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ABSTRACT

This thesis is devoted to the study of the
dispersive characteristics of low frequency instabilit-
ies and their modification due to the presence of strong
inhomogeneities, background turbulence and external
energy sources, The study of these modifications are
often necessary to identify the instabilities observed
in actual experiments. The linear dispersion character-
istics derived under more simplistic approximations
like weak-inhomogeneities quiescent background etc.
while explaining certain gross feature of the observat-
ions are inadequate for a more detalled identification.

A further motivation of this dissertation has been to




:“éfﬁdy the nonlinear co@pling of the low-frequency
instabilities with the background turbulence and the
‘study reveals that the turbulence has, in general, a
stabilizing influence. Thus, in Chapter I, we study
~ the tearing mode problem in presence of a d.c. electric
field directed along the neutral sheet and its subsequent
- stabilization by a lower hybrid turbulence. Chapter II
1s devoted to the study of low frequency electrestatic
instabilities driven by velocity gradients and the
‘\Saturation of the Kelvin-Helmholtz mode by the coupling
with the lower hybrid turbulence. In Chapters III and
IV we study the modifications of the parameteric decay
and scattering processes in presence of non-thermal
electrons. It has been shown in these two chaptérs that
the efficiency of the energy transfer into the plasma
can be improved in presence of an externally injected

beam or a small component of cold electrons.



'The time has come', the Wélrus said,
‘To.talk of many things:

Of shoes and ships and tokamaks

 Of solenoids and Rings.

And how to keep the plasma hot

Ahd how to stabilize the Kinks -

Through key-holes that one would peep -

And find nothing within the sight,

(;f Wasn't as if nofhing was there)

It was a Black-hole sitting tight !
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CHAPTER I

INTRODUCTION

Plasma waves and instabilities have been the topic

¥af great interest as applied to the processes encountered
in astrophysical and laboratory situations. These inst-
abilities are, in fact, invoked as the important mechanisms
to explain a variety of processes such as heating, diffué~
ion.or potentially explosive effects associated with them.
Apparently; depending on the circumstances of a given
physicalwproblem, there exist two classes of instabilitieé
which giﬁé rise to either desirable or undesirable effects
in.a plasma, For 1nstance, certain types of instabilities
effectlvely help in turbulent heating of a plasma while
some other variety cause the main hindrance to achieving

a controlled thermonuclear fusion., The fundamental
feature of these instabilities is the fact that they are
thé manifestations of the collective degrees of freedom
which are spontaneously excited in a plasma. Such excita-
tions, in turn, are possible only if the plasma is in a
thermodynamically nonequilibrium state. In other words,
the excited states occur essentially due to the constant
feedihg of free energy into the plasma, which is, in

general, available through several sources such as non




q,lllbrlum partlcle ve1001ty dlstrlbutlon, the spatlal

radlents in den31ty or temperature etc. Thus,~the'plasma
nstabllltles discussed in the existing 1iterature<1’2>,0an'
edelassified into two'freqdency regimes, ﬁamely, high and

idwifrequenoies. From fusion point of view, hlgh frequency

'nstabllltles are treated less harmful than the low frequency'

es} although they are known to Cause-enhanced particle
‘fuéion'through'mioro'turbulent processes. Instabllltles
'nithe low frequency regime to whiech the present the81s is
;deVOted.to, are believed, on the other hand, to be the
major obstacle in accomplishing a successful oonllnement
scheme. - Begides laboratory’lnterests, 1ow”frequency
instabilities play a significant role in3the‘magnetospheric
plasma dynamics.

The characteristic prbpertiesvof low frequeﬁCy
unetable waves are quantitatively discussed both from
[Eiﬁetic and macroscopic points of view and are well
documented in the standard text books(3 4) and review
artlcles(5) Typical examples of suéh"linear instabilities
are the ion‘acouetic, the ion cyclotron, the lower hybrid
instabilities and others. -In:derivihg these instabilities,
the theoretical studies are pafticularly baeed on such
simplifying assumptions as the static equilibrium, the
weak spatial inhomogeneity and the absence of external

sources etc., Althodgh'the linear description under these




mptiohs reasonably aocount for the gross features of
fobs
‘certaln types of 1nstdb111t1es. Oonsequently, a 1ack
f reallstlc conditions puts a severe constraint in the

nterpretatlon of experimental results. In essence, the

‘mpertant factors which deserve the systematic eXpositionk
_ree(a)kstrong inhomogeneous plasma properties, (b) the
“ackground turbulence end (c) the external perturbations
ttiggered dﬁe to agencies such as the launching’of elect-
romagnetlc waves into the plasma or the injection of
;electron ‘beams or the comblnatlon of these factors, ,The,,
Eipw’frequency dispersion characteristicsfa:e\significently7LN 
 mo§ified in the presence of these additional parameters
“Awhieh give rise to either stabilization or reduced growth
rate of the initially unstable mode or the excitation of

~ new modesg.

Plasmas occuring typically in the magnetospheric
neutral sheet(6) or in tokamaks(v) are strongly inhomoge-
neous in certain locallzed reglons and hence the possibility

of lntense gradients 1n den81ty,temperature and electrlc “ndq\
magnetlc flelds arises. In the above-olted examples, the

magnetic field or the term k.B_, where k is a propagation
vector and By is an equilibrium magnetic field, vanishes in
a specified spatial location. In such cases, the theories

developed so far under the 'local! approx1matlon become

erved phenomena 1t beoomes 1nadequate for 1dent1fy~v*“v




Jvalld Perhaps the lnappllcablllﬁy of the local approach ,}

an be more approprlately Justlfled by deflnlng a parameter,

as the ratlo of ion larmor radlus to: the characterlstlc

:plasma dimension. This parameter which controls the degree

'but it turns out to be large in the reglons where strong
radients ex1st in densmty or other physxcal quantltles. The .
well known technlques like WKB(B) and the guldlng-centre |
approximations(g) are no longer applicable under these
”~circumstances. For such intense variations, the solutiohs
and the dispersion relation have to be obtained using the .
eigen valuektechnique outlined in detail by Chandrasekha1<1q)::/w
and Lin(ll). There are atleast two impcrtant features
embedded in an eigenvalue approach. One is,the’development
of propagatlcn vector along the dlrectlcn in which the
equlllbrlum densxty varles and thls addltlonal effect reduces
the growth rate by a sizable fractlon compared to 1ts local
value. The other significant feature'dependS‘partly,on the
density gradient and the direction of electric field
perturbation. If the density gradient is perpendicular to
the magnetic field and the gradient of the perturbed |
electrostatic potential, the convective ccntfibution to the'
charge'density due to particle drifts‘in crosSed fields
becomes an 1mportant efrect. Phy81cally, the conveotlve

fefﬁects manlfest themselves by the removal of plasma w1th

.
L
£
B{,

of inhomogeneity is usually small in many laboratory dev1ces-‘e'




_enSLty from a glven p01nt and

m«nt by a plasma at the same p01nt w1th a dlfferent den31ty L’

a convective process of thls type acts as a source

:free energy to excite new modes in a plasma.

The turbulent background is another important'
actor which plays a domlnant role in modifying the low
requency dispersion characteristics., Although the plasmas
are assumed to be quiescent in most of the theoretical works,
it ie well known, in reality, that they depart oOnside:ably\w
from the equilibrium state and invariabiyztarbulentffluet;“ﬁ
~ uations in dehsitxgelectrie\field*and‘other parametefé\ .
exist. The main reason for such a turbulent state is
~etraightforward to understand. High frequency instabilit-
ies which are excited in a plasma saturate at a faster rate
than-tﬁe other unstable modes. This saturation is quick-
ened by their transfer of energy through nonlinear'proeesses
fo’the prevalent stable modes wherein the inherentAdissip;
atlon mechanlsms such as Landau or cyclotron damplnv take
over to extract and feed the energy back to partlcles."Thls
cyclic process flnally leads to the plasma heatlng or
diffusion phenomena. Thus a saturated spectrum of hlgh
ffreQuency'turbulent waves in the background gives rise to
1a low frequeney ponderomotive force or the radiation
pressure which greatly affects the low frequency modes.:An .

extensive treatment of theknonllnear coupllng Process,




described above, is thoroughly discussed by Vedemov .

;ai.(lz).‘ In this situation, the ponderomotive force

plays a dual rols in either stabiiizing the low frequency
TQE{Orjin exciting quasi modes when the group velocity
5fﬁe turbulent spectrum matches‘the phase velocity of
hellow frequency mode, In laboratory devices, the
supplementary plasma heating or the Stabilization(ls) of
pétehtially'dangerOus modes has recently been achieved
through external sources. Some'illusfrativéxmétths
‘responsiblé‘for these proéesses are the pdrémefrié’ﬁesohaﬁdéc?\
heating, the injection of cold electron beams and the
flaunching‘of,low frequency waves into the piasmag Presently
 theiparametric heating scheme is scclaimed as an efficient
:méfhod for additional plasma heating in tokamaks and 1
considerable theoretical work, emphasizing the‘physics
involved in this technique is neatly summarized in the book

by Simon and ThompSon(lé).

The basic requirement for the
paraﬁetric decay process 1is the resonanCe(maﬁch;hgfdonqiff\
ions for the frequency and wave humber;r,Oné”impgrtaht by+* ¥
product of this heating scheme is the excifation of new |
quasi modes of the macroscopic type, which poses a threat td
the plasma confinement. The simultanéous injection of

cold electron beams in a RF heated plasma, deever, prevents
the development'of'suoh modes and, in fact, thisftechnique

helps in increasing the heating efficiehcy. A similar




ection teohnlque hae been suoeessfully applled in 2Xl|B} .
}rror experlment for suppress1ng the drlit oyolotron loss_

(15)

one mode Aleo the preSence oi a small fractlon of
mpurltles or externally created cold eleotrons( 6) in the
psasmaolmproves the heatlng efflolenoya Flnally enhanced

peasma heatlng is also accomplished by 1aunoh1ng undamped

w,frequenoy wavee into the plasme. For thig heatlng

.ele, however, there ex1sts no - threehold for the energy

ﬁransfer process.

bummar1z1ng, the external or self con81stent
sources 1in a plasm% 31gn1f1oantly modliy the low frequenoy»

ﬂmodes and tney partlolpate efflolently'elther in plasma

,heatlng or 1nstab111ty SuppIGSSlon. In con51der1ng dlfferent
problems of 1nterest the main empha81s 15 made on two types
f“of.sources namely, linear and nonllnear.’ Usage of this
n termlnology is typlcally dependent on the nature of modifi-
!oatlon Whlch occurs in the plasma. For\instaneé; the case
of background turbulence or parametrlc cOupllng is an
example of tbe nonlinear‘sonroe whlle sources such as d!c}’
~;oournents strong'inhomOgeneiﬁies in velocity or magnetic
fields eto. are linear in oharaoter. Thus an attempt 15
made to 1noorporate these effeots 1n the followlng ohapters
and the relevange of the~the0retical reSults to some experi~
“mental schemes or observed phenomena in space is pointed

out ln.thls dlssertatlon, Tbegplen of the‘remalnlng




pters is as follows.

In Ohapter II the tearlng mode 1nstab111ty is
'anGStlgated by 1nolud1ng a d. .C. eleotric field which is

nerally present in the neutral sheet of the geomagnetlc'

éil:\ Employlng the elgen.value techniques, the trigger-
11ngioi & new non resonant type of oolllslonless tearlng
nmode is dlbcussed in detall partlcularly for growth rates?
ifor‘exoeedlng the thermal frequency, k y It is found
that the growth rates of these newly ex01ted modes are.
'muoh greater than‘those of usual tearlng modes Wthh
invoke the resonant wave—partlcle 1nteractlon process- The
jpresenoe of a small normal component of‘magnetic‘field
suppresoes the eleotron tearlng mode, ex01tlng concomit—
antly a turbulent spectrum of lower hybrld waves. The
lower hybrid turbulence, in turn, quenches the dormant
ion tearing mode Whioh takes over in the absence of
electron tearing mode, The results of this fheory have
applications to the staged development of'thé_ﬁagﬁetospherio
substorm process. In fact, the excitofion of eleotion  
tearing mode identifies with the onset of magilet/i{_}:.

substorm.

The effects assoolwted with inhomogeneous electric
and magnetlo flblds are studied in Chapter ITI. Using
the fluid treatment, the p0831b111ty of exoltlng electro-

static instabilities driven primarily by the velocity




,gpédieﬁﬁe'is’examined uﬁdeieveriouselcw frequency‘iimiﬁs,fg
:he:velocity gradient driven modes are excited both in
onvectlve and non convective reglmes and have thelir
plcal growth rates a fractlon of ion cyolotron frequency.
; Also, in a different frequency limit, the existence of
{traneveree Kelvin-Helmholtz mode and its suppression by
the background lower hybrid turbulence are discqseed‘iﬁ
this section, The work highlights the dual role of the
lower hybrld turbulence Wthh in addition to preferenfial
heating of ions, can suppress the macroscopic 1nstab111ty.
The applicability of these results to Q-machines, auroral
’ionoepheric'an@ megnetospheric phenomena arevfurther‘
ompnasized in this chapter. | |

In Chaptef IV, including the effects of externally
injected sources, the methods of improving the plasma heat-
ing efficiency are outlined. Especially, the parametric
'heatimg near lower hybrid resonance 1s studied under the

influence of an injected cold electron beam. The results

quasi-mode can be significantly lowered in the presence of
‘beam electrons. This meehanlsm not only enables in aohlev~
ing an eff101ent transfer of RF energy into the plasma but
also helps in preventlng the development of macroscopic
pump-driven guasi-modes which are dotrinmental to the

plasma confinement scheme. Similarly the effect of a

show that the threshold for the ex01tatlon of low frequency’wff




alleréCtion‘of céld'eléqtronS Whichvére prodqced either;;u
ﬁefﬁallylorthroﬁgh seéoﬁdéry»emiésibhé‘in a plasma on
éﬁaisperSibn characteristics Of’BrillOuin back scattering
 pfoceSs ig investigated in an inhomogeneous, unmagnétizedr‘/
'plaéma, In this cage, the threshold for the excitation :

_of back scattering,instability is increased.

The flith chapter discusses an alternate method of
supplementary plasma heatlnb by coupling the externally
kgenerated magnetosonic waves Wlth a turbulent spectrumkqf E
Llower hybrld waves._ Thls method does not requlre any
ithreshold amplltude of the magnetosonlc mode and hence very
ﬁsmall amplltude waves can deposit their energy 1nto the
plasma unlike the conventlonal parametric heat;ng‘scheme355/

which require certain minimum threshold power. USing’fhe

description for the lower hybrid turbulence, fhe heating

of ions is shown %o be enhanced by the temporal dampiﬁg'l

of the maghetosonic waves due to t@rbulence.

| \Finaily the\lést chapter focuses on some outstanding
brobléms’that have important bearings on the substorm

and the laboratory phenomena. Ais’o the main‘ achievements

of this dissertation are briefly summarized.

fluid equations for the magnetosonic modes and Wave+kinétic{;;fﬁ
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- CHAPTER II -

TEARING MODES AND THEIR STABILIZATION BY BACKGROUND

TURBULENCE

Introduction

.Astrophysical processes such asg the ocdurehCe
1 Qf solar flares or the onset of magnetospheric substorms,
fetc. have beén topics of extensive research over a last

:few decades. Recently the interest in this field is greatly
revived, further, by the observation that similar processes ’
do occur in‘laboratory devices, The emigsion of hard
x-rays during a violent current disruption in tokaméks is

a clear example in this direction. In such physical

situations, the fundamental process appears to be based on .

the well known concept of magnetic field line 'merging'

(also célled the annhilation orx reconneotion). This field
line mergiﬁg‘cbncept, basically reveals two impor%ant
featu:ésof fhe magnetised plasma. Firstly,_in cosmiC
plasmas ( for instance), because of low electrical resist-
ivity of plasma, merging process essentially implbies the

plasma'tranéport acrosé the separatrix which bifurcates



fhekaiiierént clagses of magnetio,field‘lines, embedded in

‘he;plasma. CbnSEquently“the’rate of plasma traﬁsport/

oross the separatrix surface is a direct measure of the

merging rate. Secondly it turns out to be a mechanism
’whidh;énables the conversion of the stored magnetic energy

inté kinetic energy of the particles along a x-line (being

defihed’as an intersection of the two branches of =z

o

paratrix). Thus a clear understanding of processes such

s plasma flow patterns or changes in the magnetic field

topology and energy release is closely related to the field-
line merging process.

| Historidally, the possibility of accelérating the';/
 charged particles responsible for solar flares and the
_curora, along the x-type of magnetic neutral line was
suggested first by Geovanelli(l’z) (and later by Hoyle(s)?w
Qualitatively they showed that the magnetic configuration
with a neutral line embedded in it is unstable and that

ffhé field line merging of x-type occurs. In 1955,vDungey(4)
conéidered a model in which the two branches of the gepara-
trix were almost parallel to each other with a thin sheef .

of current separating them., Assuming the frozen—in—fiéld‘

line concept, the work describes the process of field line

merging and the accompanying plasma,flow towards the
" neutral line, Yurther works on this topic were more or

less the extension of Dungey's model with appropriate
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‘modificaﬁions,. Notable amongst them are the works of
Sweef(S), Parker( 6) and Petschek(v). In Sweet‘s and-
e7Parker s models the weak magnetlo field on the down
‘~stream 81de of the separatrlx was neglected so that the
Qneubral sheet was eSSentlally field free. Their results
show that the merglng rate crycially depend on the
 dimens1ons oi the system and the eleotrlcal re51st1v1ty
 of plasma and thms the models fall short of the observed

T nergy dlSSlpatlon rates in solar flare by several orders
ejof magnltude. Petsohek‘ (7) model 1ncluded the weak !
 'magnetic field neglected by Sweet and Parker and‘the‘
merging rates obtained in this model comes outrcioser to
che’real values although the»mathematical arguments used
uln thelr work were not’ rigourous enough to justify the
o\results Sonnerup(B), Yeh and Axford( ) modified the
merglng rates u81ng a dimensional ana1y31s and achleved
'a'better agreement with the observations. Allrthese models
are essentially hydro dynamical models and‘are'deVOidVof
1c'the»WaVe4particle interactions nor they give'é;Quantitative

‘account of the recormection prooess aS'saeh.A oomplete review

of all these VHD models and thelr detalled 1mplloatlons on
the merglng process can be found in an exoellent rev1ew
| (10)

.'artlole by Vasyhunas

' In the aiorementloneo works, greater stress 1s

laid on the partlole aooleratlon processes u31ng a fluid
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~eatment and.lt concentrates less on what poss1bly triggers
the reconnectlon process. To understand the latter process
in'detall the behaviour of the charged particles and the
isequlllbrlum characteristics become 1mportant factors that
3govern the dynamlcs of the neutral sheet conilguratlon.
fThese aSpects have been thoroughly studled by Spelser(lla b, C)’
sand Oowley( 12) usxng the pdrtlole picture. Esp801ally +the
:qulllbrlum properties with a D.C. electric field were
fdiscussed by Cowley(12> while the particleytrajectories
;Were computed in Speiser's work. Also, within the frame-
work of kinetic theory, the steady state solutions of the
magnetlc neutral sheet using the Vlasov—Maxwell system of
equation was examined by Harrls(l3> whlch was later
extended for the two dlmenSLOnal case by T01oh1(14), These
"é@uilibrium properties become therefore ths necessary
ingradients for studying the stability characteristic of
such a magnetic field configuration. Although some earlier
attempts have been»made, in this direction, (For instance,
Furth et al.(15), Hazeltine et al.(ls))employing the
resistive tearing mode theory as the basic mechanism for
the reconnection process, these theories become inade- |
quate since it involves the fluid approach and employs the o
relatlon, E+VxB= Y| J, where YL is the eleotrlcal
resiStivity.) Bu% in realistic systéms such as astrophysical

or geophysical‘plasmas (and even laboratory plasmas),
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1lisions are highly infrequent so that the collective

effects predominates in the reconnection proces. Thus,

(17)

taking into account the collective effects, Coppi et al.

(hereafter, referred Lo as Coppi) derived the resonant

gollisionless electromagnetic mode as the triggering mode
for the recomnection process, put it turns out that this

mode becomes stabilized for small amplitude of perturbation.

1 So'that global rearrangement of the neutral sheet with

fthe onset of instability does not take place. Subsequent

(21)

investigations by Dobrowolny( O), Galeev and Zelenyi

_and Coroniti(zz), are aimed at understanding the geomag-

netic substorm process with appropriate refinements in the

_ tearing mode theory, incorporating the eftfects of particle

trajectories, the magnetic field component normal to the

neutral sheet, etc.

In a recent paper, Drake and Lee(25) studied

the semi-collisional tearing mode applicable to the tokamak.

“geometry, The neutral sheet geometry in the tail region,

however differs slightly from that of tokomaks. Perhaps

it is appropriate here to dlstlngulsh between the magnetic

field configurations of tokamak and the geomagnetic tail. In

Fig.l., we have shoWn the geomagnetic tail geometry., The

normal component of the magnetic field, B, is perpendi-

cular to the current sheet which lies in the XY plane in

the case of the geomagnetic tail configuration whereas
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 The tokamak field configuration, The field Byq |
in the same direction as Jy and |Byg |>>|Byg|




the to 01dal field component B‘y is along the eurrent
'fdi?éctlon for the tokamak (FPig;2), Also B,o << By, In
¥ig,1, whereas Byo >3 on‘ih Fig.2: In Pig.2, represen-—
ting the tokamak geometry, the X,yy2-8xes8 correspond to
the poloidal, toroidal and radial direotiohs respectively,
an the tokamaks‘thereiore the strong Byo domponent will
inhibit the growth of any collisionless tearing mode since’
in the collisionless limit the Byo will be ffozen~in.with
lasma and any pinching mechanism will also plnch this
field and this would lead to an increase in the magnetic
field energy. In the geomaghetic tail region however B.o
is small and its stabilizing influence depends entirely on
its magnitude. We shall chose the geomagnetic tail
geometry throughout our analysis and in a laterp section we
Shall examine the dramatic role of Bzo in ¢ontrolling the
ﬁsuhstorm mechanism, Perhaps a similar analysis applicable
_Vto tokamaks can be investigated in prinéiple and the
feasibility of these results will be discussed at the end
- of this chaper.
All the earlier papers, devoted to the studygéﬁny

the substorm phenomenon have excldded the zero-order electric

field from then analysis and the drifts of the charged
- particles have been taken as the diamagnetic drift satis-
fying the condition.\/e/L %M/T‘ (Harrls( 3), Galeev
“and Zelenyi'®1)). Tn apsence of this electric field, the
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,ve1001t1es oi the partloles are very small

oj/vthg W1, v, o5 = Arift velocity of the ™ species)

d only the slowly growing ( Y << k Vthj) mode can be

xcited in this limit, It is not quite clear whether this

at the induced electric field due to the 1nstab111ty is

t0o low t0 account for the fast merging rates. It is

quite well known now that atleast for the magnetospheric
rééonnection process, the plasma sheet as well as the
caifént sheet thins to a very small dimension just before
 hé'triggering the reconnection process. Hones et al.(26)
i(énd the references therein) reported such a thinning of
the current sheet and this gives a direct evidence of the
bresence of zero order electric fields along the neutral
 sheet ~ Nishida and Nagayama(27> while studying the process
oilreconnECfion gives the value of such an electric field,
(24)

 BoWers » in his work, has considered the effect of such

'apvelectric field localised in the dusk region of the
néutfal sheet, His theory shows that an eleotrostétic
’iOnfplaéma oscillation can be driven unstable in the
 f§reseﬁce of the zero-order-electric field. The localised

electric field feeds energy into this mode which would



1ly lead to a turbulent state thereby enhancing the

ecbﬁﬁéction.of the magnetic field. In another paper,
Bowers(25) also studied the excitation mechanism for a
high frequenoy wave (OOQ'OJF€.> and found the threshold
6ﬁdition required for this instability. This gave
where ﬁo is the zeroborder electric potential
temperature of the magnetosheath electron.
Both these instabilities essentially lead to a higher
 §@1 of turbulence which in turn enhances the reoonneot~
1lon process., The time-scales predicted by these theories,
:however, do not agree very well with the observed values,
he presence of the zero order electric field along the
oufrent sheet can fherefore have an important role to
piay in the recomnection processes, The particles in the
ihéutral sheet can be accelerated and then the drift
Vvelocities can attain values higher than their thermal
 velocities. In this limit a new instability can be
triggered with a much larger growth rate (than that of
Coppi's) and this éssentially will be the research topic
of this chapter,
We will use a very general formalism in deriving
the dlsper81on relation for the trlggerlng mode, keeping
in mind the appllodblllty of the results to the Substorm
In section 1, the tearlng instability in
dﬁé dimension will be described, using an equilibrium

similar to the one derived by Harris(lg). The drift
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velocities in the Harris equilibrium is replaced by the

éurrent sheet. In section 2, we shall introduce a small
magnetic field component nofmal to the current sheet and
the stabilizing influence of thigs component on the electron
ltearing mode will be discussed, We shall also derive the

~dispersion relation for the Ton-tearing mode which remainsg

'uhstable even in the presence of the normal component of

the magnetic field. Using a phenomenological model, we
shall show, in section 3, that the saturatlon of thls
instability occurs by a trapping mechanlsm Purther, the
 Quasilinear efiects will be shown to be small for the
;/saturation mechanism, Section 4 is devoted to the suppr-
ession of the tearing mode by an external source, the
source being a low level of lower hybrid turbulence, In
the final section 5, we shall discuss the relevance of

our results to the magnetospheric substorm and we will

indicate possible applications of our theory to tokamaks.

Section 1 : Linear Electron Tearing Mode:

We choose a slab geometry in which the current
sheet is in the xy plane with the drift velocity along

the y axis. The zero order electric field is taken along




.

; ,‘?The oarfénthheét prodqces’the.zero order‘
*néfio'fielagiveﬁ“bnyT'= Botahh Z/A' and the plasma
:néity given by n = n, sech? Z/n where XA is the half

Wldth of the current sheet along the Z axis and

| Lot ) PN = (eny v
Lo + T.Li) }1/2 where no is the

_den31ty at 4 = O T e are the eleotron aﬁd ion tempera~ }V
eture 1he detalls of thls equlllbrlum are glven in .
A pendlx 1. "VJ' denotes the averaged pdrtlole drlft

/ue to the electrlc field and its typlcal magnltude is

2@ ‘hdL/mg)l/z ; T belng the distance in which the
feleéfrlc fleld bécomos effective in acoeleratlng the

particles (Cowley(lz)). We assume that the plasma is

collisionless and use the Vlasov-~-Maxwell set of equations,

-

aé;i + VS + (ExvaB )99 -0 (1.1)

Following the usual procedure of linearizing Bq.(1.1) and
integrating over the zero order particle orbits, we obtain

the perturbed distribution function as,

Giis)
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The orblts are glven by

jr\g/ : cr{qij v ;(B tkaw’»\(/va.‘/)\ C"JE (1.4)
w1th vi=v and x'= x\at T = 0. The orbits of Eq.(1.4)
'jare indeed oompllcdted and has been worked out by
Spelser<11a b). For our analysis, it is sufflclent to
work in a region Z/A << 1 (i.e. close to the neutral‘
ﬁ sheet) and in this region the magnetlc field can be taken
'$as Zero (Galeev(21>) In this case, the;orbit is essent—
ially straight line orbit with the space~averagedvdrift;
 w(Vj) due to the electric field EE; The zefo order

:\distribution function can appropriately be taken as

' 5/2’ :
by n @ortad-si ] o

The integration over the unperturbed orbits ddn now Be
easily performed; we note however that the fields .
E(Zs) and 5(23 are still functions of the unperturbed
variable (Z3. As shown by Speiser(lla’b),/the particles
in the neutral sheet are essentially trapped around the
neutral sheef due to the field reversal and this allows

us to expand the field around % = % for Z/N << 1, i.e.,

Ly : / ! ;
= - (Z) + (F-2 a__E + (Z 2)‘&E+n-.
E@) = E@+( )ek 212k

Since the particles are trapped around Z = 0, the average
particle excursion, (2 - Z) over a period is zero (for

s /
< 4 -7 > = 0) and therefore we can replace E(Z) by B(2)



1 \Eg'(l'B) Wlth tnls replaoement_ we obtain the perturbed

‘dlstrlbutlon funotlon,

36” 2 q/dnj(z)fo,g("y*"\/ )("M( K V")E + \ V*)f)‘—:% ((KV (1 6)
m (XN
J /1(kVx=t2) - L“13Qr\ MEy/my .

wherein, we have used the relatlon §7xE=-%:3E’ and
"retalned the electromagnetic term which for propagatlon 1nJ
the X direction (i.e. ¥ = k & <) giveskthe electric field

in the 'y' direction. To arrive at the dlsperSlon equa’c-~

ion, we use the second maxwell's cquatlon°

fo(VXE)] (w/c’) Ey -+ Ayxicojb,/cjzj

H ; — i i ‘ F -
with Jy = Zm,J % .) Vg dy

The typical perturbed quantity, occuring in Bqs.
(1.3) to (1.7), is chosen in the form q = q(2) exp
(ikxx - {wt)., Using Bq.(1.6) and evaluating Jy in Bq.
(1.7), we, finally, get the differential equation for B
| 2. L\Z s
- cech & - kA g . .
Zj‘f’ + {D w2,k sechd -k, }Ew (18}

where ?§ = 7/, A and , 00

5 7 _ =z 55 W +9( V EV(II-O(/()‘ A/w)/
Dok Al 3y 223095 (7% ”(mw L

S ) e‘? .




e wake the transformatlon Wi#,fanha' and Eq.(1.8)

kés the Lormv
{i n )a\Ev IndEy +{D(w Kx)— kx }Ev =0 (1.9)
an® o dn -2
;w\assume that the current sheet is thin, i.e,

#i <1, f =gyroradius of the ions in average ficld
 This assumption is quite valid both in the case of
gfdmagnetio/neutral sheet (Hones et al.(26)) as well in the

to amaks, Drake andeee(25>).~ Since Eq.(1.9) His been
derived under the approximation Z/x << 1, we need to have
lhéfbdundary condition for some value of Z_ for which

o/A << 1. But if the current sheet is thin we can safely
xtend the boundary to % = e without making any significant
??Qr as the main current, carrying particles, are them-
elves confined within a narrow region around % = 0. In
he case of the thin sheet, therefore the external region

o

(where the particles are magnetized and follow the E5 b'¢ BO
 drift) is extended to Z - = and the solution of the inter-
nal zone around % = 0, is to be matched with the solution
at Z - =, The energy feeding the instability is the free
_energy associated with the drift of the particles consti-
tuting the current sheet, The instability is therefore
analagous to the one derlved by Momot@(28> for a homoge-

\neous plasma. Ihe requlred bqundary condition that can be

‘lmposed on the solution of £q.(1.9) is that 'Ey' vanishes




arger distances (Z - ) and 'By' remains finite for

The only solution of Eq.(l.9)'éatisfying these
ohditions, are the associated Legendre polynomials_i.e.

v o P (ﬂv) and this requires

D(w k)= {(L+1) and kX7\ =4+ n (1.10)
where L and m are positive integers. Equation (1.10)
immediately gives the diepersion relatioﬁ‘fof/fhe electro-
magnetio_'pinching’ mode for a thin sheet, The strong |
nhomogeneities impose the quantised condition for the
:aﬁehumbef k and restrlob it in having values as 1ntegral
_multlples of the sheet w1dth This indeed is a_remarkable
wresult and implieg that the field line reoonnectlon leads
joniy to a definite number of 1lnops.
- We now proceed to find the growth rate of thls
mode from Bq,(1.10) and Bq.(1.8). We look for a large
growth rate mode, i,e,, Y > kvthe and with this asSumption5
\Write W= , where T is a real quantity. Under the
\approximation, g > kVthe’ we obtain an equation for '

given by - ) |
‘”W”)C //\‘* Z‘O ) -0ty ki Opy (2 V4 +1/2%,5)

/< wML( V4 /.w(u)/,?aém] = 0,kA=zm(1.11)

In deriving this equation, we have expanded the denominator
of Eq.(1.8) in powers of kVX/b-< 1 and integrated over 'v'.
It is evident from equation (1.11) that the electronic term

is larger than the ionic term by a ratio Yﬂi/Q“e . Bg.(1.11)




’a blcuatratlc 1n U and can ea31ly be Solvedbto glve v
G“= Yr‘l !J (,OP [ —-}- ([—— (Odll/}\ ’:}>L>] (1 10)
where ci and d are the reSpeotlve debye lengths parallel

snd perpendicular to the magnetic field (taken along the

axis) and the quantity P, is defined by the relation

| [ ;
B, 41+ L(w)@/)\lm,ﬁ 2 (‘”“—f}(w‘%e\lf s

T to be real, fhe required condition is therefore

from.Eq;(l 12)) V > Vghe The 1nstab111ty therefore can
be trlggered when the drift veloclty of the electrons |
exceeds the electron thermal ve1001ty. As we shall see
1ater (Sectlon 5) this oondltlon is easily fulfllled for
ypical values of the neutral sheet parameter, in the
Tgeemagretic tail, at the onset phase of the magnetic sub-
sform - It 1s worth mentioning here some of the major
dev1at10ns oi our result from the ones derived by Coppi
and a host of other research.workers. First, the Coppi
fype of tearing mode feeds on the energy stored in the
magnetlc ﬁonflguratlon in the external region. This
magnetlo energy is converted 1nto the partlole klnetlc
__energy 1n the 1nternal zone, In our ana1y51s the 1nsta;
?bllity is driven by the current carrying particles themselres
leand they essentially 'pinch' the current sheetkinto fila~

ments., Cohsequently a change in the magnetic field




topolOgV from the stralgntllne opp031tely directed fields
to closed loops around the Z =0 llne is accompllshed

Thé drift veloclty V ior our oase should necessarily be
greater than thermal velocity for the mode to become
unstablev wherens the Coppl s type is unstable, for Y <\th
Phué the crltlcal Ve requlred for 1nstwb111ty essentlally
fleads to much 1arger growth rates for our type of insta-
'Blllty. The temperature anlsotropy canlhowever quench the
’Goppi's typé while it does not play any Significant role
_at all on our instability. Finally, as shown by Biskamp
~ét al., the quasilinear saturation mechaniém\is operative
for the Ooppifs type of tearingkmode and thus a saturation
of this mode occurs at a very lowkieVei of turbulence. On

,the contrary, we will show, in a later section, that the

quasi linear mechanism plays a secondary role for our

iﬁéfability and the instabili%y can saturate only by
ﬁartidle trapping inkthé wave field, which requires a much
larger amplitude. A similar conclusion Was made by
Davidson et al.(Sl) in their numerical study involving the
pinching instability.

Before we end the discussions on the instability
developed in this section, it is worthwhile mentioning
that all values of L and m QQ not contribute to the growth
 rates leading to field—linetreconnection. The induced:

electric field By being proportional to the Fii( n )
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jfﬁhdtiohs wili'ﬁaﬁé ﬁ$Xima»at VA =:C‘only for certain values
of 1 and m. For some other values of 'l' and 'm', By will
have maxima only at the edge (i.e. M = 1) and these modes
are spatially damped for Z = 0. This would mean that for
lcertaln values of 1 and m, the instability will only cause
]avohange in the magnetlo field topology at the edge and
will therefore cause a ripple on zero order Bx field. Thus
W& can conclude that the mode with 1 = m = 1 has the
; maximum electric field at Z = O and undoubtedly this mode
is expected to take part in the reconnection process. For
’f typical values of tne geomagnetic tail parameters Eofv.lmV,
| T.= 100 ev, A= 300 km. The growth rate '~ ' for the
1 =m =1 mode turns out to be

0= .2 sec. ’ C(1.13)
On the other hand the mode with m = 1, 1 = 2 will have the
maximum wave electric field at the edge (M = 1) and will
essentially distort the field lines at the edges and it

does not obviously participate in the reconnection of field

‘lines.
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Next, we shall sfudy the effeot‘of a small compon-
ent of the magnetic field normal (i.e., along the
'Z'-direction) to the neutral sheet, The total magnetic
field can be derived frdm a vector potential,’A(X,Z) i.e;
5@ = {%.X K(X,Z). Using the steady state Vlasov—Maxwells
system of equatlons, the self consistent solutlons in |
_ terms of A(X A) can be derlved for a two dlmen51onal |
 neutral sheet geometry, which has been studied in great
details by Toiohi(14). For our purpose, however, we shall

take the x-dependence to be weak enabling us to write
2

AX,Z2) = 4(2) + x %% + v...., Where g~% etc., are
ax™ -
neglected, assuming %% to be approximately constant with

respect to 'X'., Such an assumption helps in.éonsiderabie
mathematical simplicity and at the same time retainé
qualitatively the essential features of the normal’dompo—
nent Bzo' The steady state solution in this case will

again be the one derived by Harris(13>, namély,

.- B tanh BB +BLE, 5 B . A,

E . -E, 8y 5 M@= Meseck(2/0)

] e\ T C - : 2
jcoj = N(2) %4)(d:,,> 26??‘}7%_du.jvxlﬁ-di_JVzZ_f‘O(_LT)(Vj”Vf)Zj (2.2)

T

The BZo component .is taken to be small such that the sepa~

ratix of the two different magnetic topologies are still
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valmost parallel The magnltude of B o iS\suoh that
'k .f > 1,and,kXA?’ <« 1, wherb.ka"is the wave
»number for the unstable mode of section.{l) aﬁd thig
assumption, in turn, would imply that j;z << )L << f}z 4
since 'kXA;tl;fbr the reconnecting mode as seen in
section 1. 1In thls case the electrons get magnetized
/Wlth respect to the B %0 component and clearly they cannot
be acoelerated by the electrlc fleld along the 'y’ ax1s |
‘Under the combined influence of the normal fleld (BZO)
and the electric field (h ) the elECtrons gyrate 1n.the
neutral sheet (1n_the xy plane) and 31multaneously they
drift along the x axis due to the EA X Ezo drift. Speiser
~has studied therpgrtiole trajectories in this type of a
configuration ané the details can be found in his work,
The ions, on the other hand, remain unmagnetised and can
still accelerate along the y axis by the electric field,’
attaining drift‘velocities Vi larger than ion thermal
velocity. Under thege conditions, the ions will have the
Same perturbed digtribution function as in seotion’(l),\
(£g.1.6) and the electron perturbed distribution fuhction
is obtained by integrating Bq.(1.3) over the electron
unperturbed orbits, namely,

Vi= Y, eos($-0z.7), V- v Son (@ -0,,.%)

. (2.3)'
..Qu: e@zo/mec » T= vt’—t

The drift velocity ’Vé' is no longer the electron drift
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‘used in section (1) and instead it is the diamagnetic
| drift. As such this drift does not enter in the particle
orbits defined by £qg.(2.3). The integration of Eq.(1.3)

over the orbits specified inAEq.(E.S) yields
I roie(_%/ma)foe[ Zex 5 (‘n-t).;b{\/ T"E +iVeJy

(- Ej_y,ﬁaby )}_)h/a_()qﬁ oo) LVQES/ZWT
where J (‘% ) represents bhe Bessel function of order

(2.4)

'n' and g = kx\u_/ilze. Following the same procedure as
in Section (1), we arrive at equation for By with a new

!
D (w sk, ) given by

D/(w;kx): ()\/Cl)! ﬂ(;Z)O( (watl\lyf (\/+V3’)d\/ |
Ky V- O (2.5)

' + 24 VEow 4 wpe/.ﬂ_ﬂl

The derivation of the above dielectric function is valid

under the approximation, kxf.[%>>;[ , Ko Por«l, (ie, 5, LA & fyf)
and ), <] w |< Slze where in 532, is the larmor radius
with resPect to the fielq, B,,+ Yor a thin sheet, the
boundary conditions are the same ones stipulated in

Section (1) to arrive at the dispersion relation, and hence

we have By - 0 for 7 - « and By reamining finite at 2 = 0.
This leads to a similar criterion obtained in Section (1)

for D/( w2, kX)’ namely,
D(rke) = A1), kA= £m -

Using Bq.(2.5) and the approximation | O | > k V the
thi

dispersion relation for the new mode is given by
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2 <z
Wpi-. 0

o (1 + w?;e /jl;e)éif [';;\tg(qﬂ)er%]ka 2 (2.7)

\'9
o

with K, A=+ m

In deriving Eq.(2.7), the electron drift is neglected
(VOe << Voi) due to the presencevof the normal field B
The rotation of the electrons in the field Bzo essentially
opposes the pinching force on the electron streams by the
perturbed magnetic field and inhibits the electron tearing
mode. In the next section, we will give an.estiméte of
the magnitude of the normal field that can stabilize the
electron mode., Even though the electron-streams are
inhibited due to stabilizing mechanism, the ion streams
are not affected by the normal field (as kfiz >> 1 and
jeo | > L1, ) and they continue to conmtribute in the

reconnecting process, Solving £q.(2.7) we find

2
g 2 . 2 T i a2 2y a9 (":?P? Vil
wZ: [c/n- 1Ie+s)+uoﬂ]4_— ﬁ@(gﬂ)ﬂ»-;- (’OP;?H‘W;(VOL‘*)PI(‘"‘X{&)]

2 (1+ ﬁ&/ﬂ;ﬁz) (2.8)

with KeA= tm

The solutions of this equation give:

coim A chz(eww}\% wh] /(wa;zem;e)] Y2 (2.9)

and
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' T2 _a 2  ‘ ' A
L, ° iL[K% Vo 27, /{c [ N e S I R
Lm - ~ ) kxA=1tm (2.10)

Bquation (2.9) and (2.10) are derived under the approxi-
mation, céﬁw|>> | cotyn] which is clearly consistent with
our earliergépproximation, .fLLi<<-}COI'<<:IL4zz ,
(] Y = | Lo?nql). Thus, we tind that instead of the
electron tearing mode, two new modes are excited, One is
the moditied lower hybrid mode (Eg.(2.9)) while the other
characterizes the unstable lon~tearing mode, A domparis—
ion of Hgs.(1.12) and (2.10) immediately reveals that the
Lon tearing mode has a lower growth rate compared to the
electron tearing mode; yet this mode is far more dangerous
for the equilibrium than the electron tearing mode., In
facf, as we shall see in forthcoming discussions (Sections
3,4,5), it is the Ion tearing mode that plays the crucial

role in-the recornnection process as well as to act as the

triggering mechanism for the magnetic substorms.

Section 3 : Quasilinear Effects and Trapping in Wave Iield:

In the last two sections, we have seen that a conf-
iguration containing a neutral sheet is inherently unstable
and the linear theory developed so far showed that the
electron tearing mode could be driven unstable in the one

dimensional case (Bzo = 0) and the Ion tearing mode takes
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over for B,o # 0. The question now arises as to which
one bf the two modesyban'finally lead to the over all
change in the magnetic field_topdlogy as such a modifica-
tion is reportedly observed by Nishida and Nagayama(gv)
during the substorms for geomagnetic tail region, This
question remains unanswered in the discussions made so
far and it is, indeed, a formidable task to study the
nonlinear tearing mode theory, using rigorrus mathematical
methods. Even the quasilinear approximations break down
for | Y | > k Vi (Shapirézza.uavidsoﬁglb and non-~linear
evolution of the purely growing mode is far from being
understood, In this section, we have therefore attempted
to explain these aspects rather semi-qualitatively based
on certain simple physical considerations.

Davidson et al, had studied a similar case of
the electron pinch by a computer simulation method and
they had shown that for instabilities having growth rate
[ 7| > kvthj’ the saturation was primarily due to
magnetic trapping of the particles by the wave field, If
we assume a maxwellian distribution for the particles,
then the major fraction of the particles (particles moving
with velocity Vk < Vthj> would see a coherent unstable
mode, since the waves will have grown to a significant
léﬁel before the particles can move appreciably

(rY | > kxvthj)' This is the primary reason why a
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quasilinear approach cannot be used which demands a random
set of waves within é definite spectral width A . There
would oX course he a small fraction of particles, lying
near the tail of the distribution function, which would
have velocities larger than the thermal velocity and would
remain untrapped due to their high thermal energies. These
particles would obey the quasilinear dispersion mechanism
and the theory to this effect will be dealt with in a
later paragraph,

Following the same geometry and approximations
made in the earlier sections (see Pig.1l) (also Sinha and
Sundaram(29)), we assume the electron-~tearing mode to be
'unstable and that it saturates at an amplitude given by ‘
B, = By Pre“ (tanh 7/p ) coskx. The mode defined by
wi=m=1is the most unstable mode and for Z/x << 1, we
have B, = P% (tan 2/) ) coskx By e By coskx. This

perturbed field can be derived from a vector potential

r~ L ~ s kx
Aye = = Bis 'il € (3.1)

3

Writing the Hamilton|Jacobi equation for electrons in

the presence of a potential given by Eq.(3.1), we get:

"5 ~ 1%
Q%W ;,%" (%@-Mﬁ] * %‘%“ © (3.2)

v
where S is the Hamilton principal function and the
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‘Hamiltonian is defined by [ } :_l_sﬁ_‘}a j*“ - @ A‘ﬁ :/ | \
The electric potential is‘evidenteiyhzero.ét the saturat- |
ion point gince the mode is purely growing. The genera-

liged moments are given by }% = %%il where x; = x, x, =y,

Xz = #z. For the potential given by £q.(3.1) the generali-

sed moments in the 'y' direction is comserved i.e.,

Py = mVy + q/c Ays = ay=const. Also the total energy of

the particle is comnserved and therefore € = Ay = const.

These two constants of motion allow us to construct a

solution of Hq.(3.2) in the form; $ = W(x) + 0y + agb.
(refer&zg)chapter 9). Substituting this solution in Eq.

(3.2), we. obtain an expression for the momenta in 'x!'

direction given by

. , a4 o)
P =2 - famul, - (&, = B _Sim Kx )2 %/2
x ;-)_x l < o (‘; ~2 E:‘ .

(3.3)
For trapping of the electron in the field cm we
therefore need PX to become imaginary for some value of ‘x' °

which can be interpreted as a reflection of the particle

at that point. For a reflection to occur, we must have

P

Bkc’ cmk X > KC % “[Qmerxzwo(,}

@3

{

The minimum value of Bks required for trapping is, therefore,

given by

e | %

Ps A %j{/%me%ﬁx"f (3.4)

ks 7V
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' twhere g = %—n@e (V’?h + VS) and o, = mev_o‘ | For»the typical
~parameters of the neutral'sheet in the tail region, Eq.
(3.4) gives a value Byg o .1Y . This is, in fact, a large
value compared to the level of turbulence required to
stabilize the Coppi's type of tearing mode which, accord-

ing to earlier investigations, gives a value

?Jks«“_i e/ . (fe/L)“’/:"on <« 1Y

(Galeev and Zelenyi(30>, Bigkamp et al.(18>). It is
\evident from Eq.(3.4) that, for T; > T, (which is valid
in the geomagnetic tail during the substorm, €.8e;
T, > 1 kev, T, & 100 ev), the magnetic field,‘Bks required
0 stabilize the ion tearing mode is much larger and the

~ratio of Bks for ions and electrons approximately turns

(m)"

Physically, Bq.(3.5) can easily be understood in the

out to bhe
Prsl

6-3 '.L.‘-,' J

'&kﬁe (3.5)

following way. The ions, being massive have g larger
momentum than the electrons and therefore they require a
much larger wave field to be turned around. This argument
fully substantiates the reason why an ion tearing mode
plays rather a dominant tole for the reconneotion pchess;
We shall discuss about these propefrties at a later stage

when we deal with the applications of this theory in
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Sebtion (5). | |

J At this step, it is of interest to compare the
saturation value of B, g having a typical value ~0.1Y

for electron tearing mode, derived from Bg.(3.4), with the
- value of BkS calculated by Davidson et al.(31). According
to their analysis, the expression for the growth rate is

/
,Yz _ wé: (kx\/°€>68k<s/mec

K

when the saturation occurs. Using the value for

given by
(3.6)
k
computed from Eq.(1.13) wherein 4%% A 0,2 secs. and
substituting this value in Eq.(3.6), we get B~ .09 .
We thus find a very good agreement between our two
theqretical estimates. We can therefore conclude that the
electron tearing mode would saturate after the amplitude
of the mode reaches a level of about B ~ .1 %Y in the
\geomagnetic tail region. fven though this value is larger
by orders of magnitude than the level required to saturate
the Coppi's type of tearing mode, it is still not large
enough to change the topology of the tail field where the
observed fluctuations in Bks is of the order of a few gammas.
The ion-tearing mode would then play an important role

since it saturates at a much higher value of B The

ks*
evolution of the electron tearing mode however would lead
to the heating of the particles near the tail of the

distribution function, To see this effect, we study the



quasilinear relaxation of the distribution functlon.§ (v),

vwhloh is valid for the particles having velocitieg larger

than the average thermal velocity i.e, Vk > Vth' We have

already elaborated on thisg point, earlier, and for

"further details,

we refer to the work of Shaplro(sg) The

,qudSlllnedr equatlon for the space averaged dlstrlbutlon

functlon <L, > is given by (Sheplro(52>) | :

%%p ) <e/mc( E -+ v;é_e,( ) g_svf

(5.7)

: r~
where the symbole < > stands for the gpace averaging, fé*
is the linear perturbed distribution function ag glven by

8q.(1.6). Only the electron terms are retained for/the

electron tearing mode, for the ion-terms are smaller by a

mass ratio, me/m.. (refer to section 1), In Eq. (146) we
write the induced electric field as the time derivative
of the perturbed vector potential Ak’ i.e. Ek{} L%?Ak and

Nk = ikAk. With these substitutions, we get (from Eq.(1.6))

e

4]

%= -& /A-A(ai‘{“>” <Yy SRS (3.8)
m.C k @ Vy Kv ~W PV e

Bliminating f_ between Bqs.(3.8) ang (3.%) and using the

Y e r~~ ) K
expressions for Ek and Bk’ in terms of Ak we arrive at the

diffusion equation,

2y _ s S ady 2 o )«
Vy ot G mIcE " On%E Sy, (3.9)




e

’Q‘Ak -ZX‘ “:3 ‘ 7 -
ot | (3.10)

Bq.(3.9) is valid for | Yklz < x° V and this Would

correspond to particles with velocities V 3> Vi~ This

would therefore allow us to tind an asymptotic solution for

Bq.(3.9). Making the substltutlon % = 1/2 ve?|ay | P /mlc”
~and 3% /ot = Zez|Akl2 k/m c? , ‘and wrltlng V2 w, we get

oo

 the asymptotic equation in the 1imit® V., -~ =,

<k = 47‘7

%f ot ow (3.11)

. a2
with the initial condition, < % =0 = (E } exp -

SOEEY <E> —mjmlk(%‘) kW dk, where fy (T )‘is thé;‘_‘f_;
fourier transform. Substitution of this expreSSlon in
. Eq.(3.11) gives,
2 2
S 5(T) - kvrf (o
%,;')* K™y 7 o (3.2)

Lrylowy _ Gal
with the solution fk(%'):z (O) e K VaT . Here £ (O)-’

"'is the fourier transform of the initial dlstrlbutlon

function at T= 0. Thus,

3y —% Vit (Yy=Vo O o) —ikw
/Qe %Z( e)jj et Aw

$.0) = (%)

—eg
Ve

%& 2 2
20 - § ) \ - 0 [
£ (o) ;éﬁ(%) exp a5, +(Vy ‘{e) }/oé_‘.lk C S

a,{V2 + V2 + (V -V )2} . To solve £q.(3.11), we express .




.

‘Finallj, ffdm Eq'(S 15) and (3, 12) we arrive at the

| dlstrlbutlon functlon in the form,

2 2 "
} L (o__()z/zé"({‘/z*(vv”f\l‘”‘)} o *k\l;'t thkw
= je e dk.
—o (o +ik)

(3.14a)
An explicit analytical expression can be obtained from Eq}
(3.14a) for szvg'b | << 1, i.e, a low level of turbulence
(ap<< 1). Also it should be noted here that the major
contribution of the integral in Hq.(3.14) comes from a

region where k - 0, since W is assumed to be large, Under

this approximation therefore,

L )/,. AJUT 4 (Vo) T oo ikw

£ =7 “ak e

oo (o + ik)(( + klv;“’c)

(3.14b)

with, Vy T/ Vi «<d |

The integral in £q.(3.14b) caﬁ now be solved by the contour
ihtegration method where the countour is chosen as a semi-
circle in the upper half of the complex plane since W > 0.
+ i/Vy 721/2. The pole

k = -i/Vy’T 1/2 is outside the countour and therefore

VIR

ia , (since Vy T:l/g/Vth << 1), and therefore gives a

The poles are at, k = i,

does not contribute. Also the pole at k = +1/V

small contribution compared to the pole at k = ia, and
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under this approximation we get,
N Ao o, \E :
{F>= ('7{) eﬁp~oc{\(x~1—\/£+(\/d'Voe)} 220y
| | (i-=vy )(3.15)_
The average temperature in the 'x' direction is therefore/‘

given vy,

(2 . ) |
1me [y, E>dv e Te(1+22) | (3.16)

This shows that there is a small amount of heating ahd,
the particles with large velocities in the x-direction
(confirming to our asymptot:c approximation) gain some
energy in the 'x' direction. This gain in energy is at
the expense of the streaming energy in the 'y' direction
and this quasilinear interaction can be looked upon as a
pitch angle scattering process. The streaming energy is
esgentially randomized and this appears as a small
increase in the temperature. This effect would undoubt-
edly inhibit the growth of the tearing mode, (which grows
at the expense of the streaming energy) but this effect
is indeed small (af << 1) and the final saturation of
our 'pinching' mode should be by the particle trapping

mechanism as mentioned earlier in this section.



Seotion 4 : Suppression by Lower Hybrid Turbulences:

So far, we have éxamined»the linear prdpagatiOn
characteristios ol the reconnecting mode and its intrinsic
saturation by the trappihg mechanism, In this sedtion;‘
fhe possible saturation of this mode by an external or
self-consistent soufces will be studied, In both laboratory
as well as'astrophysical plasmas, there exists always a
certain level of electrostatic noise generated either
locally by self consistent fields or by external sources

like the parametric heating processes. It therefore

becomes important to study the effect of Hhis type of a
low level turbulence on the linear mode, Such a tufbu~

lence is also reported to be present in the geomagnetic—
neutral sheet as mentioned in the work of Scarf et al.(SS).

In a magnetised plasma, the lower hybrid turbulence can

be generated in the frequency range, il} K< w2 <<§1€
because of the presence of currents parallel or perpendi-
cular to the d.c., magnetic field (see, chapters IV and V

for details and references) and in fact, this mechanism

is advocated as a suitable candidate for the seoonddry

heating scheme applicable to fusion machines. We therefore,

choose the’lower hybrid turbulence as the external source,
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vand Shéll study the effect of'thiSQtdfbulence on -the linéar
tearing mode described in earlier sections.

Unlike the previously considered cases, we shall
gtudy the dispersion properties in the limits when Voj >

or < Vthj‘ The latter inequality corresponds to the

regime in which the Coppi's results can be recovered. We

- 8hall, therefore, derive the general dispersibn relation,
without any restrlotlons on the particle drifts, V . The

same geometry, used in section (2), will be followed in

this section also, Further, the effect of the normal
‘magnetic field, will be retained to simulate the saturat-

ion of the electron tearing mode since it is the ion tearing_ 
mode that leads to the final reconnection, (Coronitti<22)).

We shall treat the normal field, Bzo %0 be uniform and we
/8hall further use the approximations of section (2),
nawely, a, f .. <1, q g > 1 ,; <lw]< ‘_Qzé

where () .= eB,o/® , 'o,' is the wave number for the

unstable mode in the x-direction.and Féi = Vthg/ _fl
The lower hybrid turbulence will be simply assumed to have
the propagation vector along the 'x' axis, since a threec-

dimensional propagation does not introduce a significant

modification in the results. Since the effect of lower
hybrid turbuleénce on the ion tearing mode will be primarily

congidered in this section, we shall describe the electron

dynamics, using the fluid equations while the ions are
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treafed by’Viasov 8 equation, In the high density 11m1t
pe/ﬂ.zJ >> 1 the irequency Specﬁzggﬁoi the - lower -
hybrid turbulence is given by Lﬁ J‘ (1-+ k'j 6)7 k
(Sinha and GOEWami(54)>, where 'k' is the wave number of
the turbulent spectrs and ig taken along the same direct-
ion as 'qx'. Ihe magnetic field perturbatlon due to the
tearing mode ig given by the relation B1 = V’x A A
belng the vector potential governed by the equatlon,\ ﬂfw 
~Y7 A = 4dnd/o, T = Je + J; where Ji = noefv.fi dv. The

electronic current, J, 18 defined by

~

j.-.e1 M&‘Y’la\/e (401&) ’

where Ve can be computed from the momentum equation,

€ 5C A ”> c T / V%H) 4,1}3)

The bracket < > indicates the averaging over the fast time

scale of the lower hybrid turbulence (Ref,34) and it leesw\ ’w

the ponderomotive force on the electrons, The ion-
ponderomotive force enters~through the Vliasov equation as
& gource term and this contribution will be shown to be
more important than the electron~ponderomotive force.

FThe ponderomotive force term in Eq.(4;1b) can be expressed

as

= My Vi VY ) - Z (VWI +§V x 2%1y8, (4.2)

where ‘ij' is the fast velocity component due to the




turbuient field

A L N
= (€0 E 5V, =(2 )Ekxﬁlﬁ |
\/g':;x‘ (/mj)ﬂszf > gy (”4) MT—‘Z;E (4.3)

In terms of the ponderomotive force, the current 3; can
now be computed to give

o~

¢ Ilt o e
where w;e = 4Ttne*/me  and n = ng sech® (‘A/A ). The
linearized Vlasov equation with the ponderomotive force
Pi after integration over the umperturbed particle
trajectories, enables us to evaluate the perturbed distri-

bution function for ions as

£ aaef AVoi- LAV ] 1Py £

; Ly (4.5)
m < ..Q. q/.;\(‘ m; .Q."ﬁ Vx)

x

where 'foi' is the Harris equilibrium distribution funct-
) 2.2 A\
ion given by g = <0(‘-/TL) é 1 eXp §-o (V5 + Vg ) =K (Vy=Voi) ?

. To complete the sét of equations
for deriving the modified dispersion relation, in the
presence of the turbulent field, we shall use the wave

kinetic equation to daescribe the turbulence, i.e,,

%Nk‘kvﬁ ViNg - 20 . I Mg = O (4.6)
ot o1 ‘
where N {bk[ /’ng is the plasmon occupancy number, Vg\

is the group velocity and ac«)k/ar is the change in the

Wi v - f By 1 unenBe_iamen(La)Buay
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’plasmon frequency due to thu linear tearlng mode,
Llnearlblng Eq.(4. 6) with respect to the tearing mode
perturbation and using the dlsper31on relation for

the lower hybrid mode, the perturbed plasmon occupancy

number is given by

s

. V2.2 o~ L |
N =~ ‘D’Qﬂm 3}\1 o P\g ‘) —Qay .
K (' he)q £ J/E’)O_Z (21-9-%) ,M 7)

. .’ oA A
CURUDLIE U Ay (2:00) "
v 5

Using the definition of "N, ' and Egs.(4.2) and (4.3), the

where 00 &
ay

ponderomotive term Fj can therefore be expressed in terms

of Nk as o
e (ﬂe-—[DK) e (Q‘: 3) me ym(é‘S)
- -{. =7 gx C-%L rl/‘j > (1< e l,)

Kk miw, 2x

Bliminating n, among Lqs.(4.4), (4.5) and (4.,7)
with the help of Eq.(4.8), and using the Maxwell's

equation

A
we arrive at the field equation for AV’
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.a ..‘? )A (flrce jgoc gm(A \/m QA v,)\, dv}

- 5 1 mi< L-q vx
~i4me (00 \/ B‘Ec! No n~
- .QTAN wPe A _Q ¥ /—) Ten C‘Og SN;K/QK Ey
= ﬂ’z et n, Ci, (me> LBy oF Id<(f?°tx"<a)
ﬂ .Q.CO (L, ﬂe) ]dk 3”"&*/9[(
03 m2z
“Q L8 ( f) Boz (2-9,%,)(4.10)

In Eq.(4.10), the electronic ponderomotive term is smaller
than the ionic contribution (last two and second terr
respectively of theright hand side of Eq.(4.10) by a ratio
51'/‘*>k << 1. We can, therefore, neglect the lagt two
terms in Eq,.(4.10). The fielgd equation for Ay, similar to

the one deriyed in Eq.(1.8) of Section 1, takes the form

2 Av + {D(ﬂ,%)secﬁz/)\. "‘li/\jﬁw o (4.11)

2 _ 2
Ujpi = 47e no/mi and

Sxm(vM ~Q1Ve Yy, dy
11<$v

- B 3 95'04. IN o
R s
Eo (1-9, Vx)(ﬂ 9Yq)

ﬁ—bDPe.fl + Q" —j
,07 c*
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~hq (4 ll) is exactiy similar to bq (1.8) in the absence of
the ponderomotive force term. Using the boundary conditions '
employed previously, we get, finally the following dispers-—

ion relation, _
' “N = 4N .
DY) - L) 5 gN = (4.12)

From this relation (4.12) we can now derive the modified
results of tearing mode due to the background turbulence
for the limits when Y >> qVyy (our type) or Y << q in
(Coppi et al., Galeev etc.). Pirst, we will solve the
case when Y >> QViy - Evaluating the integrals in
D(Sl-,{qA) (Eq.Q.li) over the velocity space with

| 2] >> q, Vs, we fina

% 2 2 2.
NE o (U»))-\—LQPL? _ Vo, &
<§+ L‘.)_FS)_CL {/_\ } % %2 ‘

~e
2 AN
+ 0 Qp g U Voi [ oMk, /o dk
.”4 "2. "
BE, 0 (£2-9,73)

(4.13)

For the background turbulence, we can choose the equili-—

brium dlstrlbutlon function for the plasmons, Nko to be

N (‘/TEA) “exp- (ke ) “/n (Sizha and Goswami(34)

ko
Guzdar(55)) where A is the width of the turbulent
spectra and ’ko' is the peak wave number. The resonant

denominator of £q.(4,13) gives a contribution analogous
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SR o .‘ kyl 5 |
Using Vg: Wk = 2 (Jl1£1e> kf;

to the Landau‘dampihg.' 5

we get,

e

o I 2 VR
(1+ 2reya’~ { & elmray - gyl
. A' ’ n=

+p 0 9V, a__(y.@) - o
ijpﬁz 312 ‘ak \/3:-—-(_1_- o .
A (4.1¢)
Comparing fig.(2,7) with BEq.(4.14), we immediately find that
the lower hybrig turbulence has‘a‘stabilizing influence on
the lon~tearing mode. Thus, in the growth-rate expression

derived earlier (Bg.(2.10)) (Voi)2 has to be replaced now

by
)
Y9~ 14/,

Depending on the various paramsters and the strength of

1.
< \'/blz - L q’.x Vot la.lj{k'a
2
Boz ok

turbulence the growth rate can new be reduced or even
Teversed in sign giving a net damping. For a laboratory
plasma, it would pe important to see the effect of the-
turbulence on the Coppi type of tearing mode having a grOWth: f
rate that satisfiesg Y << thhi. A rigorous analysis of |
the linear mode of this type has recently been studied by
Galeev and Zelenyi(zo) in which they have shown that the

ion~tearing mode can only appear in certain 'gaps' in the




‘ﬁégnitude of the nﬁrmal fiéld component,-Bﬁo. Presumébly;
we can interpret from their remarks that'the ion;tearing
insgtability manifests when the electrons are captured by
‘,the Bzo component; yet it doeé not imply that the electr-
ons arelstrongly magnetiéed (in other words, the typlcal
wavelengths of ion-tearing mode satisfy the relation,
qxfe,< 1). In these circumstances, both the displacement
current as well as the electronic terms are small compared
to the resonant contribution of the ionic term (Galeev

and Zelenyi(Bo)). From Bq.(4.11), we can, therefore, drop

these two terms and use the approximation, ] [<< thhl

to get

: w2 _\'
D(2,9,)- - (2 ) iop 47 j CRLIAED

(4.15)

Again taking, pN

. (! /77:f\)/~ exp ~(k-ko) Vs 2 W

kQ ak
Bq.(4.15) with'klnormalized to A 1/2 can be written in
the form '“(““kﬁ)jax
R AP y SN e
P (1_7: )+ g Ng 7 Sy G o€ Vo | 2 | A/l
e 9 Vi %, T iz, | Bk/al2
FAN Do ‘{x(n_‘u{_ﬂp) % e e 0
) [k _ ,-;ELM ) -
TR e

or
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c (04 VD /N =
~ (kK>

”,.l/zw[) (‘;_Q—V )+L1’QN wpﬂ g4 C\/cu { o e
i 38, pia(naa,)"% K
(k=1o)  (4.18)

/
where /;/-: /Q/A’/z 2 K= k,//\:/z 9 Ke = ”Q/ /, £ (.Q Q /.\)'/2
and C - JN‘,(‘:)/; ey 20( - Voc/’:’;t&oﬁj’ A (/(_Q {2, YV .

The integral of Bq.(4.16) can be evaluated in terms of the,\l-'

prln01pa1 part and the pole contribution, under the appro-g, ‘\
ximation (k >> K_, which corresponds to -{-ﬂ/ [<< V) to
O - ?x &

give

2

R+ /AT

¢ ) A ._G—kc) o (Ko~

~n\//wp ("*Q + 1C, [f§ 9/“k’€ T”/ J(4: 17)

The principal part is unimportant in this problem since it
essentially gives a nonlinear Shift in the real part of
the frequency. We shall, however, drop it from £q.(4.17)

and use L/ = k"/A//z’»‘ K, to obtain

) ,
N -Ko /A '

2
Nl /O" A b

T

Writing N"wk/ﬂo'ﬁ = W = Energy density of waves norma-

lised to the thermal energy and f = 8nn T, /Boz’ we have

M?"n

AR

s o

{1 - (¢ p(h\){ ‘/H“) ic W‘%“Q )C”fh kg\/(,,- (4.19)
%.'3/2J\,/;\ ‘ £a(0;,0,4)"
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Finally, Wb‘ilnd that the growth of ion tearlng mode is
retarded by the presence of the damplng factor which
arigses primarily due to the lower hybrid turbulence. For
high 'g' plasma the effect is more pronounced and this is
indeed the case for the geomagnetio neutral sheet whefe

B 5) 1. Thé physics of the stabilizing influence of the
turbulence can be most eésily understood based on the
ponderomotive force formalism, The magnetic field
perturbation due to the linear tearing mode alters the
plasmon frequency ( o)k) The perturbation in W' in
turn gives rise to a ponderomotive force which inhibits
the current streams from piﬁching any further. The phase
matching condition for the perturbation and the ponderomo~
tive force is fultilled when Vg = 9y, /ok - il/q;.that
i1s, when the resonant interaction occurs. Recent satellite
data does seem to indicate the presence of the lower hybfid
noise in the tail region as reported by scarf et al, and
might therefore contribute significantly in sustaining the’
current sheet both at the onset as well as the recovery’
phase of the substorm. We shall discuss thig point furthér'\
in the concluding section baéed on their relevance to

observational facts.
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Section 5 Applications and Conclusions:

The theory developed in the preceding sections
allows us to make certain predictions regarding the
reconmnection process ot the oppositely directed magnetic
field lines that can arise out of current sheets present

in a given magnetic configuration. We have not incorpo-

rated any resistive effects as we expect the magnetosphe—

ric plasmas as well as the high temperature fusion plasmas

to be virtually collisionless. The resistive theories

of the tearing mode (Furth et al.(15), Rutherford(56),_

Hazeltine et al.(l6) etc.) are not applicable to the space

plasmas and it has been shown recently by Drake and Lee(23>

that the fusion plasma at the most could be semicollisional
(w > 72; ). Very recently, the importance of collision-
less tearing mode theory for tokomak discharges has been
realized., In fact, the m = 2 mode, observed independ-
ently by Mirnov'57), igs identified with the tearing mode
in the tokomak experiments., Before we contemplate on the
applications of our theory to tokomaks, we must take into_
cognizance some of the important differences between the\”'
tokomak and tail mﬁgnetie field configurations. As
depicted clearly in figures (1) and (2), the non-zero
magnetic field is parallel to the current direction while
it is not the case for the geomagnetic tail region.

Further, for tokomaks, the parallel field is much stronger
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than the oppositely directed field (poloidal field) which
is in contrast with the requirements in the tail region.
Perhaps, the most important difference is the fact that
the triggering of tearing mode depends crucially on the
paraméter E.Eo which assumes positive and negative valdes.
Thus it becomes immersely difficult to establish a
connection between our results and the tokomak disruption.
These discrepancies call for a repetition of the above
calculations for a tokomak geometry, Under the thin sheet
approximation, i,e, A/ﬁ‘ﬁii ( fi being the gyroradius
in the parallel field), however, our results may be extra-
polated to the tokamak observations. It is worthwhile
noting here that the Coppi type (and later developed by
Galeev and Zelenyi(so)) of tearing mode will totally be
inoperative in the tokomak configuration since the reson-
ance interaction of the partidles with the waves will be
completely removed by the presence of the parallel field,
uhder their approximation A/?l>> 1.. The elimination of
Coppi's type mechanism clearly paves the way for a tearing
mode theory of our type, possibly operative in the tokomak
regime, since the time scales in which the current sheet
disruption occurs are much faster than Coppi's. In the
light of our previous arguments, a need arises, therefore,
for a re-investigation of our theory tailored to the

tokomak conditions, In any case, the reported observations
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16f(the iabofafory éxperimeﬁts‘offtearing,mode are far too
imprecise at present to make any meaningful comparison

with a theoretical model. The geomagnetic substorm provides
a better ground for the applicébility of our theory, The
most significant observation that brings into the focus of
our theory is the satellite report by Nishida and Nagayama(27)“
regarding the formation of the x-type of neutral line. Tt
is speculated that the substorm is intimately connected
with the\fo:matiqn-of the x-type of neutral line in the
geomagnetic tail wherein the magnetic energy is diésipated.
We shall, first, review the observations of Nishida and
Nagayama(7>.

The substorm phenomena is divided into three main
phases: (1) The growth phase is a period in which the
magnetic flux is transported from the day side to the night
side giving rise to an induced zero order electric field in
the east west direction (aligned with the y-axis in our
geometry ). This electric field strengthens the tail
currents which in turn reduces the normal component of the

magnetic field Bzo’ (2) The expansion phase is signalled

as the component,BZo goes to zero, that is, the tail field
lines become parallel to each other and there is a rapid
dissipation of energy. This phase is often called the
explosive phase, During this phase, there.is a sharp

increase of the Bzo field (Relaxation towards a dipolar
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contiguration) for X < 12 Ry but the field never turns
southwatd (the X-direcfion‘is along the sunmearﬁh line and
is aligned along the x-axis of'our geometry, The North-
South direction is along the 'Z! axié), Beyond X % 12 R,
there is a sharp increase in Bzo in the higher latitudes

and in the region somewhere between 12 Rp < X <35 Ry the

component, Bzo turns southward for lower latitudes (closer
~ To the neutral sheet taken in the xy plane, Z = 0). (3)

The Recovery phase, is characterized by the quiet-time
cofigurationvin which magnetic field topology returns to its
original structure that prevailed before the growth phase;

To understand the sequence of events described

above, we must visualize the quiet period as the equili-

brium configuration in which the current sheet is stable
against the tearing mode perturbation. This state is:
achleved in our case if the drift velocity of the particles

is small so that voj <V In this case, only the Copp!'s

thj-*
type of instability can be operative and, however, this
mode will eventually get quenched in the presence of a
normal field B, which is quite significant (for

BZO/BXOQ: 0.1) In the growth phase, the magnetic flux
transported to the nightside will give rise to the induced
electric field Eoy which, according to Nishida and Nagayamai
is as large asf.l mv/cm and is thus effective along the

current direction for a distance over 12 RE. This field

will then accelerate the particles and the mean gain in
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il

the energy due to this field will be given by 1/2 my vy
a Eoy L. Tor typical values of B o1l mv/em., L = 10 Rp,
the particle drift becomes vegzlo9 cms/sec. The particle

acceleration takes place only along the neutral sheet (e o

Z/A"<< 1) while for Z/x > 1, the particles only execute
the Eoy be Exo motion, This E x B motion leads to a thinn-
ing of the plasma sheet and this feature is mentioned in
the work of Honeé et al.(26). The average temperature of t
the electrons during the growth phase is about Te_z 100 ev,
corresponding to Vipe ™ 108 cm, (Akasofu(sg), Hones et.
al(26)). As we have seen in section 3, even a small value
of Bzo can stabilize the electron tearing mode and there-
fore the expansion phase can start only when on falls
below this value. (The ion temperature being larger than
the electron temperature and the mean gain in the ion
energy from the induced field being smaller than the
electrons, the condition VOi > Vthi’ cannot be satisfied
for the ions in the pre-expansion phase and hence the ion
tearing mode will remain stable), As Bzo falls below
Bzoéﬁ 0.1. (satisfied more easily for distances further.
down the tail) the electron tearing mode is excited and

the reconnection process is triggered. This forms the
near-earth neutral line and along this line the ions are

further accelerated. The electron tearing mode is

however quenched at a low amplitude (Bksfk 1Y ). In
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this prchSS, the ions gain enough drift energy from the
field énnihilation to.excite the ion-tearing mode which
ultimately causes a major change in the magnetic field
topology. The necessary conditions required for our
theory to be valid are therefore easily satisfied during
the expansion phase. The plasma sheet thins down to
almost the ion-gyroradius limit (Hones et al.(26>) and
the electric field along the 'y' axis is large renough to
accelerate the particles to the required velocities |
(VOi > Vthi)‘ After the stabilization of the electron
tearing mode, the possibility of simultaneous excitation
of the ion-tearing mode as well as the lower hybrid mode
arises and the latter type leading to certain level of
turbulence igs already reported by Scarf et al. In the
presence of the normal field (after the saturation of the
electron-tearing mode), the lower hybrid turbulence is
generated by the two stream mechanism for Voi > Vthi
(MeBride et al.(SB)). This turbulence will continue to
exist even after the electron tearing mode is saturated

and it could be responsible for preventing the total

collapse of the current shest. As we have seen, in section

(4), both our type as well as Coppi's type mode can be
stabilized by the lower hybrid turbulence. We expect
that such electrostatic noise sustain the current sheet

through the expansion phase which will help in a rapid
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'_frénsitidn to.the pre-substorm State inlthe r600very phésé;
wﬁich'is in éonformity‘with the observations by Hones
et, al(26), Nishida and‘Négayama(27), Akasofu(BB) ete.
Pinally, the predicted high grbwth rates in our nonresonant
model 87%53 .2 Bec) agree very well with the fast changes
in the magnetic field topology near the neutral sheet .
The suppression mechanism developed in Section {%)? H

could also have some relevance in the bokamak discharges 1
where the tearing mode is observed, The presence of the
lower hybrid turbulence would then improve the stability
of 'a system by quenching the tearing mode.

PR In conclusion, we find that in a magnctlo nonfigur~
ation containing a neutral sheet an.electromagnetic .

ingtability can be excited with a large growth rate

Cﬁiiﬁ>'kvv -,) whenever the drift'veldoity~ij”éx068ds?¥w‘«p

the thermal veloclty -of partlcles The ‘electron mode 1s
stablllzud at a- low value of the fleld amplltude

(Bksfb 0,1Y ) and the subsequent reconnection - lsﬂaohievedf""
by the 1on—mode.~ The quasilinear effects play only & '
secondary role and leads to 'a small heating. The preésence
of a lower hybrid turbulence has a stabilizing effegt on
the ionstearing mode and would possibly sustain the
currenti-sheet from the ultimate collapse. 7Thevgeomagﬂéa

tic substorm can be interpreted freely well within the




o)
0
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framework of our model and the hlgh growth raté of our

1nstﬂb11ity Would well - account for the explosive nature
of the expangion phase of the substorm,

The particle acoelération.mechanism still remﬁihs
an open question and would be an important toplo ior
further research. Tne exact saturatlon mech%nism of the
ion-tearing mode is yet another outstanding problem, T+
is of utmost importantance to know the saturation levels
for this mode in order to make any prediction about the \

final topology of the magnetic field configuration,.
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APPENDIX - I°

The Harris Equilibrium:

The steady state Vliasov equation can be written as

(1.1)

YE = anseffdy, (1.3)

AU

There is an equation like Eq.I.1 for ions and for electrons
with the appropriate values of e and M, The summations,;;\\ 

are over species of particles (ions and electrons) with

appropriate e and f. It is well known that a solution of
Eq.I.1 is given by any function of the particles constants

of the motion., If we consider E

~ 7

B, and f which depend only
on one .co- rdinate (say the z-co-ordinate), then we know
that the energy and the momenta conjugate to y and x are

constants of the motion. These are

W= L M2 2 y02) + e @, (I.4)
py= MOy + & Ay L) (L)
by = MUy % Ay (2 (1)

-~

where A() is the vector potential. We assume that B has



only an z-component and B has'only a‘x;component. Then,é
may be taken to have bnly'a y~-component, It‘is convenient
to rearrange Eqs. 1.4, 1.5 and I.6 to give the constants

of the motion

2 pA
=B - %/?c@‘é Ay = 5 ’W tEP (1
dp= By + Fo By (1.8)
0(?’ = LQ*)L (I.9)

There is a set (al,az,ag) for the ions and another for the
electrons; they differ in the values of e and M they oontain.'
The solution of Bg.I.1 ig f = f(al,az;aS). Substituting
this into Egs.I.2 and I.3 gives two coupied differential
equations for ) and Ay' The nature of the solution will

depend on our choice of f and the boundary conditions.

We will assume that at z = 0 the distribution
functions are maxwellian centered about some mean velocity
in the y-direction. That is

N Bh_
- - M 2]
§i~ 1ﬂ9 N)QXP[ bi +(ody — \}).+d5§<1.un

&

(%9) N QX)D[ Lo{,) ‘?‘(OZ V@) *dg]](I 11)‘

il

f.

where Vi and Ve are the mean velocities of ions and



electrons respectively, If qu{Ihlo and I.11 are substit-
uted into Egs.I.2 and I.3 the following equations for the

potentials gp and Ay are obtained

fae el -ge) - @—xb[ 2wy
} (L. 12)  ,, .,

ml rt;

A*by ~ B :
a2 R viexp[(r iy - S@)] - Ve exp[(

(~ @%\/9 Ay +§—~Cp>]} (I.13)

We note in passing that if Vi =V, =0 then

(9 = Ay = 0 and there are no fields and no confinement of

the plasma.

We now assume that Ve = —Vi = -V, This may always
be made true by transtorming to a reference moving with thg;f*f\
appropriate velocity. The fields found wili now he those .
in the moving reference system. With this assumption

Egs.I.12 and I.13 become

O\ — 4T Ng exp[ \/ﬂg)}{@ipﬂ ”“CQ f (I‘.lé)
2 exPLU*CP)ﬂ

d’hy _ ‘WNQ \ Xk R@Q ’D‘Jm@‘ o[ (- Z%CP)](I 15)
dz? + expf( w@)ﬂ |

Eq,I.14 is clearly satisfied by CD




Lq I.15 then becomes

‘cl./%y: gm\@V pr[( AV)] (I.16)

dz’
If the boundary conditions are taken to be
Ay =o (I.17)
and
, %1‘ 2:..[‘}:\'}:0

27T (I.18)

at z = 0, then the solution of Eq.I.16 is

| . zZV |
— — 288 0g cosh | = (I.19)
Ag Y (QLD>

From which we find the magnetic field

In the above

o ,
Lp= \/.mNe% Debye length. (I.21)

The conservation of the total pressure (thermal plus the

magnetic pressure) gives the following expression of
density 'n',

\3“ — const, (I.22)

MNMUTe + = 8“

Using ®q.I.20 we geta

. 2 .
=M Sech (&)

;B HNG t&z“( | (I‘zéo ) : .



CHAPTER IIT

PLASMA INSTABILITIES DRIVEN BY VELOCITY GRADIENTS

- Introduction

In the previous chapter the theory revealed that
the stability of a system could be afféoted significantly
in the presence of an external source. It was shown that
an electric field present along the neutral sheet could’
freely accelerate the particles, which in turn 'triggers'
the tearing mode. Away from the neutral sheet the electric
field cannbt, however, accelerate the particles and it
gives rise to an EXB motion. This velocity is not generally
homogeneous and can have a considerable amount of shear, In
a theoretical study Kan(l) has proposed the existence of
such a shear which accounts for the observed thickening
of the plasmé sheet in the geomagnetic tail region., This
velocity shear in a plasma fluid motion manifests itself
as an additional source of free energy aﬁd can further
alter the stability of the syétem. Our purpose here, has
been to study the low frequency instabilities that can be
triggered in presence of such a velocity shear. The analy-
sis 1s not restricted to a neutral sheet configuration only.

since non-uniform electric fields are known to exist in



71

many laboratory experiments (e.g. Q-méohines, tokamaks etc.).
Purther role of spatially  non-uniforp particle drifts has
also been discussed in many laboratory studies, for inst-

ance, in pulsed plasma heating (Wharton et al.(z)) and

rotating plasma devices (Lehnert(z)). In a bounded plasma,
the difference in the diffusion rates of charged species
across the confining magnetic field leads to an accumulat-
ion of charge near the surface. This produces the non- _
uniform electric field and we know that the Kelvin-
Helmholtz (hereafter referred to as KH) type of ihstability
can be driven unstable in the presence of such non-uniform
fields. This type of instability has been already observed
in the auroral ionosphere region (Hallinan and Davis(4)).
Further, the recent work of Hirose and Alexeff(5) is an
illustrative example in which a variety of high frequency
(> gl;) electrostatic modes are excited in the presence
of sheared velocity along the across the magnetic field,
Although these high frequency instabilities are directly
responsible for the enhancement of éffeotive electron-
electron (and electron-ion) collision frequency and the
anomalous skin effect they do not contribute to the
anomalous resistivity as the ions are unaffected by these
instabilities. On the other hand, the low frequency

(W <.£11) plasma instabilities do play an important role
in the effective ion-heating. A part of the present work

will, therefore, be devoted to studying the low frequency
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ingtabilities in detail.

Interfacial plasma instabilities (of KH type) With
shear velocity parallel and perpendiculér to the magnetic
field has been thoroughly inﬁestigated by earlier workers
(D'Angelo(a), Jagsby and Perkins(v), Jassby(Sb). At ﬁ@}@
step, 1t is important to emphasize the physical process
involved in the excitation of different types of modes which
depend on the velocity shear. For the development'qf
transverse KH mode in Q~-machines, studied in.partigﬁlar by
Jassby and Perkins, the main physical process is the centri-
fugal effect, which causes differential motion between
electrons and jons leading to the charge separation and the
resultant instability. Although similar types of modes are
alsé ‘excited in a slab geometry (Nﬁkha;loviskii(g)iand
Chandrasekhar(lo>), the excitation mechanisms are distinctly
different from the earlier ones. In the latter case, howevér,
the prooeséiﬁahffésts in terms of varying drift velocity (dué
to noﬁﬁnifbrm electric field or other inhomogeneities) giving
rise to spatially separated streams in the plasma, which
are possibly responsible for driving the system unstable.
Thus the extensive results presented in this chapter are
associated with the latter type of physical phenomena,

Iwo important frequency ranges are considerably stressed
in this chapter and these frequency domains clearly
demarcate the regions in which the low or high frequency

modes driven primarily by velocity gradients are triggered.
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Further quantitative results'included in our analysis

comprise of the effect of a turbulent spectrum of lower

hybrid waves on the Kelvin-Helmholtz instability wherein
the electron dynamics alone plays a decisive role in the
triggering process., A coupling of thiis type is motivated
by Jassby's(ll) observation that the generation of high
frequency electrostatic noise (the frequency spectrum of
which is not exactly identified) instantaneously accomp-
anies the suppression of Kelvin-Helmholtz mode for .
increasingly large values of radial electric field.
Possibly this noise could be due to the presence of lower
hybrid waves. It has already been shown by Stringer and

Schmidt that in the presence of an inhomogenous electric

field, a relative drift between electrons and ions can he
maintained and this drift, in turn, can generate the lower
hybrid mode provided the relative velocity exceeds the ion
thermal velocity (McBride, et al.(lz)). Therefore, the:
lower hybrid mode having a much larger growth-rate

( Yz >> Q) thean the Kelvin-Helmholtz instability

( Ygg << L2,) can quickly go over to the turbulent stage
. .and ih that event it would indeed be important to study
the effect of this turbulenwve on the Kelvin-Helmholtsz

Instability.

The plan for this Chapﬁer is thérefore as

follows:
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In section 1 we study the low frequency linear
instability driven by the velocity gradient while in
section 2 we study the effect of the lower-hybrid turbu-

lence on the low-frequency Kelvin-Helmholtz Instability.

Section 1 Low frequency electrostatic instability in
presence of velocity gradients

We consider an inhomogeneous plasma embedded in a
nonuniform magnetic field, BO along z-axis of a slab
geometry., The plasma density and the magnetic field’Vary
along x¥-~direction. We assume a shear drift velocity, Vo(x)
for the charged particles directed along y-axis. The
velocity Vo(x) is produced by an electric field EO(X) and
can elther be a self consistent field or an externally
applied field, In the former case, there will be a certain
amount of charge imbalance in the equilibrium. The effect
of this non-neutrality has a pronounced role only for the
low density plasma, i.e, Vi/cz >> 1 (Alfvenvelocity,,&{=L
2 = velocity of light) and the effect becomes insignificant
for the high density limit i.e. (V9/e® << 1) (Stringer and
Schmidt). Since we shall be working in the limit (VZ/c®<<1)
this effect will be ignored in our analysis. This will be
rigorously true of course for the case of an external
electric field. Since we deal with a general situation,

the functional dependence and the nature of particle drift
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velocity will be kept arbitrary at this stage. We shall
now study the stability characterisbics of the above
equilibrium configuration; using the fluid equations for
both ‘electrons and ions. Finité temperature effects (and
the stabilizing influence of Larmor radius corrections)

will be ignored throughout our analysis for mathematical

simplicity. Seeking an electrostatic perturbation of the:
flute type Ux) expi (ky- (yt) where q represents a
typical perturbed quantity, the fluid particle drifts in

the presence of small perturbed electric fields are given

by

,\Z‘.: (Fi(wug.f'kqbﬂ)/[g(ﬂxtda\f;)-—w;] (1.1)
j(ﬂer\/o)Co%.‘P w0, V}_Q(Q.ch\(o) (_o] (1.2)

where @ is the electrostatic potential, _(L , the cyclotron
frequency and W, (= O~ kVO) is the Doppler shifted
frequency. The other symbols have their usual meanings. If
n, denotes the equilibrium guiding-centre density and &n its
perturbed value, then conservation of guiding-centre mass

demands that

{w, N = K, \/ + tk\/ +‘i\i (1.3)

o

Where K stands for (d/dx) (1ln no). Substituting the

values for %x and %& (Bgs.(1.1) and (1.2)) and using Bq.(245)
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e
,together with the Poisson's equation V@ 4 ane

(én. ~ &n; ); we finally derive the differential equation for

d5 in the form

Aif + Bngqub (1.2)

where A, B and C are functions of x and other physical

parameters of the problem and are glven by the expressions.

At oo f[a(erde)-n?]

B= 5wp [Kn{ﬂ(ﬂ+0§/;)—w;‘}- 2 kw,d Vs

(1.5)

dx

_ (Qd¥o 4 Q.Q_Aﬂ- +dv dﬁ-ﬂ / [Q(_Q:fc(\/o}_ w]

dx?
(1.6)
. _,Ql¢ decagi: E]{(OD*(L69.+<ﬁV )f
+ <CO *fﬂ_)d"Q" +A’) O’
A% dX
ricod ol (4] fofa o]
(1.7)

where the summation sign extends over the species and o,

is the plasma frequency. We note from Egs.(1.5) to (1.7)
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that the effect of velocity shear becomes irportant only

if dVo/dx is comparabie %o cyclotron frequeney:; Since in
actual experiments, it is difficult to realige dVb/Qx of

the same erder as ila , hence the discussion iﬁ>the forth-
coming sections will be confined to dvo/dx ﬁi;fl{ . Purther,
the application of guiding-centre approximation limits our
consideration only to low frequency waves with long wave-
lengths (gredter than ion larmor radius) but still shorter
than the plasme dimension, (Kgl), Thus in the subsequent
sectiong, the dispersive properties of Bq.(1.4) will be

discussed in detail for local and nonlocal régimes.

Liocal Dispersion Relation

To begin with, we shall derive the dispersion
relation ¥alid under ‘local! appfckimatiéﬁl(N&khailovski(g ));k
For a typical density perturbation, we shall: assume that
the wavelengths, Aj (= 2n/K) is small compared to the
characteristic distance over whieh the equilibrium
quantities such asg density, velocity and magnetic field
vary. Further, we shall agsume .Ax > Ay ; where Ax
is the wavelength along x-axis., Such situations ¢an be
realised in magnetospheric plasma sheet regions Where the
wavelengths along north-south direction could be large
compared to the wave-length along the dawn-dusk direction.

Thus neglecting the terms involving the derivatives of ]
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and the electron velocity gradient (compared to lle ) in

Eq.(i.4) we get the ldcal‘disperSion relation

- K >
KMO( + e 2 \<Y‘\'"K|5—— k ky&, = O (1.8)
gt kou, 4 Mateck Kk
% ol ~O~L°(’2 woe < ¢

where o = 1 + B and B = (dVO/dx)/jla . The quantitieé

Kg, Vy (<< c) and ¢ stand respectively for inverse scale
length (d-jlz/dx)/lll , A1fven velocity and the velocity of
light, The subscripts i and e identify the ion and electron
species. In deriving the dispersion relation (1.8) it is
assumed that (dVO/dx) is constant (linear velocity profile)
and § < 1. £q.(1.8) being a quartic in wd,;, can be solved
in general for the roots using standard numerical methods.
However, we shall examine a particular case when V V VO.
The particle drift, VO, in this instance can be visualized
as a consequence of EXB motion, E and B being the externally
applied nonuniform fields in the system. Furthermore, |
assuming 1 >> ((Doi/le )2 >> (m/M, Vi/oz) where m and M

are the electron and ion masses, BEg.(1.8) reduces to
(@oi /001)%= - P knt - (+1)Kp T (1.9)

which olearly admlts complex roots as solutions leading to
elther grow1ng or deoaylng perturbatlons. Thus we find that
the low frequenoy 1nstab111ty drlven by the velocity

gradlent (elther for positive or negative slope) arises in
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’this’limit~and-dlearly the magnetic field‘shear dohtributes
t§ the stabilization of this,instability,_proVided its
gradient has the same sign as the density gradient. .Also
we note that the growth rate varies dlrectly as B 1/3 dhd
inversely as (KLn)1/3, where KL >> 1,ab9ing the scale |
length of the density gradient (= l/Kn). astly, it must
‘be remarked that the above instability does not arise ih ’
the limit B << 1. For this case, 1t may easily be verlfled
that the second term [which originates from the express~
ion for G in Eq.(1.7)}in £q.(1.8) drops out and conge-
quently the relation (1.8) becomes a quadratic in .
This situation will be considered next,

For the limit when (COoi/KL; 2 <« n/M (or Vg/cg)

Eq.(1.8) can be revised in.the form

o= Kn | k- S (2, o +a T \/C q)’o(i 10)

‘9( Wol Woe

{

M

For V Voe’ we note that there exists no lnstablllty
while for V . # Ve £9.(1.10) can be solved to give the

roots
W =k (Voe tVoi )+ 11, (P+9) {kl(\/oe‘ Vei)*
" o_j(m)h Qkﬂz(Vo(*\/oe)<9~q»)}‘/z

(1.11)

where the quantities P and q are given by the expressions
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. (kg-K %)/[kﬁz xR )]
- (kn-kp) o/ [w{2" "“"‘(M*Vwﬂ

Noting that | P +q| < |p-q| for B < 1 and assuming that
VOi > Voe we find that there eiists a low frequency insté-
bility, in the absence of magnetic field shear provided
K, > 0. In the opposite limit (Kn < 0) the low frequency
mode becomes stable. In the former case, the ranges of

wavelengths for which the Llow frequency unstable modes

occur are defined by

p-9 > k (Yor-Voe ) [0 > p+q, (1.12)

The physical mechanism responsible for this instability
does not depend on the velocity gradient. The instability
arises due to relative streaming between electrons and ions
in an inhomogeneous plasma, As such this instability will
be the analogue of Kelvin-Helmholtsz instability for trans-
verse streaming. Similarly the same conclusion will hold

good for the cage when B << 1,
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Non-local Effects

The local theory déscribed above gives a fairly
clear idea that the growth rates (Eq.1.9) essentially depend
on thefiniteness of velocity gradient., We, however, note
from Bq.(1.9) that, for B - 0, the doppler shifted frequency
also vanishes and thus poses certain difficulties in the
applicability of the local theory. Even though a velocity
profile given by V= V_(1 + x/L) will never allow Wo

to vanish (singce dVo = constant) this profile is an over—

simplification anddfn practical situations the velocity
profile departs considerably from the linear spatial
dependence. In such cases, the gradient is no longer
constant and may even vanish at certain regions of space, In
this region, the differential equation (Eq.1.5) becomes
Singular differential equation and the local theory breaks
down. We now examine the modification of the dispersion
characteristics that omne encounters in a more realistic
velocity profile. For the purpose of our demonstration, we
shall choose the profile to be V = V_ sech® x/L which
simulates the jet-like profile that commonly arises in
Laboratory experiments. In this case, dV/dx = ~ZVO/L

sech® x/L %anh x/L and the gradient vanishes at x = 0. The
maximum value of [dV/dx| occurs when sech® x/L = 2/3 and

we shall assume that the condition, (1/0;:) ev/dx =(2/ﬂ1)VO/L£},

is satisfied, At other points in space this approximation
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will be 4v1dently valid as dV/dx is maximum at. sechgx/L~2/3
.Let us suppose thﬂ+ | ] attains meximum value at x = §
Where & = L -sech” (2/3). Along the x-axis, we shall now
divide the region in two parfs defined by (i) 0 < |x]<8

and (ii) 8 < |x|< « which correspond to singular and non-
singular regimes of the differential equation (1.5),
respectively, To‘érrive at the modified dispersion relat-
ion, we shall solve equation (1.4) in these two regions
separately and match the logarithmic ‘derivative of the two
solutions at x/L = &, In the region typliled by & < X < oo
the doppler shifted frequenoy does not vanish and therefore
we can obtain the W.K.B. solution of Eq.(1.4). As such,

we Shéil assume that the velocity 'V! changes slowly i.e.
KL > 1 except at the point where dv/dx = 0. In the regidp
5 < x < o this approximation is clearly valid and therefofe
we cén neglect QEQ compared to 4 and @. This immediately

ax? dx
gives,

_d_. @ncfb =—~62./B

adx 2 2 | (1.13)

where the Subscript (2) is used to denote the gquantities in
the region (2) given by & < x < = and C, and By are the
coefficients as given by Bqs.(1.6) and (1.?) respectively.
In the region (1), we shall make the following transfor-

mation of variables, from x to V, where V = v, sech® x/L.

Thus, noting QI - dV d &dl ) c(z\/. :
x dv  olx* &V7 dx? JV
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we can rewrite Bq.(1.4) valid for region (1) as

A (dJy 49 +{A((di\’>.+5,(d}» }@“? ¢

dvl dx* dx) gh'* 1H = 0 (1.14)
From Eq.(1.7) we therefore find that the pole o, = w- KV,
is reduced to a regular singular point by this transformat;
ion in Bq.(1.14). Near the point x & 0 (where fhe singular
point occurs), the first and third terms in Bq.(1.14) is
vanishingly small as dv/dx vanishés at this point. Therefore
the solution of £q.(1.14) is govermed by the following |

equation: in. .the neighbourhood of the point x = O, namely,

d L')"L ¢ = - C_:J d\//dx
dx A, AV (1.15)

The solution, g, is valid in the region 0 < x < & and the

major contribution arises evidently near x 2o~ 0. We compute

. . av d2
the functions = » 35 around x = 0 to give
X dxg
d{’ru(?f"_ - kw? (-2V, ox
dx ﬂa‘ >/(“- 7 [95) (1.16)
L

Here the values of A and C, is substituted from Bq.(1.15)

and Eq.(1.7) valid for the region xo~0. Matching the
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1o zarithedc derivative of g, and ¢2 at x/L = § we obtain

the modified dispersion relation as,
2.
..Cg/B2 a8 " 2k g Q; [_1 (__VQ)J&
. Do (Q*+ @fiﬁ) AN T/

k__(__aPL l'in_np -+ kCJOQ‘ z {(JJP( " «Qk‘—op L‘Obﬁ 2 k(-oq—go' 3‘{’3!38
i xQF  0Fe* f T wmuw‘o)
(1.17)

In deriving 2q.(1.17) we have substituted the values of C2

and Bg from Egs.(1.7) and (1.6) respectively, calculated
at x/L . At the point & where |dv/dx| is maximum the

earlier approximations made in the local theory is also
o m &

valid here, that is e | >> Eg ’ Va with
Ttx/L o= 6 i .2

f <1, a=(1+ B)and B = | x/L

Q—JI%

= 8

<§ b

After some simplification of lengthy algebra

ﬁi

LL
Bq.(1.17) reduces to

(wm) + 46\5(Q )+ m’ﬁ(. 3f‘5) (1.18)

U81ng the Cardan's method we get the complex roots of Eq.

(1.18) 35(100) WY+, y and its complex conjugate. Here

0= @ (4= 1[3 ) 5 Wy JHKn() 3B8) ik P (1-3B5)- 256 B Y

For g <1, |y |<«<|y_|, and in this case we have
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(Wo/@y) > -1y + Wmy e

wi=

o ‘ :}'g | B z
L { kB (1o 3038 + 236 8Pk (- 356) |

Comparing this value of l[COO/kli, with the earlier growth
rate derived under the realm of local theory Eq.(1.9) we
find that for finite values of '§' y < (ﬂ‘<h'ﬁ>%\>f/3
and hence the non-local effects reduces the overall

growth rate, It is not difficult to see the reason for
this decrease in the growth-rate for the profile-

VO(X) = v, sech® x/L; as the growth rate is directly
proportional tothe velocity gradient, it assumes vanishingly
small values for B - O and t)is essentially occurs at the
maximum value of VO(X). The waves grow faster in the
regions where Vo(x) <V and hence derives smaller

omax
energies from the streams. In the local theory, however,

g;g being constant the waves derive energy at all points
in space from the streams nnd therefore show apparently
a larger growth rate. In the foregoing conclusions we
find that the exact analytical solutions of “Eq.(1.3) is
not necessary to derive the modified dispersion relation,
however detail studies depicting the singular behaviour
of such differential equations have been thoroughly
discussed in the works of Chandrasekhar(lo), Drazin and

Howard(l4> and Case(l5>. We shall now return to the casge

of the linear velocity profile and examine the convective
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effects of unstable modes discussed earlier within the

framework of the local theory.

In an inhomogeneous plasma, wave propagation
develops in thedirection of varying density and as a result
of this property, the dispersion relation is significantly
modified., Therefore, in order to account this effect
properly, we must solve Eq.(1.4) for its solution with
the appropriate boundary conditions. As considered
earlier, we shall treat dVO/dx as constant and B to be less
than unity. We shall assume that the scale length of the
magnetic field inhomogenity is much longer than L, (the
density scale length), With these approximations, the
quantities, A, B and C defined by Egs.(1.5) to (1.7),

simplify to
-1
L W, p . wp (K —-kamc{\{.,>

Ao g A07 %07 dx
2
_ K4k ©p, Kh—‘—~'l k(l?’l‘r@ml
i jib[ ( Woe o Wo! litX )

(1.19)

Meking a transformation, (ﬁ = }” exp [ —f(B/24)ax ] ,
Eq.(1.4) can be reduced to the normal form

d*y + 0}200“,” =0 (1.20)
dx?*

where ®* - (C/A)‘ (’31/9/39"’3)((5/2'4)
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It is ciear fhat the solutions for '¢ will depend on the
hature and behaviour of function, Q. For our purposes, to
illustrate the principal effect of the velocity gradient,
we shall choose the dengity aﬁd velocity profiles in the

form

M = ﬁoexp<”)</t—n) 3 \/02‘ \70(“?‘ X/Ly) (1 21)

where n, and V, are constant, L, is the scale length of
the velocity gradient and (X/Lv) < 1. With the above

choice for the equilibrium parameters, after - making a
suitable transformations, the differential Eq.(1.14) becomes

a parabolic equation of Weber's type
r N - 3
dYJ+j‘ao</ - x"] Y=o (1.20a)
dxi®
where B can now be redefined as Voi/vali and the other

quantities such as x’ and a are given by

x'2 k(&[)(* 1o+ ‘<(3(Do( + o Q

<k(3) i 7\ A Q QL. m ﬁvo"(

. Va( - —\‘/o e
(g 28] om0k,

ie (1.22)
2 * ﬁ,.. .4.(?01 k £1, <__‘_ _ |
QA = k F+4 =04 - L ‘ —— )
;Zz< ‘Qll) L Woe AlIg
- Kpty £ Qf (vu ~ Voo )
X 1{[_.:; "51 \/ O((OOL woe
> &
« L2 < VOL - Voe >(’l <+ kﬂﬁ ____0b>
+ & "5 You Yo _ L
Lo plo S @3 o /P ot A (1.23)
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¥

From Bg.(1.14a), the solution for the potential ¢ can be
expressed in terms of the Weber function, Dn(X3 where n
is any eigen value, The condition that Eq.(1.14a) repre-
sents the Weberés equation.identically demands that

at - 2 nri kﬁ-{’f
X

(1.24)
It may be remarked that the relation (1.18) can also be
derived directly from Eg.(1.14a) by using the quantization
condition in WKB method. Hence Eq.(1.18) defines the
dispersion rela®ion which takes into account the convective
effects arising due to the changing density. We find that
Eq.(1.18) is a polynomial in < with real coefficients
and in general, the roots (real or complex) can be evalu-
ated numerically using the standard methods. Such a
procedure helps possibly in delineating the stable and
unstable regions for different values of B8 and KL, .

However, this procedure will not be adopted here. Instead,
we shall discuss some special cases in which the dispersion
relation (1.18) yields gimple analytical solutions revealing
the essential characteristic role of the velocity gradient. .
In the first instance, we shall examine the case when
V.=V = 75. With this condition Eq.(1.18) becomes a

oi oe
sixth degree polynomial in 6 namely,

5= 24 P8 kb~ 8 2KL] o212 - g(ra e R (1.242)
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where § = 5@>/§2l . Making use of the‘fact that & << 1,
B < 1 énd KL, >> 1 this equation can be reduced to a
quartic approximately by dropping the terms involving §6
and §2 (belng small compared to the terms retained) in
Bq.(1.18a). Further, writing § = 6p + 1867 where &p and &
are the real and imaginary parts of § and separately
equating to zero the real and imaginary contributions of

Eq.(1.18a) we get the coupled equation for b, and 6 in

the form

>2 ! - 2 s 2
§r (8}%51)[5@"@@{5“”]« 81 (28~ 381)

-« /L8 (BkLa)"] | 4
(1.25)

PR 2 = K
6 (48 Be8)+ (%810 mopkin] o (4 a)

For &; # 0 and 6, >> bp, Egs.(1.19) and (1.20) can be

solved exactly for éR and 61 which can be expressed as

SR= - l/fq(ﬂ+|)’3kLﬂ]
' 3 2 Lo
e e A R AL

(1.27)

[Crnpkin]

where the positive sign before the radical within the
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square parenthesis is chosen so that él,remains_a real

Quantity. In Eq.(1.21), the growth rate expression can ¢

be further approximated to give 8y ~ (n + 1&”1/4(BKLH)“i/E
(BI <1 for BKL, >> 1). It may be mentioned here that the

excitetion of low frequency mode with the same growth

rate could occur even for smaller B (unlike the nonconve-
ctive results) provided BKLn > 1 and n is large (such that
6y < 1) is satisfied consistently). Hence for the convect-

ive case we find that there exists a growing mode driven

purely by the velocity gradient. In contrast. to.the.

results derived in the earlier section, we obééfVéﬁfhé%ﬁi

2N ,;,I -
TRy

the growth rate for the nonlocal Case varies 1nversely

(BKL )1/2. Thus it enable us to conclude that the
cOnvectlve saturation of the low frequency modes occurs
with a lesser growth rate than its counterpart in the
nonconvective case,

?3L Flnally we shall examine the situation in which

'fhe 1Qns drift w1th 8 ve1001ty V the electrons belng

stdtlonary (V ;= O) Dropplng the bar over the quant—

the form

4 ~Q> kL<wm .D. kVu - P

:Zkl.n (Dol ) 0Woi
¢ 2 kL" (200 (1.28)

where £, = 1 + 2(n + 1) B%. Instead of discussing the
general solution of Bq.(1,22) we shall deal with the
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particular case when 2 is close to KVO; Therefore,
writing @ = KV  +A where | & | << KV_, Bq.(1.22)

transforms into a quartic in A given by

‘ o =
(ﬁ;)z(ﬁf ék-LJ T oyp(KLaR)Y ° (1.29)

Following the same procedure as outlined before, the real
and imaginary parts of A (= Ap + 1 A 1» Where
[.\R << AI) can be written in the form

Ap = —O—L/’Z P kb

.. T 632 a_,%' a 5 [
A=t 3%“[ 1+{1+€|F§,k h/ﬁ} J/Qﬁﬁ.

(1.30)

The expression for AI can be simplified further to
yield a value proportional to 1/( BKLn)l/z and this result
is similar to the one discussed previously. It follows
therefore that in either of the cases described here, the
low frequency instabilities with growth rates given by

Bq.(1.21) or (1.24) can arise due to the nonlocal effects

and small velocity gradient (p < 1).
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Results and Application

We have investigated in general the effect of

velocity shear on the low frequency waves in a two-

component plasma, We find that some new unstable modes
driven primarily by the velocity gradient occur near

W = KVO for both convective and nonconvective regimes,
The growth rates of these modes are larger in the non-
convective limit and they attain ihe convective saturation
with a value proportional to L /( KL, )1/2. Of course

it must be mentloned that the velocity gradient driven

instability in the nonconvective limit triggered only

for B ¢ 1 and range of frequencies such that 1 >> ( 030/31;)2

>> (m/M, Vi/cg). On theother hand, for a frequency range,
( W/ )2 << m/M or Vi/cz transverse KH mode is excited
and the effect of velocity shear (B < 1) causes a slight
modification of its mode structure leading essentially

to the localization of KH mode, This latter result is in

conformity with an earlier investigation by Rosenbluth

(16)

and Simon who examine the influence of nonuniform

electric fields on KH and Rayleigh~Taylor modes employing
FIR time ordering (that is, ©/Q;<< ( £ /L )% << 1 where

€ is the ion larmor radius and I is the typical charact-

eristic length), Thus we conclude that the velocity
gradient driven mode becomes operative only for the

.y
frequency range satlsiylng the 1nequallty4X{@7h_)»> ﬁ,Yh)
Ql
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Perhaps the results of Our‘analysis Will be more important
to the.magnetospheric plasma sheet regions (where the
condition B < 1 is easily fulfilled) during the pre and
post growth periods of the magnetic substorms. In such
conditions, it is conceivable that strong velocity gradi-
ents could co-exist in the plasma sheet because of the
sudden variations in the magnetic field components. Some
of the observed features through satellite studies
(Akasofu(lv) et al. seems to indicate (i) the presence of
highly energetic protons and electrons, and (ii) thinning
and thickening of the plasma sheet during and after the
substorm periods}~ In fact, a recent théoretioal study |
(Kan(I)) directly correlates the presence of velocity shear
to the plasma sheet thickness (showing that increasing
velocity shear thickens the sheet). These results might
have some interesting applications to the tail plasma sheet.
Of course, in the neutral sheet région, the guiding-
centre approach is invalid since adiabatic approximationé“
do not hold good. However, veloéity gradients driven
instabilities might qualitatively account for plasma , . _
heating. A detailed study incorporating the kinetic
effects to reveal the features for shorter wavelengths
(comparable to larmor radious of ions) and the nonadiabatic

effects will be topic for future work.
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Seotion 2 : Buppression of the Kelvin~Helmholtz ingtability
by the Lower-hybrid turbulence

The results of thé previous sedgtion havg conclusi-
vely shown, both in laboratory as well as in spade plasgma
that a velocity shear transverse to the maghetvie field can
give rise to a low frequeney instability. In this gegtion,
we shall now concentrate on the growth of the KH mode
Wherein the electrons play dominant role. This type of mode
hag been observed in auroral Yegions by Hallinan and Davisgg)
To understand the auroral processes involving the particle
energization, we shall therefore Gonsidet the possible
stabilization of the XH mode through & nonlihneay interééta
ton with a high frequency mode, A discussion of this type
ts stimulated by the reported phenomen~n in JasSby's(ll)
work., He showed that for large values of the electric field,
the low frequency KH mode can be totally suppressed; and
in place of this a high frequenecy mode is exéited., The
Suppression of the KH mode is attributed to the nonlinear
demping in presence of the high frequency field, ( >{Ls ).
In this section, we shall show that the KH instability c¢an
also be stabilised by the presence of a weakly turbulent
nigh irequency field., The turbulemce will be chosen to be
peaked around the lower hybrid frequency since this mode
is usually generated by the crossfield dritts beyond a

certain threshold velocity (V, > Vi,.) (MeBride et al;(13%.
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In space plasﬁa,'however, this choicefOﬁ_b@ekground'tﬁrb;jef
ulence is further euppofted by the ebServetidp.of lower
hybrid noise in the euroral eone. In any case we shall
assume that lower hybrld turbulence exlsts in the backs~
ground plasma. blnce our prlmary motlvatlon is to study
the effect of thls turbulence on the mode, we shall take
a 31mpllf1ed version of the linear 1nstab111ty. The |
ealculatlons can eaelly be extended to. the cases con51dered'
lln the earlier section. The velocity shear is provided by
an idealised electron sheet of half w1dth a. We shall also
neglect effects of finite wavelength in the magnetic field
direction, oollisions and visowsity. Jassby(S) has already
given a detalled account of such effects and the crlterla
for neglectlng them in case of KH 1nstablllty and we shall
assume that our linear instability is governed by the mode

properties described in Hasegawds(l8) work.

Bagic Equations and Their Solutions

Consider the high frequency turbulence in the
back ground theeenergyfdensity of which satisfies the wave

. )
kinetio<equation Vedenov et al.(lg:

aY\K \/ Vn - gwk a_r_}k-s. o | \

whexre nK‘is the plasmon occupancy number, 3 and K being

the frequency and wave number satisfying the linear

i
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-:dispersiOnvrelation for the “ower hybrld moc e
L ,
W = OOLH (i*“n mc )
kz
. 2 > ' ‘ '

~where O,y = sz/(Hw!”.e/_Q:) ’ ‘OPj_ 9-(25_ being the
- plasma and gyrofrequency resPectively for the jth species.
The low frequency characteristics of KH mode are governed

by the equatlons of motion and mass conservatlon for

electrons, They are given by

20 4V, Ty = -V, Ve | .

Here the constant magnetic field is taken along the z
dlrectlon, the LXB drift is in the y direction

{ v, = cb X B/B2 t and the gradients of V, and n_ are
chosen 1n the X dlzectlon. The electron sheet occupies
the space between - a < x £ a being parallel to the yz
plane. Eqs (2.2a) and (2.2b) are supplemented by the

following boundary oondltlons (Hasegawa(ls))

“U/e (2.5)
- 2e3
v”tx[E} =0 |
The symbol [ | denotes the jump in the value of the
quantity acroes the electron sheet. The solutions for the

electric field (£ = _Qg) in the respective regions are

(81)
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¢ = A € 5 x>
g y,. Qx qu'y “ar ,
- e 3
Py = Be € yceie 4 ixca -
, | (2.4)
Pur = 2 ' Ve . XL~ *

Bqs.(2.3) and (2.4) complete the linéar description of KH

ingtability and these together with Bqs.(2.2a) and (2.2b)

give the dispersion relation. The detailed caleulations
With respect to the mode characteristics have been carried

, : 181 ' v . A
out by HaSegawa<18 and we have quoted the main equations.

for the sake of completeness,

The coupling between the low and high frequency

modes occurs through the ponderomotive force term. This
effect is assumed to be valid in the adiabatic sense i.e,

‘ wK‘ >> [ QO ‘|, ]i{ >> ]c.:_” where ( (Okok ) and (_Q..,CZ )

representing the frequency wave number Spade, correspond

to high and low frequency modes respectively. Writing
Vo=V, o+ v‘C where subscripts s and f denote slow and fast
variations respectively ahdﬂaveraging over an ensemble of

a random set of high frequency waves, £q.(2.2a) becomes
Yy ;> 5'?;@ E.+ Vs Q/C) (2.5)

Thus, the additional term in Eq.(%.ﬂ) provides the necessary

coupling between the high and low frequency.modesi(Sagdeev 
and Galeev(20>). In Eq.(2.5) we have neglected the
insrtial term for the slow mode since L) <« Kle . Bqg.(2.5)
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can be solved for Vg to give

¢ ExBy _ (V- VY xQ
Vo) = B - Y 1> a
Ba 2,
It turns out that V) is small compared to Vg (le}vsu <<

[V |) for Q <« (), . Now eliminating V., from Eqs.(2.52)
and (2.2b), we get

o + Vo‘am””[ - <%V 5 pxdi, In(2.6)
3t BO _Cl‘l

The term (<Uf v Vf>) can be expressed in terms of high

frequency components as

< va) 2<‘9-ﬁ+\/ BVA;}

a Y

+<f‘z 2\/{# + V 3v§ ) >
J (2.7)

where Ve and Ve are defined in terms of the high
frequency field EfK by the relations

Voo =% E{k)(ﬂe/(w;i._Q’"

34 Me

\/ = (QG(D E e > .
Sk S ke —Ss«/@orﬂe) (2.8)

where Ego. is the Fourier component of the turbulent spectra,
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1g~ heiggﬂdirected‘aldng"y axis., - It can be seen from Eq.(2.6)
that]only the 'y! component of < Vf -§7 V > in Eq.(2.7) will
survive éince iir%-is in the *i'.directlon. Further since
the KH mode is excited with propagation vector along the y |
direction only, 3/dx - O and therefore, we get from Egs,

(2.7) and (2.8),
to v pflosl o2 w Efls
<V V%{ > Z {2 _a__vlv‘fk’} -5[2 2y (w:?ﬁ:_)g{ijé‘lﬁy (2 9)

Defining ny = |B Kf,/ QDK; the term (Eq.(2.9))can be

reexpressed as |
RBARS Z[ Ok g2y ay]ea (202

We shall linearize (2.1) by writing ny = Npo o+ bny,

BnK << NKO.

dent on the density by virtue of Eq.(2.l1a), a perturbat-

Since the plasmon frequency ! Iy ' is depen-

ion of the density by the low freQuency instability will
change the plasmon frequency and this change is manifested

through the term 92@W./a¥%  (Sagdeev and Galeev(zo))_

Instead of calculating this term exactly for a specific

case, it can be simply expressed as

Wy . oW AN . 20, 2N,

5 on or PN, 2y

where 9/p7 operates on theperturbatiofis of the slow mode

and we havé used the fact that bog,f QDKQ“) and
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n = n, +~n1 (1nl| < no). From Eq.(2.1) we, therefore,
obtain the relation

—_- 3“3‘4«/85%. ‘v]\\ .
Sn - R ko n1
k v 2.0 .{ P MNee (2.10)

Where 2W. /3n, can be computed from the linear
‘dispersion relation defined by Eq.(2.1a).

Finally substituting Eqs.(2.10) and (2.9a) into
Eg.(2.6) and using the boundary condition (2.3) and (2.4), .
we obtain the modified dispersion relation of XKH instability
as

(1- %\/om@()z St b
\ e - < (2.11)
Wo
Here ié the effective oéntribution due to the background

lower hybrid turbulence and is given by the relation

3
Y :-jdk%c 0Dk PWk/300 3, - 2Ngo
2aB,; (@ ﬂl) <V8 )Ci, 7k (2.11a)

We shall now consider the effect of the turbulence for

certain special cases, o
e

Consider a hot plasma (with £ =‘8nnOTe/B§ >> EI )
in the background of cold plasmons, This implies that
the turbulent energy is peaked around certain Ko and we
can therefore choose N = N, S(K - KO).‘ Using £q.(2.1a),

the melation (2.11a) can be simplified as
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A S A
abs Q2 g i (a_gak%,ﬂ) k=k, (2.12)
2K

» 2 2,
where Vg‘—a;%f = =2k [1Em, 5 2V laK= 6wy (Ku "'_"‘//&/me)

Under the approximations, Vg >> -Q/q and K,,z/KiN me/mi

Eq.(2.12) further reduces to

; .
nY - .y c}elNo[ .(wPe/ﬂe) ] ) (me/’m‘t)—%ﬂ (2.12a)

b 7 Ha =
ABe L (1re0r/ Q)™ Ckiymi/g my)

We note that 'no’( ' is strongly dependent on the parameter

(Wpe/, ). The furctional dependence of nsY in Eq.
(2.12a), in terms of the parameter X =Wpe/2, is of the
form XB/(J. + X2)5/2. The maximum of this function occurs
for 3% =w9{3€ /_Q_: = 1.5, This value is readily attained in
the auroral ionosphere. From Eq.(2,11) it is quite evident
ugw that the 'nyY ' term has a stabilizing effect. To see

this clearly, we rewrite Eq.(2.12a) as

ny- -3 9 wp(me ) @re/n )t %
noY : --:-v $~ </ .1
AT (99 @k (5 VAT P 0 M

where W = N <O K/nO T, = the ratio of turbulent energy t0
the thermal energy, 87mOT/g§ = B=the ratio of thermal pressure
to the magnetic pressure and (K2” /KJZ_ ) ( iﬁi ) ~ 0(1).

e

Since the low frequency KH instability occurs for

Vo‘ < Vthi << ¢ (¢ = velocity of light). the quantity noy
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B

can be‘compafable to the qV, term iﬂ Bg,(2.11) even for
W 'O(me/mi) and B >> m /m;. The turbulence essentially
shifts the unstable region of the KH instaBility from small
'q' (large growth rates) to the large 'q' regiohns (with
smaller growth rates),’ Depending on the varioud parameters
in Eq.(2.12a) it can also totally suppress thé transverse
KH instability,

Next we shall discuss another interestihg situat.
ion 'in which the group velocity of the background turbulent
waves is small ( (K2 /K? mi/me) < 1) and the approximat-
ion q;V >» £ is no longer valid. Sincée the linear
KH lnstablllty is a purely grow1ng 1nstnb111ty ( Jl_E
negative and real) there will not be any resonant intera-
dtions but it is still possible to conside? o case in which
]Vg}zc ]jl_jq]g, The denominator of £q,(2.12) in this
situation will be approximately equal to azvg g and

this gives a hew value for n Y defined by

NeY= 3 7 e’ w"* C_i’_ No@Yglok S /0. (2.13)
ap? ~O (“JP Qvﬁgﬂ

where
3 6
. % 1E P N, 2V5/e

a. 601‘(1&3 ('O; V%

4

Substituting the value of n, in Eq:(2:11) we get
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Ay ™
2 _ Vo _ gz_ ) —/'((Z,GL L
L/:E)' = (! %ﬁi woﬂ)—— € :Lf-—(—lo —2_(::2_ ((_‘17_\_/0)

W We Wl Wo (2.13a)

2
where Ila the square of the linear growth rate for
= 0. We have also assumed Cz/obofl << 1. Eq.(2.13a)
is a cubic equation in ' {1 ' and can be solved by Cardan's
method., If the turbulent energy is small or if

Com. v ,

2 .

(Ky /KE ) ( Ei ) << 1, then oz/kaaﬁl can indeed be very . .-
small and we can then treat this term as a perturbation
and to the first order we can replace 50! by 110 in the

derominator of Eq.(2.13a). This gives
2 2 Do Co /1 GVo/ s
Q =»£20 - 120) a (, / q)

or

O~ Q- %, (gg)clcl- ‘DVo/cog)

(2.14)

This immediately shows that the second term has to be real
since _fln is imaginary for the KH instability. This
esgentially gives a nonlinear frequency shift to the
originally purely growing mode., The damping of course is
nonexistent in this case unlike case 1, This also shows
that for (K% /Ki ) (mg/m,) << 1 the turbulence cannot be
effectively coupled to the KH mode. Physically this is

quite clear because the group velocity is essentially
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proportional to (Kﬁ /Ki ) (mi/me) and in an exact
perpendicular propagation (K“ = 0) the lower hybrid mode
becomes dispersionless which decouples the wave kinetic

equation from the lower frequersy modulation.

Conclusion

Thus, using a wave kinetic approach we have shown
that it is possible to suppress the transverse KH insta—
bility by lower hybrid turbulence propagating at an angle
to the embient magnetic field., In case of a flute mode
(Ky, = 0) the turbulence damping becomes negligible though
it can give a nonlinear shift in the frequency of the
purely growing KH instability. The damping is shown to be
strongly dependent on the ratio ( p /L, ) and is
maximum for ( O5EVU12 ) = 1.5. This value of (Wp, /S, )
is achieved in the ionosphere. Perhaps this type of
mechanism would account for the suppression of the KH
instability rather than the nonlinear Landau damping process

(11)

suggested by Jassby in his theoretical work,
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'CHAPTER'IV

- ABSORPTION AND SCATTRRING INSTABILITTES LN PLASHA

Introduction

The investigations carried out so far, in the
breceding chapters clearly highlight the brocesses that
are responsible for anomalous diffusion or stabilization
leading to the effective control of plasma loss. In this
chapter and the following one, the theories will primarilyf
smphasize the effectg of external sources on processes
- which contribute significantly to plasma heating. The
basic mechanism involved in heating of plasma differs
con31derably from the conventional heating concept used
generally in a gaseous matter, For instance, in the
latter case, the energy transfer from external sources
takes place through usual collisional processes, w@ile,

" in plasmas, anomalous Processes 1like the wave~particle
interactions, turbulent heating and barametric processes
play a dominant role, The d.c. heating or the absorption
of incident energy by the normal collision brocess becomes
in effective for very high teﬁperature plasmas, In thls
chapter, the plasma heating due to barametric decay '
process will be discussed. The absorption of eleotro;
magnetic waves in Plasmas have extensively been studied by
Kaw(l>, Liu and Kaw(g) and l\Iishikawa(Z’> in connection with

the problems of laser fusion and supplementary plasma

W
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heatlng in fu51on devices. In the _present Work however,
- our attentlon will be malnly focussed on the possible
methods of 1mprov1ng the heating efficiency of parametric
processes. With this goal in mind, the examples consid-
ered here can be divided into two sections. Section lﬂ
deals with the effect of g low density cold electron beam
on the parametrically excited modes at lower hybrid and
ion cyclotron frequencies while the modification of the
stimulated Brillouin backscatter process by the introduc—

tion of a small component of cold electrons is studied

in Section 2.

Section 1: Parametric Decay Instability at Lower Hybrid
Frequency in Presence of Electron Beam

The possibility of supplementary plasma heating
near LH resonénoe has gained wide recognition and numerous
detailed investigations have been carried out in this
direction, both experimentally and theoretically (Ref.4,
5,6). These studies are based on the assumption that the
energy transfer process involves the decay of IH wave
(lower hybrid wave) into a IH wave and a low frequency
wave (e.g. an ion acoustic or an ion cyclotron wave).
Although such a decay process agrees well with the
computer simulation experiments (Ref.5) in a certain
restricted frequency (or wavelength) range, it
does not satisfy +the usual selection rules (e.g.

the frequency or wavenumber matching) expected of
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parametric processes invoking the dipole approiimation.
-Rather if'has been argued by Porkolab(?>, in ohe of his
earlier papers, that a néw type of guasi~ion modes is
parametrically-excited within the plasma for propagation
angles such that (mi/me) Cos® g < 1, where 6 is the angle
subtended by propagation vector with the magnetic field,
These new modes, which possibly contribute to plasma
heating, oscillate near the ion cyclotron frequency and
their growth rates are proportional to the pump intensity;
the modes do not exist in the absence of a pump field.
With respect to source-induced instabilities, however, two

important points should be kept in mind. It should be

remembered that these new modes do not cause deleterious
effects (detrimental to plasma confinement). Secondly,
the parametric instabilities, excited in the peripheral
regions wherein the primary energy deposition takes place,
cause a decrease in the applied energy density in the
centre of the plasma volume, thereby leading to a reduct-
ion in heating efficiency or the subsequent non uniform
heating., To overcome the disadvantages cited above, we
propose in this section, that the dispersion characteri-
stics can be modified significantly by injecting an
electron beam in the direction of the magnetic field, An
experiment motivated by considerations of this kind has

recently been carried out by Gromov et al, and their
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resulﬁs apparently indicate enhanced»paramevric heating.

In realistic situations, such modifications in parametric
brocesses can be accomplished either exfernally by injecting
electron beams of given energy and beam width or by the
presence of energetic electrod beams which are experimentally
observed in some fusion devices like tokbmaks oY Alcators,
(Knoepfel et al.(g)). Thus the effect of an unmodulated
electron beam which can also be produced by placihg
thermionic emitters on the axis of plasma column, lowers

the parametric instability threshold considerably and
reduces the harmful effects associated with the macrescopic
source-induced instabilities. The mathematical details,
emphagizing these additional features and the main results

are described below,

Beam Effects on Quasi-lModes

Consider a homogeneous, magnetized plasma which is
subjected to the combined effect of an RF field and an
unmodulated electron beam with density n, velocity v, and
thermal spread Vine The electron beam is injected into
the plasma in the direction of the magnetic field (i,e; the
z~axis) and the applied pump field (in the x-direction) is

taken in the form E0 Cos (Wot {dipole approximation), when

E, is the uniform pump amplitude and L, is the frequency
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Chosen near‘lower hybrid resonange.; In the electrostatic
vlimit, the derivation of  the dispersion relation incorpo-
rating the effects of the oscillating field and the
electron beam is quite straight forward, and, therefore,
onitting the detailed steps, (See, Appendix), we can write

down the dispersion relation (Porkolab(v)) directly as,

1 -d1.1)
E(w)+ ,U X[\H} )I— (u»wo)jL € (Lo~ o) e

where g(,,o), 1+ X (w) Y (w)+ l (w) - the ‘XS
are the electrical susceptibilities and M is the para-
metric coupling coefficient (= ky CEo/Bo<¢)O) which arises
purely from the E‘x E'—'motion of the electrons in the
ambient plasma., For the beam electrons, since the predomi-
nant motion is the directed particle velocity along the
z-axis, the B x B - motion is relatively small and therefore
the coupling coefficient due to the beam electrons are
ignored in Hq.(1), Similarly the modifications due to beam
particles ing (W + Wy ) will be neglected simse these
contributions are small for the frequency range considered
in this problem., Thus the response of the beam occurs

only through the term :(‘b (W ) in e (W) while the other
terms in Eq.(1,1) are identical with those derived by
Porkolab(7> In our analysis, the effects of finite ion
temperature and higher order nonlinear coupling terms will
not be considered as the gross features of our discussion

are not appreciably affected by such considerations. The
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general expressions for the susoeptlbllltles ;( can be

taken as
=Ky w -k,
Xp,= ;.d { k”\,tb )%( . )} (1.2)

[ _.é'_ Sl .-bj
Xj 12.{14' L"-B N e In(b7)
!

kllvtj “3 (105)

J D
where p db 5 \/tJ and 12 respectively denote the
Larmor radlus, the Debye length the thermal velocity and

the oyclotron frequency, n(x) and Z(x) represent the

modified Bessel and plasma dispersion functions, respectively,
We shall now discuss the effect of an electron bean
ol parametrically induced quasi-ion modes (non resonant
modes) which have been extensively treated by Porkolab(V).
In the absence of g beam, there are basically two types of
quasi-modes (with their growth rates direétly proportional
to the amplitude of the pump): (a) a kinetio quasi~-ion mode
(dissipative type) and (b) non-resonant fluid-like modes,
In the former case, the mode is characterized by parallel
phase velocities attaining the value of electron thermal
velocity or its values close to it and hence the driving
mechanism for the instability igs primarily due to inverse

nonlinear electron Landau damping, On the other hand,
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the latfer Situatioﬁ corresponds to pérallel phase velocit-
ies far exceeding the electfon thermal velocity and, fherefore,\
the resulting growth of the mode is of a maorosoopic nature,
Firstly, we shall study the instability characteristics of
quési—mdde of the kinetic type quasi-mode., In this case,
let us consider a non isothermal plasma (Te >> Ti) mode in
the frequency range, | | < Sli Dk Vee Neglecting
the Larmor radius corrections, we obtain for the ion and
electron susceptibility functions (defined in Eq.(1.3)),

2 .
_w 7 -

Xi(w)y= - 20 sin™ _ wp eosd
gg~ili Wk

W
Kol /ﬁ&? [+~ kei‘/(:ez (/‘"Vf“) ]

Similarly, tor the electron beam, we shall treat the injected

(1.4)

beam as cold (i.e. | W - I, vy, | >> Xk, v, ) throughout this

i
section and so expression (1,2) simplifies to
\' LOopp, Cos?
szs. - Pb 05 9/(("0"‘(“ \/b)z. (1.5)

Finally the dispersion relation for the quasi-mode in the

presence of beam can be written as

u)?- ) ,
1 - PR ™ 4+ A+ K,
(LD-anb)

2 4 -
+ % X (2 Xe) L€ go+wo)

+ = .
e(w%ﬂa)Jao
(1.6)
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where e(‘uJ + W,) ’WC( L+ (Oy) + ?{e('UJ + We ).
Bq. (1 1) and (1.5) are used in arriving at the dispersion
relation., In the absence of a beam, it may be pertinent to
point out that | >(£j >> | X4 >> 1 in the neighbourhood

of frequency bJCEIlL and consequently 7{i is cancelled
in Bg.(1.6), leading eventually to the characteristic onset
of quasi-modes. In the. presence of a beam, however, the
ion susceptibility is no longer negligible compared*ha){be
(for | o | N k“ vy ) and hence it plays an important
role in manifesting the new dispersive properties of
quasi-modes, Although the dispersion relation (1.6) can

be solved ror arbitrary values of (J , we shall seek a

simplified solution such that | (o | ~ k. vy ~ &, where

!
6 is the frequency mismatch defined elsewh;re. The exist-
ence of such solutions of Eq.(1.6) is justiried since we
expect the combined effects of electron beam and the para-
metric coupling to be important for the plasma heating
process. Neglecting unity compared to )Ci or :Ke in Eq.
(1.6) and considering only the Stokes component in the
parametric coupling term, we obtain |

DR@oo)(M (M- 8)[s+ iz{xe _ Why, cos™O ”

(w- Kl\Vb)z

o |
A kd [1 K\’te%(k%t)]”

where we have followed the procedure employed by Kaw(l).

(1.6a)
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The symbols r"7 , & and DR(L*)O) are éiven by the express-

ions,

M- ?EEEB) 5 8 = QR(QQ ‘) UD)” f)GRUd@
Dy (1) Dy () o0
The suffixes R and I are used to denote real and imaginary
quantities, respectively, Equating the real and imaginary
parts of Eq.(1.6a), we can write the expressions ror Wy

and Ay where (O = LOR + 11); in an approximate way:

w (2, W
7 /:PJ‘X e <ﬁlf/te>’-%(f£\"ce> ]I~

(1.7)

o s ST (e )aa( 22 ) (“° L/

kuvte S

k“b% ] N

2 2 2
- .- eCs
where o = 1 -(Y} b)(@‘) D wR) 2 Q. Expression
Wie (uJF Kan)

(1,7) clearly shows that the instability driven by the pump
power arises when the first term exceeds the linear damping
rate of electromagnetic side band modes. The critical
threshold field required for the instability is given by

the relation
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. - . . |
Ufz—:. L‘r,_'ff‘_ﬁo( ( ‘(l‘,.vte)
e E'Z(LDR/kHvte)]I (,01{

Thus, for W, < (1., the thréshold defined by Bq.(1.9)

(1.9)

is lower than that in the absence of the electron beam. The
condition LOR\<.ILL can easily be fulfilled by an approp-—
riate choice of the injected beam velocity and by choosing
the pump frequency close to lower hybrid frequency so that
& <_£1i is satisfied. However, for W, >~§11 , o turns
out to be positive and hence threshold value is increased

by the injection of beam plasma. <Therefore, only for the

beam velocity such that k= v, < ,Q , the RF heating
efficiengy can be increased substantially.

Next, we consider the macroscopic type of quasi-mode
which arises in the limit [ (D | >> k Vi and | WO | << Wy
(lower hybrid frequency). Retaining both Stokes and anti-
Stokes components in Eq.(1.6) and assuming that

Jli <l w | < ile. , we can write the reduced dispersion

relation in this case:

W m, m’ Wy Cos?0
i - ( LH) <1+ v Cos 6) m 7'}7le.> Lh Cos .
((O - ‘(“vb)

- B () i [ (2 () o]

(1.10)
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2 _ 2 2 2 R A
where» W TH, = Co;pi/(l + W) pe/ f(L e). The discussion
otf Bq.(1.10) for arbitrary values of the'parameters occur-
ing in the equation is too difficult., We shall, therefore,

meke some simplifications by assuming that ( (A)I‘H /00 )2

(m;/m,) Cos®

8 >> 1 and | WO | << &, where 6 < (O, g, (in
contrast to the previous case). With these assumptions,

the dispersion relation (1.10) becomes
2
P(w““/w) + %4 w?(m»k,,vb)q;. o  (1.11)

where a, and B are constants given by

o, = (.nb)<7ﬂe) Cosl€41+(wu)Cm¢€)

2
M ™M Wocos™d
2 A K0 COS

Me & ™M eps™
4 e 1+ <1ne)<;os V)
Bq.(1.11) can be solved numerically for the preassigned

(1.12)

th

’,’5

values of the parameters alnand B. However, in this text,
the solution of Eq.(1.11) will be obtained analytically by
introducing an ordering in terms of a smallness parameter

e (= me/mi, say) Writing LJ =k Vb + I\ where

H
]le << k"Vb and choose the order of various parameters,

V= = k, Vb/ W g B« 0y s w /(w - k, Vb) and
Zlﬁf [} /WD L.y, @8 61/2 €, €, % and ¢%/2
ively, #qg.(1.11), correct to the terms of order 82, yields

0(1(v4/A )*\’ Ho 0(4/41.—- ()’—"3)2

which, as a quadratic equation in 43‘, can be solved to

, respect-
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give the required roots. Thus the analytical solution of

Bg.(1.11) can be pﬁt in the form

k”x2>y 4 4+ 2« Lh VL ]

._.._...-,....-_...—.

l'(\[ v}_ l?) (A)LH -
2,%
i LD(.AkH vb \ ’\\;:: P(A)L'H /(j/z
2 9 3 2 “L‘
knvb"l Wy ‘7(1 an

(1.13)

wherein we have assumed that
2 q
knvb 2 [ P/(l“ 4‘°<;>J(J‘3LLH (1.14)

for the occurence of a new instability driven primarily by
the injected electron beam. In the opposite limit, :
kEH V5 < B w? /(1 - 40, ), 83.(1.15), however, gives
stable modes, In view of the external control of beam
parameters, the resultant beam-driven modes are expected to
be less harmful for the plasma confinement scheme, Therefore,
we rind that the electron beams with the velocities such
that k” Vb >_£21 can significantly alter the characteri-
stics oi the macroscopically excited quasi-modes.(due to the
pump) and further can prevent plasma loss. |
Finally to summarize the results, we have shown that
the basic structure of pump-driven quasi modes (kinetic as
well as fluid types) can be substantially changed by the
bressure of unmodulated electron beams. In short, their

presence with varying energies and densities, in a .



119

REuheated plasma, not only increases thé efficiency of
plasmé beating but aléb hampers the development of
deleterious modes driven by the pump. In case of electron
beams injected externally by some device, the conditions
required for lowering of parametric threshold or the
controlled excitation of beam-driven modes (for imstance,
BEq.(1.,14)) are easily fulfilled since beam parameters such
as velocity, beam width and density can be manipulated
appropriately., Recent experiments (Knoepfel et al,(g))

do observe the presence of runaway electron beams (which
form a continuous plateau at a later stage) and these
beams have densities which are a few percent of ambient
plasma density and energies in the range of 10 Kev to

10 Mev. These parameters fall within the range of interest
to our work, Possibly with some modifications in our
treatment (e.g. a different choice of the electron beam
distribution), our work might also find interesting
applications in some fusion devices involving the

occurence of beanms,
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Section 2 : Stimilated Brillouin Back Scatter Instability
in Presence of a Small Fraction of Cold
Electrons.

In this section, we shall consider another situat-
ion in which the increased efficiency of parametric heating
ocecurs, This efficiency can be accomplished by an external
injection of cold electrons intermittently in a fusion
device and, in fact such a technique extensively planned
in magnetically confined laster-heated systems (Dawson et
al.(10>) or in long solenoids in order to reduce the harm-
ful effects associated with the heating process, Similarly
in a laser plasma, a small fraction of cold electrons can
be produced self consistently by the secondary ionization
of neutrals by the fast electrons. The primary ionization
of the pellet;s corona energizes the electrons (upto Kev
range) which having significant cross section further
lonizes the neutrals to produce the cold electrons in the
eV range., Thus the threshold values required for parame-
trically scattered modes can be enhanced significantly by
the presence of such cold electrons and this modification,
in turn, can increase the heating efficiency. To demonst-
rate this effect particularly in a laser plasma, we shall
consider a typical back scatter process in an unmagnetized
plasma, Although the role of cold electrons in laser—
pellet interactions is not considered a serious candidate

due to lack of experimental details, their presence by
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processes described above seem perfectly justified. Apart

1))

from‘ifé application to laser fusion (Brueckner and Jorna( §
the analysis is quite general and hence it might find inte-
resting applications to other devices employing the combined
operation of parametric heating schemes and the particle-
injection methods.

Concerning the stimulated back scatter mechanisms
such as Raman (SRBS) and Brillouin (SBBS), both theoretical(ig)
and computer simulation<15) results predict a large percent-
age of reflectivity while the experimental findings(14) do
not conform to this prediction., To explain this major
discrepancy, further theoretical work on scattering processes
carried out in the past few years seems to stress on their
possible stabilization by such considerations as medium
inhomogeneity'19), finite band wiaths(16), etc. In the
former case, for instance, the threshold for SRBS is
significantly increased while it remains more or less
unaffected for SBBS, the main reason being the fact that
the frequency of ion acoustic modes does not depend on the
(17)

local plasma density, Recently s & sizable increase in

the threshold value for SBBS is demonstrated by including

a weak density dependence of ion acoustic mode, which is
achieved through a coupling of background Langmuir turbulence
with the ion acoustic wave, The above theory however

suffers from a major drawback; the langmuir turbulence is
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eXpected'to be generated in a 1aser4péllet interaction by
the parametric decay process only at the critical demsity,
hJo’}fuaﬂzwhereaS‘the SBBS is excited in the under dense

region where (W, << W, ( @, = pump frequency). Therefore

it becomes quit;%unrealistic to presume that the langmuir
turbulence exists in the same spatial locality of the SBBS
resonance, Also, since the pump propagates towards higher
density, the SBBS is excited much before the pump wave
reaches the absorption region. Thus the problem of
stimulated Brillouin Back Scatter is reinvestigated taking
into account the effect of é small fraction of cold
electrons distributed uniformly in the SBBS region, It
will be shown that the presence of cold electrons gives a
density dependence to the ion acoustic mode and the thres-
hold for SBBS is drastically altered.

We shall take the fluid equations and the maxwell's

equations with the usual symbols,

LA V- (nN;) =0 (2.1)

powy

(\‘::)“J

2 n,\Z(z.z)

We shall assume that the hot electrons have a weak density

dependence mn = n, (1 + x/L) and a small fraction of
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' , . . m
' unlform cold componenb i.e. n,, = constant, noo/nh&kzﬁi ,
] /T Ao /m » The cold component is taken to be uniform,
since the density of the secondary electrons produced is
proportional to the product of the density of the hot
electrons and the neutrals and the gradients of the hot
electrons and the neutrals are Oppositely directed to each
other,

Under these approximations, the equation for the ion

acoustic mode is given by,

2 A
2 M, Th (”mo + Neo my )} 1. 1o~ (2,4)
— - — - PRES IS Vn:n°.m€V\/-V *

A —~—— € Lol |, !
3t M\ My, M, Me — °

where the terms on the r.h.s, arises due to the coupling of

the back scatter mode and the initial pump mode. The linear
dispersion relation after neglecting the term on the r.h.s,

of Bq.(2.4) is

k T ( w+‘nc°mh ){ (2.5)

where Ny, =10y, + nco'z?nho’ as n, >> n,,» the second
term on the r.h.s, gives the density dependence through -
(n / ). The threshold of the SBS in an inhomogeneous
plasma isg essentially due to the Phase mismatch of the
interacting waves as they convect out of the resonance gzone,
The parameter describing this effect is given by

,
K = d/dx (k - ky - k ), ks (i= 0,1,2) are the wave

numbers of the incident wave, scattered wave and ion
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acoustic wave ryekspectively..‘ The W.K.B, ‘steady state
equations describing “the ion acoustic wave and the scattered

electromagnetic wave are(15)

N . a?\ ~ KXYy
e + G 2Ne = |} Me niKa (Vor V) e (2.6)
DN 2 MM, <
/L
~ ~ ~ LK X7/, (2.7)

o~ ' 2%
[Vt €2 -1 Wp  Vole e
ax QCQO—@Q, MNio
Assuming that the ionwave is heavily damped, i.e,

} aNe >>

[ é‘ ,
we get a steady state solution of (2.6) and (2.7)

1";«7 << cay ;
et L . _o mikxR/R LY -k X%/
Maklng_ the transformation ¢ = n, e and S = V, e

S Cg 5%6 and the scattered wave is weakly damped, i.e,
x
{

and eliminating G from (2,6) and (2.7), we get 'S' by direct

integration( 4) as,

o 2 |
- _ K - n D N
Lo«gS ) IK'Q' ;TT/QK/IO?(X*%D/K/%> (2.8)

where Vl and V2 are the group velocities of the E.M, wave
and the ion acoustic wave and Yo <'= wap; V, /\/?.GSC is
growth rate for Brillouin scatter in the homogeneous medium,
Taking the modulous of 'S we get the solution with the
boundary condition for x —-
~ 2 -
IS} - e ( e / V, Vy K/)tam ‘D"K"Cj/i i €~7T'T:'/QV‘VQ o

7“',)__50

Therefore the threshold for SBBS is

Yo’"/zy,vﬂk’;\ 1 (2.9)
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‘Using the_definition»of K and thefdiépersion relation
) » I

(Eq;(2.5)), we get the threshold as

Vo 2 l(s,l. | (’ch/n " .
( 3 '7\ . 7 ] ho) (M/me (2.10)
(ke 2 2 (‘ni-’-’/ﬂm t Neo /Mu(Mme)
We note from Eq.(2.10) that even though nco/nho is a small
fraction (n, /n, ~ m,/m;) it can significantly alter thé 
threshold value,

In conclusion we note that the presence of_a small
fraction of cold electrons can give rise to a significant
threshold for SBBS. The principal physics involved in
this problem can be explained in the following manner, The
response of the hot electrons to the slowly varying electric
field which arises from the beating of the pump the soattQ
ered modes obeys a Boltzmanian distribution whereas the
cold electrons due to their low temperature cannot build
up enough pressure to balance the electric field and
therefore moves along with the ions and contributes to the
total inertia. The perturbed velodity of the electron
being (mi/me) times more than that of the ions, a small
number of electrons can effectively take part in the charge
neutralization due to the slowly varying electric field.
This effect is reflected in the second term of the r.h.s,
of Bq.(2.5). |

Although the presence of cold electrons have not

yet been confirmed by the experiments, their coexistence



126

Qaﬁ.npt.beiruled out beca@se the,bulk temperature_of'the
1aser'pla§ma is determined by the x-ray methods which are
insensiti&e to detect the low energy (< 1 eV) components.
Thus, the Brillouin back scatfer could be limited by the
cold electrons uniformly distributed in the SBBS region.
As outlined earlier the meohanism for increasing the
threshold for the Brillouin back scatter mode can be
applicable to any heating scheme irvoking the parametric
heating scheme, In a fusion plasma where the ﬁemperatufes
are very high, the introduction of a small amount of cold
electrons externally will always inhibit the back scatter
mode to grow and therefore it will increase the penetration

of the incident wave energy into the plasma.
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APPENDIX - II

Consider a homogeneous plasma immersed in a uniform

static magnetic field B =23

B, &, and an oscillating electric

field'g = Qo cos u)ot, We shall make the dipole approxi-

mation and assume E_ to be space-independent,
Let gj(t) denadte the displacement of charged specie

(j = e, 1 for electrons and ions, respectively) under the

combined influence of the oscillating electric field and

the magnetic field; we have then

: Q1 [ Eg» N =
.—%3 Uﬂ = - Ty;,’i' ( "“g*f: €2 “f‘.__L_;O”L__._ > Cos Wt
?J CUO (,{)‘_)’2___"_(21,2

(Ir.1)

where N(Zaz ejBo/mjo is the cyclotron frequency for specie
j.  For each charged specie, £q.II.1 defines an oscillat—
ing frame in which the charged particle does not feel the
influence of the external oscillating electric field,

Let us define

Nj(¥,t) = '\’JE¥~+R3( 2 t7 (II.2)
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asvfhe denSity flu¢tﬁation'of~chéfged'specie j in its own
oséillating frame, The Fourier-Laplace transforms of the

two quantities are then related by

Ny (&, w) = jd‘oa (& 0-w'y NG (K W)

(II.3)
= A5 Ny

The last term is an operator representation of the original,

Here ') ’ ’
85 (40 = [ exp(-it. g5 4icot) ,
o (IT.4)
Bg. I1.4 can be inverted to give
N3C¥ w) = A5 Ny (II.52)
where . .
X (u - | MR A
Ay (%5000 = fdr ApI%. Ry +101) (it.e)

Using Egs.II.1 and 1T1.4, one can readily obtain an
explicit expression for Zﬁj (g§,hg) - As a simple example,

consider the case when EOi vanishes. We have then

A:‘,C‘gf.,w) :% JIm ( “,E.) (W+MWe)  (11.4)

Where§3~ = Q:i £o %1 {»Uj' is the magnitude of excursion

of charged specie in the oscillating electric field in the
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~ special case when B || B .
As mentioned earlier, in the oscillating frame of
specie j, the charged particles of specie j do not feel the
influence of the externally imposed oscillating electric
field and therefore one has the usual lirear relation
between the density fluctuation and electric field fluctu-

ation, that is,

~ : X ! g k' : + F
N; = “‘%1 IKE; = 23 1KASE (II.7)
ane; 41me;
wherelﬁ._s B.E is the gself-consistent electric field as

seen in the 0501llat1ng frame of specie j and
>
W
'X(v = Pa
:LO) Ei‘ H CLUJ_LLL

P:«d)kl
Oboi b
)dui. H Sl

F |
D (W‘F’Qj' —uyy Uy

(I1I.8)

is the usual expression for suceptibility in a magnetized
plasma with most symbols having usual meaning and velocity

integrations in the approrriate Landau sense.
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&)

In the laboratory framé, Poisson equation may be
written as

IKE = a1 e( Ni- Ne)

Transforming this to the oscillating electron frame
i ~ . Y
I UWE, = Ane (AN~ No»Y

and eliminating B, with the help of Eq.II.7, one obtaines

[ga]
NQ:Y@AQNi
where | —_ : . Slmilarl one can
e = e [ (14 %e) i
show
i -— A
Ny = T 43 Ne
Using Eqs.II.3 and II.5a to eliminate N, from the above

two equations, we obtain the final dispersion relation
~y Y AL
Ni= 7 Ay A Tehp 4; N, (II.9)

In the integral ferm, Bq.II.9 can be rewritten as

‘?{ (KW = ggg(dw') C“Uz d;*-)":i?}gii/»\i (_\é {(U”(‘()/f)
(2177 B

Dol ) Wy=w,) To (loa, %D

Aol My W= A (Y, LUg“(U@r’f (¥,

(IT.10)
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| hqs II. 9 and II.10 have a 81mple phySLoal inter-

pretatlon. An ion denglty'fluotuatlon Ni in the ion oscill-
ating frame appears as an ion fluotuation'[lezgfbﬁf in

the electron oscillating frame. This induces an electron
density fluctuation Té /\ ZSZ Kjf which transforms back

to the 1on frame as an electron fluctuation A AQ rQ AQ N;.
For self—con51stency, the new induced ion den81ty fluctuatlon
r A,GQ]Q Ay A must be identical to Ni, the original

ion fluctuation; this gives Eq.II.9 and II.10.

We now wish to express Eq.II.10 in a more éonvent—
ional form. For simplicity, we illustrate the calculations
only for the special case when E is along z-direction and

Aj (\A (U) is given by Eq.II.6. Using Eq.II.6, we can
write _
AQE{ (\\\,\‘ = - d’deLUZ;Z Z J—’Y\(\’\Q)
| (2m* 5w (ly - oy + M)
T (=% 53 ) 1M\ (U oy
( W~ @4‘%%&)@)

=22 Tn (W o) Topy (= %D 1T, (ki )
m ™M

= 2 HUDIP R (K, W, +ptuy
g 4

(II.11)
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= where the 1ntegratlons have been carrled out using the

re51due theorem we’ have deflned ‘
M= . (e = &) (II.12)

and have used the Bessel function identity

ZTY (0 Ty {D = Ty, (040D

- Proceeding similarly, we finally obtain the following

dispersion relation from Eq.II.10.
NS S T (W) T (O TV (i)
b =%, | =

Eq.II.13 gives an infinite determinant as the’
‘general form of the dlsper51on relation for electrostatic
modes, ILf the oscillating electric fleld is arbltrarlly
oriented with respeot to the magnetic field, the only change

is in the argument of the Bessel function which takes the

mofé general fofm

M=\, (&2 E)= Me- g (II.14)
with

- - Q. 2 2

T W S \« .

)Uﬁ — .,eﬁ ( OL\&\\ J‘_V:_:’Oj_ &L>+LEOLX:L) Qj

m.
N W @y -y

1I.15)
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Analysis Of,DiSpersion Relaﬁion, o
" We now analyze the dispersion relation Bq.I1I.13
for the case when one of the excited modes has a frequency

&) much less than the driving frequency. CUO .

When the frequency (1), has a high value, typical
of electron resonant‘modes, one can ignore the ion response
at Q)O and its multiples. We thus need only retain I°
which corresponds to ion density fluctuation at fréquency
(assumed much low than (g ). Mathematically, the neglect
of I™(m # 0) follows from the smallness of _“?(m £ 1),

The dispersion relation now assumes the simple form

A - \.»02__ 3_‘,2 Cw TQ\D =0 (1I.16)
2
We.restriot our attention to weak pump waves, that is
AL << 1. In this case we only need retain the terms with
p = O; + 1. Note that we can also approximate LleXAQ
because the displacement of ions in the high-frequency pump
field will be negligible. In the weak pump approximation,

Eq.II.lG may be rewritten as

A ! e A 4
) Yy =2 —w T — =0 (IX.17)
Xy A+ (Xg 4 &,_', Eﬂ

R : ;
where €i¥ - A4 '&;é%q is the high-frequency dielectric
constant at frequencies \(A)i;Q)o) ~ W, .
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DAMPING OF MAGNETOSONIC WAVE IN PRESENCE OF LOWER

HYBRID TURBULHENCE

Introduction

The discussions in the preceding chapter quantit~
atively reveal that the combined efifects of parametric
heating scheme and our appropriate external source enhance
the heating efficiency substantially. It is not clear,
however, that the harmful effects associated with the
macroscdpic source-driven models can be completely quenched.
Perhaps the nonlinear characteristics of these modes will
throw light on their explosive nature or theilr saturation
mechanisms, In this chapter, a new heating method will
be described in which the externalA‘ low frequency
electromagnetic waves are damped by a background turbulence
in the plasma, thus leading to preferential heating of
ions. Since the frequency considered in this problem is
lower than the lower hybrid frequency, this mechanism
for ion heating has some advantages over the parametric
heatihg‘scheme near lower hybrid resonance. It is amply
demonstrated in the literature that the mechanisms

responsible for the excitation of lower hybrid mode are
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the”ﬁérametiio decay:prQCeSS(l)band"tﬁe?cross~field
currents(z"s). ‘Yet anafhér proéess is the possibility
discussed by Babykin et al.(6). They essentially show
that a large amplitude magnetosonic wave can also

excité lower hybrid waves enabling thereby to deposit

its energy into the plasma, provided the amplitude of

the magnetosonic wave exceeds a certain threshold value.
Below this critical value, the small amplitude magneto-
sonic wave is undamped in a quiescent plasma and wave
energy remains uncoupled from the plasma partioleé. In
this chapter, it will be shown that these small amplitude
magnetosonic waves can also be damped in the presence of
a lower hybrid turbulence. The present work will assume
the presence oif a lower hybrid turbulence in the plasma
packground and usual generation mechanisms such as parame- .
tric decay process oI cross—-field currents. It should be
noted here that fhe small amplitude magnetosonic waves
themselves do not generate the turbulence and it can be
considered as an additional source of energy. The results
also demonstrate another interesting aspect of the lower
hybrid heating scheme, The non-resonant interaction
between the turbulence and the linear perturbatidn leads to
a purely growing ingtability which essentially bunches the
turbulent waves in space. This will lead to an inhomoge-

neity in the turbulence and can introduce nonuniformity in
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 the heating ’of,thé plasma, | |

" Vedenov et a1.(?) gtudied, in great detail, the
coupling between a low fréquencyAlong wavelegth coherent
mode and a high frequency baékground turbulence. We shall
followvthe same method and treat the background lower
hybrid turbulence as a distribufion of quasiparticles
governed by the wave kinetic equation ahd‘the cohefent
mode by the linear magnetohydrodynamic equations, The
effect of turbulent field on the particles provide a net
ponderomotive force on the linear MHD mode and thus it
establishes a coupling between background turbulence aﬁd
the MHD mode. The application of the wave kinetic equat-
ion is rather restrictive, as it is limited by the choice
of the density perturbation which evidently becomes thé
coupling paraméter(B’g). In a magnetoplasma, however, we
are allowed a wider choice of this parameter and thus we
have chosen the magnetic perturbation as the coupling
parameter, It should be noted that the choice of density
perturbation as the coupling parameter would be inadequate
for ooaplihg a magnetosonic wave with a lower hybrid
turbulence in a high density plasma., Our proposition is
based on the following physical considerations: In a high

. 2 2 . :
density plasma ( g)pe/ j}e >> 1, () being

wpe $

the electron plasma and electron gyrofrequencies,

respectively) the frequency of the lower hybrid mode is
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: 5gov§rned»by‘the maghetic field strength only

. being the ion gyrofrequency).

The magnetic field fluctuations of the magnetoacoustic
mode locally modifies the frequency of the lower hybrid
Waves,v'This modification in the frequency of the lower
hybrid waves modifies the plasmons distribution. The
plasmons then react back on the magnetosonic wave via the
ponderomotive force and they modify the propagation
Characteristics of the magnetosonic wave. This modification ;

turns out to be a damping of the magnetosonic wave.

Modified Dispersion Relation and Discussions

We shall consider a homogeneous collisionless
plasma embedded in a constant magnetic field §o = Bogz‘
The propagation vector of magnetosonic wave will be assumed\ \
to be in the x direction. The existence of a stationary |

lower hybrid turbulence is ascamed which is governed by

the wave "kinetic equation(7>.

aN =S - -
S vy VN = 4Dk VNG 0 (1)
ot 0 dv
where N = ]Eklz/4nu%& is the plasmon distribution
function and 30 = agok/aE is the group velocity of the
]

lower hybrid waves. The space and time dependence in

Eq.(1) is slow compared with the space and time dependehoe\"
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TOL the/mloroturbulence 1tself Thisfslow dependence, in
our’ case,'ls prov1ded by the magnetosonlc wave ( (L, q),
therefore, we must have {1 << L)y and g << [k]. |
In the frequency range {Li << W, <K 116 , where
iliﬁ_are the ion and electron cyclotron frequencies,
the general dispersion relation (See, Appendix) for lower
hybrid waves can be written as(z) |

g s e i A A T S

(22T B 2 (en) + L eeP O M\I o)
i KNG

- (RN Texp (M TN Z (rik,.d
(2)

where A = kz fe, £o balng the electron gyroradius and

I is the zeroth order modified Bessel function. 2 appear-

0
ing in Eq.(2) is the usual plasma dispersion function(lo)

er @3 are the electron and ion thermal velocities,
respectively. In the fluid limit, that is, for k £t

and «o

Eq.(2) reduces to,

and  Wi/k, > a,

n
P QLQJ“% i) (22)

L
where it is assumed that (k?‘ /ki') (m;/m ) <1 and
u)ge/:(lg > 1. On the other hand for an exact perpe-

ndicular propagation (k“ = 0) but with finite Larmor

radius correction Eq.(2) simplifies to,
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(2b)

ol 0 (KD
In the deriving Eqs.(2a) and (2b) it has also been assumed
that k fi >> 1. From Eqs.(zaj and (2b) it is clear that
.any pertﬁrbation on the ambient magnetic field alters the
frequency of these waves. In our éase such a perturbation
is provided by’the magnetosonic mode, The magnetosonic

wave can be described by‘the hy&romagnetic equations,

JERA. P(YI)V - TXB/ - TPy
E+ (VxB)/e -
/ (4)
- - 2B 7.F .
U XE =T MZ %&; » V-E=o (5)
VX B = Q'Ff?//c ) U B=o .
and (6)

where V is the single fluid velocity, f is the density,
p is the plasma pressure, E is the perturbed electric
field, J is the perturbed current and ¢ is the velocity
of light. Now, ¥V consists of both slow and fast motions
énd can be written as V = Vf+7§, VS being the motion of
the fluid due to slow magnetosonic mode while Ve

to the fast lower hybrid mode. Assuming a random turbul-

is due

ence, we average over several fast oscillations and from

Egs. (3) to (6), we get



‘1‘42‘ .
[* 5t2" ( )" M axz .— 'Z ‘BO%X<<\/5.\/)V:{>X(

v p 1 . 1 ' <2 1 1]
where V, = (5§/4nfb ) /2 is tl_le Alfven speed CS:( l‘e+ﬂi)/mi.
The right-hand side of Eq.(7) is essentially the pondero-

motive force, which is

A

PF = <(\/ V\/> [ kx ~l<x + \/k*} Ay \/_Kx>€x

¥ (V %‘%ky kya 'ky)ﬁjg]

Using the definition of the fluid velocity, we can write
-' - . . \7 .
W:‘ ﬂ€m6%¢+“mgﬂy{(

de L (9)
r’lhmt 4 YLL i"'YLL

where the guantities V., and V., appearing in Bq,(9) corres-

pond to the electron and ion velocities induced by the lower

bybrid mode which has the property that k.B, >> %k x B (i.e.
an electrostatic mode), Under the action of this mode, we

have

— Y

2V e F Ve E )
— J = N E .+ ‘:fj Z ()
( 3 - (10:)

. n2 a2y 1
\/(Xj = l .E_JJ (JJK‘E;& (‘\‘13 ’L&)K>
J ":‘T\j
and
- 9 78
\/”4 9 (E_—XL).)(.(‘L" wg) (11)\’
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‘Slnce the mdgnetosonlo modé is essentlally sustalned by the
ion motlon, the pondelomotlve force on.the 1ons is the
important factor. The ponderomotive force on ﬁhe eleotrons
will not affect the magnetosohic mode, This can also be
seen by taking ratios of velocity components given by Bqg.
(11), namely, in/foe = 0(1) where as Viyl/viye = 0(m /m )
Therefore, the ponderomotive force in the ey direction is
unimportant in our problem and hence we have chosen the
propagation of the magnetosonic mode to be in the x direct-~
ion only. Hence, from Bq.(9) we can write Ve= Ve, since
Vfi/erPvO (1) and charge neutrality can be assumed. Now

Eq.(7), under these assumptions, becomes

5 4 . L Q. «
pou “ L oA T .\ 7l - ]3 w’r) C&) < L
K¢ 2. (%**99)3'1J‘22 AR ,f"*} 2/, 2 (12)
where use has been made of the relation N, lEk] /AT GOy

o) . ;
We now write Nk = Nk + nk’ k belng the perturbed
part of the plasmon distribution function and assume that

m ~ 1, exp l:i(a.f - _Q.tjland'EkP‘ﬁk exp [ i(k.r - W, )7,

Thus the linearized version of Eq.(1) gives

~ AW, T o (Y '
ﬂki(aﬁkthk>/[1(%(1 Q)] (13)
Now, from Eq.(2a), we have W~ () ex‘fljjl/z, and
therefore
Bw ef)_, . 1/’2 q_ 4/2 5 \ \
» ko = e 915 - > -
37 (m.‘ m,¢? > 3% Y"L e?/ 9 Nz (14)
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From qu (15) and (14) it is olear that ‘a perturbation in

the mawnetlc fleld B1 , due to the sloW magnetosonlc wave
can change the plasmon distributibn.whioh in turn couples

the turbulence with the magnetosonic mode. Combining fqs.
(12); (13) and (14), we get the modified dispersion relat-
ion for the magnetosonic wave under the influence of a

lower hybrid turbulence, as

> ~ Vo Z< « dk
(C’/ (\/ ﬂ ) q/ (/OPL -~———(Ji>-—f&-———~—-—- (-ﬂ- - ) (Ew~\/3)

2mN, (.ﬂ - we)” (15)

where I = v2 + cZ,

Analogous to the usual Landau damping of particles
Bq.(15) inherently gives a damping term due to the pole
contribution. Assuming the imaginary part Ya‘to be much
smaller than {) , We have Y

e n89 [ (96 (T
4min
where we have used the fact that Wy~ ( J),ex.fli)l/z.
It is obvious from Eq.(16) that the meximum contribution to
- the integral arises when qlM, - %g.& = 0,
The short wavelength transverse lower hybrid mode
given by Eq.(2b) cannot participate in the resonant inter-

action.as V (3 k@?2/4) ( .Il x L. )1/2 = M, would
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: Bipp oo
mean I f-e‘: Ni/Cs'f,(% +»1/B)1W§e?e B=CL/Vy =
81 nOJQ: Te/B§'§'is the ratiofoprlasma pressure to
magnetic preSsure, The réquirement violates the condition
kf, <1 for B <1. Tor this short wavelength mode,
therefore, Vg/MA << 1 and it can interact only nonresonatly.
The fluid mode as given by £q.(2a) can, however, resonate
with the magnetosonic mode by virtue oi its larger group
velocity, The resonance condition along with Eq.(2a) gives,
‘“k“ ( M N1295 My /kﬁ%) (17)
-’}; A - &C’S k Wi / ‘
: ; L 1/2 +
In this case, the condition [ (kg /k) (mi/me) 1 <1 can

easily be satisfied as MA/OSfx.l,for B <1 and k\(ae/ Q}k<<1.

In a high-§ plasma, the finite Larmor correction
for the transverse lower hybrid mode provides a nonresonant
\ooupling between the magnetosonic perturbation and the
background lower hybrid turbulence. It should be noted that\
this analysis is applicable to any experiment invoking the
lower hybrid heating scheme, The magnetosonic perturbation
considered in this work being linear, the analysis can
predict the stability of the turbulence even in the absence
of an externally imposed magnetic perturbation. As shown
earlier, the group velocity Vs 88 given by Eq.(2b), is
small compared to M,, Hence, the term ( o - Vé.a)"l in
| 'Eq.(15) can be expanded in powers of ‘gf’qﬁ%%ﬁ. The

equilibrium solution of Eq.(1) can be written as a
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thwelllwn dlstrlbutlon ior the plasmons, namely ‘
2\ /2 = k ] .

= N (A7) e"PI— A(k 5) (18)
Using Eq.(18) Eg.(15) can be simplified to give

0. =Nk [ g e ko )T 19)
%M‘Q {-zmn:—o—< >] '(?

whete the term (qu/J} )5 and higher order terms are

neglected. The roots of £q.(19) are

at. [%QME?.‘»(%L‘MAQ‘F 4K)VQ]; (20

1

>
) _ 2 N 2 3 4

with X —(Nb kq“x qui/z m, no) ( Lold/_fli). Taus,

there exists a purely gorwing mode with the growth given

by i
Y= K /gt

(21)

This instability arises primarily due to a nonlinear
coupling between the lower hybrid turbulence and the'
magnetosonic waves injected externally into the system
or p;esent as noise in the system, This process would
lead to a bunching of the turbulent energy in space. An
initially homogeneous turbulence tends to become inhomo-
geneous in space and it will probably cause nonuniform
heating,

In summary, we find that eificient transfer of
energy can take place from an externally produced magnetg

osonic wave into a plasma in the presence of a lower
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hybrid~turbﬁien¢e,  Th§:5Ouplinglié thieVed by the choice
of a magnetic pertarbation.asrﬁhe,goapling parameter. The
long wavelength fluid mode takes pért in the resonant
~interaction whereas the short wavelength transverse lowef
hybrid\mode>pafticipates in.the nonresonAnt interaotion,
The‘later intéréctibn’might lead to an undesirable prooééé
fdr the heating scheme, since the hoﬁogeneous turbulence
can be bunched in space by this interaction leading to

non uniform keating.
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Derlvatlon oi the hlectrostatlc Lower Hybrld Mode w:.th

Flnlte Larmor C,orreetlons

The perturbed distribution funetlon fkj can be

wrltten down from the l;mearlsed Vlasov theory as

{ .- ,Cfﬁ » Ek-VMC expi(kx*- W) de (III.1)
‘ ‘-w - c 5,
Where the 1ntegratlon has to be performed over the urper*"

urbed orbits. Since the 1ower hybrld mode has a frequency

given by _D_t K o, KL Qe and also l’f‘t >> 1
’>'> kfe | ,’ ( _Q;j and f'i are the gyrofrequency and

gyroradius of the ;jth species) we o'ensidervthe ions to be

unmagnetised and the eleotrons to be magnetlsed Theﬂjg,n-\-x .

"perturbed orbits are therefore

v o
v& hsfanf for ions
X/ X+ Yy \ :
, - / ' i
and V. =V Cos (¢h- 0.t ), V.=V, Sin (¢ - Vit
X'=x=7, Sin (¢ -0t )+ sing
e ) T, S
i o , i
=y +~_{'1? Cos (¢ - ﬂﬁ’t ) %{josg{)
- R
vV, = V., 2=V,T + 2, for the electrons.

Integrating over these orbits and using the poisson's

equation VE = QﬁZﬂjj;k,d\'/ ; we get the desired
i



dlsper51on relatlon in the form " :
R PRt (,.J | Kk, 2 oc ‘ B ‘.{"; . e
k & g "av,, /( K w’) iy -2%“-”’; [ e

k : , (III1.2)

P

where 3'(kﬁﬁ/g ) is the bessel function of the order\ ”'
{ and A is the debye 1ength

For the electronlo term the Q»z O term contribute maximum

to summation as the reSb.Of the terms are smaller by a ratio

k° .f % (< 1. Therefore integrating overr 'V we
find, N ; P
r R :
1 - (2kA2) ,ez(“"‘ ) i ep CRED LI faxz

. ,(III.S).'
~ m WY ep(RIDL(ED 2 (Y,
where ,£ is the dlsper81on function and1 = i_ k“je daV% \

_kfe

s.



 CHAPTER VI

CONCLUDING REMARKS AND FUTURE WORK

The main hlvhllghts of this dissertation can be
brlefly summariged 1n this concluding chapter. The methode
of improving the neatlnb efflclenoy and:the stabilization k
of some dangerous modes are the fundamental obJectlves of
the precedlng chapters In explalnlng bhe phy51oal meoh~
anism respon31ble for sﬁbstorm prooess, the oolllslonless
tearlng mode theory has been 1nvoked w1th the allowance of
.zero order electric fleld in the equlllbrlum oonflguratlon.‘
\Thls iactor permlts the ex01tatlon of a new non resonant ’
tearlng mode which lalrly seems to account for the sattellte .
observatlons during the magnetospherlo Substorms Another
important feature is the eX01tatlon of Ve1001ty grr dlent
driven instabilities, These 1nstab111tles arise only for
nonuniform electric and magnetlc flelds in a certain
restrioted frequency raﬁge‘ Flnally the work also Sstresses
’the role of some externally controllable parameters for

1ncrea81ng tne heatlng efilclenoj in a fusion plasma

In our work, we have skipped some intricate nonllnear .

processes responelble for plasma heatlng in the neutral

sheet. Rather than meking an 1ndepth study into a partloularl



fiven though the problems studled in thls thesis

exhaustlvely cover varled eifeots of dlfferent Physical
parameters they all suffer from certaln degrees of incomp-
leteneSS. The tearing mode problem has been studled with

a fleld configuration olosely resembllng the earths’' magne-
tospherlo tail oonflguratlon 1t would also be important to
study Slmllar prooesses in a tokamak aeometry 1noludlnﬁ the /¢,,
torOldal effeots in view of the recent observatlon of this |
mode in tokamaks Another aspect Wthh Would be interest-
ing topic of future work is the non-linear Saturation of
the lon-tearing mode,  The knowledge of the Saturatlon |
amplitude of thisg mode 1s essentlal for predlotlng the d
final magnetic topology The exaot heating mechanism of
the magnetlo annhilation process is yet to be identified
and still it remains an open toplo of research, Specially
in oonneotlon with the substorm brocess, While deallng
with the ve1001ty gradient driven 1nstab111tles we have
‘neglected the finite larmor radius effects. Thege eifeots

generally give stabilizing influence and it would be worth



tywhlle extendlng our theory to;the klnetlc reglme In the
heatlng aspect of the plasma we. have oon51dered the effeot
of cold component of eleotrons. It 1s qulte Well known

that in parametric heating schemes (speelally for laser-
pellet 1nteraotlons) a hlgh energy tail is created for .
the eleotrons.‘ These supra thermal electrons can also"

| modlfy various other parametrlc processes. We have already
bemphasised the role of such electrons in;casebof the
absorptive ihstability, (Ghapter IV),:and it would be of
bulnterest to study thelr effects on the scatterlng instabi-
’11tles. In Ohapter V we have studled the turbulence induced
damplng of the magnetosonlc waves 1n the hlgh density limit
(i.e. /&L >> 1) which can be true only ior Laboratory
\plasmas., For space plasmas wherein the relatlon‘LT%/ﬁl << 1

';hholds good, a s1mllar damplng mechanism can also be studled

speclally in connection with the heating of the plasma in
the inner magnetosphere where both magnetic pulsation as
well as the electrical noise (bothrdriven unstable by field

aligned currents) have‘beenfobServed.






