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Abstract

This thesis deals with certain aspects of the effect of dissipation on the nuclear

matter at extreme conditions like high temperature or/and high density. First, we

study nuclear matter at high baryon density and low temperature, which can be

found inside neutron stars. We consider a rotating neutron star with the presence

of hyperons in its core. Hyperonic matter is described by an effective chiral sigma

model within relativistic mean field approximation. We calculate the hyperonic

bulk viscosity coefficient due to non-leptonic weak interactions. By estimating

the damping timescales of the dissipative processes, we investigate its role in the

suppression of gravitationally driven instabilities in the r-mode. We observe that

r-mode instability remains very much significant for hyperon core temperature of

around 108 K, resulting in a comparatively larger instability window. We find

that such instability can reduce the angular velocity of the rapidly rotating star

considerably upto ∼ 0.04 ΩK , with ΩK as the Keplerian angular velocity.

Next we consider the hot and almost zero baryon density quark-gluon matter

produced in relativistic heavy ion collision experiments like RHIC and LHC. Using

the second order causal Israel-Stewart dissipative hydrodynamics we discuss the

effect of both bulk and shear viscosities in the hydrodynamic expansion of the

plasma for one dimensional boost-invariant (Björken) flow. Using the recent lattice

QCD estimates for a temperature dependent bulk viscosity ζ/s, which has a peak

near critical temperature Tc, and the minimal value of shear viscosity η/s ≈ 1/4π,

we show that during hydrodynamical evolution effective longitudinal pressure of

the system can become negative at RHIC energies, thus triggering the phenomenon

of cavitation. Further, we also found that at LHC energies such a high value of

bulk viscosity cannot drive system to a cavitating phase. However, using various

prescriptions for a temperature dependent η/s we found, at LHC energies, shear

viscosity alone can cause cavitation. Cavitation happens at very early time of the

evolution. We also demonstrate that the conformal terms used in equations of the

relativistic dissipative hydrodynamic can influence the cavitation time. Further,

we study the role of finite shear viscosity on the chemical equilibration of the

thermalised plasma at RHIC and RHIC energies. We found that even the smallest



vi

possible value of shear viscosity alone can make the system take more time to reach

equilibrium stage.

Further, we investigate the effect of viscosity, both bulk and shear on the ther-

mal particle production from QGP. We use one dimensional boost-invariant second

order relativistic hydrodynamics to find proper time evolution of the temperature.

First we consider thermal photon emission from the chemically non-equilibrated

plasma. We find that photon production rates can enhance by several factors due

to the minimal value of shear viscosity. We propose that this enhancement in pho-

ton spectrum can be used to measure the viscosity of the hot quark-gluon matter

formed. Next we consider the effect of bulk viscosity and shear viscosity on ther-

mal photon production from QGP. The effect of bulk viscosity and equilibrium

equation of state are taken into account in a manner consistent with recent lattice

QCD estimates. Ratio of the shear viscosity to entropy density is taken to be

η/s ∼ 1/4π. We study the resulting photon spectra in presence of the viscosities.

We analyse the effect of novel phenomenon of bulk viscosity induced cavitation

on the thermal photon production. We demonstrate that ignoring the cavitation

phenomenon can lead to an erroneous estimation of the particle flux. Further, we

calculate the corrections on the dilepton production rates due to modification in

the distribution function, arising due to the presence of the bulk and shear viscosi-

ties. It is shown that when the system temperature evolves close to Tc the effect of

the bulk viscosity on the dilepton emission rates can not be ignored. It is demon-

strated that the bulk viscosity can suppress the thermal dilepton spectra where as

the effect of the shear viscosity is to enhance it. We find that even though the finite

bulk viscosity corrections and the onset of the cavitation reduce the production

rates, the effect of the minimal η/s = 1/4π can enhance the dilepton production

rates significantly in the regime pT ≥2 GeV.

Finally we would like to note that we have analyzed the role of viscosity of the

nuclear matter under high temperature or/and high density. We have shown that

the viscous dynamics can significantly influence the observed signal of the plasma

from heavy ion collisions. Moreover, we have demonstrated that high values of

η/s >> 1/4π can lead to a novel phenomenon of shear viscosity driven cavitation.
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Chapter 1

Introduction

Studies of nuclear matter at extreme conditions like high density and/or high

temperature is of great interest and a topic of extensive research in recent times

[1]. By extreme conditions we mean densities ≥ (2− 3)n0, where n0= 0.153 fm−3

= 2.7× 1014 gm cm−3 is normal nuclear matter density and temperatures T ≥ 150

MeV ∼ 1012 K. One knows from the standard model of particle physics, the force

that binds quarks into composite particles called hadrons of size ∼ 1 fm = 10−13

cm, is the strong force and is described by the theory of quantum chromodynamics

(QCD). The scale of this theory ΛQCD ∼ 150 MeV, gives the information regarding

the strength of interaction in different energy regimes. Asymptotically free nature

of this theory implies that the interaction between quarks and gluons becomes

weak at high energies Q� ΛQCD, whereas at low energies Q� ΛQCD interaction

becomes stronger and leads to the confinement of color [2–4]. This may explain

the non-observance of free quarks and gluons in nature. It is interesting to note

that extreme conditions, like high density and or temperature, do exist in nature.

It is expected that after the big-bang (∼ 10−5 s), universe had gone through a

phase where the temperature was comparable to that of QCD phase transition.

It is also expected that high density quark matter is realised inside neutron stars.

Apart from these natural occurrences, hot quark-gluon matter is believed to be

formed in relativistic heavy ion collider experiments. Study of nuclear matter

under extreme conditions is of fundamental importance since it will help us to test

our understanding of the elusive QCD vacuum structure and its modification via

1



2

Figure 1.1: Proposed phase diagram of QCD matter (picture taken from Ref. [5]).

temperature and density. These will be useful in improving our understanding of

the confinement, hadronic structure etc.

The wealth of information from theoretical as well as experimental studies on

matter under extreme conditions are used to propose the phase diagram of QCD,

represented in Fig. [1.1]. The diagram shows the various conjectured phases of

QCD in baryon chemical potential and temperature (µB, T ) plane. As shown by

the figure, the baryon free high temperature regime is explored by the ongoing

experiments like RHIC and LHC, while the regime with finite baryon chemical

potential and temperature will be probed by the future experiments like FAIR1.

What we can expect if we increase the temperature or density of the matter

to very high values? At temperature (or density) above the critical temperature

(or density), the hadronic degree of freedom is no longer valid. The quarks and

gluons are now not confined in a hadronic volume, but they can move in to a bigger

volume occupied by the nuclear matter. The exact nature of the phase transition

is currently not fully understood, but at high temperature it is expected to be a

1RHIC: Relativistic Heavy Ion Collider (BNL, US), LHC: Large Hadron Collider (CERN,

Geneva), FAIR: Facility for Antiproton and Ion Research (GSI, Germany)
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crossover rather than a phase transition [6]. The critical temperature of QCD is

under extensive study and it is believed to be in the range 150-200 MeV [7]. In

the high density and low temperature regime, the deconfinement transition can

lead to a highly degenerate quark-gluon matter. Such a scenario can be realized

inside a neutron star. At ultra-high densities we expect to find the conjectured

color-flavor-locked (CFL) phase of color-superconducting quark matter. Thus the

phase diagram of QCD matter contains many exotic and mysterious regions posing

challenging questions to be explored [8–14].

We would like to study certain aspects of extremely dense or hot matter re-

gions of QCD phase diagram, which can be probed through some observations or

experiments. The cold and dense matter inside neutron stars and hot baryon free

(µB = 0) QGP produced in heavy ion collider experiments (RHIC & LHC) are two

such regions [13, 14].

1.1 Dense and cold nuclear matter inside neu-

tron stars

Neutron stars are natural testing ground for studying extremely dense matter.

The densities in the interior of such stars can reach up to several times the nuclear

matter saturation density. At such high densities, with higher fermi momenta being

available, high mass hadrons can be accommodated leading to a hyperonic core in

the neutron star interior [13, 15–18]. There could also be the possibility that at

such densities, when the nucleons are crushed, there could be quark matter [19, 20]

which can result in a color superconducting core in the interior of the neutron star

[11, 21–29]. In fact, there are different possibilities of the ground state of dense

matter, which could be stable strange quark matter [30], and various possibilities

of color superconducting matter [31–33]. The reason is that the true ground state

of the dense matter system for densities relevant for the densities in the interior

of neutron stars is still an open problem because of the inherent nonperturbative

nature of strong interaction physics. Moreover, external conditions like electrical

and color charge neutrality conditions for the bulk matter in the interior of the
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star can also lead to various different possible phases of quark matter [33–39]. This

has given rise to various possibilities of compact stellar objects like neutron stars,

strange stars, hyperonic stars or hybrid stars with a quark matter core and a crust

of hadronic matter [18, 40].

Since description of dense nuclear matter is inherently non-perturbative, there-

for, we need to rely upon certain approximation schemes to make progress. In

field theory, one of the ways to tackle this problem is by means of relativistic mean

field theory (RMFT) approximation [41–45]. In the next subsection, we discuss the

Walecka model, a toy model to describe the nuclear matter within RMFT; since

many realistic and successful nuclear matter models are extension of this basic

model.

1.1.1 The Walecka model & RMFT

Walecka model is a simple model to describe the nuclear matter where the in-

teraction among nucleons are mediated via scalar (φ) and vector (V µ) particles

(mesons) [45]. The choice of the model is motivated by the empirically observed

large values of Lorentz scalar and vector contributions in the N − N interaction.

Secondly the dominant bulk properties of the matter can be described in this fash-

ion. With this model it is also possible to reproduce the effective nucleon-nucleon

potential; repulsion at short distance and attraction at large distance, with the

aforesaid meson exchange in the limit of static heavy baryons.

The Lagrangian density of the system is given by

L = ψ̄ [iγµ∂µ − gvγµVµ − (M − gsφ)]ψ (1.1)

+
1

2

(
∂µφ∂

µφ−m2
sφ

2
)
− 1

4
FµνF

µν +
1

2
m2
vVµV

µ,

where Fµν ≡ ∂µVν − ∂νVµ. The neutral φ meson is coupled to the scalar density of

the baryons through gsψ̄ψφ and neutral vector meson is coupled to the conserved

baryon current through gvψ̄γ
µψVµ. One must note here that we don’t consider

spin or isospin dependent interactions as they tend average to be zero when we

consider bulk properties of the system. When mv > ms and gs > gv the potential

is repulsive in short distances due to the vector meson exchange and attractive at
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large distances due to scalar meson exchange. One can write out the equations of

motion (Euler-Lagrangian) for the fields φ, V µ and ψ now:

[∂µ∂
µ +m2

s]φ = gsψ̄ψ, (1.2)

∂µF
µν +m2

v V
ν = gvψ̄γ

νψ, (1.3)

[iγµ∂µ − gvγµVµ − (M − gsφ)]ψ = 0. (1.4)

However these non-linear equations are difficult to deal and their exact solutions are

very complicated. Since we expect the couplings gv and gs are large, perturbative

methods also fail.

We use the relativistic mean field theory (RMFT) to simplify the problem. In

this non-perturbative technique we replace the meson field operators with their

classical expectation values. RMFT is valid when the source terms are large. As

the baryon density becomes large, the source terms involving the baryon field

increase and hence the meson fields also become stronger. In such a situation it

is reasonable to replace the quantum fields by classical fields. With |ψ0〉 denoting

the ground state of the nuclear matter, RMFT approximation can be written as,

φ → 〈ψ0|φ|ψ0〉 = φ0, (1.5)

Vµ → 〈ψ0|Vµ|ψ0〉 = δ0
µV0. (1.6)

For a uniform, static system there is no preferred spatial direction and hence vector

field can develop only a time component. Further, for such systems, the classical

fields φ0 and V0 are constants independent of xµ. These meson field equations

within RMFT become

φ0 =
gs
m2
s

〈ψ0|ψ̄ψ|ψ0〉 =
gs
m2
s

nSB, (1.7)

V0 =
gv
m2
v

〈ψ0|ψ†ψ|ψ0〉 =
gv
m2
v

nB; (1.8)

with the scalar density nSB and baryonic density nB. Now the equation for ψ field

becomes [
iγµ∂µ − gvγ0V0 −M∗]ψ = 0, (1.9)

where we have defined M∗ = M − gsφ0 as the effective mass. We look for the

stationary state solutions of the form

ψ = Ur(~k) e−ik·x, (1.10)
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where k·x = kµxµ = Et−~k· ~x and Ur(~k) denotes the four-component Dirac spinor

with r being its spin index. Now Dirac equation becomes,

[
/K −M∗]Ur(~k) = 0 (1.11)

with /K = γµKµ and Kµ = kµ−gvδ0
µV0. In order to find the eigenvalues, we multiply

both sides of the above equation with /K +M∗ resulting in

[
/K /K −M∗2]Ur(~k) =

[
K·K −M∗2]Ur(~k) = 0, (1.12)

where we used the relation γµγν + γνγµ = 2gµν . From the above equation we get

E(±) = gvV
0 ±

√
~k2 +M∗2, (1.13)

with +(−) denoting the positive (negative) energy solution of Dirac equation. We

can expand the baryon field operator in terms of complete set of solutions to the

Dirac equation with both positive and negative energy solutions,

ψ(x) =
∑
~k r

1√
2VK0

[
a~k rUr(

~k) e−iE
+t+i~k·~x + b†~k r

Vr(~k) e−iE
−t−i~k·~x

]
, (1.14)

where a~k r is the annihilation operator for baryons and b†~k r
is the creation operator

for anti-baryons. However, since we are interested in cold nuclear matter inside

neutron stars (T ≈ 0), we do not consider antiparticles in the present problem.

Further, we can get the normalisation conditions for the spinor as

Ūr(~k)Us(~k) = 2M∗δrs,

U †r (~k)Us(~k) =

√
~k2 +M∗2

M∗ Ūr(~k)Us(~k) .

(1.15)

For uniform nuclear matter, ground state is obtained by filling the states with ~k

and spin-isospin degeneracy factor γ (= 4 for symmetric nuclear matter) till Fermi

momenta kF . Now the baryon density is given by

nB = 〈ψ†ψ〉 =
γ

(2π)3

∫ kF

o

d3k =
γ

6π2
k3
F , (1.16)

whereas the scalar density is obtained as

nSB = 〈ψ̄ψ〉 =
γ

(2π)3

∫ kF

o

M∗ d3k√
~k2 +M∗2

; (1.17)
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where (and henceforth), for brevity, we denote 〈ψ0|O|ψ0〉 = 〈O〉. It is to be noted

here that V0 is obtained using the conserved baryon density nB, i.e.; by Eq. (1.8).

Whereas, φ0 is a dynamic quantity that needs to be evaluated self consistently

from Eqs. (1.7 & 1.17) for a given kF .

In order to get the thermodynamic quantities one need to construct the energy-

momentum tensor Tµν from the Lagrangian (within RMFT here),

T µν = −gµν L +
∂ψ

∂xν

∂L

∂∂ψ/∂xµ
(1.18)

⇒ T µνRMFT = iψ̄γµ∂νψ −
(

1

2
m2
vV

2
0 −

1

2
m2
sφ

2
0

)
gµν . (1.19)

For a uniform system, the observed energy-momentum tensor is given by [46]

〈Tµν〉 = (ε+ P )uµuν − Pgµν , (1.20)

where ε and P are the energy density and pressure of the system respectively.

The 4-velocities uµ are related by the relation uµuµ = 1. And for a fluid at rest:

uµ = (0,~1), we have

ε = 〈T00〉 , P =
1

3
〈Tii〉 . (1.21)

Therefor, we get

ε =
g2
v

2m2
v

n2
B +

m2
s

2g2
s

(M −M∗)2 +
γ

(2π)3

∫ kF

o

√
~k2 +M∗2 d3k (1.22)

P =
g2
v

2m2
v

n2
B −

m2
s

2g2
s

(M −M∗)2 +
1

3

γ

(2π)3

∫ kF

o

~k2 d3k√
~k2 +M∗2

. (1.23)

For a given kF , we get nB from Eq. (1.16) and φ0 by self-consistently solving Eqs.

(1.7 & 1.17); which eventually gives M∗. Now we obtain ε(kF ) and P (kF ) from

the above Eqs. (1.22 & 1.23) and these two equations represent the nuclear matter

equation of state (EoS) (at zero temperature) in parametric form.

Now let us analyse the predictions for the bulk properties of symmetric nuclear

matter by this model. Now by tuning the coupling constants C2
s = g2

s

(
M2

m2
s

)
and

C2
v = g2

v

(
M2

m2
v

)
, we get the symmetric nuclear matter at saturation density n0 =

0.153 fm−3 with an equilibrium fermi wave number k0
F = 1.31 fm−1 and an energy

per nucleon (ε/nB −M) = −16.3 MeV. However, compressibility of the nuclear

matter, given by

K = k2
F

d2(ε/nB)

dk2
F

, (1.24)



1.1. Dense and cold nuclear matter inside neutron stars 8

turns out to be ∼ 550 MeV in this approximation, which is rather high (around two

times) compared to the experimental values. Further, effective mass at saturation

M∗/M ≈ 0.5 is also not in agreement with the observed value M∗/M ≈ 0.7...0.8.

One tries to modify this model by including non-linear terms in the meson fields, so

as to have a better agreement with experimental results for saturation properties

of the nuclear matter.

Phenomenologically, parallel to Walecka model (also known as σ − ω model),

the chiral effective models for hadronic matter have been developed and are applied

to nuclear matter [13]. A chiral σ − ω model along with dilatons in the context of

phase transition has been developed in Ref. [47] and further generalised to describe

strange hadronic matter [48–50]. Another approach that was also considered is the

parity doublet model [51]. Also, attributes of rotating hyperonic star within a chiral

σ model has been studied in Refs. [52–54]. Further, a chiral σ hadronic model, with

a dynamical generation of the vector meson mass, along with non-linear terms in

the scalar field interactions to reproduce nuclear saturation properties at reasonable

incompressibility, was also considered [55, 56]. This model was then generalised to

include the lowest lying octet of baryons [57].

Once we get the EoS of the neutron star matter under consideration, by means

of stellar structure equations obtained using general relativistic considerations;

static or rotating stellar equilibriums can be studied [58–60]. As mentioned before,

theoretically many states of dense cold matter can be realised inside a neutron

star. However, it is very challenging to distinguish various compact stellar objects

observationally, and sort out the ambiguity regarding its constituent particles.

1.1.2 r-mode instability

One of the various signatures suggested to distinguish different compact stars has

been the r-mode instability [61–65]. A rotating star is subjected to various kinds

of pulsating modes, which are classified in terms of their restoring forces. r-modes

are one kind of such (axial) modes caused by the velocity perturbations, where the

restoring force is Coriolis force [67, 68]. The r-mode frequency ω in the co-rotating
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frame, to first order in the rotation frequency Ω of the star is given by [69]

ω =
2mΩ

l(l + 1)
+O(Ω3) (1.25)

The r-modes correspond to l = m [67]. It was discovered recently that these modes

are unstable due to emission of gravitational radiation [61]. The gravitational ra-

diation couples with r-mode oscillations and make the star radiate its rotational

energy due to the Chandrasekhar-Friedman-Schutz mechanism [70, 71], thus effec-

tively reducing the angular momentum of the star. What makes r-mode important

in a star compared to other modes, is that, it is unstable for all rotational veloci-

ties [61]. This process, if unsuppressed due to viscous effects, saturates eventually

due to non-linear effects, which transfer r-mode energy to other modes which are

not coupled with gravitational radiation [72]. But by this time star would emit

sufficient gravitational radiation which can be detected using experiments like Ad-

vanced Laser Interferometer Gravitational Wave Observatory (LIGO) [64]. Thus

a newly born neutron star will be subjected to r-mode instability and can get its

angular momentum lowered, due to gravitational radiation. This may be the rea-

son for the observational indication that most of the stars detected (millisecond

pulsars) have a very low rotational frequency although theoretically a star can

support much higher rotational frequency. Most of these stars lie in the low-mass

X-ray binary systems (LMXBs) [73]. Further, the gravitational radiation emitted

from such stars can be detected using LIGO.

The growth of r-mode may get damped if the viscosity of the stellar matter is

large enough. Thus study of r-mode gives an opportunity to probe the viscosity

of the stellar matter at high densities inside a neutron star. One can study how

effectively viscosity can damp the unstable modes, before these modes reduce the

stellar angular momentum considerably [63].

While shear viscosity prevents differential rotation in a star, bulk viscosity

dampens the density fluctuations in the star. At relatively low temperatures, the

primary dissipation mechanism arises from momentum transport due to particle

scattering which produces shear viscosity. In a normal fluid star nn scattering

gives the primary contribution to shear viscosity [74, 75]. At higher temperatures

(above few times 109K), bulk viscosity- which dampens the density fluctuation of
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the star; turns out to be the dominant dissipation mechanism. Further, typical

r-mode frequencies are of the order of stellar rotational frequencies (1s−1 < ω <

103s−1), which are comparable to the weak interaction time scales. Further, since

timescales associated with strong interaction processes are very fast compared to

weak interaction processes, bulk viscosity that is relevant for r-mode instability

will be dominated by the weak processes.

Bulk viscosity is produced when the mode oscillations induce perturbations in

density of the stellar matter and drive the system away from β-equilibrium. As a

result energy is dissipated from the system as the weak interaction tries to restore

the equilibrium. While for hadronic neutron star matter, modified Urca processes

(n+ n→ n+ p+ e− + ν̄e) involving leptons are important, it has been noted that

the damping of the instability is dominated by large bulk viscosity arising due to

non-leptonic processes involving hyperons [76–78]. The corresponding viscosities

are not only stronger, the temperature dependence is also different (varying as

T−2 instead of T 6 ) which makes the hyperon bulk viscosity important at lower

temperatures. Bulk viscosities of dense baryonic, kaonic and quark matter has

been calculated under various assumptions as well as conditions over last few years

and applied to the study of mode damping. [63, 76–89].

We would like to analyse the role of hyperon bulk viscosity in the damping of

r-modes in a neutron star with a hyperonic core scenario. We will use a chiral

model for the neutron star matter including the lowest lying octet of baryons and

evaluate bulk viscosity within this model.

1.2 QGP in relativistic heavy ion collisions

Heavy ion collisions are the only means by which we can create hot/dense nuclear

matter in a laboratory. Depending upon the energy that can be attained, we can

create hot quark-gluon matter (as in RHIC and LHC) or hot and dense matter (as

in proposed FAIR); see Fig. [1.1]. We are interested in the production scenario

of hot, almost baryon free, QGP formed in the RHIC and LHC experimental con-

ditions. In a heavy ion collision, two nuclei are accelerated to relativistic speeds

and they collide each other depositing huge amount of energy. Thus generated
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entropy ultimately manifests as new particles which we observe in the detectors.

We can broadly divide heavy ion collision scenario into three temporal regions [14]:

Pre-equilibrium stage (0 < τ < τ0): Collision of the nuclei results in the pro-

duction of hot quarks and gluons as the nucleons degrees of freedom are destroyed

due to the impact and lot of entropy is generated in the center. We still don’t have

a clear understanding about the entropy production associated with the heavy ion

collision at τ = 0. In this state after a certain time τ0 (< 1 fm) system attains

thermalisation. Again, the actual mechanism behind this thermalisation is un-

known. Models like color glass condensate (CGC) etc. are used to explain this

pre-equilibrium stage, eventhough these theories has drawbacks [90, 91]. The main

reason for these ambiguities are due to the inherent non-Abelian nature of the

underlying theory, QCD. So what we assume is that after τ0, we have a hot ther-

malised plasma formed in heavy ion collision.

QGP phase (τ0 < τ < τf ): At this phase, the hot fireball created in the heavy ion

collision will be in a thermalised state. Deconfined system is now in the form of hot

QGP. There can be a possibility of having thermally equilibrated but chemically

non-equilibrated phase. Since the local thermal equilibrium is attained we can

use hydrodynamics to describe the evolution of the system from the initial time

τ0. The fireball undergoes an expansion, governed by relativistic hydrodynamical

equations, subsequently may cool up to the critical temperature Tc. In this thesis

we will be focusing on this stage of the heavy ion collision.

Mixed/Hadronic phase and freeze-out (τf < τ < τfr): At Tc system will be

in a mixed phase and now the entropy of the system decreases due to conversion of

QGP into hadrons, while maintaining the temperature Tc. Further below temper-

atures, subsequently hadronisaton will take place. Applicability of hydrodynamics

ceases to exist when system reaches the freeze-out time τfr. Freeze-out is defined by

the space-time hyper-surface where mean-free path of the particles becomes larger

than the system size. At this juncture, local equilibrium is no longer maintained

so the particles fly away. It is to be noted that different particle species reaches
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freeze-out in different times, in reality.

1.2.1 Relativistic hydrodynamics

Enrico Fermi in 1951 suggested using thermodynamics and statistical prescrip-

tions for studying the multiple particle production in heavy ion collision [92]. In

his seminal papers (1953, 1955), Soviet physicist Lev Landau used relativistic hy-

drodynamics to prescribe the expansion of strongly interacting matter in heavy

ion collisions [93, 94]. In this Landau picture, two nucleons with relativistic speeds

collide each other with zero impact parameters (central collision) in center-of-mass

reference frame. They get significantly slowed down, stick together and produce

hot baryon rich particles at the center. And thereafter hydrodynamical expansion

of this matter takes place mainly along the incident beam axis (say, z-axis). For

high energy collisions like that in RHIC and LHC, we have to replace this picture

by that of Björken [95]. In Björken picture, the two Lorentz contracted nuclei

collide and pass-through each other creating baryon free hot quark-gluon matter

at the center, which will undergo a longitudinal (one dimensional) expansion along

the incident beam axis.

Hydrodynamics is valid when the mean free path of the particles in the system

(λ) is shorter compared to the size of the system (L). In other words the interac-

tion between the constituent particles should be frequent enough to establish the

equilibrium of the system under consideration. The mean free path, which is the

distance travelled by the particle in between successive collisions is written as

λ =
1

σρ
(1.26)

where σ is the interaction cross section and ρ is the density of the medium. Now the

condition for applicability of hydrodynamics can be expressed as L� l� λ, where

l being the size of the fluid element. Equivalently, in terms of Knudsen number,

Kn = λ/L� 1. Let us calculate Kn in the context of RHIC (Au−Au,
√
s = 200

GeV). With the central density taken as ρ = n0 = 0.153 fm−3 and corresponding

nucleon-nucleon cross section given by σNN = 45 mb = 4.5 fm2, we have λ ∼ 1.45

fm. Now size of the system is given by L = 2 RA, where RA = 1.2A1/3 fm, is the
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radius of the (Au, A=197) nucleus. Therefore, Kn ∼ 0.1 < 1, so that a nucleon

will undergo almost ten collisions before passing through the nucleus.

In order to formulate the relativistic hydrodynamics, we need to construct the

energy-momentum tensor T µν for the fluid. The information about the state of the

fluid is represented via the 4-velocity uµ and any two thermodynamic quantities

e.g.; energy density ε and pressure P of the fluid. We use the approach of Lan-

dau and Lifshitz in the following [96]. The energy-momentum tensor for an ideal

relativistic fluid is defined as

T µν = (ε+ P )uµ uν − P gµν = ε uµ uν − P ∆µν (1.27)

where ε and P are the energy density and pressure of the fluid element respectively.

4-velocity uµ = γ(1, ~v) (with γ = 1√
1−~v2 ) is constrained by the relation uµuµ = 1

with gµν = (+1,−1,−1,−1). We note that all the thermodynamic quantities are

defined in the rest frame of the fluid. The operator ∆µν = gµν − uµ uν acts as a

projection perpendicular to four velocity; uµ∆µν = 0. In the local rest frame of

the fluid; i.e.; uµ = (1,~0), energy-momentum tensor takes the form

T µν =


ε 0 0 0

0 P 0 0

0 0 P 0

0 0 0 P

 . (1.28)

Now the hydrodynamic equations are obtained from the following energy-momentum

conservation statement:

∂µT
µν = 0. (1.29)

Apart from the energy-momentum conservation we may need to incorporate the

information regarding the particle number conservation also. In order to write

an equation for the conservation of particle number, i.e.; continuity equation, we

need to define the four dimensional particle density flux nµ = nuµ with n being

the particle number density. In the case of high temperature the particle number

may not be conserved due to pair creation and annihilation. In such cases we can

take n to be a conserved number like net baryon number, nB. Now the relativistic

generalisation of the continuity equation is obtained by taking the 4-divergence of
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nµ and equating it to zero:

∂µn
µ = 0. (1.30)

By projecting Eq. (1.29) along the direction of uµ and noting uµuµ = 1 and

uµ∂νuµ = 0, we find

uν∂µT
µν = uµ∂

µε+ (ε+ P ) ∂µu
µ = 0. (1.31)

Next, projecting Eq. (1.29) along the perpendicular direction of uµ, we get

∆να∂µT
µν = (ε+ P )uµ∂

µuα −∆αν∂
νP = 0. (1.32)

The above two equations can be written in the following form,

Dε+ (ε+ P ) Θ = 0 (1.33)

(ε+ P )Duα −∇αP = 0 (1.34)

where we denote D ≡ uµ∂µ, Θ ≡ ∂µ u
µ and ∇α = ∆µα∂

µ. Here we note that in

the local rest frame of the fluid, D and ∇i becomes time and spatial derivatives

respectively.

Using the thermodynamic relations,

ε+ P = Ts+ µn

dε = Tds+ µ dn
(1.35)

where s being entropy density and µ being chemical potential; along with Eq.

(1.30), from Eq. (1.33) it is easy to see that

∂µs
µ = 0, (1.36)

where sµ = s uµ is the entropy flux. This is the statement of entropy conservation

for an ideal fluid.

Eqs. (1.33 & 1.34) along with Eq. (1.30) are the fundamental equations for

ideal relativistic fluids. The Eq. (1.34) is the relativistic generalisation of Euler’s

equation for non-relativistic ideal fluids and Eq. (1.33) gives the energy dissipation.

In the non-relativistic limit (|~v| � 1) neglecting terms of the order O(|~v|2) and

above, we have

D ' ∂t + ~v . ~∇, Θ ' ~∇ . ~v & ∇i ' −(~∇+ ~v ∂t). (1.37)
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At this juncture we would like to note that basically there are only five equations:

Eqs. (1.29 & 1.30) for the seven unknowns in the theory: uµ, n, ε, P . So in

order to close the system we need to have more equations. This is achieved by

providing the EoS, which relates energy density and pressure: ε = ε(P ). Besides,

the 4-velocity uµ satisfies the relation uµu
µ = 1.

These equations are a set of coupled non-linear partial differential equations and

it is rather difficult to find the general analytic solution. In the present treatise,

we intend to apply these equations for a few well motivated but simple scenarios

only.

1.2.2 Björken picture of expansion

Motivated by the empirical or experimental results, in 1983 J. D. Björken gave a

model for expanding thermalised plasma created in heavy ion collisions [95]. This

model is based on certain assumptions, namely a) the existence of a central plateu

in the inclusive particle production with respect to the space-time rapidity; dN
dηs
∼

const., b) that the receding nuclei carry all the baryon numbers creating baryon-

less hot matter in between them, c) expansion of the thermalised matter formed

along the longitudinal direction and d) boost invariant scaling flow of the matter

formed. However, in reality there is a significant transverse flow observed at RHIC.

We will be interested in the initial stages of the central collision of the nuclei.

Since the hot matter formed expands along longitudinal direction initially, as an

approximation we can drop the transverse expansion at early times. After a time

equal to the transverse size of the nucleus i.e.; RA = 1.2A1/3 fm (A- atomic mass

number of the nucleus), transverse flow will be generated [12].

In what follows we use Björken’s scenario to describe the one dimensional boost

invariant expanding flow, where we use the convenient parametrization of the co-

ordinates

t = cosh ηs & z = τ sinh ηs (1.38)

using the proper time (τ) and space-time rapidity (ηs),

τ =
√
t2 − z2 & ηs =

1

2
ln

[
t+ z

t− z

]
. (1.39)
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Figure 1.2: Space-time picture of nuclear collision in Björken model

Now the 4-velocity in this one dimensional analysis is obtained as,

uµ =
dxµ

dτ
= γ (1, 0, 0, vz) = (t/τ, 0, 0, z/τ)

= (cosh ηs, 0, 0, sinh ηs). (1.40)

Here we note that vz = z/t and τ = t/γ. This prescription of the flow is called as

Björken’s scaling flow or simply Björken flow. The transformation of the deriva-

tives from (t, z) to (τ, ηs) coordinates is given by ∂t

∂z

 =

 cosh ηs − sinh ηs

− sinh ηs cosh ηs

 ∂τ
1

τ
∂ηs

 . (1.41)

Also with this scaling flow we have

D =
∂

∂τ
and Θ =

1

τ
. (1.42)

Now within Björken flow relativistic Euler equation: Eq. (1.34) gives

∂P (τ, ηs)

∂ηs
= 0. (1.43)

Thus the pressure (and other thermodynamics quantities also) is a function of τ

only. Next, the entropy equation Eq. (1.36) becomes

∂s

∂τ
+
s

τ
= 0, (1.44)
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implying

s τ = s(τ0) τ0, (1.45)

with τ0 being the proper initial time.

The energy dissipation equation i.e.; Eq. (1.33) under Björken flow

∂ε

∂τ
+
ε+ P

τ
= 0. (1.46)

So far our consideration doesn’t depend on any EoS. To get further insight

into the scaling flow solutions we use ideal EoS of relativistic weakly interacting

massless quarks and gluons (Appendix A), characterised by

P = c2
s ε = ε/3. (1.47)

Here cs =
√

∂P
∂ε

= 1√
3

is the speed of sound in the medium. In this case pressure

of the system is given as (with zero baryon chemical potential i.e.; µB = 0)

P = a T 4 ; a =

(
16 +

21

2
Nf

)
π2

90
, (1.48)

where Nf is the number of flavors considered. ε(τ) and T (τ) can be obtained by

solving Eq. (1.46) and is given by [95],

ε = ε0

(τ0

τ

)1+c2s
, (1.49)

T = T0

(τ0

τ

)c2s
, (1.50)

where τ0 and T0 are the initial time and temperature. So the temperature gets

reduced by a longitudinal expansion according to Björken flow described by the

Eq. (1.50). From this, one can estimate the time system takes to reach the critical

temperature, if τ0 and T0 are known.

Although we will restrict ourself to the central collisions, in reality, off-central

collisions happen in experiments and result in important observables like the elliptic

flow. Elliptic flow is quantified by the flow parameter, the second Fourier coefficient

in the azimuthal distribution of produced particles in momentum space, v2 [97].

In elliptical flow, the initial spatial anisotropy is converted into final momentum

space anisotropy of observed particles.
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1.2.3 Viscosity in heavy ion collisions

Ideal hydrodynamics is successfully used to model QGP formed in heavy ion col-

lisions and to compare with the observables (see Ref. [98] for a review). Having

analysed the ideal flow of QGP, a natural question one may ask is about the vis-

cosity of the QGP, as non-viscous flows are unnatural.

First thing one need to address here is the nature of dissipative hydrodynam-

ics needed to describe the system, as there are various dissipative hydrodynamics

theories available [99]. First order Navier-Stokes dissipative hydrodynamics for-

malism was applied in the context of heavy ion collisions to study the viscous

plasma properties [100, 101]. However, Navier-Stokes formalism is known to have

several issues like acausal propagation of information [102] and unphysical insta-

bilities [103]. Further, while applied to heavy ion collision scenario Navier-Stokes

formalism gives unphysical reheating of the fireball. However, if one employs sec-

ond order theories, like that of Israel-Stewart [104–106], such artifacts are removed

[107].

Shear viscosity of QGP matter produced in RHIC and LHC is under extensive

investigation. RHIC experimental results of elliptical flow parameter v2 (which

indicates the collectivity of the flow) show that matter produced in RHIC exhibits

strong collective flow [108] indicating a very low value for the ratio shear viscosity

(η) to entropy density (s). Lot of efforts has been gone into extract the shear

viscosity of QGP formed in RHIC and now in LHC. Using causal viscous hydrody-

namics a comparison between theoretical and experimental results is done leading

to the result that this value of η/s should not be much larger than 1/4π [109]; the

conjectured lower bound of η/s for any system, known as KSS bound [110]. Thus

the QGP produced in RHIC experiments is believed to be in a form of the most

perfect liquid in nature [111], since this value of η/s is the smallest for any known

liquid [112]. It might be mentioned here that it is the value of the quantity η/s,

which measures the “perfectness” of the fluid under consideration; that is low for

QGP. If we consider the shear viscosity η alone, it is high for QGP, for e.g.; several

orders of magnitude higher than that of water [112]. Situation can differ if one

goes to the LHC energies as matter will be produced at much high temperature
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there and one may expect a change in the value of η/s.

It is only very recently realized that the effect of bulk viscosity can bring com-

plications in the hydrodynamical description of the heavy-ion collisions. Since bulk

viscosity ζ scaled like ε− 3P , at very high energy ζ was set to zero as the matter

might be following the ideal gas type EoS: ε = 3P [46]. But during its course of

expansion the fireball temperature can approach values close to Tc. Recent lQCD

results [7] show that the quark-gluon matter do not satisfy ideal EoS near Tc and

the ratio ζ/s show a strong peak around Tc [113]. The bulk viscosity contribution

in this regime can be much larger than that of the the shear viscosity. Recently the

role of bulk viscosity in heating and expansion of the fireball was analyzed using

one dimensional hydrodynamics [114, 115]. Another complication that bulk vis-

cosity brings in hydrodynamics of heavy ion collisions is phenomenon of cavitation

[115]. Cavitation arises when the fluid pressure becomes smaller than the vapour

pressure. Since the bulk viscosity (and also shear viscosity) contributes to the

pressure gradient with a negative contribution, it may be possible for the effective

fluid pressure to become zero. Once the cavitation sets in, the hydrodynamical

description breaks down. It was shown in Ref. [115] that cavitation may happen

in RHIC experiments when the effect of bulk viscosity is included in manner con-

sistent with the lQCD results. It was shown that the cavitation may significantly

reduce the time of hydrodynamical evolution. We also would also like to study the

effect of viscosity on the chemical equilibration of the plasma.

We would like to explore the effects of viscosities- both bulk and shear, on

hydrodynamic evolution of QGP at RHIC and LHC energies, using causal second

order hydrodynamics. Further, we would also like to understand the effect of

viscosities on the thermal particles (photon and dilepton) produced from the QGP

phase.

1.3 Organisation of the thesis

The thesis is organised as follows:

After a brief introduction in Chapter 1, in Chapter 2, we introduce the chiral

model that includes the hyperons, which we shall use to obtain the EoS needed to
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study the equilibrium structure of the neutron star. In the subsequent sections, we

derive the bulk viscosity of the hyperonic matter and discuss their role in damping

of r-mode instability in the specific model of neutron star with a hyperon core.

In Chapter 3, we move from cold and dense matter to hot QGP created in

heavy ion collisions. We first give a brief review of causal relativistic dissipative

hydrodynamics and its application in describing the viscous expansion of the QGP

in heavy ion collisions. We also discuss the properties of the QGP produced in

heavy ion collisions like bulk viscosity, shear viscosity and EoS.

In Chapter 4, we numerically solve the equations of causal hydrodynamics

in (1+1)-dimensions for the initial conditions relevant for RHIC and LHC. In

this chapter we discuss various physical problems related with the chemical non-

equilibration, fragmentation/cavitation caused by the presence of finite shear or

bulk viscosity etc.

Chapter 5, consists of studying the consequences of the above stated physical

situations due to the presence of finite viscosity on electromagnetic probes of the

QGP, namely thermal photons and dileptons.

Finally, in Chapter 6, we summarise our results and also discuss the future

scope for further studies.



Chapter 2

Bulk viscosity of the hyperonic

matter and r-mode instability

2.1 Effective chiral model for hyperons

The effective chiral model that we shall consider is a generalisation of the model

considered in Ref. [57] to include the lowest lying octet of baryons (n, p, Λ0, Σ−,0,+,

Ξ−,0). They interact via the exchange of the pseudo-scalar mesons π, the scalar

meson σ, the vector meson ω and the iso-vector ρ−meson. Lagrangian density

under consideration is given by [57]:

L = Ψ̄B

[
iγµ∂

µ − gωBγµωµ −
1

2
gρB~ρµ · ~τγµ − gσB

(
σ + iγ5~τ · ~π

)]
ΨB

+
1

2

(
∂µ~π · ∂µ~π + ∂µσ∂

µσ
)
− λ

4

(
x2 − x2

0

)2 − λB

6

(
x2 − x2

0

)3 − λC

8

(
x2 − x2

0

)4

−1

4
WµνW

µν +
1

2
gωB

2x2ωµω
µ − 1

4
~Rµν · ~Rµν +

1

2
m2
ρ~ρµ · ~ρµ . (2.1)

The first line of the above Lagrangian density represents the interaction of

baryons ΨB with the aforesaid mesons. In the next line, we have the kinetic and

the non-linear terms in the pseudo-scalar-isovector pion field ‘~π’, the scalar field

‘σ’, and with chiral invariant x2 = ~π2 + σ2. Finally in the last line, we have the

field strength and the mass term for the vector field ‘ω’ and the iso-vector field

‘~ρ’ meson; with Wµν = ∂µων − ∂νωµ and ~Rµν = ∂µ~ρν − ∂ν~ρµ. The terms in Eq.

(2.1) with the subscript B should be interpreted as sum over the states of lowest

baryonic octet. In this paper, we shall be concerned only with the normal non-pion

21
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condensed state of matter and, so we take 〈~π〉 = 0 and pion mass mπ = 0.

The potential V (σ, π) in Eq. (2.1), given by

V (σ, π) =
λ

4

(
x2 − x2

0

)2
+
λB

6

(
x2 − x2

0

)3
+
λC

8

(
x2 − x2

0

)4
, (2.2)

generates the vacuum expectation value for σ by spontaneously breaking the chiral

symmetry, 〈0|σ|0〉 = x0. Then, mass acquired by the σ particle is given by

m2
σ =

∂2V

∂σ2
|σ=x0 = 2λx2

0, (2.3)

where λ = (m2
σ − m2

π)/(2f 2
π), where fπ being the pion decay constant. Now,

the interaction of the scalar and the pseudo-scalar mesons with the vector boson

generates a dynamical mass for the vector bosons through spontaneous breaking

of the chiral symmetry with scalar field getting the vacuum expectation value x0.

Then the masses of the baryons, the scalar and the vector mesons, are respectively

given by

mB = gσBx0, mσ =
√

2λx0, mω = gωBx0 . (2.4)

We could have taken an interaction of the ρ−meson with the scalar and the pseudo-

scalar mesons similar to the omega meson. However, a dynamical mass generation

mechanism of the ρ−meson in a similar manner will not generate the correct sym-

metry energy. Therefore, we have taken an explicit mass term for the isovector

ρ−meson similar to what was considered in earlier works [54, 57].

The equations of motion for the fields can be written now. The Euler-Lagrangian

equations for the meson fields are,[
∂µ∂

µ −
∑
B

gωB
2ωµω

µ

]
x = −

∑
B

gσBΨ̄BΨB −
∂V

∂x
, (2.5)

∂µW
µν + gωB

2x2ων =
∑
B

gωBΨ̄Bγ
νΨB, (2.6)

∂µR
µν
i +m2

ρρ
ν
i =

∑
B

gρBΨ̄Bγ
νIiBΨB; (2.7)

and the Dirac equation for the baryons reads as[
iγµ∂µ − gωBγµωµ −

1

2
gρBγ

µ~ρµ · ~τ − gσB x

]
ΨB = 0. (2.8)

Here in Eq. (2.7) we have used ~τ =
∑3

i=1 2I iB, where I iB is the ith component of

isospin of each baryon species (See Table 2.1). In Eq. (2.8) mass term appears as

gσB x and we call it as the effective mass m∗B of the baryon.
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Table 2.1: Baryonic octet

B Mass (MeV) QB I3

p, n 938 1, 0 1/2, -1/2

Λ0 1116 0 0

Σ−,0,+ 1193 -1, 0, 1 -1, 0, 1

Ξ−,0 1318 -1, 0 -1/2, 1/2

We use relativistic mean field theory (RMFT) approximation to evaluate the

meson fields in our present calculation. In the mean field treatment, meson fields

are replaced by classical constant fields while retaining the quantum nature of

the baryonic fields ΨB. We refer Section 1.1.1 for more details. Under RMFT

approximation, we have,

x → 〈x〉 = x0, (2.9)

ωµ → 〈ωµ〉 = δµ0ω0, (2.10)

ρiµ → 〈ρiµ〉 = δ3iδµ0ρ03. (2.11)

Dirac equation for ΨB now becomes,

[
iγµ∂µ − gωBγ0ω0 − gρBγ0ρ03I3B −m∗B

]
ΨB = 0, (2.12)

and this equation can be treated as the corresponding equation in the Walecka

model i.e.; Eq. (1.9). Using similar procedure, see Eqns. (1.9 - 1.15), we can

obtain the general solution to Eq. (2.12),

ΨB(x) =
∑
~k r

1√
2VK0

[
a~k rUr(

~k) e−iE
+t+i~k·~x + b†~k r

Vr(~k) e−iE
−t−i~k·~x

]
, (2.13)

with eigenvalues of particle (E+) and antiparticle (E−) given as,

E(±) = gωω0 + gρBρ03I3B ±
√
~k2 +M∗2, (2.14)

where K0 =
√
~k2 +M∗2. As before, a~k r (b†~k r

) is the annihilation (creation) op-

erator for baryons (anti-baryons). The spinors are normalised as in Eq. (1.15),

with M∗ being replaced by m∗B = gσBx. Again we note that, we are describing
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nuclear matter inside neutron star, T ' 0, and we don’t consider antiparticles in

the present problem.

We now calculate the baryon density nB and the scalar density nSB for a baryon

species,

nB = 〈ψ†ψ〉 =
γ

(2π)3

∫ kFB

o

d3k, (2.15)

nSB = 〈ψ̄ψ〉 =
γ

(2π)3

∫ kFB

o

m∗Bd
3k√

~k2 +m?2
B

, (2.16)

where kFB is the fermi momentum of the baryon and γ = 2 is the spin degeneracy

factor.

The field equations for vector meson i.e.; Eq. (2.6), and iso-vector meson i.e.;

Eq. (2.7), in RMFT framework become,

ω0 =
∑
B

nB
gωBx2

, (2.17)

ρ03 =
∑
B

gρB
m2
ρ

I3BnB . (2.18)

respectively.

The scalar field Eq. (2.5) within RMFT can be written in terms of the variable

Y = x/x0 with x =
√
〈σ2 + ~π2〉 as [57]∑

B

[
(1− Y 2)− B

cωB
(1− Y 2)2 +

C

c2
ωB

(1− Y 2)3 +
2cσBcωBn

2
B

m2
BY

4
− 2cσBnSB

mBY

]
= 0,

(2.19)

where the effective mass of the baryonic species is m?
B ≡ Y mB and cσB ≡ g2

σB/m
2
σ

are the cωB ≡ g2
ωB/m

2
ω are the usual scalar and vector coupling constants respec-

tively. Similarly, in the present model describing dense matter, the ω−meson mass

is generated dynamically. This vector meson mass enters in Eq. (2.19) through

the ratio cω = (gω/mω)2 ≡ 1/x0
2. Various parameters of the model for the nuclear

matter case (the meson nucleon couplings, Cσ, Cω, Cρ and the non-linear couplings

B and C) are fitted from nuclear matter saturation properties [54, 56, 57]. It was

shown recently that these parameters are rather constrained by the nuclear matter

saturation properties like the binding energy per nucleon, saturation density, the

nuclear incompressibility, as well as the asymmetry energy, the effective mass of

the nucleon and the pion decay constant fπ.
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Now we proceed to find the energy density and pressure (EoS) corresponding

to this model. Noting that ∂L /∂∂µΨB = iΨ̄Bγ
µ, we can write under RMFT,

T µν = −gµνL + iΨ̄Bγ
µ∂νΨB; (2.20)

so that from Eq. (1.21),

ε = 〈H 〉 = 〈T 00〉 = i〈Ψ̄Bγ
0∂0ΨB〉 − 〈L 〉 (2.21)

P =
1

3
〈T ii〉 =

1

3
i〈Ψ̄Bγ

i∂iΨB〉+ 〈L 〉. (2.22)

Therefor, for a given baryon density, the total energy density ‘ε’ and the pressure

‘P ’ can be written in terms of the dimensionless variable Y = x/x0 as

ε =
2

π2

∫ kFB

0

k2dk
√
k2 +m?2

B +
m2
B(1− Y 2)2

8cσB
− m2

BB

12cωBcσB
(1− Y 2)3 (2.23)

+
m2
BC

16c2
ωBcσB

(1− Y 2)4 +
1

2Y 2
cωBn

2
B +

1

2
m2
ρρ

2
03 +

1

π2

∑
λ=e,µ−

∫ kλ

0

k2dk
√
k2 +m2

λ ,

P =
2

3π2

∫ kFB

0

k4dk√
k2 +m?2

B

− m2
B(1− Y 2)2

8cσB
+

m2
BB

12cωBcσB
(1− Y 2)3 (2.24)

− m2
BC

16c2
ωBcσB

(1− Y 2)4 +
1

2Y 2
cωBn

2
B +

1

2
m2
ρρ

2
03 +

1

3π2

∑
λ=e,µ−

∫ kλ

0

k4dk√
k2 +m2

λ

,

where the last term in both equations represents the non-interacting lepton contri-

bution; Ll =
∑

l=e,µ− Ψ̄l(iγ
µ∂µ −ml)Ψl. Neutron stars, generally, are considered

to be made of mostly neutrons, some of them β-decay and subsequently an equilib-

rium is reached between neutrons, protons and electrons: µp + µe = µn. At higher

densities one can have muons also when µe = µµ. Hyperons start to appear in neu-

tron star core when the nucleon chemical potential is large enough to compensate

the mas differences between nucleon and hyperons.

The meson field equations for the σ, ω and ρ−mesons, Eqs. (2.17 - 2.19), are

then solved self-consistently at a fixed baryon density to obtain the respective field

strengths. The EoS for the β−equilibrated hyperon rich matter is obtained with

the requirements of conservation of total baryon number and charge neutrality

condition given by [57]
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Table 2.2: Parameter set for the model.

cσN cωN cρN B C K m?
N/mN

(fm2) (fm2) (fm2) (fm2) (fm4) (MeV )

6.79 1.99 4.66 -4.32 0.165 300 0.85

∑
B

QBnB +
∑
l

Qlnl = 0, (2.25)

where nB and nl are the baryon and the lepton (e, µ−) number densities with

QB and Ql as their respective electric charges. Further, we can relate chemical

potential of each baryons in terms of two independent chemical potentials µn and

µe, as

µB = µn −QB µe. (2.26)

The resulting EoS is discussed in Refs. [57, 116] in detail. It was further

observed that the parameters of the model were sternly constrained and turned

to be consistent with the constraints on nuclear equation of state from heavy

ion collision data [116, 117]. Using general relativistic stellar structure equations,

neutron star sequences, both rotating and non-rotating; has been considered in

Ref. [116]. Where, global properties of resulting neutron star with hyperonic core,

has been studied. In this calculation we use EoS corresponding to m∗N/mN = 0.85,

as shown in Fig. 2.1. Parameter set for the model is given in Table 2.2. In this

model, all the baryons start to appear if we go upto 10 times normal nuclear matter

density n0 [116]. First, around 2n0 Σ− followed by Λ0 hyperons start to appear,

whereas other baryons comes after 4n0 only.

2.2 Hyperon bulk viscosity

Bulk viscosity characterizes the response of the system to an externally oscillating

change in the volume. The volume expansion or contraction leads to a change in

density or the chemical potential of the system. This drives the system out of

chemical equilibrium. The equilibrium is restored by the microscopic processes.
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Figure 2.1: EoS and corresponding particle densities

If the equilibrium time scales are comparable to the oscillating time scales, there

will be energy dissipation. In the context of neutron star, the typical oscillation

frequencies are less than a kilo hertz. Therefore, the microscopic processes that

will be relevant are the weak processes.

It is already known that the non-leptonic processes containing hyperons lead to

high values of bulk viscosity for rotating neutron stars with temperature ∼ 109 −

1010K [76, 78]. We note that hyperons can contribute to bulk viscosity also through

semi-leptonic processes like their direct Urca. These effects has been considered in

Ref. [118] and is shown to contribute to the bulk viscosity as comparable as the

nucleon initiated direct Urca processes. However their contribution is negligible

compared to the more efficient non-leptonic weak interaction processes [76, 79, 119].

The leptonic processes are suppressed by smaller phase space factors. Thus the

relevant reactions which are going to give a lower limit on the rates (or upper limit

on bulk viscosity) are

n+ n ←→ p+ Σ− (2.27)

n+ p ←→ p+ Λ0 (2.28)

n+ n ←→ n+ Λ0 (2.29)

The coefficient of bulk viscosity relates difference between the perturbed pres-

sure P and the thermodynamic pressure P̃ to the macroscopic expansion of the

fluid as

P − P̃ = −ζ ~∇ · ~v (2.30)



2.2. Hyperon bulk viscosity 28

where ~v is the velocity of the fluid element and ζ is the coefficient of bulk viscosity,

which, in general, is complex in nature [96].

The relativistic expression for the real part of ζ, which corresponds to the

damping, can be calculated in terms of microscopic equilibrium restoring reaction

rates [78, 96]. Within a relaxation time approximation, the real part of ζ is given

as [96],

ζ =
P (γ∞ − γ0) τ

1 + (ωτ)2 (2.31)

where γ∞ and γ0 are the “infinite” and “zero” frequency adiabatic index respec-

tively. ω is the angular frequency of the perturbation in co-rotating frame and τ

is the net equilibrium restoring microscopic relaxation time. The expression for

γ∞ − γ0 is

γ∞ − γ0 = −nB
2

P

∂P

∂nn

dx̃

dnB
(2.32)

Here nB corresponds to the total baryon density and x̃ = nn
nB

is the neutron frac-

tion.Thus the difference γ∞ − γ0 can be calculated from a given equation of state.

The angular frequency ω of the r - mode (l=2, m=2) in a co-rotating frame is

given in terms of the angular velocity Ω of the rotating star as ω = 2m
l(l+1)

Ω [66].

The prominent reactions involving the lightest hyperons, Σ− and Λ0, which

have higher population in a given star are as given by Eqs. (2.27 & 2.28). The

rates of these reactions can be calculated from the tree-level Feynman diagrams

involving the exchange of a W boson.

We are not be considering the other reaction n+ n←→ n+ Λ0 since it has no

simple W-boson exchange picture. We shall discuss more regarding this in Section

III. The relaxation time τ (at a temperature T ), when both Σ− and Λ0 are present,

is given by [78, 82]

1

τ
=

(kBT )2

192π3

(
kΣ

〈
|M2

Σ|
〉

+ kΛ

〈
|M2

Λ|
〉) δµ

nBδxn
(2.33)

where kB is the Boltzmann’s constant and kΛ and kΣ are the Fermi momenta of

these hyperons. δµ ≡ δµn−δµΛ is the chemical potential imbalance. δxn = xn−x̃n
is the small difference between the perturbed and equilibrium values of the neutron

fraction. 〈|M2|〉 are the angle averaged, squared, summed over initial spinors

matrix elements of the reactions calculated from the Feynman diagrams. We refer
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[78, 82] for the expressions for 〈|M2
Σ|〉 and 〈|M2

Λ|〉. We note that the contribution

from Λ hyperons will not be present in Eq. (2.33) while considering a neutron star

medium before the appearance of Λ.

The factor δµ/nBδxn is determined from the constraints imposed by the electric

charge neutrality and the baryon number conservation given respectively as

δxp − δxΣ = 0 (2.34)

δxn + δxΛ + δxp + δxΣ = 0 (2.35)

together with the condition that the non-leptonic strong interaction reaction

n+ Λ0 ←→ p+ Σ− (2.36)

which has a higher rate, is in equilibrium compared to weak interaction processes

giving rise to the bulk viscosity. Equilibrium of this reaction implies that both the

reactions given by Eqs. (2.27 & 2.28) have equal chemical potential imbalance,

δµ ≡ δµn − δµΛ = 2δµn − δµp − δµΣ. (2.37)

Using these constraints, we can write,

δµ

nBδxn
= αnn +

(βn − βΛ)(αnp − αΛp + αnΣ − αΛΣ)

2βΛ − βp − βΣ

−αΛn −
(2βn − βp − βΣ)(αnΛ − αΛΛ)

2βΛ − βp − βΣ

(2.38)

where αij =
(
∂µi
∂nj

)
nk,k 6=j

and βi = αni + αΛi − αpi − αΣi. These expressions are

for the case when both the Σ− and Λ0 hyperons are present. One can not use the

reaction given by Eq. (2.36) while considering the region where we have only Σ−

hyperons. In that case, instead of Eq. (2.38), we have

2δµ

nBδxn
= 4αnn − 2(αpn + αΣn + αnp + αnΣ)

+αpp + αΣp + αpΣ + αΣΣ. (2.39)

Now the αij’s can be found out using the expression for baryon chemical potential

and the equations of motion of the mesonic fields given by Eqs. (2.17 & 2.18). In

general, the form of the αij is given as,

αij =
m∗imi√
k2
Fi

+m∗2i

∂Y

∂nj
+
gωi
gωj

1

(Y x0)2
(2.40)

− 2gωix0

(Y x0)3

(∑
B

ρB
gωB

)
∂Y

∂nj
+

1

2m2
ρ

(gρigρj)(I3iI3j)
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for i 6= j and

αii =
m∗imi√
k2
Fi

+m∗2i

∂Y

∂ni
+

π2

kFi

√
k2
Fi

+m∗2i

+
1

(Y x0)2

− 2gωix0

(Y x0)3

(∑
B

ρB
gωB

)
∂Y

∂ni
+

1

2
(
gρiI3i

mρ

)2. (2.41)

As before, Y is the scalar field expectation value in the medium in units of its

vacuum expectation value. Further, ∂Y
∂ni

are calculated from the scalar field Eq.

(2.19) and are given by

∂Y

∂ni
=

1

D

2cσicωiρi
m2
BY

4
− cσim

∗
i

miY
√
k2
Fi

+m∗2i

 (2.42)

with

D =
∑
B

[ Y +
2B

cωB
(Y 2 − 1)Y +

3C

c2
ωB

(Y 2 − 1)2Y − cσBρSB
mBY 2

+
4cσBcωBρ

2
B

m2
BY

5

+
cσB
mBY

γ

(2π)3

∫ kFB

o

d3k
k2mB

(k2 +m∗2B )3/2
] (2.43)

Using Eqs. (2.39 - 2.43), one can compute the relaxation time from Eq. (2.33) and

hence the bulk viscosity given in Eq. (2.31), for a given equation of state.

2.3 r-mode damping in a neutron star

As mentioned in the introduction Section 1.1.2, the r-modes correspond to the axial

modes where the restoring force is the Coriolis force. In a rotating star emission

of these waves causes the modes to grow. This instability can get damped due to

the various viscosities of the stellar matter. This happens when the damping time

scales associated with these viscous processes are comparable to the gravitational

radiation (GR) time scale [63].

We need the expressions for the time scales associated with the dissipative

processes and GR in order to understand the nature of the damping of the r-modes.

The imaginary part of the dissipative time scale (which causes the damping) is

given by [78, 127]

1

τi
= − 1

2Ẽ

(
dẼ

dt

)
i

(2.44)
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where i labels the various dissipative phenomena like hyperonic bulk viscosity (B),

bulk viscosity due to Urca processes (U), shear viscosity (η) GR etc. In the above,

Ẽ is energy of the r-mode in the co-rotating frame. This can arise both from

velocity perturbation as well as the perturbation of the gravitational potential. For

a slowly rotating star, the dominant contribution is from the velocity perturbation

and is given as

Ẽ =
1

2

∫
ρ|δ~v|2d 3x, (2.45)

with, ρ(r) being the mass density of the star. Assuming the spherical symmetry,

mode energy can be reduced into an one dimensional integral [63] as

Ẽ =
1

2
α2Ω2R−2l+2

∫ R

0

ρ(r)r2l+2dr. (2.46)

with l = m = 2 for the r-modes and R denotes the radius of the star. α is the

dimensionless amplitude coefficient of the mode, which gets canceled out in the τ

calculation. This energy is dissipated both by gravitational radiation as well as

thermodynamic transport of the fluid [61, 65, 66]. The dissipation rate due to the

bulk viscosity effects is given by

dẼB
dt

= −
∫

Re ζ |~∇ · δ~v|2d 3x. (2.47)

Here, in general, |~∇·δ~v|2 depends upon the radial and the angular co-ordinates. In

slowly rotating stars, to the lowest order, ζ depends only on the radius. Therefore,

to the lowest order in Ω, it is possible to write the bulk viscosity dissipation rate in

Eq. (2.47) as an one dimensional integral by defining a quantity which is the angle

averaged expansion squared
〈
|~∇ · δ~v|2

〉
. In terms of this quantity, Eq. (2.47) can

be written as

dẼB
dt

= −4π

∫ R

0

Re ζ(r)
〈
|~∇ · δ~v|2

〉
r2dr. (2.48)

where
〈
|~∇ · δ~v|2

〉
can be determined numerically [120]. However Refs. [78, 82]

give an analytic expression

〈|~∇ · δ~v|2〉 =
α2Ω2

690

( r
R

)6
[
1 + 0.86

( r
R

)2
](

Ω2

πGρ̄

)2

, (2.49)

which fits to the numerical data. Here G is the gravitational constant and ρ̄ is the

mean density of the non-rotating star.
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Now with the knowledge of density profile ρ(r) of the star, it is straightforward

to find out the bulk viscosity damping time scales from equations Eq. (2.49), Eq.

(2.48), Eq. (2.46) and Eq. (2.44), once we know the bulk viscosity coefficient ζ(r).

In the case of bulk viscosity time scale arising due to hyperons (τB), we can get

ζ(r) from Eq. (2.31) . Similarly we can find out the time scale (τU) associated

with modified Urca processes, with the help of the expression for associated bulk

viscosity ζU given by [121]

ζU = 1.46 ρ(r)2ω−2

[
kBT

1MeV

]6

g/(cm s). (2.50)

The shear viscosity time scale is given by [63]

1

τη
=

(l − 1)(2l + 1)∫ R
0
drρ(r)r2l+2

∫ R

0

drηr2l, (2.51)

where η can be calculated from the prominent nn scattering and is given by [88]

η = 2× 1018ρ
9/4
15 T

−2
9 g/(cm s). (2.52)

Here ρ15 = ρ/(1015 g/cm3) and T9 = T/(109 K) are density and temperature

respectively, casted in dimensionless forms. Finally, the gravitational radiation

time scale (τGR) is given by [63],

1

τGR
= −32πGΩ2l+2

c2l+3

(l − 1)2l

[(2l + 1)!!]2

(
l + 2

l + 1

)2l+2

×
∫ R

0

ρ(r)r2l+2dr. (2.53)

The evolution of the r-mode due to dissipative viscous effects and GR can be

studied by defining the overall r-mode time scale τr [63, 78, 122],

1

τr(Ω, T )
=

1

τGR(Ω)
+

1

τB(Ω, T )
+

1

τU(Ω, T )
+

1

τη(Ω, T )
. (2.54)

It appears in the decay of the mode as e−t/τr and when τr > 0, the mode is stable.

Now from Eq. (2.53) we can see that τGR < 0, which is indicative of the fact that

GR allows the modes to grow and drives them to instability, while τB, τU and τη

are positive and thus they try to dampen the mode. We can define the critical

angular velocity ΩC as 1/τr(ΩC , T ) = 0; for a star at a given temperature T . Now

if the angular velocity of the star is greater than ΩC then the star is unstable and

will be subjected to GR emission while stars with angular velocities smaller than

ΩC will be stable.
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Figure 2.2: Thermodynamic factor γ∞ − γ0 that appears in the expression for

hyperon bulk viscosity, is plotted against the normalised baryon density.

2.4 Results and discussions

Now with the EoS discussed in Section 2.1 we set out to find the coefficient of bulk

viscosity as given by Eq. (2.31). The parameters in the effective chiral model that

we have used are given in Table 2.2. The parameters were so chosen that they

satisfy the constraints on the equation of state from the flow data in heavy ion

collisions [116]. The resulting EOS is plotted in Fig. [2.1]. To calculate the bulk

viscosity, we first need to calculate γ∞ − γ0, the difference between fast and slow

adiabatic indices, from Eq. (2.32). This expression can be calculated with the

help of EoS alone. In Fig. [2.2], we plot (γ∞ − γ0) as a function of the normalized

baryon density (nb/n0), where n0 = 0.153 fm−3 is the nuclear matter saturation

density. The sudden rises in the graph can be attributed to the appearance of

hyperons with increase of baryon density at the cost of neutron number density

nn.

Since we have Σ− and Λ hyperons formed in the system with lowest threshold

densities, we consider the non leptonic reactions represented by the Eq. (2.27) and

Eq. (2.28) and calculate the relaxation time as given by the Eq. (2.33). We note

that we have not considered the reaction Eq. (2.29) and further there are several

reactions which are going to contribute to the net reaction rate [80, 82]. The reason

for this is that the rate for the process given in Eq.(2.29) is estimated to be an

order of magnitude higher than the process given by Eq. (2.28). This leads to sub-
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Figure 2.3: Relaxation time τ (in seconds) for the non-leptonic processes causing

hyperon bulk viscosity is plotted for various temperatures T .

dominant contribution to the relaxation time and hence to the bulk viscosity [76].

Thus what we are calculating is a lower limit of the net rate which will correspond

to an upper limit on the bulk viscosity. The matrix elements are calculated with the

values of Fermi momenta and effective masses of various baryonic species obtained

from the EoS. Here we use axial-vector coupling values gnp = −1.27, gpΛ = −0.72

and gnΣ = 0.34 measured in β-decay of baryons at rest and Fermi coupling constant

GF = 1.166 × 10−11 MeV−2 and sinθC = 0.222 (where θC is the Cabibbo weak

mixing angle) [? ]. Then, we calculate δµ
nBδxn

from Eq. (2.38) for the densities

where both the hyperons are present (nB/n0 > 2.36), and, from Eq. (2.39) for

lower densities where there is only Σ–hyperon present (nB/n0 = 1.86 − 2.36).

Further, Eqs. (2.40 - 2.43) are evaluated using the EoS under consideration. We

can thus calculate the relaxation time for relevant temperatures. We show the

calculated behavior of relaxation time (in seconds) with temperature in Fig. [2.3].

It is clear that the relaxation time increases considerably with the decrease of

temperature. For a given temperature, the relaxation time is seen to decrease

when both the hyperons are present, as compared to the case of presence of a singe

species of hyperons (Σ), since in this case τ value will be less according to Eq.

(2.33).

We then compute the coefficient of bulk viscosity responsible for the mode

damping in neutron stars from the expression given by Eq. (2.31). The value of

maximum frequency ΩK is the Keplerian angular frequency of the rotating star
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Figure 2.4: Hyperon bulk viscosity ζ in units of g/(cm s) is plotted as a function

of normalized baryon density for various temperatures.

and is set by the onset of mass shedding from the equator of the star [123]. The

bulk viscosity coefficient is calculated for the relevant temperatures and is plotted

against the normalized baryon density in Fig. [2.4]. The behavior of the hyperon

bulk viscosity is similar to that of the corresponding relaxation time as is expected

from Eq. (2.31). The high value of the bulk viscosity coefficient at the temperature

109 K is indicative of the fact that hyperon bulk viscosity plays a major role in

the suppression of the r-modes. We note that our bulk viscosity values are order

of magnitude less than the values obtained by [78]. It could be due to the fact

that unlike their work we are not considering the effect of hyperon superfluidity

in this calculation. It might also be noted that the non-superfluid hyperonic bulk

viscosity calculated in [83] uses an EoS based on a model, where only Λ hyperons

are present at the relevant density.

We next study the effect of hyperon bulk viscosity on the r-modes. Here we need

to calculate the dissipation time scale due to hyperon bulk viscosity as well as due

to other dissipative phenomena. If this time scale is greater than the gravitational

radiation time scale, then the r mode is not stable and suppressed. In order to

calculate the dissipative timescales from Eqs. (2.44 - 2.53) we need to know the

density profile ρ(r), of the neutron star under consideration. We need to know the

Kepler frequency of the rotating star also. We use Tolman-Oppenheimer-Volkoff

equations to construct the non-rotating stellar configurations. The maximum mass

of the neutron star in this case is found to be 1.65 M� with a radius of 16.7 km.
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Figure 2.5: Density of the star, ρ (in units of g/cm3), as a function of distance

r (in km) from the centre (r= 0) to the radius of the star (r = R). Threshold

densities corresponding to the formation of Σ− and Λ0 hyperons are also plotted.

We use Hartle’s slow rotation approximation to calculate the global properties of

rotating neutron star [124, 125]. We get the maximum mass and radius (R) of the

rotating star to be 1.66 M� and 18.9 km respectively. The Kepler frequency in

this case is found to be ΩK = 3998 Hz. A typical density profile of the rotating

star is shown in the Fig. [2.5]. This profile corresponds to a central density of

7.48 × 1014 gm/cm3. We have also indicated the densities corresponding to the

appearance of the hyperons, i.e., threshold densities of both Σ and Λ hyperons in

the graph. From centre of the star upto a density of ρ = 6.34× 1014 gm/cm3, we

have the presence of both the hyperons in the star (i.e., up to a distance 2.5 km from

the centre). The presence of Σ alone is there upto ρ = 5.1× 1014 gm/cm3 (another

1.7 km) making a hyperon core of radius 4.2 km in the neutron star. Hyperon

bulk viscosity time scale, and, hence its effects on r-mode is very sensitive to the

hyperonic core’s constituent structure and its radius.

For the rotating neutron star with a mass of 1.66 M� and ΩK = 3998 Hz as

considered above, we next evaluate the various dissipative time scales associated

with the r-mode damping. The dissipative time scale of hyperonic bulk viscosity,

denoted by τB can be calculated from Eqs. (2.44 - 2.49) with the help of density

profile of the star. Here hyperonic bulk viscosity (ζ) as a function of radius is

obtained from our previous calculations of ζ for the EoS together with the knowl-

edge of stellar density profile i.e., ζ(ρ(r)). The time scale associated with modified
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Figure 2.6: The temperature dependence of damping time scales (in seconds) due

to hyperonic bulk viscosity τB, modified Urca bulk viscosity τU and shear viscosity

τη. τGR represents the temperature independent gravitational radiation time scale.

(The star is considered to be rotating with the Kepler frequency ΩK here).

Urca processes τU , is calculated in the same manner as for τB, by using the Eq.

(2.50) instead of hyperonic bulk viscosity. Next, we estimate the shear viscosity

dissipative time scale τη using the Eqs. (2.51 & 2.52). Finally, the gravitational

radiation time scale τGR associated with the r-mode can be calculated with the

help of density profile using Eq. (2.53). Fig. [2.6] shows the calculated time scales

as functions of temperature, for the star rotating with ΩK . From Fig. [2.6], we

observe that in the non-superfluid hyperonic matter, r-modes get substantially

damped due to hyperonic bulk viscosity only at low temperatures (T < 108 K),

whereas the modified Urca bulk viscosity suppresses the r-modes rapidly only at

high temperatures T > 5× 1010 K. The role of shear viscosity in suppressing the

modes is not prominent in this temperature range. Consequently, the effect of r-

mode instability will be prominent in the temperature window (108− 5× 1010) K.

The hyperon bulk viscosity suppresses the instability for temperatures below 108K

while modified Urca processes suppress the instability beyond 1010K.

Now we are in a position to calculate the critical angular velocity ΩC of the

neutron star. ΩC is obtained by solving Eq. (2.54); 1
τr(ΩC ,T )

= 0, for a particular

value of T . At this frequency, the energy fed into the r-mode per unit time by

gravitational radiation is equal to the energy dissipated per unit time. A star
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Figure 2.7: Critical angular velocities (normalized to the Kepler frequency ΩK

= 3998 Hz) for a neutron star with mass of 1.66 M� is shown as a function

of hyperon core temperature. The shaded region represents the majority of the

observed LMXBs.

rotating above this critical frequency will be subjected to r-mode instability. We

have shown the ΩC (scaled to ΩK) in Fig. [2.7] for the temperature regime of

interest. Since ΩK determines the maximum allowed rotation rate for the star,

stable rotation at any temperature will have ΩC/ΩK = 1 as an upper bound. In

this figure, the region above ΩC curve is unstable and a star rotating in this region

will be rapidly spun down to an angular frequency below ΩC . As expected the

instability window exists in the temperature regime (108 − 5 × 1010) K, where

gravitational radiation is dominant and not substantially suppressed, which shows

that the neutron star with hyperonic core is unstable in this region. In the low

temperature regime hyperonic bulk viscosity damps the r-mode effectively whereas

nucleon dominated modified Urca bulk viscosity is the cause of mode damping at

high temperatures. The minima of ΩC curve occurs at T ≈ 5 × 1010 K with

ΩC ≈ .04 ΩK , which is indicative of the fact that the r-mode instability is rather

strong in the present hyperon core scenario. The shaded box in the Fig. [2.7] is

where most of the observed Low Mass X-ray Binaries (LMXBs) are found. They

have a core temperature in the range of (2 × 107 − 3 × 108) K with rotation rate

between 300 to 700 Hz [88, 126]. In our case, LMXBs are placed in the stable

region, unlike conventional neutron stars with npe matter [127].
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2.5 Conclusions

Rotating equilibrium configurations of self gravitating fluids are subjected to var-

ious possibilities of instabilities at large rotation periods. In the present work,

we have investigated the r-mode instability which is known to limit the angular

velocities of rapidly rotating stars. The r-mode and the related instabilities are

damped by various viscosities of the matter in the interior of the neutron star.

Thus the microscopic models describing the matter in the interior of the star get

constrained by the observations of the rapidly rotating pulsars.

In the present work, we have confined our attention to the case of neutron star

with a hyperonic core. For the description of the matter in the core of the neutron

star, we have used an effective chiral hadronic model generalised to include the

lowest lying octet of baryons. The parameters of the model are chosen that are

consistent with the flow data in heavy ion collisions, nuclear matter properties as

well as observation of high mass neutron stars. In the present work, we have com-

puted the coefficient of bulk viscosity due to the the hyperonic matter in the core

of a neutron star and the resulting effects on the r-mode instability. It turns out

that hyperon bulk viscosity within the model is effective in damping the instability

for temperatures below 108K . Beyond a temperature of about 1010K, the bulk

viscosity due to modified Urca processes become effective in damping the r-mode

instability. Shear viscosity of hadronic matter becomes effective in damping only

at low temperatures. Within the model it turns out that the the bulk viscosity

in normal hyperonic matter does play an important role in spinning down fast

rotating neutron stars. However, superfluid hyperonic matter or quark matter in

the core can change this conclusion. With lower value of bulk viscosity (compared

to Ref. [78]) due to non-superfluid hyperon matter considered in our model, the

corresponding damping of r-mode is less effective. Similarly, compared to Ref. [83]

we have a wider window of instability. The reasons for this are, firstly due to the

presence of Σ hyperons along with Λ in our model; in contrast to Ref. [83], where

only Λ hyperons are there in the stellar core. Further, the difference could also be

due to a different stellar energy density profile resulting from a rather softer EoS

of the present model as compared to Ref. [83].
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We have not considered in the present work the phase transition to quark matter

which could be most likely in a color superconducting phase. The role of quark

matter in the context of r-mode characteristics has been dealt with in Ref. [88]

which shows that the r-mode instability gets suppressed by both normal quark

matter as well as gapped quark matter in the color flavor locked phase. Further,

the neutron stars are also endowed with strong magnetic fields the effects of which

on the r-modes have not been included in the present work. Ultra strong magnetic

field seem to increase the instability window for quark matter [89]. It will thus be

interesting to examine the scenario with a phase transition to quark matter and

the effect of magnetic fields in the context of r-modes for a hybrid star with a crust

of hadronic matter.



Chapter 3

Relativistic dissipative

hydrodynamics

3.1 Relativistic viscous hydrodynamics

A general introduction to relativistic formulation of dissipative hydrodynamics can

be found in Refs. [96, 128–130]. When the hydrodynamical evolution changes the

local thermodynamic distributions, microscopic processes try to revert it back. If

this doesn’t happen very fast, distributions will start to deviate from its original

forms.

In order to develop the relativistic viscous hydrodynamics we write the energy

momentum tensor as

T µν = ε uµ uν − P ∆µν + Πµν + 2W (µ uν), (3.1)

where (...) denotes the symmetrization; U(µ Vν) = 1
2

(Uµ Vν + Uν Vµ). The last two

terms in the expression for T µν are the terms representing the dissipation. Here Πµν

denotes the the viscous contributions and W µ = qµ+ (ε+P )
n

Jµ; where qµ denotes the

heat vector and Jµ denotes the modifications due to dissipative effects in particle

flux density 4-vector:

nµ = nuµ + Jµ. (3.2)

Equations of motion for the dissipative fluid can be found, as in the case of ideal

case, by taking 4-divergence of T µν and nµ and equating to zero.

41
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At this point we would like to discuss about the proper frame and velocity uµ.

In relativistic considerations since energy flux and mass flux are interrelated, it is

not possible to define velocity in terms of the mass flux as in the non-relativistic

case. Two choices for the definition of 4-velocities are particularly useful and used

in the literature. One is known as Landau-Lifshitz frame where there is no energy

flow in the rest frame and in this choice we take uµ parallel to the energy flow,

uνT
µν = εuµ. (3.3)

In this frame W µ= 0, implying that there is a non-zero baryon flow related to the

heat conduction in the rest frame, qµ = − ε+P
n
Jµ. Another choice for uµ is known

as Eckart frame [131]. In this frame we have no baryon flow in the rest frame and

therefore uµ is parallel to the particle flux,

nµ = nuµ. (3.4)

In this frame Jµ= 0 making W µ = qµ.

Since we deal with the systems (QGP produced at LHC and RHIC) with net

baryon number zero (n= 0), natural choice for our purpose is Landau-Lifshitz frame

as Eckart frame is ill-defined in this scenario. Now we will consider the case where

there is no heat conduction in the fluid, qµ= 0. Now we don’t have to consider Eq.

(3.2) anymore. Now by the definition of the proper frame (W µ= 0): T 00 = ε and

T 0 i = 0; from Eq. (3.1) we have, Π00 = 0 and Π0 i = 0. Since, at the proper frame

u0 = 1 and ui = 0, we can write

uµΠµν = 0. (3.5)

Since above equations are tensor ones they are valid for any frame. Projecting

4-divergence of the energy-momentum tensor along and perpendicular to the 4-

velocity we get,

uν∂µT
µν = uµ∂

µε+ (ε+ P ) ∂µu
µ + uν ∂µΠµν = 0, (3.6)

∆να∂µT
µν = (ε+ P )uµ∂

µuα −∆αν∂
νP + ∆αν ∂µΠµν = 0. (3.7)

Now the last term in the first equation can be simplified using Eq. (3.5) as

uν ∂µΠµν = −Πµν ∂µuν = −Πµν∂(µ uν) = −Πµν∇(µ uν),
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where we have used the relation ∂µ = ∇µ + uµD. So the fundamental equations

for relativistic viscous hydrodynamics are given by,

Dε+ (ε+ P ) Θ− Πµν∇(µ uν) = 0 , (3.8)

(ε+ P )Duα −∇αP + ∆α
ν ∂µΠµν = 0 . (3.9)

Until now we have not specified the form of the viscous stress tensor Πµν . This

can be done by writing the entropy 4-flux sµ and demanding the validity of second

law of thermodynamics,

∂µs
µ ≥ 0 . (3.10)

One can have different order prescriptions for sµ, resulting in different expressions

for Πµν , which together with Eqs. (3.8 & 3.9) give different viscous hydrodynamics

theories.

3.1.1 First order: Navier-Stokes formalism

We follow standard Landau-Lifshitz approach [96], in which the entropy 4-flux

contains terms first order or linear in dissipative quantities and on the absence of

dissipative effects it should reduce to the ideal case suµ. Therefore we write,

sµ = suµ − β Πµνuν = suµ, (3.11)

because of Eq. (3.5). Now writing the second law of thermodynamics i.e.; Eq.

(3.10), we have,

∂µs
µ = Ds+ sΘ =

Dε

T
+

(ε+ P )

T
Θ =

1

T
Πµν∇(µ uν) ≥ 0, (3.12)

where we have used the thermodynamics relations Eq. (1.35) together with Eq.

(3.8).

Now we split viscous stress tensor Πµν in to a traceless part πµν (i.e.; with

πµµ = 0) and a part with non-vanishing trace Π:

Πµν = πµν − ∆µν Π. (3.13)

Now the Eq. (3.5) implies,

uµπ
µν = 0 with πµµ = 0. (3.14)
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Let us write the traceless part of ∇(µ uν) as ∇〈µuν〉;

∇〈µuν〉 ≡ 2∇(µ uν) −
2

3
∆µν∇αu

α. (3.15)

Now the Eq. (3.12) becomes

∂µs
µ =

1

2T
πµν∇〈µuν〉 −

1

T
Π∇αu

α ≥ 0 (3.16)

and this inequality can be easily assured by taking

πµν = η∇〈µuν〉, Π = −ζ∇αu
α; ζ ≥ 0, η ≥ 0. (3.17)

In the non-relativistic limit, one can see that, with the above expressions the

viscous stress tensor, Eq. (3.9) takes the familiar Navier-Stokes equations. This

enables us to identify the coefficients η(ε, n) and ζ(ε, n) as the shear and bulk

viscosity coefficient respectively. So the first order relativistic dissipative hydro-

dynamics is described by the Eqs. (3.8, 3.9, 3.13 & 3.17).

The Navier-Stokes hydrodynamics is known to have acausal behavior such as

propagation of information in infinite speed [102], which is undesirable in a rela-

tivistic theory. The solution to this problem was first suggested by Cattaneo [102],

by introducing relaxation times in the equations making the theory causal. How-

ever this was done in an ad hoc manner and a strong theoretical basis was missing

from his theory. It has also been shown that Navier-Stokes relativistic theories

exhibit unphysical instabilities [103]. All these problems can be avoided by going

to second order theories.

3.1.2 Second order: Israel-Stewart formalism

An extension of the relativistic Navier-Stokes hydrodynamics to higher order was

done by Müller [132], Isreal and Stewart [104–106]. Detailed calculations can be

found in Ref. [128] and in papers of Rischke and Muronga, who introduced this

causal relativistic theory of Israel-Stewart to heavy-ion physics [107, 129, 133–136].

In the second order theories we allow the entropy 4-flux sµ to have terms upto the

second order in dissipative quantities (Π and πµν). Assuming that the deviations

from the equilibrium are small so that higher orders can be neglected, we write,

sµ = suµ − β0

2T
Π2uµ − β2

2T
παβπαβ u

µ; (3.18)
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where β0 > 0 and β2 > 0 are thermodynamic coefficients corresponding to Π and

παβ contributions respectively. In this case Eq. (3.10) implies

∂µs
µ =

παβ

2T

[
∇〈αuβ〉 − 2β2Dπαβ − 2παβT ∂µ

(
uµβ2

2T

)]
−Π

T

[
∇αu

α + β0DΠ + ΠT ∂µ

(
uµβ0

2T

)]
≥ 0; (3.19)

where we have used the equations of motion along with the thermodynamic re-

lations Eq. (1.35). Now second law of thermodynamics can be satisfied in the

simplest way by assuming

παβ = η

[
∇〈αuβ〉 − 2β2Dπαβ − 2παβT ∂µ

(
uµβ2

2T

)]
,

Π = ζ

[
−∇αu

α − β0DΠ− ΠT ∂µ

(
uµβ0

2T

)]
. (3.20)

We can see that in the limit β0,2 → 0, we get back the first order Navier-Stokes

expressions for παβ and Π- Eq. (3.17). Here the coefficients β0 and β2 are related

with the relaxation time by

τΠ = ζ β0 , τπ = 2η β2; (3.21)

and in principle these should be calculated by the underlying theory. Rewriting

Eq. (3.20) in terms of these relaxation times, we get

Dπαβ = − 1

τπ

[
παβ − η∇〈αuβ〉 + 2παβηT ∂µ

(
uµβ2

2T

)]
, (3.22)

DΠ = − 1

τΠ

[
Π + ζ∇αu

α + ΠζT ∂µ

(
uµβ0

2T

)]
. (3.23)

The above Eqs. (3.8, 3.9, 3.13, 3.22 & 3.23) describe the second order causal Israel-

Stewart relativistic dissipative hydrodynamics. One can see that the key difference

between second order theory with that of first order Navier-Stokes theory is the

presence relaxation times. Unlike Navier-Stokes theory, dissipative terms in second

order theory are differential evolution or dynamical equations. These dynamical

equations show that the dissipative fluxes relax to their steady state values through

the relaxation times. These relaxation times in the second order theory ensures the

causality [137]. The new thermodynamic coefficients introduced in the theory i.e.;

τπ and τΠ are to be calculated from the underlying theory like kinetic theory, as for
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the case of η and ζ. Ignoring the terms which are the product of irreversible flows

with the gradients of equilibrium thermodynamic quantities in the above equations

we get [130],

Dπαβ ≈ − 1

τπ

[
παβ − η∇〈αuβ〉

]
, (3.24)

DΠ ≈ − 1

τΠ

[Π + ζ∇αu
α] . (3.25)

From the above equations it is clear that in the second order evolution equations,

the viscous stresses relaxes into the first order Navier-Stokes values from its initial

values.

One can obtain Israel-Stewart hydrodynamical equations from the kinetic the-

ory as well [128, 135, 136]. Kinetic theory of viscous ultra-relativistic fluids is

still under development. In kinetic theory formulation we can see that some more

terms are coming into the viscosity equations [137, 138]. The general shear stress

equation of second order Israel-Stewart theory from kinetic theory formulation

(corresponding to Eq. (3.24)) is given as [138];

τπ∆α
µ∆β

νDπ
αβ + παβ = η∇〈αuβ〉 − 2τππ

µ(αΩβ)
µ . (3.26)

Since τπ multiplies all the second order terms in the above equation, we can consider

it as a second order coefficient and is related to η. For a relativistic massless

Boltzmann gas, using kinetic theory one gets [138],

β2 =
τπ
2η

=
3

4P
. (3.27)

The extra terms in Eq. (3.26) will not contribute to the entropy production so

that the Eq. (3.19) will remain same. Since these terms cannot be calculated from

the entropy based argument discussed above, kinetic theory based formulation

is more general. The viscosity equations in kinetic theory formulation matches

with Eq. (3.20) only when the fluid under consideration has no vorticity, Ωµν ≡

−1
2

(∇µuν −∇νuµ) = 0 and Duµ = 0. It should be noted that when we consider

Björken flow, Ωµν and Duµ are zero. Therefore it really does not matter whether

we use Eq. (3.24) or Eq. (3.26) for our purpose.

Form of the second order Israel-Stewart equations remains the same irrespective

of the frame that we choose (Lanadu-Lifshitz or Eckart), whereas the second order
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coefficients are found to be frame dependent [139]. It ought to be mentioned that

there exists other theories derived with modified entropy current and work in this

direction can be found in Refs. [140–142].

Further, it has been shown that for a conformal fluid there will be additional

terms in the equation corresponding to shear viscosity [143]. Since QGP at high

temperatures (1.5− 2)Tc behave more and more conformal, as suggested by lattice

QCD results [7], we would be including these terms in the shear viscosity equation.

Including terms up to second order in gradients, the general form of the shear

viscous tensor in flat space is then given as [143],

παβ = η∇〈αuβ〉 − τπ
[
∆α
µ∆β

νDπ
αβ +

4

3
παβΘ

]
(3.28)

− λ1

2η2
π〈αµ π

β〉µ +
λ2

2η
π〈αµ Ωβ〉µ − λ3

2
Ω〈αµ Ωβ〉µ.

Here λ1, λ2 and λ3 are additional second order coefficients for a conformal fluid and

they must be calculated from the underlying theory. As seen before τπ gives us the

estimate how fast πµν relaxes to first order value η∇〈αuβ〉 from the starting value.

The coefficients λ1 tells about the non-linearity of the viscous effects whereas λ2,3

has to do with the vorticity of the fluid. The explicit calculations for the second

order coefficients are done using AdS/CFT correspondence for a strongly coupled

N = 4 supersymmetric Yang-Mills (SYM) theory and their results are [143–146]:

τπ = τΠ =
2(2− ln 2)

T

η

s
, λ1 =

η

2πT
, λ2 = −η ln 2

πT
& λ3 = 0. (3.29)

Here bulk viscosity relaxation time τΠ = τπ was found using a strongly interacting

non-conformal field theory [147]. On the other hand, for a weakly coupled QCD,

explicit calculations indicate [148]

τπ =
5.0...5.9

T

η

s
. (3.30)

For more details of the calculations of these coefficients and review of the results

we refer Ref. [149].

We would also like to note that this second order theory is derived under the

assumption that the system is close to the equilibrium and dissipative fluxes are
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small compared to the equilibrium values:

|Π| � P and
√
παβπαβ � P . (3.31)

So the validity or the applicability of the second order hydrodynamics depends on

this condition.

3.2 Viscous expansion of QGP

Let us consider the viscous expansion of the QGP formed in heavy-ion collisions.

We need to apply the Björken flow described in Section 1.2.2 to dissipative hydro-

dynamics to get the governing equations.

Let us consider the form of T µν in the rest frame, uµ = (1,~0) of the fireball.

With the help of the Eqs. (3.1, 3.13 & 3.14) we can write [129, 150]

T µν =


ε 0 0 0

0 P⊥ 0 0

0 0 P⊥ 0

0 0 0 Pz

 (3.32)

where the effective pressure of the expanding fluid in the transverse and longitu-

dinal directions are respectively given by

P⊥ = P + Π +
1

2
Φ,

Pz = P + Π− Φ. (3.33)

Here Φ = π00−πzz and Π are the non-equilibrium contributions to the equilibrium

pressure P coming from shear and bulk viscosities respectively. Respecting the

symmetries in the transverse directions the traceless shear tensor has the form

πij = diag(Φ/2,Φ/2,−Φ). It is clear from the above equations that the effect of

viscosity is to alter the equilibrium pressure and the effective pressure is anisotropic

unlike the ideal case.

In order to study the dynamics of the system we need to study the structure

of T µν in a moving frame. Using uµ = (cosh ηs, 0, 0, sinh ηs) and Eqs. (3.1, 3.13

& 3.14) we can find T µν . The non-vanishing terms of the shear stress tensor are
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given as

π00 = −Φ sinh2 ηs, π
11 = π22 =

Φ

2
, π33 = −Φ cosh2 ηs,

π03 = π30 = −Φ sinh ηs cosh ηs. (3.34)

Now we can write the general form of the energy-momentum tensor in a moving

frame,

T µν =


W cosh2 ηs − Pz 0 0 W cosh ηs sinh ηs

0 P⊥ 0 0

0 0 P⊥ 0

W cosh ηs sinh ηs 0 0 W sinh2 ηs + Pz

 , (3.35)

where W = ε+ Pz is the effective enthalpy.

We have already seen from Section 1.2.2 that (1+1)-dimensional scaling solution

gives thermodynamic quantities as a function of only one variable τ . Now let

us look at the energy-dissipation equation, i.e.; Eq. (3.8) in this context. We

already know the ideal part i.e.; Eq. (1.46), and the viscous part Πµν∇(µ uν) can

be calculated using Eqs. (1.40 - 1.42 & 3.34) as

Πµν∇(µ uν) = πµν∂µuν − Π Θ =
Φ

τ
− Π

τ
. (3.36)

Now the Eq. (3.8) becomes [107],

∂ε

∂τ
+
ε+ P

τ
− Φ

τ
+

Π

τ
= 0, (3.37)

and this is the fundamental equation that governs the effect of dissipation in ex-

panding plasma. One can define a ratio R of non-dissipative term to dissipative

term, as an analogy to Reynolds number [153, 154]

R ≡ (ε+ P )

Φ + Π
(3.38)

so that Eq. (3.41) can be written as

∂ε

∂τ
= (R−1 − 1)

ε+ P

τ
. (3.39)

We can study the general effect of dissipation by looking into this equation. It

is clear that system energy-density decreases (increases) for R > 1 (R < 1) and
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R = 1 corresponds to the case when energy-density (and other thermodynamic

quantities) remains the same.

In Eq. (3.37) various viscous theories will give corresponding expressions for

the viscous parts Φ and Π. Let us analyse these cases separately.

Ideal case

In the ideal case we have Φ = Π = 0, and from Section 1.2.2 we know the energy-

dissipation equation, Eq. (1.33).

First order

In the first order Navier-Stokes theory, the expressions for viscous terms within

Björken flow can be found from Eq. (3.17) and is given by

Π = −ζ
τ

and Φ =
4η

3τ
, (3.40)

so that energy-dissipation equation takes the form,

∂ε

∂τ
+
ε+ P

τ
=

(
4
3
η + ζ

)
τ 2

. (3.41)

From Eq. (3.16) we can find the entropy equation and is given as

∂s

∂τ
+
s

τ
=

s

Rτ
, (3.42)

where R−1 =
( 4
3
η+ζ)
Tsτ

. In the case of perfect fluid R−1 is zero and from the above

equation we get sτ as a constant (Eq. (1.45)).

First order dissipative hydrodynamics in the context of heavy-ion physics was

studied in detail in Refs. [100, 101, 151–154].

Second order

When we use causal dissipative second order hydrodynamics of Isreal-Stewart to

study the expanding plasma in the fireball, instead of expressions as in Navier-

Stokes theory, we have dynamical or evolution equations for Φ and Π governed by

their relaxation times τπ and τΠ, i.e.; Eqs. (3.28 & 3.25) within Björken flow:

∂Φ

∂τ
= −Φ

τπ
+

2

3

1

β2τ
− 1

τπ

[
4τπ
3τ

Φ +
λ1

2η2
Φ2

]
(3.43)

∂Π

∂τ
= − Π

τΠ

− 1

β0τ
. (3.44)
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Where we used the fact that within Björken flow, Ωµν = 0 and Duµ = 0, and

λ3 = 0. In second order hydrodynamics, Eqs. (3.37, 3.43, 3.44) describe the

dissipative evolution of the fireball in heavy ion collisions. As with the ideal case, we

need to supplement this set of equations with EoS to close the system. Additionally

we have to prescribe the viscosities of the medium under consideration also. Second

order relativistic hydrodynamics models have been used extensively to describe the

role of viscosity on the fireball evolution in heavy ion collisions [109, 155–161]. We

refer [129, 134, 137, 162] for more details on the recent developments in the theory

and its application to relativistic heavy-ion collisions.

Now in order to understand the dissipative scaling flow solutions better we

consider an ultra-relativistic (ideal) EoS of massless quarks and gluons (Appendix

A): P = c2
sε = ε/3 = a T 4. Generally in the context of heavy ion collision, the

effect of bulk-viscosity ζ is neglected for a system obeying such an EoS. This is

because here ζ scales like c2
s − 1

3
, where c2

s is the speed of sound [46].

We have already seen from Section 1.2.2 that for ideal hydro (1+1)-scaling

solution is given by Eq. (1.50): T = T0

(
τ0
τ

)1/3
, with T0 and τ0 being initial values

of temperature and time respectively.

In the first order hydrodynamics, with ε = 3P EoS, energy-dissipation equation

Eq. (3.41) with ζ = 0 becomes

∂T

∂τ
= −c2

s

[
1

τ
− 4

3

(η
s

) 1

Tτ 2

]
. (3.45)

This equation can be solved analytically for the case of constant η/s and the

solution is [107, 154],

T (τ) = T0

[τ0

τ

]1/3
[
1 +

2η

3sτ0T0

(
1−

[τ0

τ

]2/3
)]

. (3.46)

It is clear that effect of viscosity is to reduce the rate at which temperature of the

system drops, compared to the ideal fluid case. This function has a maximum at

the τ value

τmax = τ0

[
1

3
+
s

η

T0τ0

2

]−3/2

. (3.47)

For times greater than τmax we have a decreasing temperature of the expanding

fireball with time, as expected. But τ < τmax system will show a reheating, which

is unphysical. Apart from the other problems with the first order theory discussed
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Figure 3.1: Temperature evolution in first order (NS) and second order (IS) dissi-

pative hydrodynamics. Ideal case is also shown. One can see that first order gives

unphysical reheating at early times whereas second order hydro is devoid of such

artifacts.

in Section 3.1.1, this unphysical artifact is also removed by going into second order

theories [107, 138].

Since only the effect of shear viscosity appears with ideal EoS, in the second

order theories we need to solve two equations: energy dissipation equation Eq.

(3.37) with ζ = 0 and shear stress evolution equation Eq. (3.43) in order to study

the scaling solution. We need to provide relaxation coefficient τπ, which for the

massless particles is given by Eq. (3.27). We take λ1 = η
2πT

as in Eq. (3.29)

and η/s = 0.3. We provide following initial conditions: T0 = 0.2 GeV, τ0 = 0..3

fm/c and we take Φ(τ0) = 0. After numerically solving the equations we plot the

resulting temperature profile in Fig. [3.1]. For comparison we have plotted the

temperature profiles for the first order; Eq. (3.46) and ideal hydrodynamics; Eq.

(1.50) also. One can see that for sufficiently lower times first order hydro gives rise

to unphysical reheating whereas second order is devoid of such artifacts. One can

also see that effects of dissipation on the system are: a) to increase the temperature

b) to decrease the cooling rate.

We would like to end this section by mentioning how the applicability condi-

tion for viscous hydrodynamics will look like in the Björken flow. In this context
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conditions expressed in Eq. (3.31) becomes,

|Π| � P and
√
παβπαβ =

√
3

2
Φ� P . (3.48)

This conditions has a significant impact on the initial conditions for Φ and Π.

In the theory as we have two differential equations for these stresses, we need to

provide the initial values Φ0 and Π0 at initial time τ0. We don’t know exactly

what are these values, however, in the limiting case we know it should be less

than P0. This ensures that initial Reynolds number R > 1, which in turn makes

sure that thermodynamic variables will always be decreasing in the second order

theory; Eq. (3.39). So unlike first order theories in the second order we have

conditions which ensures the application of the theory in its valid domains. For

more detailed analysis of the applicability of second order hydrodynamics in the

context of heavy-ion collisions we refer Ref. [163].

Having set up the causal second order dissipative relativistic hydrodynamical

equations dictating the expansion of the fireball formed in the heavy ion collisions,

we know turn our attention to the properties of the system like EoS and viscosi-

ties which are important inputs needed for the hydrodynamical treatment of the

expanding QGP.

3.3 Non-ideal effects

In this session we will concentrate on the thermodynamic quantities that we need

to input in the hydrodynamical model to study the expanding QGP formed in

nucleus-nucleus collisions. The hot matter formed in the heavy ion collisions ex-

pands and subsequently cools. After reaching the critical temperature it eventu-

ally gets hadronised. At high temperatures we use weakly coupled QCD to study

the thermodynamic properties. However, the maximum temperature attained in

nucleus-nucleus collision experiments is not very high e.g.; at LHC maximum tem-

perature ∼ 600 MeV and RHIC ∼ 350 MeV. We are interested in an experimentally

accessible regime of QCD matter where it is near the critical temperature Tc. The

thermodynamic properties of the matter near Tc cannot be studied using pertur-

bative analysis, as we do in the high temperature regimes, as the QCD coupling
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constant is large in this region. So one has to rely upon some other techniques

to extract thermodynamic and transport properties of the hot QCD matter at

these strongly interacting regimes. One of the successful ways of doing calculation

is using lattice QCD (lQCD) techniques and other recent one being AdS/CFT

correspondence.

In lQCD approach; originally proposed by Wilson in 1974 [4], QCD is defined

on a space-time lattice leading to a gauge-invariant regularised theory and allows

a non-perturbative numerical investigation. Thus lQCD provides a framework for

studying non-perturbative phenomena like QGP phase transition and confinement

[164].

AdS/CFT correspondence (or gauge/gravity duality) allows us to map a strongly

coupled finite temperature conformal gauge theory in d dimension onto a weakly

coupled gravity theory in d + 1 dimension with a blackhole. Most useful for our

purpose being correspondence between N = 4 SYM in 4 dimensions to a string

theory in 5 dimensions AdS5 × S5 (5-dimensional Anti de Sitter space times a

5-dimensional sphere) [165–167]. So the problems that are difficult to handle in

strongly coupled systems like QGP, are transported onto a higher dimensional

gravitational theory; where it become easy to handle. One then maps back the

solutions onto the real 4-dimensional flat space-time. For a recent review on the

AdS/CFT techniques and its application with the heavy-ion collision physics, we

refer readers to Ref. [149].

3.3.1 EoS from lQCD (ε 6= 3P )

Most reliable calculations of the thermodynamic quantities of QCD matter at the

regimes close to phase-transition in QGP comes from the lQCD calculation tech-

niques. From the recent lattice results we have a picture how energy density and

pressure of QCD matter at thermal equilibrium and with zero chemical potential

behave [6, 7, 168, 169]. In Fig. [3.2], we plot temperature dependence of ε and

3P (in units of T 4) obtained from lQCD calculation by Bazavov et al. [7] with

critical temperature being 190 MeV. From the figure one can see that the pressure

(energy density) increases rapidly above Tc indicating a rise in number of degrees
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Figure 3.2: Energy density ε/T 4 and pressure 3P/T 4 as functions of temperature

T. The dashed line denotes value of pressure in ideal EoS limit 3PSB/T
4. Around

critical temperature (Tc = .190 GeV) sudden rise in these quantities are seen due

to increase in number f degrees of freedom. Results are from Ref. [7].

of freedom; and almost remains constant at higher temperatures but below the

ideal non-interacting value of pressure (Stefan-Boltzmann limit) i.e.; Eq. (1.48).

Only at asymptotic values of temperature (T < 108 GeV) the pressure from lQCD

reaches the ideal limit and we observe a difference ∼ 20% between the ideal limit

and lQCD results as high as 1 GeV [149, 170]. Another important quantity that

one calculates in lQCD is the thermal expectation value of the trace of the energy-

momentum tensor 〈Θµ
µ〉 = ε−3P , known as trace anomaly. For a conformal theory

this quantity is zero. What one observes is rise in 〈Θµ
µ〉/T 4 around Tc owing to

the more steady rise of ε/T 4 compared to 3P/T 4. Large value of trace anomaly is

necessarily indicative of the strong interaction among the constituents of the QCD

matter. At high temperatures trace anomaly falls off indicating a more and more

conformal (scale-invariant) behavior of QGP.

The important point that one should note from these studies is, since QCD

matter is more and more conformal at high temperatures, one can use conformal

theories with AdS/CFT techniques to get an insight into real world QGP.

We use the recent lattice QCD result of Bazavov et al . [7] for equilibrium EoS

(non-ideal : ε − 3P 6= 0) with zero baryon chemical potential, which becomes

significantly important near the critical temperature. Parametrised form of their
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Figure 3.3: (ε− 3P )/T 4, ζ/s and η/s = 1/4π as functions of temperature T. One

can see around Tc = .190 GeV, departure of equation of state from ideal case is

large and ζ � η.

result for trace anomaly in units of T 4 is given by [7]

ε− 3P

T 4
=

1− 1[
1 + exp

(
T−c1
c2

)]2

( d2

T 2
+
d4

T 4

)
, (3.49)

where values of the coefficients are d2 = 0.24 GeV2, d4 = 0.0054 GeV4, c1 =

0.2073 GeV, and c2 = 0.0172 GeV. The functional form of the pressure is given by

[7]
P (T )

T 4
− P (T0)

T 4
0

=

∫ T

T0

dT ′
ε− 3P

T ′5
, (3.50)

with T0 = 50 MeV and P (T0) = 0 [115].

From Eq. (3.49) and Eq. (3.50) we get ε and P in terms of T . A crossover

from QGP to hadron gas around the temperature 200-180 MeV is predicted by

this model. Throughout the analysis we keep the critical temperature Tc to be 190

MeV until and unless specified.

Now we need to specify the viscosity prescriptions used in the hydrodynamical

model.

3.3.2 Shear viscosity

First theoretical investigations to find out shear viscosity of QCD matter can be

found in Refs. [151, 171]. Using relativistic kinetic theory it was estimated that
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for a weakly coupled QCD shear viscosity η ∼ T 3/(α2
s lnα−1

s ) [151] and it was

suggested that Kubo formula should be used to calculate viscosities near Tc [171].

At the high temperature regime of QCD, explicit calculations by Arnold, Moore

and Yaffe gave the expressions for shear viscosity upto leading logarithmic accuracy

[172, 173]. E.g.; for massless quarks with Nf = 0 and NC = 3 we have,

η =
27.126T 3

g4 ln (2.765g−1)
, (3.51)

where g2 = 4παs. However these results are uncertain upto a great extent, due to

its strong dependence on coupling constant and Debye mass [138, 162].

In order to understand the shear viscosity near phase transition (non-perturbative

regime), studies were done using AdS/CFT correspondence techniques. N = 4

SYM theory with large NC → ∞ and strong coupling g2NC → ∞ limit, η/s was

calculated and it was found to be a constant η/s = 1/4π [174]. Finite-coupling

corrections (large but finite coupling constant g2NC) of this result were calculated

by Buckel et al. and is given by [175]

η

s
=

1

4π

(
1 +

135ζ(3)

8(2g2NC)3/2
+ ....

)
, (3.52)

where ζ(3) ≈ 1.202.. is Apérys constant. Similar calculations were done in the

weak coupling regime also and the results suggested that the η/s is not constant

but smaller compared to weak QCD results [176].

After a close study with various strongly coupled field theories, it was found

that the constant nature of η/s was not confined to N = 4 SYM theory but for a

large class of gauge theories with a gravity dual [110, 177, 178]. Universal nature

of this result is manifested with the fact that it applies to many field theories in

the strongly coupled and large NC limit, regardless of conformal or non-conformal,

supersymmetric or non-supersymmetric etc. This led Kovtun, Son and Starinets

to conjecture [110] that
η

s
=

1

4π
(3.53)

(written in units ~ = c = kB = 1, otherwise η/s = ~/4πkB) is an absolute lower

bound on the value of η/s for all systems in nature; now known as KSS bound. The

fact that the finite corrections to the η/s in Eq. (3.52) are positive also indicates

the validity of KSS bound [110]. Experimental studies also support this bound as
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we are yet to come across a system with η/s < 1/4π [179]. It is worth mentioning

that recently there are some AdS/CFT studies where violation of KSS bound is

discussed [180].

The measurements of the elliptical flow parameter v2 of QGP formed at RHIC

show a strong collectivity in the flow [181–183] indicating a very low value of

η/s ∼ 1/4π [109].

There are some lQCD based efforts to determine η/s of QGP [184, 185]. How-

ever these results suffer from huge associated errors [149]. However it is interesting

to note that the results of these studies are in accordance with observed bound

on the values of QGP shear viscosity from flow experiments and respect the KSS

bound also.

3.3.3 Bulk viscosity

We are interested in the effect of bulk viscosity on the hydrodynamical evolution

of the plasma. Generally the effect of bulk viscosity is neglected in the heavy ion

collision scenarios, since we use an ultra-relativistic ε = 3P EoS to describe the

system [46]. In the weak coupling limit of QCD, by explicit calculations, it was

shown that bulk viscosity ζ ∼ α2
sT

3/ lnα−1
s [186] and can be neglected compared

to the shear viscosity η ∼ T 3/(α2
s lnα−1

s ) [151, 172, 173]. It is due to the fact that

at high temperatures QCD is more and more conformal.

But as seen from the previous session, lQCD results indicate medium having an

EoS deviating from ideal (ε = 3P ) case more and more near Tc indicating the non-

conformal nature of the plasma. Speed of sound of the medium also has a change

from the ideal EoS case (c2
s = 1

3
) here [7, 168]. So we can expect that near Tc bulk

viscosity may not be zero as it is related to the speed of the sound in the medium.

There exists several mechanisms that can contribute for bulk viscosity in a system

[187]. Using linear sigma model it was shown in Ref. [187] that near the QCD

phase transition, ratio of bulk viscosity to entropy density (ζ/s) gets a maximum.

Further studies also confirmed this by examining the temperature dependence of

ζ/s by relating it to the lQCD results for trace anomaly ε−3P [188–192]. All these

recent studies point out that near critical temperature the effect of bulk viscosity
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Figure 3.4: Various bulk viscosity scenarios by changing the width of the curve

through the parameter ∆T in Eq. (3.54).

becomes prominent ζ � η and cannot be ignored. We would like to note that

these studies are not conclusive about the strength of ζ/s.

We use recent lQCD calculation results of Meyer [113], for determining ζ/s.

His result indicate the existence a peak of ζ/s near Tc, although the height and

width of this curve are not well understood. We use the parametrization of Meyer’s

result given in Ref. [115]:

ζ

s
= a exp

(
Tc − T

∆T

)
+ b

(
Tc
T

)2

for T > Tc, (3.54)

where the parameter a = 0.901 controls the height, ∆T = Tc/14.5 controls the

width of the ζ/s curve and b = 0.061. We will change these values to explore the

various cases of ζ/s to account for the uncertainty of the height and width of the

curve.

Since in conformal field theories ζ = 0, there are attempts of calculating bulk

viscosity using non-conformal field theory and gauge/string duality [193, 194].

Buchel has calculated a bound on bulk viscosity using such attempts and is given

by [195]

ζ ≥ 2

(
1

3
− c2

s

)
η. (3.55)

We would like to note that this result indicate a value for ζ/s which is considerably

less than lQCD estimates described before.

In Fig. [3.3] we plot the trace anomaly (ε−3P )/T 4 and ζ/s for desired temper-

ature range. We also plot the constant value of η/s = 1/4π for a comparison. It
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is clear that the non-ideal EoS deviates from the ideal case (ε = 3P ) significantly

around the critical temperature. Around same temperature ζ/s starts to dominate

over η/s significantly. We would like to note that these results are qualitatively

in agreement with Ref. [114]. In Fig. [3.4] we show the change in bulk viscosity

profile by varying the width of the ζ/s curve by keeping the height intact.

3.4 Conclusions

In this chapter we reviewed the relativistic dissipative hydrodynamics of first order

(Navier-Stokes) and second order (Israel-Stewart type) in the context of heavy ion

collisions. We discussed the problems with the first order theories and need for

using the second order theories. We also reviewed the results for bulk viscosity

and shear viscosity prescriptions available for QGP matter.

In next chapter, we will look the hydrodynamical evolution in presence of these

viscosity prescriptions using second order causal hydrodynamics.



Chapter 4

Hydrodynamic evolution at early

stages and cavitation

We would like to study how the viscosity prescriptions, both shear and bulk, dis-

cussed in Section 3.3, affect the expanding fireball produced in RHIC/LHC ener-

gies, within causal second order hydrodynamics framework. From Section 3.2, we

know the equations dictating the longitudinal viscous expansion of the medium,

and they are:

∂ε

∂τ
= −1

τ
(ε+ P + Π− Φ) , (4.1)

∂Φ

∂τ
= −Φ

τπ
+

2

3

1

β2τ
− 1

τπ

[
4τπ
3τ

Φ +
λ1

2η2
Φ2

]
, (4.2)

∂Π

∂τ
= − Π

τΠ

− 1

β0τ
. (4.3)

Here Φ and Π denote the contributions from shear and bulk viscosities respectively.

Apart from these three equations (4.1 - 4.3), we need to provide the EoS and

viscosity prescriptions to study the hydrodynamical evolution of the system.

4.1 Cavitation

Let us recall that the effective longitudinal pressure within second order hydrody-

namics is defined as Eq. (3.33),

Pz = P + Π− Φ,

61
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with P being equilibrium hydrodynamic pressure. As both shear viscosity and bulk

viscosity contributions are always negative, large values of Π or/and Φ can make

Pz negative. During the course of expansion when Pz vanishes, the fluid will break

apart into fragments and the hydrodynamic treatment will become invalid [115].

Phenomenon of cavitation is known to occur in liquids [196], when the pressure of

an expanding liquid becomes less than its vapour pressure. The condition that the

longitudinal pressure Pz = 0 defines the onset condition for the cavitation and the

time at which Pz = 0 is called the cavitation time τc. One can have the following

intuitive picture for the cavitation. Consider an expanding fluid scenario in the low

viscosity regime where the collective flow is pushing the system outward. Next,

consider that there is a sharp rise in the viscosity as the expanding fluid cools

down. In such a situation, the emergence of a strong viscous force will try to halt

the collective flow. However, due to causality, it cannot suddenly overcome the

collective flow globally. But, it is possible for the viscous force to overcome the

flow locally. This may result in breaking up of the fluid into fragments and the

conditions for the applicability of second order hydrodynamics may not be satisfied

any more. However, our formulation in the 1+1 boost invariant approximation

cannot describe the characteristics of the fragmentation. Nonetheless, it can give us

the onset condition for the cavitation. One of the signatures of such fragmentation

condition could be in terms of the HBT correlations [197, 198]. Nevertheless,

our condition of cavitation is also the condition for the validity of second order

hydrodynamics. One of the limitations of this approach is that the effects of

transverse flow cannot be incorporated. However it should also be noted that the

effect of transverse flow could remain small as cavitation can restrict the time for

hydrodynamical evolution.

In this chapter we intend to address three distinct cases:

� Hydrodynamic evolution at RHIC energies: effect of finite bulk viscosity ζ/s

and shear viscosity η/s = 1/4π, within lQCD inspired EoS.

� Hydrodynamic evolution at LHC energies: effect of finite temperature de-

pendent η/s, within lQCD inspired EoS.

� Hydrodynamic evolution at both RHIC and LHC energies: effect of finite
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shear viscosity η/s = 1/4π on chemically equilibrating plasma with ideal

massless gas ε = 3P EoS.

4.2 Bulk viscosity, cavitation and hydrodynam-

ics at RHIC

Only recently, the effect of bulk viscosity was considered in hydrodynamic evolu-

tion at RHIC energies, using (1+1)-dimensional hydrodynamics. It can be shown

with lQCD result for a temperature dependent ζ/s that during evolution effective

pressure of the system can go to zero much before the system temperature reaches

Tc and thereby trigger the cavitation [114, 115].

In our analysis we use lQCD results for ζ/s, whereas for η/s we take the minimal

value as suggested by the RHIC experiments [109]. Information about viscosity

coefficients η and ζ are obtained from Eqs. (3.53 & 3.54) using s = (ε+P )/T . The

second order coefficients in the hydrodynamical equations are being taken from the

strongly coupled N = 4 SYM theory results given in Eq. (3.29). In order to close

the hydrodynamical equations we use the non-ideal EoS obtained from lQCD i.e.;

Eq. (3.49) and Eq. (3.50). Near the critical temperature Tc = 190 MeV, ζ/s has

a peak and is much larger than η/s, as we had seen in Fig. [3.3].

In order to understand the temporal evolution of temperature T (τ), pressure P (τ)

and viscous stresses - Φ(τ) and Π(τ), we numerically solve the hydrodynamical

equations describing the longitudinal expansion of the plasma: Eqs. (4.1 - 4.3).

We need to specify the initial conditions to solve the hydrodynamical equations,

namely τ0, T0, Φ(τ0) & Π(τ0). We use the initial values relevant for RHIC (Au+Au,
√
s = 200 GeV) experiments: τ0 = 0.5 fm/c and T0 = 0.310 GeV; taken from Ref.

[199]. The initial values of viscous stresses are not known exactly and in literature

people consider values ranging from zero to Navier-Stokes values Eq. (3.40) [114].

We will take initial values of viscous contributions as Φ(τ0) = 0 and Π(τ0) = 0.

We would like to note that our hydrodynamical results are in agreement with that

of Ref. [115].
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Figure 4.1: Temperature profile using massless (ideal) and non-ideal EoS in RHIC

scenario. Viscous effects are neglected in both cases. System evolving with non-

ideal EoS takes a significantly larger time to reach Tc as compared to ideal EoS

scenario. We note that initial entropy in both the cases are different.

4.2.1 Hydrodynamics with ideal and non-ideal EoS

Fig. [4.1] shows plots of temperature versus time for the ideal and non-ideal equa-

tion of states. The temperature profiles are obtained from the hydrodynamics

without incorporating the effect of viscosity. Here we consider the ideal EoS of

a relativistic gas of massless quarks and gluons (Appendix A). The pressure of

such a system is given by Eq. (1.48), where we take Nf = 2 in our calculations.

From Section 1.2.2 we have seen that for such a system temperature profile within

Björken flow is given by Eq. (1.50): T = T0

(
τ0
τ

)1/3
. The figure shows system with

non-ideal EoS takes almost the double time than the system with ideal massless

EoS to reach Tc. So even when the effect of viscosity is not considered, inclusion of

the non-ideal EoS makes significant change in temperature profile of the system.

However, we note here that although we have taken same initial temperature, the

initial entropy is not the same, it is larger for the non-ideal EoS case. Subsequent

difference will be there in the final entropies also.

Next we analyse the viscous effects on the temperature profile. We consider pos-

sible combinations of Φ and Π in non-ideal EoS case and study the corresponding

temperature profiles as shown in Fig. [4.2]. As expected viscous effects is slowing

down temperature evolution. For the case of non zero bulk and shear viscosities
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Figure 4.2: Figure shows time evolution of temperature with non-ideal EoS for

different combinations of bulk (Π) and shear (Φ) viscosities. Non zero value of

bulk viscosity refers to Eq. (3.54) and non-zero shear viscosity is calculated from

Eq. (3.53).

(Π 6= 0; Φ 6= 0), temperature takes the longest time to reach Tc as indicated by

the top most curve. This is about 35% larger than the case without viscosity (the

lowest curve). The remaining two curves show that the bulk viscosity dominates

over the shear viscosity when the value of T approaches Tc and this makes the

system to spend more time around Tc. However the intersection point of the two

curves may vary with values of a and ∆T as highlighted by Fig. [3.4].

4.2.2 Bulk viscosity driven cavitation at RHIC

Now we analyse the effective longitudinal pressure Pz of the system. We have

already discussed that, large values of shear or bulk stress can drive, Pz ≈ 0

triggering cavitation. Recent experiments at RHIC suggest η/s to its smallest

value ∼ 1/4π. Such a small value of η/s alone is inadequate to induce cavitation.

Now we vary the bulk viscosity values by changing the height and width of ζ/s

curve, via a and ∆T, and carefully analyse Pz.

In Figs. [4.3 & 4.4] we plot Pz and T as functions of the proper time for different

values of ∆T while keeping a (=0.901) fixed. As may be inferred from Fig. [4.3],

higher value of ∆T leads to a shorter cavitation time. For the base values a = 0.901

and ∆T = Tc/14.5 we find that around τc = 2.5 fm/c, Pz becomes zero as shown
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Figure 4.3: Longitudinal pressure Pz for various viscosity cases shown in Fig. [3.4].
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Figure 4.4: Temperature is plotted as a function of time. With peak value (a) of

ζ/s remains same while width (∆T ) varies. In all the three curves, solid lines end

at cavitation time τc denoted by a dark circle. The dashed lines in each curves

show how the system would evolve till Tc if cavitation is ignored. Figure shows that

larger the width parameter shorter the cavitation time.
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width (∆T ′) of ζ/s curve.

by the lowest curve in Fig. [4.3]. In this case, the cavitation occurs when the

temperature reaches the value about 210 MeV, as may be seen in Fig. [4.4]. Had

we ignored the cavitation, the system would have taken a time τf = 5.5 fm/c to

reach Tc, which is significantly larger than τc. This shows that cavitation occurs

rather abruptly without giving any sign in the temperature profile of the system.

The hydrodynamic evolution without implementing the cavitation constraint can

lead to over-estimation of the evolution time and the particle production.

We have carried out a similar analysis shown in Figs. [4.3 & 4.4] by keeping ∆T

fixed (= Tc/14.5) and varying parameter a. In Fig. [4.5] we show the cavitation

times corresponding to changes in a and ∆T (denoted by a′ and ∆T ′). The dashed

curve in Fig. [4.5] shows τc as a function of a, while keeping ∆T fixed. The curve

shows that τc decreases with with increasing a. The solid line shows how τc varies

while keeping a fixed and changing ∆T .

Further, we also consider η/s = 1/4π and ζ/s as function of T as in Ref. [115]

for LHC energies. It is found that the cavitation does not occur in this case unlike

the results for RHIC energies [115, 200, 201]. One may naively expect that when

the system temperature reach T ∼ Tc, the bulk viscosity become large enough to

drive cavitation. However, the cavitation occurs when the viscous stress (Π and/or

Φ) has a peak in its temporal profile. The height of the peak is determined by τ0,

T0 and the initial values of ζ/s or η/s. For LHC energies, we find that even at the
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peak value of the viscous stress Π, the condition Π < P is satisfied and therefore

cavitation does not occur.

4.3 Shear viscosity, cavitation and hydrodynam-

ics at LHC

Presently the shear viscosity of the strongly-interacting matter produced in the

heavy-ion collision experiments at LHC and RHIC is under extensive investigations.

It has been argued that in order to explain the collective flow data from RHIC,

η/s cannot be larger than twice the KSS-bound [109]. It is generally expected that

η/s for QGP has a minimum at the critical temperature Tc, while it increases with

the temperature beyond Tc [184, 202, 203].

It must be noted that the applications of the viscous hydrodynamics discussed

above regard η/s as independent of temperature. However, recently it has been

argued that constant η/s is in sharp contrast with the observed fluid behavior in

nature where it can depend on temperature [179, 202]. It has been demonstrated

that the temperature-dependence of η/s can strongly influence the transverse mo-

mentum spectra and elliptical flow in the heavy-ion collision experiments at LHC

[202, 204]. It should be emphasized here that the ratio of bulk viscosity to entropy

density ζ/s as a function of temperature was already considered by several authors

and interesting consequences like cavitation were studied [115, 197, 200, 205]. A

similar analysis with a temperature-dependent η/s has not been performed so far,

which we intend to address here. Cavitation has also been studied recently with a

holographic formulation of sQGP [206].

In this work we use η/s prescriptions arising from lattice QCD (lQCD) as in Ref.

[202], virial theorem type of arguments [203] as well as the analytical expressions

for η/s as given in Ref.[204]. We show that the large values of η/s, relevant for

LHC energies, can make the effective pressure of the fluid very small in a time less

than 2 fm/c. This would cause cavitation in the fluid which in turn would limit

the applicability of hydrodynamics. It must be noted that the cavitation at RHIC

energies studied in Refs. [115, 200, 201] earlier was driven by the high values of
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the bulk viscosity near the critical temperature. However, the bulk viscosity can

play an insignificant role in the temperatures T >> Tc. In the present study we

for the first time demonstrate that for LHC energies cavitation is solely driven by

the shear viscosity.

4.3.1 Hydrodynamics and temperature dependent η/s at

LHC

We treat the longitudinally expanding plasma within second order hydrodynamics

in our analysis i.e.; Eqs. (4.1 - 4.3). One may argue against the validity of applying

(1+1)-dimensional flow, in studying the relativistic heavy-ion collisions by ignoring

the transverse flow. As will be shown later for a central collision at LHC energies

the cavitation sets during the initial stage of the collision in a time less than 2 fm/c.

Since the transverse flow is expected to be negligible during the earlier stages of a

heavy-ion collision, it will not have a significant effect on the cavitation time.

We recall from Section 3.1.2 that the last term with brackets on the right-hand

side of the equation describing the evolution of shear stress Φ, i.e.; Eq. (4.2):

∂Φ

∂τ
= −Φ

τπ
+

2

3

1

β2τ
− 1

τπ

[
4τπ
3τ

Φ +
λ1

2η2
Φ2

]
is due to the conformal symmetry. Here we take the lQCD result for EoS, as

in previous study i.e.; Eqs. (3.49 & 3.50). At LHC energies the bulk viscosity

is expected to be negligible as ε ≈ 3P and one can ignore Eq. (4.3). Effective

longitudinal pressure Pz in Eq. (3.33) and in the absence of the bulk stress is given

by Pz = P − Φ.

We use recent lQCD estimate for η/s in QGP sector calculated by Nakamura

et al. [184]. The resulting η/s from lQCD has the expected minimum near the

critical temperature Tc. It should be noted that recent lattice studies indicate a

crossover rather than a phase-transition [6]. However, for the present work this

may not be an issue since we are interested in temperature dependence of η/s

where Tc is a parameter. We use the parametrization of η/s given in Ref. [207],

where the minimum value of η/s is 1/4π. Another prescription for shear viscosity

that we use is from Ref. [203], where using virial expansion techniques, the authors
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Figure 4.6: Different prescriptions of η/s as function of temperature, with Tc=0.2

GeV. The horizontal curve show η/s = 1/4π obtained from the AdS/CFT corre-

spondence.

calculate η/s in QGP. Fig. [4.6] shows the plots of various η/s prescriptions versus

temperature with Tc =0.2 GeV. The top curve shows values of η/s obtained from

the lattice results, while the middle curve corresponds to η/s values obtained from

the virial expansion. The horizontal line corresponds to the KSS value. Finally, we

consider the temperature-dependent forms of η/s as given in Ref. [204]: (η/s)1 =

0.2 + 0.3 T−Tchem
Tchem

, (η/s)2 = 0.2 + 0.4 (T−Tchem)2

T 2
chem

and (η/s)3 = 0.2 + 0.3
√

T−Tchem

Tchem
,

with Tchem = 0.165 GeV.

It ought to be mentioned that in the relativistic viscous hydrodynamic literature

there is some ambiguity regarding the value of the relaxation times associated with

shear and bulk viscosities. In this work we have taken the relaxation time for shear

viscosity, Eq. (3.30): τπ = 5η/s
T

; which is motivated by kinetic theory. In addition

we also solve Eqs. (4.1 & 4.2) by taking Eq. (3.29): τπ = 2η/s
T

(2 − ln 2) ≈ 2.6η/s
T

with λ1 = η
2πT

, inspired by results from strongly coupled N=4 SYM theory.

4.3.2 Shear viscosity driven cavitation

Next we present the numerical solutions for the equations of hydrodynamics. First

we consider the case with temperature-dependent η/s taken from lQCD calcula-

tions. Fig. [4.7] shows the plots of longitudinal pressure Pz versus the proper time

for the cases of pure Israel-Stewart type (IS) hydro by neglecting the conformal

terms in Eq. (4.2) and with conformal terms (IS+C). In the case of IS we use τπ
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Figure 4.7: The longitudinal pressure Pz as function of time for IS and IS+C

hydrodynamics. Initial time is taken to be 0.6 fm/c with initial temperatures 0.405

and 0.450 GeV. η/s(T ) is obtained from the lQCD curve shown in Fig. [4.6].

from the kinetic theory and from the supersymmetric Yang-Mills theory when we

consider IS+C case. We plot Pz for these two cases with the initial temperatures

0.405 and 0.450 GeV. The starting time τ0 is chosen to be 0.6 fm/c. Let us first

consider the case with T0 = 0.405 GeV. From the figure it is clear that longitudinal

pressure becomes negative in the IS case around cavitation time τc = 1.20 fm/c.

The temperature Tcav at which the cavitation occurs is about 0.333 GeV which is

much larger than the critical temperature Tc . Thus the cavitation can take place

very early during the evolution. This, we believe, provides a posteriori justifica-

tion for neglecting the transverse flow; as the hydrodynamic treatment may not

be valid for the time larger than τc. Further, if we include the conformal terms in

Eq. (4.2) together with the relaxation time obtained from supersymmetric Yang-

Mills (IS+C), the cavitation time increases marginally and becomes τc=1.53 fm/c.

Similarly Tcav=0.316 GeV is less than the cavitation temperature without the con-

formal terms. Next we consider a higher initial temperature T0 = 0.450 GeV.

Here also we observe cavitation for both IS and IS+C cases as in the previous case

with T0 = 0.405 GeV. For IS case cavitation happens at a time τc = 1.21 fm/c

which is only marginally greater than the corresponding T0 = 0.405 GeV case con-

sidered previously. However, here Tcav = 0.369 GeV is higher than the previous

case. This difference is expected since the initial temperature for the latter case is

also larger. IS+C case with T0 = 0.450 GeV, cavitation sets in at τc = 1.29 fm/c
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Figure 4.8: The longitudinal pressure Pz as function of time for IS and IS+C

hydrodynamics. Initial time is taken to be 0.6 fm/c with initial temperatures 0.405

and 0.450 GeV. η/s(T ) taken from the virial expansion techniques curve in Fig.

[4.6].

with Tcav=0.365 GeV. Again we note that there is not much difference between

the cavitation times in IS and IS+C cases.

In Fig. [4.8], we show Pz as a function of time by taking η/s values using

the virial expansion techniques given in Ref. [203]. Values for τ0 and T0 are

same as in Fig. [4.7]. Here in the IS case with T0 = 0.450 GeV we can see that

cavitation sets in around 1.43 fm/c when the system temperature is 0.353 GeV.

However, as one can see from Fig. [4.8], when we include conformal terms (IS+C

case) cavitation scenario is avoided. Next we lower the initial temperature to

0.405 GeV and consider the IS case. Here system reaches a negative longitudinal

pressure stage at τc = 1.27 fm/c with Tcav = 0.329 GeV. But with conformal terms

included, as one can see from the figure, the longitudinal pressure remains positive

although it assumes a very small value by 2 fm/c. Since the values of η/s for

the virial expansion techniques are systematically smaller than η/s for the lQCD

results as shown in Fig. [4.6], the corresponding cavitation time is larger than that

shown in Fig. [4.7]. However, the cavitation temperature Tcav is smaller than the

corresponding cases discussed in Fig. [4.7].

Further, we have changed the values of the initial time by considering the case

τ0 = 0.3 fm/c and τ0 = 1.0 fm/c. These results are summarized in Table 4.1. For

τ0 = 0.3 fm/c and T0 = 0.560 GeV case, the cavitation occurs around τc = 0.6 fm/c
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LHC IS (τπ = 5η/s
T

) IS+C (τπ = 2.6η/s
T

)

τf τc Tcav τf τc Tcav

τ0=0.3 fm/c η/s lQCD 21.18 0.57 0.421 14.21 0.52 0.434

T0=0.506 GeV η/s virial 20.61 0.63 0.410 13.93 0.93 0.374

τ0=0.3 fm/c η/s lQCD 31.58 0.57 0.465 20.31 0.52 0.479

T0=0.560 GeV η/s virial 25.06 0.68 0.444 18.12 1.20 0.385

τ0=0.6 fm/c η/s lQCD 12.40 1.20 0.333 10.83 1.53 0.316

T0=0.405 GeV η/s virial 15.30 1.27 0.329 11.88 - -

τ0=0.6 fm/c η/s lQCD 18.36 1.21 0.369 15.63 1.29 0.365

T0=0.450 GeV η/s virial 19.84 1.43 0.353 16.07 - -

τ0=1.0 fm/c η/s lQCD 10.48 - - 9.98 - -

T0=0.350 GeV η/s virial 13.04 2.16 0.283 11.17 - -

Table 4.1: Column IS corresponds to the case when the conformal terms are ne-

glected from the hydrodynamics equations. In this case the relaxation time τπ from

the kinetic theory is taken in to account. The column IS+C corresponds to the

case when the conformal terms and τπ obtained from the supersymmetric Yang-

Mills theory are included in the equations of hydrodynamics. The cavitation time

τc and τf are measured in the unit of fm/c and the cavitation temperature Tcav is

shown in the units of GeV. τc and Tcav are left blank when there is no cavitation.

for the lQCD η/s while it occurs around τc = 0.68 fm/c for η/s obtained from the

virial expansion. For the case with τ0 = 1.0 fm/c and T0 = 0.350 GeV, for η/s

from virial expansion, the cavitation occurs around τc = 2.16 fm/c. However, in

this case when the η/s values from lQCD are used there is no cavitation. We would

like to note that the table shows no entries for τc and Tcav for certain cases. For

such instances the longitudinal pressure remains positive and there is no cavita-

tion. Table 4.1 indicates for the given initial conditions there are more number of

no-cavitation instances when the conformal terms in the equations of the hydrody-

namics are taken into account.

We also summarise the results for τf , the total time taken by the system to

reach Tc by ignoring the cavitation in Table 4.1. One can see that with T0 = 0.405
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Figure 4.9: Cavitation with various η/s prescriptions considered by Shen et.al. in

Ref. [204]. The initial temperature is taken to be 0.419 GeV with initial time 0.6

fm/c.

GeV for lQCD (virial) case τf=12.40 (15.30) fm/c without the conformal term and

τf=10.83 (11.88) fm/c if the term is included. Thus the inclusion of the conformal

terms reduces τf . We would like to emphasize that in this work we have taken a

rather conservative initial value Φ(τ0)=0 so that the initial value of the longitudinal

pressure is always positive [208]. Instead if one includes the first-order (Navier-

Stokes) initial value Φ(τ0) = 4η(T0)/(3τ0), then the cavitation can occur at even

earlier time and higher temperature.

Next, we repeat our analysis using the temperature-dependent η/s prescriptions

given in Ref. [204]. With the same initial conditions as in Ref. [204] we find that the

longitudinal pressure becomes negative very early ∼ 1 fm/c for all the cases they

have considered. Fig. [4.9] shows Pz versus τ for initial temperature T0 = 0.419

GeV and τ0 = 0.6 fm/c. In this case also cavitation sets in early in about τc ∼

1 fm/c.

We have further considered the effect of anomalous viscosity (ηA), which may

be important during the early time evolution in the hydrodynamics [209]. We use

an effective shear viscosity η−1 = η−1
A +η−1

C as discussed in Ref. [209]. Here, ηC the

collisional viscosity is taken from lQCD and for ηA/s we use the expression from

Ref. [209]. In this case, (with τ0 = 0.6 fm/c and T0 = 450 MeV), cavitation sets

in at a time 1.46 fm/c when the system is at a temperature 351 MeV. The initial

value of anomalous viscosity to entropy density ratio is ∼ 0.23. The results are
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Pz and Φ as function of time. The initial temperature is taken to be 0.450 GeV

with initial time 0.6 fm/c.

presented in Fig. [4.10], where we plot the shear stress term Φ and longitudinal

pressure Pz as a function of proper time. As is clear from Fig. [4.10] the shear

stress Φ increases sharply from its initial value. The maximum value of Φ and the

time it takes to reach that value strongly depend upon τπ. This sharp rise of Φ

result in a sharp reduction of Pz, which, finally becomes negative at τc.

4.4 Chemically non-equilibrated dissipative par-

ton plasma

Plasma created in heavy-ion collision can be in a state of chemical non-equilibrium

eventhough it is in thermal (kinetic) equilibrium. Chemical equilibration of the

parton plasma formed in nucleus-nucleus collisions was studied using rate equa-

tions for quarks and gluons [210]. In this model QGP formed at RHIC and LHC

conditions was considered to be far away from the chemical equilibrium. This

study was done using ideal hydrodynamics with the Björken flow. In this section

we analyse the role of a finite shear viscosity in chemical non-equilibration. Recent

studies from RHIC indicate a minimal finite value of shear viscosity to entropy

density η/s ∼ 1/4π of the QGP formed [109, 111]. We ignore the bulk viscosity in

the relativistic limit when the ε = 3P EoS is obeyed [46]. However, the bulk vis-

cosity can be important near the critical temperature (see Section 3.3.3) . Therefor
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we consider chemical equilibration of a dissipative parton plasma with the minimal

value of η/s ≈ 1/4π in RHIC and LHC scenarios.

We assume that after a time τiso, the partons produced from the nucleus-nucleus

collision have a isotropic momentum distribution. To describe the chemical non-

equilibration while maintaining the kinetic equilibrium, one can use the parton

distribution of the form (for τ > τiso) [210, 211]:

f(p, T )q,g = λq,g(τ)
1

eu·p/T (τ) ± 1
, (4.4)

where pµ and uµ are the four momentum and four-velocity of the partons in local

co-moving reference frame. Temperature T is a time-dependent quantity and the

distribution is multiplied by time and another dependent quantity called fugacity

λq,g(τ) to describe deviations from the chemical equilibrium. The fugacity param-

eter become unity when the chemical-equilibrium is reached and in general it has

the range 0 ≤ λq,g ≤ 1. The scattering processes gg ↔ ggg and gg ↔ qq̄ give the

most dominant mechanism for the chemical equilibration. The master equations

describing evolution the parton density are given by

∂µ(ngu
µ) =

1

2
σ3n

2
g

(
1− ng

ñg

)
− 1

2
σ2n

2
g

(
1−

n2
qñ

2
g

ñ2
qn

2
g

)
, (4.5)

∂µ(nqu
µ) =

1

2
σ2n

2
g

(
1−

n2
qñ

2
g

ñ2
qn

2
g

)
, (4.6)

where ñi(i = q, g) is parton density with unit fugacity [210] and σ2 = 〈σ(gg ↔ qq̄)〉

and σ3〈σ(gg ↔ ggg)〉 are thermally averaged scattering cross sections. It should be

noted here that when equation for ng and nq are added one gets the total number

density n and the term with 1
2
σ2n

2
g

(
1− n2

qñ
2
g

ñ2
qn

2
g

)
will drop out. This is due to the the

scattering process gg ↔ qq̄ loss in the gluon density is equal to the gain in quark

density and vice verse.

We use ultra-relativistic ε = 3P EoS to describe the system and therefor bulk

viscosity will be absent in the system [46]. Now the energy density ε and number

density n of the system can be calculated using Eq. (4.4) as given below

n = (λga1 + λqb1)T 3, ε = (λga2 + λqb2)T 4 (4.7)

where a1 = 16ξ(3)/π2, a2 = 8π2/15 for the gluons and b1 = 9ξ(3)Nf/π
2, b2 =

7π2Nf/20 for the quarks.
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To describe evolution of the energy density and the shear stress we use second

order dissipative hydrodynamics of Israel-Stewart described in Section 3.2. Energy

dissipation is governed by Eq. (3.37) and for Φ evolution we use Eq. (3.22) in

Björken flow and is given by [107]

∂Φ

∂τ
= −Φ

τπ
− 1

2
Φ

(
1

τ
+

1

β2

T
∂

∂τ
(
β2

T
)

)
+

2

3

1

β2τ
, (4.8)

where τπ = 2β2η denotes the relaxation time and β2 = 9/(4ε) (Eq. (3.27)).

Using Eqs. (3.37, 4.8, 4.4-4.7) following evolution equations for T , Φ and λq,g

can be obtained [241]:

Ṫ

T
+

1

3τ
= −1

4

λ̇g + b2/a2λ̇q
λg + b2/a2λq

+
Φ

4τ

1

(a2λg + b2λq)T 4
, (4.9)

Φ̇ +
Φ

τπ
=

8

27τ
[a2λg + b2λq]T

4 − Φ

2

[
1

τ
− 5

Ṫ

T
− λ̇g + b2/a2λ̇q
λg + b2/a2λq

]
,(4.10)

λ̇g
λg

+ 3
Ṫ

T
+

1

τ
= R3 (1− λg)−R2

(
1−

λ2
q

λ2
g

)
, (4.11)

λ̇q
λq

+ 3
Ṫ

T
+

1

τ
= R2

a1

b1

(
λg
λq
− λq
λg

)
(4.12)

where, the rates R2 = 0.24Nfα
2
s λgT ln(5.5/λg) and R3 = 2.1α2

s T (2λg − λ2
g)

1/2 are

defined as in Ref. [210, 211]. We would like to note that our gluon fugacity Eq.

(4.11) differs from that given in Ref. [210, 211] by a factor of two in second term in

the right hand side. We believe this is a typographical error. In Eq. (4.9) the first

term on left hand side is due to expansion of the plasma, while on the right hand

side the first term describes effect of chemical non-equilibrium and second term

is due to the presence of (causal) viscosity. The last term in parenthesis of Eq.

(4.10) arises because of the chemical non-equilibrium process. It should be noted

that Eq. (4.9) differ from that considered in Ref. [212]. In their treatment first

order viscous hydrodynamics is used which does not require time evolution of Φ.

However such treatment give unphysical results like reheating artifact [107, 138]

as mentioned before.

Elastic (gg ↔ gg) as well as non-elastic processes like gg ↔ ggg can contribute

to the shear viscosity. Shear viscosity coefficient was recently calculated for the

inelastic process in the presence of chemical non-equilibrium in Ref. [213]. It was
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Figure 4.11: Temperature, gluon fugacity and quark fugacity for RHIC and LHC.

Solid lines indicate the case with the shear viscosity, while the dashed lines corre-

spond to the case without viscosity.

shown that η/T 3 ' ng/T
3 ' λg. From this one can write [129],

τπ =
9

2ε
λgT

3. (4.13)

It ought to be mentioned that this viscosity prescription was not considered in Ref.

[212]. Kinetic theory without invoking non-equilibrium process gives τπ = 3/2πT .

We have solved the Eqs. (4.9 - 4.12) together with the initial conditions at τiso

from HIJING Monte Carlo model [214]. Which are λ0
g = 0.09, λ0

q = 0.02 and

To = 0.57 GeV for RHIC with τiso = 0.31 fm/c and λ0
g = 0.14, λ0

q = 0.03 and

To = 0.83 GeV for LHC with τiso = 0.23 fm/c.

In Fig. [4.11] we have shown T , λg and λq as function of time. Presence of

the causal viscosity decreases the fall of temperature due to expansion and the

chemical non-equilibrium. However if one considers the first order theory, there

can be unphysical instability. Fugacity of gluons and quarks increase more slowly

due to the presence of the viscosity compared to the cases when no viscous effects

were included. This is because the chemical equilibration is reached here with

falling of the temperature. The temperature can decrease due to the expansion

and chemical non-equilibration. The lowering of T can help in attaining chemical

equilibrium and which in turn will increase the rate at which the fugacities reach

their equilibrium values. Inclusion of the viscosity will slowdown the falling rate

of the temperature. Consequently the fugacities will take more time to reach their

equilibrium values. So we saw that the effect of viscosity to make system more
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away from chemical equilibrium compared with ideal case.

4.5 Conclusions

Using second order causal relativistic hydrodynamics we have analysed the role

of shear viscosity, bulk viscosity and viscosity induced cavitation on the hydrody-

namical evolution of QGP at RHIC and LHC energies. At RHIC energies, using a

temperature dependent ζ/s which has a peak near Tc and minimal value of shear

viscosity η/s ≈ 1/4π (as experiments suggest), we have seen that effective longi-

tudinal pressure of the system can become negative due to the high values of bulk

viscosity triggering cavitation [114, 115]. This will in turn make the hydrodynamic

treatment invalid beyond cavitation time τc. We have studied the cavitation sce-

narios by changing width and height of the ζ/s curve, in order to account for the

ambiguity regarding the exact values of the same. We have shown that bulk viscos-

ity plays a dual role in heavy-ion collisions: On one hand it enhances the time by

which the system attains the critical temperature, while on the other hand it can

make the hydrodynamical treatment invalid much before it reaches Tc. Further,

we found that at LHC energies bulk viscosity with a large value near Tc cannot

drive system towards cavitation. We also note that minimal value value of shear

viscosity alone is inadequate to trigger cavitation both at RHIC and LHC. How-

ever, we have shown by using various prescriptions for a temperature dependent

η/s that at LHC energies the higher values of shear stresses can alone induce the

cavitation. Based on the various prescriptions of η/s our results indicate that the

hydrodynamical description is valid about τc ≈ 2 fm/c at LHC energies.

We have studied shear viscosity induced cavitation using one dimensional boost

invariant causal dissipative hydrodynamics of Israel-Stewart type. One would of

course like to do an analysis using a (3+1)-dimensional viscous hydrodynamics like

e.g. in Ref. [215]. Since cavitation occurs during the early stages of the collision,

we believe that the inclusion of transverse flow will not alter the result qualitatively.

However, as a caveat, we would like to mention that the difference between the

initial conditions for the “cavitation” and “no-cavitation” cases is rather small, see

Table 4.1. It remains to be seen if the inclusion of transverse flow can alter the
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cavitation scenario in a qualitative way. It can also be argued that transverse flow

is generated after the fragmentation [197]. It is worth noting here the negative

pressure scenario may be circumvented by considering anisotropic corrections in

the distribution functions [216]. Beyond τc, the fluid might fragment [197] or form

inhomogeneous clusters. Let us note that one of the assumptions of the statistical

hadronisation models lies in creation of extended clusters of quark matter which

hadronise statistically [217]. Alternately, as has been attempted recently one can

possibly use a hybrid approach for the description of fire ball expansion applying

viscous hydrodynamics for the QGP stage and then coupling it to a microscopic

kinetic evolution for the hadronic stage [218]. Mere integration of the equations

of hydrodynamics may not tell us about cavitation. We therefore believe that the

conditions for cavitation may be required to be incorporated in the hydrodynamical

codes.

We have also studied the effect of finite shear viscosity on the chemical equili-

bration of the plasma. We found that system takes more time to reach equilibration

in presence of even minimal value of shear viscosity. As expected, in presence of

viscosity, we have seen that system temperature is falling more slowly compared to

ideal case. Similarly quark and gluon fugacities also taking more time compared

to the ideal case to reach equilibrated state.



Chapter 5

Electromagnetic probes of viscous

QGP

Thermal photons and dileptons are among the most promising probes of the hot

and dense matter created in relativistic heavy ion collisions. As their mean free

path is larger than the transverse size of the fireball, they can escape from the sys-

tem and there by provide information about the thermodynamic state and space-

time history of the matter created in heavy ion collisions [12, 219, 220]. Production

rates of these probes (particles) depend on the temperature of the system and by

knowing the appropriate initial conditions, the time evolution of the temperature

of the system can be obtained by using the equations of hydrodynamics. Once the

temperature profile is obtained, the calculation of the thermal spectra can be done

by evaluating the cross-section of the underlying scattering processes. We refer

readers Refs. [221–225] for excellent reviews on the subject.

In this chapter we will study the following different scenarios:

� The effect of finite shear viscosity η/s = 1/4π on thermal photon production

from chemically non-equilibrated QGP, with ε = 3P EoS, at RHIC/LHC

energies.

� The effect of finite bulk and shear viscosity η/s = 1/4π on thermal photon

production from equilibrium QGP, with lQCD prescription for bulk viscosity

and EoS, at RHIC energies.

81
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� The effect of finite bulk and shear viscosity η/s = 1/4π on thermal dilepton

production from equilibrium QGP, with lQCD prescription for bulk viscosity

and EoS, at RHIC energies.

5.1 Thermal photons

Thermal photon production from QGP have been studied under various condi-

tions by several authors [199, 226–232] using ideal hydrodynamics. During QGP

phase thermal photons are originated from various sources, like Compton scattering

q(q̄)g → q(q̄)γ, annihilation processes qq̄ → gγ etc. [226].

Recently Aurenche et al. showed that two-loop level bremsstrahlung process

contribution to photon production is as important as Compton or annihilation

contributions evaluated up to one-loop level [233]. They also discussed a new

mechanism for hard photon production through the annihilation of an off-mass shell

quark and an anti-quark, with the off-mass shell quark coming from scattering with

another quark or gluon. These processes were also included in the calculation of

total photon spectrum from heavy ion collisions in Refs. [199, 234]. Until recently

only the processes of Compton scattering and qq̄-annihilation were considered in

studying the photon production rates.

5.1.1 Thermal photon production rates in QGP

In order to compute the photon production rates one needs to know the underlying

amplitudeM of the basic process involving the annihilation or Compton scattering

process and the parton distribution functions given by [224]

dN

d4xd3p
=

1

(2π)32E

∫
d3p1

(2π)32E1

d3p2

(2π)32E2

d3p3

(2π)32E3

× f1(E1)f2(E2)[1± f3(E3)]

×
∑
i

〈|M|2〉 (2π)4 δ(p1 + p2 − p3 − p). (5.1)

Here p1 = (E1,p1) and p2 are the 4-momenta of the incoming partons, p3 of the out-

going parton, and p of the produced photon. In equilibrium, the distribution func-

tions fi(Ei) are given by the Bose-Einstein distribution, fB(Ei) = 1/[exp(Ei/T )−

1], for gluons and by the Fermi-Dirac distribution, fF (Ei) = 1/[exp(Ei/T )+1], for
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quarks, respectively. The factor 〈|M|2〉 is the matrix element of the basic process

averaged over the initial states and summed over the final states. The
∑

i indicates

the sum over the initial parton states.

The production rate for hard (E > T ) thermal photons from equilibrated

QGP evaluated to the one-loop order using perturbative thermal QCD based on

hard thermal loop (HTL) resummation to account medium effects. The Comp-

ton scattering and qq̄-annihilation contribution to the photon production rate is

[226, 228, 235],

E
dN

d4xd3p
=

1

2π2
ααs

(∑
f

e2
f

)
T 2 e−E/T ln

(
cE

αsT

)
, (5.2)

where the constant c ≈ 0.23 and α and αs are the electromagnetic and strong

coupling constants respectively. In the summation f is over the flavors of the

quarks and ef is the electric charge of the quark in units of the charge of the

electron.

The rate of photon production due to Bremsstrahlung processes is given by

[233],

E
dN

d4xd3p
=

8

π5
ααs

(∑
f

e2
f

)
T 4

E2
e−E/T (JT − JL) I(E, T ), (5.3)

where JT ≈ 1.11 and JL ≈ 1.06 for two flavors and three colors of quarks [234].

The expression for I(E, T ) is given by

I(E, T ) = (3 ζ(3) +
π2

6

E

T
+

(
E

T

)2

ln(2) + 4 Li3
(
−e−|E|/T

)
(5.4)

+2

(
E

T

)
Li2
(
−e−|E|/T

)
−
(

E

T

)2

ln
(
1 + e−|E|/T

)
),

where Li are the polylogarithmic functions given by Lia(z) =
∑+∞

n=1
zn

na .

Next, the rate due to qq̄-annihilation with an additional scattering in the medium

is given by [233],

E
dN

d4xd3p
=

8

3π5
ααs

(∑
f

e2
f

)
E T e−E/T (JT − JL). (5.5)

We use the parametrization αs(T ) = 6π
(33−2Nf ) ln(8T/Tc)

by Karsch [236], in

our rate calculations. Here Nf is the number of quark flavors in consideration.

In Fig. [5.1], we plot the different photon rates for a fixed temperature T =
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Figure 5.1: Hard thermal photon rates in QGP as a function of energy for a fixed

temperature T=250 MeV. Photon rates are plotted for different relevant processes.

250 MeV. It shows the contributions from Bremsstrahlung (Brems), annihila-

tion with scattering (A+S) and Compton scattering together with qq̄-annihilation

(C+A). Bremsstrahlung contributes to the photon production rate upto E ∼ 1 GeV

only, afterwards A+S and C+A processes become dominant. We might mention

here that this observation is in agreement with Ref. [234].

5.1.2 Photon spectra in heavy-ion collision

Once the evolution of temperature is known from the hydrodynamical model, the

total photon spectrum is obtained by integrating the total rate (obtained by adding

different temperature depended photon rate expressions) over the space-time his-

tory of the collision,(
dN

d2pTdy

)
y,pT

=

∫
d4x

(
E

dN

d3pd4x

)
(5.6)

= Q

∫ τ1

τ0

dτ τ

∫ ynuc

−ynuc
dηs

(
E

dN

d3pd4x

)
,

where, we have used the fact that four-dimensional volume element in Björken

model is given by d4x = d2xTdηsτdτ = Qdηsτdτ , with Q being transverse cross-

section of the colliding nuclei. Here τ0 and τ1 are the initial and final values

of time we are interested. ynuc is the rapidity of the nuclei. For a Au nucleus

Q ∼ 180 fm2. pT is the photon momentum in direction perpendicular to the

collision axis. The quantity
(
E dN
d3pd4x

)
is Lorentz invariant and it is evaluated in
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the local rest frame in Eq. (5.6), whereas the photon rates calculated in Section

5.1.1 are in rest frame. With the parametrisation of the 4-momentum of the photon

as pα = (pT coshy, pT cosφp, pT sinφp, pT sinhy) and 4-velocity given by Eq. (1.40):

uµ = (cosh ηs, 0, 0, sinh ηs), photon energy in frame co-moving with the plasma is

given as pT cosh(y−ηs). So we will replace E in the photon rates with pT cosh(y−ηs)

while calculating the photon spectrum. Having done this, from Eq. (5.6) we get

the photon spectrum as a function of rapidity y and transverse momentum pT of

the photon.

5.1.3 Photon production from chemically non-equilibrated

plasma

The plasma created in the heavy-ion collisions is expected to be in a state of

chemical non-equilibrium. The photon emission from such a plasma has been

studied earlier within the framework of ideal hydrodynamics [237–240]. It would

be interesting to study the role that viscosity can play on the plasma signals.

We have already seen from Section 4.4 using ε = 3P EoS, the effect of shear

viscosity (with η/s = 1/4π) is to decrease the cooling rate of plasma and fugacities

of quark and gluon increase more slowly compared to the ideal hydrodynamic

case (Fig. [4.11]) [241]. In this analysis, we employ second order Israel-Stewart

hydrodynamics to study time evolution of temperature and fugacities. The fugacity

factors can enter Eq. (5.1) when Eq. (4.4) is considered:

f1 f2 (1± f3) 7→ λ1 f1 λ2 f2 (1± λ3 f3).

This is can be rewritten as

λ1 f1 λ2 f2 (1± λ3 f3) = λ1 λ2 λ3 f1 f2 (1± f3) + λ1 λ2 (1− λ3) f1 f2. (5.7)

The first term on the right hand side of the above equation when inserted in Eq.

(5.1) lead to the following photon rate using the Boltzmann distribution functions

instead of a quantum mechanical ones [226, 237]:(
2E

dN

d3pd4x

)
1

=
5ααsλ

2
qλg

9π2
T 2e−E/T

[
ln

(
4ET

k2
c

)
− 1.42

]
. (5.8)
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Figure 5.2: (Left panel)Photon rate for different rapidities in LHC (ynuc = 8.8).

(Right panel) Same with the inclusion of viscosity.

The second term in Eq. (5.7) will give, under the Boltzmann approximation, the

following contribution to the photon rate [237]:(
2E

dN

d3pd4x

)
2

=
10ααs

9π4
T 2e−E/T × B (5.9)

where,

B = λqλg (1− λq)
[
1− 2γ + 2ln

(
4ET/k2

c

)]
(5.10)

+ λqλq (1− λg)
[
−2− 2γ + 2ln

(
4ET/k2

c

)]
,

with k2
c = 2m2

q = 0.22g2T 2 (λg + λq/2).

The total photon production rate 2E dN
d3pd4x

can be obtained by adding Eq. (5.8)

and Eq. (5.9) and is required to be convoluted with the space-time evolution of

the heavy-ion collision: Eq. (5.6).

We plot photon spectra by using Eq. (4.13) for τπ in solving Eqs. (4.9–4.12).

The Figs. [5.2 - 5.3] compare the case without viscosity with the case of finite

shear viscosity.

Fig. [5.2] shows the photon spectra emitted at fixed rapidities as a function of

transverse momenta pT . The photon flux is normalized with the transverse size of

the colliding nuclei (Q). For LHC we take: τ0 = 0.5 fm/c, τ1 = 6.25 fm/c and

ynuc = 8.8 [237]. The figure compares the case without viscosity with the case of

finite shear viscosity.

Fig. [5.3] shows the comparison similar to that of Fig. [5.2] but with a set of

initial conditions for RHIC: τ0 = 0.7 fm/c, τ1 = 4 fm/c and ynuc = 6.0 [237].
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Figure 5.3: (Left panel)Photon rate for different rapidities in RHIC (ynuc=6.0).

(Right panel) Same with the inclusion of viscosity.
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Figure 5.4: Photon rate for different rapidities in RHIC (ynuc=6.0) and LHC

(ynuc=8.8) with kinetic viscosity.

For αs = 0.3, shear viscosity to entropy density ratio η/s ∼ 0.29. Figs. [5.2 - 5.3]

show that viscous effects enhance the photon flux by a factor (1.5-2).

Finally in Fig. [5.4], we compare the photon fluxes calculated using Eq. (4.13)

with the fluxes calculated using the kinetic viscosity (τπ = 3/2πT ). Fig. [5.4]

shows the photon flux calculated using the kinetic viscosity prescription for LHC

and RHIC. However, we do not find any significant change in the flux for the results

obtained using Eq. (4.13).

5.1.4 Non-ideal effects on thermal photons

Thermal photons from QGP in the presence of shear viscosity was studied recently

in Refs. [241–243] and they were proposed as a tool to measure the shear viscosity

of the matter formed in the heavy ion collisions [241, 242]. We have already
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seen from Section 3.3 that near phase transition QCD matter is more and more

non-conformal and follows ε 6= 3P EoS and the effect of bulk viscosity becomes

prominent compared to shear viscosity (∼ 1/4π as RHIC experiments suggest)

and cannot be ignored. Inclusion of bulk viscosity can lead to the phenomenon

of cavitation, which in turn can significantly reduce the hydrodynamical evolution

time. So in this study we would like to explore how these effects affect the thermal

photon production from QGP at RHIC energies.

We use the hydrodynamical equations: Eqs. (4.1 - 4.3) and initial conditions

relevant for RHIC [199]: τ0 = 0.5 fm/c, T0 = 0.310 GeV and ynuc = 5.3; discussed

in Section 4.2, in our analysis. From Section 4.2, we know the temperature profiles

T (τ) of the system under various conditions. Once we get the temperature profile

we calculate the photon production rates. Total photon spectrum E dN
d3pd4x

(as a

function of rapidity, y and transverse momentum of photon, pT ) is obtained by

adding different photon rates using Eqs. (5.2, 5.3, 5.5) and convoluting with the

space time evolution of the heavy-ion collision with Eq. (5.6). The final value of

time τ1 is the time at which temperature evolves to critical value τf , i.e.; T (τ1) = Tc.

In all calculations we shall consider the photon production in mid-rapidity region

(y = 0) only.

We have already seen that the calculation of photon production rates require

the initial time τ0, final time τ1 and T (τ). τ1 and T (τ) are determined from the

hydrodynamics. Normally τ1 is taken as the time taken by the system to reach

Tc, i.e.; τf . Since hydrodynamics ceases to be valid beyond the cavitation time,

we must set τ1 = τc. Thus photon production from QGP will be influenced by the

onset cavitation and temperature profile.

We emphasize that the production rates should only be integrated up to the

cavitation time τc. Fig. [5.5] shows the case when there is no viscous correction

to the distribution function. In the dashed curve the effect of cavitation is taken

into account and τ1 = τc = 2.5 fm/c. The solid line represents the same case but

without the effect of the cavitation and τ1 = τf = 5.5 fm/c. It can be seen from

the curve that ignoring cavitation leads to an over-estimation of the rate by about

200% at pT = 0.5 GeV and about 50% at pT = 2 GeV. It is thus clear that the

information about the cavitation time is crucial for correctly estimating thermal
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Figure 5.5: Photon spectrum obtained by considering the effect of cavitation (dashed

line). For a comparison we plot the spectrum without incorporating the effect of

cavitation (solid line).

photon production rate.

In Fig. [5.6] we plot photon production rates for various cavitation times ob-

tained by varying ∆T (with a = 0.901 is fixed). Here the enhancement in the

photon production when ∆T is reduced to half of its base value is about 75% at

pT = 0.5 GeV and about 55% at pT = 1 GeV. A further reduction of the parame-

ter value to ∆T/4 is enhancing the photon production by about 110% at pT = 0.5

GeV and about 80% at pT = 1 GeV. The reason is, a reduction in ∆T amounts

to increase in the cavitation time (see e.g., Fig. [4.3]), which in turn increases the

time interval over which photon production is calculated. Therefore this increases

the photon flux.

5.2 Thermal dileptons

Thermal dilepton production using the equations of ideal hydrodynamics is well

studied by many authors [244–246]. The main source of thermal dileptons is from

the quark-anti-quark annihilations: qq̄ → γ∗ → l+l−. The cross-section of this

lowest order α2 process is well known [247]. There are other higher order processes

which may also contribute in thermal dilepton production [248, 249]. However, we

are not considering them in this present analysis. It may be noted that the thermal
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Figure 5.6: Photon production rates showing the effect of different cavitation time.

dileptons from the annihilation process is dominant in the window of intermediate

invariant mass 1 < M < 3 GeV and transverse momentum of the lepton pair pT

in the same range [250, 251].

Recently the thermal dilepton production from QGP in the presence of shear

viscosity was studied [252]. However, we note that in this work authors had used

an ideal EoS for the calculation and the effect of bulk viscosity was naturally not

considered. We would like investigate the effects of finite bulk viscosity on the

thermal dilepton production from QGP. We have seen from our previous studies

that bulk viscosity plays a significant role in the hydrodynamics as well as in par-

ticle production [200]. In addition, the viscous effects can modify the temperature

profile and thereby it can change the particle distribution functions of the plasma

[128]. Using kinetic theory methods one can include these corrections in the dis-

tribution functions and this may have observable consequences. [150, 253]. We

include these corrections by taking the viscosity modified distribution functions

using the 14-moment Grad’s method results, we calculate the first order correction

due to both bulk and shear viscosities in the dilepton production rate.

In this section we present the results for the correction in distribution function

and its role on thermal dilepton production rate in presence of finite bulk viscosity.
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5.2.1 Thermal Dilepton production rates in QGP

In QGP the dominant mechanism for the production of thermal dileptons comes

from qq̄ annihilation process qq̄ → γ∗ → l+l−. From kinetic theory rate of dilepton

production (number of dileptons produced per unit volume per unit time) for this

process is given by

dN

d4x
=

∫
d3p1

(2π)3

d3p2

(2π)3
f(E1, T )f(E2, T )vrel g

2σ(M2), (5.11)

where p1,2 = (E1,2,p1,2) is the four momentum of quark or anti-quark with E1,2 =√
p2

1,2 +m2
q '|p1,2| neglecting the quark masses. Here M2 = (E1+E2)2−(p1+p2)2

is the invariant mass of the virtual photon. The function f(E, T ) = 1/(1 + eE/T )

is the quark (anti-quark) distribution function in thermal equilibrium and g is the

degeneracy factor. Further, in the above, vrel =
√

M2(M2−4m2
q)

4E2
1E

2
2

∼ M2

2E1E2
is the

relative velocity of the quark-anti-quark pair and σ(M2) is the thermal dilepton

production cross section. The cross-section σ(M2) in the Born approximation

is well known: g2σ(M2) =
16πα2(

∑
f e

2
f)Nc

3M2 and with Nf=2 and Nc = 3, we have

M2g2σ(M2) = 80π
9
α2 [221]. Since we are interested in the rate for a given dilepton

mass and momentum, we write

dN

d4xd4p
=

∫
d3p1

(2π)3

d3p2

(2π)3
f(E1, T )f(E2, T )

M2g2σ(M2)

2E1E2

δ4(p− p1 − p2) (5.12)

where p = (p0 = E1 + E2,p = p1 + p2) is the four momentum of the dileptons.

At the present case we are interested in the invariant masses larger compared to

the temperature i.e.; M � T , in this limit we can replace Fermi-Dirac distribution

with classical Maxwell-Boltzmann distribution,

f(E, T )→ f0 = e−E/T . (5.13)

5.2.2 Viscous corrections to distribution functions

Viscous effects contribute in two ways in kinetic theory: Firstly, it can change

the width (temperature) of the distribution function. Secondly, it can modify the

momentum dependence of the distribution function. The first effect is incorpo-

rated when we calculate the temperature as a function of time using dissipative
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hydrodynamics. To include the second effect one needs to compute the change

in the distribution function as a function of momentum using the techniques of

relativistic kinetic theory [128].

Let us write the modified distribution function as f = f0 + δf , with viscous

correction δf = δfη + δfζ , where δfη and δfζ represent change in the distribution

function due to shear and bulk viscosity respectively. We calculate δf using 14-

moment Grad’s method. It ought to be mentioned that recent results show that

calculation of δf using this method fails near freeze-out region by making δf even

larger than f0 and f < 0 [253]. It is therefore important to note here that we are

applying these corrections to calculate the photon production rate of hard thermal

photons in the regime T > Tc. We have found that for pT below 3 GeV, this

approximation is reasonable but beyond it, this approximation breaks down as the

contribution arising from the viscous correction δf to the distribution function

becomes larger than f0 [254]. We also note that in Ref. [253] it has been shown

that the form of δfζ used in this calculation miss terms which are necessary for

the Landau matching conditions. However, we note that basic qualitative features

of the complete form of δfζ is obtained using our δfζ also. We still don’t have

a clear picture how to calculate the bulk viscosity corrections to the distribution

functions and attempts in this direction are going on [255, 256]. With this caveats

we proceed to calculate δf applying the techniques used in Refs. [150, 257].

We write the viscous correction to the (Boltzmann) distribution function as

f(p) = f0 + δf = f0 + δfη + δfζ (5.14)

= f0

(
1 +

C

2T 3
pαpβ∇〈αuβ〉 +

A

2T 3
pαpβ∆αβΘ

)
where we restrict the corrections to f upto quadratic order in momentum. In order

to find coefficients A and C we first express the energy momentum tensor using f ,

T µν =

∫
d3p

(2π)3E
pµpνf (5.15)

= T µνo + η∇〈µuν〉 + ζ∆µν Θ,
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so that we have

η∇〈µuν〉 =
C

2T 3

[∫
d3p

(2π)3E
pµpνpαpβfo

]
∇〈αuβ〉, (5.16)

ζ∆µν Θ =
A

2T 3

[∫
d3p

(2π)3E
pµpνpαpβfo

]
∆αβΘ. (5.17)

Now from Eq. (5.16) we get the correction δfη due to the shear viscosity as given

in Ref. [150] by finding out C and we will not repeat that calculation here. Next

we will find out the coefficient A by constructing a fourth rank symmetric tensor

out of ∆µν and uµ representing the term in square brackets in Eq. (5.17),

A

2T 3

[∫
d3p

(2π)3E
pµpνpαpβfo

]
= ao

(
uµuνuαuβ

)
+ a1

(
∆µνuαuβ + permutations

)
+ a2

(
∆µν∆αβ + ∆µα∆νβ + ∆µβ∆να

)
. (5.18)

Substituting this expression in Eq. (5.17) and by noting ∆µν u
ν = 0 , ∆µν∆

µν = 3

and ∆µν∆µα = ∆ν
α; we get ζ = 5a2. By contracting both sides of Eq. (5.18) with

1
45

(∆µν∆αβ + ∆µα∆νβ + ∆µβ∆να) we get,

A

2T 3

∫
d3p

(2π)3E
fo

3

45

[
p2 − (u.p)2

]2
= a2 = ζ/5. (5.19)

Evaluating this expression in the local rest frame of the fluid uµ = (1,~0) we get,

ζ =
1

3

A

2T 3

∫
d3p

(2π)3E
fo |p|4 . (5.20)

Now for a Boltzmann gas with f0 = e−pu/T we can calculate the integral and

comparing the result with that of the entropy density s of an ideal boson gas [150];

we find, A = 2
5
ζ/s. Therefore the bulk viscosity correction is given by [200]

δfζ = f0

(
2

5

ζ/s

2T 3
pαpβ∆αβΘ

)
. (5.21)

So the viscous correction to the distribution function due to both shear and

bulk viscosities, up to quadratic order of momentum are given as [200],

f(p) = f0(p)

(
1 +

η/s

2T 3
pαpβ∇〈αuβ〉 +

2

5

ζ/s

2T 3
pαpβ∆αβΘ

)
. (5.22)

5.2.3 Viscous modified dilepton production rates

In order to compute the effect of viscosity on the production rate, we substitute Eq.

(5.22), representing the viscous corrections to the distribution function in dilepton
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rate Eq. (5.12). Thus keeping terms up to the second order in η/s and ζ/s, the

dilepton production rates can be written as,

dN

d4xd4p
=

dN (0)

d4xd4p
+

dN (η)

d4xd4p
+

dN (ζ)

d4xd4p
, (5.23)

with

dN (0)

d4xd4p
=

∫
d3p1

(2π)3

d3p2

(2π)3
e−(E1+E2)/TM

2g2σ(M2)

2E1E2

δ4(p− p1 − p2) (5.24)

dN (η)

d4xd4p
=

∫
d3p1

(2π)3

d3p2

(2π)3
e−(E1+E2)/T

[
η/s

T 3
pα1p

β
1∇〈αuβ〉

]
× M2g2σ(M2)

2E1E2

δ4(p− p1 − p2) (5.25)

dN (ζ)

d4xd4p
=

∫
d3p1

(2π)3

d3p2

(2π)3
e−(E1+E2)/T

[
2

5

ζ/s

T 3
pα1p

β
1 ∆αβΘ

]
× M2g2σ(M2)

2E1E2

δ4(p− p1 − p2). (5.26)

The first term (given by Eq. (5.24)) is the one without any viscous corrections

(ideal part) and is well known [247]:

dN (0)

d4xd4p
=

1

2

M2g2σ(M2)

(2π)5
e−p0/T . (5.27)

The first order correction to the rate due to shear viscosity- given by Eq. (5.25),

is calculated in Ref. [252] and the final expression is

dN (η)

d4xd4p
=

1

2

M2g2σ(M2)

(2π)5
e−p0/T

2

3

[
η/s

2T 3
pαpβ∇〈αuβ〉

]
. (5.28)

Let us next proceed to estimate the correction to the rate due to bulk viscosity

from Eq. (5.26). We can write

dN (ζ)

d4xd4p
=

∫
d3p1

(2π)6
e−(E1+E2)/T

[
2

5

ζ/s

T 3
pα1p

β
1 ∆αβΘ

]
M2g2σ(M2)

2E1E2

δ(p0 − E1 − E2)

=
2

5

ζ/s

T 3
Iαβ(p)∆αβΘ, (5.29)

where we have represented

Iαβ =

∫
d3p1

(2π)6
e−(E1+E2)/Tpα1p

β
1

M2g2σ(M2)

2E1E2

δ(p0 − E1 − E2) (5.30)

Now we write the second rank tensor Iαβ in the most general form constructed out

of uα and pα:

Iαβ = a0g
αβ + a1u

αuβ + a2p
αpβ + a3(uαpβ + uβpα) . (5.31)
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Note that because of the identity uα∆αβ = 0, the coefficients of Iαβ which are going

to survive after contraction with ∆αβ are a0 and a2. We construct two projection

operators to get these coefficients, i.e.; Q1
αβI

αβ = a0 and Q2
αβI

αβ = a2, so that

dN (ζ)

d4xd4p
=

2

5

ζ/s

T 3

[(
Q1
µνI

µν
)
gαβ +

(
Q2
µνI

µν
)
pαpβ

]
∆αβΘ. (5.32)

The expressions for the projection operators in the local rest frame of the the

medium (uα = (1, 0̄)) are

Q1
αβ =

1

2|p|2
[
|p|2gαβ +M2uαuβ + pαpβ − 2p0uαpβ

]
, (5.33)

Q2
αβ =

1

2|p|4
[
|p|2gαβ + (3p2

0 − |p|2)uαuβ + 3pαpβ − 6p0uαpβ
]
. (5.34)

With the help of definition of Iαβ i.e.; Eq. (5.30), we can calculate
(
Q1
µνI

µν
)

and(
Q2
µνI

µν
)
. Using these, the final expression for the first order correction due to

bulk viscosity in dilepton rate is given as [201],

dN (ζ)

d4xd4p
=

1

2

M2g2σ(M2)

(2π)5
e−p0/T

[
2

3

(
2

5

ζ/s

2T 3
pαpβ∆αβΘ

)
− 2

5

ζ/s

4T 3
M2Θ

]
. (5.35)

The total dilepton rate, including the first order viscous corrections due to both

shear and bulk viscosity is obtained by adding Eqs. (5.27), (5.28) and (5.35).

Apart from rates as function of four momentum of the dileptons we will be

interested in particle production as a function of invariant mass (M), transverse

momentum (pT ) and rapidity (y) of the dilepton pair. This can be obtained from

Eq. (5.23) by changing the variables appropriately [221] and leads to [201],

dN

d4xdM2d2pTdy
=

1

2

dN

d4xd4p
=

1

23

5α2

9π4
e−p0/T (5.36)

×
[
1 +

2

3

(
η/s

2T 3
pαpβ∇〈αuβ〉 +

2

5

ζ/s

2T 3
pαpβ∆αβΘ

)
− 2

5

ζ/s

4T 3
M2Θ

]
.

5.2.4 Dilepton spectra in heavy-ion collision

The total dilepton spectrum is obtained by convoluting the dilepton rate with the

space-time evolution of the heavy-ion collision. Dilepton rates are temperature

dependent and temperature profile is obtained after hydrodynamically evolving

the system. In Bjorken model we have d4x == πR2
Adηsτdτ , where RA = 1.2A1/3 is

the radius of the nucleus used for the collision (for Au, A = 197). We can calculate
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different differential rates as functions of M, pT and y. In this work we will be

calculating the rates dN/(pTdpTdMdy) and dN/dMdy; and these dilepton yields

are obtained from,(
dN

dM2d2pTdy

)
M,pT ,y

= πR2
A

∫ τ1

τ0

dτ τ

∫ ynuc

−ynuc
dηs

(
1

2

dN

d4xd4p

)
and are given by(

dN

pTdpTdMdy

)
M,pT ,y

= (4πM)πR2
A

∫ τ1

τ0

dτ τ

∫ ynuc

−ynuc
dηs

(
1

2

dN

d4xd4p

)
, (5.37)

(
dN

dMdy

)
M,y

= (4πM)πR2
A

∫ τ1

τ0

dτ τ

∫ ynuc

−ynuc
dηs

∫ pTmax

pTmin

pTdpT

(
1

2

dN

d4xd4p

)
.

(5.38)

Where the expression for dN/(d4xd4p) is obtained from Eq. (5.37). Here τ0 and τ1

are the initial and final values of time that we are interested. Generally τ1 is taken

as the time taken by the system to reach Tc, i.e.; τf , but in the case of occurrence

of cavitation we must set τ1 = τc, the cavitation time, in order to avoid erroneous

estimation of rates [200], as we have seen in the case of photons from Section 5.1.4.

Here we note that the dilepton production rates calculated in Section 5.2.3 corre-

spond to the rest frame of the system. So in a longitudinally expanding system,

we must replace f0 of Eq. (5.13) with f0 = e−u.p/T in Eqs. (5.37 - 5.38). With 4-

momentum of the dilepton parametrised as pα = (mT coshy, pT cosφp, pT sinφp,mT sinhy),

where m2
T = p2

T +M2 [150] and the four velocity of the medium given by Eq. (1.40)

we get, u.p = mT cosh(y− ηs). Thus using the 1D boost invariant flow, the factors

appearing in the modified rate Eq. (5.37) can be calculated as [201]:

pαpβ∇〈αuβ〉 =
2

3τ
p2
T −

4

3τ
m2
T sinh

2(y − ηs), (5.39)

pαpβ∆αβΘ = −p
2
T

τ
− m2

T

τ
sinh2(y − ηs). (5.40)

5.2.5 Non-ideal effects on thermal dileptons

By numerically solving the hydrodynamical equations describing the longitudinal

expansion of the plasma Eqs. (4.1 - 4.3), we get the temporal evolution profile for

T (τ), Φ(τ) and Π(τ). We can evolve the hydrodynamics till the temperature of

the system reaches critical temperature, i.e.; τf . We use the same set of equations
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for hydrodynamics, second order coefficients and viscosity prescriptions used as in

Section 4.2.

Now we calculate the initial conditions as follows. We relate the observed

emitted charged particle number per unit rapidity dN
dy

to the initial entropy density

s0, in order to estimate the initial conditions for hydrodynamics. In the case of

viscous evolution, we need to consider the entropy produced due to viscous heating

also [258]. However, these additional sources of entropy due to both bulk and shear

viscosity are shown to be not significant [114, 259, 260] and their influence on final

multiplicity can be neglected [161]. Assuming a linear relation between entropy

density and particle number density s = ξn, we can relate the entropy density

to the total charged hadron multiplicity dNch
dy

with a proportionality factor given

as, s0 w 7.85
πR2

Aτ0

dNch
dy

[261], where πR2
A is the transverse size of the nucleus. Next,

using the EoS and the thermodynamics relation s = (ε+P )/T we can convert the

initial entropy density to the initial energy density (or equivalently to the initial

temperature T0), assuming an initial time τ0. This initial time can be fixed by the

models like CGC which is used to estimate the early thermalisation time. Relevant

for RHIC (Au + Au,
√
s = 200 GeV), we have dNch

dy
= 800 [161] and we fix initial

time from CGC models to be τ0 = 0.5 fm/c [262]. With these conditions we get

our initial temperature as T0 = 330 MeV. The rapidity of the nucleus is give by

ynuc = 5.3 [199]. The initial values of viscous terms are taken to be zero, i.e.;

Φ(τ0) = 0 and Π(τ0) = 0. We take critical temperature Tc to be 190 MeV.

From the study of thermal photons in Section 5.1.4, we know how cavitation

affects the thermal spectra. Since we expect qualitatively same results (as shown

in Figs. [5.5 & 5.6]) we are not repeating them here. So we will not be varying the

height or width (controlled by the parameter a and ∆T respectively) of the ζ/s

curve in this analysis. These parameters are kept to their base values: a = 0.901

and ∆T = Tc/14.5 throughout this analysis.

Next we include the another non-ideal effect, viscosity in the calculations. Now

we study the longitudinal pressure Pz = P + Π − Φ of the system. It is already

seen from Section 4.1 that in such a scenario, the viscous contribution to the

equilibrium pressure makes the effective longitudinal pressure of the system zero,

triggering cavitation. Hydrodynamics is applicable only till τc in case of occurrence
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Figure 5.7: Transverse momentum spectra of dileptons from a viscous QGP calcu-

lated at M = 0.525 GeV. The red line shows the dilepton production rate without

considering the viscous corrections to the distribution functions. The effect of in-

clusion of viscous corrections due to shear and bulk is shown in separate curves.

of cavitation instead of τf . This calculation is presented in Section 4.1 in detail

and will not be repeated here. We quote the final results with the initial conditions

T0 = 330 MeV and τ0 = 0.5 fm/c here: Eventhough system reaches Tc at τf =

6.5 fm/c only, much before that at τc = 3.7 fm/c it undergoes cavitation at a

temperature 204 MeV.

Once we get the temperature profile we can calculate the desired dilepton yields

as discussed in Section 5.2.4. We again emphasise that we must be integrating the

rates from τ0 to τ1 = τc instead of τ1 = τf in the case of cavitation, to avoid

overestimation of the yields [200]. From Eqs. (5.37 - 5.38) we can now calculate

the dilepton yields as functions of invariant mass M , transverse momentum per-

pendicular to collision axis pT and rapidity y of the dileptons. We present all our

calculations at the mid rapidity region of the dileptons (y = 0).

It must be noted here that while calculating the particle spectra we use τ1 = τc

as we have cavitation in the system. As we saw from Section 5.1.4, particle rates

should be integrated upto τc and if we include τf instead of τc we will end up with a

large overestimation [200]. In what follows we present the particle yields by taking

into consideration of the effect of cavitation. In Fig. [5.7] we show the dilepton

rate as a function of transverse momentum pT for invariant mass M = 0.525 GeV.
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Figure 5.8: Same as in Fig.[5.7], but for invariant mass M = 1.0 GeV.

The solid curve shows the production rate without any viscous correction to the

distribution function (δf = 0). The dotted curve represents the case when only the

shear viscosity induced correction to the distribution function (δf = δfη) is taken

into account. In the “low pT regime” (pT ≤ 0.5 GeV), inclusion of shear viscosity

corrections marginally decreases the dilepton production rate as compared to δf =

0 case. However, for pT > 0.5 GeV shear viscosity corrections can significantly

enhance the dilepton production rate. The ‘dot-dashed’ curve shows the case when

only bulk viscosity induced correction in f is taken into account. The general effect

of the bulk viscosity is to deplete the dilepton production as also seen in the case of

particle spectra in Refs. [200, 254]. Finally, the dashed curve shows the combined

effects of bulk and shear viscosity corrections on the dilepton production rate. In

the regime of pT < 2 GeV, the production rate is depleted due to the viscous effects.

For pT > 2GeV the shear viscosity corrections dominates over the corrections due

to the bulk viscosity and enhances the dilepton production rate. It ought to be noted

here that the only shear viscosity induced enhancement of dilepton production rate

[252] gets significantly reduced when bulk viscosity effects are included.

Fig. [5.8] shows the case similar to Fig. [5.7] but with a larger invariant mass

M = 1 GeV. The viscosity induced corrections are consistently larger as compared

toM=0.525 GeV case. Here our results show that as the invariant mass M increases

the viscous corrections to distribution function become larger and can violate the

condition f0 > δf thereby violating the applicability of the Grad’s method.
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Figure 5.9: pT integrated emission rate as a function of invariant mass. Here

pTmin = 0 and pTmax = 1 GeV.

In Fig. [5.9] we plot the dilepton rate dN/dMdy as a function of invariant

mass. Here, we have used pTmin = 0 GeV and pTmax = 1 GeV in the integral in Eq.

(5.38) while calculating the spectra. The shear viscosity contribution is negative

in this pT regime as may be seen in Figs.[5.7 - 5.8] and this can also be inferred

from Eqs. (5.39 & 5.40).

In order to analyse the applicability of Grad’s method quantitatively, we define

the following ratios:

RM =

(
dN

dMdy
[f0 + δf ]

)
/

(
dN

dMdy
[f0]

)
, (5.41)

RpT =

(
dN

pTdpTdMdy
[f0 + δf ]

)
/

(
dN

pTdpTdMdy
[f0]

)
. (5.42)

In both the equations above, the numerators are evaluated with distribution func-

tions with viscous correction arising due to both bulk as well as shear contributions.

The denominators are evaluated using distribution functions without any viscous

corrections. One may expect 0 < RM , RpT < 2 for the validity of Grad’s method.

The plots of RM and RpT for the cases considered in Figs. [5.7 - 5.9] are shown in

Fig. [5.10]. If viscous corrections are about 60% i.e. RpT ∼ 1.6, then the allowed

range of pT is between 0 − 3 GeV. On the other hand for a similar magnitude of

viscous correction in RM(∼ 0.4), the maximum allowed value of M ∼ 2.6 GeV.

Finally, we comment on the use of one dimensional (1D) evolution analysis

as compared to the three dimensional (3D) simulation results where the effect of
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Figure 5.10: Applicability of Grad’s method.

transverse flow is taken into account. We compare the dilepton yield calculated

in our 1D hydrodynamical model with that of 3D simulation of Dusling and Lin

[252]. They calculated the yield using ideal hydrodynamics for the evolution and

shear viscosity modified dilepton production rate. In order to compare the results

we also take only shear viscosity correction to the production rate and ideal hy-

drodynamical evolution of the system, while calculating the dilepton yield. Initial

conditions and value of shear viscosity are also adjusted to that of [252] (η/s = 0.2).

In Fig. [5.10] we plot our results with M = 0.525 GeV versus the results shown in

Fig.[3] of Ref. [252]. As may be observed, broadly, the viscous corrections always

enhance the dilepton production rate for pT > 0.5 GeV, for both 1D as well as 3D

simulations. Next, let us compare the results of the ideal hydrodynamics for 3D vis

a vis 1D simulations. For ideal hydrodynamics, the 3D code gives systematically

higher production rate as compared to the 1D code for pT ≥ 0.7 GeV. However, in

the low momentum regime i.e. pT < 0.7 GeV, 1D simulations leads to a marginal

overestimation of the dilepton production rate. On the other hand, when viscous

effects are included the situation is changed resulting in an underestimation of the

production rate for 1D code upto pT ≤ 3 GeV. It must be noted here that in order

to have a proper comparison of the 3D results of Ref. [252], the effect of cavitation

and bulk viscosity are not included in the 1D results shown in Fig. [5.11]. However,

we expect that the results with inclusion of bulk viscosity will also show a similar

trend. Secondly, inclusion of cavitation effects can further reduce the production
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Figure 5.11: Comparison of the dilepton production rate between 1D and 3D sim-

ulations. The 3D simulations are from Ref. [252]. The dotted lines are the 3D

simulation results while solid lines are the results with our 1D simulations. The

effects of bulk viscosity as well as cavitation are not included in the 1D simulations

for a proper comparison with the 3D results given in Ref. [252].

rate as the total time available for evolution reduces [200]. Moreover, in the cal-

culation related to cavitation / fragmentation, the transverse flow is neglected as

the hydrodynamic becomes invalid after τc. In this scenario it is assumed that the

observed transverse flow can be due to some different physical effect unrelated to

hydrodynamics [197].

5.3 Conclusions

In this chapter we studied the role of shear and bulk viscosities on thermal particle

production from QGP at RHIC and LHC energies using the boost-invariant second

order Israel-Stewart hydrodynamics formalism.

Firstly, we have studied the thermal photon production from chemically non-

equilibrated plasma with minimal shear viscosity η/s ≈ 1/4π using ε = 3P EoS.

We find that the effect of viscosity enhancing the photon flux by a factor ranging

between 1.5-2 for the parameter space relevant for LHC and RHIC. We propose that

these direct photons can be used to estimate the viscosity of QGP. Our results are

in a broad qualitative agreement with the results obtained in Ref. [212] using the

first order theory. We also find that the two viscosity prescriptions with inelastic
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scattering [213] and the one involving elastic collisions only using kinetic theory

give similar results for the photon production rate.

We have studied the effect of bulk viscosity, shear viscosity and bulk viscosity

induced cavitation on the thermal photon production from QGP at RHIC energies.

Effect of bulk viscosity was not considered in earlier studies. We have used recent

lattice QCD results for temperature depended bulk viscosity and EoS. We take the

value of shear viscosity to be the minimal η/s = 1/4π as RHIC experiments suggest.

As we have already seen, in such scenarios, large values of bulk viscosity near Tc can

induce cavitation. Onset condition for the cavitation for the hydrodynamics has

been implemented by stopping the integration of the hydrodynamic code when the

effective longitudinal pressure become negative at cavitation time τc. In addition,

while calculating the thermal particle emission rate it is required to cut off the

temporal integral at τc. We find that the novel phenomenon of bulk viscosity

driven cavitation can have a significant effect on the thermal photon production.

We have shown that if the phenomenon of cavitation is ignored, one can have

erroneous estimates of the photon production. Another result we would like to

emphasize is that reduction in cavitation time can lead to significant reduction in

the photon production.

Next, we have studied the effect of both the bulk and the shear viscosities on

thermal dilepton production rates for the initial conditions relevant for QGP at

RHIC. The role of a finite bulk viscosity on the dilepton rates was not analyzed in

the earlier studies. In addition we have also studied the role of the onset-condition

for the cavitation in influencing the emission rates of the thermal dileptons. The

viscous corrections to the distribution functions are calculated using the 14-point

Grad’s method. We find that the validity condition for the Grad’s method is altered

due to finite mass of the dileptons unlike case for the thermal photon production.

Overall effect of the bulk viscosity induced corrections in the distribution function

is negative and thereby it can decrease the thermal dilepton production rate. A

similar effect on particle production rate were also seen in Ref. [254]. We find that

even though the finite bulk viscosity corrections and the onset of the cavitation

reduce the production rates, the effect of the minimal η/s = 1/4π can enhance the

dilepton production rates significantly in the regime pT ≥2 GeV.
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In this study we have analysed the thermal particle production till cavitation,

if it occurs. It ought to be mentioned that one may expect radiation from the

cavitating phase of the fluid, as this kind of radiation is already observed in some

other systems and is known as sonoluminescence [263]. But this kind of analysis

is beyond the scope of the hydrodynamics model considered in this study.



Chapter 6

Summary

In this thesis we studied the dissipative effects of the matter under extreme condi-

tions like high density and temperature. In Chapter 1, we gave a brief introduction

to the phase diagram of QCD and we discussed the regimes that we will be in-

terested in the study of this thesis, namely a) neutron star matter (high baryon

density and low temperature) and b) quark-gluon plasma (high temperature and

almost zero baryon density) produced in relativistic heavy ion collision experi-

ments. Here we briefly discussed Walecka’s mean field model that is used to model

the high density nuclear matter. We also discussed about the different possibilities

regarding the matter that can be conceived inside a neutron star and discussed

the r-mode instability, which can shed some light into the internal neutron star

constituent structure. While discussing the QGP produced in heavy ion collisions,

we analysed the relativistic ideal fluid hydrodynamics as well as boost invariant

Björken flow, which is used to prescribe the longitudinal expansion of the plasma.

A rotating neutron star is various pulsating modes, and particularly interesting

is the unstable r-mode, which can couple with gravitational radiation and reduce

the angular momentum of the star through the emission of gravitational waves,

unless these modes are effectively damped by the viscosity of the stellar matter.

In Chapter 2, we considered a neutron star with a hyperonic core and the effect of

r-mode instability. We used a chiral lagrangian to include the lowest lying octet

of baryons within mean field approximation to extract the equation of state (EoS)

of the hyperonic matter. We estimated the hyperonic bulk viscosity due to the

105
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dominant non-leptonic weak interactions. By calculating the time scales associated

with various dissipative mechanisms, i.e.; bulk viscosity due to Urca processes and

shear shear viscosity, together with that of dominant hyperon bulk viscosity, we

analysed the role of these dissipative processes in the damping of the r-mode. We

found that below 108 K, hyperon bulk viscosity is effectively damping the r-mode

instability and beyond 1010 bulk viscosity due to Urca processes suppresses the

instability. However, we found that there exists a window 108 − 1010 K where

r-mode instability is rather strong and it can reduce the star’s angular momentum

upto ∼ 0.04ΩK , with ΩK being Kepler velocity of the star. We also note that in

our scenario the observed LMXB stars are placed in the stable region. However,

we note here that effect of superfluidity was not considered in our analysis and it

can change our results and conclusions. Although we have considered a star with

hyperonic core in the context of r-mode instability, it will be interesting to see how

prominent the instabilities can become in presence of phase transition to quark

matter, perhaps be in a color-superconducting phase. It would also be interesting

to study this r-mode instabilities in presence of strong magnetic fields.

In Chapter 3, we reviewed the relativistic dissipative hydrodynamics formalisms,

both first order (Navier-Stokes) and second order (Israel-Stewart type). We dis-

cussed the inherent problems associated with the Navier-Stokes theory and the

need for second order theories for a causal description. We also discussed boost

invariant viscous flow with Navier-Stokes and second order theories in the con-

text of heavy ion collisions. By obtaining the governing equations, we analysed

the unphysical reheating of the fireball when one considers first order theory and

how this problem can be avoided using second order theories. We saw that results

from new studies with various techniques like lattice QCD (lQCD) and AdS/CFT

correspondence, indicate a deviation in EoS from ideal ε = 3P case near critical

temperature Tc and at this region bulk viscosity can become much more prominent

than the experimentally observed low value of shear viscosity. More experiments

like RHIC beam energy scan and FAIR are aiming to study the matter produced

in the heavy-ion collisions. However, in the regime where they expect to produce

QGP (with non-zero baryon chemical potential), we may need to use Landau flow.

It will be interesting to study the effect of viscosities in this context.
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In Chapter 4, we considered the effect of both bulk and shear viscosity in the

hydrodynamical evolution of QGP at both RHIC and LHC energies. Using a

lQCD ε 6= 3P EoS, lQCD prescription for the bulk viscosity and minimal value

for shear viscosity, we found that the high value of temperature dependent bulk

viscosity near Tc can make the effective longitudinal pressure of the system zero,

in RHIC energies. Such a situation is known as cavitation and beyond which

the hydrodynamic description becomes invalid. We studied the hydrodynamical

evolution in this scenario and found that bulk viscosity plays a dual role: On one

hand it enhances the time by which the system attains the critical temperature,

while on the other hand it can make the hydrodynamical treatment invalid much

before it reaches Tc. These results are indicative of the fact that effect of bulk

viscosity cannot be ignored if it is strong enough to drive the cavitation at RHIC

energy. We also have found that at LHC energies large values of bulk viscosity

near Tc alone is not triggering cavitation. Further, at LHC energies, using various

temperature dependent η/s prescriptions available, we showed that shear viscosity

alone can drive the system to cavitation. We also demonstrate that the conformal

terms used in equations of the relativistic dissipative hydrodynamic can influence

the cavitation time. Our result indicate that hydrodynamical description in this

context is valid about 2 fm/c only. These results show the need for consistently

checking the cavitation conditions in hydrodynamical codes calculating the flow

properties. We note here that all these studies were done ignoring the transverse

flow in the hydrodynamics. Since cavitations are setting in very early stages of

the evolution, we believe our result may not change very much qualitatively, with

the inclusion of transverse flow. We also studied the effect of finite minimal shear

viscosity η/s = 1/4π on the chemical equilibration of the plasma using ε = 3P

EoS. Our results indicate that the minimal value of shear viscosity alone is making

the system take more time to reach the chemical equilibrium compared to the ideal

case. It will be interesting to study the effect of finite bulk viscosity on the chemical

equilibration. One can further study the effect of non-ideal EoS and temperature

dependent η/s on equilibration.

Finally in Chapter 5, we studied the effect of viscosity, both bulk and shear; us-

ing causal second order Israel-Stewart hydrodynamics on the thermal particle pro-
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duction from the QGP phase in heavy ion collisions. We have considered thermal

photons and dileptons in this context. By studying the thermal photon produc-

tion from dissipative chemically non-equilibrated plasma with minimal η/s = 1/4π

using ε = 3P EoS, we found that photon production is enhanced several times at

RHIC and LHC energies. We propose that these additional radiation due to vis-

cosity can be used to measure the viscosity of QGP. Using an non-ideal EoS from

lQCD, we studied the effect of bulk viscosity and shear viscosity on the thermal

photon production from the equilibrium plasma at RHIC energies. We took lQCD

inspired result for the bulk viscosity which has a peak around Tc and for shear

viscosity we took the minimal value as experiments suggest. We found that that

the novel phenomenon of cavitation can have significant effect on thermal photon

production. The effect of cavitation is incorporated in the particle spectrum by ter-

minating the integration of the particle rates at the cavitation time. We saw that

that reduction in cavitation time can lead to significant reduction in the photon

production. Our studies indicate that if the phenomenon of cavitation is ignored

one can have erroneous estimates of the particle production. We also studied the

effect of bulk viscosity and shear viscosity in the thermal dilepton production in

a similar manner. However, we have considered another viscous effect also into

consideration- corrections to the distribution functions using Grad’s method. We

calculated the corrections due to both bulk and shear in the distribution function

and used the modified distribution function in the dilepton rates to calculate the

dilepton production rates. We found that the validity condition for the Grads

method is altered due to finite mass of the dileptons unlike case for the thermal

photon production. We also found that since the overall effect of the bulk viscosity

induced corrections in the distribution function was negative, the thermal dilepton

production rate can get decreased. We showed that, eventhough finite bulk viscos-

ity corrections in the distribution function and the effect of cavitation reduce the

particle production rates, the effect of minimal η/s = 1/4π can enhance the the

dilepton production rates in the high transverse momenta regime pT ≥ 2 GeV. We

still don’t have a correct theory to describe the bulk viscosity corrections to the

distribution functions. Existing theories are highly non-reliable at large momenta.

This problem is needed to be addressed in more detail.
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Again in all these analysis we have used (1+1) dimensional analysis and trans-

verse momenta was neglected. So it is desirable to make some progress with the

incorporation of transverse flow. We also note that after cavitation, we expect ra-

diation from the cavitating phase of the fluid, however such an analysis is beyond

the scope of this thesis. However, it will be interesting to study the dynamics of

cavitating phase and its evolution.

Thus we have studied certain aspects of nuclear matter under extreme con-

ditions like density and temperature. As we discussed above, there are many

interesting avenues that need further examination.



Appendix A

EoS for a relativistic

non-interacting massless gas

(ε = 3P )

Here we calculate the equation of state (EoS) associated with a realativistic non-

interacting massless gas of quarks and gluons. In order to calculate thermodynamic

quanities at a temperature T of the system, we use the partition function Z given

by

lnZ = V

∫
d3p

(2π)3
ln
[
1± e−β (ω−µ)

]±1
, (A.1)

where ’+’ refers to the case of fermions and ’−’ refers to that of bosons. Here

β = T−1, µ is the chemical potential, V is the volume and for the relativitic

particle with momentum ~p and mass m, ω =
√
|~p|2 +m2. Now the thermodynamic

quanities, like pressure P , particle number Ni, entropy S and energy E are obtained

from,

P =
∂T lnZ
∂V

Ni =
∂T lnZ
∂µi

(A.2)

S =
∂T lnZ
∂T

E = −PV + TS +
∑
i

µiNi,

where i denotes quarks and gluons. Now using the expression for Z it is straight

forward to see that pressure, particle number density n and energy density ε are
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given by,

P =
T

V
lnZ (A.3)

n =
N

V
=

∫
d3p

(2π)3

1

eβ (ω−µ) ± 1
(A.4)

ε =
E

V
=

∫
d3p

(2π)3

ω

eβ (ω−µi) ± 1
, (A.5)

again ’+’ refers to the case of quarks and ’−’ refers to that of gluons.

Let us first consider the case of massless quarks (fermions) with zero chemical

potential, i.e.; m = 0 and µ = 0, then ω = |~p|. Now energy density of quarks is

given by

εq = γq

∫
d3p

(2π)3

p

eβ|~p| + 1
=

γq
2π2

1

β4

∫ ∞
0

du
u3

eu + 1
,

where u = β|~p| and γq is the degenaracy factor for quarks. The integral in this

expression can be calculated using the formulae∫ ∞
0

du
un−1

eu ± 1
= Γ(n) ζ(n) a±n ; n ≥ 2, (A.6)

where a+
n = [1− 21−n], a−n = 1, Γ(n) = n! is the gamma function and ζ(n) is the

Riemann zeta function. Noting that ζ(4) = π4/90, now we have

εq = γq
21

8

π2

90
T 4. (A.7)

Now let us calculate the pressure due to quarks Pq using Eq. (A.3),

Pq =
γq

2π2

1

β

∫ ∞
o

|~p|2d|~p| ln
[
1 + e−β |~p|

]
. (A.8)

After integration by parts, it is straightforward to see that

Pq =
γq

2π2

1

3β4

∫ ∞
0

du
u3

eu + 1
. (A.9)

clearly,

Pq =
1

3
εq = γq

7

8

π2

90
T 4. (A.10)

In a similar way it is easy to see that energy density and pressure corresponding

to gluons are given by,

Pg =
1

3
εg = γg

π2

90
T 4, (A.11)
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where γg is the gluon degenaracy factor. Now the total pressure P = Pg + Pq and

ε = εg + εq of the system is given by,

P =
1

3
ε =

(
γg +

7

8
γq

)
π2

90
, (A.12)

and this equation defines the EoS for ideal non-interacting massless quarks and

gluons. Now in QGP the degenaracy factors are given as,

γq = Ns ×Nqq̄ ×NC ×Nf = 2× 2× 3×Nf = 12Nf , (A.13)

γg = Ns × (N2
C − 1) = 2× 8 = 16, (A.14)

where Nf is the number of flavours and NC = 3 is the number of colours. Ns = 2

corresponds to spin and Nqq̄ = 2 to quark and antiquark. Now in this case ideal

EoS becomes,

P =
1

3
ε = a T 4 ; a =

(
16 +

21

2
Nf

)
π2

90
. (A.15)
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