) — 0 My,

a}  8n2(M} - /!qll d|i|dQ & [M; — 2Mp|qi[] © (M — |ai])

X [—64 (M, — |q1| + |q1| cos 0) (My) 4+ 16 (1 — cos 6) ( P 2Mk|q1|)] ,

—i MM, M} My, | M,
:16772(M,3—M,2n)/d9 1 [—64<—+—COSH +16 (1 —cosf)| ,

2i M} M,
= 2 MM (8.34)
m(MZ — M2)
The imaginary part of this interference term and its corresponding phase space, V, are

given by

I [12)] = 7 MM, a1

= = ) 8.35
M —m3, )’ Y 8mEZ,  16mM, (8:35)
Note that unlike standard leptogenesis, there are no extra factors of 2 in the phase space for
this diagram because only one intermediate (and final) state is possible. Putting everything

together, the C'P asymmetry due to this interference term is

4
Enelt-(a)- = " Z;ﬁk >t [ AP 1 [ 125,
M2
~ g o O 25 630

where z = M2 /M2

Interference term involving the self-energy correction of Fig. [8.3](b)

Now we will calculate the interference term between the tree level diagram [8.1] and the

self energy diagram [8.3|(b) which is
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Figure 8.3: Feynman diagram for the self energy contribution to the CP-asymmetry of N decay via dim-5
EMDM coupling with v, as the intermediate state.

d4q — av ag
oy = | Gyt 108 Wilic [PRo™ o (83, ()] a |10 (~a20) P

x [Se(q)lpr [PRUM‘J%} D [ui] p1 [Dop(a2)er] [‘ugCTUnpanLuj gp} "

BE

where B§\5) = )\;kkA]mA;m)‘nka

— 168® / dqr Uy PRUGVQa(—i)(P + Mm)CCT Uﬁa(—QQg)PL(i)glpRa‘S“q%ui
ANCZOR (p? — M2, +i€)(q} + i€) (g5 + ic)

X (—=1)gop azsp(—l)quTa"panLuj ,

) [ d*q Pro® qa(p + My)o"7 o Prg, Pro®qasC [32 weag)" Cf

= —8iB) 7l 5

(2) (p? — M2, +i€)(q7 + i€)(q5 + ic)

X 0" Gy Prgo Z u;Uj Z €,Ep 5

s’ pol
8 [ dqr —IT (PR — 7 D1~V )y (e — 1o, (a0 — 1]
A o@n)t 2 (p? — M2 +i€)(qf + ie)(q5 + ie) ’
G d4c]1 32iM1? [4(q “q2)(q1 - q2) — (q- Ch)qg —4(p-q2)(q1-q2) + (p- C]l)qg]
- B)\ 4 . 2 . 2 . )
(2m) (p? — M2, +i€)(q7 + i€)(q5 + ic)

(8.37)

Focusing on the integral:

D 5321.M4/ d*qr 4(q-q2)(q1-q2) —4(p-q2)(q1-a2) — (- q1)a3 + (p- ¢1)d3 ‘
s(b) "] (2m) (p* — M2, +i€)(q} + i€) (g3 + i)
(8.38)

The discontinuity of this integral is determined by cutting through the propagators with
momenta ¢q; and ¢y, which then results in (g2 =p — ¢1,¢1 = (E1, ¢1)):

Disc([jl()b)) =

32i M} / d*q
M2 — M2,

@t (208 [(p — 01)°] O(E)O(My — )

x [4(q - q2)(q1-a2) —4(p - @2) (a1 - @2) — (a- @1)g5 + (p- @1)a3]
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i M} 4
32i M}, / d*q (=2mi)28(¢2)6 [(p — 01)2] ©(En)O (M, — Ey)

T MMz ) ot

x [4(g- @) (q1 - a2) —4(p- @) (1 - @2) — (q- @1)@5 + (P @1)G3]

—8i M} 5 , , ; 2
_ My BeidBy S(E2 — |@i[2)6 [(My — Ev)? — |@i]2] ©(E)O (M — E
wz(Mg_M%)/ @dEy 8(Ef — |@i[*)d [(My, — Er)* — |@1|*] ©(E1)O(M, — Er)
o Mg M,
X [4(MkE1 — E? +|q@%) (T - Tk(El 1| cos §) — M? + MkE1>

M, R N
+(MeB— G = Wileost) ) (0 = B - 1))

where 6 is the smaller angle between ¢ and ¢j,

. —21 M5 . B R
Disc(Ih,)) = 7_(_(M2— / | d| G 1dQ — |~ | § [(My = |@i])* — @ [*] ©(My, — |qil)
k
x [AMy|Gi| (— My, + |1 | + |@1| cos 0) + |qi] (1 + cos ) (M, — |@i])* — @ )]
2i M?

— 1 My,
k L2 g1
= 5~ d|q1|dQ) ———— O(Mj, —

7T2(M]3 M2)/|Q1| |71 ’_22‘[‘ [|QI| 2} (My — |q1])

X [AMy, (= My + @] + |671|0089) + My (1 + cos ) (M}, = 2|q1)]
—i M} M
:Z—/d¢/ (cos @) —><4 Qk(l—cosé?),

T2 (ME — M?
21 Mk
=——. 8.39
<M~ M3) 5
So, the the imaginary part is given by

1 M

5D | _ . 5D | _ k
Im |:IS—(b):| = 2_1 Disc |:IS—(b):| = m . (840)

The total decay rate is given by the twice of (8.31) and phase space is same as for Fig.
[8.2](a) with V,, = 1/16mMj,. Therefore,

4
EoRlt (b)kj = T > Zlm(B@) Im(170,)V5)

tot

m#k n
M? 1
i S o] e

where we have summed over all heavy Majorana neutrino species m # k, as well as internal

lepton species n. This expression is valid for the hierarchical neutrinos (i.e, for M;, < M;).
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Resonant enhancement: When two RH neutrinos are nearly degenerate

in mass

When we start calculating the imaginary part of the interference term, we did not con-
sider that right handed Majorana neutrinos are unstable and hence can be decay. In this
situation, one should take into account the decay width of the heavy Majorana neutrinos
in the propagator. So one should write p? — M2, + iMyI', instead of p? — M2 +ie. With

this, the expression for Discontinuity relation becomes

d4
5 q1
DISC(IS(:?f res: (b)) = Bg\ ) / (27‘1’)4

" 32iM;; [4(q - q2)(q1- q2) — (¢~ q1)q3 — 4(p - @2)(q1 - @2) + (- q1) 3]
(p? — M2, + iMyT) (g3 + i€) (g3 + ic)

i M M} M
= d 0) —k 1 — cosf
72(MZ — M2, + iM,T,,) / ¢ / €08 — (1~ cos)
_ %MS(M,? — M2 —iM,T,,) (8.42)
= (M7 2P AT, '
So, the the imaginary part is given by
1 1 MP(M? — M2)
I [1513 ] ~ — Di [15]3 ] = hTk o m) 8.43
| Lselfres:(b) 2 ISC | Lgelf-res: (b) - (Mlz — M%)Q + M]zrgn ( )

The contribution to the C'P asymmetry due to this self-energy enhancement is

5D 5D
6self—res:(b)—lc,j Ft R Z ZIm Iself res: (b)VS@) )
m#k n
M? (M2 — M2) M?

_ "k k m k
=~ Zlm[ A ym (AT i ](M,f—M,?,L)2+M,§F%n (8.44)

2
= — g Im | \* )\-m()\ Ak
Tk

. <Mk )3 (MP — Mp,) My, Ty, (8.45)

M, ) (MZ=MM2)%+ MITZ
Similarly, the the imaginary part coming from the interference diagram [8.2(a)] is given by

1 1 MM, (M} - M2)
5D : 5D k k
Im [Iself res: (a)] = 2 Disc |:Iself res: (a)] = ; ( A []3 — mﬂ[Q )2 n 7‘{5}?2 :
m m

(8.46)
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and the contribution to the C'P asymmetry due to this self-energy enhancement is

25D (5) 5D
Eself- res:(a)-k,j Ft . Z Zlm A Im Iself res:(a )V ) ’
m#k n

(Mlg — Mgz) Mk M,

)\TA Z tm [ sAim(A A)km} (MZ = M2,)% + M2T2, (8.47)
__ 2 S Im [A*kA (AT A)mk}
()\T)\)kk()\T)\)mm ot gk
M \?% (M2 — M2)M,T,,
o (Mi)" My — M) My T (8.48)
M, ) (MZ—M2)?+ M2T2,

where the tree level (lowest order) decay rate is I'( Ny — vy) = %Mg’

Hence, the total contribution to the CP-asymmetry due to self-energy enhancement,
when the heavy right handed neutrinos are nearly degenerate in mass, is the sum of these
terms (8.47) and (8.44) and is given by

5D 5D 5D
Eself-res-k,j — Eself-res:(a)-k + Eself-res:(b)-k,j (849)

8.4 Calculation involving 5D-EMDM coupling strength

In this section, we will present the detailed calculation for the five-dimensional dipole
moment coupling between light v and heavy N neutrinos before deduce the potential
implications of these EMDM operators for the electromagnetic leptogenesis as discussed
in chapter-[6]. The general form of this dipole moment coupling of the light neutrinos,
v, to the heavy neutrinos, IV, is given by TAo,gN B®? where \ is the five-dimension
EMDM coupling constant (A mainly gives information about the magnetic and electric
transition moments). In the subsequent discussion , we will evaluate whether the lepton
number violating radiative decay of the heavy sterile neutrinos (N — v7) through this
5D-dipole operator which can explain the baryon asymmetry of our present universe. For
this calculation, we have considered a minimal extension of the SM with right-handed
neutrinos, one vector like charged fermion E~, a charged scalar HT, two extra Higgs
doublets (3, D). The Feynman digram for this 5D-EMDM coupling constant is shown in
figure (8.4). The amplitude for this loop diagram is

M =a;(p") THu(p) Au(q) (8.50)



8.4 Calculation involving 5D-EMDM coupling strength 147

where the vertex factor I' contains the contribution from the three diagrams shown in

figure (8.4) and can be written in three parts.

" %

Figure 8.4: Feynman diagrams which estimate the effective EMDM coupling strength between light neu-
trino v; and Ny.

The vertex contribution from the diagram (8.4[a], [b], [c]) is given by

d'k i i
. = —(GysPr)———— (—iyuy P
o /(%)4 OO Pr) gy e T PR [ ThE g 1

x (ielp—p'") [ — k)2 — M3 +id] (i psvD) W —FP — MZ e (8.51)
r“—/ﬂ('*p) i (i Pa) i
0= ) ot T My e T kR - M tid
x (ipsvp) R MEiid (ielp—p'1") R Tid (8.52)
Fﬂ_/ﬁ(-*P) i ( M);(_' P)
T ) et R T My e - Mp i YR
x ! ! (8.53)

R PRt R T e v
Let us consider the vertex contribution coming from the diagram (8.4[c|). This can be

written as

u . &k
P[c] - (eyz YH Us UD)/WD PR[% —44_ ME]’YM [k"i_ ME] Pr (8.54)
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where

-1
D' = [{(k - q)* = M} {* = ME]} {(p — k)* = MEH (' — k)* — M3} (8.55)

Now, these loop integrals can be calculated using the standard tricks of Feynman

parametrization and dimensional regularization scheme.

Some useful formula in dimensional regularization scheme

The standard integrals which will be useful in the calculation are given below

/dx/d/ (1l—z—y—2)
Y laz+by +cz]®

1—x 1
-2/ 4a d 8.56
/0 y/o Za—i— b—a)y+(c—a)z]3 ( )
1 1 bdt
E_b—a/at / b+ ( a—b [b+ (a—0b) 22 (8:57)
1 1 bdt 1 1 1
@—b_a/at—r—b_a<a‘z> (8.58)

The dimensional regularization modifies the dimensionality of the loop integrals so that
the expressions become finite. Firstly, we have to change 4-dimensional integral to D-
dimensional integral (where D = 4 —n and for n — 0, we will revert back to original
thing). Corresponding to the standard integrals in 4-dimension, the integral formulas in

D-dimension is

/dD "R ES T K2+ S +id S +dem iWD/QP(nP_(nl))/z) Sn_lD/Q (8.59)
/de k‘2+5—{—ze] =0 (8.60)
/dD k r fgk: = _ i o0rI ;1?(7/12) -1) Sn_ggjz_l (8.61)
[ g = Sy g (5.62)

Similarly, the expression for g"”, trace of gamma matrices and gamma identities will be

changed accordingly.

Finally, after doing the simple algebra, the analytical expression for EMDM coupling
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strength which is responsible for electromagnetic leptogenesis is given by

(Y3 YH 115 VD)
- To+1p+ 1. .
TRl R (8.63)

Where Z,, Z, and Z, are contribution coming from three diagrams shown in Fig.(8.4). The

dominant contribution coming from the diagrams (8.4 [a]) and (8.4 [b])

To+ 3 =2Mp (|B” - B - c{V] - |B{" - BYY - cf)) (8.64)

1 11—z
Cfn) :/ dac/ dyy" wy
0 0
1 11—z
Bén) = / dx / dyx"™ we
0 0

1 1—x
CQ(n) :/0 dx/o dyy" wo (8.65)

where n = 0,1, 2,.. is an integer and the value of w; and wy is given by

1
w1 =
—yME+x(l-ME) - (1—2—yM;—z(z+y)M%
1
we = (8.66)
—yME+x(1-M%)— (1—2—y) Mz —z(z+y) M}
Similarly, the dominant contribution coming from the diagram (8.4 [c])
1—x
I, = ME/ dx/ (y — D[ — Q]
T -y MR - yM2 (1—y)Mg
1
0y = (8.67)

(y—y?—axy MG —yME — (1 —y)ME

The effective dimension-5 coupling constant A can thus be expressed in a simple form under
the assumption of almost equal mass for the particles in the loop (Mg ~ My ~ My, ~ Mcg)

as:
Y5 YH s UD
A= 228 s D 8.68
6472 M3, (8.68)
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