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Abstract

An introduction to the self-imaging phenomenon, an overview of conventional

multimode interference devices and photonic band gap materials is provided

in Chapter 1. In Chapter 2 a novel class of a waveguide resonator based

on self-imaging has been proposed. It is an improvement on a previous self-

imaging based design. A critically coupled resonator is analyzed for oblique

incidence in Chapter 3. An ultra sensitive waveguide interferometer having

a fringe spacing of ∼ λ/1000 is described and analyzed in Chapter 4.
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1 Introduction

The repetition of an electromagnetic field pattern along the direction of prop-

agation, or self-imaging, was discovered by Henry Fox Talbot and explained

later by Lord Rayleigh. Self-imaging can occur both in free space (known as

Talbot Effect, for a periodic input field) and inside multimode rectangular

cross sectioned waveguides. Multimode interference (MMI) devices are based

on the principle of self-imaging and have numerous applications in telecom-

munications since they are compact, have a low loss, a high optical bandwidth

and a high fabrication tolerance. They are widely used in planar waveguide

devices. In the paraxial approximation, a symmetric electromagnetic field

profile propagating in a rectangular waveguide repeats itself at distances

of L = 4b2/λ where b is the guide half-width and λ is the wavelength of

the propagating field. Anti-symmetric beams and beams with no definite

parity repeat at intervals of 2L and 8L respectively in rectangular multimode

waveguides.

Photonic crystals or photonic band gap materials are periodic dielectric

structures that can inhibit the propagation of electromagnetic waves through

them. One-dimensional structures were known for a long time and have

1
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seen applications like the dielectric Bragg reflector. Higher dimensional

periodic structures have been studied since 1987 following the proposals

by Sajeev John for light localization and Yablonovitch for guiding electro-

magnetic waves. Photonic crystals are being tailored along similar lines

as semiconductor devices (considering their strong analogy) for providing

good guiding structures for electromagnetic radiation. The inhibition of

propagation takes place due to Bragg scattering off the interfaces in the

dielectric structure [5, 6, 7, 8].

In this chapter an overview of self-imaging, multimode interference de-

vices, photonic crystals and few of the methods used for their analysis will

be presented.

1.1 Self-imaging

Self-imaging, the phenomenon of reproduction of a wavefield at regular in-

tervals along the direction of propagation, was discovered more than 170

years ago by Henry Fox Talbot in 1836[9] and explained analytically by Lord

Rayleigh in 1881. For a linear grating illuminated by light of wavelength

λ and having a plane wavefront, he showed that the intensity distribution

repeats itself at distances of 2d2/λ along the direction of propagation of the

wave, where d is the grating period.

Subsequent related studies (see for example [10]) were on grating image

formation ion microscopy, Fresnel diffraction field behind periodic objects

and the general conditions that an object must satisfy for repetition of its
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complex amplitude transmittance along the illumination direction. Periodic

structures exist in other fields of science such as crystallographic structures

and hence self-imaging has been studied in various fields like optics, electron-

microscopy and acousto-optics. In the field of optics, there have been appli-

cations in image processing and synthesis, production of optical elements,

optical testing and optical metrology. This phenomenon is still actively

studied by many researchers from the scientific as well as the technological

perspective.

1.1.1 Self-imaging in free space

A periodic object (for example, a uniformly illuminated grating) is the sim-

plest example for the demonstration of the Talbot effect. If the grating is

periodic along the x-axis and the illuminating monochromatic beam propa-

gates along the z-axis, the complex amplitude just behind the grating is

u(x, 0) =
∑

m

cm exp (2πimx/L) (1.1)

The amplitude of the propagating wave at a different plane (in the paraxial

approximation) is given by

u(x, z) ∝
∫

∞

−∞

exp

(

ik
(x − x0)

2

2z

)

∑

m

cm exp

(

i
2πmx0

L

)

dx0 (1.2)
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This finally gives

u(x, z) ∝
∑

m

cm exp

(

i
2πmx0

L

)

exp

(

−i
πm2λz

L2

)

(1.3)

This shows that for an illuminated object of periodicity L, its image repeats

at distances of zT = 2L2/λ. This is called the Talbot effect and zT is called

the Talbot distance.

1.1.2 Self-imaging in waveguides

Self-imaging can also occur in waveguides [11]. The guided modes that

are excited in a waveguide interfere while propagating along the waveguide

channel. The phases picked up by the various modes are different and

at a certain distance beyond the input plane, where the phase differences

between the modes equals an integer multiple of 2π, the input profile is

regenerated. Expressed mathematically, the field at the input plane(z = 0)

in the waveguide can be written down as a superposition of the guided mode

profiles Fm(x) with coefficients am

u(x, 0) =
∑

m

amFm(x) (1.4)

where m corresponds to the mode index. At a distance z from the input

plane, the modified field is written as

u(x, z) =
∑

m

amFm(x) exp (iβmz) (1.5)
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where βm is the propagation constant corresponding to the m-th guided

mode. For example, in planar waveguides of width 2a with metallic walls

the propagation constants are given by [4]

βm =
2π

λ

[

1 −
(

mλ

4a

)2
]1/2

(1.6)

where λ is the wavelength and m is the mode index. In the paraxial approx-

imation,

βm ≈ 2π

λ

[

1 − 1

2

(

mλ

4a

)2
]

(1.7)

This implies

(βm − βp)z =
2π

λ

1

2

(

λ

4a

)2

(p2 − m2)z (1.8)

would equal an integer multiple of 2π at distances of 16a2/λ when all the

modes are excited.

1.2 Conventional MMI devices

Any structure capable of guiding light from one place to another is an optical

waveguide. The simplest and most well known optical waveguide is an optical

fiber. The mechanism of guidance of light through an optical fiber is total

internal reflection. Solutions of the electromagnetic wave equation for the

system are called the modes of the system. These field profiles propagate

unchanged through the system and are characterized by their propagation

constants. For example, a planar waveguide with the axis along the z-
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Figure 1.1: Schematic of a planar waveguide.

direction, and the x-axis being along the transverse direction, the scalar

wave equation

d2E(x)

dx2
+ k2

0ǫ(x)E(x) = β2E(x) (1.9)

has a solution of the form

E(x, z) =
∑

m

Em(x) exp (−iβmz) (1.10)

where Em(x) is the transverse mode profile of the m-th mode having a

propagation constant βm. If a waveguide admits more the one mode profile as

solutions to the wave equation, it is called a multimode waveguide. Propaga-

tion along the waveguide channel proceeds with the interference of the modes

in a multimode waveguide. Devices using this mechanism of interference of

modes are called multimode interference(MMI) devices. Examples of such

devices are directional couplers, self imaging waveguides, etc.



7

The modes of a planar waveguide of width 2a (Figure 1.1) are given by

Em(x, a) =
1√
a











cos (πmx/2a) , if m is odd;

sin (πmx/2a) , if m is even.
(1.11)

These modes satisfy the orthogonality relation

∫ a

−a

Em(x, a)En(x, a)dx = δmn (1.12)

The corresponding propagation constant is given by βm = 2π
λ

(

1 − 1
2

(

mλ
4a

)2
)

There are three known waveguide resonator designs[12]. In the Case I

design a plane mirror is placed at the guide exit. In the Case II and Case

III designs curved mirrors with radius of curvature z and 2z0 and guide exit

to mirror distance much larger than z0 and equal to z0 respectively are used.

Here the radius of curvature of the wavefront is R = z + z2
0/z, the Rayleigh

range is z0 = πw2
0/λ and the beam waist is w0 = 0.7032a. The mirror

curvature is phase matched with the beam wavefront so that the lowest loss

mode is efficiently coupled back into the waveguide. The beam waist is chosen

so that the lowest loss mode of the resonator gives the closest match with

a Gaussian output. Waveguide resonators have been designed using these

configurations but only recently self-imaging has been taken into account in

[2]. In this relatively new self-imaging based design, a plane mirror at one

end and a curved mirror (phase-matched with the lowest loss mode, distant

a2/2λ from the guide exit) at the other were used. It was shown to effectively
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HaL 2a

HbL 2a
z = R

R

HcL 2a
z = R�2

R

Figure 1.2: Schematic of the conventional waveguide designs. They are
characterized by the distance of the mirror from the guide exit (z) and the
radius of curvature of the mirror (R).
(a) For the Case I design z = 0, R = ∞.
(b) For the Case II design z >> z0, R = z.
(c) For the Case III design z = z0, R = 2z0. Here R = z + z2

0/z, z0 = πw2
0/λ

and w0 = 0.7032a.
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remove the higher order modes and produce a TEM00 output. In Chapter 2

an improvement on the design of [2] is presented using self imaging and Case

I mirrors with variable reflectivity profiles at both ends.

1.3 Photonic band gap structures

Photonic band gap structures, as rightly suggested by the name, are dielectric

structures that prohibit the propagation of light of certain frequency bands.

The one dimensional multilayer structures were studied more than a hun-

dred years by Lord Rayleigh[13] before the higher dimensional counterparts

were proposed in 1987[14, 15] by Eli Yablonovitch and Sajeev John. They

are also called photonic crystal structures owing to their strong analogy to

semiconductor lattice systems (also see [16]).

Figure 1.3: Schematic diagram of one, two and three dimensional photonic
crystal structures respectively.

A schematic diagram of the photonic crystal structures are shown in

Figure 1.3. A one dimensional structure may be composed of slabs of two

materials placed alternately (as in the figure) or may be a repetition of a

stack of more materials. The two dimensional structures are a regular array

of rods arranged in a square lattice (see figure) or in some other pattern,
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for example, a triangular lattice. The rods may themselves have different

cross-sections - circular, square, etc. and similarly, for the three dimensional

systems.

The one dimensional structures were known to act as filters for certain

frequency bands. The central frequency and the width of the band are

determined by the average dielectric constant and the dielectric contrast of

the materials of the band. The prohibition of propagation takes place along

the direction perpendicular to the stacks. The two and three dimensional

photonic crystal structures are capable of preventing electromagnetic wave

propagation along two and three directions (along the lattice translation

vectors) respectively.

The dielectric distribution in any photonic crystal structure is given as

ǫ(−→r ) = ǫ(−→r +
−→
T ) (1.13)

where
−→
T =

∑N
i=1 ni

−→ai is a lattice translational vector, −→ai are the primitive

lattice vectors, ni are integers and N = 1, 2, 3 for one, two and three dimen-

sional (respectively) photonic crystal structures. From the two curl equations

of Maxwell, one obtains the following equation for the magnetic field
−→
H

∇×
(

1

ǫ(−→r )
∇×−→

H

)

=
(ω

c

)2 −→
H (1.14)

The operator ∇ ×
(

1
ǫ(−→r )

∇×
)

is Hermitian and positive-definite for real

ǫ > 0. Consequently the eigenfrequencies are real. The mathematical
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Figure 1.4: (Left) Schematic of triangular lattice of circular holes(ǫ = 1,
shown in blue) in a medium with ǫ = 13(shown in green). (Right)Photonic
band diagram of the structure on the left. The radius of the holes is 0.48a
where a is the distance between the centres of two nearest holes.

treatment for photonic crystal structures so far follows that of quantum

mechanical problems. In addition, the electromagnetic problem in these

periodic structures have the transversality condition ∇·−→H = 0 and ∇· ǫ−→E =

0. The dispersion diagram of the photonic crystal structure is a plot of

ω(
−→
k ) and forms discrete bands(for example see Figure 1.4). There are

ranges of frequencies for which the above equation does not admit any

solution corresponding to the photonic band gap. The transverse electric

(red curves in Figure 1.4) and transverse magnetic (blue curves in Figure

1.4) polarizations show different dispersions. The structure is said to have

a complete band gap when the forbidden bands of both the polarizations

overlap.

1.3.1 Methods for analysing dielectric structures

Since the discovery of the two and three dimensional structures, there have

been extensive studies of these systems. Numerous techniques such as the
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plane wave expansion method[17, 18], the transfer matrix method[19, 20],

the method of multipole moments[21], the Green’s function approach[22], the

finite difference time domain method[23], the finite element method, etc.(for

example [24, 25, 26, 27]) were developed and used [28, 29, 30, 31, 32, 33, 34,

35] for their analysis. Of these, the plane wave expansion method was the one

to be used extensively for studying the dispersion characteristics. Each of

these methods have their advantages and disadvantages and are used as per

the problem at hand. Below we summarize the plane wave expansion tech-

nique, the transfer matrix method and the characteristic matrix approach.

1.3.2 Plane wave expansion

The plane wave expansion method [17, 18, 36, 37] has been the most popular

tool for the analysis of periodic dielectric structures(for example [38, 39, 40,

41, 42]). In this technique, the master equation (Equation 1.14) is rewritten

in Fourier space to form an algebraic eigenvalue equation. The eigenvalues

are then solved for to find the dispersion of the photonic crystal structure.

For periodic dielectric structures one applies the Bloch-Floquet theorem,

choosing the eigenfunction as a superposition of the form

−→
H (−→r ) =

∑

−→
G

2
∑

λ=1

h−→
G,λ

êλ exp (i(
−→
k +

−→
G ) · −→r ) (1.15)
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Here
−→
k is a wave vector and

−→
G is a reciprocal lattice vector. For each

−→
G

there are two polarization vectors ê1 and ê2 so that

êλ · (−→k +
−→
G ) = 0, λ = 1, 2 (1.16)

This gives
∑

−→
G ′,λ′

Hλ,λ′

−→
G,

−→
G ′

h−→
G ′,λ′

=
ω2

c2
h−→

G,λ
(1.17)

where

H−→
G,

−→
G ′

= |−→k +
−→
G ||−→k +

−→
G ′|F (

1

ǫ(
−→
G −−→

G ′)
)







ê2 · ê′2 −ê2 · ê′1
−ê1 · ê′2 ê1 · ê′1






(1.18)

and F ( 1

ǫ(
−→
G)

) is the Fourier transform of the inverse of ǫ(
−→
G ).

The algebraic eigenvalue Equation 1.17 is solved for the eigenvalues to

obtain the dispersion diagram.

1.3.3 Order-N method

The order-N method [1, 43, 44], essentially a finite element method, is based

on the on-shell scattering method used in electron backscattering experiments

[45]. It is a computationally efficient and stable method for calculating

the dispersion of photonic crystal structures. In this method the space

representing the dielectric distribution is discretized on a simple cubic mesh.

The points on this mesh are defined using the lattice vectors −→a ,
−→
b and −→c .

The mesh of the
−→
E and

−→
H fields are displaced relative to each other as in
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Figure 1.5: Schematic of the electric and magnetic field meshes used in the
order-N method [1].

Figure 1.5. In this method the integral form of the curl equations of Maxwell

are used:

∮ −→
E · d−→l = − ∂

∂t

∫ −→
B · d−→S (1.19)

∮ −→
H · d−→l =

∂

∂t

∫ −→
D · d−→S (1.20)

The line integral of
−→
E taken around the penetrating component of

−→
B (as in

Figure 1.6). gives

−→
E 1(

−→r )+
−→
E 2(

−→r +−→a )−−→
E 1(

−→r +
−→
b )−−→

E 2(
−→r ) = − ∂

∂t
µ0µ(−→r )

−→
H 3(

−→r ) (1.21)

Similar equations are obtained from the remaining components of Equations

1.19 and 1.20. These equations relate the field components on one side of

the structure to that on the other side and is therefore the transfer matrix
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Figure 1.6: Line integral of the electric field taken around the magnetic field
(penetrating out of the plane of paper) .

of the system. Computation of the fields at the points on one plane of the

grid requires the field values on the previous plane. This method apart

from being stable requires O(n) number of computations compared to O(n3)

computational steps in the plane wave expansion method. Moreover it can

handle metals in the dielectric distribution. This method was later modified

to use a generalized coordinate system and can be used to handle complex

geometries.

1.3.4 Characteristic matrix approach

This method essentially applied to treat stratified media relates the fields on

one side of the structured stratified media to that on the other side [46, 47].

It is used to determine propagation of a monochromatic plane wave across a

layered structure. As shown in Figure 1.7 the field components on the left

side (Q0) of the figure are expressed in terms of those on the right (QN ). M

is called the characteristic matrix of the medium. The characteristic matrix

of a homogeneous dielectric film stratified along the z-axis and using TE
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Figure 1.7: The schematic of the characteristic matrix method.

polarized light is given by [47]

M(z) =







cos (k0nz cos θ) − i
p
sin (k0nz cos θ)

−ip sin (k0nz cos θ) cos (k0nz cos θ)






(1.22)

where

p =

√

ǫ

µ
cos θ (1.23)

ǫ is the dielectric constant of the film, µ is the permeability, n =
√

ǫµ is the

refractive index, θ is the angle of incidence and k0 is the wave number in

free space. For the case of TM polarized light, the above equations hold on

substituting p by

q =

√

µ

ǫ
cos θ (1.24)

For a structure of N stacked layers(as in Figure 1.7) located at z0 6 z 6 z1,

z1 6 z 6 z2, ....., z(N − 1) 6 z 6 zN , the total characteristic matrix is given
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as

M(zN ) = M(z1)M(z2 − z1).....M(zN − zN−1) (1.25)

A similar approach is the scattering matrix method where the coefficients of

the field components approaching the stack are related to the coefficients of

the field components propagating away from it [48]. The matrix elements of

the scattering matrix and the characteristic matrix are therefore related.

For a characteristic matrix

M =







m11 m12

m21 m22






(1.26)

probability conservation and time reversal invariance give the following con-

ditions

m11 = m∗

22 (1.27)

m21 = m∗

12 (1.28)

det(M) = 1 (1.29)

The reflection and transmission coefficients of the stack for the case of trans-

verse electric polarization are

r =
(m11 + m12pl)p1 − (m21 + m22pl)

(m11 + m12pl)p1 + (m21 + m22pl)
(1.30)

t =
2p1

(m11 + m12pl)p1 + (m21 + m22pl)
(1.31)
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Figure 1.8: The contour plot of reflectivity of 10 pairs of slabs with refractive
indices 2.39 and 1.0 bounded on either side by air. The thickness of the
individual slabs correspond to λ/4 plates for normal incidence with λ=410nm.
The angle of incidence is in radians.

where p1 and pl correspond to the values of Equation 1.23 in the first and

the last media. The reflectivity is computed from Equation 1.30. As earlier,

p1 and pl substituted by q1 and ql give the corresponding expressions for

transverse magnetic polarization. It has been shown earlier (for example

[48]) that only a finite number of slabs in the stack are sufficient for obtaining

a saturated reflectivity profile. The Bragg frequency varies inversely as the

square root of the average dielectric constant and the width of the reflectivity

window is proportional to the refractive index contrast[49].

In Figure 1.8 the contour plot of the reflectivity of 10 pairs of slabs

with refractive indices 2.39 and 1.0 placed alternately bounded on either

side by air is shown. The thickness of the individual slabs correspond to

λ/4 plates for normal incidence with λ=410nm. The overlap of region of

complete reflectivity of the TE and the TM polarizations corresponds to

the photonic band gap of the photonic crystal stack. The calculation has
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been done using Equation 1.30. It clearly shows the differing dispersion of

the two polarizations. Such stacks can be used to design waveguides with

lossless walls and owing to scalability of a photonic crystal structure, the

scaled results hold as long as the dielectric constant of the material does not

change with the frequency of incident radiation.

1.4 Conclusion

Conventional MMI devices and photonic band gap structures are actively

being studied for device fabrication. Self-imaging though studied for conven-

tional devices, still remains to be studied well for photonic band gap devices.

With this background a study of a conventional MMI waveguide resonator, a

critical coupling resonator and a MMI waveguide interferometer is presented

subsequently in chapters 2, 3 and 4.
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A Dual Case I waveguide resonator with

variable reflectivity mirrors

2.1 Introduction

There are three recognized low loss mirror configurations for waveguide laser

resonators [12]. Consider a mirror of curvature R placed at a distance Z from

the guide exit. In the Case I configuration, the mirror is either plane or of

large radius of curvature and is placed close to the guide exit so that R−1 ≈ 0

and Z ≈ 0. A dual case I design corresponds to having a Case I mirror at

both ends of the waveguide. A Case II mirror will have its centre of curvature

at the guide exit so that R = Z. Finally, for a Case III mirror, R = 2Z and

Z equals the Rayleigh range πw2/λ of a Gaussian beam (of waist w) that has

maximum overlap with the fundamental mode of the waveguide at the guide

entrance. This occurs for a circular waveguide of radius a, when w/a = 0.64

. The corresponding value for a waveguide of square cross section 2a × 2a is

given by w/a = 0.7032. In each case, the power overlap is close to 98%.

Sometime ago, a new class of waveguide resonator was proposed [2] by

exploiting the self imaging [50, 11, 51] properties of planar and rectangu-

20
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lar cross-section step-index multimode waveguides. This design has many

desirable properties: TEM00 output, good mode suppression qualities, low

round trip loss and robustness against perturbations such as mirror tilt.

Furthermore, the design is more compact than either the case II or the

case III design. In its simplest form, a self-imaging resonator is created

by combining a multimode waveguide of square cross section 2a × 2a and

length 2a2/λ (which produces a symmetric self-image on a single round-trip)

with a Case I mirror at one end and a concave mirror placed near the other

end. The concave mirror is placed at a distance Z = a2/(2λ) from the guide

exit and is phase matched to an effective TEM00 beam of waist w0 = 0.6a.

Thus, R = Z +Z2
0/Z, with Z0 = πw2

0/λ. The higher order mode suppression

properties of this form of waveguide resonator and their physical origin have

been described in earlier work [2, 52].

Although self-imaging resonators of the form described above are of great

value, for example, in designing portable and robust CO2 waveguide lasers

with excellent transverse mode control, their implementation in semicon-

ductor integrated optics technology is prohibited because of the need to

form a concave reflecting surface. In practice, only cleaved facets whose

planes are orthogonal to the axis of the laser waveguide are feasible in

low cost mass production situations. From this perspective we consider

a different implementation of the self-imaging resonator. The concept is

based on providing higher order mode suppression by matching the peaks

and nulls that occur in the transverse field patterns on the planar end facets
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of the resonator with suitably colocated areas of high and low reflectivity,

respectively.

The previous design of a waveguide resonator based on self-imaging [2]

had the guide length, guide to mirror distance and the radius of the curved

mirror parametrized by the guide-width and the operational wavelength.

This made the previous design scalable to all wavelengths giving a new class

of waveguide resonataors. Similarly, the specifications of the new design,

namely, the guide length and the dimensions of the high and low reflectivity

regions of the mirrors require the guide width and the operational wave-

length for their parametrization. Thus, the new design too is a new class of

waveguide resonator based on self-imaging.

In a dual Case I design, the beam does not travel in free space before being

coupled back into the waveguide with the higher order modes suppressed.

No free space between the guide exit and the mirror makes the new design

compact and reduces misalignment errors during installation of the mirrors

at the exits of the waveguide as opposed to the Case I, II, III and the previous

self-imaging based design [2].

2.2 Theory

2.2.1 Waveguide Modes

The modes of a rectangular cross sectioned waveguide are co-sinusoidal and

separable in transverse co-ordinates. Furthermore, the corresponding prop-
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agation constants can, under certain simplifying assumptions, be written

as a sum of two terms, one for each transverse direction. Thus, the two-

dimensional solution for the resonator field in Cartesian coordinates can be

constructed from the solutions of two separate one dimensional descriptions

of the resonator. Physically, it amounts to decomposing a rectangular cross

sectioned waveguide into two planar waveguides.

The modes of a planar waveguide of width 2a are of the form:

Em(x, a) =
1√
a











cos (πmx/2a) , if m is odd;

sin (πmx/2a) , if m is even.
(2.1)

These modes satisfy the orthogonality relation:

∫ a

−a

Em(x, a)En(x, a)dx = δmn (2.2)

The corresponding propagation constant is given by

km =
2π

λ

(

1 − 1

2

(

mλ

4a

)2
)

(2.3)

so that the m-th mode propagating inside the waveguide along the z-direction

will acquire a z-dependent phase factor, given by exp (ikmz) where, km =

k − βm, k = 2π/λ, βm = πm2/4L and L = 4a2/λ. In what follows, we

will ignore the mode-independent overall phase factor of exp (ikz) as it does

not affect our resonator mode calculations. In what follows, we discuss field

propagation in the x-z plane only as a similar analysis is valid in the y-z
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plane also.

2.2.2 Self- Imaging and beam splitting

An arbitrary input field entering the waveguide at the z = 0 plane can be

expanded as

F (x, 0) =
∑

m

amEm(x, a) (2.4)

At an axial distance z inside the waveguide, the input field becomes

F (x, z) =
∑

m

amEm(x, a) exp (−iβmz) (2.5)

If we denote F by Fs when it is symmetric in x ( m odd), by Fa when it is

anti-symmetric in x ( m even), and by Fg when it has no definite parity with

respect to x ( m both odd and even), then it is clear that

Fs(x, L) = Fs(x, 0) exp (−iπ/4), Fa(x, 2L) = Fa(x, 0), Fg(x, 8L) = Fg(x, 0)

(2.6)

Thus, the input field is self-imaged at a certain distance (called revival length)

inside the waveguide.

At fractions of the revival length, the input field is split up into a finite

number of its replicas. For example, it is easy to show that

Fa(x, L) =
1

2
[Fa(x + a, 0) + Fa(x − a, 0)] (2.7)
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Additionally,

Fs(x, L/2) = Fs(x − a/2, 0) + Fs(x + a/2, 0) (2.8)

Our objective is to obtain a quasi-Gaussian output for the lowest loss mode

of the waveguide resonator and to ensure that the more lossy solutions are

sufficiently discriminated with respect to the lowest loss solution. In order to

appreciate how we achieve this objective in the present design, it is instructive

to review how it was done in the previous design.

2a

2a2/

plane mirror curved mirror

a2/2

x

y
z

Figure 2.1: Schematic of a self imaging waveguide resonator as reported in

an earlier publication [2]. The resonator was formed of a waveguide of square

cross section 2a×2a and of length 2a2/λ = L/2 , closed at one end (z = 0) by

a curved mirror at a distance a2/2λ = L/8 from the guide exit, and bounded

at the other end (z = L/2), by a plane mirror.
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2.3 Previous design and its working principle

The resonator was formed of a waveguide of square cross section 2a×2a and

of length 2a2/λ = L/2 , closed at one end ( z = 0 ) by a curved mirror at a

distance a2/2λ = L/8 from the guide exit, and bounded at the other end (

z = L/2 ), by a plane mirror as shown in Fig. 2.1.

Since the fundamental mode (m = 1) of the waveguide is symmetric and

is well approximated by a lowest order Gaussian beam of waist w = 0.7032a

[53] , a quasi- Gaussian output of the waveguide resonator is obtained in this

design by the removal of (a) all anti-symmetric modes and (b) most (if not

all) of the higher order symmetric modes in the following way.

In each round-trip, an anti-symmetric field suffers a two-way split at

the edges of the guide exit (z = L/2) in accordance with Eq. (2.8). This

ensures high aperture loss on re-entry. A symmetric field, on the other hand

remains unaffected by guided propagation according to the first of Eq. (2.6).

Furthermore, the symmetric field is efficiently coupled back to the guide by

the curved mirror which is phase matched to an effective TEM00 beam of

waist ω = 0.6a at the guide exit. The choice of this fictitious beam waist is

to make sure that mostly the fundamental and a small amount of next order

symmetric mode are allowed back into the waveguide. Thus the resonator

operates mainly on the lowest order symmetric mode and filters out the

unwanted anti-symmetric modes. Consequently, the resonator has a very low

round trip loss. Moreover it was predicted to produce a TEM00-like output

with excellent mode discrimination even though the curved mirror was placed
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much nearer to the guide exit (making the resonator more compact) than

was conventional for achieving those results. Finally, the design parameters

– guide length, guide to curved mirror distance and the mirror curvature –

are functions of a and λ only. Since a and λ are arbitrary, a whole class of

waveguide laser resonators can be fabricated.

2.4 Present Design and its working principle

x

y
z

2a

2a2/

transmitting
substrate

x

y

non
transmitting
substrate

anti-reflection
coating partially reflective/

transmittive coating

2b2c

fully
reflective
coating

M1M2

Figure 2.2: A new design for self-imaging waveguide resonators in which

the end-mirrors are plane with step-reflectance profiles. We assume that the

reflectivity of the mirror M1 at the (z = 0) plane is r1 on a square block

(2b × 2b) centered at the origin and r2 elsewhere with r1 ≈ 1 and r2 ≈ 0.

The reflectivity of the mirror M2 at the (z = L/2) plane, on the other hand,

is taken to be r2 on a square block (2c × 2c) centered at the origin and r1

elsewhere.

In the present design, both resonator mirrors are plane with suitably chosen

variable reflectivity profiles as shown in Fig. 2.2. We assume that the
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reflectivity of the mirror M1 at the (z = 0) is r1 on a square block (2b × 2b)

centered at the origin and r2 elsewhere with r1 ≈ 1 and r2 ≈ 0. The

reflectivity of the mirror M2 at the (z = L/2) plane, on the other hand,

is taken to be r2 on a square block (2c × 2c) centered at the origin and r1

elsewhere.

Before proceeding, it is important to note that in this design, there is

no free space region and no focusing element such as a curved mirror. Thus

the resonator solutions will be composed of many waveguide modes. In this

design, the nature of the resonator mode is defined by the spatial reflectivity

profiles of the plane mirrors and the self-imaging and splitting properties of

the multimode waveguide.

We start by writing the resonator mode in the z = 0 plane, propagating

in the +z direction, in terms of waveguide modes as in (2.4):

F0(x, 0) =
∑

m

amEm(x, a) (2.9)

In one round trip, the field propagates to the Z = L/2 plane, and reflects

off mirror M2. Then, it returns to the z = 0 plane and reflects off mirror

M1. Thus, after one round trip, the initial field distribution F0(x, a) will

transform to the following distribution:

F1(x, a) =
∑

m,n,p

am exp (−iβmL/2)X(2)
mn exp (−iβnL/2)X(1)

np Ep(x, a) (2.10)

where, X
(i)
mn is the coupling amplitude between the waveguide modes Em and
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En due to reflection from the mirror Mi. Equating F1(x, a) to F0(x, a) within

a multiplicative factor σ and using the orthogonality relation, we obtain the

matrix equation

∑

m,n

X(1)
qn exp (−iβnL/2)X(2)

nm exp (−iβmL/2)am = σaq (2.11)

The eigenvectors and the eigenvalues of Eq. 2.11 are used to obtain the

resonator mode profiles and their round-trip loss factors.

For step-index reflectivity profiles, one can easily calculate the mirror

coupling amplitudes. One gets

X(1)
mn =

[

r2

(
∫

−b

−a

dx +

∫ a

b

dx

)

+ r1

∫ b

−b

dx

]

Em(x, a)En(x, a) (2.12)

= r2δmn + (r1 − r2)Imn(c)

where,

Imn(b) =

∫ b

−b

Em(x, a)En(x, a)dx (2.13)

and,

X(2)
mn =

[

r1

(∫

−c

−a

dx +

∫ a

c

dx

)

+ r2

∫ c

−c

dx

]

Em(x, a)En(x, a) (2.14)

= r1δmn − (r1 − r2)Imn(b)
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The expression for Imn(b) can be evaluated easily. One gets

Imn(b) =























γm−n(b/a) − γm+n(b/a) , if m and n are both even

γm−n(b/a) + γm+n(b/a) , if m and n are both odd

0 , otherwise

(2.15)

where,

γj(x) =











sin (πjx/2)
πj/2

, for j 6= 0

x , otherwise
(2.16)

2.5 Results and Discussion

For the sake of simplicity, we begin by assuming that a high reflectivity

segment does not transmit and a low reflectivity segment does not reflect.

That is, we set r1 = 1 and r2 = 0. In reality, the mirror at the ( z = 0 )

plane acts as the output mirror and thus, is partially transmittive. We will

later show that our arguments remain valid even for more realistic reflectivity

profiles.

Let us start by assuming that the mirror at the z = L/2 plane is fully

reflective, i.e. c = 0 whereas the mirror at the z = 0 plane has a 2b × 2b

segment of high reflectivity at the origin and low reflectivity elsewhere. The

mirror segments of high reflectivity are needed to support the symmetric

modes at each end with negligible loss and to reproduce them after each

round-trip according to the first of Eq. (2.6). On the other hand, the mirror

segments of low reflectivity at the z = 0 plane would ensure, according to Eq.
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(2.7), that the anti-symmetric modes suffer significant losses on reflection in

each round trip. Thus, at steady state (in the sense of Fox and Li [54]), the

resonator field would comprise only of symmetric modes. In other words, if

the n-th resonator mode is written in terms of waveguide modes as Rn(x) =

∑

m c
(n)
m Em(x, a) , then, only odd values of m would appear in the sum.

If the anti-symmetric modes are filtered out at the z = 0 plane by the

mirror segments of low reflectivity, then the resonator modes will comprise

of symmetric waveguide modes and will, therefore have a symmetric nature

themselves. Since any symmetric field is reproduced after propagating a

round-trip distance L, all these symmetric solutions will have zero loss.

In order to lift this degeneracy, some further transverse field filtering is
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Figure 2.3: Round-trip fractional loss of the first six resonator modes (all of
which are symmetric solutions) in the x-z plane as a function of b/a when c =
0. The thick red line corresponds to the lowest-loss mode. All the calculations
have been carried out in Mathematica 6.0.
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necessary. This is where the width of the mirror segments come into play.

In Fig. 2.3, we plot the round trip fractional loss of the first six resonator

modes (all of which are symmetric solutions) as a function of b/a when c = 0.
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Figure 2.4: Profiles for the two lowest loss resonator modes in the x-z plane

at (a) z = 0 and at (b) z = L/2 when b/a = 0.44 and c = 0. The dotted line

corresponds to the lowest loss mode whereas the solid line corresponds to the

other mode.

Clearly, if the mirror width is reduced sufficiently, even the symmetric

solutions become lossy. This process starts at about b/a ≈ 0.45 when a

quasi-Gaussian solution emerges and continues as b/a is reduced further.

The loss arises due to aperturing at the mirror edges as the non-Gaussian

symmetric modes of the resonator tend to spread out near the wings. In Fig.

2.4, we show the resonator mode profiles at each mirror for b/a = 0.44 and

c = 0.
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Figure 2.5: Round-trip fractional loss for the first six resonator modes (in

ascending order of fractional loss) in the x-z plane, as a function of c/a when

b/a = 0.44 . The thick red line corresponds to the lowest-loss mode.

An ideal resonator mode should have a quasi-Gaussian nature and provide

a good overalap with the gain medium. From this perspective we fix the value

of b/a at 0.44. Additional loss can be induced for the non-Gaussian modes by

aperturing them at the z = L/2 plane without disturbing the two-way split

of the quasi-Gaussian solution. This would mean increasing the value of c

from zero to some finite value such that sufficient mode discrimination arises

between the lowest-loss quasi-Gaussian solution and the lossier Gaussian

solutions.
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Figure 2.6: Round-trip fractional loss for the first six resonator modes in the

x-z plane as a function of the resonator length when b/a = c/a = 0.44 . The

thick red line corresponds to the lowest-loss mode.

In Fig. 2.5, we plot round-trip fractional loss for the first six resonator

solutions as a function of c/a when b/a = 0.44 . It is clearly seen that

there is a small window around c/a ≈ 0.45 where all but the lowest-loss

mode suffer substantial losses. Further calculations indicate that there is a

sizable window in the range 0.4 ≤ b/a = c/a ≤ 0.45 , where the fundamental

resonator mode has substantially lower loss than other solutions. In Fig. 2.6,

we show the sensitivity of the solution for b/a = c/a = 0.44 against variations

in the resonator length.
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Figure 2.7: The transverse intensity profiles in the x-z plane, at each end

of the resonator and inside the waveguide for the two lowest loss resonator

modes when b/a = c/a = 0.44 and the resonator length is set at L/2 = 2a2/λ.

The left column represents the profiles for the lowest-loss mode in the +z

direction, and the right column represents the profiles for the next mode (in

ascending order of fractional loss). In each column, the bottom figure displays

the intensity profile at z = 0, the middle figure is the contour plot of the

intensity profile inside the waveguide, and the top figure is the intensity profile

at z = L/2.
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Figure 2.8: The mirror reflectivity is set at 0.9 for the high-reflectivity
segments and at 0.1 for the low reflectivity segments. (a) Round-trip
fractional loss for the first six resonator modes in the x-z plane as a function
of the resonator length. All other details are as in Fig. 2.6. (b) Intensity
profiles for the lowest-loss mode at z = 0 (bottom figure) and z = L/2 (top
figure). (c) The same as in (b) for the next mode (in ascending order of
fractional loss).

In Fig. 2.7, we show the transverse intensity profiles in the x-z plane at

each end of the resonator and inside the waveguide for the two lowest loss

resonator modes when b/a = c/a = 0.44 and the resonator length is set at

L/2 = 2a2/λ. Before ending we note that for realistic mirrors, the reflectivity

is neither 100%, nor 0%. In Fig. 2.8, we show that our main findings remain

valid even for realistic mirror reflectivities.

2.6 Conclusion

In summary, we have described the design and working principle of a multi-

mode waveguide resonator that is predicted to yield quasi-Gaussian output

with low round-trip loss and excellent mode discrimination as obtained in
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our earlier design of a self-imaging waveguide resonator[2].

The novelty in the present design is that the above desirable properties are

secured by the use of end mirrors with suitable step-index reflectivity profiles

in a dual Case I configuration, that is, with plane mirrors and without any

free space region between the waveguide and the mirrors. Thus, the resonator

will have the advantages of being compact and portable. It should also be

easy to fabricate even in semiconductor integrated optics technology where

curved reflecting mirrors are prohibitively difficult to implement whereas

plane mirrors can be mimicked by cleaved facets.



3 Critical coupling at oblique incidence

3.1 Introduction

The analysis of a system called the critical coupling resonator is presented

in this chapter. A critically coupled resonator (CCR) consists of a thin

absorbing film capable of absorbing nearly all of the incident radiation on it.

The arrangement is sketched in Fig. 3.1. The absorbing film is only about

a nanometers thick and can consist of any material with a high absorption

coefficient. The absorbing film is separated from a reflecting structure by a

dielectric layer called the spacer layer.

Composite media have attracted the attention of researchers for the past

few decades for their exotic properties [55, 56, 57, 58, 59, 60, 61], quite distinct

from those of the bulk constituents. For example, metal nano particles

in a dielectric host can support the so-called particle plasmons or the Mie

plasmons [55, 56, 57, 62]. These resonances are absent in the bulk metal or in

the dielectric constituent. Excitation of the Mie plasmons is associated with

large local field enhancement, which is quite promising for various different

areas ranging from nonlinear optics, surface enhanced spectroscopy to bio

38
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Figure 3.1: Schematic diagram of the layered medium.

imaging and drug delivery [60, 63, 64, 65, 66]. In the context of a composite

medium, the important parameter that controls its properties is the volume

fraction of the metal inclusions. In fact, a change in the volume fraction

can tune the location of the Mie plasmons as well as control its oscillator

strength (peak absorption). Such flexibilities of a composite medium have

been exploited in optical limiting, pulse velocity control and many other

applications [60, 63, 64]. Recently it was shown that a thin nano layer of

a metal-dielectric composite separated from a distributed Bragg reflector

(DBR) by a dielectric spacer layer can exhibit critical coupling [67]. In fact,

critical coupling leading to almost complete absorption in a 5 nm thick lossy

J-aggregated film (with large oscillator strength) in a similar geometry was

first demonstrated by Tischler et al [68, 69]. It is clear that almost perfect

absorption of the incident light energy by the nano film leads to virtually

null transmission and reflection at a given frequency. The simultaneous
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cancellation of both reflection and transmission results as a consequence of

a very delicate interplay of the counter propagating waves in the layers. The

use of the composite layer had the added advantage that one could control

the critical coupling frequency. Moreover, it was shown that it is possible

to achieve critical coupling at two distinct frequencies for large oscillator

strengths of the Mie plasmons (for large volume fraction) [67]. Note that

critical coupling is not the only means of achieving perfect absorption. Other

mechanisms (Brewster effect and excitation of surface plasmons) involving

shallow and deep metallic gratings have been exploited in the past for almost

total absorption of incident light [70, 71].

All the previous studies on critical coupling involving absorbing nano

layers were restricted to normal incidence of plane polarized light [68, 69, 67].

It is of interest to investigate whether such effects persist in the case of oblique

incidence. Besides, for oblique incidence one needs to distinguish between the

TE or TM polarizations, whereas, for normal incidence both are the same.

In this paper, we study critical coupling in a multilayered system (see Figure

3.1) comprising of a composite nano film, a spacer layer and a DBR under

oblique incidence of TE or TM polarized plane wave. We show that it is

possible to minimize simultaneously both reflection and transmission from

the structure for both the polarizations. Thus even at oblique incidence

critical coupling can be achieved leading to almost total absorption of the

incident energy in the composite film. Large oscillator strengths (large f) are

again shown to lead to critical coupling at two distinct frequencies for each
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polarization. We further demonstrate that the reflection and transmission

profiles for the TM polarization have distinctive features that are absent in

the TE case. In fact, they exhibit additional resonances which can be traced

to the excitation of the longitudinal bulk plasmons in the composite film.

The structure of the chapter is as follows. In Section 3.2, we recall some

basic properties of the composite media, describe our system and formulate

the problem. In the next Section (Section 3.3), we present the numerical

results. Finally, in Section 3.4 we summarize the important results.

3.2 Mathematical Formulation

Consider the system shown in Figure 3.1, where a thin metal-dielectric com-

posite film is deposited on a spacer layer which resides on top of a DBR.

The whole structure is grown on a silica substrate and illuminated from the

top by TE or TM polarized plane wave at an angle θ. The DBR consists

of 2N+1 layers with alternating dielectric constants ǫa, ǫb and widths da,

db, respectively. It is quite clear from the previous studies [68, 69, 67] that

critical coupling can be realized when the composite absorption frequency

lies inside the band-gap of the DBR. For a structure with fixed parameters

of the DBR (i.e., widths and dielectric functions), an increase in the angle

of incidence will lead to a shift of the band-gap to lower wavelengths, while

the absorption dip of the composite will remain unaffected. Eventually the

absorption frequency may be outside the band-gap leading to the loss of

critical coupling. Keeping this in view, we use different sets of values of da
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and db such that each sublayer of the DBR correspond to a λ/4 plate at

each specified angle of incidence θ resulting in a central Bragg frequency at

λc = 410nm. We thus choose da, db as follows

da,b =
λc

4na,b cos θa,b
, θa,b = sin −1[

ni

na,b
sin θ] (3.1)

where ni =
√

ǫi and na,b =
√

ǫa,b.

In what follows, we briefly discuss the composition of the composite

medium and recall some of its important properties. Let the composite

medium consist of silver (with dielectric function ǫm) nano-particles in a silica

host (with dielectric function ǫh). The properties of such metal nano-particle

composites have been discussed in detail by many [56, 57]. It was shown

by Niklasson [61] that effective medium theories, in particular, Maxwell-

Garnett(MG) [56] theory can be applied effectively for particle sizes upto

9-10 nm in the visible range. One needs to exercise caution for dealing

with metal composites in the presence of excitation of Mie plasmons. MG

theory works well in the absence of large variation of the field for quasistatics

to hold. This is usually not the case when Mie plasmons (with local field

enhancement near the nano-particles) are excited. In situations where the

field enhancement is not too large, we assume that MG theory can be applied

and one can write down the effective dielectric function of the composite as

follows

ǫ1(ω) = ǫh +
fx(ǫm − ǫh)

1 + f(x − 1)
, x =

3ǫh

ǫm + 2ǫh

(3.2)
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where f is the volume fraction. In order to highlight the qualitative differences

of the composite material from the bulk metal we have plotted the real

and imaginary parts of the dielectric function in Figure 3.2. We have used

Figure 3.2: Real and Imaginary parts of the complex dielectric function for
the composite material. Curves from top to bottom are for f = 0.1, 0.05 and
0.01 respectively. The dashed curve corresponds to bulk metal ( f = 1.0).

the interpolated Johnson and Christy [72] data for ǫm for all calculations.

The same are reproduced in Figures 3.2(a) and 3.2(b) by dashed lines for

comparison. Note that the bulk data for silver can be used for nano-particles

of sizes down to 4 nm [73]. It is clear from Figure 3.2 that bulk silver does not

exhibit any resonance features at around 400 nm, while the composite shows

prominent Mie plasmon resonances. The other important feature that needs

to be noted from Figure 3.2 is the crucial dependence of these resonances
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on the volume fraction f. Indeed the resonance frequency shifts to the right

along with an increase in the oscillator strength (peak absorption) with an

increase in f. One should also note the metal like behavior (Re(ǫ) < 0) of

the composite around λ = 405nm, which is responsible for critical coupling

at one or more frequencies.

It is pertinent to make a few comments on the applicability of Equation

3.2 for the composite nanofilm in presence of Mie resonances. It is clear

that the applicability of a formula (Equation 3.2), derived in quasi-static

approximation, is questionable in presence of strong Mie resonances. In this

paper we use Equation 3.2 as an approximation. We tested the applicability

of Equation 3.2 for the samples of Shatabdi et al [64]. The location of the

resonance predicted by Equation 3.2 (see the curve for f = 1.0 in Figure

3.2(b)) matches well with the experimental results on the nanofilms [64].

Thus MG theory seems to work even in presence of Mie resonances, provided

that the field enhancement associated with these resonances are not very

significant. A similar model used in a different context yielded nice matching

with the experimental findings [74]. The second comment relates to the

applicability of Equation 3.2, which was derived for bulk samples, to a quasi

two-dimensional nano film. Of course the quasi two-dimensional nature of

the composite film will lead to deviations of the effective index from Equation

3.2. In fact, the thin film can behave like a uniaxial anisotropic medium with

the uniaxis perpendicular to the layers [74, 75]. However, we neglect all these

effects since they do not affect the underlying physics and the main effects,
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which are presented in the next section. In other words, even in presence of

deviation of the true response from this model, the basic results of this paper

still will hold, albeit with a readaptation of the optogeometrical parameters.

3.3 Numerical Results and Discussions

In this section we present numerical results pertaining to the reflection and

transmission coefficients for oblique incidence of TE or TM polarized light.

The same can be calculated using the characteristic matrix or the transfer

matrix technique [57, 46]. For numerical calculations, the following param-

eters were chosen: N = 10, ǫi = 1.0, ǫh = 2.25, ǫf = 2.25, ǫ2 = 2.6244.

ǫa = 5.7121 and ǫb = 2.6244. We first pick a structure which exhibits critical

coupling for normal incidence [67] with d1 = 10nm, d2 = 75nm and f = 0.05.

We show that at oblique incidence the critical coupling is lost even though

the scaled (as per Equation 3.1) da, db values are used so as to have the

central Bragg frequency at 410 nm. These are shown in Figures 3.3(a) and

3.3(b) for TE and TM polarization. We have plotted total scattering R +

T as functions of wavelength for three different angles of incidence, namely,

θ = 0◦, 45◦ and 60◦, respectively. A comparison of the two panels in Figure

3.3 reveals that for larger angles it is easier to maintain critical coupling for

TM polarized light.

We next show that critical coupling at a given angle of incidence can

be recovered by adjusting the parameters of the layered medium. Like in

the case of normal incidence, the critical coupling can also be optimized by
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Figure 3.3: Total scattering R + T (solid lines) as functions of wavelength λ
for (a) TE and (b) TM polarization for d1 =10 nm, d2=75 nm and f=0.05.
Curves marked by 1, 2 and 3 correspond to θ = 0◦, 45◦ and 60◦, respectively.
The inset shows a magnification near R + T = 0. Other parameters are N =
10, ǫi = 1.0, ǫh = = 2.25, ǫf = 2.25, ǫa = 5.7121, ǫb = 2.6244. The normal
incidence transmission and reflection for the total structure are also shown
by dashed and dotted lines, respectively.

changing the spacer layer thickness. This is shown in Figures 3.4(c) (for

TE) and 3.4(d) (for TM) for d1 = 10nm, f = 0.05 and for θ = 45◦. Curves

1, 2 and 3 in (c) are for d2 =30, 45 and 65 nm, respectively, while those

in (d) correspond to d2 = 30, 51 and 65 nm. For reference we have also

shown the reflection (solid line) and transmission (dashed line) coefficients

of the bare composite film on the substrate for TE (Figure 3.4(a)) and TM

(Figure 3.4(b)) incidence. It is clear from figures 3.4(c) and 3.4(d) that

absorption in the composite film can be optimized for d2 =44 nm (51 nm) for

TE (TM) polarization. A very interesting feature characteristic of only the

TM polarization emerges if one compares the left and right panels of Figure

3.4. Indeed the transmission through the composite film (Figure 3.4(b)) for

the TM case has an additional resonance dip around λ = 393 nm just on the
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Figure 3.4: Oblique incidence (at θ = 45◦) transmission (dashed line) and
reflection (solid line) of the bare composite film with f=0.05, d1=10 nm on the
substrate for (a) TE and (b) TM polarizations. The transmission for f=1.0
(dotted line) is shown for reference on both the panels. Oblique incidence (at
θ = 45◦) total scattering R + T (solid lines) as functions of λ for d1=10
nm, f=0.05, for (c) TE polarization with d2=30, 45 and 65 nm (curves 1, 2
and 3, respectively) and for (d) TM polarization with d2=30, 51 and 65 nm
(curves 1, 2 and 3, respectively). The inset in 4(d) shows a magnification
near R + T = 0. Other parameters are as in Figure 3.3.

left of the Mie plasmon resonance at λ =412 nm. Such features show up in the

total scattering from the structure R+T in figure 3.4(d) (also in figure 3.3(b),

albeit at a slightly different frequency). In fact the location of this resonance
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Figure 3.5: Oblique incidence (at θ = 45◦) intensity reflection as a function
of λ for a 70 nm thick composite film on a substrate ((a) and (b)) and for the
total structure ((c) with d2=85 nm and (d) with d2=98 nm). The left panels
((a) and (c)) are for TE incidence, while the right ones ((b) and (d)) are for
TM. Curves 1, 2 and 3 in the left panels correspond to f =0.01, 0.05 and 0.1,
respectively, while those on the right correspond to f =0.01, 0.03 and 0.06,
respectively. The transmission (dotted line) is shown for reference with f =
0.1 for TE and with f = 0.06 for TM polarization. Other parameters are as
in Figure 3.3

is insensitive to the angle of incidence or even the widths of the composite or

the spacer layers. The only parameter that governs its location is the volume

fraction of the inclusions in the composite material. One can explain the

origin of this resonance if one recalls the work in the sixties on longitudinal

bulk plasmons in thin metal films for oblique incidence [76]. Excitation of

bulk plasmons requires essentially a non-vanishing electric field component

normal to the interface. It is thus clear that normally incident light or TE

polarized light at oblique incidence cannot excite such longitudinal plasmons.

It is also evident that such excitations can be supported by the composite film
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only when it exhibits metal like behavior (for large f). In order to verify that

the resonance feature is indeed due to the longitudinal plasmons, we looked

at the limiting case when f = 1.0. This limit corresponds to the situation

when the top layer represents a homogeneous silver film. With an increase

in f the left dip at 393 nm (see dashed line in Figure 3.4(b)) moves towards

lower wavelengths (not shown) finally merging with the usual plasmon dip at

around λ =328 nm for a homogeneous silver film (see dotted line in Figure

3.4(b)). Note that such a dip is absent in the transmission profile of the film

for TE polarized light (dotted line in Figure 3.4(a)).

It was pointed out earlier that for large volume fraction leading to large

oscillator strength of the Mie plasmons, the composite film can exhibit metal

like behavior in a narrow frequency window (see the region below the dotted

line in Figure 3.2(a)). On the two edges of this window, the refractive index

has very low or high values leading to a large difference of round trip phase

in the composite film [67]. For certain pairs of frequencies this difference

can be an even multiple of π, leading to almost identical phase behavior

at two distinct frequencies. This opens up the possibility of having critical

coupling at two distinct frequencies for large f. This is shown in Figures

3.5(c) (for TE) and in 3.5(d) (for TM) for d1 =70 nm. We have plotted

the intensity reflection coefficient as functions of wavelength. We have used

sightly different sets of values for the two polarizations, namely, for TE (TM)

we used d2 =85 nm (98 nm). We again show the reflectivity profiles for

the bare composite film on the substrate in Figures 3.5(a) and 3.5(b) for
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reference. Curves 1, 2 and 3 for TE (TM) correspond to f values 0.01, 0.05

and 0.1 (0.01, 0.03 and 0.06). It is clear from Figures 3.5(c) and 3.5(d) that

for low values of f ≈ 0.01, one has only a single dip which breaks up into two

with an increase in the oscillator strength. For optimal values of the volume

fraction it is thus possible to have critical coupling at pairs of frequencies for

both the polarizations.

3.4 Conclusions

In conclusion, we have studied critical coupling under oblique incidence and

shown that almost all the incident energy can be absorbed in a metal-

dielectric composite nano film for both TE and TM polarizations. The

imprint of the bulk longitudinal plasmons can be seen in the scattering

profiles for TM incidence, while the corresponding TE scattering does not

show such features. For large oscillator strength of the Mie plasmons of the

composite layer, critical coupling at dual frequencies for both TE and TM

polarizations were shown to be feasible. Our structure excludes the excitation

of surface modes at the composite-dielectric interfaces. It is clear that if the

structure is loaded on top by a prism, or one of the surfaces is corrugated,

the surface plasmons can be excited on the two interfaces of the composite

film. It is of importance to study the critical coupling phenomenon in the

presence of the surface excitations.
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Photonic crystal waveguide interferometer

with ∼ λ/1000 fringe spacing

4.1 Introduction

The propagation of light through rectangular and planar multimode waveg-

uides can result in interesting self-imaging effects based on multimode in-

terference (MMI) phenomena [11, 51]. Over the last decade or so, these

effects have been demonstrated as the basis of splitters (for example, [77]),

modulators and switches [78], Mach-Zehnder interferometers [79], and laser

resonators [2]. Optical waveguide interferometers have been used extensively

as sensors for various applications. They are all based on the interference

of the guided modes of the waveguide and have been used for chemical,

biological and biochemical applications [80, 81]. They have also been used

in devices as a modulator-switch [82].

Conventional interferometers like the Fabry-Pérot or the Michelson in-

terferometers have a fringe spacing of λ/2. A new kind of waveguide

interferometer was proposed by Ovchinnikov and Pfau [3] and reported to

have a fringe spacing of λ/9. The implementation of the dual mode regime

51
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for the operation of the interferometer was shown in [4] reporting a fringe

spacing of λ/130.

In this chapter we propose the design of a planar waveguide interferometer

that can have a fringe spacing of ∼ λ/1000 with photonic crystal walls. The

analysis has been carried out using a second order accurate finite difference

scheme for solving the scalar wave equation. This scheme makes no assump-

tions about having a paraxial input beam and can incorporate metals or

dielectrics or a combination of both for the walls of the planar waveguide.

To present our work in the proper context, a brief review of the previous

work is presented in the following section.

4.2 Previous work

4.2.1 The experiment of Ovchinnikov and Pfau (year 2001)

Figure 4.1: Schematic diagram of the fiber coupled waveguide interferometer
in [3]
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Ovchinnikov and Pfau [3] have described a novel form of multimode

waveguide interferometer based on a planar waveguide formed from a pair of

fully reflecting mirrors. As illustrated in Figure 4.1 the interferometer was

composed of two fully reflecting mirrors. These formed a planar multimode

waveguide. Light enters the waveguide at some angle +θ. The magnitude of

the angle is such that a spectrum of modes is excited. The ensuing multimode

propagation results in oscillations and revivals in the transverse momentum

of the propagating field [3]. This leads to the output beam swinging between

angles of ± θ as the width of the waveguide was changed. In the experiments

that Ovchinnikov and Pfau [3] performed, a 2.0 mm diameter beam from

a 0.633 µm source was coupled into a 50.0 mm long planar waveguide at

an angle of 0.25 rad. Under this condition a 70.0 nm change in the 30.0

µm guide width produced a complete cycle of the angular deviation of the

output beam. The sensitivity to the change in guide width equates to a fringe

spacing of λ/9 [3].

Although this result is remarkable when compared with the λ/2 dis-

placement required in more conventional interferometers, the fringe spacing

could, in principle, be even smaller if certain technical limitations could be

overcome. This is what was achieved by Jenkins et. al.[4].

4.2.2 The design of Jenkins et. al. (year 2008)

Following the suggestion of Ovchinnikov and Pfau [3], they repeated the

experiment with a narrow waveguide containing only two propagating modes.
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Figure 4.2: Schematic diagram of the fiber coupled waveguide interferometer
in [4]

Additionally, they used a fiber for efficient coupling of light from the laser

source into the waveguide. Finally, the laser source had a larger wavelength

than what was used by Ovchinnikov and Pfau [3].With these modifications,

Jenkins et. al. were able to obtain a fringe spacing of λ/130, which is an

order of magnitude better than previous results.

To implement the dual mode operational regime, the planar multimode

waveguide was formed by two 50.0 mm diameter fully reflecting gold coated

mirrors both having a surface figure of λ/10 at 632.8 nm. One of the mirrors

was held in a fixed precision mount, the other was mounted on a linear

actuator. 1.32 µm radiation from a Nd:YAG laser source was coupled to the

planar waveguide from a single-mode, polarization maintaining fiber with an

effective 1/e2 TEM00 mode diameter of 6.5 µm. The fiber was held straight in

a fiber guide and adjusted so that the polarization orientation of the output
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field was parallel to the plane of the mirror surfaces, i.e., parallel to the y

axis in Figure 4.2.

Initially the fiber axis was aligned to be colinear with the planar waveg-

uide axis and butted up to it. Under this condition a choice of

d = 6.5µm/0.703 = 9.25µm

maximizes the power coupling to its fundamental mode [83]. From this

starting point, the fiber was tilted by an angle θ with respect to the axis

of the planar waveguide. In practice, although the last centimeter of the

fiber was stripped back to its 125 µm cladding diameter, this still meant

that the axis of the fiber pivoted about a 62.5 µm radius. Depending on

the magnitude of θ, this leads to a short free-space propagation distance

and some diffraction before the beam enters the planar waveguide. This was

taken into account in the overlap integral calculations to obtain the power

coupling coefficients as a function of the input angle θ.

As θ increases, modes of higher order are excited in turn (see Figure

4.3). The peak in the excitation characteristic of any given higher order

mode occurs when the angle of incidence of the input field corresponds to

the angle of one of the plane wave components of the higher order mode

itself. To a good approximation, to maximize the excitation of the TEp-th

mode, an input beam angle of θ = ±pλ/(2d) is required. Hence for p = 2,

one obtains θ = ±λ/d = 1.32/9.25 = 0.14 radian. As indicated in Figure

4.3, by choosing an input angle of half this magnitude, i.e., λ/(2d) = 0.07

radian, the excitation is essentially limited to two modes TE1 and TE2.
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Figure 4.3: Excitation of guided modes as a function of the input angle of the
injected beam[4]

With only the first two modes excited in the waveguide, the field profile

in the input plane (z=0) is given by:

E(x, 0) = c1E1(x) + c2E2(x) (4.1)

where c1 and c2 are the coupling coefficients corresponding to the guided

mode profiles E1(x) and E2(x) respectively.

The phase change between any two TE modes after propagation through

an axial distance L is given by

φpq = L(βp − βq) (4.2)
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where βp is the phase coefficient of the TEp mode:

βp =
2π

λ

[

1 −
(

pλ

2d

)2
]1/2

(4.3)

Under the paraxial approximation,i.e.,

βp ≈ 2π

λ

[

1 − 1

2

(

pλ

2d

)2
]

(4.4)

the phase difference between two modes with indices p and q is given by:

φpq = L
πλ

4d2
(q2 − p2) (4.5)

Putting p=1 and q=2, we get

φ12 = L
3πλ

4d2
(4.6)

Differentiating with respect to the guide width d, we obtain

∂φ12 = −L
3πλ

2d3
∂d (4.7)

Equating Equation 4.7 to 2π gives the incremental change in guide width

that will produce a 2π phase change between the modes, and hence, a change

in the output beam angle from +λ/(2d) to −λ/(2d), and back again, i.e. a

fringe, as
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∂d = − 4d3

3Lλ
(4.8)

Equation 4.8 suggests that small guide widths in conjunction with long

waveguides and long wavelength radiation produce maximum sensitivity.

However the attenuation of the modes at the guide walls will affect the power

ratio between the modes and impact on the ability to measure variations in

the output field due to incremental changes in the guide width.

The fractional power transmission for the mode TEp through a planar

waveguide of length L is given by

tp = exp(−2αpL)

where,αp =
λ2p2

2d3
Re[(ǫ2 − 1)1/2] (4.9)

is the attenuation coefficient. Here, ǫ = n−ik is the complex refractive index

of the wall material. With a 1.32 µm source in conjunction with a 50 mm

long planar waveguide formed from gold (n = 0.419 and k = 8.42) coated

mirrors, Equation 4.9 yields the fractional power transmission as a function

of mode number and guide width as, tp = exp(−503p2/d3). For a guide width

of 7 µm this yields fractional transmission values for the modes TE1, TE2

and TE3 of 0.23, 0.003 and 1.85×10−6 respectively, with t1/t2 ∼ 81. For a

guide width of 11 µm, the corresponding values are 0.68, 0.22 and 0.03, with

t1/t2 ∼ 3. From this perspective, with the aim of working with small guide

widths in order to achieve high sensitivity, Jenkins et. al. opted for an input



59

angle of ±λ/d (Figure 4.3) . This provided the highest starting magnitude of

TE2, while the additional excitation of the modes TE3 and TE4 were of little

consequence because of their significantly higher attenuation (see Figure 4.4).

Figure 4.4: The power coupling coefficient plots of a 8µm wide waveguide with

gold mirror walls at (top) the input plane (z=0) and (bottom) the output plane

(z=5cm). Only insignificant amounts of the TE3 and TE4 modes survive at

the guide exit.
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On the aforementioned basis, Jenkins et. al. started off with a guide

width of 11.0 µm and gradually reduced the width to 8 µm. The launch

angle λ/d was kept fixed at 0.14 radian corresponding to a median guide

width of 9.25 µm.
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¶
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Figure 4.5: The change in guide width required to produce a complete

switching cycle of the beam at the output plane[4]. This plot is for L = 5cm

and λ = 1.32µm.

For each guide-width ∂d was measured very accurately. The measured

values of ∂d were in very good agreement with the theoretical predictions

plotted in Figure 4.5. In particular, it was observed that for d = 8µm,

L = 5cm and λ = 1.32µm, ∂d ∼ 10nm ≃ λ/130 as predicted by Equation

4.8
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Figure 4.6: The power coupling coefficient plots of a 4µm wide waveguide with
gold mirror walls at (top) the input plane (z=0) and (bottom) the output plane
(z=5cm)

4.3 The present design

A guide with a smaller width seems to serve the purpose of making a more

sensitive waveguide interferometer (see Figure 4.5 and Equation 4.8). How-

ever, the guide width cannot be reduced indefinitely as for small guide widths,

attenuation of the higher order modes (see Equation 4.9) become prohibitive

and only a small fraction of the modes, excited at the input plane, would

survive at the output plane (for example see Figure 4.6). Thus, more sensitive
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waveguide interferometers can be achieved only if the loss at the walls can

be reduced.

Photonic band gap structures are strong candidates for making waveg-

uides owing to many features like lossless nature of propagation and scal-

ability of the design. One-dimensional photonic band gap structures are

the easier to fabricate with well accepted methods compared to the higher

dimensional counterparts [84, 85, 86]. The use of lossless materials like

photonic crystals would allow us to use smaller guide widths in order to

achieve a sensitive interferometer.

Thus we study a waveguide interferometer system which is the same as

in [4] except for the walls where we have used finite-sized one-dimensional

photonic crystals. All the other parameters, namely, the wavelength, waist

size of the input beam and the propagation distance for obtaining the two-

mode interference pattern are chosen the same for ease of comparison.

4.4 Method used

A two mode interference pattern at the exit plane of the waveguide requires

the calculation of the propagation constants and the mode profiles of the

guided modes. In what follows, the second order accurate finite difference

scheme for obtaining the propagation constants of the modes and extraction

of the guided modes are described. The coupling of the input Gaussian beam

into the waveguide and the choice of a proper tilt angle so as to obtain a two

mode interference at the output plane is explained. The results are validated
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by comparison with those of [4] in the following section.

4.4.1 Determining the propagation constants

A non-iterative finite difference scheme has been used for evaluating the

propagation constants of the waveguide. The wave equation

d2E(x)

dx2
+ k2

0ǫ(x)E(x) = β2E(x) (4.10)

where k0 = 2π/λ0, λ0 is the free space wavelength is discretized in accordance

with the second order accurate finite difference scheme as:

Ei−1 − 2Ei + Ei+1

δ2
+ k2

i Ei = β2Ei for all i ∈ I (4.11)

where

δ = distance between two neighbouring grid points

k2
i ≡ k(xi)

2 = k2
0ǫ(xi),

ǫ(xi) is the dielectric constant at the point xi

Ei ≡ E(xi)

A finite domain for the dielectric distribution is chosen and Equation 4.11

at each xi is written. The whole set of equations thus obtained along with

the boundary condition that Ei at the ends of the computational domain

is zero gives an eigenvalue system. Writing down Equation 4.11 for all the

values 1 < i < N and casting them in matrix form, we get the following
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matrix equation:
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(4.12)

The eigenvalues are the squares of the propagation constants and the

eigenvectors are the field distributions. We use this scheme because it eval-

uates the propagation constants non-iteratively as opposed to the iterative

schemes used previously (see for example [87]). Moreover when using metals,

the guided modes have an imaginary part corresponding to the loss associated

with the metallic boundaries. Calculating complex propagation constants

using iterative schemes require root finding algorithms to search over a very

large domain of values that cannot be guessed reasonably. The trade-off for

a quick search of the propagation constants is the diagonalization of a large

( 1500x1500 or larger, depending on the waveguide structure) tridiagonal

matrix for a finely subdivided domain of the dielectric distribution.
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4.4.2 Extraction of the guided modes

The solutions also include other modes that satisfy the same boundary con-

ditions. We use the following constraints[88, 89] to retrieve the guided modes

from the whole set of solutions:

If the dielectric distribution contains absorptive materials.

Re(ncladding) < Re(
β

k0
) < Re(ncore) (4.13)

The constraint when pure dielectrics are used is

Re(
β

k0
) < Re(ncore) and Im(

β

k0
) = 0 (4.14)

where ncore and ncladding are the refractive indices of the core and cladding

material.

An input beam can be expressed in terms of the guided modes as :

E(x, z) =
∑

m

cmEm(x)e−iβmz (4.15)

The coupling coefficients of the guided modes (cm) are a function of the

input angle of the beam. For a tilted Gaussian input beam they are given by

cm(θ) =

xN
∫

x1

E(x′′, z′′)E∗

m(x)dx (4.16)
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Figure 4.7: Transformation of coordinates for the tilted beam injected into
the waveguide.

Here x1 and xN are the limits of the dielectric distribution, Em(x) is the

m-th guided mode profile and E(x, z) is the input beam profile given by:

E(x, z) = 4

√

2
π

eiφ(z)/2√
w(z)

exp−ik0z − ik0x2

2R(z)
− x2

w2(z)

φ(z) = tan−1(z/zR)

w(z) = w0(
√

1 + (z/zR)2)

R(z) = (z + z2
R/z)

(4.17)
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The following transformations are made for a tilt θ

x′′ = x cos θ

z′′ = x sin θ + (D/2) tan θ
(4.18)

D being the diameter of the fiber delivering the input (See Figure 4.7).

4.5 Results

We compare the values of the attenuation constants for the case in [4] by

this method with that of the analytical expression as a test of the reliability

of this method in Figure 4.8.

4.6 6.2 7.8 9.4 11.0
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1.2
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�������
Α

k0

Hx 10-5
L

Solid® analytical; Dots® FD scheme

Figure 4.8: Attenuation constants corresponding to the first two modes using

analytical formula (solid lines) and the finite difference scheme (dots) for the

system in [4].

In Figure 4.9 we show the coupling coefficients of the same system as in
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[4].
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Figure 4.9: The power coupling coefficient plots of a 11µm wide waveguide

with gold mirror walls at (top) the input plane (z=0) and (bottom) the output

plane (z=5cm)

Next, we note that for a finite sized one dimensional photonic crystal

consisting of slabs of λ/4 plates of two materials placed alternately, not more

than 10 pairs of slabs shall be necessary to reflect the beam back completely

into the waveguide core(for example [48]).
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Figure 4.10: Plot of the power coupling coefficient vs input angle of the beam

for various thickness of the finite photonic crystal walls at a guide width of

4µm. The left column is the profile at the input plane(z=0). The plots on

the right side are the power coupling coefficients at the exit plane(z=5cm).

The cladding beyond the photonic crystal layers are of absorbing material

(Ge). There is a slight attenuation with 7 pairs of slabs (a). There is no

change of the power coupling coefficient profile if 10 or more layers( (b) and

(c) respectively) are used.
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In Figure 4.10 we plot the power coupling coefficient as a function of the

input angle (θ) for planar waveguides with photonic crystal walls differing in

the number of slabs used. The walls consist of a finite number of λ/4 plates

and an absorbing material (like Ge) beyond. There is no change of the power

coupling coefficient profile for photonic crystal slabs with 10 or more pairs of

slabs. We therefore use 10 pairs of slabs in our calculations. If such a large

number of slabs are used, the material surrounding the cladding does not

affect the field profiles. The lossless nature of the photonic crystal waveguide

is seen from the power coupling coefficient plots at the input and the output

planes.

4.0026 Μm 4.00325 Μm 4.0039 Μm

Figure 4.11: The contour plots of the electric field intensities at the exit plane

for different guide widths. The values of the guide widths are given above the

figures.

We show the field profile at the exit end for slight change in the guide

width in Figure 4.11. This amounts to a shift in the fringe pattern for

a change in the guide width of 1.3nm for a guide width of 4µm. Such

small changes in guide width are detectable due to the lossless nature of the
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dielectric walls and the mode coupling that still occurs at such small guide

widths.
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Figure 4.12: The power coupling coefficient plots of a 4m wide waveguide with

photonic crystal walls at (left) the input plane (z=0) and (right) the output

plane (z=5cm)

A waveguide with such photonic crystal walls was studied using a finite

difference scheme [87, 90] for the fringe displacement sensitivity. The tilt

angle for the input beam was chosen to be θ = 0.5(in units of λ/d) so that

the first two modes produce an interference fringe at the output plane (Figure
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4.12). There was no loss of the modes for transmission over a length of 5cm.

This and the strong coupling of the modes even at small guide widths of 4µm

improved the fringe displacement sensitivity.

At λ = 1.32µm, the change in guide-width necessary to produce a com-

plete switching cycle of the fringe pattern (Figure 4.11) is 1.3nm(≈ λ/1000).

4.6 Conclusion

In conclusion, we have shown that a waveguide interferometer with photonic

crystal walls with a guide-width sensitivity of ∼ λ/1000 can be achieved.

The ability to go to guide widths as small as ∼ 4µm was not possible earlier

with metal-walled waveguides due to severe attenuation of all the guided

modes. Moreover, such a sensitive interferometer can be designed for various

wavelengths owing to the scalability of the photonic crystal structures.



5 Conclusion and future prospects

In this thesis, we have presented the design of a dual case I self-imaging

waveguide resonator with variable reflectivity mirrors, a critical coupling

resonator dealing with oblique incidence and an ultra-sensitive waveguide

interferometer using photonic crystal structure for the walls.

In Chapter 2 a novel class of a waveguide resonator based on self-imaging

has been proposed. The self-imaging length depends on the guide-width

and the wavelength of the electromagnetic radiation used. The longitudinal

and transverse distances have been scaled in units of the self-imaging length

and the guide-half width respectively. This provides a generalized resonator

design for an arbitrary wavelength. Moreover, the dual Case I design requires

only plane mirrors with step-index reflectivity profiles to be placed at the ends

of the waveguide. Such mirrors are easier to produce and install as compared

to their curved mirror counterparts. The resonator can even be fabricated in

semiconductor integrated optics technology where cleaved facets can act as

plane mirrors.

In Chapter 3 a critically coupled resoator has been studied in detail.

Earlier studies of the system dealt with the case of normal incidence showing

73
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critical coupling at one or two frequencies. The distinguishability of the

transverse electric and transverse magnetic polarizations for oblique incidence

(as opposed to the case of normal incidence) has been has been dealt with in

this study. It has been shown that critical coupling can be achieved for both

the polarizations, although at different frequencies. The signatures of bulk

plasmons that can only be excited by the transverse magnetically polarized

component of the incident radiation have also been found.

In Chapter 4 an ultra-sensitive waveguide interferometer using photonic

crystal structure for the walls has been studied. This is an order of magnitude

improvement on the sensitivity of a recently proposed design of a metal-clad

waveguide interferometer. This photonic crystal waveguide structure allows

us to go to smaller guide widths that could not be attained previously with

metal waveguides.

Analysis of similar systems can be carried out with higher dimensional

photonic band gap structures since prohibition of electromagnetic wave prop-

agation along two directions is expected to yield different field profiles than

has been observed in this work.
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