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ABSTRACT

Violations under the discrete symmetry transformations, like parity (P), time-

reversal (T) and combined charged-conjugation-parity (CP) symmetries, have

already been observed in nature at the elementary particle level. However, in the

composite systems like atoms, P and T-violating (P,T-odd) interactions between

its constituent particles could give rise to net intrinsic electric dipole moment

(EDM) of the system. Therefore, observation of a non-zero EDM in an atomic

system would be a clean signature of violations of both the P- and T- symmetries.

In addition, atomic EDMs can also probe CP-violation originating from leptonic,

semileptonic and hadronic CP sources. Since last six decades, several attempts

have been made by physicists in both the high-energy and low-energy sectors to

probe such CP-odd sources.

The EDMs of closed-shell (diamagnetic) atoms (dA) arise predominantly from

the P,T-odd electron-nucleus (e-N) tensor-pseudotensor (T-PT) interactions and

interactions between the nuclear Schiff moment (NSM) with the atomic elec-

trons. It is assumed that NSM originates primarily due to the distorted charge

distribution inside a finite size nucleus caused by the P,T-odd interactions among

the nucleons mediated by the neutral pions (π0-mesons) and due to EDMs of the

nucleons. Further, at the quantum chromodynamics (QCD) energy scale, the

origin of NSM can be viewed as the P,T-odd interactions among the constituent

quarks and due to the EDMs and chromo-EDMs of the quarks.

Accurate theoretical evaluations of EDMs require sophisticated many-body

methods, which can treat both the electron-correlation effects and the relativis-

tic corrections adequately. In past, several lower-order many-body methods have

been employed to study these properties in the atomic systems that are under

consideration by the experimentalists to measure their EDMs. Validity of these

methods are not well investigated and from the theoretical prospectives, they

do not appear to present reliable results. The main objective of this work is

to develop more accurate all-order perturbative many-body methods in the rel-

ativistic framework so that calculations obtained using these methods can be
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combined with the experimental values of the EDMs for different closed-shell

atomic systems to infer fundamental quantities that can be used to test possible

new physics of elementary particles. In this view, we have developed methods

based on the relativistic coupled-cluster (RCC) theory considering full singles

and doubles approximation with linear terms (LCCSD method) and including

all non-linear terms (CCSD method). To further improve our CCSD results,

we perturbatively take into account contributions from the important triple ex-

citations due to the electron-electron repulsion (CCSD(T) method) and along

with the P,T-odd interaction (CCSDpT method). In order to compare our EDM

results with the previously reported values we developed a method based on ran-

dom phase approximation (RPA). In addition to that, we have also developed

a third-order many-body perturbation theory (MBPT(3)) and studied trends in

the behavior of electron-correlation effects going from one method to another in

the evaluation of the property of interest. Before performing EDM calculations,

we test the potential of our many-body methods by evaluating electric dipole po-

larizability (α) of various closed-shell atomic system and comparing these results

with the available measurements and other calculations. Since the evaluation of

dA and α demands similar angular momentum and parity selection criteria, but

accuracies of αs can be tested against their experimental values. This, therefore,

can serve as benchmark to determine EDMs reliably. After rigorous testing of

our developed many-body methods, we finally evaluate dA due to T-PT and NSM

interactions of the experimentally considered atoms like 129Xe, 199Hg, 223Rn and

225Ra. Till date, the best atomic measurement on dA is obtained from 199Hg as

|dA(199Hg)| < 3.1 × 10−29|e|cm (at 95% confidence level). Large discrepancies

among the previously reported calculated results using a variety of many-body

methods have been noticed. In this thesis, we aim to explain the reasons for

observing such differences by systematically including higher-order corrections

to the many-body methods. With above many-body methods in hand we rigor-

ously demonstrate the trends in the electron-correlation effects in determining α

and dA. We find that non-RPA contributions (pair-correlation effects) which are

already there in CCSD are very crucial in achieving better accuracies in these
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results. The contributions from important triple excitations to α and dA were

also found to be very significant (sometime 3%). Finally, we present the rec-

ommended EDM results from a method that takes into account more physical

effects. On combining our recommended EDM results with the measured value

of 199Hg, we obtain limits on the T-PT coupling constant as CT < 2.09 × 10−9

and on the NSM as S < 1.45 × 10−12|e|fm3. Using these values together with

the latest nuclear structure and QCD calculations, we get limits for the strong

CP parameter as |θ̄| < 1.1 × 10−9 and for the combined up- and down- quark

chromo-EDMs as |d̃u − d̃d| < 2.8 × 10−26|e|cm. Experiments to measure EDMs

in 129Xe and 225Ra are actively underway aiming to improve the precision of the

measurements so that the new results can surpass the upper limit set by the

Hg experiment. In fact, a research group at Argonne National Laboratory has

recently reported their first EDM measurement on 225Ra atom. Though, their

obtained limit is not competitive with Hg at present but from the theoretical

and experimental point of view, 225Ra has the potential to enhance this effects

significantly.

In brief, a comprehensive study of closed-shell atomic EDMs is presented in

this thesis with a focus on various relativistic many-body methods including the

RCC theory. We highlight the importance of non-RPA contributions in deter-

mining accurate results of α and dA in various closed-shell atomic systems. Our

obtained limits on various P,T-odd couplings from 199Hg could constraint various

extensions of the standard model (SM) of particle physics. These constraints can

further useful for probing new physics beyond-SM.

Keywords: Electric Dipole Moment, CPT Theorem, Dipole Polarizability,

Parity, Charge-Conjugation, Time-Reversal, CP-Violation, Tensor-Pseudotensor

Interaction, Nuclear Schiff Moment, Many-Body Perturbation Theory, Random

Phase Approximation, Relativistic Coupled-Cluster Theory, Standard Model.
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Chapter 1

Introduction

Studying symmetries provide physicists a very powerful and useful tool in explor-

ing fundamental physical laws of nature [1]. In physics, symmetries are broadly

classified into two categories

• Continuous internal and space-time symmetries: e.g., spatial-translation,

spatial-rotation, time-translation etc., and

• Discrete symmetries: e.g., parity or space inversion symmetry (P),

charge-conjugation symmetry (C) and time-reversal or motion-reversal sym-

metry (T).

All the continuous symmetries are associated with some conservation laws ac-

cording to the Noether’s first theorem, which says “for every continuous sym-

metry there is a corresponding quantity that is conserved”. For example,

linear momentum is conserved under spatial translation, angular momentum is

conserved under spatial rotation, etc.. There is no such notion of conservation

related with the discrete symmetry transformations. In fact, like continuous

symmetries, discrete symmetries were also thought of as exact symmetries of the

nature. But in 1956, Wu et al. [2] reported the first observation of violation of

P symmetry in the beta decays of cobalt-60 nucleus, where they found electrons

favor a very specific direction during the decay opposite to that of the nuclear

spin. Thereafter in 1964, violation of combined CP symmetry (CP-violation)

was observed in the decays of neutral K mesons [3]. Since then violation of

1
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Figure 1.1: Pictorial representation of showing existence of intrinsic electric
dipole moment implies violation of the P and T symmetry. J is the total angular
momentum and δ is the small charge deformation due to which we have dipole
moment D of the system.

discrete symmetries have been regularly reported in different sectors of particle

physics [4–6].

In a composite system like atom or molecule, the P- and T-violating inter-

actions among the constituent particles or existence of electric dipole moment

(EDM) of these constituent particles could give rise to EDM of the system.

Since electric dipole operator ( ~D) is a polar vector and according to the Wigner-

Eckart theorem (projection theorem), any vector pertaining to the system should

lie along the direction of total angular momentum ( ~J) of the system, i.e. [7]

〈 ~D〉 =
〈 ~D. ~J〉
〈J2〉 〈 ~J〉. (1.0.1)

Now being a polar vector ~D flips its orientation under the parity (P) transfor-

mation but under time-reversal (T) operation there should not be any change in

~D. However, the reverse happens for angular momentum operator ~J , which is an

axial vector, as shown in Fig. 1.1. If P and T are the exact symmetries of nature

than the EDM of the system should be zero, else non-zero EDM would imply

simultaneous violations of P and T symmetries. In other words observation of

finite EDM in a non-degenerate system like an atom in a relativistic theory is

an unambiguous signature of violations of both the P and T symmetries [8, 9].
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Therefore, EDM observation is a direct test of T-violation; consequently via the

CPT theorem T-violation implies CP-violation [10]. Till date, all the observed

CP-violation in laboratories are consistent with the predictions of the standard

model (SM) of particle physics. There are two sources of CP-violation in the

quark sector of the SM. The best understood source is the complex δ phase in

the Cabibbo-Kobayashi-Maskawa (CKM) matrix that induces CP-violation by

mixing quarks in flavor-changing processes. The second source is the quantum

chromodynamic (QCD) vacuum angle θ̄ that parametrizes the P and T-odd in-

teractions between the quarks and gluons [11–13]. In principle, θ̄ would generate

large neutron electric dipole moment (EDM) (dn) of the order of 10−16|e| cm

while the experimental bound is roughly ten orders in magnitude smaller than

that, which strongly limits θ̄ < 10−10 [14, 15]. This is the well known strong CP

problem of SM where the puzzle is why θ̄ is so tiny or almost equals to zero.

The EDMs of the elementary particles predicted by the SM are extremely small.

Finite contributions to the lepton EDMs arise via four-loop Feynman diagrams

with a closed quark loop [16]. The electron EDM (de) in SM is roughly ≈ 10−38|e|
cm, which is inaccessible with the current experimental techniques [11–13]. There

are also many fundamental phenomena which persist in nature that SM do not

account for, for example,

• Neutrinos are massless in SM but from the neutrino oscillation experiments

it is evident that neutrinos have small masses [17, 18].

• SM does not include gravitational interactions, one of the four fundamental

forces.

• SM also fails to explain why there is a huge difference in the strength of

fundamental forces (“hierarchy problem”). It also refers to the differences

in the masses of leptons in three generations of SM for e.g. muon is 200

times and tau is 3500 times heavier than electron.

• There is no dark matter candidate in SM, however existence of dark matter

is now widely accepted. In fact, the best evidence to date come from the

gravitational lensing studies of the Bullet Cluster [19].
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• The complex phase δ and θ̄ of SM doesn’t provide sufficient CP-violation

to explain the matter-antimatter asymmetry in the Universe [20, 21], etc..

It is, therefore, widely believed that SM is not a complete theory and there

must be additional CP-odd sources which are not discovered yet. In order to

search for these additional CP-odd sources many attempts have been made by

theorists; mostly by advocating many models as extensions to SM such as, left-

right symmetric model, supersymmetric models (SUSY), multi-Higgs models etc..

These extensions predict additional interactions, particles and new sources of

CP-violation that can give rise limits on EDMs that are as big as the upper

limits established by various atomic and molecular experiments. For example,

one of the most celebrated beyond SM is SUSY which relates two basic classes

of elementary particles: fermions (particles with half integer spin) and bosons

(particle with integer spin). Therefore the number of particles in SUSY are twice

of SM such that for every particle we have its heavier superpartner, e.g. electron’s

super-partner is selectron, photon’s superpartner is photino etc.. The doubling

of number of particles introduces roughly 100 new parameters and many new

CP-odd phases with the breaking of SUSY near the electroweak energy scale

of 100GeV. These extra CP-odd phases are responsible for boosting the EDMs

of the particles to current experimental range. With the above considerations,

enormous efforts to find the non-zero EDMs in leptons, hadrons, nuclei, atoms

and molecules are underway at both the theoretical and experimental fronts.

Excellent reviews on EDMs can be found elsewhere [13, 22, 23].

1.1 EDMs of Closed-Shell Atoms

Atoms are composite systems and exhibit strong enhancements of the EDMs of its

constituent subatomic particles. Depending upon their electronic configurations

atomic systems are divided into two categories: open-shell (paramagnetic) and

closed-shell (diamagnetic) atoms. The EDM of paramagnetic atoms are sensitive

to the intrinsic EDM of an electron (de) and P,T-violating pseudoscalar-scalar

(PS-S) interactions between the electrons and nucleons which in turn arise from
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Figure 1.2: A schematic plot of the hierarchy of scales between the CP-odd
sources and three generic classes of observable EDMs. The dashed lines indicate
generically weaker dependencies.

the P,T-odd electron-quark and quark-quark interactions at the quantum chro-

modynamics (QCD) energy scale. However, EDMs of the diamagnetic atoms

arise primarily from the following sources :

• Semileptonic Sources: P-,T-odd electron-nucleus (e-N) tensor-pseudotensor

(T-PT) interactions and scaler-pseudoscalar (S-PS) interactions.

• Hadronic Source: P,T-odd nuclear Schiff moment (NSM) interacting

with electrons [12]. Further at the QCD scale NSM can be further linked

with the CP-odd pion-nucleon-nucleon (πnn) coupling constants (ḡπnn),

strong CP parameter θ̄ and chromo-EDMs (dq) of quarks [23, 24].

• Leptonic source: Electron EDM (de).

A schematic showing various CP-odd sources in the three generic classes of EDM

observables against energy scale is shown Fig.1.2 [13]. In this thesis, we study



6 Chapter 1. Introduction

6 P 6 T
e−

e−
nuc

nuc

Figure 1.3: A Feynman diagram showing P and T-violating interaction between
electron and nucleus. Red dot represents the P,T-odd coupling.

EDMs of the closed-shell atomic systems arising predominantly from the e-N

T-PT and the NSM interactions. In the next three subsections, we will discus

these sources in detail and give their corresponding interaction Hamiltonians. At

the end, we will also justify why the contributions of the electron EDM (de) to

the atomic EDM of the closed-shell systems are negligibly small and for which

their contributions are not accounted here.

1.1.1 Semileptonic Source: Electron-nucleus T-PT Inter-

actions

The e-N interaction that violates the P and T symmetries can be described by

the Feynman diagram shown in Fig. 1.3. The interaction between the nuclear

tensor current ψ̄nσµνψn and electronic pseudotensor current ψ̄eγ5σµνψe is given

by the interaction Hamiltonian

HTPT
int =

iGFCT√
2

∑

n,e

(ψ̄nσµνψn)(ψ̄eγ5σµνψe), (1.1.1)

where GF is the Fermi coupling constant, CT is the T-PT coupling constant,

σµν = i
2
[γµ, γν ] with γ’s being the Dirac matrices, ψn and ψe are the nuclear

and electronic wave-function respectively. In order to use the above interaction

Hamiltonian in the atomic many-body calculations, we simplify it further using

Clifford algebra as given in Appendix B. The tensor part γ0σµν belonging to the
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tensor current of the above Hamiltonian is further simplified as,

γ0σµν = γ0
i

2
[γµ, γν ] = 0 if µ = ν (1.1.2)

= iγ0γµγν if µ 6= ν. (1.1.3)

The µ 6= ν part can be further reduced to

iγ0γµγν = iγ0[γ0γi + γiγν ](i 6=ν)

= iγi + iγ0γiγν using (γ20 = I)

= i(γi + αiγν)(i 6=ν) using (γ0γi = αi). (1.1.4)

Unlike tensor current, the pseudotensor part of the Hamiltonian contains extra

factor γ5 as ψ̄eγ5σµνψe = ψ†
eγ0γ5σµνψe. From the the anti-commutation relation,

we get γ0γ5 = −γ5γ0 and using the simplified form of γ0σµν from the above

relation, we have

γ0γ5σµν = −γ5γ0σµν
= −iγ5(γi + αiγν)(i 6=ν)

= −iγ5(γi + αiγ0 + αiγj)(i 6=j)

= −iγ5(αiγj)(i 6=j). (1.1.5)

Inserting the factors obtained in Eqs. 1.1.3 and 1.1.5 in Eq. 1.1.1, we get the

following simplified form of the interaction Hamiltonian

HTPT
int =

iGFCT√
2

(ψ†
n(γi + αiγν)ψn)(ψ†

eγ5(γi + αiγν)ψe)(i 6=ν)

=
iGFCT√

2
(ψ†

nαiγjψn)(ψ†
eγ5αiγjψe)(i 6=j)

=
iGFCT√

2
(ψ†

nαiβαjψn)(ψ†
eγ5αiβαjψe)(i 6=j)

=
iGFCT√

2
(ψ†

nβαiαjψn)(ψ†
eγ5βαiαjψe)(i 6=j). (1.1.6)
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The αiαj in the above equation can be simplified as

αiαj =




0 σi

σi 0








0 σj

σj 0



 =




σiσj 0

0 σiσj



 = σiσjI

= (iǫijkσ
k)(i 6=j) since (σiσj = δij + iǫijkσ

k) (1.1.7)

and

γ5αk =




0 I

I 0








0 σk

σk 0



 = σkI.

Combining Eqs. 1.1.7 and 1.1.8, we get the following identity

αiαj = iǫijkσ
kI = iǫijkγ5α

k.

Further using the above derived relations, we modify our interaction Hamiltonian

as follows

HTPT
int =

iGFCT√
2

(ψ†
n(iβǫijkσ

k
Nψn)(ψ†

eiγ5βǫ
ijlσlψe)

=
iGFCT√

2
(ψ†

n(βǫijkσ
k
Nψn)(ψ†

eβγ5ǫ
ijlσlψe).

(1.1.8)

In our calculations, we consider a non-relativistic nucleus and hence spin do not

couple with the orbital angular momentum of the system due to which nuclear

Pauli matrix (σN) will not on act ψn and we have

HTPT
int = i

iGFCT√
2

|ψ†
nψn|(ψ†

eβ
2ǫijkǫ

ijlσk
Nγ5σlψe) with ǫijkǫ

ijl = 2δlk

= i
iGFCT√

2
ρN (r)(ψ†

e2δ
l
kσ

k
Nγ5σlψe)

= i
√

2GFCT δ
l
k




σk
N 0

0 σk
N








0 σk

σk 0



 ρ(r)

= i
√

2GFCT




0 σN · σ

σN · σ 0



 ρ(r), (1.1.9)
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where ρ(r) is the nuclear density, σN is the nuclear Pauli matrix and I = 1
2
σN ;

with I being the nuclear angular momentum. Now for an N-electron system, our

P,T-odd interaction Hamiltonian is given by

HTPT
int = i2

√
2GFCT 〈I〉γ ρ(r) . (1.1.10)

We will use the above expression of HTPT
int for the atomic many-body calculations

to evaluate EDMs in the closed-shell atomic systems. On combining our EDM

results obtained using HTPT
int with the available measurements, we can deduce the

coupling coefficient CT . Another source which adds to the atomic EDM is the

P,T-odd e-N S-PS interaction but in the closed-shell atoms it contributes along

with hyperfine interaction in the third order of perturbation theory. The coupling

CT is related to the e-N S-PS coupling coefficient CP by the expression [25]

CP ↔ 5mpR

Zαf
CT ≈ 3.8 × 103A

1/3

Z
CT , (1.1.11)

where mp is the proton mass, αf is the fine structure constant, R is the nuclear

radius, Z is the atomic number and A is the nuclear mass of the considered

system.

1.1.2 Hadronic Source: Nuclear Schiff Moment

The observation of EDMs in the closed-shell atoms are strongly suppressed by the

the screening effect. According to the Schiff’s theorem “For a non-relativistic

system made up of point, charged particles which interact electro-

statically with each other and with an arbitrary external field, the

shielding is complete” [26]. Non-relativistically, on application of external

electric field the constituent particles in the system orient themselves in such a

way that the effective electric field at the site of the nucleus in zero due to which

there is no interaction between the applied field and the nuclear-EDM. Therefore,

the shielding renders the detection of nuclear EDM impossible. However, there

are three effects which cause deviations from the “Schiff Theorem”. They are
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• Relativistic effects: the constituent particles are relativistic; specifically

in the heavier systems.

• Volume effect: the constituent particles are not points, but have finite

sizes.

• Non-electrostatic interactions: the constituent particles interact via

P,T-odd interactions.

The above factors lead to imperfect shielding in the atomic systems which can be

exploited to measure EDMs of atoms and molecules. In the closed-shell atoms

due to finite size of nucleus, there is a misalignment between the charge and EDM

density distributions which give rise to the P,T-odd moments of the nucleus.

These moments interact with the electrons and give rise to the atomic EDM and

hence, first order energy shift in the measurement. The NSM (S = SI/I) is the

lowest order P,T-odd nuclear moment which arises in the multipole expansion of

the nuclear potential when subjected to the electron screening. The NSM pro-

duces a P,T-odd potential which mixes the opposite parity states of the electronic

wave function and hence, induce EDMs in the closed-shell atomic systems. At the

nucleon level, NSM originates primarily from the P,T-odd interactions between

the nucleons and due to the intrinsic nucleon-EDMs. The expression for the

NSM (S) is obtained by considering the following nuclear electrostatic potential

screened by the atomic electrons [27]

φ(R) =

∫
eρ(r)

|R− r|d
3r +

1

Z
(~d.∇)

∫
ρ(r)

|R− r|d
3r, (1.1.12)

where the second term represents screening, ∇i = ∂/∂i, and the P,T-odd nuclear

EDM ~d =
∫
erρ(r)d3r = d I

I
. The second term in Eq. 1.1.12 cancels the long-

range dipole electric field in the multipole expansion of φ(R). We can expand

the Coulomb potential 1/|R− r| in terms of the Legendre polynomials as

1

|R− r| =
∑

l

rl<
rl+1
>

Pl(cos(θ)), (1.1.13)
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where r< (r>) is the smaller (larger) value among R and r. Considering the odd

harmonics l = 1, 3, · · · in the above potential, we get P,T-odd part of the poten-

tial such that l=1 corresponds to dipole field, l=3 corresponds to the octupole

field etc.. The contribution from the octupole field is negligibly small because of

its higher rank, it can mix only the orbitals of higher angular momentum sym-

metries that marginally penetrate the vicinity of the nucleus due to their larger

centrifugal barrier. In most of the cases, it is preferred to consider a system with

nuclear spin I=1/2, because octupole field is zero in those systems. Here, we

are interested only in the selected terms of Eq. 1.1.12 which are first order in

the P,T-odd interactions. We consider l = 1 in the first of the Eq. 1.1.12 which

corresponds to the distortion in spherical charge distribution due to the P,T-odd

interactions. The dominant P,T-odd term in the screening part of the Eq. 1.1.12

is obtained for l = 0, which shows that the spherical charge distribution and P,T-

odd moment comes from the nuclear-EDM only ( ~d contains P,T-odd density).

Considering the first term with l = 1 for which P1(cos(θ)) = cos(θ), we get

∫ ∞

0

eρ(r)

|R− r|d
3r =

∫ R

0

eρ(r)

|R− r|d
3r +

∫ ∞

R

eρ(r)

|R− r|d
3r

=
1

R2

∫ R

0

eρ(r)r cos(θ)d3r + R

∫ ∞

R

eρ(r)

r2
cos(θ)d3r

=
eR

R3
·
∫ R

0

rρ(r)d3r + eR·
∫ ∞

R

ρ(r)

r2
d3r. (1.1.14)

In the screening term with l = 0, in which P0(cos(θ)) = 1, we get

1

Z
(d.∇)

∫
ρ(r)

|R− r|d
3r =

1

Z
(d.

∂

∂R
)

1

R

∫ R

0

ρ(r)d3r +
1

Z
(d.

∂

∂R
)

∫ ∞

R

ρ(r)

r
d3r

= −d·R
ZR3

∫ R

0

ρ(r)d3r + zero (No derivative w.r.t R)

= −e〈r〉·R
ZR3

∫ R

0

ρ(r)d3r. (1.1.15)
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From Eqs. 1.1.14 and 1.1.15, we get the first order screened electrostatic potential

which contains only one order of P,T-odd interaction. Thus,

φ(1)(R) =
eR

R3
·
∫ R

0

rρ(r)d3r + eR·
∫ ∞

R

ρ(r)

r2
d3r − e〈r〉·R

ZR3

∫ R

0

ρ(r)d3r.

(1.1.16)

To simplify it further, we express the limit of integration as
∫ R

0
=
∫∞

0
−
∫∞

R
and

in the limits R → ∞ the first and the last terms in Eq. 1.1.16 become

eR

R3
·
∫ ∞

0

rρ(r)d3r =
e〈r〉R
R3

, (1.1.17)

and

e〈r〉·R
ZR3

∫ ∞

0

ρ(r)d3r =
e〈r〉·R
ZR3

Z =
e〈r〉·R
R3

, (1.1.18)

respectively, and cancel each other. With this cancellation Eq. 1.1.16 reduces to

φ(1)(R) = −eR
R3

·
∫ ∞

R

rρ(r)d3r + eR·
∫ ∞

R

ρ(r)

r2
d3r +

e〈r〉·R
ZR3

∫ ∞

R

ρ(r)d3r

= eR·
[∫ ∞

R

( 〈r〉
ZR3

− r

R3
+

r

r3

)

ρ(r)d3r

]

. (1.1.19)

The charge density outside the nucleus is zero. Therefore, ρ(r) is zero for r > RN .

In the non-relativistic limit the matrix element of the Hamiltonian corresponding

to the above P,T-odd potential with respect to the s and p orbitals are non-zero

as they give the dominant contributions is given by [28]

〈ψs| − eφ(1)(R)|ψp〉 = 4πeS· (∇ψ†
sψp)R→0, (1.1.20)

where the nuclear Schiff moment (S) is defined as

S =
e

10

[

〈r2r〉 − 5

3Z
〈r2〉〈r〉

]

= S
I

I
. (1.1.21)
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The matrix element in Eq. 1.1.20 is finite for the non-relativistic electrons but

for the relativistic electrons it diverges in the limit R → 0 (for a point nucleus).

The problem of divergence is usually solved by a cutoff of the electron wave func-

tions at the nuclear surface (considering the finite size nucleus) and calculating

its local dipole moment (LDM) [28]. The approach of LDM, naturally, incorpo-

rates relativistic corrections from the electron wave function to the NSM. In the

same work, for a finite size nucleus, Flambaum and Ginges [28] generalized the

expression for the NSM potential to

φ(1)(R) = −3S.R

B4
ρ(R), (1.1.22)

where B4 =
∫∞

0
dRR4ρ(R). This form of the potential has no singularities and

is suitable in the consideration of the relativistic calculations for the atomic

systems. The Hamiltonian corresponding to the above potential can be given by

HNSM
int = −eφ(1)(R) = e

3S.R

B4

ρ(R). (1.1.23)

Till date, the best upper limit on the atomic EDM (dA) of a diamagnetic system

has been obtained from 199Hg as [29]

|dA| < 3.1 × 10−29|e|cm (with 95% confidence level). (1.1.24)

On combining the experimental data with the accurate many-body atomic calcu-

lations considering the HNSM
int , an upper bound on S can be obtained. The value

for S can also be obtained from various nuclear structure calculations in terms

of the CP-violating pion-nucleon-nucleon (πnn) coupling constants ḡπnn as

S = gπnn[a0ḡ
0
πnn + a1ḡ

1
πnn + a2ḡ

2
πnn] |e| fm3. (1.1.25)

where gπnn is the CP-conserving πnn coupling constant, ḡiπnn (i = 0, 1, 2) repre-

sent the isospin components of CP-violating πnn couplings and the coefficients

a0, a1, a2 parametrize the dependence of S on the P,T-violating interactions. In a



14 Chapter 1. Introduction

recent work, Engel et al. [24] considered all the latest nuclear model calculations

on atomic nuclei of 199Hg, 129Xe and 225Ra and found that the parameters a0, a1,

a2 in operator S vary significantly in magnitudes from one to another. Moreover

in 199Hg, parameters differ not only in magnitudes by also in sings. However in

the same Ref. [24], they provide a range to these parameters along with their best

values for the above atoms as given in Table 1.1. The beyond-SM theories relate

Table 1.1: The ranges and the best values for the coefficients ai’s predicted from
various nuclear models in three nuclei which are used for the EDM analysis of
closed-shell atoms.

Ranges Best Values

System a0 a1 a2 a0 a1 a2

129Xe 0.005(0.05) 0.003(0.05) 0.005( 0.1) −0.008 −0.006 −0.009
199Hg 0.0050.05 0.03(+0.09) 0.010.06 0.01 ±0.02 0.02
225Ra 1(6) 424 3(15) −1.5 6.0 −4.0

ḡ0πnn to the strong CP parameter of QCD as ḡ0πnn = −0.018(7)θ̄ [23], from where

limit on θ̄ can be deduced. Furthermore, chromo-EDMs predicted by beyond SM

theories like SUSY and the left-right symmetric models is related to ḡ1πnn by the

relation ḡ1πnn = 2 × 10−12(d̃u − d̃d) [30], where d̃u and d̃s are the chromo-EDMs

for the u and d quarks respectively. Therefore, from the limits on S one can also

obtain bounds on the combined (d̃u − d̃d).

1.1.3 Leptonic Source: Electron EDM (de)

The contributions of the de in an atomic EDM of the closed-shell system is

negligible because of the fact that the electronic angular momentum is zero.

The tiny effect which comes from the electron EDM is through higher order

perturbations and the first order effect does not contribute. In the ground state

of an atom the magnetic field due to the nuclear magnetic moment interacts with

de to generate possible EDM of the atom which roughly scales as [31]

dA ∼ (Rf − 1)Z2α2
f

me

mp

de, (1.1.26)
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where me is the electron mass, mp is the proton mass, αf is the fine structure

constant and the relativistic factor Rf is given by

Rf =

(
a0

2ZRN

)2−2γ
4

[Γ (2γ + 1)]2
, γ = (1 − Zα2)1/2 (1.1.27)

with a0 is the Bohr radius and RN is the nuclear radius. For the 199Hg atom,

nuclear radius RN = 7 fm which gives the value for Rf = 8 and from Eq. 1.1.26,

we get dA ∼ 10−3de. Another effect somewhat more dominant than the previous

one through which de can contribute to the atomic EDM is through the hyper-

fine coupling in the third order of perturbation [31]. Combining the above two

effects the atomic EDM of 199Hg is roughly equals to −0.014de, which shows that

contribution of de to the atomic EDM is still suppressed by at least two orders

in magnitude. Similar calculations for 129Xe also shows very high suppression of

de as dA = −0.0008de. Therefore, the contribution of de is neglected in most of

the calculations and e-N T-PT and NSM interactions are considered as dominant

sources of EDMs in the closed-shell atoms.

1.2 Dipole Polarizability as a Benchmark for

the Accuracies of EDM Studies

Electric dipole polarizability (α) of any atomic or molecular system is a measure

of distortion of the electron cloud when the system is subjected to an external

electric field (E). In other words α is the measure of rearrangement of the

charged particles in a composite system due to the application of an external

E. The predictive power of any many-body method is judged on the basis of its

ability to reproduce the experimental values consistently for different systems.

In this thesis, we aim to calculate permanent EDMs due to e-N T-PT and NSM

interactions in closed-shell atoms whose experiments are currently underway. To

carry out their calculations, we first test validity of the many-body methods that

give these quantities reliably. For this purpose, we carry out calculations of αs

of atomic systems using these methods. The main reason for determining αs in
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EB

ω1

EB

ω2

Figure 1.4: General principle of all EDM measurements where Larmour spin
precession frequencies are measured when electric field E is parallel and anti
parallel to the magnetic field B. The difference in the frequencies (ω1 − ω2) is
the measure of intrinsic EDM.

the atomic systems for the EDM studies is that calculations of both α and EDM

require similar numerical accuracies of the atomic wave functions in mid and

large r domains and angular momentum selection rules. Again, it is possible to

compare the calculated αs with their available experimental results. This would

indirectly give some idea about the calculated values of EDMs in the atomic

systems by employing the same many-body methods.

1.3 General Principle of EDM Measurement

The basic principle of EDM measurement is easy to follow and the technique

is almost similar in all the experiments with an aim to observe the effect of an

external electric field on the spin (nuclear or electronic) of the system. Basically,

an atomic system is placed in an electric field and just like Zeeman effect shift

in the energy levels are measured. The energy shift proportional to the relative

orientation of the electron spin and the electric field is the signature of a non-zero

EDM. In the experiment, we also have a magnetic field which is aligned parallel or

anti-parallel to the electric field. If ~d and ~µ are the EDM and magnetic moment

of the system, respectively, then the electric and magnetic interaction energies

are given by −~d. ~E and −~µ. ~B respectively. Now if we consider a closed-shell atom

with nuclear spin ~I = 1/2 and just two spin states corresponding of ±1/2, then

the total energy of the system subjected to above electromagnetic field is given
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by

~ω = 2[µB + dE], (1.3.1)

where ~ is the reduced Planck’s constant and ω is the Larmour spin resonance

frequency at which spin precesses about the field axis due to the torque on the

electric and magnetic dipoles. In order to extract EDM, ω is measured twice. In

the first case electric and magnetic field are kept parallel to each other while in

the second case the orientation of the electric field is switched opposite to the of

the magnetic field as shown in Fig. 2.1.8. The measured Larmour spin resonance

frequencies ω1 and ω2 in both the cases are given as

ω1 = 2[µB + dE]/~ (1.3.2)

and ω2 = 2[µB − dE]/~. (1.3.3)

On subtracting Eq. 1.3.3 from Eq. 1.3.2, the magnetic term cancels out and

hence, we obtain

∆ω = ω2 − ω1 =
4dE

~
. (1.3.4)

Since the change in frequency and the strength of the applied electric field are

known, the intrinsic EDM can be evaluated from the above expression.

1.3.1 Difficulties in the EDM Measurements

To infer EDM, we need to precisely measure the tiny change in the Larmour

frequency. In order to have a rough estimate of how small this change in the

frequency is, lets assume EDM d ≈ 10−30|e| cm and effective electric field Eeff =

105 V/cm. Substituting in the above equation, we get

∆ω =
4(10−30e.cm)(105V/cm)

6.58 × 10−16eV.s
≈ 10−9Hz. (1.3.5)

To measure such a small shift in frequency requires advanced state of art exper-

imental techniques. Moreover, there are many systematic and statistical effects



18 Chapter 1. Introduction

which account for the uncertainty in the experiment. Till date, in all the measure-

ments these uncertainties are larger than the observed value (frequency shift).

That is the reason why we have null results so far. The measurements are un-

derway to improve the systematic and statistical sensitivities of the experiments.

The two most important sources of systematic effects are

• Leakage current: The magnetic term in Eq. 1.3.1 always dominates be-

cause of the fact that the EDM is very tiny. Therefore, the major challenge

in the experiment is to keep the magnetic field unchanged specially while

reversing the direction of the electric field. The high voltage between plates

introduces “leakage” current along any surface connecting between these

two plates that generates a stray magnetic field. When the polarity of the

plate is reversed, the “leakage” current also reverse its direction. In this

process the stray magnetic field introduces error while measuring ∆ω.

• Motional magnetic field: Atoms moving in the external E experience

magnetic field in their rest frame given by Bm = v ×E/c. Since Bm is

odd under parity, it mimics a false EDM signal.

Apart from systematic effects, statistical uncertainty also plays an important

role in obtaining precise measurements. The achievable statistical uncertainty

in an EDM experiment can be generically described by the following statistical

sensitivity formula

δd =
~

ǫE
√
NτT

, (1.3.6)

where ǫ is the efficiency of the experiment, E is the applied electric field, τ

is the spin coherence time, N is the number of particles in the observational

volume and T is the measurement time. If a measurement run for T = 105s

with the typical values E = 105V/cm, ǫ = 0.1, N = 106 and τ = 1s, then one

gets δd = 10−27|e| cm. The improvement in the statistical uncertainties can be

achieved by increasing the number of particles and coherence time (for e.g. in

129Xe EDM experiment N = 1021 and τ = 1000s).
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1.4 Brief History and Current Status of EDM

Measurements of Closed-Shell Atoms

The history of the EDM measurement of the closed-shell systems is not very old.

There are only a few systems on which EDM measurements have been reported

so far, the limits to the dA obtained from those measurements are presented in

Table 1.4.

As mentioned earlier, the best upper limit to the closed-shell atomic EDM is

obtained from 199Hg [29]. It provides an extremely tight bound on various CP-

violating sources at the nuclear level. The experiment consisted of a stack of four

spin-polarized Hg vapor cells in a common B field which drastically improved

the statistical sensitivity of the measurement by gaining in larger spin coherence

time and reducing the magnetic noise.

In a recent past, an experimental group at Argonne National Laboratory

(ANL) has unveiled the first EDM measurement of 225Ra [32]. Though the limit

is not competitive against the limit obtained from 199Hg, there is a scope for rapid

improvement. Theoretically, the octupole deformation in the nucleus of 225Ra

can enhance its EDM by at least two to three orders in magnitude as compared

to 199Hg [27, 33]. In addition to that, due to larger Z value EDM enhancement

in 225Ra is large as compared to 199Hg. The uncertainty due to the superfluous

contribution from the octupole moment vanishes in 225Ra and 199Hg, owing to

their nuclear spin half. On the experimental front, cold-atom techniques that are

least sensitive to systematics [34] have been developed to measure the Larmour

spin resonance frequency for 225Ra atoms [35,36]. Moreover, using the facility of

rare isotope beam (FRIB) for a measurement time of 100 days, the ANL research

group hopes to bring about significant improvement in the statistical uncertainty

by increasing number of atoms in the observational volume to 106 [37].

In the atomic system 129Xe, very first EDM measurement was performed

with the spin exchange maser and upper limit to the EDM was obtained as

dA(129Xe) < 4.1 × 10−27|e| cm [38]. The systematics of the measurement were

taken into account by using 3He as a co-magnetometer. In order to surpass the
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Table 1.2: Upper limits on the closed-shell atomic EDMs obtained from three
different measurements.

Atoms Limit |e| cm Laboratory Reference

129Xe < 4.1× 10−27 University of Michigan [38]
199Hg < 3.1× 10−29 University of Washington [29]
225Ra < 5.0× 10−22 Argonne National Laboratory [32]

limit set by 199Hg atom, several proposals to measure EDM in 129Xe are underway

with advanced techniques such as nuclear spin maser which is a mechanism to

sustain the nuclear spin precession for unlimitedly long duration and thereby

realizing long measurement times [39–41]. Though Xe has smaller Z compared

to Hg but having larger spin coherence time of about 1000 seconds and higher

number of particle in observational volume N > 1021 makes it quit attractive

candidate for the EDM measurement.

The other interesting candidates for the EDM searches are 223Rn and 171Yb

atoms, just like 225Ra they also have octupole deformation in their nucleus which

naturally enhance the NSM and hence, atomic EDM. So far no EDM measure-

ments in these systems have been reported yet but the experiments are in progress

with a quest to find our non-zero EDMs [34, 42, 43].

1.5 Thesis Overview

The rest of thesis is organized as follows:

In Chap. 2, we systematically present various relativistic many-body methods

such as many-body perturbation theory (MBPT), random phase approximation

(RPA) and relativistic coupled-cluster (RCC) theory at different levels of approx-

imations. These methods are then employed to calculate dipole polarizability (α)

and atomic EDM (dA) in a number of closed-shell atomic systems.

In Chap. 3, we demonstrate a computational procedure to implement our

many-body methods described in Chapter 2 to determine α and dA.

In Chap. 4, we benchmark our many-body methods by studying the behavior

of electron correlation effects in determining α of many closed-shell atoms and
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ions.

In Chap. 5, we employ our many-body methods to finally calculate EDMs

due to the T-PT and NSM interactions of experimentally interesting closed-

shell atoms. These atoms are 129Xe, 199Hg, 225Ra and 223Rn with zero electronic

angular momentum and nuclear spin I = 1/2. In addition to that we also evaluate

α in the above systems and compared them with the available experimental

results. On combining our Hg EDM results with the most precise measurement,

we obtain accurate bounds on CT , S, θ̄ and chromo-EDMs of quarks.

Finally in Chap. 6, I conclude my thesis by emphasizing on the importance of

our obtained results for α and dA. With the ongoing improvement in the EDM

measurement of 225Ra at Argonne National Laboratory our theoretical results

would be very crucial to obtain decisive limits on various P,T-odd couplings.

In order to improve these calculations further, we need more sophisticated

many-body methods like normal coupled-cluster (NCC) theory. In this thesis, I

also give the working equations of NCC theory.





Chapter 2

Relativistic Many-Body Methods

for EDM Studies

2.1 Introduction

An electric dipole moment (EDM) of a closed-shell atom (dA) is calculated by

evaluating the expectation value of the dipole operator (D) which is given by,

dA =
〈Ψ|D|Ψ〉
〈Ψ|Ψ〉 , (2.1.1)

where |Ψ〉 is the exact many-body wave function of the considered system. In

order to determine dA precisely, we need to evaluate |Ψ〉 as accurately as possible

for which one need to solve the following many-body Schrödinger’s equation

H|Ψ〉 = E|Ψ〉, (2.1.2)

where E is the exact energy and H is the Hamiltonian of the considered atomic

state. From the basic quantum mechanics, we understand that the Schrödinger’s

equation of a multi-electron system cannot be solved exactly because of the

presence of two-body inter-electronic Coulombic repulsion term in the Hamilto-

nian [7]. Therefore, in order to determine |Ψ〉 reliably one has to start with a

suitable approximation. Sandars [44] had shown that the EDM of a closed-shell

23
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atom scales faster than Z2 with Z being the nuclear charge. Therefore in exper-

iments heavier systems are preferred for EDM measurements. Now, with larger

Z value, relativistic effects become crucial in the atomic calculations. Moreover,

as mentioned in the previous chapter, one of the main assumptions of Schiff the-

orem [26] is that, in the non-relativistic limit atom does not acquire EDM even if

its constituent particle does. Thus, one has to consider relativistic theory for the

many-body calculations of dA. In the relativistic theory atoms can be described

with the Dirac-Coulomb (DC) Hamiltonian, which in atomic units (au) is given

by

HDC =

N∑

i=1

[

cαi · pi + (βi − 1)c2 + Vn(ri) +

N∑

j>i

1

rij

]

,

where N is the total number of electrons in the system, c is the velocity of light

in vacuum, α and β are the Dirac matrices, Vn denotes the nuclear potential at

the site of electron and 1/rij is the Coulombic repulsion between the ith and jth

electrons. In this work, we consider the Hamiltonian H of the atomic system

given in Eq. 2.1.2 as the sum of HDC and an additional interaction Hamiltonian

Hint. The Hint is either the tensor-pseudotensor (T-PT) or the nuclear Schiff

moment (NSM) interaction Hamiltonians which are described in the previous

chapter and are given by [25, 28]

HTPT
int = i2

√
2GFCT 〈I〉 > γ ρ(r) (2.1.3)

and

HNSM
int =

3S.r

B4
ρ(r), (2.1.4)

respectively, with GF is the Fermi coupling constant, CT is the T-PT coupling

constant, I is the nuclear spin, γi represents the Dirac gamma matrices, ρ(r) is

the nuclear density, S = S I

I
is the NSM and B4 =

∫∞

0
drr4ρ(r). The Hint is odd

under parity transformation. Thats why, it mixes the opposite parity states of

the atomic systems and give rise to the permanent EDM of the system. The
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strength of Hint is very weak, for which, it is considered as a perturbation in the

system such that Eq. 2.1.2 becomes

(HDC + λHint)|Ψ〉 = E|Ψ〉, (2.1.5)

where λ represents for the strength of the perturbation. In the first step, we eval-

uate for the unperturbed wave-function (|Ψ0〉) corresponding to HDC by solving

the following eigenvalue equation,

HDC|Ψ0〉 = E0|Ψ0〉. (2.1.6)

Since EDM is the first order effect, in the second step we calculate |Ψ(1)
0 〉 which

is the first order correction to |Ψ0〉 due to Hint. The total wave function of

the atomic system in the first order approximation becomes the admixture of

opposite parity states given by, |Ψ〉 ≃ |Ψ0〉 + λ|Ψ(1)
0 〉. Now the expression for dA

in this approximation is written as

dA =
〈Ψ|D|Ψ〉
〈Ψ|Ψ〉 ≈ 〈Ψ0 + λΨ

(1)
0 |D|Ψ0 + λΨ

(1)
0 〉

〈Ψ0 + λΨ
(1)
0 |Ψ0 + λΨ

(1)
0 〉

. (2.1.7)

In the above equation, non-zero contribution to dA will arise only from the terms

having matrix elements involving opposite parity states, owing to the odd parity

nature of D. Thus, the final expression for dA by neglecting the λ2 term in the

normalization factor is given by

dA ≃ 2
〈Ψ0|D|Ψ(1)

0 〉
〈Ψ0|Ψ0〉

. (2.1.8)

As stated earlier it is difficult to solve Eq. 2.1.6 exactly because of the presence

of two body operator 1/rij due to which atomic wave function is not separable

into single particle wave functions. Again, we cannot consider 1/rij as pertur-

bation because the strength of the Coulomb interaction is not small. Instead of

that, the above equation is solved traditionally by approximating 1/rij with an

effective one-body mean-field potential such that it includes most of the elec-
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tron correlation effects from 1
rij

. The remaining contribution from 1
rij

is called

as residual Coulomb interaction which is now small enough to be treated as per-

turbation to evaluate |Ψ0〉. In the next section, we describe the Dirac-Fock (DF)

mean-field theory which we adopt here as the first step towards the calculations

of the atomic many-body wave functions.

2.1.1 Dirac-Fock Theory for Closed-Shell Atomic Systems

In the Dirac-Fock (DF) theory, the issue of non-separable nature of HDC is sim-

plified by an approximation based on the independent particle model. According

to this model, we assume that each electron in an atom moves independently and

sees an average potential due to interactions among all other electrons. This av-

erage potential is an effective one body operator and called as DF mean-field

potential (UDF(ri)). On adding and subtracting UDF(ri) in the HDC we get

HDC =

N∑

i

[
cαi · pi + (βi − 1)c2 + Vn(ri) + UDF (ri)

]
+

N∑

j>i

1

rij
− UDF(ri)

= HDF(ri) + Ves, (2.1.9)

with the residual Coulomb interaction given by Ves =
∑

j>i(
1
rij

− UDF(ri)). The

residual interaction Ves is small enough to be treated perturbatively over the DF

Hamiltonian (HDF). The eigenvalue equation corresponding to HDF is given by

HDF|Φ0〉 = EDF|Φ0〉, (2.1.10)

where EDF is the DF energy and |Φ0〉 is given by a Slater determinant

|Φ0〉 =

√

1

N !

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

φa(r1) φa(r2) · · · φa(rN )

φb(r1) φb(r2) · · · φb(rN)
...

...
...

...

φc(r1) φc(r2) · · · φc(rN)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

, (2.1.11)
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where φ(ri)s are the single particle wave functions and a, b, c · · · represent the

orbital indices. This form of many-electron DF wave function is anti-symmetric

and obey the Pauli’s exclusion principle when the coordinates of any two electrons

are exchanged. Now due to the one-body operator UDF(ri), the DF Hamiltonian

is variable separable and can be written as a sum of single particle Hamiltonians

(h0(ri)) as HDF =
∑N

i h0(ri). Considering the above, the single particle DF

equation with energy ǫa corresponding to orbital |φa〉 is written as

h0(r)|φa〉 = [cαa · pa + (βa − 1)c2 + Vn(r) + UDF(r)]|φa〉 = ǫa|φa〉, (2.1.12)

and the potential UDF(ri) is given by

UDF(r1)|φa(r1)〉 =

occ∑

b=1

[〈φb(r2)|
1

r12
|φb(r2)〉|φa(r1)〉

−〈φb(r2)|
1

r12
|φa(r2)〉|φb(r1)〉], (2.1.13)

where occ stands for the total number of occupied orbitals, the first and the

last terms are called as the direct and the exchange terms of the DF potential

respectively. The above DF equations are solved simultaneously in an iterative

manner till the self-consistent results are obtained. Their solutions give us single

particle energies and the wave functions for each electron and hence, EDF and

|Φ0〉. Further, in the relativistic theory a general single particle orbitals |φi(r)〉
are expressed in the two components Dirac form as [45]

φi(r) =
1

r




Pi(r)χκi,mi

(θ, φ)

iQi(r)χ−κi,mi
(θ, φ)



 , (2.1.14)

given Pi(r) and Qi(r) are the large and small components of the radial wave

function, χκ,m(θ, φ) are the spin angular functions with the relativistic quantum

number κ given by

κ = −(j + 1/2)a and l = j − 1

2
a, with a = ±1 (2.1.15)
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for the orbital angular momentum l, the total angular momentum j and the

magnetic quantum number m that defines the axis of quantization. The radial

components Pi(r) and Qi(r) are constructed as the linear combinations of suffi-

ciently large number of basis functions. For the atomic many-body calculations

most commonly used basis functions are either the Slater type orbitals (STOs)

or the Gaussian type orbitals (GTOs) [46,47]. For the precise EDM calculations

we need the accurate behavior of the many-body wave functions particularly in

the nuclear region. Ishikawa and Coworkers [48] showed that for a finite size

nucleus the GTOs can give rise to a natural description of the relativistic wave

functions. This is the main reason for considering the GTOs for the DF calcula-

tions. The radial components Pi(r) and Qi(r) are expanded in terms of Gaussian

type functions (GTFs), such that the above single particle orbital becomes

φi(r) =
1

r





∑

k C
L
ikG

L
k (r)χκi,mi

(θ, φ)

i
∑

k C
S
ikG

S
k (r)χ−κi,mi

(θ, φ)



 , (2.1.16)

where GL
k (r) and GS

k (r) are the GTOs with coefficients CL
ik and CS

ik correspond-

ing to the large and small components of the wave function. In the shorthand

notation, we write

|φi(r)〉 =
∑

k

Cik|Gk(r)〉. (2.1.17)

The GTFs in our case are given by

GL
k,i(r) = NLrke−αir2

and GS
k,i(r) = NS

[
d

dr
+
k

r

]

GL
k,i(r), (2.1.18)

where NL and NS are the normalization constants for the respective large and

small radial components of the GTFs, k = 0, 1, 2, · · · for s, p, d · · · type angular

momentum symmetries, respectively, and the parameter αi in the exponent is
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obtained using the following even tempering (ET) condition

αi = α0β
i−1 where i = 1, 2, 3 · · · , n (2.1.19)

with the parameters α0 and β that are defined for each angular momentum

symmetry during the calculations.

The radial grid points for the numerical calculations starts from inside of the

nucleus at r0 = 2 × 10−6 a.u. and then defined non-uniformly with a step size

h ≃ 1.61 × 10−2 as

ri = r0[e
h(i−1) − 1]. (2.1.20)

The kinetic balance condition imposed on the small radial components of the

Dirac wave function given in Eq. 2.1.18 is to avoid variational collapse of the

wave function in the continuum [45].

For a finite-size nucleus Vn is described using the Fermi-charge distribution

of the nuclear density as given by

ρnuc(r) =
ρ0

1 + e(r−b)/a
, (2.1.21)

where the parameter ‘b’ is the half-charge radius as ρnuc(r) = ρ0/2 for r = b and

‘a’ is related to the skin thickness which are evaluated by

a = 2.3/4(ln3) and b =

√

5

3
r2rms −

7

3
a2π2, (2.1.22)

with rrms is the root mean square radius of the nucleus. In our calculations, we

have taken a ≈ 0.5234 fm and b = [5(0.836A1/3 + 0.570)2 − 7π2a2/3]1/2 fm using

the Fermi charge distribution for the atomic mass of the system A. By using

these values, we determine ρ0 as

ρ0 = Z

[
4

3
πb3
(

1 +
a2π2

b2
+

6a3

b3
K3

)]−1

, (2.1.23)
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where Z is the atomic number and Kn =
∑∞

n=1
(−1)n−1

n3 e−nb/a. We consider 1200

grid points, r0 = 2 × 10−6 au and maximum radial functions up to 500 au with

h = 0.016 au in the numerical calculations. This defines 258 grid points within b

value to describe the wave functions smoothly both inside and outside the atomic

nucleus.

On substituting |φa(r)〉 =
∑

k Cak|Gk(r)〉 and multiplying 〈Gm(r)| from the

left in the integro-differential equation given in Eq. 2.1.12 we get

∑

k

〈Gm(r)|h̃0|Gk(r)〉 +
∑

k

∑

b

[〈Gm(r1)φb(r2)|
1

r12
|φb(r2)〉Gk(r1)〉

+〈Gm(r1)φb(r2)|
1

r12
|Gk(r2)φb(r1)〉]Cak = ǫa

∑

a

〈Gm(r)|Gk(r)〉Cak,

where h̃0 = [cαi · pa + (βi − 1)c2 + Vn(ra)]. In a more compact notation, the

above equation takes the form

∑

k

FmkCak = ǫa
∑

mk

〈Gm(r)|Gk(r)〉Cak, (2.1.24)

which can be further written in the matrix notation as [49]

F̃ C̃ = ǫS̃C̃, (2.1.25)

where F̃ is the Fock matrix, S̃ = 〈Gm(r)|Gk(r)〉 is called as the overlap matrix,

C̃’s are eigenvectors and ǫ’s is the eigenvalues. To convert the above matrix into

true eigenvalue equation form we multiply it with S̃−1/2S̃1/2 such that

F̃ S̃−1/2S̃1/2C̃ = ǫS̃1/2S̃1/2C̃

S̃−1/2F̃ S̃−1/2S̃1/2C̃ = ǫS̃1/2C̃

F̃ ′C̃ ′ = ǫC̃ ′, (2.1.26)

where F̃ ′ = S̃−1/2F̃ S̃−1/2 and C̃ ′ = S̃1/2C̃. This is a symmetric matrix which

is diagonalized in order to get energy eigenvalues and eigenvectors for both the

occupied and unoccupied orbitals. The above solutions are the mean field solu-
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a b qp

Figure 2.1: Diagram representing excitations of two electrons from core via
Coulomb interaction represented by the dashed line.

tions, where, we have neglected the contributions from Ves as well as Hint. In

order to obtain exact solutions of the atomic wave function |Ψ〉 and energy E,

we need to incorporate contributions from these neglected effects. To do so, we

consider our atomic mean field wave function |Φ0〉 and energy E0 as our starting

point in a perturbation theory, then we improve them order by order treating

Ves and Hint as the perturbations.

In the next section, we briefly discuss the diagrammatic representations of

electron excitation and de-excitation processes which are very useful tools to

understand various physical processes more clearly in an atomic system . It

also helps in understanding and solving complex many-body equations conve-

niently [50, 51]. In the rest of this chapter, different relativistic many-body

methods such as many-body perturbation theory (MBPT), random phase ap-

proximation (RPA) and relativistic coupled-cluster (RCC) theory are explained

to evaluate dipole polarizability (α) and dA. We also study the trends in the

electron correlation effects in evaluating these properties for many closed-shell

atomic systems.

2.2 Graphical Representations of the Orbitals

and Interactions

We will extensively use the graphical approach to represent orbitals and opera-

tors [51]. Throughout this thesis we denote occupied (core) orbitals by a, b, c, · · · ,
unoccupied (virtual) orbitals by (p, q, r, · · · ) and the unspecified orbitals are

shown by i, j, k, · · · . Graphically, orbitals are represented by the solid arrows

where a downward going arrow (hole line) represents a core orbital and the up-
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a†p

ap

aa

a†a

Figure 2.2: The graphical representations of the creation and annihilation oper-
ators. The first and the second graphs show the creation of particle in virtuals
and the annihilation of a particle in core whereas the third and fourth graph
represent creation of hole in virtuals and destruction of hole in core respectively.
The dashed line represents the reference state.

ward going arrow (particle line) represents a virtual orbital. The interaction

between two electrons are shown by the horizontal line connecting to the elec-

tron orbital lines involved in the process. In addition to that the incoming and

outgoing arrows with respect to the interaction vertices represent the initial and

final states of the process respectively. To make it more clear, we show diagram-

matically in Fig. 2.1 a process in which two electrons in core get excited by the

Coulomb interaction. The complexity in many-body algebra can be significantly

reduced by using the operators expressed in second quantization notation with

creation (a†) and annihilation (a) operators [50, 51]. In the many-body calcu-

lations all the operators are normal-ordered with respect to the reference state

|Φ0〉 [50, 51]. A similar diagrammatic scheme mentioned above is used to repre-

sent these general operators where operators a† and a are represented by the lines

directed away and towards the vertices respectively, as shown in Fig. 2.2. Now

using the above prescription, we present the diagrams of normal-ordered one-

body Fock operator (h0) and the two-body residual Coulomb interaction (VN) in

Fig. 2.3.

2.3 Many-Body Perturbation Theory (MBPT)

The purpose of employing MBPT is to improve the accuracy of the DF wave

functions and energies by incorporating perturbations order by order. In this
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Figure 2.3: Graphical representations of normal-ordered one-body Fock operator
(h0) and two-body residual Coulomb interaction (VN).

theory our target state is |Ψ0〉 which satisfies the following equation

(HDF + Ves)|Ψ0〉 = E0|Ψ0〉. (2.3.1)

Here HDF is the zeroth-order Hamiltonian and its exact solutions are already

obtained earlier in this chapter and Ves is considered as a perturbation. The

functional space is divided into model space, also called as P space and the

orthogonal space also called as Q space. The P space is spanned by the eigen-

functions of the model Hamiltonian HDF and Q space is constructed out of the

remaining part of the functional space. The projection operator associated with

the model and orthogonal spaces are given by

P =
∑

η∈P

|Φη
0〉〈Φη

0| and Q =
∑

ζ /∈P

|Φζ
0〉〈Φζ

0|, (2.3.2)

respectively such that P + Q = I. The P and Q operators project out of any

component of the function that lies in the model space and orthogonal space

respectively. Moreover these operators satisfy number of well known relations,
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Figure 2.4: Few important contributing diagrams of the MBPT(3) method. The
lowest-order contribution is referred as DF result.

such as

P = P † = PP Q = Q† = QQ

[P,HDF] = [Q,HDF] = 0. (2.3.3)

Kuo et al [52] have shown that there is normally one to one correspondence

between the eigenfunctions of the target Hamiltonian and their projections onto

the model space

|Φ0〉 = P |Ψ0〉. (2.3.4)

Therefore we define a single wave operator Ω which transform all the model
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states into the corresponding target states, i.e.

|Ψa
0〉 = Ω|Φa

0〉 a = 1, 2, 3 · · · , m (2.3.5)

where m is the total number of model wave functions. Now on operating P from

the left in Eq. 2.3.1 we get

(E −HDF)|Φ0〉 = PVes|Ψ0〉. (2.3.6)

In the above equation, we used Eq. 2.3.4 and the commutation relation of P

with HDF. We further multiply Ω from the left in the above equation and use

Eq.2.3.5, such that

E|Ψ0〉 − ΩHDF|Φ0〉 = ΩPVesΩ|Φ0〉. (2.3.7)

On subtracting Eq.2.3.7 from Eq.2.3.1, we eliminate E and get

(ΩHDF −HDFΩ)|Φ0〉 = (VesΩ − ΩPVesΩ)|Φ0〉, (2.3.8)

which can be written in the iterative form as [53, 54]

[Ω, HDF]P = VesΩP − ΩPVesΩP. (2.3.9)

This is called the generalized Bloch equation [55]. Expanding Ω = Ω(0) + Ω(1) +

Ω(2) · · · + Ω(n), where superscript n denotes the order of perturbation Ves with

Ω(0) = 1. Substituting this expansion in Eq. 2.3.9, we get the recursive form of

generalized Bloch equation as

[Ω(n), HDF]P = QVesΩ
(n−1)P −

n−1∑

m=1

Ω(n−m)PVesΩ
(m−1)P . (2.3.10)

The above equation can be expanded order by order to evaluate the amplitudes

of Ωs operating on model wave function |Φ0〉 for the evaluation of the wave
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function |Ψ0〉. As mentioned earlier, in addition to Ves we also consider Hint in

the perturbation theory by expressing

H = HDF + Ves + λHint, (2.3.11)

where λ represents order of Hint interaction. To incorporate both the pertur-

bation simultaneously, we redefine our wave operator Ω(n) such that the exact

atomic wave function can be written as

|Ψ〉 =
∑

β,δ

Ω(β,δ)|Φ0〉, (2.3.12)

where the superscripts β and δ denote the order of perturbations from Ves and

Hint respectively. In this work, we develop third order MBPT (MBPT(3))

method according to which we consider maximum of two orders of Coulomb

interactions (β = 0, 1, 2) and only one order of Hint interaction (δ = 1), owing

to the fact that EDM is treat in the first order effect. The calculation of higher

orders MBPT with the graphical approach is difficult because there are too many

diagrams. In fact, considering beyond two orders in Ves, there will be at least

eight internal lines (i.e. eight loops in a program) in a typical MBPT diagram

which makes it computationally very demanding. The expression for dA from

Eq. 2.1.8 in the MBPT(3) method is given by

dA = 2
〈Ψ0|D|Ψ(1)

0 〉
〈Ψ0|Ψ0〉

= 2

2∑

β=0

〈Φ0|Ω†(β,0)DΩ(β,1)|Φ0〉
〈Φ0|Ω†(β,0)Ω(β,0)|Φ0〉

. (2.3.13)

Expanding the above equation for different values of β such that total perturba-

tion should not exceed beyond three orders with at least one order of Hint, we

get

dA =
2

N 〈Φ0|[Ω(0,0) + Ω(1,0) + Ω(2,0)]†D[Ω(0,1) + Ω(1,1) + Ω(2,1)]|Φ0〉

=
2

N 〈Φ0|DΩ(0,1) +DΩ(1,1) +DΩ(2,1) + Ω(1,0)†DΩ(0,1) +

Ω(1,0)†DΩ(1,1) + Ω(2,0)†DΩ(0,1)|Φ0〉, (2.3.14)
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with the normalization constant N = 〈Φ0|1 + Ω(1,0)†Ω(1,0)|Φ0〉. The importance

of various correlation terms in the determination of dA can be better understood

from an explicit analysis of lower-order perturbation calculations, where the con-

tributions from the individual terms can be found explicitly. The lowest order

MBPT(1) with β = 0 corresponds to the DF approximation which is given by

dA = 2〈Φ0|DΩ(0,1)|Φ0〉, (2.3.15)

and the intermediate MBPT(2) approximation follows with β = 0, 1 in Eq. 2.3.13

such that total perturbation should not exceed beyond two orders with one order

of Hint. In this case, Eq. 2.3.13 reduces to

dA =
2

N 〈Φ0|DΩ(0,1) +DΩ(1,1) + Ω(1,0)†DΩ(0,1)|Φ0〉, (2.3.16)

with the normalization constant N = 〈Φ0|Φ0〉. Few important diagrams cor-

responding to MBPT(1), MBPT(2) and a MBPT(3) methods are presented in

Fig. 2.4. The amplitudes corresponding to the wave operators used in Eqs.

2.3.14,2.3.16 and 2.3.15 are obtained using the following Bloch equations

[Ω(1,0), HDF]P = QVesP

[Ω(2,0), HDF]P = QVesΩ
(1,0)P − Ω(1,0)PVesP

and

[Ω(0,1), HDF]P = QHintP

[Ω(1,1), HDF]P = QVesΩ
(0,1)P +QHintΩ

(1,0)P

[Ω(2,1), HDF]P = QVesΩ
(1,1)P +QHintΩ

(2,0)P −

Ω(1,0)PVesΩ
(0,1)P − Ω(1,0)PHintΩ

(1,0)P.

MBPT is a size-consistent theory which means that the energy scales linearly

with the size of the many-body system. However, the major disadvantage with

this method is that it is to cumbersome deal with beyond MBPT(3) method.
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2.4 Random Phase Approximation (RPA)

Random phase approximation (RPA) is an all order theory where the single

particle DF orbitals and energies are directly perturbed by the Hint operator. In

the first order approximation, we get

|φ0
a〉 → |φ0

a〉 + λ|φ1
a〉 and ǫ0i → ǫ0a + λǫ1a, (2.4.1)

where |φ1
a〉 and ǫ1a are the first order corrections to the single particle wave func-

tion and energy, respectively. Owing to the fact that Hint is an odd parity

operator, the first order correction to the energy ǫ1a = 0. Now in the presence of

the perturbation source, the DF Eq. 2.1.12 for the single particle wave function

yields the form

(h0 + λHint)(|φ0
a〉 + λ|φ1

a〉) +

occ∑

b

(〈φ0
b + λφ1

b |
1

r12
|φ0

b + λφ1
b〉|φ0

a + λφ1
a〉 −

〈φ0
b + λφ1

b |
1

r12
|φ0

a + λφ1
a〉|φ0

b + λφ1
b〉) = ǫ0a(|φ0

a〉 + λ|φ1
a〉). (2.4.2)

On collecting terms linear in λ, we get

(h0 + UDF − ǫ0i )|φ1
a〉 = (−Hint − U1

DF)|φ0
a〉, (2.4.3)

where UDF is the DF mean field potential defined earlier in the chapter and U1
DF

is the perturbed mean field potential given by

U1
DF|φ0

a〉 =

occ∑

b

(〈φ0
b |

1

r12
|φ1

b〉|φ0
a〉 − 〈φ0

b |
1

r12
|φ0

a〉|φ1
b〉

+〈φ1
b |

1

r12
|φ0

b〉|φ0
a〉 − 〈φ1

b|
1

r12
|φ0

a〉|φ0
b〉). (2.4.4)

|φ1
a〉 can be written as a linear combination of |φ0

a〉 which forms a complete basis

set as

|φ1
a〉 =

∑

p 6=a

Cp
a |φ0

p〉, (2.4.5)
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where Cp
as are the expansion coefficients. On substituting Eq. 2.4.5 in Eq.2.4.3

and multiplying by 〈φ0
p| from left we get

∑

p 6=a

Cp
a〈φ0

p|(h0 + UDF − ǫ0a)|φ0
p〉 = 〈φ0

p|(−Hint − U1
DF)|φ0

a〉

Cp
a =

∑

p 6=a

[

−〈φ0
p|Hint|φ0

a〉
(ǫ0p − ǫ0a)

− 〈φp|(UDF + U1
DF)|φ0

a〉
(ǫ0p − ǫ0a)

]

. (2.4.6)

The coefficients Cp
a are obtained by solving the above equation, self-consistently

with the initial guess

Cp
a =

∑

p 6=a

−〈φ0
p|Hint|φ0

a〉
(ǫ0p − ǫ0a)

. (2.4.7)

In the Bloch’s wave operator representation, we can express

Ω
(∞,1)
RPA =

∑

p,a

Ω(∞,1)
a→p =

∞∑

β=1

∑

pq,ab

{
[〈pb| 1

r12
|aq〉 − 〈pb| 1

r12
|qa〉]Ω(β−1,1)

b→q

ǫ0p − ǫ0a

+
Ω

(β−1,1)†

b→q [〈pq| 1
r12

|ab〉 − 〈pq| 1
r12

|ba〉]
ǫ0p − ǫ0a

}

, (2.4.8)

where a, b and p, q are the short hand notation to denote the occupied and unoc-

cupied orbital respectively. In the above equation a → p means replacement of

an occupied orbital a from |Φ0〉 by a virtual orbital p which alternatively refers to

a singly excited state with respect to |Φ0〉. This clearly indicates that the RPA

method picks-up a certain class of singly excited configurations that corresponds

to the core-polarization correlation effects. Using the above RPA wave operator,

we evaluate dA using the following expression

dA = 2〈Φ0|Ω(0,0)†DΩ
(∞,1)
RPA |Φ0〉

= 2〈Φ0|DΩ
(∞,1)
RPA |Φ0〉. (2.4.9)

This method evaluates contributions to |Ψ(1)
0 〉 considering infinite orders in Ves

through a chain of diagrams as shown in Fig. 2.5. Since RPA considers con-

tributions only from the singly excited configurations and hence does not take
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Figure 2.5: Graphical representations of the chain of direct diagrams obtained
from the wave operator Ω∞,1

RPA.

into account contributions from the pair-correlation effects. Moreover, in the

property evaluation, this method approximates 〈Ψ0| with the mean-field wave

function 〈Φ0|; which is a major drawback of this approach.

2.5 Relativistic Coupled-Cluster (RCC) Theory

The relativistic coupled-cluster (RCC) theory has been successfully used to study

a wide range of many-body systems [50, 56, 57]. In fact, it is now considered as

the “gold standard” of quantum chemistry. The RCC is an all-order method and

it also satisfies the property of size-extensivity according to which the computed

energy of the system scales correctly with the size of the system [58, 59]. In the

RCC framework, the ground state wave function of a closed-shell system is given

by

|Ψ〉 = Ω|Φ0〉 = eT |Φ0〉, (2.5.1)

where |Φ0〉 is the reference state (DF wave function) obtained by solving Eq.

2.1.12 and T is the cluster operator that excites electrons from the reference

state. In the RCC method, the eigenvalue equation is given by

HeT |Φ0〉 = EeT |Φ0〉, (2.5.2)

where the Hamiltonian H = HDC + λHint = HDF + Ves + λHint with λ as a

perturbation parameter. In order to consider two perturbations into account, we

split the cluster operator as T = T (0) + λT (1). The T (0) operator takes care of
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Figure 2.6: The unperturbed RCC operators corresponding to single and double
excitations. The incoming and outgoing lines represent creation of the hole in
the core and creation of particle in the virtuals respectively.

electron correlations effects from the perturbation Ves via even parity excitations

of the electrons from the reference state |Φ0〉. The cluster operator T (1) considers

perturbation Hint and excite electrons from the |Φ0〉 into opposite parity states.

In this formalism, we will first discuss the evaluation of the unperturbed wave

function |Ψ0〉 corresponding to the Hamiltonian HDC with Ves as a perturbation

and then we will consider the perturbation Hint in order to improve |Ψ0〉 to get

the exact wave function |Ψ〉 corresponding to H .

2.5.1 Unperturbed RCC Theory to Evaluate |Ψ0〉

In the RCC approach, the unperturbed wave function is given by

|Ψ0〉 = eT
(0) |Φ0〉, (2.5.3)

where the cluster operator T (0) generates all possible even parity excitations

and can be written as a sum of single, double, etc.. excitation operators as

T (0) = T
(0)
1 + T

(0)
2 + · · · , where the operator T

(0)
1 , T

(0)
2 , etc. generate respective

singly, doubly, etc. excited configurations with respect to the reference state

|Φ0〉. These operators in the second quantization notation are expressed as

T
(0)
1 =

∑

a,p

a†paat
p
a and T

(0)
2 =

1

4

∑

a,b,p,q

a†pa
†
qabaat

pq
ab, (2.5.4)

where a, b, · · · and p, q, · · · correspond to occupied (core) and unoccupied (vir-

tual) orbitals, respectively, a and a† represent annihilation and creation operators

respectively and tpa and tpqab are the cluster amplitudes associated with the single
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and double excitations respectively. In this thesis, we approximate the cluster

operator to singles and doubles excitations only such as T (0) = T
(0)
1 +T

(0)
2 (CCSD

method). These operators are also shown graphically in Fig. 2.6. In this ap-

proach, the eigenvalue equation corresponding to the DC Hamiltonian is given

by

HDCe
T (0)|Φ0〉 = E0e

T (0) |Φ0〉. (2.5.5)

On operating both side by e−T (0)
, we get

e−T (0)

HDCe
T (0) |Φ0〉 = E0|Φ0〉. (2.5.6)

We express DC Hamiltonian into normal-ordered form with respect to the ref-

erence state as HDC = HDC = HN + EDF, where EDF = 〈Φ0|HDC|Φ0〉 and HN is

called the normal ordered Hamiltonian such that 〈Φ0|HN|Φ0〉 = 0. Now consid-

ering the normal-ordered form in Eq. 2.5.6, we get

e−T (0)

(HN + EDF)eT
(0) |Φ0〉 = E0|Φ0〉. (2.5.7)

Projecting 〈Φ0| in Eq. 2.5.7, we get

〈Φ0|e−T (0)

HNe
T (0) |Φ0〉 = ∆Ecorr, (2.5.8)

where ∆Ecorr = E0 − EDF is known as the correlation energy of the considered

closed-shell system. Again projecting 〈Φ∗
0| which is either singly or doubly excited

configurations with respect to the reference state |Φ0〉 in Eq. 2.5.7, we get

〈Φ∗
0|e−T (0)

HNe
T (0)|Φ0〉 = 0. (2.5.9)

The similarity transformed normal-ordered Hamiltonian, e−T (0)
HNe

T (0)
is fur-

ther expanded in the form of nested commutators using the Baker-Campbell-
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Hausdorff formula as

e−T (0)

HNe
T (0)

= HN + [HN, T
(0)] +

1

2!
[[HN, T

(0)], T (0)] +
1

3!
[[[HN, T

(0)], T (0)],

T (0)] +
1

4!
[[[HN, T

(0)], T (0)], T (0)], T (0)]. (2.5.10)

In the above expansion, we have connected as well as disconnected terms. From

the linked-cluster theorem [51], one can show that only the connected terms

survive and give non-zero contribution in the above equation. To prove this,

we consider the Wick’s theorem for the operator product according to which if

A and B are arbitrary products of the creation and annihilation operators in

normal form then

AB = {AB} + {
︷︸︸︷

AB }, (2.5.11)

where the first term is the normal form of AB and the second term represents

sum of the normal-ordered terms with all possible contractions between operators

in A and those in B. Since the first term HN is already connected, lets consider

the second term in the above expansion as

[HN, T
(0)] = HNT

(0) − T (0)HN, (2.5.12)

where on using Eq. 2.5.11, the first and the second terms become

HNT
(0) = {HNT

(0)} + {
︷ ︸︸ ︷

HNT
(0)} (2.5.13)

and T (0)HN = {T (0)HN} + {
︷ ︸︸ ︷

T (0)HN} = {HNT
(0)}, (2.5.14)

respectively. On substituting Eqs. 2.5.13 and 2.5.14 in Eq. 2.5.12, we get

[HN, T
(0)] = {

︷ ︸︸ ︷

HNT
(0)}. Similarly, the second term in the expansion reduce to

[[HN, T
(0)], T (0)] = {

︷ ︸︸ ︷
︷ ︸︸ ︷

HNT
(0) T (0)} (2.5.15)
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and so on for other terms. Thus, Eq. 2.5.10 reduces to

e−T (0)

HNe
T (0)

= HN + {
︷ ︸︸ ︷

HNT
(0)} +

1

2!
{
︷ ︸︸ ︷
︷ ︸︸ ︷

HNT
(0) T (0)} +

1

3!
{

︷ ︸︸ ︷
︷ ︸︸ ︷
︷ ︸︸ ︷

HNT
(0) T (0) T (0)}

+
1

4!
{

︷ ︸︸ ︷
︷ ︸︸ ︷
︷ ︸︸ ︷
︷ ︸︸ ︷

HNT
(0) T (0) T (0) T (0)}

= (HNe
T 0

)conn, (2.5.16)

where conn stands for the connected terms only. The above series has to ter-

minate at the fourfold commutators because HN has no more than two-electron

operator in it; i.e. maximum of four open lines which can connect to maxi-

mum of four T
(0)
1 operators. Now from Eqs. 2.5.16 and 2.5.8, we express the

coupled-cluster (CC) equation for correlation energy as

〈Φ0|(HNe
T (0)

)conn|Φ0〉 = ∆Ecorr, (2.5.17)

and from Eq. 2.5.9, we obtain the CC amplitude equations for the single and

double excitations as

〈Φp
a|(HNe

T (0)

)conn|Φ0〉 = 0 (2.5.18)

and 〈Φpq
ab|(HNe

T (0)

)conn|Φ0〉 = 0, (2.5.19)

The above amplitude equations can be written in another form as,

〈Φp
a|[HN(eT

(0) − 1)]conn|Φ0〉 = 〈Φp
a|HN|Φ0〉 (2.5.20)

and 〈Φpq
ab|[HN(eT

(0) − 1)]conn|Φ0〉 = 〈Φpq
ab|HN|Φ0〉. (2.5.21)

In the linearized CCSD approximation (LCCSD method), we omit all the terms

containing more than one cluster operators such that the expression for the

correlation energy, singles and doubles amplitude equations are given by

〈Φ0|(HN +HNT
(0))conn|Φ0〉 = ∆Ecorr, (2.5.22)
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Figure 2.7: The perturbed RCC operators corresponding to single and double
excitations. k1, k2 are the multi-poles and λ is the rank of the operator.

〈Φp
a|(HNT

(0))conn|Φ0〉 = 〈Φp
a|HN|Φ0〉 (2.5.23)

and 〈Φpq
ab|(HNT

(0))conn|Φ0〉 = 〈Φpq
ab|HN|Φ0〉. (2.5.24)

The above singles and doubles amplitude equations are coupled with each other

and are solved using a special Jacobi iterative procedure. We explain this tech-

nique along with the diagrammatic approach to solve these amplitude equations

in the following chapter.

2.6 Perturbed RCC Theory to Evaluate |Ψ〉

In the RCC model, the exact wave function of the atomic system is evaluated by

solving the following eigenvalue equation

(HDC + λHint)e
T |Φ0〉 = EeT |Φ0〉. (2.6.1)

where the cluster operator T = T (0) + λT (1). Similar to the unperturbed case,

using HDC = HN + EDF in the above equation, we get

(HN + λHint)e
T |Φ0〉 = ∆Ecorre

T |Φ0〉. (2.6.2)

On multiplying by e−T from the left throughout in the above equation and using

Baker-Campbell-Hausdorff formula as we did in the previous section, we get

[(HN + λHint]e
T )conn|Φ0〉 = ∆Ecorr|Φ0〉. (2.6.3)
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On expanding the cluster operator T = T (0) + T (1) in the above equation and

restricting eT
(1)

= 1 + T (1), owing to the fact that evaluation of EDM require

only one order of Hint interaction, we get

[(HN + λHint)e
T (0)

(1 + λT (1)]conn|Φ0〉 = ∆Ecorr|Φ0〉. (2.6.4)

Now from the above equation, we collect terms linear in λ and get

(HDCe
T (0)

T (1))conn + (Hint)e
T (0)

)conn|Φ0〉 = 0. (2.6.5)

On projecting 〈Φ∗
0| in Eq. 2.6.5, we get the amplitude equations for T (1) operators

as

〈Φ∗
0|(HNe

T (0)

T (1))conn|Φ0〉 = −〈Φ∗
0|(Hinte

T (0)

)conn|Φ0〉. (2.6.6)

In the CCSD approximation T (1) = T
(1)
1 +T

(1)
2 , where T

(1)
1 and T

(1)
2 are the single

and double excitation operators which are represented in the second quantization

notation as

T
(1)
1 =

∑

a,p

a†paat
(1)p
a and T

(1)
2 =

1

4

∑

a,b,p,q

a†pa
†
qabaat

(1)pq
ab . (2.6.7)

The graphical representations of these operators are shown in Fig. 2.7. The

amplitude equations for the T
(1)
1 and T

(1)
2 operators are obtained by projecting

the singly and doubly excited determinantal states on both sides of Eq. 2.6.5

such that

〈Φp
a|HN(T

(1)
1 + T

(1)
2 )|Φ0〉 = −〈Φp

a|H int|Φ0〉 (2.6.8)

and 〈Φpq
ab|HN(T

(1)
1 + T

(1)
2 )|Φ0〉 = −〈Φpq

ab|H int|Φ0〉. (2.6.9)

with (HNe
T (0)

)conn = HN. Just like T (0) amplitude equations, the above ampli-

tude equations are also coupled with each other and are solved simultaneously

using an iterative procedure. In the next chapter, we will explain the details of
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the computational procedure to solve the above equations.

2.6.1 Perturbative Inclusion of Coupled-Cluster Triple Ex-

citations

We also include important triple excitations perturbatively in the CCSD calcu-

lations to ameliorate the T (0) (referred as CCSD(T) method) and T (1) (refereed

as CCSDpT method) amplitudes respectively. The triple excitation operator is

constructed by contracting HN with T
(0)
2 as

T
(0),pert
3 =

1

3!

∑

abc,pqr

(HNT
(0)
2 )pqrabc

ǫa + ǫb + ǫc − ǫp − ǫq − ǫr
, (2.6.10)

where HN = (HNe
T (0)

)conn, ǫ’s are the energies of the occupied (denoted by a, b, c)

and unoccupied (denoted by p, q, r) orbitals.

2.7 Electric Dipole Moment Calculations from

RCC Theory

The expression for the closed-shell atomic EDM (dA) in the RCC theory is given

by

dA = 2
〈Ψ0|D|Ψ(1)

0 〉
〈Ψ0|Ψ0〉

= 2
〈Φ0|eT †(0)

DeT
(0)
T (1)|Φ0〉

〈Φ0|eT †(0)eT (0) |Φ0〉
. (2.7.1)

Since all the operators in the above expression are in normal-order form and

eT
†(0)
DeT

(0)
is an infinite series, we can express

eT
†(0)

DeT
(0)

= (eT
†(0)

eT
(0)

)cl(e
T †(0)

DeT
(0)

)cc, (2.7.2)
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where the subscript cl (cc) means closed (connected and closed) terms [50, 60].

We can then show that

dA = 2
〈Φ0|(eT †(0)

eT
(0)

)cl(e
T †(0)

DeT
(0)
T (1))cc|Φ0〉

〈Φ0|(eT †(0)eT (0))cl|Φ0〉

= 2
〈Φ0|(eT †(0)

eT
(0)

)cl|Φ0〉〈Φ0|(eT †(0)
DeT

(0)
T (1))cc|Φ0〉

〈Φ0|(eT †(0)eT (0))cl|Φ0〉
= 2〈Φ0|(D(0)

T (1))cc|Φ0〉, (2.7.3)

with D
(0)

= eT
†(0)
DeT

(0)
, is an infinite series. Note that its (eT

†(0)
eT

(0)
T (1))cl

part will vanish owing to odd-parity of T (1). In the LCCSD method, we get

D
(0)

= D+DT (0) +T †(0)D+T †(0)DT (0). To account for contributions from D
(0)

in the CCSD method, we first evaluate terms from D
(0)

that are very unique in

the sense that they will not be repeated after connecting with another T (0) or T †(0)

operator. Then, the contributions from the other non-linear terms are considered

by contracting with another T (0) and T †(0) operators till self-consistent results

were achieved. We present these contributions with k numbers of T (0) and/or

T †(0) as CCSD(k) to demonstrate convergence of the results with k → ∞ (which

is finally referred to CCSD).

2.8 Estimation of Uncertainties in the Many-

Body Calculations

The uncertainties in our many-body calculations are estimated from various ne-

glected sources in our calculation such as

• Incompleteness of basis: In our calculations we consider finite basis size

corresponding to each angular momentum symmetry to a certain number

for the RCC calculations. To estimate the contributions from the neglected

basis, we perform calculations for the property under consideration using

the method like RPA for the similar and larger basis and quote their dif-

ferences as uncertainties.
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• We also perform RPA calculations to find the contributions from higher

orbitals such as from h- and i− symmetries that are not considered in the

RCC calculations.

• Contributions from the neglected higher excitations are estimated from the

differences between the results from the CCSD and CCSDpT or CCSD(T)

methods.

• We also estimate uncertainties in the calculations by going beyond the

Coulomb approximation for the two-body interactions. We consider the

Breit interaction which is mediated by the exchanging transverse photons

between two electrons. The mathematical form of the Breit interaction

between the ith and jth electron is given by

VB = −αi ·αj

rij
+

1

2

[
αi ·αj

rij
− (rij ·αi)(rijαj)

r3ij

]

, (2.8.1)

where α’s are Dirac matrices and rij is the distance between two electrons.

The first term in the above expression is called the magnetic (or Gaunt)

term which dominates in the many-body calculations [61]. The second term

is called the retardation term which is sometimes important to obtain high

accuracy results [62, 63].

• Contributions from the lower order vacuum polarization effects from the

quantum electrodynamics (QED) corrections are also evaluated through

the Uehling (VU(r)) and Wichmann-Kroll (VWK(r)) potentials given by

[64, 65]

VU(r) = − 4

9cπ
Vn(r)

∫ ∞

1

dt
√
t2 − 1

(
1

t2
+

1

2t4

)

e−2ctr (2.8.2)

and

VWK(r) = −2

3

1

cπ
VN(r)

0.092c2Z2

1 + (1.62cr)4
, (2.8.3)

respectively, with Z as the nuclear charge of the considered system.





Chapter 3

Computational Implementations

of RCC Theory

3.1 Introduction

In this chapter, we will demonstrate a computational procedure to solve the un-

perturbed and perturbed amplitude equations for the RCC theory. In the CCSD

approximation, we solve the coupled singles and doubles amplitude equations

obtained in the previous chapter. These equations are solved simultaneously

using an iterative technique till the self-consistent results are achieved. In addi-

tion to that we also present an intermediate diagrammatic technique similar to

that of Bartlett et al. [50] to reduce the computational time of the calculations by

breaking the number of loops in the algorithm. This is basically done by splitting

the many-body diagrams into intermediate diagrams and the cluster operators

whose amplitudes we want to calculate. In this thesis, at the CCSD level we

are presenting all the intermediate diagrams and important factors which are

important to avoid multiple counting of the same diagram. In this chapter, we

also present angular momentum factors and parity selection rules for both the

unperturbed and perturbed cluster operators. The property at the CCSD level

is evaluated using Eq. 2.7.3 given in the previous chapter. One can notice that

there is an infinite series involved in the property equation and for the accurate

determination of the property, one has to consider as many terms as possible.

51
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Figure 3.1: Effective one-body P-P, P-H and H-H type diagrams obtained from
H̃N. The broken line represents the Coulomb interaction.

Therefore, in order to consider as many terms as possible from the infinite se-

ries, we again adopt the diagrammatic technique in a spirit similar to what we

used for the amplitude determination. In the property determination the split-

ting of diagrams not only reduce the computational time but also helped us in

calculating the contributions from certain class of diagrams to infinite loops.

3.2 Solving Unperturbed CCSD Equations

The unperturbed CCSD equations for solving amplitudes of T
(0)
1 and T

(0)
2 oper-

ators are obtained in Eq. 2.5.21 of the previous chapter and can be rewritten

as

〈Φp
a|(H̃NT

(0))conn|Φ0〉 = 〈Φp
a|HN|Φ0〉

and 〈Φpq
ab|(H̃NT

(0))conn|Φ0〉 = 〈Φpq
ab|HN|Φ0〉, (3.2.1)
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where

(H̃NT
(0))conn = (HN(eT

(0) − 1))conn

=

[(

HN +
1

2!
HNT

(0) +
1

3!
HNT

(0)2 +
1

4!
HNT

(0)3
)

T (0)

]

conn

,

(3.2.2)

with

H̃N = HN +
1

2!
HNT

(0) +
1

3!
HNT

(0)2 +
1

4!
HNT

(0)3 . (3.2.3)

In the LCCSD method H̃N = HN. On expanding T (0) = T
(0)
1 + T

(0)
2 in the

amplitude equations and rearranging terms, we get

〈Φp
a|(H̃NT

(0)
1 )conn|Φ0〉 = 〈Φp

a|HN|Φ0〉 − 〈Φp
a|(H̃NT

(0)
2 )conn|Φ0〉

and 〈Φpq
ab|(H̃NT

(0)
2 )conn|Φ0〉 = 〈Φpq

ab|HN|Φ0〉 − 〈Φpq
ab|(H̃NT

(0)
1 )conn|Φ0〉

, (3.2.4)

In the LCCSD and CCSD approximation the above equations can be expressed

in the matrix form as




〈Φp

a|HN|Φp
a〉 〈Φp

a|HN|Φpq
ab〉

〈Φpq
ab|HN|Φpq

ab〉 〈Φpq
ab|HN|Φp

a〉








tp

(0)

a

tpq
(0)

ab



 =




〈Φp

a|HN|Φ0〉
〈Φpq

ab|HN|Φ0〉



 , (3.2.5)

and




〈Φp

a|H̃N|Φp
a〉 〈Φp

a|H̃N|Φpq
ab〉

〈Φpq
ab|H̃N)|Φpq

ab〉 〈Φpq
ab|H̃N)|Φp

a〉








tp

(0)

a

tpq
(0)

ab



 =




〈Φp

a|HN|Φ0〉
〈Φpq

ab|HN|Φ0〉



 , (3.2.6)

respectively, where tp
(0)

a and tpq
(0)

ab are the amplitudes associated with the respec-

tive T
(0)
1 and T

(0)
2 operators. The above matrix equations can be written more

compactly as

A(X).X = −B. (3.2.7)
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Figure 3.2: Effective two-body diagrams from H̃N which are binned in different
categories. The broken line represents the Coulomb interaction.
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Figure 3.3: Final CCSD diagrams obtained after contracting effective one-body
intermediate diagrams with the T (0)operators

The solution for X which represents T (0) operators in the above coupled non-

linear equations is obtained using a Jacobi iterative procedure expressed as

X i
j =

−Bj −
∑

k 6=j AkjX
i−1
k

Ajj

(3.2.8)

where the index i represents interaction number, j denotes the index for element

number, Ajj and Akj denotes the diagonal and off-diagonal elements of matrix

A. Bj and Xj are the jth elements of vector B and X respectively. In order to

evaluate the terms in the amplitude Eqs. 3.2.4, we follow the diagrammatic tech-

nique as explained in the last chapter. Our aim is to calculate all the diagrams

from H̃NT
(0) which on operating |Φ0〉 give net single and double excitations. To

proceed with, we first compute all the effective one-body diagrams from H̃N that

belonging to the particle-particle (P-P), particle-hole (P-H) and hole-hole (H-H)

type excitations as given in Fig. 3.1. Since we don’t consider the disconnected

diagrams in our calculations, therefore we don’t have the hole-particle (H-P) cat-

egory which on connecting with T (0) operator leads to disconnected diagrams.

Similarly, we also evaluate effective two-body diagrams from H̃N those belonging

to six different categories such that on connecting it with T
(0)
1 or T

(0)
2 operators

we finally get connected diagrams only. We define these classes of diagrams as,

PP-PP, HP-PP, HH-PP, HP-PH, HP-HH and HH-HH type diagrams, where P

and H stands for particle and hole lines respectively; e.g. in an effective HP-PH

type diagram we have incoming hole and outgoing particle line at the first vertex,

in the second vertex we have incoming particle line and outgoing hole line. All
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Figure 3.4: Final CCSD diagrams obtained after contracting effective two-body
intermediate diagrams with the T (0)operators

the two-body intermediate diagrams are given in Fig. 3.2. Since the diagrams

(i), (iii), (xxix) and (xxx) are symmetric, we have multiplied a factor of half just

to avoid over counting. Whereas, the diagrams (xii), (xvii), (xviii) and (xix) on

multiplying with suitable T (0) operators will again become symmetric diagrams

thats why we keep half factor with them also to avoid over counting. On con-

necting these diagrams with the T
(0)
1 or T

(0)
2 operators we get our full diagrams

as given in Figs. 3.3 and 3.4 which give singly and doubly excited configurations

with respect to the reference state |Φ0〉. In our CCSD method some of the dia-

grams in singles and doubles amplitude equations which are having less number

of internal lines are calculated directly without making the use of intermediate

diagrams as shown in Figs. 3.5 and 3.6 respectively. In the LCCSD method

we have far less numbers of intermediate diagrams to compute. From the in-

termediate one-body diagrams shown in Fig. 3.1 only diagrams (i) and (viii)

will contribute to the LCCSD calculations, where as, diagrams (i), (iv), (xiv),

(xxi) and (xxvii) will only contribute from the two-body intermediate diagrams,

shown in Fig. 3.2 . In addition to that all the direct diagrams shown in Figs.

3.5 and 3.6 will contribute to the amplitude determination in LCCSD method.
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Figure 3.5: Direct contributing diagrams to the singles of the CCSD method
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Figure 3.6: Direct contributing diagrams to the doubles of the CCSD method

3.3 Solving Perturbed CCSD Equations

The perturbed CCSD singles and doubles amplitude equations obtained in Eq.

2.6.9 of the previous chapter are given by

〈Φp
a|HN(T

(1)
1 + T

(1)
2 )|Φ0〉 = −〈Φp

a|H int|Φ0〉 (3.3.1)

and 〈Φpq
ab|HN(T

(1)
1 + T

(1)
2 )|Φ0〉 = −〈Φpq

ab|H int|Φ0〉. (3.3.2)

We express the above equation in the matrix form as




〈Φp

a|HN|Φp
a〉 〈Φp

a|HN|Φpq
ab〉

〈Φpq
ab|HN|Φpq

ab〉 〈Φpq
ab|HN|Φp

a〉








tp

(1)

a

tpq
(1)

ab



 =




〈Φp

a|H int|Φ0〉
〈Φpq

ab|H int|Φ0〉



 , (3.3.3)

where HN = (HNe
T (0)

)conn, H int = (Hinte
T (0)

)conn, tp
(1)

a and tpq
(1)

ab are the am-

plitudes associated with the respective T
(1)
1 and T

(1)
2 operators. In the LCCSD

approximation, HN = HN and H int = Hint + HintT
(0) and the above matrix
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equation becomes




〈Φp

a|HN|Φp
a〉 〈Φp

a|HN|Φpq
ab〉

〈Φpq
ab|HN|Φpq

ab〉 〈Φpq
ab|HN|Φp

a〉








tp

(1)

a

tpq
(1)

ab



 =




〈Φp

a|Hint +HintT
(0)|Φ0〉

〈Φpq
ab|Hint +HintT

(0)|Φ0〉



 .

(3.3.4)

Similar to the unperturbed case, the above non-linear matrix equations can also

be written in a more compact notation as

A(X).X = −B. (3.3.5)

followed by the Jacobi iterative procedure as explained earlier to obtain the

solutions for X which represent the T (1) operators in this case. The one-body

and two-body intermediate diagrams from HN is given in Figs. 3.3 and 3.3.

These intermediate diagrams are finally connected with T
(1)
1 and T

(1)
2 operators

to get the final single and double excitation diagrams as shown in Figs. 3.3 and

3.3 respectively. The diagrams for the B matrix are given in Fig. 3.3.

3.4 Angular Momentum Selection Rules for the

Cluster Operators

The cluster operators T (0) and T (1) are associated with the residual Coulomb

Ves and Hint interactions. Therefore, the rank of these interactions must be

incorporated into the cluster operators and the diagrams associated with them.

The Coulomb interaction between two electrons at position r1 and r2 can be

expanded in partial waves as [66]

1

r12
=
∑

k

rk<
rk+1
>

Pk(cosω), (3.4.1)

where r< is lesser and r> is the greater of two radial distances of electrons, P is the

Legendre polynomial which can be further expressed in terms of the products of

spherical harmonics depending upon the coordinates of each electron separately
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Figure 3.7: Effective one-body intermediate diagrams obtained from HN for
the evaluation of perturbed CCSD amplitudes. The broken line represents the
Coulomb interaction.
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Figure 3.8: Effective two-body intermediate diagrams obtained from HN for
the evaluation of perturbed CCSD amplitudes.The broken line represents the
Coulomb interaction.
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as

Pk(cosω) =
4π

2k + 1

∑

q

Y k
q (θ1, φ1)Y

k
−q(θ2, φ2). (3.4.2)

Now on defining C tensors as

Ck
q =

√

4π

2k + 1
Y k
q (θ, φ), (3.4.3)

the Coulomb interaction can be written as [51]

1

r12
=
∑

k

rk<
rk+1
>

Ck(1).Ck(2). (3.4.4)

We use the above expression to evaluate the matrix element of the Coulomb

operator 1/r12 as

〈ab| 1

r12
|cd〉 =

∫ ∫

dr1dr2[Pa(r1)Pc(r1) +Qa(r1)Qc(r1)]
rk<
rk+1
>

×[Pb(r1)Pd(r1) +Qb(r1)Qd(r1)] × (Af ), (3.4.5)

where Pi(rj) and Qi(rj) are the large and small components of single particle

Dirac wave functions of the ith orbital at a spatial distance rj , Af is the angular

factor and k is the multi-pole. The angular part of the above equation is given

by

Af = δ(ma +mc, mb +md)
∑

k

Π(κa, κc, k)Π(κb, κd, k)

× dk(jcmcjama, )d
k(jbmb, jdmd) (3.4.6)

where the relativistic quantum number κ is give in Eq. 2.1.15 and the coefficient

dk(jm, j′m′) is defined as

dk(jm, j′m′) = (−1)m+1/2 [(2j + 1)(2j′ + 1)]1/2

(2k + 1)
C(jj′;

1

2
,
−1

2
)C(jj′;−m,m′),

(3.4.7)
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Figure 3.12: Perturbed cluster operators showing multi-poles k1, k2 and rank
λ = 1.

where m is the magnetic quantum number, j is the total angular momentum

of the orbital and C(jj′;−m,m′) is known as Clebsch-Gordan (C.G.) or vector-

coupling coefficient. The C.G. coefficients appearing in the above equation en-

sure the multi-pole k satisfies the following triangular condition of the angular

momentum

|ja − jc| ≤ k ≤ (ja + jc) and |jb − jd| ≤ k ≤ (jb + jd). (3.4.8)

In addition, the factor Π appearing in the above equation gives

Π(κ, κ′, k) = 1 for l + l′ + k = even

= 0 for l + l′ + k = odd, (3.4.9)

which restricts the allowed k values by parity conservation. We also define factor

Π as

Π(κ, κ′, k) =
1

2
[1 − aa′(−1)j+j′+k] which is 1 for l + l′ + k = even,

else 0 (3.4.10)

where l and l′ are the orbital angular momentum corresponding to j and j′

respectively. For even or odd values of κ the permitted values of k from the

parity selection factor change by one unit since l(−κ) = l(κ) ± 1. The Hint

operator is a vector, we denote the rank of the cluster operators T (1) by λ = 1

as shown in Fig. 3.12. The vertex (a, p, λ) of the cluster operator T
(1)
1 shows the
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coupling of orbital a and p through λ which corresponds to the matrix element

〈jpmp|T (1)
1 |jama〉. On applying the Wigner-Eckart theorem [51] we get

〈jpmp|(T (1)
1 )1mλ

|jama〉 = (−1)jp−mp




jp 1 ja

−mp mλ ma



 〈jp||(T (1)
1 )1||ja〉

(3.4.11)

which must satisfy the triangular condition of the angular momentum as

|ja − 1| ≤ jp ≤ (ja + 1), (3.4.12)

and the constraint on magnetic quantum number as

ma +mp +mλ = 0. (3.4.13)

Since the cluster operator T (1) is a rank one operator, it must be under parity

and satisfy one more condition

(−1)(la+lp) = −1. (3.4.14)

However in the case of cluster operator T
(1)
2 we have three vertices’s and following

the similar argument of Wigner-Eckart theorem, we will have three triangular

conditions given by

|ja − jp| ≤ k1 ≤ (ja + jp)

|jb − jq| ≤ k2 ≤ (jb + jq)

|k1 − k2| ≤ λ ≤ (k1 + k2)

and the parity condition at vertices’s (a, p, k1) and (b, q, k2) satisfying

(−1)la+lp = (−1)(−1)lb+lq . (3.4.15)
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3.5 Property Evaluation

The expression for the calculation of atomic EDM (dA) obtained from Eq. 2.7.3

of the previous chapter as

dA = 2〈Φ0|(D(0)
T (1))cc|Φ0〉

= 2〈Φ0|[(D(0)
(T

(1)
1 + T

(1)
2 )]cc|Φ0〉, (3.5.1)

with a non-truncative series D
(0)

= eT
†(0)
DeT

(0)
. To consider most of the domi-

nant terms from this infinite series in the CCSD approximation, we first evaluate

unique connected one-body diagrams which are binned in P-P, P-H and H-H

type as shown in Fig. 3.5 (H-P diagrams are not shown as they are complex

conjugate (cc) terms of P-H type of diagrams). It can be noticed from Fig.

3.5 of the P-H/H-P type diagrams that they contain diagrams (e.g. 1c, 3c, 13c

etc.) resembling RPA diagrams along with some of the other non-RPA diagrams

which account for the core-polarization effects to all orders. It has been found

that their contributions are significant, therefore, we replace the corresponding

D operator from the P-H and H-P effective diagrams by the stored contributions

from the effective P-P and H-H diagrams. An example is shown in Fig. 3.5 to

dress-up the effective H-P/P-H operators for evaluating these contributions more

rigorously. We further store diagrams (7c, 8c, 11c, 12c, 13c, 14c and 15c) from

P-H type which are then contracted with another P-H type diagram 3c and 4c

replacing the D operator. After contraction, the values are stored in a separate

P-H type array and again contracted with the diagrams 3c and 4c just like above

and the procedure is repeated till we get the self-consistent results. Through

this technique we are able to consider most of the dominant RPA and non-RPA

type diagrams to infinity orders in the above series. These effective diagrams are

then further combined with the T (1) and T (0)T (1) operators to obtain the final

contributions as shown in Fig. 3.5.
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Figure 3.13: One-body intermediate P-P,H-P and P-H type diagrams obtained
from D. Wavy line represents the dipole operator D.
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Figure 3.14: Example of further dressing-up of effective H-P type diagrams from
the effective P-P and H-H type one-body diagrams.
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Chapter 4

Dipole Polarizabilty of Various

Closed-Shell Atomic Systems

4.1 Introduction

The subject of atom-light interactions in atomic clock, optical lattices, quantum

information, etc. [67–69] has received considerable attention with the advent

of sophisticated techniques to trap and cool atomic systems and measure their

properties to a very high precision [70]. This range of applications demand

accurate determinations of αs in atomic systems. Precise measurements of αs

are challenging and involve using a number of techniques like E-H (electric-

magnetic fields) gradient balance method [71–73], deflection of atomic beam by

electric field [74], atom interferometry [75, 76], cold-atom velocity change [77] et

cetera. In fact, the ground state α of many atomic systems are not yet measured

very precisely owing to difficulties in eliminating some of the larger systematics.

Therefore, accurate theoretical studies of α in atomic systems are of particular

interest.

Seminal work on the ab initio calculations of αs of the many-electron sys-

tems was first introduced by Dalgarno and his co-workers [78, 79] about more

than five decades ago. Since then advanced many-body methods and their vari-

ants have been developed and applied successfully in the same philosophical

procedures to evaluate α as accurately as possible. The primary intent of these

71
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methods are to incorporate electron correlation effects as rigorously as possible

at the same time curtailing the computational cost. Examples of few well-known

many-body methods that are often employed in the studies of αs are the random

phase approximation (RPA), coupled-cluster method in the linear response the-

ory (CCLRT), configuration-interaction (CI) method etc. [80–87]; however many

of these methods are developed in the framework of non-relativistic mechanics. In

the recent years, Lim and co-workers have employed relativistic coupled-cluster

(CC) methods developed for molecular calculations described using the Carte-

sian coordinates to determine α of many atomic systems. They showed that

the relativistic contributions to α, especially in the heavier atomic systems, are

large [88,89]. In their CC method, the relativistic effects are accounted by using

a two-component Douglas-Kroll Hamiltonian.

In this work, we employ our relativistic many-body methods explained in

Chap. 2 to evaluate and study the behavior of electron correlation effects in

determining αs of many closed-shell atoms and ions. In our CC method, we

consider the Dirac-Coulomb Hamiltonian with the four-component atomic wave

functions in the spherical coordinate system to encompass both the correlation

and the relativistic effects in the calculations of α. This method has been success-

fully used in last couple of years to compute α of the ground states for a number

of atomic systems [90–95]. In addition to CC, we have employed other meth-

ods like the third order many-body perturbation theory (MBPT(3)) and RPA to

perceive the passage of the correlation effects at various stages of calculations. In

the first part of our study, we determine α of various closed-shell atoms belonging

to noble gases and alkaline earth elements. In addition to that, we also evaluate

α of singly charged alkali and doubly charged alkaline metals ions. In the second

part, we evaluate α of B+, C2+, Al+, Si+2, Zn, Ga+, Ge+2 Cd, In+ and Sn+2 be-

longing to atoms and ions in the boron, carbon, and zinc homologous sequences

of elements. We also investigate the contributions arising through the non-linear

terms constituting the higher order excitation processes and establish accura-

cies of the results for which the experimental results are unknown. Accurate

calculations of αs put premium on the potential of our many-body methods in
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reproducing physical properties of the closed-shell atomic systems. This is a kind

of benchmarking to our methods on their ability to reproduce accurate values of

any properties associated with the operators of rank one. In the next chapter we

employ these methods to determine permanent electric dipole moments (EDMs)

of many closed-shell atoms whose experiments are underway.

4.2 Theory of Dipole Polarizability

The leading second order change in the energy of an atomic state |Ψ(0)
0 〉 when

placed in an external weak electric electric field ~E in given by

∆E = −1

2
α|~E|2, (4.2.1)

where α is known as the static electric dipole polarizability of the state. In the

mathematical expression, we can write

α = −2
〈Ψ(0)

0 |D|Ψ(1)
0 〉

〈Ψ(0)
0 |Ψ(0)

0 〉
, (4.2.2)

with |Ψ(0)
0 〉 and |Ψ(1)

0 〉 are the unperturbed and first-order perturbed ground state

wave functions due to the interaction Hamiltonian ~D.~E for the dipole operator

D. The arduous part of calculating α using the above expression lies in the

evaluation of |Ψ(1)
0 〉 which entails mixing of different parity states. On the other

hand, it is sometimes easy to use a sum-over-states approach given by

α = − 2

〈Ψ(0)
0 |Ψ(0)

0 〉
∑

I 6=0

|〈Ψ(0)
0 |D|Ψ(0)

I 〉|2

E
(0)
0 − E

(0)
I

, (4.2.3)

for the I representing summation over all allowed intermediate states |Ψ(0)
I 〉, and

E
(0)
0 and E

(0)
I are the energies of the ground and the corresponding intermedi-

ate states, respectively. The above approach is convenient to use if the electric

dipole (E1) matrix elements between the ground state and a sufficient number

of intermediate states can be calculated to reasonable accuracies. However, it is
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extremely difficult to determine these matrix elements accurately with confidence

because it requires careful handling of a large number of configuration-state func-

tions (CSFs). These contributions are also estimated by dividing the electronic

configurations into a core and few valence electrons [96, 97]. This enables us

to estimate different contributions separately by using varieties of many-body

methods. Obviously, this cannot explain the true behaviors of all the correlation

effects in equal footings. In contrast, the present method considers the nuclear

VN potential and treats all the associated correlations among the electrons in the

uniform manner.

The other famous approach for determining α is using the finite ~E perturba-

tion method in which the second order differentiation of the total energy (E0)

of the ground state is estimated in the presence of the electric field (finite field

method); i.e.

α = −
(

∂2E0(|~E|)
∂|~E|∂|~E|

)

|~E|=0

, (4.2.4)

which requires numerical calculations for a smaller arbitrary value of ~E . This

is a typical procedure of calculating α using the molecular methods based on

the Cartesian coordinate systems where the atomic states do not possess definite

parity. In contrast, it is a convoluted procedure of determining α of the atomic

systems in the relativistic formalism if we wish to describe the method exclusively

in the spherical coordinates.

Our methodology to determine α is to seek the calculation of |Ψ(1)
0 〉 and to

supplant the ideology of obtaining it as the solution of the following inhomoge-

neous equation

(H − E
(0)
0 )|Ψ(1)

0 〉 = −D|Ψ(0)
0 〉 (4.2.5)

through the matrix mechanism for the four-component relativistic theory de-

scribed using the spherical polar coordinate system. By approximating the total
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Table 4.1: GTO parameters of Ne used in the DF calculations.

Parameters s p d f g

α0 0.00753 0.00755 0.00758 0.0080 0.0080
β 2.075 2.070 2.58 2.72 2.72

wave function of the ground state as |Ψ0〉 ≃ |Ψ(0)
0 〉 + λ|Ψ(1)

0 〉, we have

α = 2
〈Ψ0|D|Ψ(1)

0 〉
〈Ψ0|Ψ0〉

, (4.2.6)

where λ is the perturbation parameter and denotes the order of perturbation in

D which has to be set as one to determine α.

4.3 Optimization of the Gaussian Basis Func-

tions

The accuracies in the Dirac-Fock (DF) calculations primarily depend on the

parameters and the size of the chosen basis functions. Therefore, optimization

of those parameters are absolutely necessary to get accurate single particle wave

functions. In fact, this is the most important step of many-body calculations

that generates our reference state for perturbation calculations. As explained in

length in Chap. 2, we use linear combination of Gaussian type orbitals (GTOs)

to express the radial part of the large and small components of our single particle

wave functions. In general the Gaussian part of the large component is described

as

GL
k,i(r) ∝ rke−αir2 (4.3.1)

where parameter k = 0, 1, 2, · · · for s, p, d, · · · denote the respective type orbital

symmetry and the parameter αi in the exponent is obtained using the following
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Table 4.2: Single particle orbital energies of the bound states of Ne obtained
from our DF calculations with different GTOs.

Orbital Energies

Basis Sets 1s1/2 2s1/2 2p1/2 2p3/2

(i) 10s9p8d7f6g 19.007 1.1386 0.9948 0.9930
(ii) 14s13p12d11f10g 31.6862 1.8668 0.8630 0.8586
(iii) 20s19p18d17f16g 32.8148 1.9357 0.8528 0.8483
(iv) 26s25p24d23f22g 32.8174 1.9358 0.8528 0.8483
(v) 36s35p34d33f32g 32.8174 1.9358 0.8528 0.8483

even tempering condition

αi = α0β
i−1, where i = 1, 2, 3 · · · , n (4.3.2)

with α0 and β are the arbitrary parameters. These parameters need to be defined

properly so that accuracies in the wave functions can be enhanced. In addition

to that, we must consider sufficient number of angular momentum symmetries

k. In our calculations, we generally take large k as k=5; i.e. up to g symmetry.

In this work, we have adopted two ways in which we define values for the pa-

rameters α0 and β: (i) Universal Basis (UB), in which case the values of these

parameters are same for every symmetry, (ii) Even-Tempering Basis (ET): in this

case parameters α0 and β are different for each symmetry. The UB type bases

are easy in the sense that we have only two parameters to define for the GTOs.

Whereas, in the ET bases we have to define different α0 and β parameters for

each symmetry. With the larger parameter space, ET are little complicated as

compared to UB basis but at the same time with ET, we have better handle on

the single particle wave function. For the atomic systems with closed electronic

configurations, we observe that UB and ET basis give almost similar results

provided sufficient numbers of GTOs are considered for the calculations. The

qualities of the basis parameters are tested by comparing the DF single particle

orbital energies calculated using GTOs with different values of α0 and β against

the numerical results obtained from the Fortran package GRASP92 [98]. The

parameters whose results are comparable with the numerical results are finally
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Table 4.3: Comparison of the single particle orbital energies of Ne obtained
using GTOs and GRASP92 method. |∆R| means the absolute values of relative
difference in percentage between two results from GTOs and GRASP92.

Orbital Orbital Energies

GRASP92 GTOs |∆R|

1s1/2 32.8144 32.8174 0.01

2s1/2 1.9387 1.9358 0.15

2p1/2 0.8523 0.8528 0.06

2p3/2 0.8482 0.8383 1.17

chosen for further calculations. After obtaining α0 and β values for an atomic

system under consideration, we slowly increase the number of Gaussian basis

functions for each symmetry till we get the converged results of the properties.

We demonstrate this procedure of optimization on Ne atom, whereas, for other

systems we will present the optimized value of these parameters and size of the

basis sets used for the beyond DF calculations.

The optimized α0 and β values in ET basis for Ne atom are given in Table 4.1.

With these parameters, we proceed with the DF calculations with different sets

of GTOs and present single particle orbital energies in Table 4.2. From the table,

we find that the single particle energies become constant as we reach to basis set

(iv) and (v). Further, on comparing our results from basis set (v) with the single

particles energies obtained from the GRASP92 package as given in Table 4.3, we

find they are in good agreement with each other. We also present the relative

percentage difference given by (|GRASP92−GTOs
GRASP92

|) between these two results. For

the beyond DF calculations, we only consider finite numbers of single particle

orbitals by selecting them during the DF calculations. Now to make sure that

we have selected sufficient number of orbitals for the perturbative calculations

without compromising on the accuracy of the property of interest, we perform

a series of RPA and MBPT(2) calculations with varying number of selected or-

bitals till the values become consistent. The reasons behind choosing RPA and

MBPT(2) methods for these tests are: these methods are not computationally

expensive, take less time to execute as compare to the CC calculations and con-
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Table 4.4: Convergence of α of Ne with the size of the basis sets.

Basis Sets α

(i) 6s5p4d3f2g 1.206
(ii) 8s7p6d5f4g 2.344
(iii) 11s10p9d8f7g 2.379
(iv) 13s12p11d10f9g 2.380
(v) 16s15p13d11f11g 2.380

Table 4.5: SCF energies of Ne with and without Breit contributions.

Atom Our Work Others
SCF SCFB SCF SCFB

He − 2.8618 − 2.8617 − 2.8618∗ − 2.8617∗

Be − 14.5758 − 14.5751 − 14.5758∗ − 14.5751∗

Ne − 128.6919 − 128.6752 − 128.6919† − 128.6752†

Ar − 528.6837 − 528.5514 − 528.6838† − 528.5514†

Kr − 2788.8052 − 2787.3793 − 2788.8615† − 2787.4356†

Xe − 7446.8844 − 7441.1146 − 7446.8880† − 7441.1182†

Hg − 19647.9828 − 19625.3493 − 19648.8482† −19626.2156†

∗: Non-relativistic calculations with Breit interaction added perturbatively,
Ref. [99].

†: Ref. [100].

sider most of the dominant electron correlation effects into account. In Table 4.4,

we present the convergences of αs from RPA with different set of selected Gaus-

sian wave functions. We also include contributions from the Breit interaction

self-consistently in the DF calculations and compare self-consistent field (SCF)

energies of various atomic systems with the earlier calculations [99,100] as given

in Table 4.5. Our results for all the considered atoms are in good agreement with

each other. Our method is relativistic and the results for He and Be are from

non-relativistic calculations where the Breit interaction is added perturbatively,

we still get good agreements because of the fact that the relativistic effects are

not prominent in these smaller systems
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Table 4.6: αs of various noble gas elements. Estimated uncertainties in our
calculations are given in the parentheses. The square brackets refers to the
references of other works.

Systems This Work [90] Others Experiments

He 1.360(20) 1.322 [101] 1.383223(67) [102,103]
1.383763 [104] 1.3838 [105]

1.38376079(23) [106] 1.384 [107]
1.382(1) [108] 1.383759(13) [109]

Ne 2.652(15) 2.38 [101] 2.670(3) [110]
2.6648 [104] 2.66110(3) [111]
2.697 [112] 2.6680 [105]

2.665 [113] 2.6695 2.663 [107]
2.668(6) [114], 2.6695 [92]

Ar 11.089(4) 10.77 [101] 11.081(5) [110]
11.084 [104] 11.091 [105]
11.22 [112] 11.080 [107]

11.085(6) [115] 11.083(2) [116]
11.213 [93]

Kr 16.93(5) 16.47 [101] 16.766(8) [110]
16.80 [117] 16.740 [105]
16.736 [93] 16.740 [107]

Table 4.7: αs of various alkaline earth elements. Estimated uncertainties in
our calculations are given in the parentheses. The square brackets refers to the
references of other works.

Systems This Work [90] Others Experiments

Be 37.86(17) 37.755 [118], 37.73(5) [119],
37.807 [120], 37.29 [121]

37.76 [122], 37.80(47) [108]
37.69 [123]

Mg 72.54(50) 71.7 [124], 70.90 [125],
70.74 [121], 71.35 [123],

71.33 [122], 74.9(2.7) [126],
73.41(2.32) [108]

Ca 157.03(80) 157 [124], 171.7 [127], 169(17) [72]
159.4 [123], 158.00 [88],
152 [128], 159.0 [122],

157.1(1.3) [122], 154.58(5.42) [108]
156.0 [121]

Sr 186.98(85) 201.2 [123], 198.85 [88] 186(15) [73]
190 [128], 202.0 [122],
199.71(7.28) [108]
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Table 4.8: αs of singly charged alkali elements. Estimated uncertainties in our
calculations are given in the parentheses. The square brackets refers to the
references of other works.

Systems This Work [90] Others Experiments

Li+ 0.1913(5) 0.192486 [129,130], 0.1894 [101] 0.1883(20) [131]
Na+ 0.9984(7) 0.9947 [121] 0.978(10) [132]

0.9457 [101] 1.0015(15 [133]
1.00(4) [134], 1.025 [94] 0.9980(33 [135]

K+ 5.522(7) 5.354 [121], 5.457 [101] 5.47(5) [132]
5.52(4) [134], 5.735 [94]

Rb+ 9.213(15) 9.076 [101] 9.0 [136]
9.11(4) [134], 9.305 [94]

4.4 Correlation Trends in αs

We present our α results of several atomic systems and compare them with the

available other calculations and measurements in Tables 4.6, 4.7, 4.8 and 4.9.

The α0 and β parameters used for the optimization of the basis functions for the

DF calculations are given in Table 4.10. The uncertainties in our calculations

are estimated from the finite size of the basis functions, neglected contributions

from the Breit interaction, and QED effects due to the lowest-order vacuum

polarization and self-energy corrections [65]. Contributions from the Breit and

QED effects are found to be tiny for the property under consideration however it

is noticed that the basis is important for the numerical accuracies in the calcula-

tions. We also employ the MBPT(3) method to estimate contributions from the

Breit and QED interactions by carrying out calculations with these interactions

individually along with the DC Hamiltonian. To estimate uncertainties from the

choice of basis functions, we followed a two step approach as explained earlier

using the DF method: (i) results are obtained for a different sets of optimized

Gaussian parameters and (ii) estimating contributions from the inactive orbitals

that are not considered in the RCC calculations from the DF method. We present

these estimated contributions from the individual source in Table 4.11. Experi-

mental results for the light atomic systems are found to be more accurate than

our calculations. However, for heavy systems, the accuracies of our results are
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Table 4.9: αs of doubly charged alkaline earth elements. Estimated uncertainties
in our calculations are given in the parentheses. The square brackets refers to
the references of other works.

Systems This Work [90] Others Experiments

Be2+ 0.0521(2) 0.05182 [101], 0.052264 [129,130]
Mg2+ 0.4852(5) 0.4698 [136], 0.495 [95] 0.489(5) [132]

0.4814 [121] 0.486(7) [137]
Ca2+ 3.295(6) 3.254 [101], 3.161 [121] 3.26(3) [132]

3.262 [88], 3.387 [95]
Sr2+ 5.877(8) 5.813 [101], 5.792 [88], 5.913 [95]
Sc+ 53.24(20)
Y+ 72.26(50)

better than those of experiments and many of the previous calculations.

A variety of many-body methods have been used to calculate α for the atomic

systems that we have considered except for Sc+ and Y+. The RCC method

we have employed in the present work had been used previously to evaluate

these quantities [108, 138, 139]. In those calculations, we had truncated D(0) at

D(0) = T †(0)DT (0) neglecting higher order RPA contributions coming through

the T †(0)D(T (0))2 and (T †(0))2DT (0) CC terms whose contributions in the neutral

alkaline-earth atoms, Sc+ and Y+ are found to be significant. Recently a similar

approach, which had included the normalization of the wave function, had been

used for calculating αs of some of the inert gas atoms [92, 93]. In fact, both

these works account for nonlinear terms at different levels of approximations

resulting in some differences in the results. Another calculation for the inert gas

atoms was carried out by Nakajima and Hirao [112], where they have used a

scalar relativistic Douglas-Kroll (DK) Hamiltonian to investigate the relativistic

effects in α . Moreover Nakajima and Hirao adopted a numerical finite field

approach to estimate α from the second-order energy shift due to an arbitrary

external electric field whereas, we have evaluated this quantity by calculating the

expectation value of the D using the first-order dipole perturbed wave function.

It is interesting to see that both the results agree fairly well with each other

within the quoted uncertainties.

We compare our α results for the alkaline-earth elements with those of Por-
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Table 4.10: GTO parameters for the respective angular momentum symmetries
in the calculations of DF wave functions of various considered closed-shell atoms
and ions.

System Parameters s p d f g

He α0 0.00075 0.00155 0.00258 0.0560 0.0765
β 2.075 2.080 2.18 2.30 2.45

Ar α0 0.0004 0.0005 0.0040 0.0060 0.0050
β 2.117 2.130 2.15 2.20 2.30

Kr α0 0.0020 0.0032 0.0042 0.0050 0.0055
β 2.500 2.650 2.550 2.500 2.550

Be α0 0.0050 0.00615 0.00505 0.0050 0.0048
β 2.500 2.650 2.550 2.530 2.550

Mg α0 0.00525 0.00525 0.00525 0.00525 0.00525
β 2.730 2.730 2.730 2.730 2.730

Ca α0 0.00525 0.00525 0.00525 0.00525 0.00525
β 2.710 2.710 2.710 2.710 2.710

Sr α0 0.00300 0.00330 0.00450 0.00600 0.00520
β 2.500 2.650 2.550 2.500 2.550

Y+ α0 0.00280 0.00280 0.00280 0.00280 0.00280
β 2.660 2.660 2.660 2.660 2.660

Sc+ α0 0.0004 0.0005 0.0040 0.0060 0.0050
β 2.117 2.130 2.150 2.200 2.300

Li+ α0 0.0075 0.00755 0.00758 0.00760 0.00765
β 2.075 2.070 2.580 2.600 2.650

Na+ α0 0.0025 0.00955 0.0070 0.0069 0.0068
β 2.210 2.125 2.750 2.760 2.770

K+ α0 0.0004 0.0005 0.0040 0.0060 0.0050
β 2.117 2.130 2.150 2.200 2.300

Rb+ α0 0.0004 0.0005 0.0040 0.0060 0.0050
β 2.117 2.130 2.150 2.200 2.300

Be2+ α0 0.0030 0.00455 0.0055 0.0050 0.0048
β 2.400 2.550 2.650 2.630 2.500

Mg2+ α0 0.00753 0.00755 0.0058 0.0080 0.0082
β 2.075 2.070 2.580 2.720 2.800

Ca2+ α0 0.0040 0.0050 0.0080 0.0060 0.0050
β 2.510 2.630 2.750 2.800 2.700

Sr2+ α0 0.0020 0.00320 0.0042 0.0050 0.0055
β 2.500 2.650 2.550 2.500 2.550
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Table 4.11: The estimated uncertainties to αs from the Breit interaction (δB),
QED corrections (δQ) and finite basis size (δF ) in the considered atomic systems.

System δB δQ δF

He ∼ 0.0 ∼ 0.0 0.0200
Ne 0.0006 ∼ 0.0 0.1499
Ar 0.0023 0.0002 0.0032
Kr 0.0148 0.0008 0.0478
Be 0.0027 −0.0001 0.1699
Mg 0.1460 −0.0008 0.4782
Ca −0.1609 −0.0041 0.7836
Sr −0.1767 −0.0201 0.8312

Li+ ∼ 0.0 ∼ 0.0 0.0005
Na+ 0.0003 ∼ 0.0 0.0004
K+ 0.0004 0.0001 0.0070
Rb+ 0.00960 0.0002 0.0115
Sc+ −0.0453 −0.0533 0.1874
Y+ −0.0631 −0.0089 0.4959

Be2+ ∼ 0.0 ∼ 0.0 0.0002
Mg2+ 0.0001 ∼ 0.0 0.0004
Ca2+ 0.0005 0.0001 0.0059
Sr2+ 0.0061 0.0002 0.0052

sev et al. [122,140] who had used a hybrid approach combining the configuration

interaction (CI) method in the valence space and the MBPT method by scaling

the energies and dressing the external electromagnetic field in the RPA frame-

work to evaluate the core-polarization effects. Lim et al. [88] had performed the

relativistic CC calculations in the finite-field method using the DK Hamiltonian.

Our results for most of the atom are in good agreement with them except for Sr

which differs significantly. As mentioned in the previous section, we have found

that higher-order nonlinear terms, especially those corresponding to RPA, are es-

sential for obtaining accurate results. One probable reason for the discrepancies

in the results between our RCC results and those of Porsev et al. is the treatment

of core correlation effects in the two cases. We have computed these effects by

the all order CCSD method, while they have used a finite order MBPT approach.

An important difference between our approach and that of Lim et al. [88] is that

we have used the proper DC Hamiltonian unlike its scalar components in [88]
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Table 4.12: αs obtained using different many-body methods at different level of
approximations.

Atoms DF=MBPT(1) MBPT(2) MBPT(3) CCSD

He 0.998 1.240 1.215 1.360
Li+ 0.1579 0.1839 0.1851 0.1913

Be2+ 0.0453 0.0510 0.0512 0.0521
Ne 1.977 2.254 1.654 2.652

Na+ 0.8337 0.9154 0.8504 0.9984
Mg2+ 0.4277 0.4555 0.4371 0.4852

Ar 10.152 9.964 8.005 11.089
K+ 5.466 5.130 4.468 5.522

Ca2+ 3.369 3.082 2.568 3.295
Kr 15.82 15.00 10.70 16.93

Rb+ 9.273 8.374 7.103 9.213
Sr2+ 6.146 5.388 4.492 5.877
Be 30.53 40.24 38.16 37.86
Mg 54.70 70.72 65.64 72.54
Ca 122.90 151.70 132.80 157.03
Sc+ 50.10 57.17 47.02 53.24
Sr 156.83 188.98 163.13 186.98
Y+ 68.60 75.42 65.10 72.26

and the polarizabilities are estimated from the second-order corrections to their

calculated energies.

We now compare our results for the singly charged alkali and doubly charged

alkaline-earth-metal ions, which have electronic configurations similar to that of

the noble gas atoms with the results obtained using an another RCC calcula-

tion [94, 95] and from the RPA method by Johnson et. al. [101]. The method

employed in the former calculations have already been referred to in the previous

paragraph. The close agreement between the RPA and our RCC results is due

to the fact that the dominant correlation effects in the evaluation of α for the

closed-shell systems come from the core-polarization effects which are taken to

all orders in both the calculations. From the MBPT(3) calculations we find that

there is a significant contributions from the non-RPA diagrams in the closed-shell

atoms. However, in these ions they cancel out to a large extent and their net

contributions are consequently not significant. In another work, Lim et. al [134]



4.4. Correlation Trends in αs 85

-0.25

 0

 0.25

 0.5

He Ne Ar Kr

(α
 -

 α
 D

F)
/(

α 
D

F)
CCSD

MBPT(3)

 0

 0.15

 0.3

 0.45

Be Mg Ca Sr

(α
 -

 α
 D

F)
/(

α 
D

F)

CCSD

MBPT(3)

-0.25

 0

 0.25

 0.5

Li+ Na+ K+ Rb+

(α
 -

 α
 D

F)
/(

α 
D

F)

CCSD

MBPT(3)

-0.3

-0.2

-0.1

 0

 0.1

 0.2

Be2+ Mg2+ Ca2+ Sr2+

(α
 -

 α
 D

F)
/(

α 
D

F)

CCSD

MBPT(3)

Figure 4.1: Plots of (α−αDF )/αDF results versus atomic numbers from different
groups of atomic systems belonging to noble gas, alkali, alkaline-earth metal
groups. α results are obtained using the MBPT(3) and CCSD methods in order
to make a comparative study between these two approaches.

have reported α results for the alkali-metal ions considering the scalar relativis-

tic DK Hamiltonian and accounting for the spin-orbit (LS) coupling corrections

through the MBPT(2) method using a fully relativistic four-component DF wave

functions. In addition to the above-mentioned systems, we have also calculated

Figure 4.2: Plots of MBPT(3) and CCSD (α–αDF )/αDF results for the considered
atoms and ions belonging to the noble gas, alkali, alkaline-earth metal groups
versus atomic numbers.
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Table 4.13: RPA and non-RPA contributions from the MBPT(3) method.

System RPA non-RPA

He 1.274 −0.059
Ne 2.303 −0.649
Ar 9.878 −1.873
Kr 14.980 −4.280
Be 36.788 1.372
Mg 65.074 0.566
Ca 135.459 −2.659
Sr 170.340 −7.210

Li+ 0.1862 −0.0011
Na+ 0.9261 −0.0757
K+ 5.035 −0.567
Rb+ 8.326 −1.223
Sc+ 50.115 −3.095
Y+ 67.181 −2.081

Be2+ 0.0513 −0.0001
Mg2+ 0.4627 −0.0256
Ca2+ 3.009 −0.441
Sr2+ 5.352 −0.860

α of the Sc+ and Y+ ions. There are no other data available for comparison

against our results. In this work, we aim to analyze the trends in the electron

correlation effects in determining α in the considered systems going from DF to

advanced many-body methods. To fulfill our objective, we have carried out a

range of many-body calculations using lower-order MBPT to MBPT(3) meth-

ods and have presented all the results at different stages in Table 4.12. These

results are further compared with our final all-order CCSD calculations in the

same table. This clearly demonstrates the significance of the electron correlation

effects systematically from lower- to higher-orders in perturbation theory and

provide a better understanding of their roles in obtaining accurate results. We

present results by grouping the isoelectronic systems together in the same table

in order to make a comparative analysis of the correlation effects with increas-

ing atomic number. As can be seen in the table, the DF results of the light

noble gas elements are smaller than the MBPT results while this trend changes

for the heavier ones. At last, the CCSD results are larger than the DF results
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Table 4.14: Contributions from various CCSD terms for the evaluations of αs of
the considered atomic systems.

System DT
(1)
1 T

(0)†
1 DT

(1)
1 T

(0)†
2 DT

(1)
1 T

(0)†
2 DT

(1)
2 Others

He 1.362 0.005 −0.035 0.035 −0.007
Ne 2.613 0.073 −0.099 0.089 −0.024
Ar 11.806 −0.068 −1.143 0.511 −0.017
Kr 18.11 −1.12 −1.82 0.74 1.02
Be 39.45 −1.53 −7.21 3.84 3.31
Mg 75.66 −2.96 −10.16 5.54 4.46
Ca 163.87 −9.24 −24.89 16.05 11.24
Sr 201.90 −12.77 −28.77 15.57 11.05

Li+ 0.1894 ∼0 0.0019 0.0019 −0.0019
Na+ 0.9756 ∼0 −0.0005 ∼0 0.0233
K+ 5.972 −0.038 −0.620 0.211 −0.003
Rb+ 9.971 −0.067 −1.049 0.333 0.025
Sc+ 61.71 −2.16 −8.24 3.84 −1.91
Y+ 83.19 −3.18 −10.68 5.05 −2.12

Be2+ 0.0526 ∼0 −0.0007 0.0003 −0.0001
Mg2+ 0.4774 ∼0 ∼0 ∼0 0.0078
Ca2+ 3.578 −0.019 −0.585 0.117 0.204
Sr2+ 6.396 −0.037 −0.689 0.191 0.016

for all the considered atomic systems. From this behavior, we infer that there

are strong cancellations between the correlation effects in these atoms and the

higher-order correlation effects play an important role in the accurate determi-

nation of the final results. A similar trend is also followed by the singly charged

alkali and the doubly charged alkaline-earth metal ions. However, the trend for

the correlation effects in the neutral alkaline-earth metal atoms is rather differ-

ent. In this case, the DF results are always smaller than those deduced from

MBPT and CCSD methods. In fact, it is also quite interesting to note that the

trends in the correlation for Sc+ and Y+ follow the noble gas elements instead

of other isoelectronic alkaline-earth metal atoms. For a quantitative description,

we plot (α−αDF )/αDF obtained using the MBPT(3) and CCSD methods versus

atomic systems belonging to the same group in Fig. 4.1 for the different cat-

egories of systems that we have considered. We also plot the same for all the

systems together including Sc+ and Y+ ions in Fig. 4.2 to make a comparative
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analysis of the correlation trends among different isoelectronic sequences. To

shed light on the role of different types of correlation effects that are crucial in

the determination of α and to explain the reasons for their trends in different

isoelectronic sequences, we identify diagrams from the MBPT(3) approximation

that belong to lower-order RPA. We, then, present MBPT(3) results in Table

4.13 classifying its diagrams as RPA and non-RPA types. It can be seen from

Fig. 2.4 that all the diagrams up to MBPT(2) belong to RPA and hence, they

are the dominant contributors. However, diagrams shown in Fig. 2.4 (vi-viii)

are few examples of non-RPA-type diagrams that also contribute significantly at

the third-order level, but they largely cancel out each other in the heavy atomic

systems. The final results are the outcome of the interplay between these cancel-

lations which can only be accounted correctly using an all order method like our

CCSD method. This is evident from the contributions from different correlation

effects represented by the RCC terms in the evaluation of α for different atomic

systems. In Table 4.14, we give the individual contribution from the important

CCSD terms to α, where the leading term DT
(1)
1 contains the lowest-order DF

result. The next important term is T
(0)†
2 DT

(1)
1 and the sign of its contribution

is opposite to that of the former resulting in a substantial cancellation between

these two largest contributors. In addition to the above two terms, contributions

from T
(0)†
1 DT

(1)
1 further reduce the final results. Pair excitations contributing

through T
(0)†
2 DT

(1)
1 and other higher order non-linear terms together take our

final results towards the experimental values.

4.5 αs of Boron, Carbon, and Zinc Homologous

Sequences

In this part of study, we calculate α of the atoms and ions belonging to group

11, 12 and 13 of the periodic table and present their results in Tables 4.17 and

4.18 along with others calculations and measurements. Among all the meth-

ods employed by us our CCSDpT results for α are found to be more accurate.

This may be because of its its capability to include correlation effects. We also
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Table 4.15: Universal GTO parameters for all the angular momentum symmetries
used in the calculations of DF wave functions of B+, C+2, Al+ and Si+2.

Parameters B+ C+2 Al+ Si+2

α0 0.00525 0.00425 0.00525 0.00425
β 2.73 2.67 2.72 2.67

Table 4.16: GTO parameters for the respective angular momentum symmetries
in the calculations of DF wave functions of Zn, Ga+, Ge+2, Cd, In+, Sn+2.

Parameters s p d f g

α0 0.007 0.008 0.0018 0.009 0.007
β 2.53 2.55 2.66 2.70 2.77

provide an estimate of uncertainties associated with our results by considering

contributions from the finite basis size, triples excitations, and Breit interactions.

These uncertainties are presented in the parentheses alongside the CCSDpT re-

sults in the above Tables. The value that is referred to as the experimental

result for Al+ is not obtained from the direct measurement [126], rather it is

estimated by summing over the experimental values of the oscillator strengths

and has a relatively large uncertainty compared to some of the reported calcula-

tions. There are two high-precision results reported as the experimental values

for the Si+2 ion [141, 142], however the value reported in [141] is obtained from

the analysis of the energy intervals measurement using the resonant Stark ioniza-

tion spectroscopy (RESIS) technique while the other value [142] is reported by

reanalyzing the data of Ref. [141], which is about 0.03% larger than the former

value. The only available measurement of the ground state α of Zn is mea-

sured using an interferometric technique by Goebel et al. [143]. Similarly there

is also one measurement of α available for Cd using a technique of dispersive

Fourier-transform spectroscopy, but the reported uncertainty in this experimen-

tal value is comparatively large [144]. Nevertheless our CCSDpT results within

the reported error bars are in good agreement with all these experimental values

except for Cd atom. There are no measurements available for the other consid-
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ered ions to compare them against our calculations. However, there are number

of theoretical results for α’s are available from many research groups. They used

varieties of many-body approaches among which some of them are based on ei-

ther the lower-order methods or considering the non-relativistic mechanics. In

Tables 4.17 and 4.18, we list all these results along with the information about

their employed methods. We only discuss about few of these calculations to

demonstrate the differences and similarities of the present method with others.

An old calculation of α in B+ was reported by Epstein et al [145] based on the

coupled perturbed Hartree-Fock (CHF) method while Cheng et al had employed

a configuration interaction method considering a semi-empirical core-polarization

potential (CICP) to evaluate it more precisely [146]. Later Safronova et al used

a combined CI and LCCSD methods (CI+all order method) to determine α of

B+ ion [147]. However, the CCSDpT result seems to be larger than all other

calculations. From our analysis we infer that the differences in these results are

mainly due to inclusion of the pair-correlation effects to all orders in our CC

method. In C+2 ion, we find only one theoretical result reported by Epstein et

al using the same CHF method. Our result for C+2 is also slightly larger then

the value reported by the above calculation. Till date, Al+ is the most precise

ion clock in the world [148] for which a couple of high-accuracy calculations have

been reported to determination α of this ion by attempting to push down the

uncertainty in the black-body radiation (BBR) shift of the respective ion-clock

transition [147, 149, 150]. Among them calculations carried out by Mihaly et al.

is based on the relativistic CC method considering up to quadrupole excitations

and finite field approach [149]. In addition to that, Mihaly et al. used Cartesian

coordinate system in their work with minimizing the energies in the numeri-

cal differentiation approach in contrast to the our CCSDpT method, where the

matrix elements of D are evaluated in the spherical polar coordinate system.

Calculations reported by Yu et al is using the same approach of Ref. [149], but

by considering a different set of single particle orbitals [150]. Safronova et al

have employed the CI+all order approach to calculate α of Al+. There are also

other theoretical results that have been reported based on varieties of many-
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body methods such as CCSD, CICP, CI etc. both in the non-relativistic and

relativistic mechanics [124, 125, 151]. We find an excellent agreement among all

the theoretical results. Some of these methods have also been employed to calcu-

late α of Si+2 [96,125,151] which are in perfect agreement with the experimental

results. However, our CCSDpT value is slightly larger than the experimental

result. In fact, our estimated contributions from the Breit interaction using the

RPA method, given in Table 4.17 as δB, are about 0.02 to 0.03% which are in

accordance with the findings by Safronova et al [96]. We found only one more

calculation of α in Ga+ using the CICP method [97] to compare with our result.

Although values from both the calculations are very close but they do not agree

within their reported uncertainties. Calculations in Cd are reported by many

groups including the latest one by Roos et al who have used the the Douglas-

Kroll-Hess (DKH) Hamiltonian in their method [152]. Calculations carried out

by Ye et al [153] are based on the relativistic formalism in the CICP method. All

the theoretical results are consistent and show good agreement with each other

suggesting that the experimental result could have been overestimated. There-

fore, it is necessary to have an another measurement of the polarizability of Cd

to resolve this ambiguity. There has also been an effort made for the precise

determination of α in In+ to estimate the BBR shift accurately for its proposed

atomic clock transition [147]. Our result agrees well with this calculation, but

our estimated uncertainty for this result is comparatively larger owing to the fact

that contributions from the triples are estimated to be large and the calculations

exhibit slight convergence problem with the used finite size basis. As discussed

earlier, calculations carried out in [147] are based on the CI+all order method.

We could not find any other calculations of α of the ground states of the Ge+2

and Sn+2 ions to make comparative analyses with our results.



Table 4.17: Comparison of the results of αs of B+, C+2, Al+, Si+2 and Zn from different many-body methods listed in the first
column and experimental results. Contributions from the Breit interactions are estimated using the RPA method and given as δB.
Uncertainties in our CCSDpT results are given in the parentheses.

Method B+ C+2 Al+ Si+2 Zn

Our work [91]

DF 8.142 3.282 19.514 9.683 37.317
MBPT(3) 9.720 3.804 21.752 10.482 34.421
RPA 11.374 4.503 26.289 12.476 50.846
LCCSD 11.875 4.886 26.118 12.847 38.739
CCSD 10.413 4.213 24.299 11.893 38.701
CCSDpT 10.395(22) 4.244(11) 24.26(5) 11.880(28) 38.666(96)
δB 0.002 0.001 0.007 0.003 0.056

Others

CHF 9.448 [145] 3.347 [145]
MP4 24.206(2.42) [124]
DK,CASPT2 38.4 [152]
CI 9.975 [147] 24.12 [125], 24.405 [147] 11.567 [96], 11.75 [125]
CICP 9.64(3) [146] 24.14(12) [151] 11.668 [142] 38.12 [153]
CI+MBPT 9.613 [147] 24.030 [147] 11.502 [96]
CI+all order 9.624 [147] 24.048 [147] 11.670(13) [96]
CCSD 39.27 [154]
CCSD(T) 39.2(8) [143], 38.01 [154], 37.6 [155]
Expt. a24.20(75) [126] b11.669(9) [142], 11.666(4) [141] 38.8(3) [143]

a Estimated from the measured oscillator strengths.
b Obtained by reanalyzing data of Ref. [141].



Table 4.18: Comparison of the results of αs of Ga+, Ge+2, Cd, In+ and Sn+2 using different many-body methods listed in the first
column and experimental results. Contributions from the Breit interactions are estimated using the RPA method and given as δB.
Uncertainties in our CCSDpT results are given in the parentheses.

Method Ga+ Ge+2 Cd In+ Sn+2

Our work [91]

DF 17.148 10.085 49.647 25.734 16.445
MBPT(3) 15.796 8.884 35.728 18.374 12.095
RPA 21.780 12.011 63.743 29.570 17.941
LCCSD 19.138 11.520 45.086 25.360 15.978
CCSD 18.455 10.890 45.898 24.246 15.537
CCSDpT 18.441(39) 10.883(16) 45.86(15) 24.11(51) 15.526(41)
δB 0.019 0.006 0.104 0.036 0.019

Others

DK,CASPT2 46.9 [152]
CI 26.27 [147]
CICP 17.95(34) [97] 44.63 [153]
CI+MBPT 23.83 [147]
CI+all order 24.01 [147]
CCSD 48.09 [154] 24.065(1.70) [150]
CCSD(T) 46.25 [154], 46.8 [155]
CCSDTQ 24.14(8) [149]
Expt. 49.65(1.49) [144]

a Estimated from the measured oscillator strengths.
b Obtained by reanalyzing data of Ref. [141].
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Figure 4.3: Histogram showing (α − αD)/αD (in %) with different many-body
methods against the different atomic systems shown above.

To comprehend the underlying roles of the electron correlation behavior in

the evaluation of the ground state α of the considered systems, we systemat-

ically present the calculated values of the α in Tables 4.17 and 4.18 from the

DF, MBPT(3), RPA, LCCSD and CCSD methods. The differences between the

CCSD results and the values quoted from the CCSDpT method are the contribu-

tions from the partial triple excitations. Obviously, these differences are small in

magnitudes implying that the contributions from the unaccounted higher order

excitations are very small. The lowest order DF results are smaller in magnitudes

in the lighter systems but their trends revert in the Cd iso-electronic systems with

respect to their corresponding CCSD results. Also, the MBPT(3) results do not

follow a steady trend. In the B+, C+2, Al+ and Si+2 ions, the correlation effects

enhance the α values in the MBPT(3) method from their DF results while the

MBPT(3) results are smaller than the DF values in the other systems. It is also

found that the electron correlation trends in B+ and C+2 are different than its

corresponding iso-electronic neutral Be atom reported by us earlier [90]. For ex-

ample, the MBPT(3) result of Be is smaller than its DF result, while this trend is

other way around in the B+ and C+2 ions. Similar observations are also noticed

in the Mg atom and among their iso-electronic Al+ and Si+2 ions. As has been

stated earlier RPA is an all order method embracing the core-polarization ef-

fects to all orders, but we find that the results are overestimated in this method
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Figure 4.4: Few significantly contributing non-RPA type MBPT(3) diagrams.

compared to the CCSD results; more precisely from the experimental values

given in Tables 4.17 and 4.18. We understand these differences as the contribu-

tions from the pair-correlation effects that are absent in the RPA method, but

they are accounted intrinsically to all orders as the integral part of the CCSD

method. The role of the pair-correlation effects in the determination of α are

verified by examining contributions from the individual MBPT(3) diagrams. The

dominant contributing non-RPA diagrams appearing in the MBPT(3) method

that take care of the pair-correlation effects are shown in Fig. 4.4. In fact,

contributions from these non-RPA diagrams are found to be larger than the dif-

ferences between the RPA and CCSD results reported in Tables 4.17 and 4.18.

This finding advocates that there are large cancellations among the lower order

and higher order pair-correlation contributions in the CCSD method bestowing

modest size of contributions to α, but they appear to be very significant in the

heavier systems to attribute accuracies in the results. To demonstrate the roles

of the non-linear terms in yielding high accuracies α values in the considered

ions, we have also given the results from the LCCSD method in the above ta-

ble. Although LCCSD is an all-order perturbative method, but it omits higher
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Figure 4.5: Trends in the calculations of αs from the employed many-body meth-
ods in the singly charged alkali ions.
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Figure 4.6: Trends in the calculations of αs from the employed many-body meth-
ods in the doubly charged alkaline-earth metal ions.

order core-polarization and pair-correlation effects that contributes through the

non-linear terms involving T (0)T (0) or higher powers of T (0). Consequently, this

method also overestimates the results like the RPA method. The LCCSD re-

sults in B+ and C+2 are larger than the RPA values, but the LCCSD values

are smaller than the RPA results in the other cases. This clearly demonstrates

intermittent trends of the correlation effects in the determination of α of the sys-

tems belonging to a particular group of elements in the periodic table to another

through a given many-body method as well as when they are studied using the

methods with different levels of approximations. To manifest contributions from

the correlations effects through various many-body methods quantitatively, we
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Table 4.19: Contributions to the αs of B+, C+2, Al+, Si+2, Zn, Ga+, Ge+2,
Cd, In+ and Sn+2 from various CCSDpT terms.

System DT
(1)
1 T

(0)†
1 DT

(1)
1 T

(0)†
2 DT

(1)
1 T

(0)†
2 DT

(1)
2 Others

+c.c +c.c +c.c +c.c

B+ 10.848 −0.194 −1.679 0.774 0.646
C+2 4.392 −0.047 −0.668 0.274 0.29
Al+ 25.855 −0.519 −3.166 1.523 0.567
Si+2 12.589 −0.160 −1.475 0.666 0.260
Zn 43.812 −2.458 −5.286 2.047 0.551
Ga+ 20.223 −0.545 −2.409 0.837 0.335
Ge+2 11.846 −0.198 −1.363 0.476 0.122
Cd 52.963 −3.346 −6.985 2.262 0.962
In+ 27.134 −0.882 −3.647 1.064 0.441
Sn+2 17.249 −0.366 −2.286 0.603 0.326

portray the results obtained for α in the considered systems using these methods

in a histogram as shown in Fig. 4.3. This clearly bespeaks about the lopsided

trend in the estimation of α of the considered systems. Again, we also plot the

α values of the singly and doubly charged ions separately in Figs. 4.5 and 4.6

in order to make a comparative analysis in the propagation of correlation effects

through the employed methods in these elements that belong to two different

groups of the periodic table. This figure shows that the contributions from the

correlation effects in the singly charged and doubly charged ions do not exactly

follow similar trends.

At last, we would like to discuss about the trends in the correlation ef-

fects coming through various CCSDpT terms. We give contributions explicitly

from the individual CC terms of linear form and the rest as “Others” in Table

4.19. Clearly, this table shows that the first term DT (1) gives the dominant

contributions as it subsumes all the leading order core-polarization and pair-

correlation effects along with the DF result. The next dominant contributing

term is T
(0)†
2 DT

(1)
1 which incorporates some contributions from the correlation

effects emanated at the MBPT(2) level and possess opposite signs from the DT (1)

contributions causing cancellations among them. It is also worthy to mention

that contributions coming from the T
(0)†
2 DT

(1)
2 term corresponds to the higher
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order perturbation and also accounts contributions from the doubly excited in-

termediate states. As seen from the table, these contributions are non-negligible

suggesting that they should also be estimated accurately for accomplishing high

precision results and the sum-over-states approach may not be able to augment

these contributions suitably in the considered systems. Contributions from the

other non-linear CC terms at the final property evaluation level seem to be slen-

der, although the differences between the LCCSD and CCSD results emphasis

their importance for accurate calculations of the atomic wave functions in the

considered systems.

4.6 Summary

We have employed a variety of many-body methods to evaluate α of many closed-

shell atoms and ions. Using these methods we study the role of the correlation

effects and follow-up their trends to achieve very accurate calculations of the

ground state α of many closed shell atomic systems. In the first part we stud-

ied correlation trends in α of various atoms and ions belonging specifically to

alkali, alkaline and noble gas earth elements The crucial role of correlation ef-

fects is highlighted by presenting and comparing the results at different levels

of approximations from lower order many-body perturbation theory to the rel-

ativistic CCSD method. Correlation trends among the neutral atoms, singly

charged ions and doubly charged ions are presented. In the second part of the

study we employed our methods to atoms and ions in the boron, carbon, and

zinc homologous sequences of elements. We find the patterns in which the cor-

relation effects behave with respect to the mean-field level of calculations are

divergent in the individual iso-electronic systems through a particular employed

many-body method. Also, our calculations reveal that inclusion of both the

core-polarization and pair-correlation effects to all orders are equally important

for securing high precision α in the considered systems and the core-polarization

effects play the pivotal role among them. Contributions from the doubly excited

states are found to be non-negligible implying that a sum-over-states approach
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may not be pertinent to carry out these studies. Our results obtained using

the singles, doubles and important triples approximation in the coupled-cluster

method agree very well with the available experimental values in some of the

systems except for Cd. In fact none of the reported theoretical results for Cd

agree with the measurement, however there seem to be reasonable agreement

among all theoretical results. This urges for further experimental investigation

of the Cd result. In few systems, there are no experimental results available yet

and the reported precise values in the present work can be served as exemplars

for their prospective measurements. Investigation of various correlation effects

in evaluating α serve as a benchmark to our many-body methods and it will

definitely provide valuable insights into the calculations of atomic electric dipole

moments dA which arises due to parity and time-reversal symmetry violation,

owing to the fact that evaluation of α and dA shares similar parity and angular

momentum selection rules. In addition to that our results will also serve as a

guide to the future measurements of systems where the experimental values of

polarizabilities are not precisely known.





Chapter 5

EDM Results and Analysis

5.1 Overview

In the previous chapter we successfully tested the potential of our many-body

methods in calculating dipole polarizabilities (αs) of various closed-shell atoms

and ions [90, 91]. Now, we employ these methods to calculate permanent elec-

tric dipole moments (EDMs) of the closed-shell (diamagnetic) atoms (dA) whose

experiments are currently underway [29, 32, 39, 42]. The dominant sources of

the EDM in a closed-shell atomic system are mainly due to parity (P) and time-

reversal (T) violating electron-nucleus (e-N) tensor-pseudotensor (T-PT) and nu-

clear Schiff moment (NSM) interactions; details are given in Chap.1. We consider

both the interactions to evaluate EDMs of 129Xe, 199Hg, 223Rn and 225Ra atoms.

Owing to the fact that the matrix elements of the T-PT and NSM interaction

Hamiltonians increase with the atomic number (Z) of the system [156]. There-

fore, generally heavier atoms are preferred to get larger enhancements in signals

during measurements. In addition to that, all the above mentioned isotopes have

nuclear spin I = 1/2 due to which the contributions from the octupole moment

vanish. Till date, the most precise EDM measurement has been done on atomic

Hg where an upper limit to atomic EDM is obtained as dA < 3.1 × 10−29 |e|cm
(at 95% confidence level) [29]. The next best limit comes from an earlier mea-

surement on 129Xe atom as dA < 4.1×10−27 |e|cm [38]. Though, 129Xe is lightest

among all the above considered systems it has some distinct experimental ad-

101
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vantages over the other systems such as: it has larger spin coherence time and

can be used in greater densities as compared to other suitable candidates [39].

These advantages could enhance the statistical sensitivity of the measurement by

at least about 2 to 3 orders in magnitude. The systems like 225Ra and 223Rn are

very interesting because of the fact that they have larger Z values and their nu-

cleus is octupole deformed which brings the opposite parity orbitals closer to each

other and hence enhances the EDM signals. In fact, a research group at Argonne

National Laboratory (ANL) has recently reported their first EDM measurement

of 225Ra [32] after making a steady progress in the last several years [35,36,157].

They infer an upper limit to dA as |dA(225Ra)| < 5.0× 10−22|e|cm (at 95% confi-

dence). At this moment, their result is not competitive with either of the other

two mentioned measurements but the experiment has huge potential to gain in

the precision by many orders in magnitude in future [32]. No EDM measure-

ment in 223Rn atom has been reported yet. Along with dA we also evaluate α in

the above mentioned systems and investigate the trends in the behavior of elec-

tron correlation effects in determining the above properties, going from lower-

to higher-orders in perturbation. The P,T-odd electron-nucleus T-PT and the

NSM interaction Hamiltonians are given in Chap. 1 as [25, 28]

HTPT
int = i

√
2GFCT I〉γ ρ(r), (5.1.1)

and

HNSM
int =

3S.r

B4
ρ(r), (5.1.2)

respectively, with GF is the Fermi coupling constant, CT is the T-PT coupling

constant, I is the nuclear spin , γi represents the Dirac gamma matrices, ρ(r) is

the nuclear density, S = S I

I
is the NSM and B4 =

∫∞

0
drr4ρ(r). The expression

to evaluate dA is given in Eq. 2.1.8 as

dA = 2
〈Ψ(0)|D|Ψ(1)

0 〉
〈Ψ(0)|Ψ(0)〉

. (5.1.3)
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Table 5.1: α, dTPT
A and dNSM

A in units ea30, 10−20CT 〈σ〉|e|cm and
10−17[S/|e|fm3]|e|cm of Xe using different many-body methods. The estimated
uncertainties to the CCSDpT calculations are given as δ.

Method of This work [158] Others

Evaluation α dTPT
A dNSM

A α dTPT
A dNSM

A Ref.

DF 26.918 0.447 0.288 0.45 0.29 [25]
MBPT(2) 23.388 0.405 0.266
MBPT(3) 18.693 0.515 0.339 0.52 [161]
RPA 26.987 0.562 0.375 0.57 0.38 [25]

27.7 0.564 [162]
LCCSD 27.484 0.608 0.417
CCSD 27.744 0.501 0.336
CCSDpT 27.782 0.501 0.337
δ 0.050 0.002 0.004
Experiment 27.815(27) [163]

For the precise determination of dA it is necessary to evaluate atomic wave func-

tions |Ψ0〉 and its first order correction due to P,T-odd interactions |Ψ(1)
0 〉 as

accurately as possible. The evaluations of |Ψ0〉 and |Ψ(1)
0 〉 using different many-

body methods considered in this work are given in Chap. 1. On combining our

EDM results with the limits obtained from the respective EDM measurements,

we get upper bounds on various P and T-violating interactions [158–160]. Our Hg

EDM result evaluated using the relativistic CC method in combination with the

most precise measurement yield best limits for the P,T-odd couplings associated

with the T-PT (CT ) and NSM (S) interactions [159].

5.1.1 EDM of 129Xe

In Table 5.1, we present our results for α, dTPT
A and dNSM

A for the ground state

of 129Xe by the methods explained in Chap. 2 and compare them with the

other calculations and measurement. We have used GTOs to generate single

particle orbitals with the parameters given in Table 5.2 for each angular momen-

tum symmetry. The most precise measured value of α is reported as 27.815(27)

ea30 [163]. From this table we also observe that the DF value of α is close to the

experimental result, but when correlation effects are added via the MBPT(2)
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Table 5.2: GTO parameters for the respective angular momentum symmetries in
the calculations of DF wave functions of 129Xe. The last line presents the active
orbitals considered for the perturbative calculations.

Parameters s p d f g

α0 0.0005 0.00073 0.00082 0.00084 0.00082
β 2.20 2.21 2.22 2.25 2.23
Basis 19 18 17 16 14

and MBPT(3) methods, results become off by more than 6%. However results

obtained from the all-order RPA, LCCSD, CCSD and CCSDpT methods are

in good agreement with the measured value, but the CCSDpT result is more

rigorous and accurate method than the other approaches. The motivation for

considering the non-linear RCC terms in the singles and doubles approximation

supplemented by important triple excitations for the precise evaluation of the

ground state properties in Xe atom can be attributed to the significant contribu-

tions from the non-RPA diagrams, as have been explicitly demonstrated in our

earlier study on the polarizability of the closed-shell atomic systems [90, 91]. It

is also important to note that dA due to the T-PT and NSM interactions exhibit

different correlation trends than those of α. The results increase steadily from

the DF level after the inclusion of the correlation effects in the passage from

the finite order MBPT to LCCSD, and after that they decrease at the CCSD

level. The uncertainties reported in our calculations are estimated by taking

the difference between the results from the CCSD and CCSDpT methods and

from the incompleteness in the basis functions which are given as δ in Table 5.1.

The contributions from the QED corrections are estimated by using the Uehling

potential VU(r) [64] which is the lowest order modified nuclear potential due to

a virtual electron-positron pair given in Eq. 2.8.2. These contributions change

dTPT
A from 0.501 to 0.503 and dNSM

A from 0.337 to 0.338 at the CCSDpT level.

In Table 5.1, we also present the results from the other calculations with the

information on employed methods for α, dTPT
A and dNSM

A [25,161,162]. From the

above table one can notice that, we have successfully reproduced the results of

the earlier calculations by employing our many-body methods at the same level
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Table 5.3: Explicit contributions from various CCSDpT terms to the α, dTPT
A

and dNSM
A in units ea30, 10−20CT 〈σ〉|e|cm and 10−17[S/|e|fm3]|e|cm of Xe.

Term α dTPT
A dNSM

A

DT
(1)
1 + c.c 26.246 0.506 0.338

T
(0)†
1 DT

(1)
2 + c.c 0.008 ∼0 ∼0

T
(0)†
2 DT

(1)
2 + c.c 1.395 −0.005 −0.001

Extra 0.095 ∼0 −0.001

of approximations. In addition to that, we have gone beyond these approxima-

tions for obtaining accurate results. Our results using the MBPT(3), LCCSD,

CCSD and CCSDpT methods provide useful insights into the role of different

types of electron-correlation effects. From the MBPT(3) calculations, we find

that certain non-RPA type diagrams, for example the diagrams shown in Fig.

5.1.1, contribute significantly with opposite signs to those of the DF values in

all the above properties leading to large cancellations in the final results. The

above observation undoubtedly give us the reason why the RPA over-estimates

the EDM compared to the CCSDpT method. In fact, like RPA, the LCCSD

method also over-estimates these results even though they account for some of

the lower order non-RPA contributions because many of these MBPT(3) dia-

grams correspond to the non-linear terms of the CCSDpT method. In Table 5.3,

we present the contributions from the individual CCSDpT terms to highlight the

importance of various correlation effects. It can be seen in this table that the

term DT
(1)
1 is the most dominantly contributing followed by T

(0)†

2 DT
(1)
2 , where

D is the effective one-body term of eT
(0)†DeT

(0)
and the contributions from the

HintD
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HDC
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HDC
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DHDC
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Figure 5.1: Few important non-RPA diagrams from the MBPT(3) method. Hint

corresponds to either HTPT
int , HNSM

int or D operators in the evaluation of dTPT
A ,

dNSM
A and α respectively.
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Figure 5.2: Diagram involving effective one-body dipole operator D and the
perturbed wave operator Ω(1) that accounts for the contributions from the singly
excited configurations.

other terms are almost negligible. In order to deeply understand the behavior

of electron-correlation effects, we carry out an analysis similar to the one given

in [162]. We find the contributions from various orbitals that correspond to var-

ious singly excited intermediate configurations for different quantities which are

given in Table 5.4. These results are evaluated using the diagrams shown in

Fig. 5.2 with the corresponding wave operator Ω(1) from the many-body meth-

ods under consideration such as DF, MBPT(2) which is also called lowest-order

RPA denoted by [MBPT(l-RPA)] because they are having same number of dia-

grams , RPA and CCSDpT. We also present the sum of contributions from the

orbitals belonging to a particular category of angular momentum excitations to

demonstrate their significance in obtaining the above properties. The informa-

tion provided in all the three tables together clearly expounds the reasons for the

different trends in the electron-correlation effects in the calculations of α, dTPT
A

and dNSM
A .



Table 5.4: ,
RPA, and CCSDpT methods to the values of α, dA, of 199Xe.]Contributions from various matrix elements and from various angular
momentum symmetry groups at the DF, lowest-order RPA [denoted by MBPT(l-RPA)], RPA, and CCSDpT methods to the values
of α, dTPT

A and dNSM
A in units ea30, 10−20CT 〈σ〉|e|cm and 10−17[S/|e|fm3]|e|cm respectively, of Xe atom. Here the summation indices

n and m represent for the occupied and unoccupied orbitals, respectively.

Excitation(s) DF MBPT(l-RPA) RPA CCSDpT

(a → p) α dTPT
A dNSM

A α dTPT
A dNSM

A α dTPT
A dNSM

A α dTPT
A dNSM

A

5p1/2 − 7s 0.248 0.030 0.007 0.336 0.056 0.016 0.380 0.062 0.016 0.352 0.050 0.014

5p1/2 − 8s 0.517 0.090 0.022 0.690 0.159 0.045 0.769 0.172 0.045 0.733 0.145 0.039

5p1/2 − 9s 0.237 0.106 0.025 0.284 0.166 0.044 0.301 0.174 0.044 0.309 0.157 0.041

5p3/2 − 7s 0.844 ∼0 0.015 1.136 0.005 0.036 1.314 0.007 0.036 1.202 0.001 0.031

5p3/2 − 8s 1.558 ∼0 0.043 2.056 0.014 0.093 2.351 0.018 0.093 2.261 0.024 0.082

5p3/2 − 9s 0.583 ∼0 0.044 0.678 0.012 0.081 0.745 0.015 0.081 0.809 0.017 0.076

5p1/2 − 7d3/2 2.267 ∼0 ∼0 2.200 −0.003 −0.008 2.407 −0.006 −0.008 2.259 −0.011 −0.008

5p1/2 − 8d3/2 3.454 ∼0 ∼0 2.595 −0.013 −0.020 2.882 −0.022 −0.020 2.925 −0.028 −0.018

5p3/2 − 7d5/2 5.667 ∼0 ∼0 5.747 −0.027 −0.018 6.365 −0.039 −0.018 5.827 −0.031 −0.018

5p3/2 − 8d5/2 7.054 ∼0 ∼0 5.749 −0.048 −0.037 6.267 −0.071 −0.037 6.207 −0.057 −0.035

∑

n,m(ns−mp1/2) 0.013 0.121 0.029 0.049 0.142 0.036 0.046 0.144 0.036 0.046 0.152 0.038
∑

n,m(ns−mp3/2) 0.010 ∼0 0.036 0.025 0.003 0.042 0.018 0.003 0.042 0.037 0.004 0.048
∑

n,m(np1/2 −ms) 1.064 0.326 0.078 1.382 0.500 0.136 1.532 0.529 0.136 1.474 0.466 0.122
∑

n,m(np3/2 −ms) 3.183 ∼0 0.144 4.111 0.036 0.265 4.696 0.046 0.265 4.536 0.057 0.241
∑

n,m(np1/2 −md3/2) 6.293 ∼0 −0.001 4.993 −0.022 −0.033 5.582 −0.038 −0.033 5.539 −0.047 −0.031
∑

n,m(np3/2 −md3/2) 1.545 ∼0 ∼0 1.326 −0.003 −0.006 1.501 0.003 −0.006 1.375 −0.006 −0.007
∑

n,m(np3/2 −md5/2) 13.860 ∼0 ∼0 11.887 −0.082 −0.064 13.428 −0.125 −0.064 12.871 −0.099 −0.060
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5.1.2 EDM of 199Hg

We present our results for α, dTPT
A and dNSM

A along with the other calculations

and measurement in Table 5.5. In order to get the converged results with respect

to different finite size single particle orbitals such that they are computationally

inexpensive for the CCSD calculations within the available resources with us,

we first perform RPA calculations for different set of active orbitals. The single

particle orbitals at the DF level are expanded using GTOs with UB parameters

α0 = 0.00625 and β = 2.53. Convergence in the results from these orbitals

are shown explicitly in Table 5.6. For the computational convenience basis IV

is taken in the final calculations. We present all the reported results in the

same row so that comparison can be drawn. The results reported by the PRCC

method [166, 167] are similar to our CCSD method but they differ in the proce-

dure of determining amplitudes of the CC operators and evaluating Eq. 2.1.8.

We also present corrections (shown with + sign) due to the frequency indepen-

dent Breit interaction and lowest order quantum electrodynamics (QED) effects

from RPA to give the final results in the same table. These QED effects include

contributions from the Uehling, Wichmann-Kroll and lower-order self-energy cor-

rection potentials as have been described in [28]. For the error estimation, we

evaluate contributions from the neglected higher excitations using the T
(0),pert
3

operator as given in Eq. 2.6.10 (given as higher CC in Table 5.5) and contri-

butions from higher orbitals including from h- and i− symmetries that are not

considered in the CC calculations (given as basis in Table 5.5). The net errors

are estimated by adding these two contributions using the quadrature formula.

The α of 199Hg has been determined using two different approaches in past

among which Pershina et al. [165] had evaluated the second-order derivative of

the ground state energy with respect to an arbitrary electric field while in the

other calculations [164, 166, 167] it is determined from the expectation value of

D in the ground state which is an admixture of opposite parity states. Since the

DF method gives upper bound to the exact energy, Pershina et al. get a large DF

value and their CCSD and CCSD(T) methods bring down the results towards

the experimental value. Our observation in the triples contribution to α seem to
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Table 5.5: α, dTPT
A and dNSM

A in units ea30, (10−20CT 〈σ〉|e|cm) and
(10−17[S/|e|fm3]|e|cm) respectively are presented using different many body
methods for the ground state of 199Hg and compared them with others calcu-
lations. Values given in bold fonts are our final results.

Method This Work Others

α dTPT
A dNSM

A α dTPT
A dNSM

A

DF 40.95 −2.39 −1.20 40.91 [164] −2.0 [161] −1.19 [164]
44.90 [165] −2.4 [25] −1.2 [25]

MBPT(2) 34.18 −4.48 −2.30
MBPT(3) 22.98 −3.33 −1.72
RPA 44.98 −5.89 −2.94 44.92 [164] −6.0 [161] −2.8 [164]

−5.9 [25] −3.0 [25]
CI+MBPT †32.99 [164] −5.1 [25] −2.6 [25]
PRCC 33.294 [166] −4.3 [166] −5.07 [166]

33.54 [167]
PRCC(T) 33.63 [167]
LCCSD 33.91 −4.52 −2.24

CCSD(2) 33.76 −3.82 −2.00

CCSD(4) 35.13 −4.14 −2.05

CCSD(∞) 34.98 −4.02 −2.00 [165]
CCSD(T) 33.95 −4.20 −2.08 34.15 [165]
CCSDpT 34.07 −4.30 −2.12
+ Breit 34.16 − 4.29 − 2.10
+QED 34.27 −4.44 −2.16

Estimated errors
Higher CC 0.07 −0.08 −0.02
Basis −0.15 −0.03 −0.02
Net error 0.17 0.09 0.03

Experiment 33.91(34) [143]

agree with Pershina et al. To compare the results between our calculations with

those reported in [166, 167], we present contributions from different CC terms

in the CCSD method for all the evaluated quantities in Table 5.7. However, we

learned that due to a phase factor problem the actual values are different than

the published results [166]. Nevertheless, comparison between these calculations

in Table 5.7 show large differences in the contributions among individual CC

terms and from the normalization factor of the wave function, which do not

appear in our method. We also noticed that there are significant differences

in the contributions from the non-linear terms arising in Eq. 2.1.8 in both the
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Table 5.6: Convergence pattern in the α, dTA and dSA results (in same unit as
given in Table 5.5) of 199Hg from different set of orbitals from various angular
momentum symmetries (s, p, d, f and g) using RPA. Ultimately, basis IV is
taken in the final calculations.

Basis s p d f g Results

α dTPT
A dNSM

A

I 10 10 8 6 5 44.66 −4.90 −2.41
II 12 12 11 8 7 44.97 −5.71 −2.84
III 14 14 13 10 9 44.98 −5.87 −2.92
IV 16 16 15 12 11 44.98 −5.89 −2.94
V 18 18 17 14 12 44.98 −5.89 −2.94

Table 5.7: Contributions to α, dTPT
A and dNSM

A values of 199Hg from various CCSD
terms (hermitian conjugate terms are included). Here norm represents difference
between the contributions after and before normalizing the wave function with
normalization factor 1.171 and NA stands for not applicable.

CC terms This work Ref. [167]

α dTPT
A dNSM

A α

DT
(1)
1 39.77 −5.00 −2.44 41.927

T
(0)†
2 DT

(1)
1 −5.73 1.36 0.62 −2.724

T
(0)†
2 DT

(1)
2 1.55 −0.11 −0.06 1.504

T
(0)†
1 DT

(1)
1 −1.71 0.02 0.02 −1.583

T
(0)†
1 DT

(1)
2 −0.12 −0.08 0.04 0.091

Extra 1.22 −0.21 −0.18 0.119
norm NA NA NA −5.74

CC approaches, which are given as Extra in Table 5.7, even though both works

consider only the connected diagrams in the calculations. However, as shown

in Table 5.5, our α results from DF and RPA are in good agreement with with

those reported in [25, 164].

Our main aim in this work is to have more reliable EDM results for 199Hg,

where the previous two calculations using the PRCC method [166] and a hybrid

approach of configuration interaction with finite-order many-body perturbation

theory (CI+MBPT method) [25] differ substantially as shown in Table 5.5. In

the CI+MBPT approach, the initial wave functions are determined using V N−2
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potential with N as the total number of electrons and the electron correlation

effects are accounted for by dividing the electrons into valence and core electrons.

In contrast, both the PRCC method and our calculations are carried out using

the V N potential and correlations among all the electrons are treated on equal

footing. We find, like α results, our DF and RPA results for dA due to the T-PT

(dTPT
A ) and NSM (dNSM

A ) interactions match perfectly with [25,164] and also with

another old calculation [161]. The large differences between the results of [166]

and [25] may be attributed to the phase factor problem as discussed above in

the context of α result. In an earlier calculation, Dzuba et al. had also reported

α as 32.99 ea30 using the CI+MBPT method along with some corrections from

RPA. However, a detailed analysis in [164] demonstrates that individually CI and

RPA overestimate α value, however for EDMs in 199Hg, CI underestimates and

RPA overestimates the results. Our final EDM result is the most accurate and

differ by about 15-20% from the values given in [25]. It is to be noted that our

LCCSD, CCSD(2) and final α results are in close agreement with the measured

value. However, this is not true for the EDM results due to different behavior

of electron correlation effects through the T
(0)
1 T

(0)
2 , 1

2
T

(0)
2 T

(0)
2 , · · · non-linear CC

terms corresponding to higher level excitations.

5.1.3 EDM of 223Rn

The 223Rn isotope is another interesting candidate to search for the permanent

EDM in the closed-shell atomic systems because of the octupole deformation in

the nucleus which enhances the nuclear Schiff moment significantly. We present

the results of our calculations along with others for α, dTPT
A and dNSM

A in Table

5.8. Among these results, we consider the CCSD results to be the most accurate

on physical grounds. In our calculations, we use GTOs with ET condition to

expand our single particle wave functions at the DF level. The parameters used

in the GTOs are given in Table 5.9 along with number of active orbitals used

for the beyond DF perturbative calculations. We first discuss our α results for

the ground state of Rn. The α for Rn is yet to be measured. The α results

reported in [112, 152, 168, 170] are obtained by evaluating the second derivative
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Table 5.8: α, dTA and dSA results (in same unit as given in Table 5.5) of 223Rn using
different many-body methods. “Others” refer to previous results, (Note: †Results
are quoted from basis 2 of [168], ‡Calculations are for 211Rn and ⋆estimated using
RPA).

Employed This work [169] Others

method α dTPT
A dNSM

A α dTPT
A dNSM

A

DF 34.42 4.485 2.459 34.42 [164] 2.47 [164]
29.22 [170] ‡4.6 [25] ‡2.5 [25]
32.81 [112]
†33.54 [168]

MBPT(2) 29.57 3.927 2.356 28.48 [170]
33.19 [112]
32.6 [171]

MBPT(3) 18.10 4.137 2.398
RPA 35.00 5.400 3.311 35.00 [164] 3.33 [164]

†32.75 [168] ‡5.6 [25] ‡3.3 [25]
LCCSD 35.08 5.069 3.055
CCSD 35.27(9) 4.85(6) 2.89(4) †34.39 [168]

28.61 [170]
32.90 [112]
35.391 [93]

Error budget
Triples 0.01 −0.003 −0.005
⋆QED 0.02 0.053 0.028
⋆Breit 0.09 −0.020 −0.033

of the ground state energy with respect to an arbitrary electric field. However,

the calculations carried out in [93, 164] and by us involve the determination

of the expectation value of D in the ground state which has a mixed parity

wave function due to Hint ≡ D. Our results at the DF and RPA levels agree

Table 5.9: GTO parameters for the respective angular momentum symmetries
in the calculations of DF wave functions of 223Rn. Active orbitals used in per-
turbative calculations are given in last line.

Parameters s p d f g

α0 0.00715 0.0067 0.00715 0.0072 0.0072
β 2.10 2.24 2.24 2.57 2.71
Basis 18 17 16 14 12
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Table 5.10: Individual contributions from the non-RPA diagrams those are shown
in Fig. 5.1.1 to α, dTPT

A and dNSM
A of 223Rn.

Diagram α dTPT
A dNSM

A

(i) −4.522 −0.339 −0.241
(ii) −1.166 −0.086 −0.051
(iii) −1.137 −0.053 −0.039

very well with those of Refs. [164]. The agreement between the results of our

CCSD and another similar work Ref. [93] is also very good. Our T-PT and

NSM EDM results for 223Rn at the DF and RPA levels agree with those of

Ref. [25, 164]. Our EDM results using the CCSD method which subsumes the

DF, RPA and all order non-RPA (the rest apart from RPA) contributions are

clearly the most rigorous to date. We also estimate uncertainties to our CCSD

results by determining contributions from important triple excitations using a

perturbative triple excitation operator (CCSDpT method), as described in Eq.

2.6.10 of Chap. 2, and using it in perturbed and unperturbed CCSD amplitude

equations given in the same chapter as Eqs. 2.5.21 and 2.6.9, from the frequency

independent Breit interaction and from the lower order vacuum polarization

effects from the QED corrections through the Uehling (VU(r)) and Wichmann-

Kroll (VWK(r)) potentials given in Eqs. 2.8.1, 2.8.2 and 2.8.3. Contributions

from the Breit and QED interactions are estimated using RPA and they are

given in Table 5.8 towards the bottom under the error budget. Although these

contributions for EDMs cancel out, we have added them using the quadrature

formula to find out the net uncertainties of all the quantities that are given in

the parentheses alongside the CCSD results.

It can be seen from Table 5.8 that the correlation trends for α, dTPT
A and

dNSM
A are different. The possible reason for this is that, in the dA evaluation con-

tributions from the matrix elements of the s1/2 and p1/2 orbitals are maximum,

while the matrix elements of the other higher symmetry orbitals also contribute

significantly in the α evaluation. The trends for both the T-PT and NSM inter-

actions seem to be qualitatively similar, but the relative sizes of the correlation
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Table 5.11: Contributions from RCC terms to α, dTPT
A and dNSM

A (with same
units as in Table 5.8) from the LCCSD and CCSD methods.

CC LCCSD CCSD

terms α dTPT
A dNSM

A α dTPT
A dNSM

A

DT
(1)
1 37.747 4.881 2.960 37.492 4.630 2.774

T
(0)†
1 DT

(1)
1 −0.166 0.015 0.007 −0.319 0.005 −3× 10−4

T
(0)†
2 DT

(1)
1 −3.827 0.248 0.099 −4.166 0.308 0.132

T
(0)†
1 DT

(1)
2 −0.052 0.004 0.002 −0.074 0.002 0.001

T
(0)†
2 DT

(1)
2 1.380 −0.079 −0.013 1.400 −0.087 −0.014

Others −0.093 −0.005 −0.001

contributions are different for the two cases.

The following conclusions can be drawn from Table 5.8: (i) The lower order

RPA effects are appreciable in magnitude and they reduce the MBPT(2) and

MBPT(3) results relative to that of the DF values. Their higher order counter-

parts are collectively large and this is reflected in the final RPA results for our

α and EDM calculations. (ii) There are significant cancellations between the all

order RPA and the all-order non-RPA contributions at the CCSD level for the

EDMs. The inclusion of the non-RPA terms which first appear in MBPT(3) in a

perturbative theory framework, is therefore crucial. (iii) There are cancellations

between the linear and non-linear CCSD terms for the EDMs. It is, therefore,

imperative to use an all order approach like the CCSD method to capture the

above mentioned effects. In order to identify which non-RPA diagrams take part

in the cancellations, we give a few of these diagrams in Fig. 5.1.1 at the MBPT(3)

level and their contributions explicitly in Table 5.10.

The differences in the LCCSD and CCSD results given in Table 5.8 highlight

the importance of including the non-linear correlation terms such as T
(0)
1 T

(0)
2 ,

1
2
T

(0)
2 T

(0)
2 , · · · , which correspond to the contributions from higher level excitations

such as triples, quadruples, etc. A detailed analysis of our calculations reveal that

the role of the non-linear effects are more significant when included in the wave

functions rather than in the exponential terms in Eq. 2.1.8. This can be observed

from the contributions of the linear CC terms in the LCCSD and CCSD methods



5.1. Overview 115

in Table 5.11. Results given as “Others” from the CCSD method are the non-

linear contributions from the exponential terms in the expectation value given

in Eq. 2.1.8.

Finally, we give the results of our CCSD calculations as our recommended

values for 223Rn EDMs, i.e. dTPT
A ≤ 4.853 × 10−20〈σ〉CT |e| cm and dNSM

A ≤
2.892 × 10−17S/(|e| fm3). They are both about 9 times larger than the results

for 129Xe that we had reported recently [158]. Our Schiff moment calculation

could be combined with the future measured value of 223Rn EDM to give lim-

its for the EDMs and chromo-EDMs of quarks and the θQCD parameter that

would be competitive with those obtained from a few other heavy closed shell

atoms. These limits have the potential to provide a wealth of information on new

physics beyond the SM. Our ground state polarizability result of the Rn atom

will be useful in the context of the EDM studies of 223Rn and its experimental

verification.

5.1.4 EDM of 225Ra

In Table 5.12, we present the results for α, dTPT
A and dNSM

A of 225Ra using our

many-body methods. The single particle orbitals are obtained by solving DF

equation using the GTOs as the basis functions with universal parameters α0 =

0.00525 and β = 2.25. In the above table, for the comparison purpose, we

also present the previously reported results from different methods. Among

these, calculations using the CI+MBPT method with some corrections from

RPA by Dzuba and coworkers [25, 164] were presumed to be more rigorous. We

have already explained the technique of CI+MBPT method and its merits and

demerits while discussing our EDM results for 199Hg atom. Since this hybrid

method do not include the correlation effects from all the electrons in equal

footing which is essential for the strongly interacting atom like 225Ra. In fact,

Dzuba and coworkers [25, 164] and Latha and Amjith [162] have independently

employed RPA with V N potential to report α, dTPT
A and dNSM

A for this atom.

From the above table we can see that the DF and RPA results, among all these

calculations, agree quite well with each other. In order to test the potential of
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Table 5.12: Comparison of the α, dTPT
A and dNSM

A (with same units as in Table
5.8) results for 225Ra from various calculations. The CCSD(T) results are the
converged values from our calculations and the RPA values for the Breit inter-
action (δB), QED correction (δQED) and truncated basis (δbasis) are given in the
end.

Method of This work [160] Others

Evaluation α dTPT
A dNSM

A α dTPT
A dNSM

A

DF 204.13 −3.46 −1.85 204.2 [25] −3.5 [25] −1.8 [25]
200.6 [162]
293.4⊛ [172]

MBPT(2) 230.67 −11.00 −5.48
MBPT(3) 189.53 −10.59 −5.30

RPA 296.85 −16.66 −8.12 −17 [25] −8.3 [25]
291.4 [162] −16.59 [162]
297.0⊗ [164] −8.5⊗ [164]

CI+MBPT −18 [25] −8.8 [25]
229.9⊗ [164]

LCCSD 251.88 −13.84 −8.40

CCSD(2) 253.04 −10.40 −6.94

CCSD(4) 242.02 −9.49 −6.52

CCSD(∞) 247.76 −10.04 −6.79 251.8⊛ [172]
CCSD(T) 241.40 −10.01 −6.79 242.8⊛ [172]

δB 0.19 0.06 0.06
δQED −0.43 −0.16 −0.07
δbasis −0.03 −0.08 −0.05
⊛ Corrections from the Gaunt term incorporated.
⊗ Corrections from RPA included.

the employed many-body methods [25,158,159,164,166,169], α is often evaluated

together with dA and compared with its experimental value owing to their same

angular momentum and parity selection criteria required for their determination,

notwithstanding their different radial behavior. The α in 225Ra is yet to be

measured, but a few calculations using variants of CC methods report its value

among which the latest calculations by Borschevsky et al. present DF, CCSD

and CCSD(T) results [172] and make comparative analysis with the previous

calculations. They use the DC Hamiltonian with the Gaunt term in a finite field

approach, and get a large DF value whereas their CC results, as seen in Table

5.12, converges towards a value similar to our CC results.
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Table 5.13: Non-RPA contributions through the MBPT(3) diagrams shown in
Fig. 5.1.1 along with their exchange parts for α, dTPT

A and dNSM
A (with same units

as in Table 5.8).

Contributions α dTPT
A dNSM

A

Diagram (i) −52.19 2.01 0.97
Diagram (ii) −25.98 1.29 0.62
Diagram (iii) −14.77 0.49 0.20

Table 5.14: Individual contributions to α, dTPT
A and dNSM

A (in same units as of
Table 5.12) of 225Ra from various LCCSD, CCSD and CCSD(T) terms.“Extra”
correspond to the leftover terms.

Method DT
(1)
1 T

(0)†
1 DT

(1)
1 T

(0)†
2 DT

(1)
1 T

(0)†
2 DT

(1)
2 Extra

α (ea30)

LCCSD 277.57 −22.09 −30.17 24.17 2.40
CCSD 273.09 −20.14 −32.83 30.60 −2.96
CCSD(T) 269.08 −22.60 −30.47 30.19 −2.80

dTPT
A (10−20CT 〈σn〉|e|cm)

LCCSD −16.62 0.01 3.54 −0.41 −0.36
CCSD −13.37 −0.08 3.32 −0.19 0.28
CCSD(T) −13.34 −0.09 3.33 −0.20 0.29

dNSM
A (10−17[S/|e|fm3]|e|cm)

LCCSD −9.37 0.06 1.63 −0.75 0.03
CCSD −7.76 0.02 1.59 −0.83 0.19
CCSD(T) −7.77 0.02 1.59 −0.83 0.21
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Figure 5.3: Histograms representing for the dominant matrix elements between
the 7s and 6p occupied orbitals and the low-lying virtual ms and mp orbitals
of 225Ra, with the corresponding principle quantum number m, to DT (1) of the
CCSD(T) method. Plots for (i) α, (ii) the 7s↔ mp matrix elements of dA, and
(iii) the 6p↔ ms matrix elements of dA.

We also estimate uncertainties from the neglected effects, such as corrections

due to the truncated basis (δbasis), Breit interaction (δB) and quantum electro-

dynamic (QED) effects (δQED), in our calculations by using RPA in a similar

manner as explained while discussing previous EDM results. These values are

quoted at the end of Table 5.12. Accounting differences between the CCSD(T)

and CCSD results from our calculations as the largest possible contributions

from the omitted higher level excitations and the above corrections, we estimate

uncertainties in our CCSD(T) to be less than 2%.

The present study also highlights that the behavior of electron correlation

effects in 225Ra is different from the other closed-shell atoms like 129Xe [158],

223Rn [169] and 199Hg [159] for the EDM studies. For example, RPA is esti-

mating EDMs within reasonably accuracies in 129Xe [158] and 223Rn [169] while

the CCSD method and the CI+MBPT approach of Dzuba and coworkers give

almost similar results for 199Hg [159]. As seen from Table 5.12, the CCSD(T)

values for α, dTPT
A and dNSM

A distinctly differ by 5% (increased), 45% (reduced)

and 23% (reduced), respectively, from the CI+MBPT results in 225Ra. The main

reason for these large differences is because of the contributions from significant

non-RPA and core correlation effects in the considered properties. This is ap-

parent from the differences between the MBPT(2) and MBPT(3) results and the

LCCSD and CCSD(2) results given in Table 5.12, since MBPT(2) corresponds
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to the lower order RPA whereas the non-RPA contributions start appearing at

MBPT(3). For a quantitative substantiation, we present few important non-RPA

contributions (that are depicted diagrammatically in Fig. 5.1.1 from MBPT(3))

in Table 5.13. We also give contributions from the LCCSD, CCSD and CCSD(T)

methods in Table 5.14 to affirm about the importance of different electronic con-

figurations in the accurate evaluation of the above properties. As seen, DT
(1)
1

yields the largest contributions in all the cases alluding to careful inclusion of the

singly excitation configurations in the calculations for achieving accurate results

in 225Ra. Nevertheless, doubly excited contributions through T
(1)
2 are also found

to be crucial. Comparing the LCCSD and CCSD(T) results, we observe that

singly excitation amplitudes are modulated in the calculation of dA while the

doubly excited amplitudes are altered substantially in the evaluation of α. We

also investigate proportionate contributions to DT (1) in the CCSD(T) method

from different matrix elements of the P,T-odd interaction Hamiltonians and E1

operator between the core and virtual orbitals using which the dominant contri-

butions to α and dA are shown by histograms in Fig. 5.3. This clearly exhibits

uneven contributions to α, dTPT
A and dNSM

A from different matrix elements be-

tween the low-lying orbitals of 225Ra.

5.2 Limits on Hadronic and Semileptonic P- and

T-violating Coupling Coefficients

So far there are only three closed-shell atoms on which EDM measurements have

been performed and their reported results are given in Table 1.4. Among those,

the most precise measurement is done on 199Hg atom from which an upper bound

on the dA is extracted as [29] dA < 3.1 × 10−29. On combining our final results

of 199Hg with the above measurement, we get upper limits on T-PT and NSM

coupling constants as [159]

S < 1.45 × 10−12|e|fm3 and CT < 2.09 × 10−9. (5.2.1)
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At present these are the most accurate bounds on these couplings. Using Eq.

1.1.11, it yields CP < 5.8×10−7 and from the relation S = (1.9dn+0.2dp fm2 [173],

an upper bound on neutron (dn) and proton (dp) EDMs can be extracted as

dn < 7.6 × 10−26|e|cm and dp < 7.3 × 10−25|e|cm. (5.2.2)

Although our obtained limit on dn is not better than the limit obtained directly

from the measurement [174], however the limit on dp is slightly better than the

previous value [29].

The next best limit on dA is obtained from 129Xe EDM measurement [38]

as dA < 4.1 × 10−27|e|cm. This limit in combination with our RCC results for

dTPT
A and dNSM

A , we obtain an upper bound on TPT and NSM coupling constants

as CT < 1.6 × 10−6 and S < 1.2 × 10−9 |e|fm3 respectively. These limits are

not competitive with the limits extracted from 199Hg [25, 159, 166], which are

about three orders of magnitude lower. However, the experiments on 129Xe with

advanced experimental techniques [39–41] that are underway have the potential

to surpass the current sensitivity by about three to four orders of magnitude.

It therefore seems very likely that the best limits for both CT and S could be

obtained by combining our calculated values presented above and the results of

the new generation of experiments for 129Xe when they come to fruition.

The first EDM measurement on 225Ra has been recently reported [32] with

an upper limit dA < 5.0 × 10−22. The precision of this measurement is not

competitive at this moment against the previous experiments. However with

225Ra, there are many experimental and theoretical advantages, see Chap. 1, on

the basis of which it is expected that there will be a tremendous improvement in

the sensitivity of the measurement in near future. If we combine our RCC results

with the current limit we obtain an upper bound on NSM coupling constants as

S<7.4× 10−6|e|fm3. Similarly with the knowledge of 〈σN〉 in 225Ra from nuclear

calculation, an upper bound on CT can be predicted.

From Eq. 1.1.25, we find that the NSM can be written in terms of the

CP-violating pion-nucleon-nucleon (πnn) coupling constants ḡπnn with suitable
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parameters (ai) as given in Chap. 1. In a recent review [24], it has been pointed

out that all the nuclear calculations available till date based on different nuclear

models for 199Hg predict different parameters. The calculations disagree with

each other not only in magnitudes but in signs also. However as can be seen

from Table 1.1, Ref. [24] provides the best value for S in terms of pion-nucleon-

nucleon (πNN) couplings (ḡi) as

S = 13.5[0.01ḡ0 + (±0.02)ḡ1 + 0.02ḡ2] |e| fm3. (5.2.3)

Combining this with our limit on S obtained from 199Hg, we infer bounds as

|ḡ0|<1.2 × 10−11 and |ḡ1|<5.6 × 10−12. Furthermore, using the relations ḡ0 =

−0.018(7)θ̄ [23] and ḡ1 = 2 × 10−12(d̃u − d̃d) [30], we extract the upper limit on

the combined up- and down- quarks chromo-EDMs as |d̃u−d̃d| < 2.8×10−26|e|cm

and the limit on the strong CP-odd parameter as |θ̄|<1.1×10−9. In fact, it is also

possible to infer more stringent limits on the above quantities from our given limit

on S provided the uncertainties in the nuclear calculations are reduced further.

Similarly two sophisticated nuclear calculations have been carried out using the

octupole deformed Wood-Saxon potential [27] and odd-A Skyrme mean field

theory [175] to describe the P,T-odd interactions in 225Ra in terms of ḡi. Using

the best value from the Table 1.1 for S from these two calculations as [24]

S = 13.5[−1.5ḡ0 + 6.0ḡ1 − 4.0ḡ2] |e| fm3, (5.2.4)

where ḡi=0,1,2 are the isospin components of the P,T-odd πNN coupling constants.

We infer bounds as |ḡ0|<3.6 × 10−7 and |ḡ1|<9.1 × 10−8 using the above result

with our extracted limit on S. Again from the relations |ḡ0| = 0.018(7)θQCD [23]

and |ḡ1| = 2 × 10−12(d̃u − d̃d) [30], we put the upper limits as |θQCD|<2.0× 10−5

and |d̃u − d̃d| < 4.6 × 10−22|e|cm.
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5.3 Summary

To summarize, we present the trends in the electron correlation effects to the

calculations of EDMs of 129Xe, 199Hg, 223Rn and 225Ra. Combing our results

with the most precise measurement available till date for 199Hg, we are able to

put bounds on NSM and T-PT coupling constant as S<1.45 × 10−12|e|fm3 and

CT< 2.09 × 10−9 respectively. Moreover, combining the Schiff moment obtained

from our study with the latest nuclear calculation, the upper limits yield on the

combined up- and down- quarks chromo-EDMs as |d̃u − d̃d| < 2.8 × 10−26|e|cm
and on the strong CP-odd parameter as |θ̄|<1.1 × 10−9. We also present EDM

calculations using CC methods on 129Xe, 223Rn and 225Ra atoms. On combining

our EDM results with the measurement on 129Xe and 225Ra, we also obtain limits

on the above mentioned parameters. Though these bounds are not competitive

at present against the limits obtained from the 199Hg EDM study, the limits

can become more stringent when our results will be combined with the antici-

pated improved measurement on 129Xe and 225Ra atoms. Our reported atomic

calculations in combination with the upcoming EDM measurements in the con-

sidered closed-shell systems involving more advanced experimental techniques

would constrain to the values of the above coupling constants further. These

limits are certainly very useful and significant to shed lights on new physics

beyond the SM of particle physics.



Chapter 6

Conclusion and Future

Directions

6.1 Work Summary and Conclusion

The search for the existence of permanent electric dipole moments (EDMs) in

composite systems like atoms has a long history [8,13,65]. If EDM exists in such

systems then it would be a clean signature of violations of both the parity (P) and

time-reversal (T) symmetries. In fact, it is a direct test to observe T-violation

in nature which also imply CP-violation from the CPT theorem [10]. The most

celebrated standard model (SM) of particle physics inherit CP-violation in the

form of a complex phase in the Cabibbo-Kobayashi-Maskawa (CKM) matrix that

mixes different flavors of quarks. The observed CP-violation in the decays of neu-

tral K [3] and B [4–6] mesons are well within the predictions of the SM. However,

CKM mechanism is insufficient to account for the observed baryon asymmetry of

the Universe. Therefore, searches for new sources of CP-violation are of profound

interest. In the atomic systems the major contributor to EDMs are the P- and

T-violating (P,T-odd) interactions among the constituent particles. Thus, study-

ing atomic EDMs would provide a powerful probe to search for the CP-violation

emanating from the leptonic, semileptonic, and hadronic CP sources. In this

thesis, we focused on the EDMs of the closed-shell (diamagnetic) atoms, which

predominantly arise from the P- and T-violating electron-nucleus (e-N) tensor-
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pseudotensor (T-PT) and the interactions of nuclear Schiff moment (NSM) with

the atomic electrons [12]. In order to estimate the strengths of the couplings

associated with these interactions, we not only require precise EDM measure-

ments but also reliable theoretical calculations. Further, at the fundamental

level, NSM can be linked with the strong CP parameter θ̄ and (chromo)-EDMs

of quarks [23,24,30]. Therefore, accurate knowledge of NSM can be very helpful

to gain information on the above mentioned parameters. Till date, there are only

three systems on which EDM measurement have been reported so far ( see Table

1.4). Among which, measurement by Griffith et al. yields the best upper limit to

the 199Hg EDM as dA(199Hg) < 3.1 × 10−29|e|cm with 95% confidence level [29].

Advanced experimental techniques have been proposed for the other diamagnetic

atoms, particularly 129Xe, with the expectations to improve the sensitivity of the

measurement by a few orders in magnitude [39–41]. Recently a research group at

Argonne National Laboratory (ANL) [32] reported their first EDM measurement

on 225Ra atom. Though, their obtained limit is not competitive with the other

earlier EDM measurements but their experiment has a potential to surpass the

sensitivity of the Hg EDM experiment.

We have developed a variety of relativistic many-body methods to compute

the dipole polarizabilities (αs) and the EDMs of many closed-shell (diamagnetic)

atomic systems. Our methods include third-order many-body perturbation the-

ory (MBPT(3) method), random phase approximation (RPA) and relativistic

coupled-cluster (RCC) theory considering singles and doubles approximation at

the linearized (LCCSD method) and non-linearized (CCSD method) levels. In

order to achieve better accuracies in our CCSD results, we have included con-

tributions from a set of leading order triple excitations in both the unperturbed

(CCSD(T) method) and perturbed (CCSDpT method) RCC equations. We first

verified the potential of the above many-body methods by evaluating αs of many

closed-shell atoms and ions belonging to, alkali, alkaline and noble gas earth el-

ements [90]. We also highlight about the crucial roles of the electron correlation

effects to reproduce the experimental result by presenting and comparing the re-

sults at different levels of approximations. Correlation trends among the neutral



6.1. Work Summary and Conclusion 125

atoms, singly and doubly charged ions are presented. In addition to that, we also

employed our methods to evaluate αs of the boron, carbon, and zinc homologous

sequences of elements [91]. We find a divergent patterns in the behavior of the

electron correlation effects with respect to the mean-field level of calculations in

the individual iso-electronic systems through a particular employed many-body

method. Also, our calculations revel that the RPA and LCCSD methods gen-

erally overestimate α. The large value of RPA result is due to the absence of

certain non-RPA diagrams as shown in Fig. 5.1.1 which contribute significantly

with negative signs. However, in the LCCSD method similar to RPA certain

negatively contributing diagrams are absent such as diagram (i) in Fig. 5.1.1.

These absent diagrams are very important in achieving high accuracies in results.

We also report contributions from few of those diagrams from the MBPT(3)

method to ascertain our findings. In other words, both the core-polarization and

pair-correlation effects to all-orders are equally important for achieving high ac-

curacies in α in the considered systems and the core-polarization effects play the

important role among them. Contributions from the doubly excited states are

found to be non-negligible implying that a sum-over-states approach may not be

pertinent to carry out these studies. Our results obtained using the CCSD(T)

and CCSDpT methods agree very well with the available experimental values in

some of the systems except for Cd. In few systems, there are no experimental

results available in the literature and the reported accurate values in the present

work can be served as benchmarks for their prospective measurements.

The evaluation of α and EDM share similar angular momentum and parity

selection criteria despite of fact that their radial dependencies are different. After

successfully testing our many-body methods for α, we evaluated EDMs due to

NSM and T-PT i interactions of the closed-shell atoms, 129Xe, 199Hg, 223Rn and

225Ra whose experiments are currently under consideration. On combining our

199Hg EDM results with the most precise measurement till date, we were able

to put accurate bounds on NSM and T-PT coupling constants as S<1.45 ×
10−12|e|fm3 and CT< 2.09 × 10−9 respectively [159]. We also combined our

obtained limit on S with the latest nuclear structure calculations [23] to get
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an upper bound on combined up- and down- quarks chromo-EDMs as |d̃u −
d̃d| < 2.8 × 10−26|e| cm and on the strong CP-odd parameter as |θ̄|<1.1 × 10−9

[159]. These are the most reliable calculations at the moment which accounts

the electron correlation effects more rigorously. Further, we also present the

first EDM calculations using our CC methods for 129Xe, 223Rn and 225Ra atoms

[158, 160, 169]. The limits obtained on combining our EDM results for 129Xe

and 225Ra with their respective measurements are not competitive against the

limit obtained from Hg atom [158, 160]. However, ongoing efforts to improve

the precisions in the EDM experiments particularly on 129Xe and 225Ra are very

promising. It therefore seems very likely that the best limits on the couplings

associated with T-PT and NSM interactions could be obtained by combining

our EDM results presented in this thesis with the results of the new generations

of experiments for 129Xe and 225Ra when they come to fruition. Now from the

nuclear physics point of view, it has now become absolutely necessary to improve

the nuclear calculations for the NSM which are varying not only in magnitudes

but also in signs [24]. Accurate knowledge of NSMs from the nuclear physics can

be combined with the limits on S obtained above to put stringent bounds on the

strong CP parameter, EDMs and chromo-EDMs of quarks. The origin of the

above mentioned P,T-odd couplings are not accounted in the Standard Model

(SM) of particle physics. Therefore, accurate information of the above couplings

can definitely shed light on beyond-SM particle physics theories that predict new

sources of CP-violations.

6.2 Future Directions

The improvement in our CC calculations can be enhanced further by considering

full triple, quadrupole etc. excitations, but it demands for huge computational

resources. Even CCSD method for a heavy system like Ra with sufficient num-

ber of basis generates large number of integrals associated with the Coulomb and

additional interactions which not only consumes lots of memory but also compu-

tational time. Such issues with memory and computational time can be reduced



6.3. NCC Theory 127

by implementing group parallelization techniques and by using a string based al-

gorithm to handle higher levels of excitations [176]. One of the main shortcomings

of our employed CCSD method comes at the property level where we encounter

with an infinite series. To address this issue at the same level of approximation,

a normal couple-cluster (NCC) theory would be appropriate [177,178]. In NCC,

ket and bra states are parametrized independently due to which they loss their

hermitian adjoint relationship but it has many advantages such as: (i) they lead

to explicit expectation value of the functional (here dipole operator D) [178], (ii)

they are compatible with Hellmann-Feynman theorem [179] and (iii) they are

derivable from variational principle.

6.3 NCC Theory

In the NCC theory the ket state is defined by the same ansatz as described in

our usual CC theory, whereas, the bra state is parametrized by two different

operators. In the NCC model, the ket and the bra states are defined as

|Ψ〉 = eT |Φ0〉 and 〈Ψ̃| = 〈Φ0|(1 + Λ)e−T , (6.3.1)

such that 〈Ψ̃|Ψ〉 = 〈Φ0|Φ0〉 = 1 and Λ is the de-excitation operator. The

Schrödinger’s equation for the bra state is given by

〈Φ0|(1 + Λ)e−T (HDC + λHint) = 〈Φ0|(1 + Λ)e−TE. (6.3.2)

On multiplying eT from right hand side and considering HDC = HN +EDF , one

get

〈Φ0|(1 + Λ)e−T (HN + λHint)e
T = 〈Φ0|(1 + Λ)∆Ecorr

〈Φ0|(1 + Λ)((HNe
T )conn + λ(Hinte

T )conn) = ∆Ecorr〈Φ0|(1 + Λ). (6.3.3)

In order to obtain unperturbed and perturbed amplitude equations, one can split

Λ operator as Λ = Λ(0)+λΛ(1) just like T = T (0)+λT (1). In the unperturbed case,
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λ = 0 and on projecting singly and doubly excited configurations with respect

to the reference state |Φ0〉 from right, we get unperturbed amplitude equations

as

〈Φ0|Λ(0)HN|Φp
a〉 = −〈Φ0|HN|Φp

a〉

〈Φ0|Λ(0)HN|Φpq
ab〉 = −〈Φ0|HN|Φpq

ab〉, (6.3.4)

where HN = (HNe
T (0)

)conn. To consider the first order effect, one can take only

terms with λ1 and get the singles and doubles amplitude equations for operator

Λ(1) as

〈Φ0|Λ(1)HN|Φp
a〉 = −〈Φ0|HNT

(1) +H int + Λ(0)HNT
(1) + Λ(0)H int|Φp

a〉

〈Φ0|Λ(1)HN|Φpq
ab〉 = −〈Φ0|HNT

(1) +H int + Λ(0)HNT
(1) + Λ(0)H int|Φpq

ab〉. (6.3.5)

After obtaining amplitudes associated with the T operators using our usual RCC

method one can then make use of Eqs. 6.3.4 and 6.3.5 to evaluate the amplitudes

of Λ(0) and Λ(1) operators respectively.

The atomic EDM (dA) is the expectation value of the dipole operator D which

in the NCC framework is given by

dA =
〈Ψ̃|D|Ψ〉
〈Ψ̃|Ψ〉

= 〈Φ0|(1 + Λ)e−TDeT |Φ0〉. (6.3.6)

The above series terminates automatically with finite number of terms and the

normalization factor is equal to one here. Due to the presence of de-excitation

operators, the number of terms in the property evaluations are finite. Therefore,

with this method one can gain considerably in the accuracies of the considered

properties as compared to our usual RCC method.



Appendix A

Atomic Units

Atomic units (au or a.u.) form a system of natural units in which fundamental

physical constants e(electronic charge), ~ (reduced Planks constant), me (mass

of electron) and 1
4πǫ0

(permittivity of free space) become unity by definition i.e.

~ = me = e = 4πǫ0 = 1. (A.0.1)

Table A.1: Conversion Factors from Atomic to S.I Units.

Atomic unit SI value Name (symbol)

(base units)

Mass (me) 9.10938291×1031 kg Mass of electron
Charge (e) 1.602176565(35)×1019 C Electronic Charge
Angular Momentum (~) 1.054571726(47)×1019J.s Planck’s constant/2π
Energy (mee

4/~2) 4.35974417(75)×1019J Hartree (H)
Length (~2/mee

2) 5.2917721092(17)×1011m Bohr radius (a0)
Speed of light (1/α) ≈137 Fine structure constant inverse
Time (~3/mee

4) 2.418884326505(16)×1017s Jiffy
EDM (~2/mee) 8.47835326(19)×1030 C.m 2.541765 Debye (D) units
MDM (e~/2me) 9.27402×1024 J/T Bohr magneton (µB)

Table A.2: Frequently used Physical Constants and their Numerical Values.

Speed of light (c) 299 792 458 m/s
Planck’s constant (h) 6.626 069 57(29)×1034 J.s
Planck’s constant, reduced (~) 1.054571726(47)×1034 J.s
Fermi coupling constant (GF /(~c)

3) 1.166 378 7(6)×105 GeV−2

2.22×1014 a.u
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Table A.3: The conversion factors for energies in different units.

Joule kJ.mol−1 eV a.u. cm−1 Hz

1 Joule=1 6.022 × 1018 6.242 × 1018 2.2939 × 1017 5.035 × 1022 1.509 × 1033

1 kJ.mol−1 1 1.036 × 10−2 3.089 × 10−4 83.60 2.506 × 1012

=1.661 × 10−21

1 eV 96.48 1 3.675 × 10−2 8065 2.418 × 1014

=1.602 × 10−19

1 a.u. 2625 27.21 1 2.195 × 105 6.580 × 1015

=4.359 × 10−18

1 cm−1 1.196 × 10−2 1.240 × 10−4 4.556 × 10−6 1 2.998 × 1010

=1.986 × 10−23

1 Hz 3.990 × 10−13 4.136 × 10−15 1.520 × 10−16 3.336 × 10−11 1
=6.626 × 10−34



Appendix B

Dirac Matrices

The Dirac matrices αi and β, where i = 1, 2, 3 in the 2 × 2 format are given by

αi =




0 σi

σi 0



 and β =




I 0

0 −I



 , (B.0.1)

with

σ1 =




0 1

1 0



 , σ2 =




0 −i
i 0



 , and σ3 =




1 0

0 −1



 . (B.0.2)

These matrices satisfy the following anti-commutation relations

{αi, αj} = 0, {αi, β} = 0 with α2
i = β2 = 1. (B.0.3)

The Dirac and the gamma matrices are related to each other by the relations

γi = βαi =




0 σi

−σi 0



 and γ0 = β =




I 0

0 −I



 , (B.0.4)

such that the commutation and anti-commutation relations of γ matrices are

given by

{γµ, γν} = 2gµ,νI and
i

2
[γµ, γν] = σµν , (B.0.5)
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where I is an identity matrix, indices µ, ν runs as 0,1,2,3 and gµν is the Minkowski

metric. In addition to above, we also have another metric γ5 which is defined as

γ5 = iγ0γ1γ2γ3 =




0 I

I 0



 , (B.0.6)

with the following relations

{γ5, γµ} = 0 and γ25 = I. (B.0.7)

In the non-relativistic representation gamma matrices are given by

γi =




0 −iσi
iσi 0



 , γ0 =




I 0

0 −I



 and γ5 =




0 −I
−I 0



 . (B.0.8)



Appendix C

Matrix Elements of EDM

Interaction Hamiltonians

C.1 Matrix element of HTPT
int

The electron-nucleus P,T-odd tensor-pseudotensor (T-PT) interaction Hamilto-

nian is given by

HTPT
int = i2

√
2GFCT 〈I〉γρ(r). (C.1.1)

Ignoring the constant term form the HTPT
int and considering z-axis as the axis of

quantization, the single particle matrix element of the above interaction Hamil-

tonians given by

〈φa|HTPT
int |φb〉 = 〈φa|iγzρ(r)|φb〉. (C.1.2)

where |φa〉 and φb〉 are the single particle wave functions of the considered atomic

system. In the position basis, the wave functions |φa〉 and |φb〉 can be represented

in the two component Dirac wave function as

φa(r) =
1

r




Pa(r)χκa,ma

(θ, φ)

iQa(r)χ−κa,ma
(θ, φ),



 (C.1.3)

133



134 Chapter C. Matrix Elements of EDM Interaction Hamiltonians

and

φb(r) =
1

r




Pb(r)χκb,mb

(θ, φ)

iQb(r)χ−κb,mb
(θ, φ),



 (C.1.4)

where P (r) and Q(r) are the large and small components of the radial wave

functions, χκ,m(θ, φ)s are the angular functions with the relativistic quantum

number κ = −(j + 1/2)a and l = j − 1
2
a, where a = ±1 [45] Considering the

above Dirac wave functions and γz =




0 σz

−σz 0



 in Eq.C.1.2 we get

〈φa|HTPT
int |φb〉 =

∫
1

r2

(

Pa(r)χ
†
κa,ma

(θ, φ) − iQa(r)χ
†
−κa,ma

(θ, φ)
)




0 σz

−σz 0








Pb(r)χκb,mb

(θ, φ)

iQb(r)χ−κb,mb
(θ, φ)



 iρ(r)r2drdΩ

=

∫ (

Pa(r)χ
†
κa,ma

(θ, φ) − iQa(r)χ
†
−κa,ma

(θ, φ)
)




iσzQb(r)χ−κb,mb

(θ, φ)

−σzPb(r)χκb,mb
(θ, φ)





× iρ(r)drdΩ

= −
∫

([Pa(r)χ
†
κa,ma

(θ, φ)σzQb(r)χ−κb,mb
(θ, φ)]

+ [Qa(r)χ
†
−κa,ma

(θ, φ)σzPb(r)χκb,mb
(θ, φ)]) × ρ(r)drdΩ.

On separating the radial and the spin integral part, the above equation can be

rewritten as

〈φa|HTPT
int |φb〉 = −

∫

Pa(r)Qb(r)ρ(r)dr

∫

χ†
κa,ma

(θ, φ)σzχ−κb,mb
(θ, φ)dΩ

−
∫

Qa(r)Pb(r)ρ(r)dr

∫

χ†
−κa,ma

(θ, φ)σzχκb,mb
(θ, φ)dΩ.

Now using the Wigner Eckart theorem the above equation can be written as a

product of Clebsch-Gordan coefficient and the m independent reduced matrix
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element [7]. The reduced matrix element for HTPT
int is given by

〈φa||HTPT
int ||φb〉 = −

∫

ρ(r)dr[Pa(r)Qb(r)〈κa||σz|| − κb〉

+Qa(r)Pb(r)〈−κa||σz||κb〉],

where the general expression of the reduced matrix element of σ is given by

〈κa||σ||κb〉 = δlalb(−1)(la+ja−1/2)
√

[ja, jb]
√

6







1 ja jb

la 1/2 1/2






. (C.1.5)

C.2 Matrix element of HNSM
int

The P,T-odd interaction between the nuclear Schiff moment (NSM) and the

atomic electrons is given by the following Hamiltonian

HNSM
int = 3

S.r

B4
ρ(r). (C.2.1)

The single particle matrix element of the HNSM
int between the states |φa〉 and |φb〉

is given by

〈φa|HNSM
int |φb〉 = 3

S

B4
〈φa|rρ(r)|φb〉. (C.2.2)

Considering the above Dirac wave functions given in Eqs. C.1.3 and C.1.4 in

Eq.C.2.2 we get

〈φa|HNSM
int |φb〉 = 3

S

B4

∫
1

r2

(

Pa(r)χ
†
κa,ma

(θ, φ) − iQa(r)χ
†
−κa,ma

(θ, φ)
)

rC1(θ, φ)ρ(r)




Pb(r)χκb,mb

(θ, φ)

iQb(r)χ−κb,mb
(θ, φ)



 r2drdΩ

= 3
S

B4

∫

([Pa(r)χ
†
κa,ma

(θ, φ)C1(θ, φ)Pb(r)χκb,mb
(θ, φ)]

+ [Qa(r)χ
†
−κa,ma

(θ, φ)C1(θ, φ)Qb(r)χ−κb,mb
(θ, φ)]) × rρ(r)drdΩ
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On separating the radial and spin integral parts,the above equation reduce to

〈φa|HNSM
int |φb〉 = 3

S

B4

∫

drrρ(r)[Pa(r)Pb(r) +Qa(r)Qb(r)]

×
∫

dΩχ†
κa,ma

(θ, φ)C1(θ, φ)χκb,mb
(θ, φ).

Again, using the Wigner-Eckart theorem the above matrix element can be writ-

ten as a product of Clebsch-Gordan coefficient and the m independent reduced

matrix element [7]. The reduced matrix element of the above interaction Hamil-

tonian is given by

〈φa||HNSM
int ||φb〉 = 3

S

B4
〈κa||C1||κb〉

∫

rρ(r)[Pa(r)Pb(r) +Qa(r)Qb(r)]dr

The general expression for the reduced matrix element of C1 tensor is given in

Eq. C.1.5
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[60] Č́ıžek, J. On the Use of the Cluster Expansion and the Technique of Dia-

grams in Calculations of Correlation Effects in Atoms and Molecules, 35–

89. John Wiley & Sons, Inc. (2007).

[61] Grant, I. P. Advances in Physics 19, 747 (1970).

[62] Breit, G. Phys. Rev. 34, 553–573 Aug (1929).

[63] Eliav, E., Kaldor, U., and Ishikawa, Y. Phys. Rev. A 53, 3050–3056 May

(1996).

[64] Uehling, E. A. Phys. Rev. 48, 55–63 Jul (1935).

[65] Flambaum, V. and Ginges, J. Phys.Rev. A72, 052115 (2005).

[66] Jackson, J. D. Classical Electrodynamics. Wiley India, India, 3rd edition,

(2010).

[67] Bonin, K. D. and Kresin, V. V. Electric Dipole Polarizabilities of Atoms,

Molecules and Clusters. World Scientific, Singapore, 1st edition, October

(1997).

[68] Pethick, C. J. and Smith, H. Bose-Einstein Condensation in Dilute Gases.

Cambridge University Press, Cambridge, 2nd edition, October (2008).

[69] Madej, A. A. and Bernard, J. E. in Frequency Measurement and Control,

in Topics in Applied Physics. Springer, Berlin, (2001).

[70] Foot, C. J. Atomic Physics. Oxford University Press, Oxford, UK, 1st

edition, (2005).

[71] Molof, R. W., Schwartz, H. L., Miller, T. M., and Bederson, B. Phys. Rev.

A 10, 1131–1140 Oct (1974).

[72] Miller, T. M. and Bederson, B. Phys. Rev. A 14, 1572–1573 Oct (1976).

[73] Schwartz, H. L., Miller, T. M., and Bederson, B. Phys. Rev. A 10, 1924–

1926 Dec (1974).



142 BIBLIOGRAPHY

[74] Hall, W. D. and Zorn, J. C. Phys. Rev. A 10, 1141–1144 Oct (1974).

[75] Cronin, A. D., Schmiedmayer, J., and Pritchard, D. E. Rev. Mod. Phys.

81, 1051–1129 Jul (2009).

[76] Ekstrom, C. R. et al. Phys. Rev. A 51, 3883–3888 May (1995).

[77] Amini, J. M. and Gould, H. Phys. Rev. Lett. 91, 153001 Oct (2003).

[78] Dalgarno, A. Advances in Physics 11(44), 281–315 (1962).

[79] Dalgarno, A. and McIntyre, H. A. J. Proceedings of the Physical Society

85(1), 47 (1965).

[80] Monkhorst, H. J. J. Quantum Chem. 12(S11), 421 (1977).

[81] Dalgaard, E. and Monkhorst, H. J. Phys. Rev. A 28, 1217–1222 Sep (1983).

[82] Kundu, B. and Mukherjee, D. Chem. Phys. Lett. 179, 468 (1991).

[83] Koch, H., Kobayashi, R., Merás, A. S. d., and Jørgensen, P. J. Chem.

Phys. 101, 4956 (1994).

[84] Kobayashi, R., Koch, H., and Jørgensen, P. J. Chem. Phys. 101, 4956

(1994).

[85] Datta, B., Sen, P., and Mukherjee, D. J. Phys. Chem. 99, 6441 (1995).

[86] Kowalski, K., Hammond, J. R., and Jong, W. A. d. J. Chem. Phys. 127,

164105 (2007).

[87] Hammond, J. R. PhD Thesis, The University of Chicago (2009).

[88] Lim, I. S. and Schwerdtfeger, P. Phys. Rev. A 70, 062501 Dec (2004).

[89] Lim, I. S., Stoll, H., and Schwerdtfeger, P. J. Chem. Phys. 124, 034107

(2006).

[90] Singh, Y., Sahoo, B. K., and Das, B. P. Phys. Rev. A 88, 062504 Dec

(2013).



BIBLIOGRAPHY 143

[91] Singh, Y. and Sahoo, B. K. Phys. Rev. A 90, 022511 Aug (2014).

[92] Chattopadhyay, S., Mani, B. K., and Angom, D. Phys. Rev. A 86, 022522

Aug (2012).

[93] Chattopadhyay, S., Mani, B. K., and Angom, D. Phys. Rev. A 86, 062508

Dec (2012).

[94] Chattopadhyay, S., Mani, B. K., and Angom, D. Phys. Rev. A 87, 042520

Apr (2013).

[95] Chattopadhyay, S., Mani, B. K., and Angom, D. Phys. Rev. A 87, 062504

Jun (2013).

[96] Safronova, M. S., Porsev, S. G., Kozlov, M. G., and Clark, C. W. Phys.

Rev. A 85, 052506 May (2012).

[97] Cheng, Y. and Mitroy, J. Journal of Physics B: Atomic, Molecular and

Optical Physics 46(18), 185004 (2013).

[98] Parpia, F. A., Fischer, C. F., and Grant, I. P. Computer Physics Commu-

nications 94(2-3), 249 – 271 (1996).

[99] Markus, R. and Juergen, H. Journal of Physics B: Atomic, Molecular and

Optical Physics 32(23), 5489 (1999).

[100] Ishikawa, Y. and Koc, K. Phys. Rev. A 50, 4733–4742 Dec (1994).

[101] Johnson, W. R., Kolb, D., and Hung, K. At. Data Nucl. Data Table 28,

333 (1983).

[102] Gugan, D. and Michel, G. W. Molecular Physics 39(3), 783–785 (1980).

[103] Gugan, D. Metrologia 19(4), 147 (1984).

[104] Soldan, P., Lee, E. P. F., and Wright, T. G. Phys. Chem. Chem. Phys. 3,

4661–4666 (2001).



144 BIBLIOGRAPHY

[105] Langhoff, P. W. and Karplus, M. J. Opt. Soc. Am. 59(7), 863–871 Jul

(1969).

[106]  Lach, G., Jeziorski, B., and Szalewicz, K. Phys. Rev. Lett. 92, 233001 Jun

(2004).

[107] Dalgarno, A. and Kingston, A. E. Proceedings of the Royal Society of

London A: Mathematical, Physical and Engineering Sciences 259(1298),

424–431 (1960).

[108] Sahoo, B. K. and Das, B. P. Phys. Rev. A 77, 062516 Jun (2008).

[109] Schmidt, J. W. et al. Phys. Rev. Lett. 98, 254504 Jun (2007).

[110] Orcutt, R. H. and Cole, R. H. The Journal of Chemical Physics 46(2),

697–702 (1967).

[111] Gaiser, C. and Fellmuth, B. Metrologia 49(1), L4 (2012).

[112] Nakajima, T. and Hirao, K. Chemistry Letters 30(8), 766–767 (2001).

[113] Hald, K., Paw lowski, F., Jørgensen, P., and Hättig, C. The Journal of

Chemical Physics 118(3), 1292–1300 (2003).

[114] Franke, R., Müller, H., and Noga, J. The Journal of Chemical Physics

114(18), 7746–7752 (2001).

[115] Lupinetti, C. and Thakkar, A. J. The Journal of Chemical Physics 122(4),

– (2005).

[116] Newell, A. C. and Baird, R. C. Journal of Applied Physics 36(12), 3751–

3759 (1965).

[117] Thakkar, A. J., Hettema, H., and Wormer, P. E. S. The Journal of Chem-

ical Physics 97(5), 3252–3257 (1992).

[118] Komasa, J. Phys. Rev. A 65, 012506 Dec (2001).



BIBLIOGRAPHY 145

[119] Tunega, D., Noga, J., and Klopper, W. Chemical Physics Letters 269(5-6),

435 – 440 (1997).

[120] Bendazzoli, G. L. and Monari, A. Chemical Physics 306(1-3), 153 – 161

(2004).

[121] Müller, W., Flesch, J., and Meyer, W. The Journal of Chemical Physics

80(7), 3297–3310 (1984).

[122] Porsev, S. and Derevianko, A. Journal of Experimental and Theoretical

Physics 102(2), 195–205 (2006).

[123] Mitroy, J. and Bromley, M. W. J. Phys. Rev. A 68, 052714 Nov (2003).

[124] Archibong, E. F. and Thakkar, A. J. Phys. Rev. A 44, 5478–5484 Nov

(1991).

[125] Hamonou, L. and Hibbert, A. Journal of Physics B: Atomic, Molecular

and Optical Physics 41(24), 245004 (2008).

[126] Reshetnikov, N., Curtis, L. J., Brown, M. S., and Irving, R. E. Physica

Scripta 77(1), 015301 (2008).

[127] Glass, R. Journal of Physics B: Atomic and Molecular Physics 20(18),

4649 (1987).

[128] Sadlej, A. J., Urban, M., and Gropen, O. Phys. Rev. A 44, 5547–5557 Nov

(1991).

[129] Bhatia, A. K. and Drachman, R. J. Canadian Journal of Physics 75(1),

11–18 (1997).

[130] Johnson, W. R. and Cheng, K. T. Phys. Rev. A 53, 1375–1378 Mar (1996).

[131] Cooke, W. E., Gallagher, T. F., Hill, R. M., and Edelstein, S. A. Phys.

Rev. A 16, 1141–1145 Sep (1977).
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