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Abstract

Heavy quarks (HQs) like charm (c), bottom (b), and their bounds states such as

J/ψ,Υ, etc. provide a unique framework and tool to systematically investigate

the in-medium properties of strong interaction in high energy nuclear-nuclear col-

lisions. This uniqueness is firstly because of their large mass (M) compared to the

inherent QCD scale (ΛQCD) as well as the emergent scales such as temperature

(T ) in the thermalized medium that is believed to be created in these nuclear

collisions. Indeed, due to a large mass threshold, HQs are not produced in the

thermal medium for the temperature range achieved in nuclear collision experi-

ments. Thus, both the production mechanism and number of HQs are controlled

by the hard scatterings, mainly gluon-gluon fusion during the initial stages of the

collision. Secondly, the vacuum properties of HQs and their bound states are quite

well understood in pp collision. Therefore, any modification on HQ observables

such as jets and quarkonia properties signals the presence of a thermalized bulk

medium consisting of light quarks and gluons.

In nuclear collision experiments, the accelerated beam of charged ions is also

responsible for the magnetic field generation. Indeed the strongest field in nature,

i.e., ∼ 15m2
π at LHC with Pb-Pb nuclei at

√
s = 2.75 TeV/A and ∼ m2

π at RHIC

Au-Au nuclei at
√
s = 200 GeV/A. Even though this magnetic field decreases

rapidly in a vacuum, it may be possible that it stays reasonably strong for a

longer time and directly affects the dynamics of light partons and HQ through

its interaction with the light partons in a magnetized thermal medium as well as

in pre-equilibrium phase. This situation may arise in the case when the system

develops a finite electrical conductivity during the thermalization process. There

have been many efforts to estimate electrical conductivity both in QGP as well

as hadronic medium and its effects on the strength of the magnetic field and its

phenomenological implications both theoretically as well as experimentally.

In order to characterize the in-medium properties of strong interaction at RHIC

and LHC energy scales, perturbative QCD (pQCD) based analysis are not enough.
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Since the non-perturbative nature of QCD arising from confinement and chiral

symmetry is dominant near ΛQCD ∼ 200 MeV, one needs to go beyond perturba-

tive analysis. Indeed, at finite temperature, this situation arises near a transition

temperature of Tc ≈ 170 MeV.

In this thesis, we study the magnetic field and non-perturbative effects on the

in-medium binding potential of HQ and its anti-quark, collisional energy loss, and

transport coefficients, namely the drag and diffusion coefficient. In order to see

the magnetic field effect on quarkonia decay width, we first estimate modifications

of the real and the imaginary part of quarkonia potential. An increase in the

imaginary part of the potential with an increase in the magnetic field suggests that

quarkonia dissociate earlier in a magnetic medium compared to its counterpart

purely thermal medium.

For single HQ, the collisional energy loss in a magnetized medium suggests

that the magnetic field may significantly contribute to the jet quenching. This

is because the magnetic field contribution to the energy loss is of similar order

as to the case of vanishing magnetic field, at least in the strong field limit where

HQ is not directly affected by the magnetic field, i.e., M �
√
eB � T � g

√
eB.

Further, in the low momentum regime, the magnetic field gives rise to anisotropy

in the diffusion coefficient. In fact, depending on the relative direction of HQ

velocity and magnetic field, one can define five diffusion coefficients. For HQ mov-

ing parallel to the magnetic field, diffusion in the transverse direction is larger

than that of the longitudinal direction, i.e., κ
‖
TT � κ

‖
LL. However, for HQ moving

perpendicular to the magnetic field, diffusion along the direction of HQ velocity

and perpendicular to the magnetic field is gets, and dominant contribution and

diffusion perpendicular to both magnetic field and HQ velocity get the least one,

i.e., κ⊥TL � κ⊥LT � κ⊥TT . Out of these five diffusion coefficients, κ
‖
TT is the dom-

inant one. Similarly, the transverse drag coefficient η
‖
D;TT is the largest one out

of five drag coefficients. These estimations suggest that the magnetic field can

significantly contribute to the elliptic and directed flow of heavy flavor mesons.

In addition to the magnetic field effects, we investigate the non-perturbative

contributions that are significantly large near transition temperature on HQ trans-

port coefficients. This is done withing the matrix model of semi-QGP with in-

put parameters as the expectation value of the Polyakov loop and constituent

quark mass. It is observed that with the inclusion of constituent quark mass and

Polyakov loop, the drag coefficient is significantly large compared to the one esti-

mated within the pQCD framework. On the other hand, the diffusion coefficient

decreases with the momentum. Furthermore, with the inclusion of shear and bulk
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viscosities, it is observed that the momentum diffusion coefficient increases. This,

in turn, gives a small value of the spatial diffusion coefficient. The consistency

in the results of various models suggests that the non-perturbative effects on HQ

transport are indeed very important for heavy ion collision phenomenology.

Keywords: Quark gluon plasma, Thermal field theory, magnetic field, Quarko-

nia suppresion in QGP, HQ transport coefficient.
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C H A P T E R 1

Introduction

It is now believed that the strong interaction physics at a fundamental level is

described by quantum chromodynamics (QCD) in terms of matter particles called

quarks and force carriers called gluons. This interaction has been formulated along

the lines of quantum electrodynamics (QED), which has been perhaps the most

successful and accurate modern theories. Similar to QED, with gauge theory as the

guiding principle and the abelian group U(1) being the underlying gauge group;

the interaction of quarks and gluons is described by a gauge theory with SU(3)

group being the underlying gauge group which is nonabelian in nature. Similar to

QED, the QCD Lagrangian is given by

L(X) =

Nf∑
f

ψ̄f (X)(i /D −m)ψf (X)− 1

4
F a
µν(X)F µν;a(X) (1.1)

In the above f labels the flavors of the quarks (u,d,s,c,b,t), a labels the color indices

that transform in the adjoint representation for the gluons and in the fundamental

representation for the quarks. The field strength tensor is defined as

F a
µν = ∂µA

a
ν − ∂νAaµ + gfabcA

b
µA

c
ν (1.2)
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Introduction

and Dµ is the covariant derivative on the quark fields is defined by

i /Dψ = γµ
(
i∂µ + gAaµ

λa

2

)
ψ (1.3)

It is the extra non-abelian terms in Eq.(1.2) that lead to the interaction of gluons.

Unlike photons that do not have electric charges, the gluons have color charges.

Therefore, while in QED one does not have photon-photon scattering, one can

have gluon-gluon scatterings.

Figure 1.1: Measurement of QCD running coupling as a function of momentum
transfer Q. Figure is adapted from Ref.[1].

One of the interesting consequences of the self interaction of the gluons is

regarding the behavior of the strength of coupling in QCD as a function of mo-

mentum transfer as compared to QED. In any QFT, the vacuum is a medium

that screens the charge leading to strength of the interaction depending upon the

momentum transfer or the corresponding length scale. In QED, the coupling con-

stant increases as a function of momentum transfer of the corresponding process

while in QCD, because of its non-abelian nature, the coupling decreases as the

momentum transfer increases. Explicitly the running of the QCD coupling at

4



1.1 Strongly interacting matter under extreme conditions

one-loop level is given by

αs(Q
2) =

g2

4π
=

4π(
11− 2Nf

3

)
ln

(
Q2

Λ

) . (1.4)

For higher order contributions see Ref.[6].This has been verified in various exper-

iments as shown in Fig.1.1.

In Eq/1.4, Lambda is the scale parameter of QCD. Typically, it is the scale

where QCD coupling becomes strong and is roughly the inverse size of light

hadrons. This means that at large momentum transfer processes when the coupling

is small one can use the techniques of standard perturbative QCD with confidence.

Indeed, explanation of scaling and its violation has been successfully described by

perturbative QCD [7, 8]. However, at lower energies when the coupling is strong,

one cannot perform any perturbative calculations [9, 10, 11, 12, 13, 14]. On the

otherhand, the observed hadrons which are excitations of QCD vacuum have two

important properties. The hadrons are colorless, and they are heavy with masses,

which are much larger than the mass parameter that enters in the Lagrangian.

These are, respectively, the manifestation of confinement and chiral symmetry

breaking properties of the QCD vacuum. The Lagrangian is approximately (but

for the small current quark masses ’m’ ) chirally symmetric, but in QCD vacuum

the quark anti-quark condensate given by 〈ψ̄ψ〉 is not zero and gives most of the

masses of hadrons viewed as a bound state of quarks having ’constituent’ masses

proportional to the condensates.

1.1 Strongly interacting matter under extreme

conditions

To understand the strong interaction physics at low energy, there have been two

approaches experimentally. One is related to probing hadronic structure through

energetic probes like electron and muons. The other approach has been to under-

stand the phase structure of QCD i.e., studying QCD under extreme conditions.

There are several motivations to study extreme QCD. Firstly, extreme conditions

5



Introduction

exist in nature. Current understanding of big bang cosmology indicates that about

a few microseconds after the big bang, the universe passed through a state where

the temperature is of the scale of QCD [15]. Later, matter condensed into stars.

Some of the stars after exhausting their nuclear fuel, collapse and become neutron

stars. While the density of the matter at the center of a neutron star is not known

precisely, but almost certainly, it is at densities where the quark degrees of freedom

are relevant [16, 17]. Secondly, we cannot properly understand the interaction of

hadrons and their structure without understanding the underlying vacuum state,

and we cannot understand the vacuum state without understanding how it can

be modified. Thirdly, as mentioned, because of asymptotic freedom, QCD sim-

plifies under extreme conditions as extreme conditions of temperature, density or

external field, there is a large scale in the problem and one can understand QCD

in terms of its fundamental degrees of freedom. Finally, of the many cosmological

phase transitions that our universe did undergo during its evolution, the strong

interaction phase transition is perhaps the only one that can be realized in the

laboratory. With these motivations to study extreme QCD, we next discuss the

phase diagram of QCD in the following subsection.

1.1.1 Phase diagram of QCD

The expected phase diagram of QCD in the plane temperature and baryon chem-

ical potential (which is related to baryon density) is shown in Fig.1.2. The Y-axis

represents the temperature and the x-axis is the baryon chemical potential associ-

ated with a conserved baryon charge and is related to baryonic density. The origin

(T = 0, µB = 0) correspond to QCD vacuum. At zero temperature, along the x-

axis, we have nuclear matter having a saturation density ρ0(∼ 0.16/fm3). Along

the same direction, if we go in the µB axis, the system we have is the neutron

star whose central density is about 3 − 5 times nuclear matter density and have

almost vanishing temperature [16, 17]. At small temperature and low density, one

has excited hadrons and the system is a hadron gas. At very high-temperature

one expects quark-gluon plasma state. This is because at very high temperature

the entropy wins over the order in the sense the states of the system which has

minimum free energy has the same symmetry of the Lagrangian. Thus at high

6



1.1 Strongly interacting matter under extreme conditions

temperatures, one would expect the system to be that of a weakly interacting

system of gluons and quarks. This expectation, in fact, is reinforced through first

principle lattice simulations.

At zero chemical potential one can perform reliable lattice simulation which

indicates that there is a cross over transition around Tc ∼ 160± 10 MeV [18, 19,

20, 21, 22, 23, 24, 25, 26, 27]. This is because with finite quark masses the chiral

symmetry is already broken explicitly in the Lagrangian and the corresponding

order parameter, the quark condensate decrease continuously as a function of

temperature but does not vanish. In the limit of vanishing quark masses, however,

the chiral condensate vanishes beyond a critical temperature resulting in a phase

transition which is second order. At vanishing chemical potential, these results are

quite robust and is obtained from lattice QCD simulation [28, 29, 30]. However,

it is difficult to do lattice simulation at finite chemical potential as the probability

measure for the Monte Carlo sampling becomes non-positive [31, 32, 33, 34, 35].

However, there have been techniques to avoid this using various techniques but is

limited to small chemical potential [36, 37, 38]. On the other hand, different model

calculations which capture some features of QCD vacuum like chiral symmetry

breaking indicate that the phase transition at high density is first order[39, 40,

41, 42, 43, 44, 45, 2, 46]. If the phase transition is first order at high µB and low

temperature and a cross-over at small chemical potential then the first order phase

transition line separating the QGP and the hadronic phase must end in a critical

point where the first order line ends. Much of the current experimental as well

as theoretical interest lies in identifying the signature of this critical point and its

location in the temperature density plane of the phase diagram of QCD [47, 48].

At low temperature and high density, one has fermi surfaces for quarks- there

are actually nine fermi surfaces for the three light quarks (u,d and s) with each fla-

vor coming with three colors. Since there is an attractive interaction in QCD, the

quarks will form super-conductors as is known from established Bardeen Cooper

Schrieffer (BCS) mechanism [49, 50, 51]. In fact, this phase of color superconduc-

tivity is quite rich in its structures as compared to superconductivity in metals

where electrons with opposite spin form the BCS pair. The reason being there

are more degrees of freedom (color flavor and spin) for the quark matter. This

apart, external conditions like charge neutrality both with respect to electric and
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Figure 1.2: QCD phase diagram in temperature-baryon chemical potentian (T −
µB). Figure is adapted from [2].

color charges bring out a host of possible superconducting phases for dense quark

matter which include two flavor superconductivity, color flavor locked phase where

all the three light flavors take part in BCS pairing, crystalline superconductivity

i.e. BCS pairing with finite momentum etc [52, 53, 54, 55, 56].

In the large-Nc limit, there exist another phase known as quarkyonic matter

described by both quark and baryon degrees of freedom Ref.[57, 58, 59]. Such

a matter may exist at a density larger than the constituent quark mass and a

temperature less than the deconfined temperature, i.e., µq > Mq, T < Td [60, 58].

The quarkyonic matter is described by the quark degrees of freedom below the

Fermi surface, where quarks are weakly interacting due to Pauli blocking. Near the

Fermi surface, quarks are not affected by Pauli blocking hence interact strongly

with each other. However, above the Fermi surface, the quarkyonic matter is

described by the strongly interacting baryonic degrees of freedom. Thus, the

thermodynamic properties are characterized by weakly interacting quarks inside

the Fermi surface and by strongly interacting matter above the Fermi surface.

Furthermore, using the PNJL model [14], it has been argued that the transition

of quarkyonic matter may be related to the restoration of the chiral symmetry for
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1.1 Strongly interacting matter under extreme conditions

Nc = 3 [61, 62].

1.1.2 Heavy ion collision and QGP

Heavy-ion collisions (HICs) at Relativistic Heavy Ion Collision (RHIC) and Large

Hadron Collider (LHC) create an excellent opportunity to explore the properties of

in-medium strong-interaction by creating a deconfined state of strongly interacting

matter. As mentioned earlier, QGP existed very early in the universe, i.e., few

microseconds after the big bang and possibly exists at the interior of neutron stars

which are far away (about few hundred light-years e.g., RX J1856-5-3754 is about

400 light-years away) to be able to systematically study QCD phase diagram in

general. It turns out; however, that colliding heavy nuclei at high energy one can

create excited strongly interacting matter in the laboratory. By colliding heavy

ions with controlled collisional energy one can produce different types of matter

in the phase diagram of QCD. In RHIC at Brookhaven, Gold(Au) nuclei after

stripping off their electron are accelerated to an energy of 100 GeV/nucleon in

two separate beam pipes and smashed head on at different collision points (with
√
s = 200 GeV/A) so that total center-of-mass (CM) energy of each gold (A = 179)

nuclei is Ecm ≈ 40 TeV. In the case of LHC, the lead(Pb) nuclei are used, and the

CM energy per nucleon is 5.5 TeV.

As a result of very high CM energy, the nuclei are contracted along the lon-

gitudinal direction. Consequently, as a result of Lorentz contraction, these nuclei

are of the disc shape with radius RPb/Au ∼ 7 fm, and thickness 2RPb/Au/γ, where

γ is the Lorentz factor. For RHIC and LHC energies, the corresponding Lorentz

factor respectively is γ ≈ 100 and γ ≈ 1400 for beam rapidities 5.3 and 8.5. Each

of these discs (Lorentz contracted nuclei) in the incoming ion beam consists of

quarks and antiquarks with more number of quarks than antiquarks. The quan-

tum fluctuations in the initial quark state create more gluons and quark-antiquark

pairs. Moreover, due to relativistic speed, the life-time of these initial state fluctu-

ations is increased by Lorentz factor times. As a result, the density of gluons and

quark/antiquark pairs increases with an increase in the energy of incident nuclei.

In addition to this, in the high energy limit, the number of gluons outnumber all

other partons. Indeed, valence quarks are negligible, and quark/antiquark pairs
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are suppressed by QCD coupling. In the limit of large occupation number of gluon

∼ α−1
s , at any order, one must take contribution from an infinite number of Feyn-

mann diagrams. This is done within the framework of Color Glass Condensate

(CGC) [63, 64, 65].

At the time of the collision with a CM energy
√
s, most of the energy carried by

incident nuclei are deposited in the collision region. For
√
s = 200 GeV/nucleon

with Au-Au collision, approximately ε ∼ 5 Gev/fm3 amount of energy density is

deposited at the collision region. Moreover, during this process, the partons in

both the incident nuclei lose their energy. Most of the interactions between two

colliding discs are soft; as a result, partons in the final state remains undeflected.

However, very few interactions are hard interactions that contribute to the hard

probes, i.e., high pT spectra in the detector. In terms of particles and fields, this

can be interpreted as follows; the two incident discs carrying color charges and

fields exchange color particles during the collision. As a result, the energy of these

discs reduces. After the collision, the space between two receding nuclei is filled

with the longitudinal color field that that results in very large entropy production

by creating the pair of quark/anti-quark and gluon. Consequently, it is expected

to have a deconfined state of quarks and gluons. In fact, lattice QCD predicts

that one needs ε ≈ 1 GeV/fm3 to create a deconfined state.

The hard processes with momentum exchange P ≥ 10 GeV begin to develop

up to the time τ ∼ 1/P and are responsible for producing hard particles such

as the photon, dilepton, hadrons, and hard jets. The transverse momentum of

these hard particles is of the order of P . After the hard processes, semi-hard

interactions of transverse momentum P ∼ 4 GeV start dominating after some

time around τ ≈ 0.2 fm. At this stage, most of the gluons carried by incoming

discs are liberated that contribute to final state multiplicity. Moreover, most of

the hadrons that appear in the final stage are the result of fragmentation and

hadronization of gluons in this stage.

Before the final baryons/mesons that reach the detectors, the system undergoes

a phase transition from deconfined to confined/chirally symmetric to the broken

phase. In the deconfined phase, the pre-equilibrium interactions among partons

lead to a thermal equilibrium system of light thermal partons known as quark-

gluon plasma (QGP). This local thermal equilibrium occurs in a small-time τ ∼ 0.5
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fm. The system further expands owing to the hydrodynamic expansion. This is

indeed confirmed by particle spectra of low pT that obeys Boltzmann distribution

in a boosted frame near the freeze-out surface. Eventually, the system cools down,

and the interaction between the partons becomes even stronger. As a result, the

system hadronizes and confine the color particles to form color neutral bound

states baryons and mesons. This transition from deconfined state to the confined

state occurs at temperature Tc ∼ 160± 10 MeV [18, 19].

The system remains hot even after hadronization and creates a dense and hot

hadronic medium that continues to expand in all space-time dimensions, i.e., 3+1

for some time. At later stages of the expansion, the interaction between hadrons

becomes weak which results in the transition from collective expansion to the free

streaming. This free streaming of hadrons that is named as freeze-out continues

until particles (hadrons) reach the detector. The main observable here are the

momenta spectra of final hadrons. What is interesting is the zero longitudinal

momentum in the CM frame of the colliding nuclei, which is the mid rapidity

region where one expects the largest energy deposition by the colliding nuclei. For

head-on collision at RHIC, there are approximately 650 charged particles per unit

rapidity, while at LHC, the corresponding number is about 1000.

The region near the transition temperature is dominated by the non-perturbative

effects and can not be treated in the perturbative QCD framework. For small

quark chemical potential, these non-perturbative effects in the static limit are

studied in the framework of lattice QCD. For heavy ion phenomenology, the non-

perturbative effects are also studied in Polyakov loop-based effective models such

as Polyakovloop Nambu Jona Lasinio (PNJL), Polyakovloop quark meson (PQM)

and matrix model of semi-QGP. We shall discuss the matrix model and the PQM

model in chapter6.

1.2 Magnetic field in HIC

The positively charged ions moving with a relativistic velocity in HIC experiments

also create a very strong magnetic field in non-central collisions. The magnetic field

generation can be thought as follows; the charged heavy ions generate an electrical

current, which, according to the laws of electrodynamics, creates a magnetic field in
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that region. A diagrammatic view transverse plane (z = 0) with impact parameter

(b) along x̂ and magnetic field along ŷ axis is shown in Fig.1.3. At position x and

time t, the magnetic field is given by the form of Lienard-Wiechert potential as [3]

eB(t,x) = α
∑
n

Zn(1− v2
n)

(rn − rn · vn)3
(vn × rn) (1.5)

where α ∼ 1/137 is the fine structure constant, vn and Zn respectively are velocity

and the charge of the nth particle and summation is over the charged particles in

the nucleus. The velocity of the charged particles can be estimated from the CM

energy
√
s by the relation

v2
n = 1−

(
2mp√
s

)2

(1.6)

where mp is proton mass. The position vector rn = x−xn, where xn is the position

of the nth charge particle at time t. Here, the position xn and velocity vn of the

particle are defined at a retarded time t′ while the measurement is taken at time

t so that

|xn − xn(t′)| = t− t′. (1.7)

Here we have put the speed of light c = 1. From Eq.(1.5), it is clear that the mag-

netic field increases with an increase in the velocity of the charged particles. With

the symmetry properties of Eq.(1.5), the magnetic field is also proportional to the

impact parameter b hence negligible for the small impact parameter. Furthermore,

if the beam direction is along ẑ-axis and impact parameter is along x̂-axis then

the magnetic field is directed along the ŷ-axis.

The magnetic field in HIC is of the order of eB ∼ 1018 G. To appreciate

the strength of the magnetic field in HICs, let us compare it with the naturally

existed magnetic fields. The estimated value of the magnetic field in a neutron

star is 1010−1013 G, the magnetic field of the earth is 107 G, and the magnetic field

generated by the magnetar is 1015 G. perhaps, the magnetic field created in the

HICs is the strongest field that has ever existed. In fact, for CM energy
√
s = 200

GeV/nucleon, radius of the incoming discs R = 7 fm and impact parameter b = 4

fm, the magnetic field in HIC is estimated as eB ∼ 1.3m2
π, where mπ is pion mass.

In the vacuum, the magnetic field decreases rapidly; however, in a bulk medium
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x

y

Figure 1.3: The transverse plane in a off central HIC experiment. Beam direction
is along ẑ-axis and magnetic field along ŷ . Figure is adapted from Ref.[3].

like quark-gluon plasma, one must add the medium response by including the

electrical conductivity for magnetic field description. In fact, in HICs, a medium

known as Glasma exists even before the system thermalizes [66]. Therefore, for

a realistic estimation of the magnetic field in HICs must include the electrical

conductivity of the system. In a conductive medium with electrical conductivity,

the magnetic field satisfies the following diffusion equation [67, 68]

∇2B = σ
∂B

∂t
(1.8)

where σ is the electrical conductivity of QGP which depends on the medium

temperature. Taking only the gluon contribution into account, the estimated

value of the electrical conductivity on the lattice is [69, 70]

σ = (5.8± 2.9)
T

Tc
. (1.9)

The diffusion of the magnetic field in a medium affects the rate by which it de-

creases. In a medium with finite electrical conductivity, the magnetic field remains
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somewhat more substantial for a longer time. In fact, the magnetic field remains

time-independent for time t < τ0, where τ0 = L2σ/4 is the relaxation time for the

magnetic field [67].

It has repeatedly been argued that the magnetic field can have a profound effect

on kinetic, as well as the dynamic properties of the QGP. This may be expected

because the magnetic field breaks the spherical symmetry as a result of which

particle distribution is asymmetric with respect to the direction of the magnetic

field. Furthermore, charged particles moving along the direction of the magnetic

field does not experience any Lorentz force; on the other hand, a charged particle

moving perpendicular to the magnetic field does. The disparity in the Lorentz

force on the charged particles generate an anisotropic azimuthal flow. Indeed, in

Ref.[71], using magneto-hydrodynamics at weak coupling limit, it is argued that

the magnetic field can enhance the azimuthal anisotropy by 30%.

Azimuthal anisotropy in the QGP medium is the consequence of the momen-

tum transfer’s suppression in a direction perpendicular to the magnetic field. This

anisotropy manifests itself in the viscous pressure component in that direction. In

fact, the viscous pressure component along the magnetic field is twice as large

as that of the along reaction plane. This anisotropic nature of viscosity can be

anticipated from the fact that particles moving in the direction of the magnetic

field does not experience Lorentz force as a result of which viscosity in that direc-

tion does not change. In fact, in the presence of the magnetic field, the viscous

effects are characterized by seven viscosity coefficients, out of which five are for

shear viscosity and two for the bulk viscosity. Therefore, it is crucial to explore

the extent to which the magnetic field in the HICs affects the QGP dynamics and

corresponding observables.

1.3 Probing QGP with heavy quarks

One of many reasons that make HQs and their bound state an excellent probe of

QGP is that their production mechanism and vacuum properties are quite well

understood in pp collision. Furthermore, their thermal production is negligible in

the temperature range accessible in the nuclear collision. Indeed, these are pro-

duced during the initial stage hard collision of high momentum transfer processes
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1.4 Medium modifications on quarkonium binding

that are very well separated from the thermal medium.

Now let us first consider the bound states such as J/ψ,Υ, etc. Modifications

on quarkonium binding are realized due to the presence of Debye screening in

the thermal medium [72]. Indeed, the weakening of quarkonia potential with

temperature was shown in Ref.[73]. This suggests the suppression of quarkonium

states in HICs as a probe of the thermalized QGP medium.

Now let us move to single heavy quarks dynamics that reflect their in-medium

interaction in spectra of open heavy meson such as D for the charm and B for

bottom quarks. While propagating through the medium, HQ loses its energy via

radiating gluons and inelastic scatterings with light partons. This, on the one

hand, suggest that high momentum observables such as jets are suppressed in

HICs; on the other hand, the in-medium interactions of low momentum HQ can

significantly impact its momentum spectrum. The latter is related to the elliptic

flow of heavy flavor open mesons.

1.4 Medium modifications on quarkonium bind-

ing

The bound state of a heavy quark and its antiquark is generally known as quarko-

nia. While the hadrons that are made of light quarks get their masses entirely

from chiral symmetry breaking, the mass of these hadrons (quarkonia) mostly

arises from the bare heavy quark masses. Some known bound states for charm

quarks are S-wave state J/ψ (vector) of mass 3.1 GeV, ηc (scalar) of mass 2.98

GeV, and three P -wave states of χc (scalar, vector, and tensor) of masses 3.42

GeV, 3.51 GeV, and 3.56 GeV. Similarly, for bottom quark, some known bound

states are Υ of mass 9.5 GeV, three states of χb, Υ′ of masses 10.02 GeV, 10.23

GeV and 10.27 GeV.

The large mass of quarkonia allows a non-relativistic description by using a

simple potential model to study the ground and excited-state properties. The

potential model known as Cornell potential consists of the Coulomb part that is

short-range potential at the asymptotic limit of coupling and the linearly rising

string potential responsible for confinement. The study reveals that in comparison
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to the normal hadrons, the lower excitation states of quarkonia are small, and also,

these are of smaller size, i.e., very tightly bound. Apart from potential models, the

properties of quarkonia, such as bound state masses, are also explored in lattice

simulations.

The presence of the bulk medium weakens the quarkonia binding due to the

presence of screening in the medium. When binding in the medium becomes

smaller than the size of the quarkonium, Q and Q̄ will no longer be able to see

each other as a result of which, the quarkonia states will dissociate. In HICs, the

heavy quarks and hence the quarkonia are generally formed in the initial stages

of the collision. Once quarkonia enter the thermally equilibrated bulk medium of

light quarks, depending on time and energy, the corresponding quarkonia state

may dissociate or melt. However, the reverse process of regenerating quarkonia is

also possible if the sufficient number of quark and anti-quark are present in the

medium, although the number of bound states restricted by the initial state.

1.4.1 Potential models at finite temperature

In a vacuum, Cornell potential has both Coulomb as well as the string part of the

potential. The potential in a vacuum is given as

V (r) = −α
r

+ σr, (1.10)

where α = CFg
2/4/π and σ is string term. The first medium modification on

the Cornell potential is realized based on the Debye-Huckle theory [74]. For a

1/r form of the potential in an ionized plasma, the medium modified potential in

Debye-Huckle formalism is given as

Vc(r) = −α
r
e−µr, (1.11)

where Vc(r) stands for standard Coulomb potential. Here, the parameter µ is the

screening mass in the medium which is inversely proportional to the screening ra-

dius. In the QGP medium, this screening mass is the Debye screening mass (mD).

Using two dimensional Schwinger model arguments, the suggested functional from
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of the medium modified string part of the potential is [74]

Vs(r) = σr

(
1− e−mDr
mDr

)
. (1.12)

As may be noted in Eqs.(1.11) and (1.12), both the Coulomb and the string part

of the potential depends on only one parameter, i.e., Debye mass. In the limit of

mD → 0, both forms of the potentials reduce to their vacuum counterparts. Later

on, it was argued that the medium modified form of the string part of the potential

also arises from non-zero gluon condensate [75]. In Ref.[75], it is shown that the

similar functional form of the medium modified string part of the potential can be

obtained by taking the effective string like one-dimensional interaction between

quark and anti-quark.

The in-medium properties of the real and the imaginary part of the Cornell

potential is studied using the Fourier transform of the retarded gluon propaga-

tor in Ref.[76] by incorporating two-dimension gluon condensate to include non-

perturbative effects. These non-perturbative effects on the in-medium potential

are achieved by adding a term m2
gm

2
D/(p

2 +m2
D)3 in the retarded gluon propaga-

tor. As a result, the extra term in the functional form of the real part of string

potential looks like

δVs(r) =
aσ

4mD

(
1− e−mDr −mDre

−mDr
)
, (1.13)

where a and mg are dimensional constant. In the limit mD → 0, Eq.(1.13) van-

ishes, and one gets the vacuum form of the Cornell potential. The imaginary part

of the potential also gets extra contributions from the non-perturbative terms. For

the particular choice a = 4, the real part of the potential becomes identical to the

one with the entropy contribution potential of Ref.[76]. A similar form of the real

part of in-medium string potential is obtained in Ref.[77] by using the system’s

internal energy.

Furthermore, in Ref.[78], the authors proposed an idea of using the in-medium

dielectric permittivity to estimate the medium effects of quarkonia potential. This
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is achieved by weighting the vacuum potential with the dielectric permittivity as

V (p) =
V (p)0

ε(p)
, (1.14)

where V (p)0 is Fourier transform of Cornell potential in the vacuum. Using the

hard thermal loop (HTL) approximation, the permittivity as a function of mo-

mentum and Debye mass is given as [78]

ε−1(p) =
p2

p2 +m2
D

− iπT |p|m2
D

(p2 +m2
D)2

. (1.15)

Taking the inverse Fourier-transform of Eq.(1.14), one can estimate the in-medium

quarkonia potential. Note here that the permittivity and hence the in-medium

potential depends on one parameter, i.e., Debye mass. The real and the imaginary

part of the potential are obtained from the real and the imaginary part of the

potential which is given as Ref.[78]

<V (r) = −αsmD

(
1 +

e−mDr

1

)
+

2σ

mD

(
1− 1

r
+
e−mDr

r

)
, (1.16)

=V (r) = −αsTφ(mDr) +
2σT

m2
D

χ(mDr), (1.17)

where

χ(y) = 2

∫ ∞
0

dz

z(1 + z2)2

(
1− sin(zy)

zy

)
, (1.18)

φ(y) = 2

∫ ∞
0

zdz

(1 + z2)2

(
1− sin(zy)

zy

)
. (1.19)

The medium modified potential above faced some divergence issue in the imag-

inary part of the potential, which later on rectified in Ref.[79, 80] by the idea of

string breaking and bringing together the Gauss law and dielectric permittivity.

In this formalism, the real and imaginary part of the in-medium potential are

obtained by solving the differential equation

− 1

rb+1
∇2V (r) +

1 + b

rb+2
∇V (r) + 8πqn0βV (r) = 4πqδ(r), (1.20)
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with appropriate boundry conditions. Taking b = −1, q = α for Coulomb potential

and b = 1, q = σ for string part of the potential the real and imaginary in-medium

potential are given as

<V (r, T, B) = −αe
−mDr

r
− αmD −

Γ(1
4
)

2
3
4
√
π

σ

µ
D− 1

2
(
√

2µr) +
Γ(1

4
)

2Γ(3
4
)

σ

µ
,(1.21)

and

=V (r, T, B) = −2αTφ(mDr)−
σm2

DgT

µ
ψ(µr), (1.22)

where

ψ(µr) = D− 1
2
(
√

2µr)

∫ r

0

dx<D− 1
2
(i
√

2µx)x2g(mDx) + <D− 1
2
(i
√

2µr)

×
∫ ∞
r

dxD− 1
2
(
√

2µx)x2g(mDx)−D− 1
2
(0)

∫ ∞
0

dxD− 1
2
(
√

2µx)x2g(mDx). (1.23)

To estimate the medium modified quarkonia potential in a magnetized thermal

medium we shall discuss this formalism in detail in Chapter3.

Apart from the perturbative and non-perturbative effects, in HICs, the contri-

bution in the quarkonia suppression and the decay width arising from the magnetic

field is also very important. As pointed out in Ref.[81, 82], the magnetic field can

give rise to effects such as Lorentz ionization and Zeeman effect, which in turn,

can affect quarkonia-binding energy. In this regard, we shall discuss the modified

real and imaginary parts of quarkonia potential and decay width in a magnetized

thermal medium.

1.5 Heavy quark dynamics in QGP medium

After the formation of a nearly perfect fluid with a minimal value of shear viscosity

to entropy ratio η/s, one needs well-calibrated probes to investigate its properties.

In this regard, because of their unique properties, heavy quark serves a promising

tool to study the bulk properties of QGP. In HICs, the production of HQ is mainly

controlled by the interactions in the initial stage of the collision. Furthermore, the
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thermal production of HQ is suppressed due to small temperature compared to

the threshold mass, i.e., T � M . Therefore, once produced in the initial stage,

HQs interact with the bulk medium throughout its evolution. This interaction of

HQ with the bulk medium reflects itself in the observation of heavy flavor mesons.

Generally, two processes that affect the dynamics of heavy quark in HICs

are radiative and collisional. The radiative process controls the dynamics of the

high momentum HQ that mainly contributes to the quenching of high pT heavy

flavor meson associated with the jet quenching [83, 84, 85]. On the other hand,

the collisional processes are responsible for the thermalization of HQ in the bulk

medium of light thermal partons. It has been argued that the radiative processes

may not be sufficient to reproduce the heavy flavor quenching data; therefore, the

collisional energy loss may be important for jet quenching.

1.5.1 Heavy quark collisional energy loss

In the framework of perturbative QCD, the first estimation of the energy loss

of high momentum quark and gluon via scattering from the thermal partons is

estimated in Ref.[86]. The same was determined by considering the tree-level

scattering diagrams of exchange gluon momentum q up to logarithmic term with

artificial limits on exchange momentum qmin and qmax. Later on, similar formalism

was generalized for the case of a heavy quark, combining the techniques of high-

temperature QCD and plasma. In abelian approximation, the energy loss per unit

length of quark is given as [87]

dE

dx
=
vqa

t
<Ea

ind, (1.24)

where qa is the color charge of quark and Ea
ind is the induced chromo-electric by

a color charge moving with velocity v. The non-abelian effects in energy loss

are included via the dielectric permittivity of the medium by incorporating gluon

self-energy. Using Maxwell’s and continuity equation arguments, the total chromo-

electric field can be obtained by using the relation[
εij(ω, |k|)−

|k|2
ω2

(
δij −

kikj
|k|2

)]
Ea
total =

4π

iω
jaext(ω, |k|), (1.25)
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where jaext is external quark current and εij = εTkikj/|k|2 + εL(δij − kikj/|k|2)

permittivity tensor in the medium. With further simplification of Eq.(1.25 ) with

quark currents, the final form of energy loss becomes

dE

dx
= −CFαs

2π2v

∫
dk

(
ω

|k|2
[
=ε−1

L + (v2|k|2 − ω2)=(ω2εT − |k|2)−1

])
ω=v·k

, (1.26)

where = represents the imaginary part of the respective quantities. Thus, this

formalism incorporates the soft scatterings and removes the infrared divergences

by introducing the screening of long-range Coulomb potential. The ambiguity

of the hard scale scatterings still remained. Finally, including both hard and soft

contributions for the heavy-fermion energy loss, the first calculation was performed

in Ref.[88] by Braaten ant Thoma. In this formalism, the average energy lost by

a heavy-fermion of mass M moving with momentum p is given as

∆E = ∆τ

∫ ∞
M

dE ′(E − E ′) dΓ

dE ′
, (1.27)

where Γ is interaction rate and ∆τ = Γ−1 is average time. For a heavy-light

fermion, i.e., L(P ) + l(K) → L(P ′) + l(K ′), the interaction rate is written in

terms of scattering amplitude evalutated using the feynman diagram as

Γ(E) =
1

2E

∫
dp′

2E ′
dk

2|k|
dk′

2|k′| f̃(|k|)(1− f̃(|k′|))(2π)4

× δ4(P +K − P ′ −K ′)1

2

∑
spin

|M|2, (1.28)

where dp = d3p/(2π)3, f̃ is Fermi-Dirac distribution function and |M|2 is matrix

element squared for heavy-light fermion scattering. Further, in Eq.(1.28), dΓ/dE ′

is change in interaction rate with respect to the energy of final state heavy fermion.

The energy loss of heavy fermion per unit length for average distance ∆x = v/Γ

is given as
dE

dx
= −1

v

∫ ∞
M

dE ′
dΓ

dE ′
(E − E ′), (1.29)

where v is velocity of the heavy fermion. For QGP medium the collisional energy

loss is estimated in Refs.[89, 90, 91].
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1.6 Diffusion of heavy quark in QGP medium

While the dynamics of high momentum HQ is associated with the jet quench-

ing/energy loss, the low momentum HQ dynamics is related to the diffusion pro-

cesses. In the QGP medium, the low momentum HQ gets multiple scatterings

from the light thermal partons. Since the momentum, p2 ∼ 2MT of HQ is larger

than transfer momentum q ∼ T with the thermal medium; the HQ executes a

Brownian motion characterized by the transport coefficient. Furthermore, due to

the large mass, HQs do not thermalize with the bulk medium of thermalization

time τ . In fact, the thermalization time τQ = τM/T of HQ is quite close to the

lifetime of the QGP medium. Therefore, HQ interacts with the thermal partons

throughout in the QGP medium and retains the relevant interaction information.

Many approaches bases on perturbative QCD framework, effective models, and

lattice gauge theory have been made to estimate the drag, momentum, and spatial

diffusion coefficient. While the perturbative QCD estimates are at weak coupling

limit, effective models such as the T-matrix model [92], dynamical quasi-particle

model [93], matrix model of semi-QGP [94], and resonance model [95] have been

used to include non-perturbative effects. The first-ever estimation of the spatial

diffusion coefficient is done in lattice simulations [96] that predicted a very small

spatial diffusion coefficient.

In the following, we shall discuss two widely used approaches to evaluate HQ

transport coefficients, namely the drag and the diffusion.

1.6.1 Boltzmann transport equation of heavy quark

Based on kinetic theory framework, the Boltzmann equation for the evolution of

the HQ distribution function f(x,p, t) is[
∂

∂t
+

p

E

∂

∂x
+ F

∂

∂p

]
f(x,p, t) =

∂f

∂t

∣∣∣∣
collision

, (1.30)

where F is external force on HQ e.g., magnetic field in HIC and E =
√

p2 +M2

is HQ energy. The distribution function f reaches Boltzmann distribution in

equilibrium and static medium. In the right side of Eq.(1.30), ∂f/∂t represents

22



1.6 Diffusion of heavy quark in QGP medium

the interaction of HQ with the light thermal partons (light quarks and gluons) of

the medium. For 2→ 2 scatterings, the collision term is given as [97]

∂f

∂t
=

1

2E

∫
dkdk′dp′

1

γQ
|M|2(2π)4δ4(P +K − P ′ −K ′)

× [f(E ′)f(Ek′)− f(E)f(Ek)], (1.31)

where dk = d3k/(2π)32Ek are phase space integrations and |M|2 is matrix ele-

ment squared for Q(p) + l(k) → Q(p′) + l(k′) scattering. fs are the distribution

function of initial and final state particles. For the inclusion of quantum effects,

the distribution functions are replaced by the Fermi-Dirac/Bose-Einstein distri-

bution functions for quark/gluon. In addition, the Bose enhancement and Pauli

blocking terms can be added by replacing f → (1 ∓ f) for gluon/quark distri-

bution functions. The contribution of 2 → 3 processes, i.e., Q + l → Q + l + g

is discussed in Refs.[98, 99]. It is shown that at small angle, the gluon emission

from HQ is suppressed due to its large mass. This phenomenon is also known as

dead cone effect. In Chapter6 and Chapter7, we shall discuss this formalism in

more detail. In these chapters, we estimate the non-perturbative effects arising

from Polyakov loop and chiral symmetry breaking on the drag and the momentum

diffusion coefficients within the matrix model of semi-QGP.

1.6.2 Langevin transport equation of heavy quark

Since the HQ momentum is larger than the exchanged momentum, multiple colli-

sions are required to change HQ momentum. Generally, it takes M/T collisions to

change HQ momentum by a unit order. In this scenario of getting multiple non-

correlated kicks, HQ momentum evolution satisfy the Langevin equation [100]

dpi
dt

= ξi(t)− ηDpi, (1.32)

〈ξi(t)ξj(t′)〉 = κδijδ(t− t′). (1.33)

Here, ηD is the drag coefficient and κ is momentum diffusion coefficients defined as

mean squared momentum transfer. ξ(t) represents the multiple kicks on HQ. The

differential equation, i.e., Eq.(1.32) has the following solution for the momentum
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evolution

pi(t) =

∫ t

−∞
e−ηD(t−t′)ξi(t

′.). (1.34)

In terms of xii(t), the mean squared momentum 〈p2〉 = 3MT is defined as

〈p2〉 =

∫
dtdt′eηD(t+t′)〈ξi(t)ξi(t′)〉 =

3κ

2ηD
. (1.35)

Therefore, momemtum diffusion and drag coefficients are related as

κ = 2ηDMT. (1.36)

Similarly, the spatial diffusion coefficient is defined as

2Dstδij = 〈xi(t)xj(t)〉. (1.37)

We shall discuss the detailed analysis of the estimation of the drag and the diffusion

coefficient using the Langevin transport equation in Chapter5. In this chapter, we

shall discuss the anisotropic diffusion coefficients in the presence of the magnetic

field. In Chapter7, we shall discuss the spatial diffusion coefficient in a Polyakov

loop background.

1.7 Organization of the thesis

The thesis is organized as follows. In chapter2, a brief discussion on the real

and imaginary time formalism of thermal field theory is presented. Further, the

solution of the Dirac equation and fermion propagator in a constant magnetic

field background are discussed in detail. In chapter3, the real and the imaginary

parts of the in-medium quarkonia potential in a strongly magnetized hot medium

are investigated. Based on the imaginary part of the potential, it is found that

charmonium decay width increases in the presence of the magnetic field. This is

followed by a discussion on HQ collision energy loss in the hot magnetized medium

within the lowest Landau level (LLL) approximation in chapter4. Here, it is shown

that in the weak coupling limit, the collisional energy loss is comparable to the

case of vanishing magnetic field, which can be important for the jet quenching. In
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chapter5, the anisotropic momentum diffusion coefficients of heavy quark within

the LLL approximation of the magnetic field are estimated. It is observed that

based on the relative directions of HQ velocity and magnetic field, there can be

five diffusion coefficients. For the case of v ‖ B, the diffusion coefficient transverse

to the magnetic field is dominant; however, for v ⊥ B the diffusion coefficient

transverse to velocity and along the direction of the magnetic field, i.e., κTL is

dominant. Furthermore, in chapter6, the non-perturbative effects arising from

the Polyakov loop and constituent quark mass on the HQ drag and diffusion

coefficients are investigated. The convergence of the results with the results from

the other models indicates that the non-perturbative effects on the HQ transport

coefficients are significant. In chapter7, effects of bulk and shear viscosities along

with the Polyakov loop on the drag and the diffusion coefficients are discussed.

It is found that with the inclusion of viscosities the spatial diffusion coefficient

decreases. Finally, in chapter8, the summary of the investigations included in the

thesis is presented along with possible future directions.
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Field theory in a medium

Thermal ensembles are of great importance in equilibrium statistical mechanics.

Generally, one can encounter three types of ensembles depending on the exchange

of energy (E) and the number of particles (N) with a thermal reservoir at temper-

ature T . Micronanonical ensemble describes an isolated system with fixed E and

N at volume V , canonical ensemble describe a system that can exchange energy

with the reservoir keeping N and V fixed. On the other hand, a grand canoni-

cal ensemble can exchange energy and particles with the reservoir while keeping

chemical potential µ, T , and the volume V fixed. In a relativistic quantum sys-

tem, where particles number is not conserved (i.e., particles can be created and

destroyed e.g., in the QED process l+l− → l+l−l+l− where l stands for Lapton)

observables are evaluated using grand canonical ensemble and a process where

µ = 0 observables are evaluated using canonical ensemble. Considering a system

at temperature T that can be characterized by Hamiltonian H, one can define the

quantity

ρ = exp(−βH), (2.1)

where β = T−1 is inverse temperature. Here ρ is known as statistical density

matrix that can be used to compute ensemble average for any desired quantum
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Field theory in a medium

operator Â as

〈A〉 =
Tr(ρÂ)

Trρ
, (2.2)

where Tr stands for trace, i.e., sum over expectation value in any complete basis.

If En and |n〉 are eigenvalues and eigenstates of Hamiltonia H i.e., H|n〉 = En|n〉
then

〈A〉 =
1

Z

∑
n

〈n|A|n〉 exp(−βEn), (2.3)

where Z ≈ Tr(ρ) = Tr(exp(−βH)) is the partition function which is sumed

over all thermally excited states |n〉 that are weighted with the corresponding

Boltzmann factor exp(−βEn). For a system with finite chemical potential µ,

Hamiltonian H is replaced by H − µN .

Thermal field theory (TFT) describes a system of interacting particles includ-

ing the non-abelian gauge interactions such as QCD in a thermodynamical envi-

ronment at or near equilibrium [101, 5]. The thermal field theory framework of a

relativistic statistical system is different from more familiar many-body or kinetic

theory [102, 103] in the sense of using the path integral approach, the treatment

of non-abelian gauge interactions and finally the Lorentz covariance of theory.

In particle physics, the usefulness of thermal field theory is mainly realized in

the hot and dense plasma studies, phase transition, and cosmology. One good

example of thermal field theory application is the study of QCD matter under ex-

treme conditions of temperature and density. Such a state of strongly interacting

matter known as QGP that is created in the HIC experiments where the temper-

ature reaches few hundred MeV. In the high temperature limit, i.e., T � ΛQCD

where the coupling is weak due to asymptotic freedom, properties of the deconfined

state of quarks/anti-quarks and gluons can be captured within the framework of

pQCD. Another important application is in the study of the early universe. In-

deed, in the evolution of the universe, one can have a thermalized medium before

recombination where the mean free path of the interacting particles is smaller than

the system size [104]. This, in fact, is supported by CMB analysis that demon-

strates a perfectly black-body spectrum at the time of the last scattering, up to

fluctuation as small as δT/T ≈ 10−5 [105].

In both QGP and the early universe, the in-medium interactions of particles
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are characterized by the thermodynamic parameters associated with the system

temperature and density. Even though the questions one may be interested in

addressing in the heavy-ion collision and the early universe are different, the cal-

culational techniques are quite similar. The resummation techniques developed

in one case can also be used in the other case. In fact, we are more interested

in quantifying the observables rigorously by means of finite temperature quantum

field theory.

There exist two equivalent formalisms of thermal field theory commonly known

as imaginary time formalism (ITF) and real-time formalism (RTF), each with its

own convenience and limitations. The former one is developed by Matsubara by

incorporating the imaginary time in the evolution of operator [106]. On the other

hand, the alternative real-time description was developed by Mills, Schwinger, and

Keldysh by appropriately choosing a contour in the complex plane [4, 107]. Below

we shall discuss both the formulations in somewhat detail.

2.1 Imaginary time formalism

In the ITF, the time in the evolution operator is taken as purely imaginary. In

fact, the exponential factors in Eqs.(2.1) and 2.2 may be regarded as the evolution

operator with it = τ = β. Therefore, any operator O can evolve as

O(τ) = eτHO(0)e−τH . (2.4)

Here, the transformation is unitary as time is imaginary. For the calculational

purpose, it is also possible to use a diagrammtic approach similar to zero tem-

perature by defining a partition function and hence generating functional with a

source term. However, the important difference lies in defining the time variable.

In fact, with definition τ = β, the evolution operator is restricted to be within

certain time intervals. This can be seen in the two-point function of any field Φ

with space-time arguments (τ,x) as [5, 108]

〈Φ(x, τ)Φ(y, 0)〉 = ∆T (τ,x− y)
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=
1

Z
Tr(e−βHΦ(x, τ)Φ(y, 0))

=
1

Z
Tr(e−βHΦ(x, τ)eβHΦ(y, 0)e−βH)

=
1

Z
Tr(e−βHΦ(x, τ)Φ(y, β))

= 〈Φ(x, τ)Φ(y, β)〉 = ∆T (τ − β,x− y). (2.5)

This relation is known as Kubo-Martin-Schwinger (KMS) relation. For any field

Φ satisfying commutation or anti-commutation relation one can have

Φ(x, 0) = ±Φ(x, β). (2.6)

Here plus sign stands for fields satisfying commutation relation and minus sign for

fields satisfying anti-commutation relation. KMS relation shows that the fields are

either periodic, e.g., bosonic or antiperiodic, e.g., fermionic with imaginary time

β. In fact, owing to KMS relation, the propagator of a scalar field can be written

as

∆T (τ,x− y) = ∆T (τ + nβ,x− y), n ∈ Z. (2.7)

The consequence of Eqs.2.6 and 2.7 is that the imaginary time is restricted in

interval [0, β]. Thus, the real-time dependence of correlation functions are lost in

the ITF. One can obtain the static thermodynamic properties of a system, e.g.,

like pressure, energy density, etc. The time-dependent quantities are obtained by

performing an analytic continuation from imaginary to real-time after evaluating

all relevant Feynman diagrams.

Similar to the case of zero temperature where Feynman diagram evaluation

is easy in the momentum space here one can evaluate the diagrams in frequency

space. In fact, one can write the fields in terms of these frequencies named after

Matsubara as

Φ(x, τ) = T
+∞∑

n=−∞

Φ̃(x, ωn)eiωnτ . (2.8)

Here, the Matsubara frequencies ωn = 2nπT and ωn = (2n+1)πT are respectively

for bosonic and fermionic fields. The discrete frequency arises in ITF as the (imag-

inary) time is restricted to the finite interval. Therefore, in terms of Matsubara
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frequencies, the propagator corresponds to the scalar field φ(X) = φ(x0,x) can be

written as

∆T (X − Y ) = 〈φ(X)φ(Y )〉 = T
+∞∑

n=−∞

∫
d3k

(2π)2

eiωnτe−ik·(x−y)

ω2
n + k2 +m2

. (2.9)

It can clearly be seen that the propagator has a temperature dependence via the

Matsubara frequencies. To obtain the Feynmann rules for evaluating diagrams,

one can write the Lagrangian in Euclidean space by LE = −LM(t → −iτ); w;

where LM is Lagrangian in Minkowski space. For example, in Euclidean space the

Lagrangian for a scalar field can be written as

LE =
1

2

(
∂Φ

∂τ

)2

+
1

2
(∇Φ)2 + V (φ). (2.10)

2.2 Real time formalism

The static properties of a thermally equilibrated system are quite well described

within the framework of ITF. Even the time dependent quantities can also be ob-

tained by a more cumbersome procedure of analytic continuation from imaginary

to real-time. On the other hand, from the beginning, one can also start with real-

time variables within the RTF. In fact, RTF is more suitable for a dynamical/non-

equilibrium system such as QGP in HICs [109, 110], and provide a transparent

separation of vacuum and medium/temperature dependent terms. This naturally

arises from the propagator structure that has separate temperature dependent and

vacuum terms.

The real-time description of Green’s function is allowed by choosing a contour

in the complex time plane including the real-time axis as shown in Fig.2.1. While

constructing the contour path, the field variables must satisfy the boundary con-

dition (KMS) of Eq.2.6. In the imaginary time formulation, the contour is from t

to t− iβ, i.e., along the imaginary axis in the complex time plane. In the real-time

formulation, the contour is deformed in various manner one of which is shown

in Fig.2.1. Let us discuss the contour in somewhat detail. We first start from a

large initial time ti → along path C1 and then moves down along the vertical path
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ti

ℑ(t)

ℜ(t)C1

C2

C3

C4

−ti

−ti − iσ

ti − iσ

ti − iβ

Figure 2.1: Keldysh-Schwinger contour in a complex plane [4] for 0 ≤ σ ≤ β.
Green dots define the boundries along parths C1, C2, C3 and C4. Figure adapted
from [5].

C3 where time becomes complex with 0 ≤ σ ≤ β. After this point, one moves

backward along the horizontal path C3 and reaches a point at time ti− iσ. Finally

one moves along the second vertical path C4 from time ti − iσ to ti − iβ. Taking

ti → −∞, one can span the entire real-time axis.

It has been argued that the contribution of vertical paths C2 and C4 can be

neglected irrespective of choice of ti [111, 112]. Therefore, one is left with the

horizontal paths C1, C2 and the path integral can be decomposed accordingly.

Thus for a two-point function, 〈Φ(X)Φ(Y )〉 the time arguments can either lie on

C1 or C2 leading to a non-trivial structure of the propagator at finite temperature

compared to T = 0 counterpart. RTF is suitable in describing a dynamical system,

but the price one has to pay is a doubling of each field.

Generally, the Green’s function for a spinor field ψ(X) in the fundamental

representation of SU(N) group is defined as

iS(X, Y )lmαβ = 〈T̂ (ψlα(X)ψ̄mβ (Y ))〉, (2.11)

where (α, β) = 1, 2, 3, 4 are spinor indices and (l,m) = 1, 2, ..., N are color indices

in the fundamental representation for SU(N) group. Here, T̂ is the time orderding
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operation along the contour defined as

T̂ (X (X)Y(Y )) = X (X)Y(Y )θ(x0 − y0)± Y(Y )X (X)θ(y0 − x0), (2.12)

where θ(x0 − y0) is a step function which is 1 for x0 > y0 and 0; otherwise, plus

sign stands for the bosonic operator, i.e., if X ,Y are vector field and the minus

sign for the fermionic one. Similarly, for a vector field Aµ the contour Green’s

function is

iD(X, Y )abµν = 〈T̂ (Aaµ(X)Abν(Y ))〉 =
Tr[ρ(ti)T̂A

a
µ(X)Abν(Y )]

Tr[ρ(ti)]
, (2.13)

where (µ, ν) = 0, 1, 2, 3 are Lorentz indices and (a, b) = 1, 2, ..., N2 are color indices

in the adjoint representation for SU(N) group. The trace here is summation over

complete set of states i.e., Tr[..] =
∑

n〈n|..|n〉. ρ(ti) is the density operator at the

initial time ti. Let us keep in mind that the time arguments x0, y0 are complex

quantities. The positive and the negative value of the imaginary part locates them

in the upper/lower branch of the contour. Therefore, depending on the locations

of the time arguments, the four Green’s function that one can define is as

iS>(X, Y )lmαβ = 〈ψ(X)lαψ̄(Y )mβ 〉 x0 ∈ C2, y0 ∈ C1, (2.14)

iS<(X, Y )lmαβ = −〈ψ̄(Y )mβ ψ(X)lα〉 x0 ∈ C1, y0 ∈ C2, (2.15)

iSc(X, Y )lmαβ = 〈T̂ (ψ(X)lαψ̄(Y )mβ )〉 x0 ∈ C1, y0 ∈ C1, (2.16)

iSa(X, Y )lmαβ = 〈T̂ †(ψ(X)lα)ψ̄(Y )mβ 〉 x0 ∈ C2, y0 ∈ C2, (2.17)

for the fermionic fields. The ordering operator T̂ † is the anti-time ordering operator

defined as

T̂ †(X (X)Y(Y )) = X (X)Y(Y )θ(y0 − x0)± Y(Y )X (X)θ(x0 − y0), (2.18)

where ± are for the bosonic and fermionic field. Similarly, for a vector field one

can also define four Green’s functions i.e., iD>(X, Y ), iD<(X, Y ), iDc(X, Y ) and

iDa(X, Y ) where color and Lorentz indices are suppressed. These Green functions

carry information about the microscopic interaction and statistical properties of
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the system under consideration.

The function Sc describes the particle propagation forward in time and anti-

particle propagation backward in time. The function Sa is analogous to Sc, but

particles propagating backward in time and anti-particles propagating forward in

time. In the zero density limit, the function Sc coincides with the usual Feynman

propagator. The functions S>/< plays the role of phase space densities of quasi

particles and can be treated as a quantum analog of classical distribution functions.

All these four components of the contour Green’s function are not independent of

each other but rather satisfy the relation

S + S∗ = S> + S<. (2.19)

The propagator thus is a 2 × 2 matrix corresponding to different components of

the field having time coordinates on the upper or lower contour. Therefore, the

propagator is written as

S =

(
S11 S12

S21 S22

)
=

(
Sc S<
S> Sa

)
. (2.20)

Here 1, 2 corresponds to particles in the upper or lower contour respectively, and

the spinor/color indices are suppressed. To write an explicit form of the propa-

gator, one has to choose a value for the parameter σ, e.g., the Keldysh-Schwinger

path corresponds to σ → 0. In Keldysh-Schwinger, the different components of

the propagator in momentum space are given as [113]

iS>(K)lmαβ = δlm
iπ /Kαβ

Ek

[
δ(k0 − Ek)(f̃(k)− 1) + δ(k0 + Ek)f̃ ′(−k)

]
, (2.21)

iS<(K)lmαβ = δlm
iπ /Kαβ

Ek

[
δ(k0 − Ek)(f̃k) + δ(k0 + Ek)(f̃ ′(−k)− 1)

]
, (2.22)

iSc(K)lmαβ =
δlm /Kαβ

K2 + iε
− δlm /Kαβiπ

Ek

[
δ(k0 − Ek)f̃(k) + δ(k0 + Ek)f̃

′(-k)

]
, (2.23)

iSa(K)lmαβ = − δ
lm /Kαβ

K2 − iε −
δlm /Kαβiπ

Ek

[
δ(k0 − Ek)f̃(k) + δ(k0 + Ek)f̃

′(-k)

]
, (2.24)
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where f̃(k) and f̃ ′(-k) are the quark and anti-quark distribution function which

are unpolarised with respect to spin and color. For a thermal equilibrium system

these distribution functions are Fermi-Dirac distribution functions.

The Green’s function defined in Eqs.(2.21- 2.24) have poor analyticity prop-

erties. This is due to the presence of the delta function. Indeed, in a statistical

system, we are more interested in physical Green’s functions, i.e., the usual ad-

vanced/retarded Green’s function with poles below/above of the real axis. The

physical Green’s functions, i.e., retarded (SR), advance (SR) and symmetric (SF )

are defined as

iSR(X, Y )lm = θ(x0 − y0)〈{ψl(X), ψ̄m(Y )}〉, (2.25)

iSA(X, Y )lm = −θ(y0 − x0)〈{ψl(X), ψ̄m(Y )}〉, (2.26)

iSF (X, Y )lm = θ(x0 − y0)〈[ψl(X), ψ̄m(Y )]〉, (2.27)

where {..} stands for anti-commutation and [..] stands for commutation relation.

The physical Green’s functions are also related to the contour Green’s functions

as [114]

SR(K)lm = (S>(X, Y )− S<(X, Y ))θ(x0 − y0)

= Sc(X, Y )− S<(X, Y )

=
δlm /K

K2 + iε
, (2.28)

SA(K)lm = −(S>(X, Y )− S<(X, Y ))θ(y0 − x0)

= Sc(X, Y )− S<(X, Y )

=
δlm /K

K2 − iε . (2.29)

The retarded Green’s function describes the propagation of both the particles

and anti-particles forward in time while the advance Green’s function describes

the same but backward in time. A third Green’s of this representation is the

symmetric one that involves the single particle distribution function is given as

SF (K)lm = S>(X, Y ) + S<(X, Y )
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=
δlmıπ /K

Ek

[
δ(k0 − Ek)(2f̃(k)− 1) + δ(k0 + Ek)(2f̃ ′(-k))

]
.(2.30)

Similar to Eq.2.19, the Green’s function in Keldysh representation are not inde-

pendent but related to each other the relation

SF (K) =

(
1

2
− f̃(k0)

)
[SR(K)− SA(K)], (2.31)

where f̃(k0) is the distribution function of the fermions. Similarly, in the Keldysh-

Schwinger formalism, the contour Green’s function for gluons in the Feynman

gauge is given as [113]

iD>(K)abµν =
iπ

Ek
gµνδ

ab(δ(k0 − Ek)(1 + f(k)) + δ(k0 + Ek)f(−k)), (2.32)

iD<(K)abµν =
iπ

Ek
gµνδ

ab(δ(k0 − Ek)f(k) + δ(k0 + Ek)(1 + (−k))), (2.33)

iDc(K)abµν = −gµνδab
[

1

K2 + iε
− iπ

Ek
(δ(k0−Ek)f(k) + δ(k0 +Ek)f(−k))

]
, (2.34)

iDa(K)abµν = gµνδab
[

1

K2 − iε +
iπ

Ek
(δ(k0 − Ek)f(k) + δ(k0 + Ek)f(−k))

]
. (2.35)

Here f(k) is gluon distribution function which is assumed to be unpolarised with

respect to spin and color. For a thermally equilibrated system f(k) is Bose-

Einstein distribution function. Green’s functions Da/c(K)abµν satisfies the equation

K2Da/c(K)abµν = ∓δabgµν , (2.36)

while the other two Green’s functions satisfies

K2D>/<(K)abµν = 0. (2.37)

2.3 Hard thermal loop (HTL) approximation

Before coming to the computational/technical details of Feynmann diagram eval-

uations, let us discuss hard thermal loops (HTL) that determines the dispersion
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laws of the (quasi)particle excitations in the plasma at leading order in cou-

pling [115, 116, 117]. In gauge theories at finite temperature, the usual notion

of loop expansion order in terms of coupling constant g is lost so that even at

leading order computations the higher order contributions arising from the loops

known as hard thermal loops become relevant. In order to include higher order

contributions one need to resum the infinite sets of diagram into effective prop-

agator and vertices. This may be even more evident in high temperature scalar

field theory with quartic coupling which is massless at tree level and develops mass

ms ∼ gT via tadpole diagram. This mass generation replaces the bare propagator

1/K2 by effective propagator 1/(K2 + m2
s) [117]. It ought to be mentioned that

HTLs are gauge invariant even when they arise from N -point functions.

The loop corrections that needed to be resummed are of order g2T 2/P 2 times

the corresponding tree level contribution. So when external momentum P is

hardm∼T, the loop contribution is of order g2 and can be ignored. On the other

hand, when P is soft∼ gT , the loop corrections are of order 1 and the hard ther-

mal loops are as important as tree level contribution. Therefore, to evaluate any

physical quantity one must resummed propagator involving HTLs whenever the

external lines are soft. For QED at finite temperature, the resummed photon

propagator in the Coulomb gauge and plasma frame is given as [100]

Dµν(K) = − δµ0δν0

k2 + ΠL(K)
+

δij − k̂ik̂j
k2 − ω2 + ΠT (K)

. (2.38)

Here, ΠL/ΠT are longitudinal/transversal component of photon self-energy that

arises from HTLs. For resummed gluon propagator in a magnetized thermal

medium see Eq.4.24 and for the case of Polyakov loop background see Eq.6.33.

Similarly, the resummed fermion propagator is given as

S(K) =
1

/K +m+ Σ(P )
, (2.39)

where Σ(P ) is electron self energy within the HTL approximation.
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Field theory in a medium

2.4 Self energies in thermal field theory

In order to discuss the applications of ITF and RTF, here we aim to provide

the computational techniques in somewhat detail. We mainly focus on HTL con-

tribution to the photon and electron self energy in both ITF and RTF.Besides

somewhat detail discussion on HTL self energies, it is also relevant for the thesis

that involves evaluation of Feynmann diagrams/self energies in a magnetic field

background (see chapter3, chapter4) and with Polyakov-loop (see chapter6).

2.4.1 Photon self energy in ITF

As already discussed, in ITF, similar to momentum space one can perform calcula-

tions in frequency space and do sum over so called Matsubara frequencies. Finally,

P P

K

Q

Figure 2.2: One loop photon self energy.

for a time dependent quantity, the analytic continuation is required. Here, we eval-

uate photon self energy diagram of Fig.2.2 in the Euclidean space where any four

vector Pµ = (p4 = −ω,p); ω being Matsubara frequency. In the Feynman gauge,

the photon polarisation is written as

Πµν(p0 = iω,p) = −g2

∫
d4K

(2π)4
Tr[γµS(K)γνS(Q)], (2.40)

where Q = P −K and S is electron propagator in the Euclidean space which is

given as

S(K) =
m− /K

ω2
n + |k|2 +m2

= (m− /K)∆̃(ωn), (2.41)
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2.4 Self energies in thermal field theory

As discussed earlier, Euclidean space self-energy Π(iω,p) is defined only for the

discrete Matsubara frequencies. In order to obtain real time self energy, one need

to perform an analytical continuation by replacing iω → p0 + iε after summing

over Matsubara frequencies. In the fermion propagator Eq.(2.41), ωn = (2n+1)πT

is the Matsubara frequency of the electron of four-momentum K. Since we are

working in the high temperature limit, i.e., T � m, the mass term can be ignored

to rewrite Eq.(2.40) as

Πµν(p0 = iω,p) = −g2

∫
d4K

(2π)4
Tr[γµ /Kγν /Q]∆̃(ωn,k)∆̃(ωn − ω,q). (2.42)

In the ITF, the energy integration is replaced by the frequency summation so the

integration in Eq.(2.42) becomes∫
d4K

(2π)4
= T

∑
n

dk

(2π)3
, (2.43)

where summation is over fermionic Matsubara frequencies. In the view of HTL

approximation, we also neglect the external momentum compared to loop momen-

tum in the numerator of expression Eq.(2.42). Performing the trace over Dirac

space to obtain

Πµν(p0 = iω,p) = −4g2T
∑
n

∫
dk

(2π)3
(2KµKν −K2gµν)∆̃(ωn,k)∆̃(ωn − ω,q).

(2.44)

The resummed photon propagator requires ΠL and ΠT components of self-energy.

Here we only evaluate ΠL, ΠT can also be obtained in a similar manner. Therefore,

with µ = 0, ν = 0, the longitudinal component of the self-energy can be written

as

ΠL = 4g2T
∑
n

∫
dk

(2π)3
(∆̃(ωn − ω,q)− 2k2∆̃(ωn,k)∆̃(ωn − ω,q)),(2.45)

which we write as ΠL = δΠ1
L − δΠ2

L. As may be noted in Eq.(2.45), there are two

terms that involve two different kinds of Matsubara frequency summation. In the
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Field theory in a medium

first term, the frequency sum is

T
∑
n

∆̃(ωn − ω,q) = T
∑
n

1

2Eq

[
1

Eq + i(ω − ωn)
− 1

Eq − i(ω − ωn)

]
=

1

2EK

(
1− f̃(Ek)− f̃(Eq)

)
, (2.46)

where f̃(E) is the Fermi-Dirac distribution function, Ek = |k| and Eq = |p−k|. In

the limit of soft external photo, i.e., HTL approximation 1− f̃(EK)− f̃(Eq) ≈ 1−
2f̃(Ek). On the other hand, the second term involves the frequecy sum including

the productuct of two propagators. With simple simplification, this product can

be written as

T
∑
n

∆̃(ωn,k)∆̃(ωn − ω,q) =
T

4EkEq

[
1

(Ek + iωn)(Eq + i(ω − ωn))

+
1

(Ek − iωn)(Eq + i(ω − ωn))

+
1

(Ek + iωn)(Eq − i(ω − ωn))

+
1

(Ek − iωn)(Eq − i(ω − ωn))

]
, (2.47)

and after performing summation over Matsubara frequencies one can get

T
∑
n

∆̃(ωn,k)∆̃(ωn − ω,q) =
1

4EqEk

[
f̃(Ek)− f̃(Eq)

iω + Ek − Eq
+
f̃(Ek)− f̃(Eq)

Ek − Eq − iω

+
1− f̃(Ek)− f̃(Eq)

Ek + Eq − iω
+

1− f̃(Ek)− f̃(Eq)

Ek + Eq + iω

]
. (2.48)

Now let us examine these two frequency summed terms in somewhat detail. In

the third and fourth term of Eq.(2.48), the term independent of the distribution

function is the vacuum term and the divergence in these terms are renormalized by

using the standard methods of renormalization in the vacuum field theory. Further,

we shall drop the vacuum term in order to consider the medium contribution.

Keeping HTL approximation, It is convenient to write Eq = Ek − |p| cos θ where
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2.4 Self energies in thermal field theory

θ is the angle between p and k and the distribution function f̃(Eq) as

f̃(Eq) = f̃(Ek − p cos θ) = f̃(Ek)− |p| cos θ
∂f̃(Ek)

∂k
. (2.49)

In Eq.(2.46), the leading order contribution ∼ T 2 comes from the term propor-

tional to the distribution function so that

δΠ1
L = −2g2

π2

∫
kf̃(k)dk, (2.50)

where ∫
kf̃(k)dk =

π2T 2

12
. (2.51)

Another leading contribution in ΠL arises from δΠ2
L, which comes from the first

and the second term involving the difference of distribution functions. Further,

we also simplify the denominators of these terms as iω ±Ek ∓Eq ≈ iω ± |p| cos θ

to acquire

δΠ2
L =

8g2

(2π)3

∫
k2dk

4EkEq(2π)3
p cos θ

∂f̃(Ek)

∂k

[
1

iω + p cos θ
− 1

iω − p cos θ

]
. (2.52)

In Eq.(2.52), dk = dkdφd cos θ. Here, integrand is independent of φ so
∫
dφ = 2π

also the angular integration and the momentum integration are well separated and

can be integrated separately. After performing momentum integration, Eq.(2.52)

can be written as

δΠ2
L = −g

2T 2

12

∫
d(cos θ)

[
p cos θ

iω + p cos θ
− p cos θ

iω − p cos θ

]
. (2.53)

We further simplify the integration by writing

p cos θ

iω + p cos θ
− p cos θ

iω − p cos θ
= 2− iω

iω − p cos θ
− iω

iω + p cos θ
, (2.54)

and performing the angular integration the final expression ofδΠ2
L can be written

as

δΠ2
L =

g2T 2

3

[
1 +

iω

2p
log

iω + p

iω − p

]
, (2.55)
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so the longitudinal component of self energy becomes

ΠL =
g2T 2

6

[
1 +

iω

p
log

iω + p

iω − p

]
. (2.56)

Let us now move to RTF and discuss the retarded self-energy of photon. In the

RTF, similar to retarded Green’s function, the retarded self-energy can be written

in terms of Πµν
11 and Πµν

12 components of self energy[118]

Πµν
R (p0,p) = Πµν

11 (p0,p)− Πµν
12 (p0,p). (2.57)

To evaluate the 11 and 12 components of self-energy, one follows the standard

way of writing polarization tensor using the same components of propagator as in

Eq.2.20.

Πµν
R (p0,p) = −ig2

∫
d4K

(2π)4

(
Tr[γµS11(Q)γνS11(K)− γµS21(Q)γνS12(Q)]

)
.

(2.58)

Similar to ITF, only the longitudinal i.e., time-like component of self energy calcu-

lation will be presented here. Writing the fermion propagator Sij(K) = /K∆ij(K),

the trace over Dirac space Tr[γµ /Qγν /K] = 4[KµQν + QµKν − (K · Q)gµν ], for

µ = 0, ν = 0 the trace is Tr[γ0 /Qγ0 /K] = 4[k0q0 + kq], the longitudinal component

of retarded self energy becomes

ΠL
R = −4ig2

∫
d4K

(2π)4
(q0k0 + q · k)(∆11(Q)∆11(K)−∆21(Q)∆12(K)), (2.59)

where

∆11(K) =
1

K2 + iε
+ 2πif̃(k0)δ(K2), (2.60)

and

∆12(K) = 2πif̃(k0)δ(K2). (2.61)

Here, f̃(k0) is the fermion distribution function. In terms of advanced/retarded

and symmetric propagators, Eq.(2.59) becomes

ΠL
R = −2ig2

∫
d4K

(2π)4
(q0k0 + q · k)(∆F (Q)∆R(K) + ∆A(Q)∆F (K)). (2.62)
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2.4 Self energies in thermal field theory

P

K

Q

P

Figure 2.3: One loop electron self energy.

Now Replacing K by Q in the first term and using ∆R(−Q) = ∆A(Q), the above

expression can be simplified further on

ΠL
R = −8πg2

∫
d4K

(2π)4
(q0k0 + q · k)(1− 2f̃(k0))

δ(K2)

Q2 − isgn(q0)ε
. (2.63)

So far this expression is exact. Within the HTL approximation, the final expression

for the longitudinal component of the self-energy becomes

ΠL
R = −g

2T 2

3

[
1− p0

2p
ln

(
p0 + p+ iε

p0 − p+ iε

)]
. (2.64)

Similarly, the transverse part of the self energy can be given as

ΠT
R =

g2T 2p2
0

6p2

[
1−

(
1− p2

p2
0

)
p0

2p
ln

(
p0 + p+ iε

p0 − p+ iε

)]
. (2.65)

For gluon self energy in the strong field within the framework of RTF see ap-

pendixA.1.

2.4.2 Electron self energy ITF

Electron self energy diagram is given in Fig.2.3. In order to evaluate the electron

self energy we take HTL approximation.

In the Feynman gauge, the electron self energy in the Euclidean space is given

as

Σ(P ) = g2

∫
d4K

(2π)4
[γµ /Qγµ]∆(K)∆̃(ω − ωn), (2.66)
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where ∆(K) = K−2 = (ω2
n+k2) with ωn = 2nπT as bosonic Matsubara frequency

and Q = P −K. Writing γµγµ = 2 and taking HTL approximation i.e., neglect P

with respect to K in the numerator, we get

Σ(P ) = −2g2T
∑
n

∫
dk

(2π)3
/K∆(K)∆̃(ω − ωn), (2.67)

where summation is over bosonic Matsubara frequencies. In the Euclidean space

/K = γ4k4 + γ · k with k4 = −ωn. As can be seen in Eq.(2.67) and the definition

of /K, there are two types of frequency sums, one of which is

T
∑
n

∆(K)∆̃(ω − ωn) = − 1

4EkEq

[(
1

iω − Ek − Eq
− 1

iω + Ek + Eq

)
× (1 + f(Ek)− f̃(Eq)) +

(
1

iω + Ek − Eq
− 1

iω − Ek + Eq

)
(f(Ek) + f̃(Eq))

]
, (2.68)

and the another one is

T
∑
n

ωn∆(K)∆̃(ω − ωn) = − i

4Ek

[(
1

iω − Ek − Eq
+

1

iω + Ek + Eq

)
× (1 + f(Ek)− f̃(Eq))−

(
1

iω + Ek − Eq
+

1

iω − Ek + Eq

)
(f(Ek) + f̃(Eq))

]
. (2.69)

At finite temperature, the dominant contribution to the electron self-energy comes

from the term that involves the sum of two distribution functions in Eqs.(2.68)

and (2.69). Simplifying the denominators of these terms same as we did for the

photon self-energy and performing momentum integration, the electron self-energy

becomes

Σ(P ) =
g2T 2

8

∫
dΩ

4π

/̂K

−iω + p cos θ
. (2.70)

In the RTF, one can use the similar relation relating contour and retarded propa-

gator even for the self energy (see Eq.2.57). For the case of magnetic field, quark
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2.5 In a magnetic field background

self energy in the RTF is evaluated in chapter4.

2.5 In a magnetic field background

In HICs, the magnetic field is produced in the initial stage by the current of fast

moving positively charged nuclei [119, 3, 120, 121, 122, 123]. In vacuum, the mag-

netic field decays very rapidly, however in a medium due to finite conductivity,

the magnetic field satisfies the diffusion equation (see Eq.1.8) and can remain rea-

sonably strong throughout QGP life-time [67, 68]. Therefore, one may expect its

effects in the QGP properties, e.g., elliptic and directed flow. Though, so far, it

has not been possible to know the exact magnitude of the magnetic field in the

thermalized QGP medium due to poor understanding of electrical conductivity.

Further, apart from HIC, magnetic field effects on particle dynamics are appre-

ciable among various systems including the early universe and quasirelativistic

materials such as graphene in condensed matter [124, 125]. In the following, we

shall attempt to derive the propagator of a charged fermion in the presence of a

constant magnetic field so that the inherent dynamics of the fermion in such a

background field become explicit. Indeed, this is relevant to thesis in chapters 3,

4 and 5.

To start with, we consider the magnetic field B to be directed along the z-

azis i.e., B = Bẑ and choose the electromagnetic vector potential in the Landau

gauge, i.e., Aµ(x) = (0, 0, Bx, 0). In an external magnetic field, Dirac equation for

a fermion of mass m and charge e is given as

(i/∂ + e /A−m)ψ = 0, (2.71)

where /∂ = γµ∂µ and /A = γµAµ. The gamma matrices are represented as

γ0 =

(
σ3 0

0 −σ3

)
, γ1 =

(
iσ1 0

0 −iσ1

)
, (2.72)

γ2 =

(
iσ2 0

0 −iσ2

)
, γ3 =

(
0 i1
i1 0

)
. (2.73)

45



Field theory in a medium

The fermion field operator can be expanded in terms of particle and anti-particle

creation and annihilation operator as

ψ(x) =
∑
n,r

1

2π

∫
dp

(
ar(n,p)ur(n, x,p) + b†r(n,−p)vr(n, x,−p)

)
eip·x, (2.74)

where p = (py, pz). In Eq.(2.74), summation is over Landau levels denoted by

n = 0, 1, 2, ..∞ and r = ±1 represents the spin state (up/down) of the parti-

cle. The particle annihilation operator ar and anti-particle creation operation b†r,

respectively, satify the following anti-commutation relation

{ar(n,p), a†s(l,p
′)} = δrsδnlδ(p− p′) = {br(n,p), b†s(l,p

′)}. (2.75)

In Eq.(2.74), ur(n, x,p) and vr(n, x,−p) are particle and antiparticle spinors

whose explicit form is obtained by solving Eq.2.71 and for a particle of mass

m and charge e are written as

u+1(n, x,p) =
1√

2En(En +m)


(En +m)[Θ(e)In + Θ(−e)In−1]

0

pz[Θ(e)In −Θ(−e)In−1]

−i
√

2n|e|B[Θ(e)In + Θ(−e)In−1]

 , (2.76)

u−1(n, x,p) =
1√

2En(En +m)


0

(En +m)[Θ(−e)In + Θ(e)In−1]

i
√

2n|e|B[Θ(e)In −Θ(−e)In−1]

−pz[Θ(e)In −Θ(−e)In−1]

 , (2.77)

v+1(n, x,−p) =
1√

2En(En +m)


√

2n|e|B[Θ(e)In −Θ(−e)In−1]

ipz[Θ(e)In−1 + Θ(−e)In]

0

i(En +m)[Θ(e)In−1 + Θ(−e)In]

 , (2.78)
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2.5 In a magnetic field background

v−1(n, x,−p) =
1√

2En(En +m)


ipz[Θ(e)In + Θ(−e)In−1]√

2n|e|B[Θ(e)In−1 −Θ(−e)In]

−i(En +m)[Θ(e)In + Θ(−e)In−1]

0

 . (2.79)

In the above equations, En =
√
m2 + p2

z + 2n|eB| is the energy of the particle

in the nth Landau level. It ought to be mentioned here that LLL either acquire

only positive energy states describing particles for eB < 0 or negative energy

states associated with antiparticles for eB > 0. However, in contrast, the higher

Landau levels acquire both negative as well as positive energy states describing

antiparticles/particles for a given magnetic field. Further, the spinors ur and vr

are normalised as∫
dxu†r(n, x,p)us(l, x,p) = δrsδrs =

∫
dxv†r(n, x,p)vs(l, x,p). (2.80)

For n ≥ 0, in terms of the magnetic field and particle momentum In in spinors

are given as

In(ξ) = cn exp

(
− ξ2

2

)
Hn(ξ), (2.81)

where ξ = |eB|(x−py/|eB|) and I−1 = 0. Here Hn is nth order Hermite Polynomial

and the normalisation constant cn is

cn =

( √|eB|
n!2n
√
π

) 1
2

. (2.82)

The function In also satisfy the orthogonal relation
∫
dξIn(ξ)Il(ξ) =

√
|eB|δnl

ensuring the proper normalisation of spinors.

Having the field operator in terms of spinor, one can now write the propagator

in a magnetic field background for a charged particle of mass m as

iSαβ(X, Y ) = 〈T̂ψα(X)ψ̄β(Y )〉, (2.83)
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where T̂ stands for the time-ordered product defined as

T̂A(X)B(Y ) = θ(x0 − y0)A(X)B(Y )− θ(y0 − x0)B(Y )A(X). (2.84)

In terms of spinor product, the fermion propagator in the magnetic field back-

ground can be simplified as

iSαβ(X, Y ) = θ(x0 − y0)
∑
n

∫
dp

[
e−iEn(x0−y0)eip·xPu(x, n,p)

]
− θ(y0 − x0)

∑
n

∫
dp

[
eiEn(x0−y0)eip·xPv(x, n,p)

]
, (2.85)

where the spinor product Pu is

Pu(x, n,p) =
∑
r

ur(x, n,p)ūr(x, n,p)

=


ε+InI ′n 0 −pzInI ′n −BInI ′n−1

0 ε+In−1I ′n−1 BIn−1I ′n pzIn−1I ′n−1

pzInI ′n BInI ′n−1 ε−InI ′n 0

−BIn−1I ′n −pzIn−1I ′n−1 0 ε−In−1I ′n−1

 ,(2.86)

and

Pv(x, n,p) =
∑
r

vr(x, n,−p)v̄r(x, n,−p)

=


−ε−InI ′n 0 pzInI ′n BInI ′n−1

0 −ε−In−1I ′n−1 −BIn−1I ′n −pzIn−1I ′n−1

−pzInI ′n −BInI ′n−1 −ε+InI ′n 0

BIn−1I ′n pzIn−1I ′n−1 0 −ε+In−1I ′n−1

 .(2.87)

In the above Eqs. ε+ = En + m, ε− = m − En, B = i
√

2n|eB| and I ′n = In(ξ =

y−py/|eB|). Now using the following integral representation of the step function,

i.e.,

θ(τ) = i

∫ ∞
−∞

dω

2π

e−iτω

ω − iε , (2.88)

where ε is infetimally small parameter and substituting ω + En = p0 in the first
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2.5 In a magnetic field background

term of Eq.(2.85) and ω+En = −p0 in the second term of the same equation, the

right hand side of Eq.(2.85) can be written as

θ(x0 − y0)e−iEn(x0−y0)eip·xPu(x, n,p)− θ(y0 − x0)eiEn(x0−y0)eip·xPv(x, n,p)

=
i

2π

∫
dp0e

−ip0(x0−y0)

[ Pu(x, n,p)

p0 − En + iε
+
Pv(x, n,p)

p0 + En − iε

]
.(2.89)

Further, using the identity Pu(x, n,p)|En=p0 = −Pv(x, n,p)|En=−p0 , the fermion

propagator can be written with a proper pole structure as

S(X, Y ) =
1

(2π)3

∫
dpdp0e

ip·(x−y)−ip0(x0−y0) S̃(x, n,p)

p2
0 − E2

n + iε
, (2.90)

where

S̃(x, n,p) =


p+

0 InI ′n 0 −pzInI ′n −BInI ′n−1

0 p+
0 In−1I ′n−1 BIn−1I ′n pzIn−1I ′n−1

pzInI ′n BInI ′n−1 −p−0 InI ′n 0

−BIn−1I ′n −pzIn−1I ′n−1 0 −p−0 In−1I ′n−1

 . (2.91)

Here p+
0 = p0 + m and p−0 = p0 − m. Further, one can also write the fermion

propagator in terms of the Dirac matrices. In order to do this, we introduce the

projection operators P± = (1± iγ1γ2)/2 that aligns the spin of the particle along

the direction/opposite of the magnetic field. These operators satisfies the general

properties of a projection operator i.e., P±P± = P± and P±P∓ = 0. Finally, with

these projection operators, the propagator as defined in Eq.(2.91) can be simplified

to

S̃(x, n,p) = [(γ · p)‖ +m](P+InI ′n + P−In−1I ′n−1) + B(P+InI ′n − P−In−1I ′n−1),

(2.92)

where (γ · p)‖ = γ0p0 − γ3pz. In Eq.(2.92), it can be seen that in the lowest

Landau level, i.e., n = 0 particle spin aligned opposite to the magnetic field do

not contribute in the propagator. In other words, one can say that in the LLL

particles are directed along the magnetic field direction only. In order to further
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simplify Eq.4.2, let us consider the y component of the momentum, so we write

In,n′ =

∫
dpye

ipy(y−y′)InIn′

=

∫
dpye

ipy(y−y′)
√
|eB|

n!2n
√
π

∫
dpye

ipy(y−y′)e−(ξ2+ξ′2)/2Hn(ξ)Hn(ξ′).(2.93)

Substituting for ξ and ξ′, one gets

In,n′ =

√
|eB|

n!2n
√
π
e|eB|(x

2+x′2)/2

∫
dpye

−(p2y/|eB|−py((x+x′)+i(y−y′)))Hn(ξ)Hn(ξ′). (2.94)

For further simplification, it is convenient to do change of variable from py to a

dimensionless variable u = py/
√
|eB| −

√
|eB|/2(x+ x′ + i(y − y′)) to obtain

In,n′ =
|eB|

n!2n
√
π
e−|eB|z

2
⊥/2ei
√
|eB|/2(y−y′)(x+x′)

∫
due−u

2

Hn(u+ a)Hn(u+ b), (2.95)

where z2
⊥ = (x − x′)2 + (y − y′)2, a =

√
|eB|/2(x − x′ − i(y − y′)) and b =

−
√
|eB|/2(x−x′+ i(y−y′)). Finally, using the relation

∫
due−u

2
Hn(u+a)Hn(u+

b) = 2nn!Ln(−2ab), we get

In,n′ = |eB|e−|eB|z2⊥/4ei
√
|eB|/2(y−y′)(x+x′)Ln

( |eB|z2
⊥

2

)
, (2.96)

where Ln is generalized Leguerre Polynomials given as

Ln(x) =
1

n!

dn

dxn
(x2e−x). (2.97)

Similary, in order to perform py integration, other terms can also be simplified

such as

In−1,n′ =

∫
dpye

ipy(y−y′)In−1I ′n. (2.98)

With variable change similar to the previous case one arrives∫
due−u

2

Hn−1(u+ a)Hn(u+ b) =
2n−1n!

√
π

a

[
Ln(−2ab)− Ln−1(−2ab)

]
. (2.99)
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2.5 In a magnetic field background

So the final form of In−1,n′ becomes

In−1,n′ =

√
2n|eB|
r2
⊥

e−|eB|z
2
⊥/4(x−x′+i(y−y′))eiΦ(X,Y )

[
Ln

( |eB|z2
⊥

2

)
−Ln−1

( |eB|z2
⊥

2

)]
,

(2.100)

where Φ(X, Y ) = |eB|/2(x+ x′)(y − y′). Similarly

In,n−1 = −2n|eB|
z2
⊥

e−|eB|z
2
⊥/4eiΦ(X,Y )

[
Ln

( |eB|z2
⊥

2

)
− Ln−1

( |eB|z2
⊥

2

)]
. (2.101)

Therefore, the final form of the propagator the propagator S(X, Y ) becomes

S(X, Y ) = eiΦ(X,Y )S(X − Y ). (2.102)

Note here that Φ(X, Y ) is not translationally invariant that makes S(X, Y ) trans-

lationally non-invariant. This origin of translational invariance is the directionality

of the magnetic field. Further, the translational invariant part is given as

S(X − Y ) =

exp

(
βr2⊥

4

)
(2π)3

∫
dp‖

1

p2
‖ −m2 − 2n|eB|+ iε

[
[(γ · p)‖ +m](

P+Ln

(
βr2
⊥

2

)
+ P−Ln

(
βr2
⊥

2

))
+ 2n|eB|

(
P+Ln

(
βr2
⊥

2

)
−P−Ln

(
βr2
⊥

2

))]
, (2.103)

where p2
‖ = p2

0− p2
z and r2

⊥ = (x−y)2. It is well known that the in the presence of

magnetic field dimensional reduction from D → D−2 takes place e.g., 3+1→ 1+1

and 2+1→ 0+1 which is also apparent in propagator structure given in Eq.2.103.

The reason is that the motion of charged particles is restricted along the directions

perpendicular to the magnetic field. Indeed, in a 3 + 1 and 2 + 1 space-time

dimensions, the presence of a strong magnetic field dubbed as catalyst for the

chiral symmetry breaking that lead to fermion mass generation [126, 127, 128].

In the catalysis mechanism, the LLL plays a very crucial role quite similar to

the Fermi surface in BardeenCooperSchrieffer (BCS) theory [126]. Further, In

general, it is convenient to write the propagator in the momentum space which
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Field theory in a medium

can be obtained by using the Fourier transformation as

S(P ) =
1

(2π)2

∫
dr⊥S(X, Y )ei(p·r)⊥ . (2.104)

This is discussed in chapter3 within the framework of ITF. For the real-time

description of quark resummed propagator with a constant magnetic field back-

grouns see chapter4. In the next chapter, we discuss the magnetized thermal

medium modification on quarkonium potential and its thermal decay width.
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Quarkonia in a magnetized

medium

Bound states of heavy quark and its antiquark (charmonium for c/c̄ and bottomo-

nium for b/b̄) plays a very crucial role in the study of high energy nuclear collisions

by allowing to probe the properties of the medium in a controlled manner. This

vital role is mainly because of the larger mass of quarkonia compared to the inher-

ent QCD scale (ΛQCD). Indeed, the large mass allows a non-relativistic discription

within the framework of potential model that can also be extended to incorporate

medium effects on quarkonium properties. Moreover, the suppression of different

quarkonium states in a thermalized QGP medium signals the temperature of the

medium. Further, the magnetic field in HICs can also affect the quarkonium prop-

erties. In this regard, apart from temperature, we shall explore the magnetic field

effects on the quarkonia potential and their thermal decay width in a thermalized

QGP medium in this chapter.

Initially, it was thought that the strong magnetic field produced in high energy

nuclear collisions decays very fast [129]. However, later, it has been argued that

in a medium with finite electric conductivity, a reasonably strong magnetic field

can sustain even in the QGP medium [130, 131]. The reason is that the magnetic

field does not decay rapidly due to the induced currents in the medium, and it
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Quarkonia in a magnetized medium

satisfies a diffusion equation. Indeed, it is shown that while the magnetic field

initially decreases quite fast, at later times matter effects become more important

that significantly reduces the decay rate of the magnetic field [130, 131]. This

reduction in the decay rate effectively makes the external magnetic field a slowly

varying function of time during the entire QGP lifetime. Simultaneously, heavy

quark-antiquark pairs also develop into physical resonances over a formation time

tform ∼ 1/Ebind, e.g., the cc̄ pairs form resonances at tcc̄ ∼ 0.3 fm. Therefore,

it is reasonable to assume that the heavy quark-antiquark pair is influenced by

the magnetic field. As regards to the effects more directly, various studies have

considered the possible influence of an external magnetic field on the static quark-

antiquark potential [132, 133] and the screening masses [134]. So far, different

studies have been carried out on the effects of magnetic field for static properties

of quarkonia [135, 81, 136, 137, 132, 138, 139, 140] and of open heavy flavors [141,

142, 143, 144, 145]. The effect of the magnetic field on quarkonium production

has been discussed in Refs. [141, 137]. Further, the influence of strong magnetic

field on the evolution of J/ψ and the magnetic conversion of ηc into J/ψ has been

discussed in Refs. [81, 146].

In order to add magnetic field contribution, we describe the medium effects on

both the long and short-range quarkonia potential in the static limit by combin-

ing the generalized Gauss law and the dielectric permittivity of the magnetized

thermal QCD medium. Once the vacuum parameter of the potential is fixed, the

real/imaginary parts of the in-medium potential (<V (r)/=V (r)) is estimated by

using the real/imaginary part of the permittivity. Further, the magnetic field con-

tribution in the in-medium permittivity comes only from the quark loop in the

gluon self-energy. Furthermore, the heavy quark mass (mQ) is the dominant scale,

i.e., mQ �
√
eB � T so a nonrelativistic potential can still describe the heavy

quark. Since we consider the limit
√
eB � T so only LLL effects are important.

This chapter is structured as follows. In Sec. 3.1, we first discuss the gluon self-

energy using the imaginary time formalism and then calculate the Debye mass by

taking the static limit of self-energy. Sec. 3.2 discusses the heavy quark complex

potential in the presence of a magnetic field and describes the variation of the real

and imaginary parts of the potential for various values of the magnetic field and

temperatures. In Sec. 3.3, the effect of the magnetic field on decay width for both
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3.1 Gluon self-energy in LLL approximation of the magnetic field

bottomonium and charmonium ground states are discussed. Finally, we conclude

the chapter in Sec. 3.4.

3.1 Gluon self-energy in LLL approximation of

the magnetic field

A critical property of the strongly interacting medium is the Debye screening

of the color charges. This screening in the thermal medium, gets contribution

from both the quark and the gluon loops; however, in the presence of a magnetic

field, the contribution arises from the quark loop only. Further, in the strong

field limit, i.e., eB � T 2, the gluonic contribution which is proportional to T 2 in

the Debye screening mass is negligible compared to the quark loop contribution

that is proportional to eB. In this regard, below we estimate the magnetic field

contribution of the Debye mass in the LLL approximation using the ITF of field

theory. In the ITF, a Euclidean four vector is represented as bµ = (b4,b). The

parallel (‖) and the perpendicular (⊥) component of the four vector with respect

to the magnetic field are given as

bµ‖ = (b4, 0, 0, b3); bµ⊥ = (0, b1, b2, 0),

and the corresponding dot products are defined as

(a · b)‖ = a4b4 + a3b3; (a · b)⊥ = a1b1 + a2b2.

Now, let us consider a charged particle of charge qf and mass mf is moving in a

constant magnetic field (B) which directed along the ẑ-direction, i.e., B = Bẑ. In

this scenario, the propagator of the charged fermion which is a function of both the

transverse and longitudinal component of the momentum is written as [147, 148]

S(Y, Y ′) = Φ(Y, Y ′)

∫
d4K

(2π)4
e−iK·(Y−Y

′)S(K), (3.1)

where Φ(Y, Y ′) is the phase factor and can be gauged away. The form of the

propagator in the position space is given in Eq.(2.103) and S(K) is the Fourier
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transform in the momentum space. In the Euclidean space, the propagator (S(K))

in the Landau level representation takes the form

S(K) = −ie−
K2
⊥

|qfB|

∞∑
l=0

(−1)lDl(K)

k2
‖ +m2

f + 2l|qfB|
, (3.2)

where the sum is over the Landau levels (l = 0, 1, 2,....), and

Dl(K) = (mf − /k‖)
(

(1 + iγ1γ2)Ll

(
2k2
⊥

|qfB|

)
− (1− iγ1γ2)Ll−1

(
2k2
⊥

|qfB|

)
+ 4/k⊥L

1
l−1

(
2k2
⊥

|qfB|

))
, (3.3)

with k‖ and k⊥ as the parallel and the perpendicular component of the four vector

Kµ as defined in Eq.(3.1). Here, k4 = −ik0 and γ1, γ2 are the Dirac matrices. The

energy of a charged fermion in a Landau level l is given by

E2
l (kz) = k2

z +m2
f + 2l|qfB|, (3.4)

which can be obtained from Eq. (3.2) by equating the denominator of the prop-

agator to zero. In the presence of a very strong magnetic field, i.e., qfB � T 2

the higher Landau levels (l � 1) are at infinity as compared to LLL [149, 150];

therefore the dominant contribution comes from LLL. This further lead to dimen-

sional reduction from (3+1)-dimension to (1+1)-dimension that can be seen in

the propagator given in Eq. (3.5). Moreover, the dimensional reduction restricts

the motion of charged particles perpendicular to the magnetic field. Using the

relations Ln(x) = L0
n(x) and Lα−1(x) = 0, the fermion propagator in LLL approxi-

mation becomes

S(K) = ie
− k2⊥
|qfB|

(
/k‖ −mf

k2
‖ +m2

f

)
(1 + iγ1γ2). (3.5)

Here, the factor (1 + iγ1γ2) is the spin projection operator, which represents the

spin polarization of fermion in the LLL. [151]. For the positive/negative charged

particles the spin orientation is parallel/antiparallel to the magnetic field direction.

In order to obtain the Debye mass we first calculate the gluon polarization

tensor correspond the diagram is shown in Fig. 3.1. As mentioned earlier, since
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3.1 Gluon self-energy in LLL approximation of the magnetic field

K − P

K

P P

Figure 3.1: Gluon self-energy in the presence of strong magnetic field
.

the gluons do not interact with the magnetic field their contribution remains same

as that of B = 0 case. Thus, the quarks loop contribution to the gluon self-energy

in the presence of a magnetic fiel can be written as

δΠµν(P,B) = g2

∫
d4K

(2π)4
Tr[γµt

aS(K)γνt
bS(Q)], (3.6)

where S(K) is fermion propagator as defined in Eq. (3.5) and Q = K − P . The

dimensional reduction separates the parallel and the perpendicular component

dependent term in the propagator, so the self-energy can also be written sepa-

rately in terms of the parallel and the perpendicular components. Therefore, the

perpendicular part of the self energy in Eq. (3.6) is

I⊥ =
1

(2π)2

∫ ∞
−∞

dkx

∫ ∞
−∞

dky exp

(−k2
x − q2

x

|qfB|

)
exp

(−k2
y − q2

y

|qfB|

)
=

∑
f

π|qfB|
2(2π)2

exp

( −p2
⊥

2qfB

)
, (3.7)

and Eq. (3.6) becomes

δΠµν(P,B) =
g2I⊥

2

∫
d2k‖
(2π)2

Tr[γµ(/k‖ −mf )P+γν((/k − /p)‖ −mf )P+]

(k2
‖ +m2

f )((k − p)2
‖ +m2

f )
, (3.8)

where P+ = 1 + iγ1γ2. The Debye mass is obtained from the temporal component
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of the self energy which can be written as

δΠ44(P,B) =
g2I⊥T

2

∫
dkz
(2π)

∑
n

8ω2
n − 8k2

z − 8m2
f − 8ωnω + 8kzpz

(ω2
n + E2

kz
)((ω − ωn)2 + E2

qz)
, (3.9)

where ωn = (2n+ 1)πT is fermionic Matsubara frequency, ω is bosonic Matsubara

frequency, E2
kz

= k2
z + m2

f and E2
qz = q2

z + m2
f . For massless fermion (mf = 0),

Eq.(3.9) reduces to

δΠ44(P,B) = 4g2I⊥T
∫

dkz
(2π)

∑
n

(
∆̃(ωn)− (2k2

z +ωnω− kzpz)∆̃(ωn)∆̃(ω−ωn)

)
,

(3.10)

where ∆̃(ωn) = [ω2
n + k2

z ]
−2, ∆̃(ω − ωn) = [(ω − ωn)2 + q2

z ]
−2. Furthermore, in

order to calculate the Debye screening mass one need to take the static limit of

temporal component of self-energy, Π44 viz. m2
D = −Π44(ω = 0, p → 0). After

taking the static limit Eq. (3.10) becomes

δΠ44(B)|(ω=0,p=0) = 4g2I⊥
∫

dkz
(2π)

T
∑
n

(
∆̃(ωn)− 2k2

z(∆̃(ωn))2

)
. (3.11)

Let us note that the temperature contribution to the self energy comes from the

Matsubara frequencies. On the other hand the magnetic field ontribution comes

from the transverse component of the propagator. Further, performing the sum

over Matsubara frequency as given in Eqs.(2.46) and(2.48) we get

δm2
D = 4g2βI⊥

∫
dkz
(2π)

f̃(Ekz)(1− f̃(Ekz)). (3.12)

Replacing the transverse part of the self-energy by Eq.(3.7), the quark loop con-

tribution to the Debye screening mass in a magnetic field background becomes

δm2
D =

∑
f

|qfB|g2

πT

∫ ∞
0

dkz
2π

f̃(Ekz)(1− f̃(Ekz)). (3.13)

To get the total Debye mass in the thermal medium with a background magnetic

field, one also need to consider the gluon contributions to the screening mass.
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Figure 3.2: Debye mass mD as a function of temperature and magnetic field.

Taking this into account, the final form of the Debye mass becomes

m2
D =

4παs(T )T 2Nc

3
+
∑
f

|qfB|g2

πT

∫ ∞
0

dkz
2π

f̃(Ekz)(1− f̃(Ekz)). (3.14)

For massless fermions,
∫∞

0
dkzf̃(Ekz)(1 − f̃(Ekz) = T/2. Therefore, Eq. (3.14)

reduces to

m2
D =

4παs(T )T 2Nc

3
+
∑
f

|qf |Bαs(T )

π
. (3.15)

where αs(T ) is the running coupling constant which for one loop is given as [152]

αs(T ) =
g2
s(T )

4π
=

6π

(33− 2Nf ) ln
(

2πT
ΛMS

) . (3.16)

Here for Nf = 3 the quantity ΛMS = 0.176 GeV. Fig.(3.2) shows the variation of

the Debye mass as given in Eq.(3.15) as a function of magnetic field and temper-

ature for mf = 0. From Fig. 3.2, it is clear that for a given value of the magnetic

field with an increase in temperature, the Debye mass increases. Indeed, the ef-

fect of the magnetic field is more substantial at a lower temperature and becomes

weaker at a higher temperature. At high temperature, with an increase in the

magnetic field, the Debye mass does not increase much because, at large tem-

peratures, the gluon contribution starts dominating the quark one. In the right
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side of Fig.(3.2), the variation of Debye mass with the magnetic field for various

values of temperature is shown. It may be observed that the Debye mass increases

with an increase in the magnetic field. The observed increase of screening mass

as a function of the magnetic field is in qualitative agreement with lattice QCD

computation [134]. Suppression of quarkonium state in a medium depends on the

Debye screening. From Fig.(3.2), one can anticipate that quarkonia potential will

get a finite contribution from the magnetic field in a magnetized thermal QGP

medium.

3.2 In-medium heavy quark potential in mag-

netic field

The simplest form of the confining potential for a QQ̄ pair as a function of distance

r is given as

V (r) = −αs
r

+ σr, (3.17)

where αs as coupling constant and σ is the string tension. The medium effects

in the quarkonia can be incorporated using the Debye-Hückle theory, which was

proposed in Ref. [153]. Another way of including the medium effects is via the

medium permittivity by combing the Gauss law and the Debye-Hückle theory

which was originally proposed in Ref.[79]. Let us first discuss this in detail for a

vanishing magnetic field. Consider that a test charged particle is placed at the

origin, and an auxiliary vector field due to this at a distance r is as E = qrb−1r̂,

where b is a parameter that can have any value. The corresponding potential of

the auxiliary field can be defined by using the relation -∇V (r) = E(r). Therefore,

the Gauss law can be defined as [79, 153]

∇ ·
(

E

rb+1

)
= 4πqδ(r). (3.18)

choosing the appropriate values of b and q, one can obtain the Coulomb and

string part of the potential. For b = −1, q = α(= αsCF = g2sCF
4π

;CF = 4/3),

Eq. (3.18) reduces to the Coulomb potential and for b = 1, q = σ, one can obtain

the linearly rising (string part) potential, where σ is the string tension and αs
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3.2 In-medium heavy quark potential in magnetic field

is the QCD running coupling. As per the Debye-Hückle framework, the medium

gets polarized and leads to a change of the source term on the right hand side of

Eq. (3.18) from δ(r) to δ(r) + 〈ρ(r)〉 so that

∇ ·
(

E

rb+1

)
= 4πq(δ(r) + 〈ρ(r)〉). (3.19)

Here 〈ρ(r)〉 is the induced charged density which can be written in the Boltzmann’s

distribution as the difference of the particle and antiparticle charge deviation i.e.,

〈ρ(r)〉 = n0(e−βV (r) − 1)− n0(eβV (r) − 1), (3.20)

where β = 1/T and n0 is the charge density in the absence of test charge. At high

temperatures and weak in medium potential the charge density can be approxi-

mated as 〈ρ(r)〉 = −2qβn0V (r). Plugging this back in Eq.(3.19) and using the

relation ∇V (r) = −E(r), the differential equation for the potential becomes

− 1

rb+1
∇2V (r) +

1 + b

rb+2
∇V (r) + 8πqn0βV (r) = 4πqδ(r). (3.21)

For b = −1, q = α, the im-medium Coulombic part of the potential is given by

−∇2VC(r) + 8παsn0βVC(r) = 4παsδ(r). (3.22)

Similar, in the linear response approximation, for b = 1, q = σ the string part of

the in-medium potential is given by

− 1

r2

d2Vs(r)

dr2
+ 8πσn0βVs(r) = 4πσδ(r). (3.23)

Let us note here that for Coulomb and string part of the potential, same charge

density n0 appears.

In the present approach, the medium effects, i.e., the effect of finite temperature

and magnetic field can be incorporated by modifying the vacuum potential with

dielectric permittivity as in Ref. [78]. The in-medium permittivity ε(~p,mD) can

be written as

ε−1(p,mD) = − lim
ω→0

p2D00(ω, p) . (3.24)
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where D00 is the gluon resummed propagator calculated from the longitudinal

component ΠL or (Π44) of the gluon self-energy. In a magnetized thermal medium,

the gluon propagator has contributions from the gluon as well as quark. The

magnetic field contribution in the resummed propagator comes from the quark

loop. We evaluate each contribution in the following way.

3.2.1 Gluon loop contribution to ΠL

As the gluonic contribution does not depend upon the magnetic field, the tem-

perature dependent longitudinal part of the gluon self-energy can be written as

[154]

δΠL(ω, p)g = m2
Dg

[
1− ω

2p
ln

(
ω + p

ω − p

)
+ iπ

ω

2p
θ(p2 − ω2)

]
, (3.25)

where m2
Dg = 1

3
g2T 2Nc with Nc the number of colors and θ(p2 − ω2) is the step

function. In Eq.(3.25), the imaginary part is related to the Landau damping,

which corresponds to the emission and absorption of particle in the medium.

3.2.2 Quark loop contribution to ΠL

This contribution arises from the quark loop in the gluon self-energy. From

Eq. (3.9), we can get the longitudinal component of the self energy δΠL(ω, p) ≡
δΠ44(ω, p) after summing over fermionic Matsubara frequencies. To estimate the

quark contribution to the resummed gluon propagator, one needs the imaginary

part of the longitudinal component of the self-energy (=δΠ44) which can be ob-

tained by using the identity

=δΠL(ω, p)f =
1

2i
lim
η→0

[
δΠL(ω + iη, p)− δΠL(ω − iη, p)

]
, (3.26)

along with the expression

1

2i

(
1

ω +
∑

j Ej + iη
− 1

ω +
∑

j Ej − iη

)
= −πδ(ω +

∑
j

Ej). (3.27)
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3.2 In-medium heavy quark potential in magnetic field

Using Eqs. (2.46) and 2.47 for the fermionic Matsubara frequency in Eq. (3.9), the

imaginary part of the longitudinal component of self energy i.e., δΠL becomes

δ=ΠL(ω, p)f = π4g2I⊥

∫
dkz
2π

(
2k2

z − kzpz − 2m2
f

4EqzEkz

)[
(−f̃(Ekz) + f̃(Eqz − ω))

×δ(ω + Ekz − Eqz) + (f̃(Ekz)− f̃(Eqz))δ(ω − Ekz + Eqz) + (1− f̃(Ekz)

−f̃(Eqz))δ(Ekz + Eqz) + (1− f̃(Ekz)− f̃(Eqz))δ(Ekz + Eqz + ω)

]
.(3.28)

In the static limit, i.e., ω → 0, the third and fourth terms of Eq.3.28 vanishes;

therefore, Eq.3.28 reduces to

δ=ΠL(P )f |ω→0 = 4πωg2

∫
dkz
2π

(−2k2
z + kzpz + 2m2

f

4EqzEkz

)
∂f(Eqz)

∂Eqz
δ(Ekz − Eqz).

(3.29)

Further, the integral can be solved by using the properties of the Dirac delta

function as

δ(f(x)) =
∑
n

δ(x− xn)

|∂f(x)
∂x
|x=xn

, (3.30)

where xn are the zeros of the function f(x) which for the delta function in

Eq. (3.28) are

kz0 =
4pz(p

2
z − ω2)±

√
16p2

z(p
2
z − ω2)2 − 16(p2

z − ω2)((p2
z − ω2)2 − 4m2ω2)

8(p2
z − ω2)

.

(3.31)

In the limit, kz0 = pz/2; thus, the final form of δ=ΠLf can be written as

=δΠL(P ) =
ωβg2m2

fI⊥

pzE
(f̃(E)− f̃ 2(E)), (3.32)

where E =
√
m2
f + p2

z/4.

3.2.3 Medium permittivity and potentials

The in-medium permittivity is a complex quantity in which the imaginary part

comes from the imaginary part of the resummed gluon propagator which can be
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obtained by uing the relation [155]

=Dµν(P ) = −π(1 + e−βω)ξµν , (3.33)

where ξµν depends on the real and the imaginary part of the longitudinal self-

energy. Here, we focus only on DL ≡ D00 so we write ξ00 as

ξ00(P ) =
1

π

eβω

eβω − 1
ρL(ω, P ). (3.34)

Here ρL is the longitudinal part of spectral function which describes the quasipar-

ticles with finite width. In Breight-Wigner form it is written as

ρL(P ) =
=ΠL

(P 2 −<ΠL)2 + =ΠL
2 . (3.35)

Taking both the quark and gluon contributions into account, the real and the

imaginary parts of self-energy can be written as

<ΠL(ω, p) = <ΠL(ω, p)g + <ΠL(ω, p)f , (3.36)

=ΠL(ω, p) = =ΠL(ω, p)g + =ΠL(ω, p)f . (3.37)

Here, <ΠL is the real part of the longitudinal component of self-energy, which in

the static limit is equal to the square of the Debye screening mass (m2
D). Using

the static limit expression for the real and the imaginary parts of the self-energy,

the longitudinal gluon propagator (D00) can be written as

D00(p) =
−1

p2 +m2
D

+
iπTm2

Dg

p(p2 +m2
D)2
−

i|qfB|m2
fαs

2(p2 +m2
D)2pzEpz cosh2(βEpz

2
)
. (3.38)

Note that due to the specific direction of the magnetic field the contribution of

the fermion field loop makes the propagator anisotropic. However, in the limit

of vanishing light quark mass the propagator remains isotropic with the effect of

magnetic field showing only in the Debye mass. Thus, the dielectric permittiv-

ity can be calculated from Eq. (3.24) which in the limit of massless fermions, it
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3.2 In-medium heavy quark potential in magnetic field

becomes

ε−1(p,mD) =
p2

p2 +m2
D

− iπT pm2
Dg

(p2 +m2
D)2

. (3.39)

From the above equation it is clear that the permittivity is isotropic in the van-

ishing light quark mass limit. As discussed earlier, for an effective description

of quarkonium in terms of a potential at finite temperature, the mass of heavy

quark , mQ should be much larger than ΛQCD as well as mQ � T . For the

magnetic field considered here, mQ is still the largest scale (mQ �
√
eB) i.e.,

the ratio, m2
Q/eB ' 3 − 15 for the range of magnetic field eB = 5 − 25 m2

π, so

that the quarkonium properties can still be described within the potential model

framework.

Now, with the permittivity as written in Eq.(3.39), the medium effects on

the quarkonia complex potential are incorporated by parametrizing the vacuum

potential as

V (p) =
V (p)0

ε(p,mD)
. (3.40)

Here V (p)0 is the vacuum potential. In the momentum space, the Coulomb part

of the potential with medium effects can be written as [156]

k2VC(~p) = 4π
α

ε(~p,mD)
. (3.41)

The Fourier transformation of Eq. (3.41) in coordinate space gives

−∇2VC(r) +m2
DVC(r) = α(4πδ(r)− iTm2

Dgh(mDr)), (3.42)

where h(y) = 2
∫∞

0
dx x

(x2+1)
sin(yx)
yx

. Comparing Eqs.(3.42) and (3.22), we get n0 =
m2
DT

4πα
. Unlike Coulomb potential, Gauss law does not does not allow a simple

straightforward Fourier transform. Instead, by motivating from Eqs.(3.22) and

(3.23), one can assume the validity of the linear approximation and take the similar

charge density for the string potential as well [79]. Thus, the in-medium string

potential can be obtained from the differential equation

− 1

r2

d2VS(r)

dr2
+ µ4VS(r) = σ(4πδ(r)− iTm2

Dgh(mDr)), (3.43)
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where µ = (
m2
Dgσ

α
)1/4. Using the boundary conditions mD → 0, <VC(r) = −α

r
and

r → 0, =VC(r) = 0 [73], one can obtain both the real and imaginary part of the

Coulomb potential as

<VC(r, T, B) = −αe
−mDr

r
− αmD, (3.44)

and

=VC(r, T, B) = −2αTg(mDr), (3.45)

where g(y) =
∫∞

0
dx x

(x2+1)2

(
1 − sin(yx)

yx

)
. Thus, the magnetic field dependence of

the potential arises from the field dependent Debye mass. Similarly, for the string

part of the potential we use the following boundary conditions µ → 0,<VS(r) =

σr, r → 0,=VS(r) = 0 and r → ∞, d=VS(r)
dr

= 0. After using the boundary

conditions we get both the real and imaginary parts of string potential as

<VS(r, T, B) = − Γ(1
4
)

2
3
4
√
π

σ

µ
D− 1

2
(
√

2µr) +
Γ(1

4
)

2Γ(3
4
)

σ

µ
, (3.46)

where Dν(x) is the parabolic cylinder function, and

=VS(r, T, B) = −σm
2
DgT

µ
φ(µr), (3.47)

where

φ(µr) = D− 1
2
(
√

2µr)

∫ r

0

dx<D− 1
2
(i
√

2µx)x2g(mDx) + <D− 1
2
(i
√

2µr)

×
∫ ∞
r

dxD− 1
2
(
√

2µx)x2g(mDx)−D− 1
2
(0)

∫ ∞
0

dxD− 1
2
(
√

2µx)x2g(mDx), (3.48)

The total real part of the potential after combining both the Coulombic and string

parts in a magnetized medium can be written as

<V (r, T, B) = <VC(r, T, B) + <VS(r, T, B)

= −αe
−mDr

r
− αmD −

Γ(1
4
)

2
3
4
√
π

σ

µ
D− 1

2
(
√

2µr) +
Γ(1

4
)

2Γ(3
4
)

σ

µ
.(3.49)
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Figure 3.3: Real and imaginary parts of the potential as a function of separation
r of QQ̄ pair for eB = 5, 10, 15m2

π.

Similarly, the total imaginary part of the potential becomes

=V (r, T, B) = =VC(r, T, B) + =VS(r, T, B)

= −2αTg(mDr)−
σm2

DgT

µ
φ(µr), (3.50)

Let us note that In the framework of Debye-Hückel theory, the Coulomb and string

terms were modified with different screening scales mD and µ, respectively. Both

the real as well as the imaginary parts of the potential gets significant contribution

from the magnetic field as can be seen in Fig.(3.3). The left side of Fig.3.3 shows

the variation of the real part of the potential with the separation distance (r) be-

tween the QQ̄ pair for different values of magnetic field ( eB = 5m2
π, 15m2

π, 25m2
π )

at T = 200 MeV. Here, we use the value of the string tension, σ = 0.174 GeV2 from

Ref. [79] . We find that the screening increases with the increase in magnetic field.

The screening is more at a higher temperature because at higher temperatures

the quarkonium state is loosely bound as compared to the lower temperatures

and gets easily dissociated. Alternatively, we can say that with the increase in

temperature the gluonic contribution becomes more which results in more screen-

ing. Further, the right side of Fig.3.3 shows the variation of the imaginary part

of the potential with the separation distance (r) for various values of magnetic
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Quarkonia in a magnetized medium

field ( eB = 5m2
π, 15m2

π, 25m2
π ) at temperatures T = 200 MeV. We find that

the imaginary part of the potential increases in magnitude with the increase in

magnetic field and hence it contributes more to the Landau damping induced ther-

mal width obtained from the imaginary part of the potential. The increase in the

magnitude of the imaginary part of the potential is more at a higher temperature

for a given r.

3.3 Decay Width

The decay width (Γ) can be calculated from the imaginary part of the potential.

The following formula gives a good approximation to the decay width of QQ̄

states [78, 157, 158]

Γ = −
∫
d3r |ψ(r)|2=V (r, T, B), (3.51)

where ψ(r) is the Coulombic wave function for the ground state and is given by

ψ(r) =
1√
πa3

0

e−r/a0 , (3.52)

where a0 = 2/(mQα) is the Bohr radius of the heavy quarkonium system. We

use the Coulomb-like wave functions to determine the width since the leading

contribution to the potential for the deeply bound quarkonium states in a plasma

is Coulombic. After substituting the expression for the imaginary part of the

potential as given in Eq. (3.50), in Eq. (3.51) we estimate numerically the decay

width for finite T and B. In the left of Fig. 3.4, we show the variation of the

decay width for the ground states of charmonium and bottomonium at T = 200

MeV. Here we take charmonium and bottomonium masses as mc = 1.275 GeV and

mb = 4.66 GeV respectively from Ref. [159]. As may be noted in Fig.(3.4), the

thermal width increases with the increase in the magnetic field. The Υ width is

much smaller than the J/ψ because the bottomonium states are smaller in size and

larger in masses than the charmonium states and hence get dissociated at higher

temperatures. The width at a higher temperature is more for both J/ψ and Υ.

Alternatively, we can say that Γ increases with the increase in the magnetic field,
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Figure 3.4: Decay width of J/ψ and Υ as a function of magnetic field at T = 200
MeV.

which results in the early dissociation of quarkonium states.

In the right side of Figure. 3.4, we have plotted the variation of the ratio of

the decay width [Γ(B = 0)− Γ(B = 0)/Γ(B = 0)] with magnetic field at T = 200

and T = 250 for J/ψ. From the figure it is clear that the change in decay width

for T = 200 MeV is about 11% for eB ' 5m2
π to as large as 14% for eB ' 25m2

π.

For T = 250, the change is from 5% to 7% in the same range of magnetic field.

The magnetic field effects become weaker at a high temperature as compared to

a low temperature. Also, we are considering the strong field LLL approximation,

i.e., eB � T 2. This approximation may not hold good at a high temperature.

3.4 Summary

The magnetic field effect on the heavy quark complex potential is discussed in the

LLL approximation of the strong field limit. The LLL approximation is reasonable

as quarkonia are produced during the initial stages of collision when the magnetic

field is very high. Further, the higher Landau levels are at infinity as compared

to LLL, and the dimensional reduction takes place. As discussed, in the QGP

medium, this situation can arise at finite electrical conductivity. In order to incor-

porate the medium effects in the quarkonia potential, the gluon self-energy and
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the Debye screening mass in a magnetized thermal medium are estimated using

the ITF and Schwinger propagator. It is found that the Debye mass increases with

an increase in the magnetic field. However, at sufficiently high temperatures, the

magnetic field dependence of the screening mass is somewhat weak. Further, the

in-medium permittivity is estimated using the resummed gluon propagator that

gets contributions from quark as well as gluon loops. The magnetic field brings

an anisotropic contribution to the gluon propagator which, however, vanishes in

the massless quark limit. Therefore, the potential remains isotropic even in the

presence of the magnetic field.

The heavy quark complex potential is obtained by bringing together the gen-

eralized Gauss law with the characterization of in-medium effects, i.e., finite tem-

perature and magnetic field, through the dielectric permittivity. Because of the

heavy quark mass (mQ ), the requirement mQ � T and mQ �
√
eB is satisfied

for the range of magnetic field eB = 5 − 25 m2
π. The real part of the potential

decreases with an increase in the magnetic field and becomes more screened. The

screening also increases with the increase in temperature. Since the QQ̄ potential

is effectively more screened in the presence of a magnetic field, which results in

the earlier dissociation of quarkonium states in a strongly magnetized hot QGP

medium. The imaginary part of the potential increases in magnitude with the in-

crease in magnetic field and temperature. As a result, the quarkonium states (J/ψ

and Υ ) get more broadened with the increase in the magnetic field and results

in the earlier dissociation of quarkonium states in the presence of the magnetic

field. The width for Υ is much smaller than the J/ψ because bottomonium states

are tighter than the charmonium state and hence get dissociated at a higher tem-

perature. The change in decay width from (11-14)% at T = 200 MeV and from

(5- 7)% at T = 250, for the magnetic field ranging from (5-25) m2
π. The mag-

netic field effects become very low at a high temperature; this may be because

the LLL approximation, i.e., eB � T 2, may not be a good approximation at a

high temperature. Combining both the effects of screening and the broadening

due to damping, one can expect a lesser binding of a QQ̄ pair in a strongly magne-

tized hot QGP medium. To continue the HQ description in a magnetized thermal

medium, we discuss the magnetic field contribution to the collisional energy loss

within the weak coupling and strong field limit.
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Collisional energy loss of HQ

It is well known that a high energy particle created in the initial stages of the

heavy ion collision loses its energy in the medium by interacting with the medium

partons. This leads to the phenomena of jet quenching, which as anticipated many

years ago, is one of the prominent probes of QGP [160, 161, 162, 163]. Generally,

there are two types of processes that contribute to the energy loss namely; radiative

process [164, 165, 166] and collisional process[88, 89, 90]. Experimental results for

quenching of heavy flavors[167] were suggestive of including both radiative as well

as collisional energy loss that has been discussed in Ref.[89, 168]. In this chapter,

we focus our attention to the collisional energy loss of HQ in the background of a

constant magnetic field which is relevant for the HICs [168, 169, 170, 171, 172].

The initial dynamics of the system of deconfined matter plays a pivotal role in

deciding the longevity of the magnetic field in the HICs. It can be hypothesized

that the magnetic field can induce an amount of electrical conductivity which

becomes adequate enough for the decaying magnetic field to persist [130, 68, 173,

174]. This in turn can induce a current which opposes the rate of decrease of

the magnetic field as per Lenz’s Law [175, 176, 129]. Therefore, it is imperative

that the external magnetic field persists long enough so that it can impart crucial

effects on various properties of the medium. It is instructive to investigate the

effect of this field on the space-time evolution of the medium. In this regard, some
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studies are trying to see this effect by reconstructing Hydrodynamic evolution in

presence of magnetic field, i.e. Magneto hydrodynamics [177, 178, 131].

In the case of QGP, a more realistic approach of estimation of the magnetic field

and its relaxation time must include the medium effects i.e., electrical conductivity

(σ) of the medium. The phenomenological models that are used to describe QGP

evolution show that the strongly interaction system in HICs is thermalised just

after the collision (τ ∼ 0.5fm) where magnetic field is near its maximum value

[179, 68]. Further, in a conducting medium, magnetic field satisfies a diffusion

equation with diffusion coefficient (σµ)−1, where µ is the magnetic permeability.

With this one finds that the time scale over which magnetic field remain reasonably

strong over a length scale L is τ = L2σ/4 [67]. For the electrical conductivity

σ ' 0.04T from Ref.[180] at T = 200 MeV, the electrical conductivity σ = 8MeV.

This leads to the relaxation time τ ∼ 1 fm for a system size of the order of 10 fm.

Moreover, this also suggest that the magnetic field is a slowly varying function

of time and can remain reasonably strong for a longer period of time compared

to the case of without a medium. For higher temperatures σ will be higher [70]

increasing the value of τ . Further, it is shown in Ref.[68] in an expanding medium

the magnetic field remain somewhat constant for a longer time.

Consequently, it is of utmost importance to explore to what extent the mag-

netic field inside QGP affects different observables of the deconfined matter. To

this end, surveying the in-medium properties of heavy quarks [141, 142, 143] and

quarkonia have become quite relevant in the context of magnetic field [181, 182,

81, 135, 136, 137, 132, 138, 140, 183, 184, 185, 186]. However, since the HQs are

moving in real time inside the QGP, understanding and estimating the dynamical

properties of HQs are also necessary. In this context, transport coefficients like

drag and diffusion of HQ have been estimated in presence of a strong external

magnetic field in some of the recent literatures [144, 187]. AdS/CFT has also

been employed to have an estimation of the drag force of HQ[188]. Most of the

calculations with strong magnetic field have been performed using perturbative

QCD (pQCD) techniques in Leading Order (LO) of the strong coupling αs in the

limit M �
√
eB so that the motion of the HQ is not directly affected by the exter-

nal magnetic field. Nonetheless, the light quarks/anti-quarks are affected by the

magnetic field with the gluons remaining unaffected. The thermally equilibrated
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light quarks are Landau quantized. The magnetic field also affects the gluon self

energy through the quark loop. Further they also affect the HQ light thermal

parton scattering cross-sections.

This chapter intends to estimate the HQ collisional energy loss (−dE/dx) in

the low coupling regime and strong magnetic field. Specifically we will consider

the hierarchy in the scales i.e.,
√
αseB � T �

√
eB and

√
eB � M . To do

so, we first discuss the resummed gluon propagator in the strong magnetic field

background in the RTF. As also discussed in chapter3, in the LLL approximation,

only quark loop contributes to the resummed gluon propagator in the limit eB �
T 2. This resummed propagator is used to estimate the collisional energy loss.

In this hierarchy of scales, two types of processes (t-channel scatterings) that

contribute to the scatterings of HQ with the light thermal partons affecting the

HQ energy loss. As we shall see, the collisional energy loss increases with the

magnetic field and for a given magnetic field, the field dependent contribution to

the collisional energy loss could be similar in magnitude to the collisional energy

loss in the absence of magnetic field.

This chapter is organized as follows. In Sec.4.1, we standardize the math-

ematical notations used for the real-time formalism which will also be used in

chapter5. Further, in the real-time formalism of thermal field theory, we discuss

the fermion propagator in Sec.4.2 and resummed gluon propagator in Sec.4.2.1 in

the LLL approximation . In Sec.6.1, we discuss the formalism to calculate HQ

energy loss i.e., −dE/dx with descriptions of both the cases; (a) when HQ is inter-

acting with light quarks (Sec.4.3.1) and (b) HQ scattering with the thermal gluons

(Sec.4.3.2). Results for energy loss are presented in Sec.7.3 with the relevant plots

and the possible explanation. In Sec.7.4, the results/outcome are summarized.

4.1 Set-up

For the present investigation, we assume here that the magnetic field is constant

and is along the ẑ direction i.e., ~B = Bẑ. In the subsequent subsection, we

shall discuss the quark propagator in the real-time formalism of thermal field

theory and in the presence of such a magnetic field. For this purpose we use the

following notation. The notations ‖ and ⊥ represents the components parallel
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and perpendicular to the magnetic field of the corresponding quantities. For the

metric tensor, we use

g‖µν = (1, 0, 0,−1) g⊥µν = (0,−1,−1, 0). (4.1)

The parallel (i.e., a
‖
µ = g

‖
µνaν) and perpendicular (i.e., a⊥µ = g⊥µνa

ν) components of

a four-vector aµ are represented as

a‖µ = (a0, 0, 0,−a3) a⊥µ = (0,−a1,−a2, 0). (4.2)

The four-vector product (aµbµ = a · b) can be written as

a · b = a‖ · b‖ − a⊥ · b⊥. (4.3)

Similarly, both the components of square of a four-vector is

a2
‖ = a2

0 − a2
3 a2

⊥ = a2
1 + a2

2. (4.4)

4.2 Fermion propagator in LLL in RTF

The retarded and advanced propagators (SR, SA) of a free quark of electric charge

qf and mass m in the presence of magnetic field B can be given as [189]

SR/A(K) =
∞∑
n=0

[
iΞn(K)

K2 −m2

]
k0→k0±iε

, (4.5)

where the retarded (R)/advanced (A) corresponds to +iε/− iε. The sum is over

all the Landau levels (LLs) that is represented by n. Four momentum squared

K2 = k2
0−k2

z −2n|qfB|. All LLs except the lowest (n = 0) are doubly degenerate.

The numerator of Eq.(4.5) has the Dirac structure of form [189]

Ξn(K) = (/k‖ +m)[P+Θn(ζ) + P−Θn−1(ζ)] + /k⊥Φn−1(ζ), (4.6)

where ζ = 2
k2⊥
|qfB|

and

Θl(ζ) = 2e−
ζ
2 (−1)lLl(ζ), (4.7)
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Φl(ζ) = 4e−
ζ
2 (−1)l−1L1

l−1(ζ). (4.8)

Ll(ζ) and L1
l (ζ) are associated Laguerre Polynomials. In Eq.(4.5), the projection

operator (P±) that projects the spin in the direction of magnetic field is defined

as P± = (1± sgn(qfB)iγ1γ2)/2. Note here that the projection operator depends

on the electric charge of the quark as the spin magnetic moment depends on the

charge of the quark. In the limit
√
eB � T,m, only LLL is relevant and the

dynamics of light quark is governed by the magnetic field. In this approximation

(LLL) the associated Laguerre Polynomials L−1(ζ) = 0 and L0(ζ) = 1, so that

Eq.(4.5) reduces to

SR/A(K) = i exp

(
− k2

⊥
|qfB|

)
2(/k‖ +m)P+

k2
‖ −m2 ± iεk0

. (4.9)

As already mentioned in Eq.(4.26), Feynman propagator can be obtained by using

the relation

SF (K) =

(
1

2
− f̃(k0)

)[
SR(K)− SA(K)

]
≡

(
1

2
− f̃(k0)

)
ρF (K), (4.10)

where f̃(k0) is Fermi-Dirac distribution function and ρF (K) is quark spectral den-

sity. From Eq.(4.9), it is clear that in the limit k2
⊥ � qfB, the motion of a quark

is restricted in the transverse directions and allowed only in the direction paral-

lel to the magnetic field. It can also be observed that as earlier for the infrared

limit, i.e., m2, T 2, k2
⊥, k

2
0 � eB, the dimensional reduction from 3+1-dimension to

1+1-dimension takes place. This dimensional reduction in the LLL approxima-

tion suggests that the pairing dynamics of quarks occur in 1+1 dimension, and

spontaneous chiral symmetry breaking occurs even at weak interaction between

quarks in 3+1 dimension [190].

4.2.1 Resummed gluon propagator in LLL

Next we consider the resummed retarded/advanced gluon propagator in the pres-

ence of magnetic field within the LLL approximation. The resummed propagator
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Collisional energy loss of HQ

is obtained by inserting the self energy corrections in the bare propagator and can

be written as

DR/A
µν (K) = [(DR/A

µν (K))−1
0 + ΠR/A(K)µν ]

−1, (4.11)

where the bare gluon propagator (D
R/A
µν (K))0 in covariant gauge is given as

(DR/A
µν (K))0 = − Pµν(K)

(k0 ± iε)2 − k2
+ ξ

KµKν

((k0 ± iε)2 − k2)2
. (4.12)

In Eq.(4.12), the projection operator (Pµν(K) is defined as

Pµν(K) = −gµν +
KµKν

(k0 ± iε)2 − k2
, (4.13)

and ξ is the gauge parameter. The retarded/advanced resummed gluon propagator

depends on the retarded/advanced gluon self energy that, in general, can get

contribution from both the gluon loop and the quark loop. The magnetic field

does not affect the contribution from the gluon loop. However, the magnetic field

modifies the quark loop contribution. The leading contribution from the gluon loop

to the self energy at finite temperature T is proportional to g2T 2 while we shall

see that the leading contribution from the quark loop at finite T,B is proportional

to g2|qfB| as given in Eq.(A.12). Since we work in the limit eB � T 2,m2, we

shall drop the gluon loop contribution and keep quark loop contribution in the

retarded/advanced gluon self energies. Taking the magnetic field in the the ẑ

direction, the most general form of gluon self energy at finite T and B can be

written in terms of seven independent tensors as

ΠR/A
µν (K) =

∑
j=‖,⊥,T,L

ΠR/A(K)jP
j
µν(K) + ΠP

KµKν

K2
+ Πnnµnν + Πbbµbν , (4.14)

where L, T, ‖,⊥ respectively are for longitudinal, transverse, parallel and perpen-

dicular components of the gluon self energy. The four-vectors nµ = (1,0) and

bµ = (0, 0, 0,−1), break Lorentz and rotational symmetry due to thermal medium

and the magnetic field respectively. Further, the projection operators are trans-

verse to the momentum i.e., PµP
µν
j = 0. It turns out that only the four projection

tensors contribute to the retarded/advanced self energies in the leading order.
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4.2 Fermion propagator in LLL in RTF

Explicitly these projection operators are given as

P T
µν(K) = −gµν +

k0

k2

[
Kµnν + nµKν

]
− 1

k2

[
KµKν +K2nµnν

]
, (4.15)

PL
µν(K) = −k0

k2

[
Kµnν + nµKν

]
+

1

k2

[
k2

0

K2
KµKν +K2nµnν

]
, (4.16)

P ‖µν(k) = −g‖µν +
k
‖
µk
‖
ν

k2
‖
, (4.17)

P⊥µν(k) = −g⊥µν +
k⊥µ k

⊥
ν

k2
⊥

. (4.18)

The parallel and perpendicular components of self energy comes from the quark

loop while the longitudinal and transverse components are from the gluon loop.

Taking contribution from both quark and gluon loop the resummed retarded gluon

propagator is given as [191]

DR
µν(K) = − 1

∆(K)

[
(K2 − Π

‖
R(K)− ΠL

R(K))P T
µν(K) + (K2 − Π

‖
R(K)− ΠL

R(K))

× PL
µν(K) + Π

‖
R(K)P ‖µν(K) +D⊥(K)P⊥µν(K)

]
+ ξ

KµKν

(K2)2
, (4.19)

where

∆(K) = (K2 − ΠT
R(K))(K2 − ΠL

R(K))− Π
‖
R(K)

[
K2 − aΠT

R(K)
K2

k2
‖

− ΠL
R(K)(1− a)

k2
0

k2
‖

]
, (4.20)

and

D⊥(K) =
1

K2 − ΠT
R(K)− ΠL

R(K)

[
Π‖(K)(ΠL

R(K)− ΠT
R(K))(1− a)

k2
0

k2
‖

+ Π⊥R(K)(K2 − ΠL
R(K)− Π

‖
R(K))

]
, (4.21)
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and a = k2
3/k

2. In the LLL approximation for the propagator as in Eq.(4.9) lead to

Π⊥ = 0. This is due to the fact that there is no current in the transverse direction

in LLL approximation. As already mentioned, the gluon loop contribution to the

gluon self energy is of the order of αsT
2 which can be dropped with respect to the

quark loop contribution which is of the order of αseB. In this approximation, the

resummed retarded gluon propagator becomes

DR
µν(K) = − 1

∆
[(K2 − Π

‖
R)(P T

µν + PL
µν) + Π

‖
RP
‖
µν +D⊥(K)P⊥µν ] + ξ

KµKν

(K2)2
, (4.22)

where

PL
µν + P T

µν = −gµν +
qµqν
q2

. (4.23)

Since D⊥(K) ∼ α2
seBT

2 � Π‖ ∼ αseB, the third term in Eq.(4.22) may be

dropped. Further as may be observed from Eq.(4.20) ∆ ≈ K2(K2 −Π‖(K)) with

similar argument. Thus Eq.(4.22), taking appropriate iε factors into account, can

be approximated as

DR
µν(K) = − Pµν(K)

(k0 + iε)2 − k2
− Π

‖
R(k0 + iε,k)P

‖
µν(K)

K2(K2 − Π
‖
R(k0 + iε,k))

+ ξ
KµKν

((k0 + iε)2 − k2)2
.

(4.24)

Similarly, the resummed advanced and Feynman gluon propagators can be written

as

DA
µν(K) = − Pµν(K)

(k0 − iε)2 − k2
− Π

‖
A(k0 − iε,k)P

‖
µν(K)

K2(K2 − Π
‖
A(k0 − iε,k))

+ ξ
KµKν

((k0 − iε)2 − k2)2
,

(4.25)

DF
µν(K) = (1 + 2f(k0))

[
DR
µν(K)−DA

µν(K)

]
. (4.26)

We shall use Eqs.(4.24), (4.25) and (4.26) to estimate the HQ energy loss.

4.3 Formalism

Consider a HQ of mass M , moving in a magnetized thermal medium of light

quarks/anti-quarks and gluons, with momentum p and energy E =
√

p2 +M2.
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4.3 Formalism

The rate of energy loss of a heavy fermion moving with velocity v in a thermal

medium has been considered earlier in Ref. [88, 89] for QED plasma and for QGP

in Ref. [90]. In general the energy loss of the heavy fermion is given by

− dE

dx
=

1

v

∫ ∞
M

dE ′(E − E ′) dΓ

dE ′
, (4.27)

where Γ is the interaction rate of heavy fermion with the medium particles. For

the collisional energy loss, we confine our attention to 2→ 2 processes only as has

been considered earlier [90] . For large momentum of HQ, however, the energy loss

by radiative processes will also be important. In general, for the case of HQ moving

in a QGP medium of light partons there can be two types of scatterings namely

the Coulomb scattering i.e., Qq → Qq and Compton scattering i.e., Qg → Qg. As

mentioned, we shall consider the limit M �
√
eB � T so that HQ is not directly

affected by the magnetic field and the light quarks are populated only in LLL.

In the following sections we shall calculate the interaction rate and subsequently

estimate the energy loss of the HQ.

4.3.1 Energy loss due to scattering with light quark: Qq →
Qq

The interaction rate Γ of the HQ is related to imaginary part of its retarded self

energy in the medium [118]

Γ(E) = − 1

2E
(1− f̃(E))Tr

[
(/P +M)=ΣR(P )

]
, (4.28)

where f̃(E) is Fermi-Dirac distribution function and ΣR(P ) is the retarded self

energy of HQ as shown in Fig.(4.1). In this figure, the bold solid line refers to HQ

while the curly line corresponds to gluon. The black blob here shows the gluon

resummed propagator in the presence of a magnetic field background. Let us note,

in the LLL, the contribution to the resummed gluon propagator comes from the

quark loop only.

In the RTF, similar to the retarded propagator as in Eq.(2.28), the retarded
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Collisional energy loss of HQ

P P

K

P ′

Figure 4.1: Feynman diagram for heavy quark self energy. The black blob here
shows the gluon resummed propagator in the presence of a magnetic field back-
ground.

self energy can be written in terms of 11 and 12 components of self energy as

ΣR(P ) = Σ11(P )− Σ12(P ). (4.29)

Using the propagators for quark and gluon in the Keldysh basis the retarded self

energy of HQ can be written as

ΣR(P ) = ig2(tatb)

∫
d4K

(2π)4

[
Dµν

11 (K)γνS11(P ′)γµ −Dµν
12 (K)γνS12(P ′)γµ

]
. (4.30)

The HQ propagators are S11(K) = ( /K+M)∆11(K) and S12(K) = ( /K+M)∆12(K)

where ∆11(K) and ∆12(K) are given as

∆11(K) =
1

K2 −M2 + iε
+ 2πif̃(k0)δ(K2 −M2), (4.31)

and

∆12(K) = 2πif̃(k0)δ(K2 −M2). (4.32)

Here, f̃(k0) is the fermion distribution function of the HQ. With these simplifica-

tions, Eq.(4.30) becomes

ΣR(P ) = ig2(tatb)

∫
d4K

(2π)4

[
Dµν

11 (K)γν( /P
′ +M)γµ∆11(P ′)

− Dµν
12 (K)γν( /P

′ +M)γµ∆12(P ′)γµ

]
. (4.33)

It is easier for the evaluation of the retarded self energy to convert the Keldysh

propagators to the RA basis using the relations similar to as given in Eqs.(2.28)
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4.3 Formalism

and (2.29) for the propagators Dµν
ab and ∆ab. Let us note that in Eq.(4.33), the

propagators Dµν
11 and Dµν

12 are resummed gluon propagators and S11, S12 for the

HQ and hence the corresponding ∆11,∆12 are bare propagators. Eq.(4.33) for the

retarded self energy then can be rewritten as

ΣR(P ) =
ig2(tatb)

8

∫
d4K

(2π)4

[
Dµν
F (K)λµν∆R(P ′) +Dµν

A (K)λµν∆R(P ′)

+ Dµν
R (K)λµν∆F (P ′) +Dµν

R (K)λµν∆A(P ′)

]
, (4.34)

where λµν = γµ( /P ′+M)γν . The leading contribution to the self energy comes from

the gluon propagator arising in the soft momentum transfer limit i.e., |k| ∼ g
√
eB.

In the limit E �
√
eB � T � |k|, out of the four terms in Eq.(4.34) only the

first term becomes dominant. This is because Dµν
F involves gluonic distribution

function. Thus Eq.(4.34) reduces to

ΣR(P ) =
ig2(tatb)

8

∫
d4K

(2π)4

[
D00
F γ0( /P ′ +M)γ0 + 2D0i

F γ0( /P ′ +M)γi +Dij
F γi( /P

′

+ M)γj

]
∆R(P ′). (4.35)

Using Eqs.(4.24),(4.25) and (4.26) in the Eqs.(4.28) and (4.34), the interaction

rate of HQ can be given as

Γ(E) =
g2

8E
(1− f̃(E))

∫
d4K

(2π)4
(1 + 2f(k0))Tr

[
(/P +M)γ0( /P ′ +M)γ0P

00
‖

+ 2(/P +M)γ0( /P ′ +M)γiP
0j
‖ + (/P +M)γi( /P

′ +M)γjP
ij
‖

]
ρL

× =(∆R(P ′)), (4.36)

where

ρL =
2=Π

‖
R(K)

(K2 −<Π
‖
R(K))2 + (=Π

‖
R(K))2

. (4.37)

In the above equation, =ΠR
‖ (K) and <ΠR

‖ (K) respectively are the imaginary and

the real parts of retarded gluon self energy as defined in Eqs.(A.12) and (A.13).

Further, let us note that the imaginary part in the retarded self energy of HQ
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Collisional energy loss of HQ

comes from the propagator ∆R(P ′) which can be written as

=(∆(P ′)) = − π

2E ′

(
δ(E − k0 − E ′) + δ(E − k0 + E ′)

)
. (4.38)

The second delta function in Eq.(4.38) does not contribution due to kinematic

reasons (k0 �M). Therefore, we drop this term and continue with the first delta

function. Thus, the interaction rate becomes

Γ(E) = − g2

8E
(1− f̃(E))

∫
d4K

(2π)4
(1 + 2f(k0))

[
(4EE ′ + 4p2 − 4p · k + 4M2)k2

z

+ 8(E(p′ · k) + E ′(p · k′))k0 + 4(p · (p− k) + EE ′ −M2)k2
0

]
× ρLπ

2E ′k2
‖
δ(E − k0 − E ′). (4.39)

Since we are working in the limit where |k| ∼ g
√
eB � T so in this limit E � |k|

and one can write E ′ =
√

(p′2 +m2) ≡ E−v ·k. The delta function in the above

equation can be simplified as δ(E − k0 + E ′) ∼ δ(k0 − v · k). Further, we assume

that HQ moves parallel to the magnetic field. The integration over azimuthal

angle in Eq.(4.39) can be done trivially and the integration over the polar angle

can be done by using the energy delta function. The energy loss is thus obtained

as

−dE
dx

∣∣∣∣
Qq→Qq

= − g2

2E
(1− f̃(E))

∫ ∞
0

kdk

(2π)2

∫ kv

−kv

k0dk0

2π
(1 + 2f(k0))

[
4(2E2

− 2Ek0)k2
0k0 − 4v2(2E2 − Ek2)k0 + 4v2(2E2 − 2M22Ek0)k2

0

]
× ρLπ

2Ek2
0(v2 − 1)

. (4.40)

In the above equation we have used 1/E ≈ 1/E ′ as the momentum of the gluon

is soft. The magnetic field dependence in the energy loss for Qq → Qq scattering

comes through ρL as defined in Eq.(4.37) which depends on the real and the

imaginary parts of retarded self energy of gluon.
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4.3 Formalism

4.3.2 HQ gluon Scattering: Qg → Qg

The other contribution to the HQ energy loss comes from the scattering of the

gluons off the the HQ i.e., Q(P ) + g(K) → Q(P ′) + g(K ′) as shown in Fig.(4.2).

The interaction rate for HQ and gluon scattering is given as

P P ′

Q, δ, a

K K ′

c, µ b, ν

i j

Figure 4.2: Feynman diagram for heavy quark and gluon scattering. In the
strong magnetic field limit the contribution to the resummed gluon propagator
comes from the quark loop only.

Γ(E) =
1

2E

∫
dp′

(2π)32E ′

∫
dk

(2π)32k
f(k)

∫
dk′

(2π)32k′
(1 + f(k′))

× (2π)4δ4(P +K − P ′ −K ′)|M̄|2, (4.41)

where |M̄|2 is the matrix element squared averaged over initial spin and color

degrees of freedom and summed over final spin and color for the Qg → Qg scat-

tering and f(k) is the gluonic thermal distribution function. Generally, there are

three types of processes i.e., through s, t and u channels that can contribute to

the total scattering amplitude for this process. However, we are considering the

strong magnetic field limit (LLL approximation) i.e., M �
√
eB � T and assume

that the effect of the magnetic field on HQ is suppressed due to its large mass

so that the s and the u channels, where HQ propagator arises, does not give any

additional contribution arising from the magnetic field. Therefore, the only con-

tribution to Eq.(4.41) comes from the t-channel scattering as shown in Fig.(4.2).

Let us note that as mentioned earlier the resummed gluon propagator has ther-

mal contribution (∼ αsT
2) from gluon loop and the magnetic field contribution
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(∼ αseB) from quark loop in the gluon self energy. In LLL approximation, the

thermal contributions are negligible as compared with that of the magnetic field.

Consequently, we shall use the resummed gluon propagator as given in Eq.(4.24).

The t−channel scattering amplitude can be written as

M = −ig2facbt
a
ji[ūj(P

′)γαui(P )]DR
δα(Q)Cδµν(Q,K,−K ′)εµ(K)ε∗ν(K

′),(4.42)

where Q = P − P ′ = K ′ −K is four-momentum vector for the exchanged gluon

and we have kept explicitly the color indices as in Fig.(4.2). The resulting matrix

element squared can be written after performing the color and spin sum over the

final state and averaging over the initial state as

|M̄|2 =
1

4
g4CFTr[( /P

′ +M)γα(/P +M)γα
′
]DR

δα(Q)DR
δ′α′(Q)Cδµν(Q,K,K ′)

× Cδ′µ′ν′(Q,K,K ′)
∑

εµ(K)εµ′(K)
∑

εν(K
′)εν′(K

′)

=
1

4
g4CFTr[( /P

′ +M)γα(/P +M)γα
′
]DR

δα(Q)DR
δ′α′(Q)

× Cδµν(Q,K,−K ′)Cδ′

µν(Q,K,−K ′), (4.43)

where CF = 1/2 is the color factor and Cµνα(P,Q,R) = (P − Q)αgµν + (Q −
R)µgνα+(R−P )νgµα. To further simplify Eq.(4.43), we will use the transversality

condition ε(K) ·K = ε(K ′) ·K ′ = 0 for the gluons to obtain

Cδµν(Q,K,−K ′) = −2gδµKν + gµν(K +K ′)δ − 2gνδK ′µ

Cδ′

µν(Q,K,−K ′) = −2gδ
′

µKν + gµν(K +K ′)δ
′ − 2gδ

′

ν K
′
µ, (4.44)

so that,

Cδµν(Q,K,−K ′)Cδ′

µν(Q,K,−K ′) = 4(KδK ′δ
′
+K ′δKδ′). (4.45)

The product of propagators that appear in Eq.(4.43) can be simplified to

DR
δα(Q)DR

δ′α′(Q) =
gδαgδ′α′

Q4
− Π

‖
R(Q)gδαP

‖
δ′α′ + Π

‖
R(Q)gδ′α′P

‖
δα

Q4(Q2 − Π
‖
R(Q))

+
(Π
‖
R(Q))2P

‖
δαP

‖
δ′α′

Q4(Q2 − Π
‖
R(Q))2

. (4.46)
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4.3 Formalism

The first term in Eq.(4.46) corresponds to the vacuum contribution. Since we are

interested in the medium contribution (i.e., T and B), we will not consider this

term. The medium dependent term that appears in Eq.(4.43) can be written in

compact manner as

(DR
δα(q)DR

δ′α′(q))(C
δµν(K,K ′)Cδ′

µν(K,K
′)) = Aαα′ + Bαα′ + Cαα′ , (4.47)

where

Aαα′ = − 4Π
‖
R(q)

q4(q2 − Π
‖
R(q))

(KδK ′δ
′
+K ′δKδ′)gδαP

‖
δ′α′ , (4.48)

Bαα′ = − 4Π
‖
R(q)

q4(q2 − Π
‖
R(q))

(KδK ′δ
′
+K ′δKδ′)gδ′α′P

‖
δα, (4.49)

Cαα′ =
4(Π

‖
R(q))2

q4(q2 − Π
‖
R(q))2

(KδK ′δ
′
+K ′δKδ′)P

‖
δα.P

‖
δ′α′ (4.50)

So Eq.(4.43), can be written as

|M̄|2 =
1

4
× 1

2
g4(T αα′1 + T αα′2 )(Aαα′ + Bαα′ + Cαα′), (4.51)

where T αα′1 = Tr[ /P ′γα /Pγα
′
] and T αα′2 = M2Tr[γαγα

′
] are traces over Dirac space.

Six tensor contracted terms of Eq.(4.51) are simplified in appendix(A.2). Further

simplification leads to the final form of scattering amplitude as

|M̄|2 = 4g4 (Π
‖
R(Q))2

Q4(Q2 − Π
‖
R(Q))2

[(P.P‖.K)(P ′.P‖.K
′) + (P.P‖.K

′)(K.P‖.P
′)

−(P.P ′)(K.P‖.K
′)]− 4g4Π

‖
R(Q)

Q4(Q2 − Π
‖
R(Q))

[(P.K)(P ′.P‖.K
′) + (P.K ′)

×(K.P‖.P
′) + (K.P ′)(P.P‖.K

′) + (P ′.K ′)(P.P‖.K)− (P.P ′)(K.P‖.K
′)]

−4g4M2

[
2Π
‖
R(Q)

Q4(Q2 − Π
‖
R(Q))

(K.P‖.K
′) +

(Π
‖
R(Q))2

Q4(Q2 − Π
‖
R(Q))2

(K.P‖.K
′)

]
, (4.52)
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where the tensor product is

P.P‖.K = PµP
µν
‖ Kν =

(P.q‖)(K.q‖)

q2
‖

− (P.k‖). (4.53)

The expression for the retarded self energy Π
‖
R is given explicitly in appendix (??).

This completely defines the matrix element squared.

Energy loss of HQ due to thermal gluons

The contribution of t−channel Compton scattering i.e, Qg → Qg, to the HQ

energy loss can be obtained by using Eq.(4.27) and the interaction rate (Γ) as

given in Eq.(4.41). Hence, one can write [88]

−dE
dx

∣∣∣∣
Qg→Qg

=
1

2vE

∫
dp′

(2π)32E ′

∫
dk

(2π)32k
f(k0)

∫
dk′

(2π)32k′
(1 + f(k′0))

× (2π)4δ4(P +K − P ′ −K ′)(E − E ′)|M̄|2. (4.54)

The energy and momentum transfer in each scattering are, ω = E−E ′ = |k′|−|k|
and q = p− p′ = k′ − k. A comment regarding the use of resummed gluon prop-

agator may be relevant here. The hard contributions to the energy loss (|q| ∼ T )

can be obtained by using the bare gluon propagator for the Qg → Qg scatterings

since the self energy corrections are negligible at leading order (LO). We confine

our attention here for the soft momentum transfer in the range g
√
eB ≤ |q| �

T �
√
eB. This requires the resummation of the gluon propagator in the LLL

approximation as we have used here. The |p′| integration in Eq.(4.54) can be

performed with the help of momentum delta function. In the soft momentum

transfer limit the energy E ′ ≈ E − v · q so that the energy delta function reduces

to δ(ω − v.q). With these simplifications, Eq.(4.54) becomes

−dE
dx

∣∣∣∣
Qg→Qg

=
(2π)

16vE2

∫
dk

(2π)3k
f(k)

∫
dk′ω

(2π)3k′
(1 + f(k′))δ(ω − v · q)|M̄|2.(4.55)

Now, the simplification of the above 6-dimensional integration requires a proper

choice of the co-ordinate system which should also be compatible with the terms

86



4.4 Results and discussion

appearing in the matrix element squared. For this purpose, we choose the direction

of the momentum of the incoming HQ along the ẑ-axis which is also the direction

of the magnetic field. We denote the angle made by k and k′ with the ẑ-axis as

θk and θk′ respectively. Further, the azimuthal angles made by the two momenta

of the incoming and outgoing gluon are φk and φk′ respectively. Therefore, the

energy loss can be written as

−dE
dx

∣∣∣∣
Qg→Qg

=
1

(2π)516vE2

∫
kdkf(k)

∫
k′dk′(1 + f(k′))

∫ 1

−1

dx

∫ 1

−1

dy

∫ 2π

0

dφk

×
∫ 2π

0

dφk′|M̄|2ωδ(ω − vk′y + vkx), (4.56)

where, x = cos θk and y = cos θk′ . Now, we introduce a new integration variable

ω which will take care of one of the angular integrations x or y.∫ ∞
0

dωδ[ω − k(1− vx)] = 1 (4.57)

Using these two δ-functions, we perform x and y angular integrations by writing

the δ-functions as δ[ω − k(1 − vx)] = 1
vk
δ(x − k−ω

vk
) and δ(ω − vk′y + vkx) =

1
vk′
δ(y − ω+vkx

vk′
). So, the final expression of the energy loss becomes:

−dE
dx

∣∣∣∣
Qg→Qg

=
1

(2π)516vE2

∫ ∞
0

ωdω

∫ ω
1−v

ω
1+v

f(k)dk

∫
(1 + f(k′))dk′

∫ 2π

0

dφk

×
∫ 2π

0

dφk′ |M̄|2. (4.58)

The explicit form of the four-vector product and the tensor contractions in the

matrix element squared are elaborately given in the appendix(A.2).

4.4 Results and discussion

The two scatterings that contribute to the HQ energy loss are Qq → Qq evaluated

in Eq.4.40 and t channel Qg → Qg evaluated in Eq.4.58. As mentioned earlier, we

have confined our attention to the case where the typical momentum transfer from

light partons to HQ is soft i.e., g
√
eB ≤ |k| � T �M . Therefore, the resummed
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gluon propagator is used in the evaluation of the matrix element squared for these

two processes. For simplicity, let us take the HQ momentum ~p = (0, 0, pz) and

magnetic field ~B = Bẑ. For the numerical purpose we take HQ as the charm quark

with mass M = 1.2 GeV, temperature T = 0.25 GeV and magnetic field eB = 0.1

GeV2 (∼ 5m2
π) so that the condition eB � T 2 is satisfied. Since eB � T 2,

only LLL will be populated by the light quarks. We also take finite mass (mf )

of light quarks in the gluon self energy diagram. The energy loss contributions

using Eqs.(4.58) and (4.40) has been plotted in Fig.(4.3). In the left of Fig.(4.3),

the variation of the energy loss with the contributions from both the scattering

processes as a function of velocity of HQ is shown. We have taken here mf = 10

MeV for the light quark mass and number of flavors nf = 2. At low velocity the

collisional energy loss is very small ∼ 10−6 GeV2, however with increase is HQ

velocity the energy loss increases. While both the scattering processes contribute

to the energy loss, it is observed numerically that the Qg → Qg gives the dominant

contribution to the energy loss for a given value of velocity of the HQ essentially

due to larger color factor compared to the Coulomb scattering.

This behavior is similar to the case of vanishing magnetic field. It ought to be

mentioned here that in the presence of magnetic field the energy loss is of similar

order as compared to the case of vanishing magnetic field as estimated in Ref.[90].

Indeed, the asymptotic value for the energy loss (v → 1) of Ref.[90] is given by

dE

dx
=

4π

33− 2nf
m2
D, (4.59)

with m2
D = 4π

(
1 +

nf
6

)
αsT

2 which with the parameters αs = 0.3, nf = 2 and

T = 0.25 GeV turns out to be 0.15 GeV2.

This may be compared with the magnetic field contribution given by the red

curve in the left panel of Fig.(4.3) which reaches to the value 0.1 GeV2 in the

same limit. Further, it may be relevant to note that in the limit of vanishing light

quark mass i.e., mf = 0, the magnetic field contribution to the gluon self energy

vanishes as ΠR
‖ is proportional to m2

f . This will lead to vanishing of the magnetic

field dependent contribution to the energy loss. This is similar to the vanishing of

magnetic field contribution for the dilepton production [149] in the same limit.
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Figure 4.3: Collisional energy loss as a function of HQ velocity v and magnetic
field mf = 10 MeV, flavor nf = 2.

In the right side of Fig.(4.3), the energy loss scaled with T 2 as a function of

magnetic field scaled by pion mass square i.e., eB/m2
π, where mπ is pion mass is

displayed. We have taken here T = 0.25 GeV and the magnitude of the heavy

quark velocity v = 0.6. As may be observed in the figure the energy loss increases

with the increase in the magnetic field. Numerically, it is seen that Qg → Qg

contribution is not affected too much with the magnetic field. For this process,

the magnetic field dependence arises from the resummed gluon propagator with

the field dependent contribution of the quark loop. This quark loop contribution

increases with the magnetic field leading to a mild decrease of the energy loss due

to this process as quark loop contribution lies in the retarded propagator. On the

other hand, for the Coulomb scattering process i.e., Qq → Qq the contribution

increase with increase in the magnetic field. This can be understood as follows;

The energy loss is proportional to ρL that depends on real and imaginary parts of

retarded self energies and related to the spectral function. The spectral function

increases with increase in the magnetic field. This increase of ρL with the magnetic

field was also observed in Ref.[149]. It turns out that this increase is significant

and the contribution becomes similar order as the Qg → Qg for larger magnetic

field leading to increase of the total energy loss with magnetic field as observed in

Fig.(4.3).
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4.5 Summary

The effect of the magnetic field on the HQ collisional energy loss in a thermal-

ized QGP medium is discussed in this chapter. The analysis is done for the case

of strong field limit i.e.,
√
eB � T so that the light quarks are populated only

in the LLL. On the other hand, the heavy quark mass M is much larger than

the strength of the magnetic field (i.e., M �
√
eB), so that heavy quark is not

Landau quantized. The effect of the magnetic field manifests through resummed

retarded/advanced gluon propagator through quarks loop. Since the gluon loop

contribution to the gluon self energy is proportional to αsT
2 and the quark loop

contribution is proportional to αseB, in the limit
√
eB � T the gluon loop con-

tribution in the gluon resummed propagator is not taken into account. For the

scattering of HQ with the thermalized light partons we have considered the soft

momentum transfer limit i.e., g
√
eB ≤ |k| � T �

√
eB. With M �

√
eB and

the in the LLL approximation the relevant scattering processes are Coulomb scat-

tering i.e., Qq → Qq and t-channel Compton scattering Qg → Qg. The u and the

s channels of the Compton scatterings are not affected by the magnetic field. For

a given magnitude of the heavy quark velocity, the Compton scattering process is

dominant over the Coulomb scattering process for the range of the magnetic field

considered here.

It is observed that of the two processes, the Coulomb scattering process is

more sensitive to the magnetic field as its contribution to the energy loss is pro-

portional to the spectral function which increases with increase in the magnetic

field. This leads to a net increase in the energy loss with increase in the magnetic

field. It turns out that in this strong field limit, the magnetic field dependent

collisional energy loss for eB = 5m2
π is comparable to the same in the vanishing

field limit and therefore could be important for the jet quenching phenomena in

HICs. However, In a realistic situation in HIC up to what extent the magnetic field

can affect the collisional energy loss will also depend on the medium response to

the magnetic field and require further investigations. In the vacuum, the magnetic

field decreases very rapidly however, in a system with finite electrical conductivity,

magnetic field satisfies diffusion equation and the relaxation time of the external

magnetic field depends on the electrical conductivity of the system. In a system
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with larger conductivity magnetic field can sustain and resonably be strong for

a longer period of time. However, it ought to be mentioned that this requires a

proper estimation of the electrical conductivity of the medium as well as solutions

of magneto hydrodynamic equations which needs further investigations. Further-

more, for smaller values of magnetic field one must include the effect of higher

Landau levels. For the large momentum of heavy quark, the radiative contribu-

tion to the energy loss may also be relevant and could be affected by the magnetic

field. This apart, for a moderate value of magnetic field eB ∼ T 2 the contributions

arising from the higher Landau levels could also be important for the energy loss

and hence jet quenching. In this case, one must take the contribution of gluon

loops in the gluon self energy for the resummed gluon propagator as well as the

contribution from the s and u channels of Compton scattering. We continue the

HQ description in a magnetized thermal medium in the next chapter. In this

chapter, we discussed high momentum HQ dynamics, i.e., energy loss; however, in

the next chapter we shall mainly focus on low momentum processes, i.e., diffusion

of HQ.
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HQ momentum broadening in a

magnetized medium

It is believed that intense magnetic field has been created in the initial stages of

non-central Heavy Ion Collisions (HICs) [120, 3, 121, 123, 192, 193]. The cre-

ated field is estimated to be in the order of eB ∼ m2
π at Relativistic Heavy-Ion

Collider (RHIC) and a few tens of pion mass square, eB ∼ 15m2
π at the Large

Hadron Collider (LHC). The intense magnetic field may affect various aspects of

the physics of the deconfined hot nuclear matter created in HIC termed as Quark-

Gluon Plasma (QGP). One of the major uncertainty of the magnetic field is its

lifetime in hot nuclear matter. In vacuum, the magnetic field decays very rapidly.

However, in a medium of charged particles, it can be sustained for a longer time

due to the finite electrical conductivity (σ) of the medium [173, 174, 175, 176, 129].

As discussed in the previous chapter, for electrical conductivity σ ≈ 0.04T [180],

at temperature T = 200 MeV the electrical conductivity σ = 8 MeV. There-

fore, for L = 10 fm, the time over which the magnetic field remains reason-

ably strong is τ = 1 fm. For higher temperatures, σ will be higher, leading

to larger relaxation time. The investigations on various characteristics of the

hot nuclear matter in the presence of the magnetic field have gained attention

in recent years [194, 195, 196, 197, 198]. The study of the QGP in the mag-
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netic field background opens up new avenues to explore physics in different direc-

tions such as Chiral Magnetic Effect (CME) [120, 199], charge-dependent elliptic

flow [200, 201, 202], magnetic catalysis [190], various transport coefficients of QGP

in the magnetic field [203, 204, 198], photon-dilepton production [149, 130, 205],

in medium properties of quarkonia [184, 186] and their suppression [181, 182],

transport coefficients of heavy quarks (HQs) in the magnetic field [206, 144, 187],

etc.

To understand the properties of the QGP, one needs external probes such as

highly energetic particles created at a very early stage of HICs. HQs serve as

an effective probe to describe the properties of hot QCD medium created in the

collision experiments, as they do not constitute the bulk medium, owing to their

large mass compared to the temperature scale. The HQ traverses through the

QGP medium as a nonthermal degree of freedom and gets random kicks from

the thermal partons (light quarks/anti-quarks and gluons) in the bulk medium.

Thus, the HQ dynamics could be explored within the scope of the Brownian

motion [97, 207, 100, 208, 209, 210], and their transport parameters, the drag

and the diffusion coefficients, have been estimated in the QGP medium [211,

212, 213, 214, 84, 85, 215]. The HQ production and dynamics in the nuclear

matter and the associated experimental observables have been well explored in

several works [216, 217, 218, 219, 220, 93, 221, 222, 223, 224]. The HQ evolution

and momentum broadening in terms of momentum diffusion in thermal QGP are

explained in Ref. [100]. There are some recent investigations on the HQ momentum

diffusion coefficients in a strongly magnetized QGP medium in the weak coupling

regime in the static limit of the HQ [144, 187].

It turns out that in the static limit, there are two diffusion coefficients of HQ

in a magnetic field background, one in the direction of the magnetic field and

the other to the perpendicular to the field. This, in turn, generates a magnetic

field induced anisotropy in the momentum diffusion. It would be interesting to

investigate the nature of the anisotropy in the momentum diffusion of HQ beyond

the static limit.

In this chapter, we estimate the anisotropic diffusion coefficients of HQ mov-

ing with finite velocity v. To estimate the same, we consider the strong field

limit with the soft momentum transfer i.e., we shall be interested in the regime
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|q| ≤ g
√
eB � T �

√
eB � M and use the resummed gluon propagator at

finite temperature and magnetic field. In chapter 4, we discussed the collisional

energy loss of the HQ using a similar technique, which might throw some insights

in the directions of jet quenching. The present calculation is more related to

the momentum broadening of HQ depending upon the relative orientation of the

magnetic field and the velocity of the HQ. We follow an approach similar to the

Refs.[100, 225]. The HQ dynamics are described by the Langevin equations for two

different cases, viz, the HQ moving parallel, and perpendicular to the magnetic

field.

This chapter is organized as follows. In Sec.6.1, the Langevin formalism for

HQ diffusion for both the cases, i.e., HQ moving parallel and perpendicular to the

magnetic field is discussed. In subsections.5.1.1 and 5.1.2, we discuss the qluon

and light quarks/antiquarks contribution to the diffusion coefficients. Further in

Sec.7.3, we discuss the results and finally, in Sec7.4, we summarise the implications

and future possibilities of this chapter.

5.1 Langevin dynamics of HQ in a magnetized

medium

Considering the strong magnetic field limit with M �
√
eB � T which indicate

that the light quarks/antiquarks occupy the Lowest Landau Level (LLL) while

thermal gluons are unaffected by the field. As M �
√
eB, the HQ motion is

not Landau quantized. In order to estimate the thermal gluons and thermal light

quark/antiquark contributions to the HQ transport coefficients for the non-static

case, i.e., HQ is moving with velocity v in the medium, we consider two cases: first

when HQ is moving along the direction of the magnetic field (v ‖ B) and second

the HQ moves transverse to the magnetic field (v ⊥ B). Here, we denote the

momentum diffusion (κ) coefficients by three indices. The superscript denotes the

HQ velocity with respect to the magnetic field. Of the two indices which are given

as subscripts of the diffusion coefficient, the first index describes the momentum

diffusion relative to the direction of the velocity of the HQ while the second index

corresponds to the momentum diffusion relative to the direction to the magnetic
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field e.g., κ
‖
LL represents the diffusion coefficient parallel to both the magntic field

and velocity for HQ moving along the magnetic field direction. Below we explain

this in detail.

5.1.0.1 Case I: v ‖ B

The magnetic field B, and the HQ velocity v, are considered to be in the same

direction as depicted in Fig. 5.1.

B
Z

Y

X

κ∥
LL

κ ∥
TT

κ ∥
TT

v

Figure 5.1: Anisotropic momentum diffusion coefficients for HQ moving parallel
to the magnetic field

The general structure of HQ momentum diffusion tensor in this case can be

decomposed as follows,

κij = Rijκ
‖
TT +Qijκ

‖
LL, (5.1)

where Rij =
(
δij − pipj

p2

)
and Qij = pipj

p2
are the transverse and longitudinal pro-

jection operators orthogonal to each other, i.e., RijQij = 0. Here, κ
‖
TT and κ

‖
LL

are the two diffusion coefficients, transverse and longitudinal to the direction of

HQ motion (which is the same direction of B). The symbol ‖ denotes that the

HQ motion is parallel to the direction of the magnetic field. The broadening of

the variance of HQ momentum distribution can be described by the macroscopic
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equation of motion as follows [100],

d

dt
〈p〉 = −η‖D(p)p,

1

2

d

dt
〈(∆pT )2〉 = κ

‖
TT (p),

d

dt
〈(∆pL)2〉 = κ

‖
LL(p), (5.2)

where the coefficient η
‖
D measures the average momentum loss. The variance of the

HQ momentum distribution transverse and parallel to the direction of the motion

can be respectively defined as 〈(∆pT )2〉 ≡ 〈p2
T 〉 and 〈(∆pL)2〉 ≡ (pL − 〈pL〉)2.

The factor 1
2

in the transverse momentum broadening is due to two perpendicular

directions. The HQ transport coefficients η
‖
D, κ

‖
LL and κ

‖
TT can be obtained from

the kinetic theory by considering the proper collisional scattering matrix element

squared and have the following form for the momentum loss,

d

dt
〈p〉 =

1

2v

∫
k,q

|M̄|2ω
[
f(k)

(
1± f(k + ω)

)
− f(k + ω)

(
1± f(k)

)]
, (5.3)

where v = p/E is the velocity of HQ, and f is the distribution of thermal particles

in the magnetized QGP, |M̄| is the HQ-thermal particle scattering matrix element,

and ω is the transferred energy due to the scattering process. We can write similar

expressions for the rate of transverse and longitudinal momentum broadening

which are κ
‖
TT (v) and κ

‖
LL(v), i.e.,

κ
‖
TT (v) =

∫
k,q

|M̄|2q2
T

[
f(k)

(
1± f(k + ω)

)]
, (5.4)

κ
‖
LL(v) =

∫
k,q

|M̄|2q2
z

[
f(k)

(
1± f(k + ω)

)]
.

(5.5)

The notation
∫
k,q

denotes the relevant phase space integration over k and q with

proper dimensions.
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5.1.0.2 Case II: v ⊥ B

When the HQ motion is moving transverse to the direction of the magnetic field,

say, v = (vx, 0, 0) and B = Bẑ, the momentum broadening can be characterized

by three diffusion coefficients. Defining b = (0, 0, 1) to project the direction of

B
Z

Y

X

κ⊥
TL

κ⊥
TT

κ⊥
LT

v

Figure 5.2: HQ is moving in the x-axis in the presence of the strong magnetic
field B = Bẑ.

magnetic field, the diffusion tensor can be decomposed as follows,

κij = P ijκ⊥TL +Qijκ⊥LT +Rijκ⊥TT , (5.6)

in which the projection operators takes the forms,

P ij =
bibj

b2
, Qij =

pipj

p2
, Rij =

(
δij − pipj

p2
− bibj

b2

)
, (5.7)

such that the operators are orthogonal to each other. Note that the same de-

composition is valid for the HQ motion along y-axis. In this case, the Langevin

equations take the forms as,

d

dt
〈p〉 = −η⊥D(p)p,

d

dt
〈(∆pz)2〉 = κ⊥TL(p),

d

dt
〈(∆px)2〉 = κ⊥LT (p),

d

dt
〈(∆py)2〉 = κ⊥TT (p). (5.8)
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The component κ⊥TL denotes the diffusion coefficient in the direction transverse to

the HQ motion and longitudinal to the direction of the magnetic field, i.e., along

z-axis. Similarly, κ⊥LT and κ⊥TT respectively define the components of the diffusion

coefficient longitudinal to the HQ motion and transverse to the magnetic field

(along x-axis), and in the direction transverse to both HQ motion and magnetic

field (along y-axis). The diffusion coefficients are estimated from the following

expressions [100, 225],

κ⊥TL(v) =

∫
k,q

|M̄|2q2
z

[
f(k)

(
1± f(k + ω)

)]
, (5.9)

κ⊥LT (v) =

∫
k,q

|M̄|2q2
x

[
f(k)

(
1± f(k + ω)

)]
, (5.10)

κ⊥TT (v) =

∫
k,q

|M̄|2q2
y

[
f(k)

(
1± f(k + ω)

)]
.

(5.11)

In the following sections, we discuss the interaction of HQ with the thermal gluon

and the light quark/antiquark in detail while considering the thermal particle

kinematics in the magnetic field for each case.

5.1.1 Gluonic contribution to HQ diffusion

Gluonic contribution to the diffusion coefficient comes via the Compton scattering,

i.e., Q(P ) + g(K) → Q(P
′
) + g(K

′
), where g stands for gluon. Generally, at

leading order in the coupling, there are three channels, s, t and u that contribute to

Compton scattering. In the limit M �
√
eB � T , the leading order contribution

to the diffusion coefficient in the magnetic field background arises from the t-

channel scattering process. This is because the contribution from the s and the

u-channels of the Compton scattering is negligible in the presence of magnetic field

due the hierarchy in the scales considered here, i.e., in the regime M �
√
eB, the

HQ propagators in s and u channels are not affected by the magnetic field. In the

t-channel scattering, the effect of the magnetic field comes through the resummed

gluon propagator. For HQ at rest, i.e., the static limit of HQ, the matrix elements

for the t-channel scattering is well investigated in the Ref. [144] using the Debye
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mass screened gluon propagator. In contrast, here we use the resummed retarded

gluon propagator and also consider the finite velocity v of the HQ. In this case,

the color-averaged t-channel scattering amplitude is given in Eq.4.52,

|M̄|2 =
4g4(Π

‖
R(Q))2

Q4(Q2 − Π
‖
R(Q))2

(
A−M2(K.P‖.K

′)

)
− 4g4Π

‖
R(Q)B

Q4(Q2 − Π
‖
R(Q))

(
B − 2M2(K.P‖.K

′)

)
, (5.12)

A = (P.P‖.K)(P ′.P‖.K
′) + (P.P‖.K

′)(K.P‖.P
′) + (P.P ′)(K.P‖.K

′), (5.13)

B = (P.K)(P ′.P‖.K
′) + (P.K ′)(K.P‖.P

′) + (K.P ′)(P ′.K ′) + (P.P‖.K)

− 2(P.P ′)(K.P‖.K
′), (5.14)

with

P.P‖.K = PµP
µν
‖ Kν =

(P.q‖)(K.q‖)

q2
‖

− P.k‖, (5.15)

where Q = K ′−K = P−P ′, is the four momentum vector for the exchange gluon

and q2
‖ = ω2− q2

z . For the estimation of the diffusion and the drag coefficients, we

restrict the energy transfer to be small, which can be done by assuming ω = v ·q,

where q is the three momentum transfer.

Now, let us first consider the case in which HQ moves along the direction of the

magnetic field as shown in Fig.(5.1). Assuming that v = (0, 0, vẑ) is the velocity

of the HQ, initial and final gluon momenta k and k′ make the angles respectively

θk, φk and θk′ , φk′ with the ẑ and the x̂-axis. The gluonic contribution to diffusion

coefficient along the direction of the magnetic field then takes the form [100],

κ
‖
LL:Qg =

1

16E2

∫
dk

(2π)3|k|
dk′

(2π)3|k′|
dp′

(2π)3
q2
z |M̄|2f(|k|)

× (1 + f(|k′|))(2π)5δ4(P +K − P ′ −K ′), (5.16)

where f(k) is Bose-Einstein distribution function and qz = k′z − kz with kz =
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k cos θk and k′z = k′ cos θk′ is the z-component of the exchange gluon momentum.

From now onwards, we shall use the notations k = |k| and k′ = |k′|. After per-

forming p′ integration by using the three momenta Dirac delta function, Eq.(5.16)

reduces to

κ
‖
LL;Qg =

1

16E2(2π)5

∫
dk

k

dk′

k′
q2
z |M̄|2f(k)(1 + f(k′))δ(E + k − E ′ − k′). (5.17)

Further, for small momentum transfer, we can write E −E ′ = v · q and from the

energy conservation we have the energy of the exchanged gluon as ω = |k′| − |k|.
Hence, the delta function in the above equation can be simplified to

δ(ω − v · q) =
1

vk′
δ

(
cos θk′ −

k cos θk
k′

− ω

vk′

)
. (5.18)

The energy delta function of Eq.(5.18) can be used to perform the angular integra-

tion (θk) in Eq.(5.17). To perform the other angular integration (θk′ integration),

we introduce another delta function
∫
dωδ(ω−k+v·k) = 1 which can be simplified

as

δ(ω − k + v · k) =
1

vk
δ

(
cos θk −

ω − k
vk

)
. (5.19)

Note that the second delta function, as given by Eq.(5.19), introduces one more

integration variable in Eq.(5.17), which is the energy transfer to the HQ. Em-

ploying Eqs.(5.18) and (5.19) for performing the polar angular integrations, and

integrating over both the azimuthal angles from 0 to 2π, κ
‖
LL takes the form as

follows,

κ
‖
LL;Qg =

1

16E2(2π)5v2

∫
dω

∫ ω
1+v

ω
1−v

dk

∫
dk′q2

z

∫
dφk

∫
dφk′ |M̄|2f(k)

× (1 + f(k′)), (5.20)

and can be solved numerically. Similarly, the other component of the diffusion

coefficient perpendicular to the plane containing the magnetic, i.e., κ
‖
TT can be
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described as follows,

κ
‖
TT ;Qg =

1

16E2(2π)5v2

∫
dω

∫ ω
1+v

ω
1−v

dk

∫
dk′q2

⊥

∫
dφk

∫
dφk′ |M̄|2f(k)

× (1 + f(k′)), , (5.21)

where q⊥ = k′⊥ − k⊥ is the transverse momentum of exchange gluon and lies in

the xy plane as shown in Fig.(5.1). The square of transverse momentum can be

defined as,

q2
⊥ = k2 sin2 θk + k′2 sin2 θk′ − 2kk′ sin θk sin θk′ cos(φk − φk′). (5.22)

Now, let us consider the other case where HQ moves perpendicular to the

magnetic field, as shown in Fig.(5.2). Without loosing generality, we choose the

HQ motion along the x-axis so that the HQ velocity takes the form v = (vx̂, 0, 0).

As mentioned earlier, in this case, there are three diffusion coefficients, κ⊥LT , κ
⊥
TL,

and κ⊥TT . Similar to Eq.(5.17), the gluonic contribution to the diffusion coefficient

κ⊥LT ;Qg takes the form,

κ⊥LT ;Qg =
1

16E2(2π)5

∫
dk

k

dk′

k′
q2
x|M̄|2f(k)(1 + f(k′))δ(E + k − E ′ − k′). (5.23)

Instead of introducing the energy delta function identity (see before Eq.(5.19))

as in the case of v ‖ B, here it is convenient to introduce the momentum delta

function
∫
dqδ3(q + k− k′) = 1 identity so that Eq.(5.23) reduces to

κ⊥LT ;Qg =
1

16E2(2π)5

∫
dk

k

dq

k′
q2
x|M̄|2f(k)(1 + f(k′))δ(E + k − E ′ − k′). (5.24)

Again, in the small momentum transfer limit, one can write k−k′ = k−|k−q| =
−q · k̂ and with E − E ′ = v · q (energy conservation), the energy delta function

in Eq.(5.24) can be written as,

δ(E − E ′ + k − k′) = δ(v · q− q · k̂). (5.25)

Taking θq, θk and φq, φk as polar angles and azimuthal angles of exchanged gluon
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5.1 Langevin dynamics of HQ in a magnetized medium

and initial gluon, one can write

q · k̂ = q(sin θk sin θq cos(φk − φq) + cos θq cos θk), (5.26)

and

v · q = vq sin θq cosφq. (5.27)

Using Eqs.(5.26) and (5.27), the energy delta function in Eq.(5.24) can be simpli-

fied to the following form,

δ(v · q− q · k̂) =
1

q sin θq sin θk
δ

(
cos(φk − φq) + cot θq cot θk − v

cosφq
sin θk

)
. (5.28)

To perform the angular integration over azimuthal angle of k (φk integration) in

Eq.(5.24), one can further simplify the delta function of Eq.(5.28) as,

δ

(
cos(φk − φq) + cot θq cot θk −

v cosφq
sin θk

)
=

δ(φk − φ0
k)

| sin(φ0
k − φq)|

, (5.29)

where,

φ0
k = φq + cos−1

(
v cosφq
sin θk

− cot θq cot θk

)
. (5.30)

Eq.(5.30) sets the integration limit for θk integration, which can be obtained by

solving the above equation by imposing the condition | cos(φ0
k − φq)| ≤ 1. With

these simplifications, Eq.(5.24) takes the following form,

κ⊥LT ;Qg =
1

16E2(2π)5

∫ ∞
0

kdk

∫ ∞
0

qdq

k′

∫ π

0

sin θqdθq

∫ 2π

0

× dφq

∫
d(cos θk)q

2
x|M̄|2f(k)(1 + f(k′)). (5.31)

Similar to Eq.(5.31), the other two components of the diffusion coefficient in the

yz-plane can be described as,

κ⊥TL;Qg =
1

16E2(2π)5

∫ ∞
0

kdk

∫ ∞
0

qdq

k′

∫ π

0

sin θqdθq

∫ 2π

0

× dφq

∫
d(cos θk)q

2
z |M̄|2f(k)(1 + f(k′)), (5.32)
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where qz is the magnitude of the exchange gluon momentum along the ẑ direction

and

κ⊥TT ;Qg =
1

16E2(2π)5

∫ ∞
0

kdk

∫ ∞
0

qdq

k′

∫ π

0

sin θqdθq

∫ 2π

0

× dφq

∫
d(cos θk)q

2
y|M̄|2f(k)(1 + f(k′)), (5.33)

with qy as the magnitude of the exchange gluon momentum along the ŷ axis.

5.1.2 Light quark contribution to HQ diffusion

The other contribution to the diffusion coefficients in the LLL approximation arises

from the Coulomb scattering, i.e., scattering of HQ with that of LLL light thermal

quarks. Let us first consider the case in which HQ moves in the direction of the

magnetic field with velocity v. Here, we use kinetic theory approach similar to

Ref. [225] in which the momentum diffusion coefficient is related to energy loss

per unit time that is given as

dE

dt
= <

∫
d4Qjiext(Q)Ei

ind(Q). (5.34)

Here jiext(Q) = qavδ(ω−v·q) (with qa as color charge) is external current and Ei
ind

is induced color electric field. In the soft momentum transfer limit the diffusion

coefficient is obtained by using κ = −(2T/v2)dE/dt. In order to obtain the

induced chromo-electric field, one can solve Maxwell equation

− iQµF
µν(Q) = jνind(Q) + jνext(Q), (5.35)

where jµind(Q) = Aν(Q)Πµν(Q) is induced current. Here Piµν(Q) is gluon self

energy in the presence of a constant magnetic field background and at leading

order F µν = ∂µAν − ∂νAµ. Note here that in F µν , the term containing coupling

g is dropped for leading order contribution. Further Eq.5.35, can be simplified in

order to obtain Ei = iqiA0 − iωAi as

(D−1)00A0 + (D−1)i0Ai = −j0
ext, (5.36)
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5.1 Langevin dynamics of HQ in a magnetized medium

(D−1)0kA0 + (D−1)ikAi = −jiext. (5.37)

Above two equation can be solve to obtain A0, Ai and hence Ei. Explicit form of

A0, Ai is given in appendixA.3. With Ei = iqiA0 − iωAi and Eq.5.34, the quark

contribution to the diffusion coefficient κ
‖
LL;Qq is given as

κ
‖
LL;Qq =

g2(N2 − 1)

2N
=
∫

d4Q

(2π)4

2Tq2
z

ω

(
viAi − A0

)
. (5.38)

Similarly, the component transverse to the magnetic field can be written as

κ
‖
LL;Qq =

g2(N2 − 1)

2N
=
∫

d4Q

(2π)4

2Tq2
⊥

ω

(
viAi − A0

)
, (5.39)

where q2
⊥ = q2 sin2 θq. The inverse propagator in Eqs.5.36 and (5.37) are retarded

propagator that is given by

DR
µν(Q) = − Pµν(Q)

(ω + iε)2 − q2
− Π

‖
R(ω + iε,q)P

‖
µν(Q)

Q2(Q2 − Π
‖
R(ω + iε,q))

+ ξ
QµQν

((ω + iε)2 − q2)2
,(5.40)

where Π
‖
R is the retarded self energy of the gluon arising from the light quarks loop

with light quarks in the LLL and ξ is the gauge parameter. The expression for

Π
‖
R is given in appendixA.1. DR

0,ij in Eq.(5.40) is the gluon propagator in vacuum.

The longitudinal projection operator P
‖
µν(Q) is defined as

P ‖µν(Q) = −g‖µν +
qµ‖ q

ν
‖

q2
‖
, (5.41)

and the other projection operator Pµν(Q) takes the form as,

Pµν(Q) = −gµν +
QµQν

(ω ± iε)2 − q2
. (5.42)

In Eq.(5.38), the imaginary contribution comes from the medium dependent term

of the retarded propagator and can be described as,

=DR
ij(Q) = − 2=Π

‖
R

(Q2 −<Π
‖
R)2 + (=Π

‖
R)2

P
‖
ij(Q), (5.43)
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where <Π
‖
R(Q) and =Π

‖
R(Q) are the real and the imaginary parts of retarded self

energy. Similar to the case of gluonic contribution, the angular integration in

Eq.(5.38) can be performed by employing the energy delta function, and other

integrations can be evaluated numerically.

Next, we consider the quark contribution to the diffusion coefficient for the

case HQ moving perpendicular to the magnetic field. Similar to Eq.5.38, the

other three diffusion coefficients are given as

κ
‖
TL;Qq =

g2(N2 − 1)

2N
=
∫

d4Q

(2π)4

2Tq2
z

ω

(
viAi − A0

)
, (5.44)

κ
‖
LT ;Qq =

g2(N2 − 1)

2N
=
∫

d4Q

(2π)4

2Tq2
x

ω

(
viAi − A0

)
, (5.45)

κ
‖
TT ;Qq =

g2(N2 − 1)

2N
=
∫

d4Q

(2π)4

2Tq2
y

ω

(
viAi − A0

)
. (5.46)

An explicit form of term contributing to the diffusion coefficients is presented in

appendixA.3 The total diffusion coefficients can be obtained by

κ
‖
LL = κ

‖
LL;Qg + κ

‖
LL;Qq, (5.47)

κ
‖
TT = κ

‖
TT ;Qg + κ

‖
TT ;Qq, (5.48)

κ⊥LT = κ⊥LT ;Qg + κ⊥LT ;Qq, (5.49)

κ⊥TL = κ⊥TL;Qg + κ⊥TL;Qq, (5.50)

κ⊥TT = κ⊥TT ;Qg + κ⊥TT ;Qq. (5.51)

As we have observed that the diffusion coefficients are highly anisotropic with

the inclusion of the magnetic field for the case of finite veclocity of HQ.
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Figure 5.3: Diffusion coefficient (κ⊥) for HQ moving along x-axis for m = 20 MeV,
eB = 5m2

π, 10m2
π and v = 0.5

5.2 Results and discussions

We discuss here the variation of different HQ anisotropic diffusion coefficient in

a magnetized QGP medium as a function of HQ velocity and temperature. For

the quantitative analysis, we consider QCD coupling constant αs = 0.3, HQ mass

M = 1.2 GeV, light quark mass m = 0.02 GeV and quark flavor Nf = 2.

In Fig.(5.3), we have shown the variation of κ⊥, i.e., the momentum diffusion

for the case of HQ moving perpendicular to the magnetic field as a function of

temperature for eB = 5m2
π and eB = 10m2

π, where mπ is pion mass. We have

considered here HQ motion to be along x-axis. All three components of κ⊥ increase

with temperature and magnetic field. It is observed that the component of the

coefficient κ⊥ in the direction of the magnetic field (here, z-axis, i.e., transverse to

the direction of motion in this case) κ⊥TL is dominant in comparison with diffusion

along the transverse direction to the magnetic field and we have κ⊥TL > κ⊥LT > κ⊥TT .

In Fig.(5.4), the temperature dependence of κ‖ is depicted for v = 0.5 at

eB = 5m2
π and eB = 10m2

π. Here, both the magnetic field and HQ velocity are

along z-axis. We observe that the HQ momentum diffusion in the plane transverse

to the magnetic field (xy plane) is larger than the diffusion along the magnetic

field, i.e., κ
‖
TT � κ

‖
LL for all ranges of temperature considered here. For the case of
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Figure 5.4: Diffusion coefficient (κ‖) for HQ moving along z-axis for m = 20 MeV,
eB = 5m2

π, 10m2
π and v = 0.5

the static limit of HQ (v = 0), similar results have been obtained in Ref. [144, 187].

The component κ
‖
TT has a strong dependence on temperature, on the other hand,

κ
‖
LL shows a weak dependence on the temperature. This behavior is in contrast

with the case of κ⊥ case where the diffusion along the magnetic field is dominant.

Numerically it is observed that the Coulomb scattering terms dominate over the

Compton scattering ones for the temperatures and the magnetic field considered

here.

In the left of Fig.(5.5), the variation of κ⊥ as a function of HQ velocity is

shown. All three diffusion coefficients increase with an increase in the HQ velocity.

However, κ⊥TT has a very weak dependence on the HQ velocity. Out of three

diffusion coefficients, κ⊥TL is the dominant, i.e., κ⊥TL � κ⊥LT , κ
⊥
TT for all ranges of

the HQ velocity. In the right of Fig.(5.5), diffusion coefficients, κ
‖
LL and κ

‖
TT , are

plotted as a function HQ velocity. Similar to the case of v = 0 (static limit) in

Ref. [144], diffusion in the transverse direction is always larger than the diffusion

along the longitudinal direction for all values of v. Apart from this, both κ
‖
TT and

κ
‖
LL have a similar dependence on the HQ velocity.

The anisotropic HQ drag coefficients in the non-relativistic (NR) limit can be

estimated by using the dissipation fluctuation theorem as,

η
‖
D =

κ‖

2MT
, (5.52)
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Figure 5.5: Diffusion coefficient (κ⊥, κ‖) as a function of HQ velocity for eB = 5m2
π

and T = 0.25 GeV.

and

η⊥D =
κ⊥

2MT
. (5.53)

From Fig.(5.3), it can be observed that for the case of HQ moving perpendicular to

the magnetic field, the drag parallel to B and perpendicular to v is the dominant

one, i.e., η⊥D;TL > η⊥D;LT , η
⊥
D;TT for a given value of v. In this case, the HQ is dragged

more in the direction of the magnetic field in comparison with the direction along

its motion, and direction transverse to both the magnetic field and HQ motion.

This anisotropic nature of drag forces to the HQ in the magnetized medium may

generate an additional contribution to the flow coefficients, i.e., directed flow and

elliptic flow, of HQs. For the case of HQ moving parallel to the magnetic field, the

drag perpendicular to the magnetic field is the dominant one, i.e., η
‖
D;TT > η

‖
D;LL.

This implies that HQ is more dragged in the plane perpendicular to the magnetic

field (here, xy-plane) in the case of v‖B, which may generate anisotropic flow

coefficients. The relative magnitudes of the drag and the diffusion coefficients

quantify the anisotropic nature of the transport coefficients. With an increase

in the magnetic field in the LLL approximation, the drag/diffusion coefficients

increase in magnitude, while the relative trend of the coefficients still remains the

same.
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5.3 Summary

The anisotropic diffusion and drag coefficients of HQ beyond the static limit have

been computed in a constant (along the z-axis) magnetic field background, at

leading order in the QCD coupling constant. In the medium, the HQ makes

multiple collisions with the thermal partons, i.e., light quarks and gluons, and

the process is akin to the Brownian motion. The magnetic field is assumed to be

strong such that the condition
√
eB � T is satisfied, and the dynamics of light

quarks are restricted in the LLL. Further, it is also assumed that M �
√
eB, so

that HQ is not directly affected by the magnetic field due to its large mass. To

study the diffusion of HQ, the momentum transfer in the collision of HQ and the

thermal partons is assumed to be small.

It is observed that there can be total five momentum diffusion coefficients of

HQ in the medium, depending on the orientation of its motion and magnetic field.

In the case of the HQ motion along the direction of the magnetic field, v ‖ B,

the coefficients κ
‖
LL and κ

‖
TT quantify the momentum diffusion along ẑ direction

and diffusion in the xy plane, i.e., perpendicular to the plane containing magnetic

field, respectively. Out of these two, diffusion along the direction of the magnetic

field is smaller than the diffusion transverse to the direction of the magnetic field,

i.e.,

κ
‖
LL

κ
‖
TT

� 1. (5.54)

In the strong field limit, the Coulomb scattering contribution to κ‖ is observed

to be dominant over the contribution arising from the Compton scattering of HQ

and gluon.

Similarly, there are three diffusion coefficients for the case of HQ moving trans-

verse to the direction of the magnetic field i.e., v ⊥ B denoted as κ⊥TL, κ
⊥
LT , κ

⊥
TT .

In this case, diffusion in the direction transverse to velocity and parallel to B is

dominant in comparison with other components and we observe,

κ⊥TT
κ⊥LT

,
κ⊥LT
κ⊥TL

,
κ⊥TT
κ⊥TL
� 1. (5.55)

The relative magnitudes of the diffusion coefficients suggest the anisotropic behav-
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ior of the momentum broadening. Further, in the non-relativistic limit, the drag

coefficient can be estimated by using the dissipation-fluctuation theorem. Similar

to the diffusion coefficients, there are five drag coefficients, and the relative mag-

nitude of the drag coefficient suggests the anisotropic drag force on HQ. For HQ

moving parallel to the magnetic field, our observation is qualitatively consistent

with the results of Ref. [144] in the static limit, i.e.,

η
‖
D;LL

η
‖
D;TT

� 1. (5.56)

It seems that the outcome as in Eq.(5.56) is universal, i.e., true in both the static

and non-static limits. Similarly, for the case of HQ moving perpendicular to the

magnetic field, the relative magnitudes of the drag coefficients satisfy,

η⊥D;TT

η⊥D;LT

,
η⊥D;LT

η⊥D;TL

,
η⊥D;TT

η⊥D;TL

� 1, (5.57)

and indicate the anisotropic drag force in different directions. The trend in

Eq.(5.57) is in line with the results of the drag coefficient in an anisotropic QGP

in Ref. [225]. The dependence of the magnetic field and HQ velocity on the mo-

mentum diffusion coefficients have been explored in the analysis.

We have investigated the anisotropic nature of the momentum diffusion and

drag forces arising from the magnetic field considering the finite velocity of HQ.

The anisotropic transport coefficients can be used as input parameters for the

estimation of HQ flow coefficients in the magnetized medium. It may be noted

that HQ directed flow v1, is identified as a novel observable to probe the initial

electromagnetic field produced in high energy collisions. The recent LHC measure-

ment [193], along with the RHIC findings [192], on the D-meson flow coefficient v1,

give the indications of the strong electromagnetic field produced in high energy

heavy-ion collisions. However, to compute the HQ directed flow, one needs to

take into account the effect of electromagnetic field on HQ transport coefficients

as well, which has been ignored in the previous calculations [145]. Heavy meson

nuclear suppression factor and elliptic flow are the other experimentally measured

observables that can be affected by the anisotropic HQ transport coefficient due

to the presence of the electromagnetic field. The present investigation is limited

to the strong field case of including LLL for the light quarks. For the case of
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the magnetic field of the order of the temperature i.e., eB ∼ T 2 higher Landau

levels may give significant contributions to the transport coefficients. So far, we

have been discussing the magnetic field effects on HQ. In next chapter, we shall

investigate the non-perturbative effects originating from confinement and chiral

symmetry breaking on HQ transport properties.

112



C H A P T E R 6

Heavy quark diffusion in

Polyakov loop medium

Experimental HIC programs at RHIC and LHC indicate the production of a liquid-

like phase (QGP) of the matter, having a remarkably small value of shear viscosity

to entropy density ratio, η/s ≈ 0.1, where quarks and gluons govern the properties

of the system [226, 227]. To characterize the properties of QGP, penetrating and

well-calibrated probes are essential. In this context, the heavy quarks (HQs) [228,

224, 229, 218, 85, 84, 217], mainly charm and bottom, play a crucial role since they

do not constitute the bulk part of the matter owing to their larger mass compared

to the temperature created in heavy-ion collisions. Also, thermal production of

heavy quarks is negligible, due to their large masses, in the QGP within the range

of temperatures that can be achieved in RHIC and LHC colliding energies.

Heavy quarks are exclusively created in hard processes that can be handled

by perturbative QCD calculations [230], and therefore, their initial distribution is

theoretically known and can be verified by experiment. They interact with the

plasma constituents, the light quarks, and the gluons, but their initial spectrum

is too hard to come to equilibrium with the medium. Therefore, the high momen-

tum heavy quarks spectrum carries the information of their interaction with the

plasma particles during the expansion of the hot and dense fireball and on the
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plasma properties. Since the light quark, anti-quark, and gluons are thermalized,

the heavy quark interaction with the light constituents leads to a Brownian mo-

tion, which can be treated with the framework of a Fokker Plank equation. Thus

the interaction information of the heavy quark in QGP is contained in the drag

and diffusion coefficients of the heavy quark. The resulting momentum distribu-

tion of the heavy mesons which depend upon the drag and diffusion coefficients

get reflected in the nuclear modification factor (RAA), which is measured experi-

mentally.

Initially, pQCD predicted a small nuclear suppression factor [231, 232], RAA,

in nucleus-nucleus collisions in comparison with the proton-proton collisions. The

first experiment data [233, 222, 223] on heavy quarks suggest a strong nuclear

suppression factor that can not be explained within the pQCD framework. Sev-

eral attempts [100, 209, 210, 234, 235, 221, 214, 236, 93, 237, 238, 239, 240, 241,

242, 243, 220, 244] have been made by different groups to study the heavy quarks

interaction in QGP going beyond pQCD to include the nonperturbative effects.

Quasi-particle models enjoy considerable success in describing heavy quark dy-

namics in QGP [235, 93].

In the present study, we are attempting to study heavy quark transport coeffi-

cient in QGP including the non-perturbative effects through a background gauge

field (the Polyakov loop background) and chiral condensate. The Polyakov loop

manifests itself in the transport coefficient in two ways. Firstly, through the

Debye mass that enters in calculating the scatterings of the heavy quark off of

light thermal partons. It also enters non-trivially on the statistical distribution of

the light partons in a non-perturbative medium. Indeed, both the effects arising

from the Polyakov loop and quark condensate are important near the transition

temperature. The value of the normalized Polyakov loop is about half its asymp-

totic value at the critical temperature in different low energy effective models like

Polyakov Nambu Jona Lasinio (PNJL) models [62, 245, 246], or Polyakov quark

meson(PQM) [247, 248, 249, 250, 251, 252] models. Similarly, the chiral conden-

sate remains significantly finite at temperatures around the critical temperature.

Effects of Polyakov loop has been studied in various contexts such as dilepton

and photon production [253], heavy quark energy loss [254]. Significant effects

have been found by including these non-perturbative features. To estimate the
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quark masses and the Debye mass, we, therefore, need the value of the Polyakov

loop as a function of temperature. We do so in two different approaches. One

is phenomenological in the sense that we take Polyakov loop value as a function

of temperature from PQM model. The other approach is to take the same from

lattice QCD simulations.

This chapter is organized as follows, in Sec. 6.1 we discuss the Fokker-Plank

framework for calculating drag and diffusion of heavy quarks by employing Boltz-

mann equation in soft momentum exchange between heavy quark and bulk medium

[97]. Sec. 6.3 describes the non-perturbative effects (Polyakov loop and quark

mass) on the Debye mass and light quark thermal mass. Such an effect can be im-

portant near the transition temperature where the light quark condensates could

still be relevant. In Sec. 6.4, we discuss the relevant scattering amplitudes within

the matrix model of semi-QGP. The drag and the diffusion coefficients are evalu-

ated in Sec. (7.3) where the behavior of these transport coefficients as a function

of temperature as well as momentum is also discussed. Finally, in Sec. (7.4), we

summarise the results and present a possible outlook.

6.1 HQ diffusion in QGP: Fokker-Plank frame-

work

The Brownian motion of HF particles in the bulk medium is described by the

Fokker-Plank equation where the interactions of heavy quark with the bulk of

light quarks and gluons are encoded in the transport coefficient. Assuming that

HF quark of momentum p is traveling in a medium of light quark and gluon, the

Boltzmann equation for phase-space distribution fQ of heavy quark can be written

as [97] [
∂

∂t
+
p

Ep

∂

∂x
+ F

∂

∂p

]
fQ(p,x, t) = C[fQ], (6.1)

where F is the force due to external mean-field such as chromo electric or magnetic

fields present in the initial stages of the heavy ion-collision , Ep =
√
m2
Q + p2 is the

energy of heavy quark with mass mQ and C[fQ] is the collision integral. Neglecting
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the mean-field effects, Eq[6.1] reduces to

∂

∂t
fQ(p, t) = C[fQ]. (6.2)

On the right-hand side of Eq.[6.2], collision integral in terms of collision rate which

change the momentum of HF quark from p to p− k is written as

C[fQ] =

∫
d3k[w(p+ k,k)fQ(p+ k)− w(p,k)fQ(p)], (6.3)

where w is the transition rate of heavy quark colliding with heat bath particles

of momentum k. The first term in Eq.[6.3] is the gain term that describes the

transition of HF quark from a state of momentum p+k to momentum state p while

the loss term (second term) represents the scattering out from the momentum

state p. Assuming the scatterings of HF quark with the bulk medium partons is

dominated by small momentum transfer i.e., |k| � |p|, the distribution function

of HQ and transition rate can be expanded up to second order with respect to k

i.e.,

w(p+ k,k)fQ(p+ k) ' w(p,k)fQ(p) + k
∂

∂p
[w(p,k)fQ(p)] +

1

2
kikj

× ∂2

∂pi∂pj
[w(p,k)fQ(p)]. (6.4)

With this approximation the collision integral simplifies to

C[fQ] =

∫
d3k

[
kj

∂

∂pj
+

1

2
kikj

∂2

∂pi∂pj

]
w(p,k)fQ(p). (6.5)

The function w can be expressed in terms of the cross-section for scattering pro-

cesses in the heat bath. For, scattering of HQ with momentum p with the bulk

medium-light thermal parton with momentum q, one finds

w(p,k) = γl

∫
d3q

(2π)3
f(q)l|vrel|

dσ

dΩ
(p, q → p− k, q + k), (6.6)
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where f(q)l is Fermi-Dirac/or Bose-Einstein distribution function of light thermal

partons and γl is degeneracy factor which is γq = 6 for quarks and γg = 16

for gluons. Boltzmann equation Eq.[6.2] can be approximated as Fokker-Plank

equation
∂

∂t
fQ(p, t) =

∂

∂pi

(
Ai(p)fQ(p, t) +

∂

∂pj
Bij(p)fQ(p, t)

)
. (6.7)

Here Ai and Bij are drag and diffusion coefficient and are given as

Ai(p) =

∫
d3kw(p,k)ki (6.8)

Bij(p) =
1

2

∫
d3kw(p,k)kikj. (6.9)

For an isotropic heat bath at local thermal equilibrium one may define [255]

Ai(p) = A(p)pi, (6.10)

Bij(p) = B0(p)P
‖
ij +B1(p)P⊥ij , (6.11)

where P
‖
ij and P⊥ij are longitudinal and transverse projection operators defined as

P
‖
ij =

pipj
|p|2 , P⊥ij = δij −

pipj
|p|2 . (6.12)

For a process lQ → lQ (where l stands for light quarks and gluon) the drag and

diffusion coefficients of HQ in the plasma of light quarks and gluons are given by

the scalar integral of form

〈X(p′)〉 =
1

2Ep

∫
d3q

(2π)32Eq

∫
d3p′

(2π)32Ep′

∫
d3q′

(2π)32Eq′
|M|2

× (2π)4δ4(p+ q − p′ − q′)fl(q)(1± fl(q))X(p′), (6.13)

where l = q, q̄, g. In the present study, we evaluate scattering amplitude for

relevant 2→ 2 processes within the matrix model which make the matrix element

squared color dependent. So in the presence of a background gauge field Eq.(6.13)
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becomes

〈X(p′)〉 =
1

2Ep

∫
d3q

(2π)32Eq

∫
d3p′

(2π)32Ep′

∫
d3q′

(2π)32Eq′

(∑
a,e

|MqQ|2abfa(q)(1

− fe(q
′)) +

∑
e,f,g,h

|MgQ|2efghfef (q)(1 + fgh(q
′))

)
(2π)4δ4(p+ q − p′ − q′)

× X(p′), (6.14)

where a, e are color indices of incoming and outgoing light quark and ef, gh are

color indices for incoming and outgoing gluon that interact with HQ, |MqQ|2ab and

|MgQ|2efgh are matrix element squared respectively for the processes qaQc → qbQd

and gefQa → gghQb. In the notation as written in Eq.[6.14], the drag and diffusion

coefficients are written as

A(p) = 〈1〉 − 〈p · p
′〉

|p|2 (6.15)

B0(p) =
1

4

(
〈|p′|2〉 − 〈(p · p

′)2〉
|p|2

)
(6.16)

B1(p) =
1

2

(〈(p · p′)2〉
|p|2 − 2〈p · p′〉+ |p|2〈1〉

)
. (6.17)

In the presence of a non-trivial Polyakov loop background, apart from the matrix

elements, the distribution functions also become color-dependent. We evaluate

these scattering amplitudes within the matrix model of semi QGP, which we dis-

cuss in the next section.

6.2 Semi-QGP

At high temperature, the density of colored particles like quarks and gluon are

large and can be calculated using perturbative QCD. However, at low temperature,

colored particles are statistically suppressed and are measured by the small value

of Polyakov loop e.g., at chiral cross-over temperature Tc ∼ 170 MeV, φ = 0.2[26]

which is way smaller from its asymptotic value i.e., φ = 1. Because of the suppres-

sion of colored particles, the region near chiral cross-over is termed as semi-QGP
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[94]. Semi QGP is characterized by the Polyakov loop as defined in Eq.(6.20).

The lagrangian of the matrix model is same as that of QCD [256]. In the mean-

field approximation, we take the constant background field as A0
µ = 1

g
δµ0Q

a with

Qa = 2πqaT . Since A0 is traceless so sum over Q’s vanishes i.e.,
∑

aQ
a = 0. For

an SU(3) group, Qa = (−Qi,−Qi−1, ..0, Qi−1, Qi), where i = N/2 if N is even and

(N − 1)/2 if N is odd. In the temporal direction, the Wilson line is written as

P = P exp

(
ig

∫ β

0

dτA0(x0,x)

)
(6.18)

where P stands for the ordering of imaginary time and τ is imaginary time.

Polyakov loop, which is the trace of Wilson line, in the constant background

gauge field can be written as

φ =
1

N

N∑
a=1

exp(i2πqa). (6.19)

For an SU(3) group, where qa = (−q, 0, q) Eq.[6.19] is simplified to

φ =
1

3
(1 + 2 cos(2πq)). (6.20)

For the calculational purpose, we shall use double line notation which is quite use-

ful in the matrix model of semi QGP. In the double line basis, quark carries one

color index say a = 1, 2, .., N and gluons carry double index say ab = 1, 2, .., N2.

For SU(N) group such N2 pairs lead to N2 generators and the basis is over-

complete by one generator. The over-complete basis is compensated by introduc-

ing the projection operator defined as [256, 257, 258]

Pabcd = Pba;cd = Pab;dc = δac δ
b
d −

1

N
δabδcd (6.21)

hence the generator is given by

(tab)cd =
1√
2
Pabcd . (6.22)
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The trace over two generators doesn’t vanish but rather is again a projection

operator i.e.,

Tr(tabtcd) =
1

2
Pabcd. (6.23)

This is due to the presence of extra generator as compared to generators in an

orthonormal basis. The structure constant of the group in the double line basis is

given by

fab,cd,ef =
i√
2

(δadδcfδeb − δafδcbδed). (6.24)

The background gauge field acts as an imaginary chemical potential for colored

particles so the statistical distribution function of quark/anti-quark and the gluon

are

fa(E) =
1

eβ(E−iQa) + 1
, f̃a(E) =

1

eβ(E+iQa) + 1
, (6.25)

fab(E) =
1

eβ(E−i(Qa−Qb)) − 1
, (6.26)

where the single and double indices are for quark/antiquark and gluon. For a

background field and given Qa these distribution functions are complex so are

unphysical. Physical meaning comes when one integrates over all distributions

of Qa. Let us note that the quark distribution function involves only one color

index because these are represented in fundamental representation. For gluons,

the adjoint representation leads to two fundamental indices. For three colors, the

color averaged statistical distribution function of the gluons becomes

fg(E) =
1

32

3∑
a,b=1

fab(E) =
1

9

(
3

eβE − 1
+

eβE(6φ− 2)− 4

1 + e2βE + eβE(1− 3φ)

+
eβE(9φ2 − 6φ− 1)− 2

1 + e2βE + eβE(1 + 6φ− 9φ2)

)
. (6.27)

A comment regarding the color dependent distribution function may be in order.

Let us note that, for the color dependent gluon distribution functions, the diagonal

ones i.e., f11(E), f22(E), f33(E) are real while the off diagonal ones i.e., fij(E) and

fji(E) are complex conjugate of each other. When the color sum is performed the

imaginary parts always cancel out leading to the sum to be real. This cancellation

of imaginary parts also always occur for transport coefficients even with the color
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dependent masses and lead to the transport coefficient that are always real. The

color averaged distribution functions of the quark/anti-quark is

fq/q̄(E) =
1

3

3∑
a=1

fa(E) =
1

3

3∑
a=1

f̃a(E) =
φe−βE + 2φe−2βE + e−3βE

1 + 3φe−βE + 3φe−2βE + e−3βE
. (6.28)

Similar to color averaged distribution function fg(E) the color averaged distribu-

tion function of quark is real due to the cancellation of imaginary parts of f1(E)

and f3(E). It may be noted that for pure gluon case, φ = 1 in the confined phase

and φ = 0 in the deconfined phase. This leads to the gluon distribution function

fg(E) =
1

e3βE − 1
, (6.29)

in the confined phase and

fg(E) =
1

eβE − 1
, (6.30)

in the deconfined phase. In the presence of quarks, one does not have a rigorous

order parameter for deconfinement, however in φ = 0 case the color averaged

quark/anti-quark distribution reduces to

fq/q̄(E) =
1

e3βE + 1
(6.31)

so that quark are suppressed statistically. In the perturbative limit i.e., φ = 1 it

becomes

fq/q̄(E) =
1

eβE + 1
. (6.32)

The color averaged distribution function of quark/anti-quark as given in Eq.(6.28)

is exactly the same as that in PQM model within mean field approximation [252].

For the computation of Debye and thermal mass, we use double line notation [257,

258] which is more convenient here.

In the imaginary time formalism, similar to the case of no background field,

the resummed gluon propagator in the presence of a static background gauge field

is given as[259]

Dµν; abcd(K) = PL
µν

k2

K2
DL
abcd(K) + P T

µνD
T
abcd(K), (6.33)
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where P T
µν = gµi

(
−gij− kikj

K2

)
gjν and PL

µν = −gµν+ kµkν
K2 −P T

µν are the longitudinal

and the transverse projection operators. The longitudinal and the transverse gluon

propagators are written as

DL
µν;abcd(K) =

(
i

K2 + F

)
abcd

, (6.34)

DT
µν;abcd(K) =

(
i

K2 −G

)
abcd

, (6.35)

where

F = 2M2

(
1− y

2
ln

(
y + 1

y − 1

))
, (6.36)

G = M2

(
y2 +

y(1− y2)

2
ln

(
y + 1

y − 1

))
, (6.37)

with y = k0
|k| and M2 = (M2)abcd is the thermal mass of the gluon. For the drag

and the diffusion of HQ studied here, the momentum transfer is small so only

longitudinal propagator contributes to the squared matrix elements[255, 100].

6.3 Thermal and Debye masses in Polyakov loop

background

In this section, we shall estimate the non-perturbative Debye screening mass and

quark thermal mass in a nontrivial Polyakov loop background to be used in the

estimation of the drag and diffusion coefficients using Eqs.(6.15) and (6.16). For

the thermal masses of light quark and gluon, we also include the possible effects

from a finite mass of the light quarks which can arise from a nonvanishing scalar

quark- antiquark condensate. For the case of massless light quark, the thermal

masses are discussed in Ref.[253, 254, 259, 256].

6.3.1 Quark loop contribution to Debye mass

Generally, Debye mass (mD) is defined through the pole of effective propagator

in the static limit i.e., ω = 0,p → 0 and is related to the time-like component of
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6.3 Thermal and Debye masses in Polyakov loop background

gluon self-energy Π44(ω = 0,p → 0) [5]. It turns out that, in the presence of a

static background field, apart from the usual T 2 dependent term similar to as in

perturbative HTL calculations, there is an additional T 3 dependent contribution

to the gluon self energy. The later component arises because the background field

induces a color current which couples to the gluon. While the T 2 dependent term

in Πµν is transverse (i.e., P µΠµν(P ) = 0), the T 3 dependent term is not and spoils

the transversality relation which is required for the gauge invariance. Therefore,

one needs an additional contribution which may be of non-perturbative origin to

the gluon self energy to cancel such a term. Similar to Ref.[259], we assume that

such a term exists and cancels this undesirable T 3 term. Under the assumptions

taken here, it is clear that the pole (F) of the longitudinal propagator in Eq.(6.34)

can be related to Π44 component of gluon self energy. Therefore, in the static

limit, this term can be defined as Debye mass [256].

In this chapter, we shall focus only on the time like component of the gluon self

energy with the assumption that T 3 dependent term is cancelled. For massless

quarks, Debye mass has already been computed in Ref.[256]. We include here

the effect of finite constituent quark mass in the quark loop contribution to the

Debye mass. We work in the imaginary time formalism of thermal field theory

for evaluating the corresponding diagrams. In this formalism, because of the

boundary conditions of imaginary time, the energy of a fermion p4 is an odd

multiple of πT while that for a boson is an even multiple of πT . For calculating

the Debye mass, we first evaluate the quark loop in the gluon self-energy for which

the corresponding diagram is shown in Fig.(6.1), where the loop momentum four

vector is written as K̃e
µ = (K + Q̃e)µ = (ωn + Q̃e,k) with Q̃e = Qe +πT In t’hooft

double line notation, the polarization tensor can be written as

Πq
µν;b′baa′(P,Q,m) = g2Nf t

aa′

ee′ t
bb′

e′e

∫
d4K

(2π)4
TrD[γµ( /̃Ke − /̃P bb′)γν /̃Ke +m2γµγν ]

× ∆(K)∆(P −K), (6.38)

where aa′, bb′(e, e′) are color indices of gluons (quark/antiquark), Nf is quark flavor

number and ∆(K)−1 = (ωn + Q̃e)
2 + k2 +m2 and

∆(P −K)−1 = (ω − ωn +Qbb′ − Q̃e)
2 + (p− k)2 +m2 (6.39)
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− 1
N

− 1
N + 1

N2

a′ b′

a b

K̃e − P̃ b′b

K̃e

e

e′

Figure 6.1: Quark loop of gluon self energy in double line notation.

with Qbb′ = Qb − Qb′ , Ek =
√

k2 +m2, Eq =
√

(p− k)2 +m2, ωn = (2n + 1)πT

and P4 = ω. TrD is trace in Dirac space and Qi is the diagonal matrix in color

space which is given as Qa = (−2πTq, 0, 2πTq) and q is related to the Polyakov

loop expectation value as given in Eq.(6.20). Here, we take hard thermal loop

(HTL) approximation and also assume that m� T . Thus, taking HTL limit and

the trace over Dirac space, Eq.(6.38) reduces to

Πq
µν;b′baa′(P,Q,m) = g2Nf t

aa′

ee′ t
bb′

e′e

∫
d4K

(2π)4
[8(K + Q̃e)µ(K + Q̃e)ν − 4(K + Q̃e)

2δµν

− 4m2δµν ]∆(K)∆(P −K). (6.40)

As we are interested in calculating Debye mass for which we need time-like compo-

nent (Π44) of the gluon self-energy. So from here onwards, we shall proceed with

this term. For this purpose, we write the integration in Eq.(6.40) as
∫

d4K
(2π)4

=

T
∞∑

n=−∞

∫
dk

(2π)3
; k4 ≡ ωn = 2nπT . Simplifying Eq.(6.40), we have

Πq
44;b′baa′(P,Q,m) = 4g2Nf t

aa′

ee′ t
bb′

e′e

∫
dk

(2π)3
T
∑
n

[(−2k2 −m2)∆(K)∆(P −K)

+ ∆(P −K)]. (6.41)

The frequency sums in Eq.(6.41) over discrete Matsubara frequencies are some-
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what involved but can be performed routinely leading to

T
∞∑

n=−∞

∆(K)∆(P −K) =
1

4EkEq

(
f(Eq + iQ2 + iω)− f(Ek − iQ1)

Ek − Eq + i(Q1 +Q2 + ω)

+
1 + f(Ek − iQ1)− f(Eq − iQ2− iω)

Ek + Eq − i(Q1 +Q2 + ω)

+
f(Ek + iQ1)− f(Eq − iQ2− iω)

Eq − Ek + i(Q1 +Q2 + ω)

+
1 + f(Ek + iQ1)− f(Eq + iQ2 + iω)

Ek + Eq + i(Q1 +Q2 + ω)

)
, (6.42)

T
∞∑

n=−∞

∆(P −K) = −1 + f(Eq + iQ2 + iω) + f(Eq − iQ2− iω)

2Eq
, (6.43)

where Q2 = Qbb′ − Q̃e, Q1 = Q̃e and f(E ± iQ) is Bose-Einstein distribution

function. In Eqs.(6.42) and (6.43), the term which is independent of distribution

function is the vacuum contribution which can be dropped when one considers the

medium dependent terms only. First and third term in Eq.(6.42) contribute to the

T 3 dependent term. Such a term exists only in the presence of a background gauge

field in the HTL approximations [256]. As mentioned earlier, this term spoils the

transversality condition and we shall not consider this undesirable contribution.

Furthermore, the T 2 dependent contributions are given by second and fourth term

of Eq.(6.42) as well as by the medium dependent term in Eq.(6.43). In the static

limit, the time like component of the gluon self-energy can be written as

Πq
44;b′baa′(Q,m)|(ω=0,~p→0) = −4g2Nf t

aa′

ee′ t
bb′

e′e[2I1(m, Q̃e, Qbb′ − Q̃e) + I2(m, Q̃e,

Qbb′ − Q̃e) + I3(m,Qbb′ − Q̃e)], (6.44)

where

I1(m, Q̃e, Qbb′ − Q̃e) =
T 2

16π2

∫
x4dx

(x2 + y2)
3
2

(
f(x, y, iq1) + f(x, y,−iq1)

− f(x, y, iq2)− f(x, y,−iq2)

)
, (6.45)
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I2(m, Q̃e, Qbb′ − Q̃e) =
m2

16π2

∫
x2dx

(x2 + y2)
3
2

(
f(x, y, iq1) + f(x, y,−iq1)− f(x, y, iq2)

− f(x, y,−iq2)

)
, (6.46)

I3(m,Qbb′ − Q̃e) =
T 2

4π2

∫
x2dx√
x2 + y2

(
f(x, y, iq2) + f(x, y,−iq2)

)
, (6.47)

where we have defined the dimensionless variables x = βk, y = βm and q1 =

βQ1. Further, f(x, y, iq)’s are the Bose distribution functions in terms of these

dimensionless variables as e.g.,

f(x, y, iq) =
1

exp(
√
x2 + y2 + iq)− 1

. (6.48)

Also note that although distribution function is a complex quantity, the functions

I1(m, Q̃e, Qbb′ − Q̃e), I2(m, Q̃e, Qbb′ − Q̃e) and I3(m,Qbb′ − Q̃e) are real functions.

With further simplification, Π44 can be written as

Πq
44;b′baa′(Q,m)|(ω=0,~p→0) = −g2Nf t

aa′

e′e t
bb′

ee′
T 2

4π2

[
2(D(q1, y)−D(q2, y)) + 4F(q2, y)

+ 2y2B(Q2, y)

]
, (6.49)

where the dimensionless real functions D,F and B are

D(q, y) =

∫
x4dx

(x2 + y2)
3
2

(
f(x, y, iq) + f(x, y,−iq)

)
, (6.50)

B(q, y) =

∫
x2dx

(x2 + y2)
3
2

(
f(x, y, iq) + f(x, y,−iq)

)
, (6.51)

F(q, y) =

∫
x2dx√
x2 + y2

(
f(x, y, iq) + f(x, y,−iq)

)
. (6.52)

In the limiting case of vanishing quark masses i.e. y = 0, the function B(q, y)

do not contribute to Πq
44 as it is multiplied by a y2 term while the functions

D(q, y = 0) and F(q, y = 0) become equal and can be written in terms of Polylog
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functions Li2(z) as

F(q, y = 0) = D(q, y = 0) =

∫
dxx

(
f(x, y = 0, iq) + f(x, y = 0,−iq)

)
≡ Li2(iq) + Li2(−iq). (6.53)

The Polylog function Li2(z) can also be written in terms of Clausen functions

Cl2(z) e.g.

Li2(i2πq) =
π2

6
(1− 6q + 6q2) + iCl2(2πq), (6.54)

that has been used in Ref.[256]. In the present investigation, however, we will

keep the effect of masses in Eqs(6.50), (6.51), (6.52) and integrate it numericaly to

estimate the Debye mass. Generators appearing in the right side of Eq.(6.49) can

be simplified by using projection operators, so that the product of two generators

becomes

taa
′

e′e t
bb′

ee′ =
1

2

[
δbeδb

′e′δa
′eδae

′ − 1

N

(
δbb
′
δee
′
δa
′eδae

′
+ δbeδb

′e′δaa
′
δe
′e

)
+

1

N2
δbb
′
δee
′
δaa

′
δe
′e

]
. (6.55)

Note that Π44 depends on the color of quark and gluon and has a, b, a′, b′ as free

color indices. So we need to sum over other repeated color indices (i.e., e, e′) which

can be done by contracting color indices of Eq.(6.55) with that of Eq.(6.49). Using

Eq.(6.55) along with Eq.(6.49) and summing over contracted color indices, gluon

self energy can be written as

Πq
44;b′baa′(Q,m)|(ω=0,~p→0) = −g2Nf

T 2

4π2

[
δabδa′b′

(
D(Q̃b, y)−D(Q̃b′ , y)

+ 2F(Q̃b′ , y) + y2B(Q̃b′ , y)

)
− 1

N

(
D(Q̃b′ , y)

+ D(Q̃a′ , y) + F(Q̃b′ , y) + F(Q̃a′ , y) + 2y2B(Q̃a′ , y)

+ 2y2B(Q̃b′ , y)

)
δaa′δbb′ +

1

N2

∑
e

(
D(Q̃e, y)

+ F(Q̃e, y) + 2y2B(Q̃e, y)

)
δaa′δbb′

]
. (6.56)
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6.3.2 Gluon contribution to Debye mass

For the sake of completeness, we recapitulate the results here. The Gluon loop

contribution with tri-gluon vertex to the Debye mass is shown in Fig.(6.2). In

−
a′

a

b′

b

e

e′
Ke′e

Ke′e − P b′b

Figure 6.2: Gluon loop in gluon self energy in double line notation

the HTL approximation, the sum of gluon loop, four gluon vertex and ghost loop

contribution to the gluon self energy can be written as

Πgl
µν;b′baa′(P,Q) = g2f (b′b,ee′,gh)f (aa′,e′e,hg)

∫
d4K

(2π)4
[4Kµe′eKνe′e − 2K2

e′eδµν ]∆(K)

× ∆(P −K). (6.57)

As explained earlier, the time like component of the self energy is needed for the

Debye mass which can be written as

Πgl
44;b′baa′(P,Q) = g2f (b′b,ee′,gh)f (aa′,e′e,hg)

∫
dk

(2π)3

∑
n

T [2∆(P −K)− 4k2∆(K)

× ∆(P −K)], (6.58)

where ∆(K)−1 = (ωn +Qe′e)
2 and ∆(P − K)−1 = (ω − ωn +Qb′b −Qe′e)

2 + E2
q .

Here Q1 = Qe′e and Q2 = Qb′b−Qe′e. Similar to quark loop, we shall not consider

T 3 dependent term here and the summation over discrete Matsubara frequencies

are same as in Eqs.(6.42) and (6.43). Using these summations and taking static

limit, the T 2 dependent contribution to gluon self energy can be written as

Πgl
44;b′baa′(Q)|(ω=0,~p→0) = −g

2T 2

4π2
f (b′b,ee′,gh)f (aa′,e′e,hg)[3H(Qb′b − qe′e) + H(Qe′e)],

(6.59)
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where

H(Q) =

∫
xdx(f(x, iq) + f(x,−iq)) ≡ Li2(iq) + Li2(−iq). (6.60)

Same as in the case of quark loop, for gluon loops, gluon self energy depends

on the color of the gluon, and these color indices are free. Other repeated color

indices can be summed by using Eq.(6.24) for structure constant. Thus Eq.(6.59)

becomes

Πgl
44;b′baa′(Q)|(ω=0,~p→0) =

g2T 2

8π2
[4(H(Qba) + H(Qab))δ

b′bδa
′a − 2(3H(Qbe) + H(Qb′e))

× δa
′b′δab]. (6.61)

To get the total Debye mass we need to add both the contribution which are given

in Eqs.(6.56) and (6.61). Taking both the contributions into account, Debye mass

can be given as

(m2
D)b′baa′ = −Πq

44;b′baa′(m)|(ω=0,~p→0) − Πgl
44;b′baa′(Q)|(ω=0,~p→0), (6.62)

leading to

(m2
D)b′baa′ =

g2T 2

4π2

[
Nf

(
δabδa′b′

(
D(Q̃b, y)−D(Q̃b′ , y) + 2F(Q̃b′ , y) + y2B(Q̃b′ , y)

)
− 1

N

(
D(Q̃b′ , y) + D(Q̃a′ , y) + F(Q̃b′ , y) + F(Q̃a′ , y) + 2y2B(Q̃a′ , y)

+ 2y2B(Q̃b′ , y)

)
δaa′δbb′ +

1

N2

∑
e

(
D(Q̃e, y) + F(Q̃e, y)

+ 2y2B(Q̃e, y)

)
δaa′δbb′

)
+

(
3H(Qbe) + H(Qb′e)

)
× δabδa

′b′ −
(

2(H(Qba)− H(Qab))

)
δb
′bδa

′a

]
. (6.63)

As Debye mass is color dependent and therefore, one need to sum the contributions

from all the colors and then average over the number of colors to get the total
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Debye mass i.e.,

m̄2
D =

∑
abcd

(m2
D)abcd
N4

. (6.64)

In the large N limit (i.e., neglecting 1/N terms in Eq.(6.63)), the Debye mass is

diagonal and its components can be written in the limit quark mass m = 0 as

(m2
D)1 = (m2

D)3 =
g2T 2

6
(6 +Nf − 36q + (60− 12Nf )q

2), (6.65)

(m2
D)2 =

g2T 2

6
(Nf + 6(1− 2q)2). (6.66)

which is same as was derived in Ref.[256] It is easy to check that, in the limit

Q = 0 and m = 0, the Debye mass as written in Eq.(6.63) reduces to its familiar

HTL limit given as

(m2
D)abcd =

g2T 2

3

(
Nc +

Nf

2

)
Pabcd. (6.67)

In our calculation for the heavy quark transport coefficients, however, we will use

the color averaged Debye mass as given in Eq.(6.64).

6.3.3 Light Quark thermal mass

In the double line notation, the standard diagram of one loop quark self energy is

shown in Fig.(6.3) where a and a′ respectively are the color indices for incoming

and outgoing quark. It is expected that similar to the gluon self energy, the quark

self energy also depends on the colors of incoming and outgoing quark and in the

presence of a background gauge field the same can be written as

Σ(P,Q,m)a′a = g2(tde)a′bPdefg(tfg)ba
∫

d4K

(2π)4

γµ(m− /̃Kb)γµ

(P̃a′ − K̃b)2(K̃2
b +m2)

, (6.68)

where g is coupling constant, K̃b = K + Q̃b is quark momentum and P̃a′ − K̃b =

P − K + Q̃a − Q̃b is gluon momentum. To solve the integration in Eq.(6.68),

let us first write
∫

d4K
(2π)4

=
∞∑

n=−∞

∫
dk

(2π)3
; k4 ≡ ωn = 2nπT and perform Matsub-

ara frequency sum. There are two types of terms where one need to perform
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− 1
Na a′

K̃b

P̃ a′ − K̃b

Figure 6.3: One loop quark self energy diagram in double line notation

frequency summation. One is similar to Eq.(6.42) with product of two propaga-

tors
∑

∆(K)∆(P −K) (arising from the term proportional to m) and another is∑
ωn∆(K)∆(P −K) (arising from the /̃Kb term). The later one can be written as

T
∑
n

ωn∆(K)∆(P −K) =
i

4Eq

(
f(Eq + iQ2 + iω)− f(Ek − iQ1)

Ek − Eq − i(Q1 +Q2 + ω)

+
1 + f(Ek − iQ1) + f(Eq − iQ2− iω)

Ek + Eq − i(Q1 +Q2 + ω)

+
f(Eq − iQ2− iω)− f(Ek + iQ1)

Ek − Eq + i(Q1 +Q2 + ω)

+
1 + f(Eq + iQ2 + iω) + f(Ek + iQ1)

Ek + Eq + i(Q1 +Q2 + ω)

)
.(6.69)

We take HTL approximation and evaluate only T 2 dependent term in quark-self

energy. We note here that, unlike gluon self energy, one does not get any extra term

different in structure as compared to the usual perturbative HTL approximation

for the quark self energy. The leading contribution arises from the terms having

Eq−Ek in the denominators of Matsubara frequency sums and in Eq.(6.69) comes

from the first and the third terms. Simplifying Eq.(6.68) with Eqs.(6.42) and

(6.69), quark self energy becomes

Σ(P,Q,m)a′a = g2Pa′b,ba
(
m

∫
dk

(2π)3

1

4EkEq

[
f(Eq − iQ2) + f(Eq + iQ2)

Pa.K̂

− f(Ek + iQ1) + f(Ek − iQ1)

Pa.K̂

]
+

∫ /̂Kd3k

Ek(2π)3

[
f(Ek + iQ2)− f(Eq − i(Q1 + ω))

Pa.K̂
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− f(Eq + i(Q1 + ω))− f(Ek − iQ2)

Pa.K̂

])
. (6.70)

In the above equation, we have used HTL approximation so that Eq−Ek ≈ − ~P .~k
Ek

,

f(Ek − iQ) ≈ f(Eq − iQ) and e
iω
T ' 1. Here Q1 = Q̃b, Q2 = Qa′ − Qb and

K̂ = (i, k̂). After simplifying Eq.(6.70) further, it can be written as

Σ(P,Q,m)a′a =
g2T 2

8π2

3∑
b=1

Pa′b,ba
(

[F(q2, y)− F(q1, y)]

∫
dΩ

4π

/̂K

Pa.K̂

+
m

T
(J(q2, y)− J(q1, y))

∫
dΩ

4π

1

Pa.K̂

)
, (6.71)

where as before, y = βm, q1 = βQ1; F(q) is same as given in Eq.(6.52) and J is

given as

J(q, y) =

∫
x2dx

x2 + y2
(f(x, y,−iq) + f(x, y, iq)). (6.72)

It is easy to see that to estimate the quark thermal mass from its self energy,

one need to sum over colors in Eq.(6.71) keeping a and a′ open indices. After

performing this color sum, quark self energy reduces to

Σ(P,Q,m)a′a =
g2T 2

8π2
δa′a

([ 3∑
b=1

(F(qa′b, y)− F(q̃b, y))− 1

3
(F(0, y)− F(q̃a, y))

]

×
∫
dΩ

4π

/̂K

Pa.K̂
+
m

T

[ 3∑
b=1

(J(qa′b, y)− J(q̃b, y)) + J(0, y)− J(q̃a, y)

]
×

∫
dΩ

4π

1

Pa.K̂

)
. (6.73)

In the HTL approximation, the effective fermion mass (thermal mass) can be

written as [118]

4m2
th = Tr(/PΣ(P )). (6.74)
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From Eqs.(6.74) and (6.73), the color dependent quark thermal mass a function

of Polyakov loop parameter q can be written as

m2
a′ =

g2T 2

8π2

( 3∑
b=1

(F(Qa′b, y)− F(Q̃b, y))− 1

3
(F(0, y)− F(Q̃a′ , y))

)
. (6.75)

In the limit of vanishing quark mass, using Eq.(6.53), it is easy to show that

m2
a =

g2T 2

6

(
1 +

3

2
qa +

7

2
q2
a

)
. (6.76)

In the subsequent calculationS that follow, we however, keep the quark mass

dependence as in Eq.(6.75). Similar to Eq.(6.64), one can define a color averaged

quark thermal mass as

m2
th =

3∑
a=1

m2
a

3
(6.77)

so the total quark mass becomes

mq = m+mth, (6.78)

Thus the color averaged Debye mass for the gluons and color averaged thermal

mass for quarks as given by Eqs.(6.64) and (6.77) depend upon the Polyakov loop

parameter.

For the Polyakov loop parameter, we adopt here two approaches. Firstly, we

estimate the same from a phenomenological 2 flavor PQM model [252, 247]. The

salient features of the model and the parameters taken in the model is discussed in

Appendix A. With this parameterization the critical temperature for the crossover

transition Tc ≈ 176 MeV. We also take the Polyakov loop parameter from lattice

simulations as in Ref. [26]. The variation of the Polyakov loop with temperature

(T) is shown on the left of Fig(6.4). Here, The red curve is from PQM model [252].

The blue curve is from the lattice results of Ref.[26]

Clearly, compared to the lattice simulations, the Polyakov loop parameter φ

in PQM model shows a sharper rise and reaches its asymptotic value φ = 1 at the

temperature around 320 MeV. On the other hand, in the lattice simulations, this
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Figure 6.4: Polyakov loop and Debye mass as a function of temperature.

happens at a much higher temperature. This means that the non-perturbative

effects are significant up to temperature as high as 400 MeV in lattice. However

in PQM these effects are significant only temperatures upto around 320 MeV. In

Fig(6.4), Debye mass as a function of temperature is shown. Here the black curve

corresponds to the Debye mass in pQCD, while the blue and the green curves

are in the presence of Polyakov loop. The blue curve corresponds to the large N

limit (i.e., dropping 1/N terms in Eq.(6.56)). On the other hand, the Green curve

corresponds to including the 1/N terms in Eq.(6.56). Clearly, the large N limit

approaches the perturbative limit faster compared to the one including 1/N terms

for the Debye mass.

For the light quarks, different contributions to the masses as a function of

temperature (T ) are shown in the left of Fig. (6.5). Here, the red and the blue

curves correspond to quark thermal masses (mth) as given in Eq.(6.77) evaluated in

the HTL approximation in the presence of a background gauge field. The red curve

corresponds to Polyakov loop value taken from PQM model while the blue curve

corresponds to the same taken from lattice simulations. The HTL perturbative

QCD thermal masse as in Ref. [5] is shown by the black curve. Clearly, with

the lattice value of the Polyakov loop, thermal masses approach the perturbative

results at a much higher temperature while with values taken from PQM, the

perturbative limit reaches at a relatively lower temperature around 320 MeV. It
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Figure 6.5: Quark and gluon thermal masses as a function of temperature.

ought to be mentioned that beyond 330 MeV φ value is larger than one in which

case q becomes imaginary. We have taken here the real part of q for estimating the

thermal masses. Beyond temperature 330 MeV the real part of q vanishes which

leads to the perturbative limit. As compared to PQM model, the color averaged

thermal mass is smaller for Polyakov loop expectation value taken from lattice

simulation. This is because, with the smaller value of φ, statistical distribution

functions are suppressed more. The magenta curve is the constituent quark mass

estimated in PQM model. In the side of Fig.(6.5), shows the behavior of color

averaged Debye mass in the large N limit of Eq(6.63). The red and the blue curves

correspond to the masses with Polyakov loop value taken from PQM and lattice

simulations respectively. Debye mass is smaller as compared to the perturbative

QCD Debye mass and this suppression is more when φ is taken from the lattice

simulations. The reason for this is the same as that for the case of quark thermal

mass. In the estimation of the transport coefficients, we shall use the Debye mass

and thermal masses of quarks as in Eq.(6.78). It is clear that the non-perturbative

effects which are in the distribution function and the masses of quarks and gluons

can significantly affect these transport coefficient as compared to the perturbative

QCD.
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Figure 6.6: Coulomb scattering (left) of HQ (bold solid line) and light
quark/antiquark (thin solid line). t-channel Compton scattering (right)

6.4 Scattering amplitudes

There are two types of scatterings that contribute to the drag and the diffusion

coefficients namely Coulomb scattering i.e., scattering off of HQ from light quark

and Compton scattering i.e., scattering off of gluon from HQ [97]. The dominant

contribution for these scatterings arise from the gluon exchange in the t-channel

which is infrared divergent [255, 100]. This is regularised by introducing the Debye

screening [100, 97] which we have evaluated in the HTL limit in the background

of Polyakov loop. In s and u channel, however, there is no such infrared diver-

gences. Note that in the matrix model, mD, in Eq.(6.63) is color dependent so

the propagator is also color dependent. For Nf flavor of light quark, the spin

averaged matrix element squared for Coulomb scattering as shown on the left side

of Fig.(6.6), can be written as

|MC |2 =
16Nfg

4

8N
P ((s−m2 −M2)2 + (u−m2 −M2)2 + 2(M2 +m2)t)

(t+ (m2
D)mlcd)(t+ (m2

D)m′l′c′d′)
. (6.79)

where a, b(e, f) are color indices of initial (light,heavy) and final (light,heavy)

quarks and P = PcdaePmlbf Pc
′d′
ea Pm

′l′

fb is the product of the projection operators. For

calculational simplifications, one can take the color averaged Debye mass as defined
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in Eq.(6.64) so that (m2
D)mlcd ≈ m̄2

DPmlcd. In this case, we get

PcdaePmlbf

1

(t+ (m2
D)mlcd)

=
1

t+ m̄2
DPfbae

− 1

N

(
2

t+ m̄2
D

− 1

N

1

t+ m̄2
D

)
δaeδfb (6.80)

One can further simplify the expression in Eq.(6.79) by taking the leading order

contribution in N . With this assumption, Eq. (6.79) reduces to

|MC |2abef =
8g4

2N
δfaδ

b
e

((s−m2 −M2)2 + (u−m2 −M2)2 + 2(M2 +m2)t)

(t+ (m̄2
D)2)2

(6.81)

where M is HQ mass. For the qaQb → qeQf scattering, the product of distribution

function and matrix element squared that appears in Eq.(??) can be simplified

by summing over color of initial and final light/heavy quarks. Note that for light

quarks, the colors appearing in Eq.(6.81) has to be summed with the distribution

function and can be written as

δfaδ
b
ef(q)e(1− f(q′)f ) = N2f(q)q(1− f(q′)q) (6.82)

where f(q)q is the average distribution function of quark as defined in Eq.(6.28).

Similarly for the t channel Compton scattering shown on the right side of Fig.(6.6),

one can write

|Mt|2 =
g4

4(N2 − 1)
Pmlba P l

′m′

ab f cd,ef,ghfd
′c′,fe,hg

(
16(s−M2)(M2 − u)

(t+ (m2
D)mlcd)(t+ (m2

D)m′l′c′d′)

)
.

(6.83)

and can be simplified in a similar way as done for Coulomb scattering. Here

ef, b(gh, a) are the color indices for initial (final) gluon and quark. The scattering

amplitude of u channel Compton scattering shown on the right side of Eq.(6.7)

can be written as

|Mu|2 =
8g4

8(N2 − 1)
Pghbc Pghbc′PefcaPefc′a

(
M4 − us+M2(3u+ s)

(u−M2)2

)
. (6.84)
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Figure 6.7: s-channel Compton scattering (left). u-channel Compton scattering
(right)

Note here that the propagator has no color dependent term. Matrix element

squared for s channel Compton scattering as shown on the left side of Fig.(6.7) is

|Ms|2 =
8g4

8(N2 − 1)
Pefbc Pefbc′Pghca Pghc′a

(
M4 − us+M2(u+ 3s)

(s−M2)2

)
. (6.85)

There are interferences between different scatterings contributing to gefQb →
gghQa that can be written as

MsMu
† =MuMs

† =
g4

8(N2 − 1)
Pefbc Pghca Pghbc′Pefc′a

(
32M4 − 8M2t

(s−M2)(u−M2)

)
. (6.86)

MsMt
† =M†

sMt =
g4

4
√

2(N2 − 1)
P1

( −8(M4 − 2M2s+ us)

(s−M2)(t+ (m2
D)mlcd)

)
. (6.87)

MuMt
† =M†

uMt =
g4

4
√

2(N2 − 1)
P2

(
8(4M4 −M2t)

(u−M2)((t+ (m2
D)mlcd))

)
. (6.88)

where P1 = Pefbc Pghca P lmab (ifdc,fe,hg) and P2 = Pghbc PefcaP lmab (ifdc,fe,hg). Total ma-

trix element squared that contribute to Compton scattering i.e., gQ → gQ is

|MCm|2abefgh = |Ms|2 + |Mu|2 + |Mt|2 +MuM†
s +MsM†

u +MtM†
s +MsM†

t +

MuM†
t +MtM†

u. These matrix elements are used in Eq.(??) to estimate the drag

and the diffusion coefficient.
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6.5 Results and discussions

With the thermal mass of the quarks and the Debye mass as computed in the

background of a nontrivial Polyakov loop, we next numerically compute the drag

and diffusion coefficients using Eq.(6.15). For the heavy quark elastic interaction

with the light quarks and gluons, qQ→ qQ and gQ→ gQ scattering processes are

considered where Q stands for heavy quark, q stands for light quarks and g stands

for the gluon. In the case of massless light quark and gluon, the leading-order

(LO) matrix elements for qQ→ qQ and gQ→ gQ scattering have been calculated

in Ref. [260, 97]. These pQCD cross sections have to be supplemented by the

value of the coupling constant and the Debye screening mass which is needed to

shield the divergence associated with the t-channel diagrams to compute the heavy

quark transport coefficients. For massive light quark and gluon, the calculation

of the scattering matrix, M(q,g)+Q→(q,g)+Q, is performed considering the leading-

order (LO) diagram with massive quark and gluon propagators for gQ → gQ

and a massive gluon propagator for qQ → qQ scatterings [236, 221]. Within the

matrix model, the scattering amplitudes are summarised in Appendix(B). Similar

to previous work [236, 221], massive gluon propagator for qQ→ qQ and t-channel

of gQ → gQ is used. We estimate the transport coefficients for the charm quark

whose mass is taken as mC = 1.27 GeV. Here we use the two loop running coupling

constant given as [261]

αs =
1

4π

(
1

2β0 ln(πT
Λ

) + β1
β0

ln(2 ln(πT
Λ

))

)
(6.89)

where

β0 =
1

16π2

(
11− 2Nf

3

)
(6.90)

β1 =
1

(16π2)2

(
102− 38Nf

3

)
(6.91)

with Λ = 260 MeV and Nf = 2.

We evaluate the drag and diffusion coefficients of heavy quark in QGP with

Polyakov loop value from two different models. In one case the Polyakov loop

value, hence the Debye mass and thermal masses, has been taken from PQM
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Figure 6.8: Variation of drag coefficients (A) with temperature (left) for momen-
tum p = 100 MeV and with momentum (right) for temperature T = 300 MeV.
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Figure 6.9: Variation of diffusion coefficients (B0) with temperature (left) for
momentum p = 100 MeV and with momentum (right) for temperature T = 300
MeV.

calculation as inputs to compute the heavy quark transport and we label it as

PQM. In the other case, Polyakov loop value has been taken from the lattice

simulatons and hence, we label it as lattice in the following discussions.

The temperature variation of the drag coefficient has been shown in the left

side of Fig.(6.8) for charm quark interaction with light quarks and gluon for a

given momentum (p=0.1 GeV) obtained for both PQM and lattice Polyakov loop

values.

We obtain quite a mild temperature dependence of heavy quark drag coeffi-

cient for the case of PQM. However, with lattice, we obtained a quite stronger

temperature dependence of heavy quark drag coefficient than the one with PQM.
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We notice that the drag coefficient obtained with PQM input is larger at low tem-

perature than the one obtained with lattice inputs whereas the trend is opposite

at high temperature. This is mainly because of the interplay between the Debye

mass and Polyakov loop value obtained within both the models. In the same plot,

for comparison, we have also included results for the drag coefficient obtained

within the standard LO pQCD calculations with a constant coupling (αs = 0.2)

to display the non-perturbative effects arising from non-trivial Polyakov loop and

chiral condensate on the HQ drag coefficient.

A smaller value of the Polyakov loop, as shown in Fig.(6.4), in case of lattice

reduces the magnitude of the drag coefficients at low temperature. However, at

high temperature, with smaller Debye mass, as shown in the right of Fig.(6.4), ob-

tained with lattice input enhances the magnitude of heavy quark drag coefficients.

Hence, at low temperature Polyakov loop value plays the dominant role ( e.g., at

T=180 MeV, the Polyakov loop value obtained within both the models differ by a

factor about 2) whereas at high temperature the Debye mass plays the dominant

role ( e.g., T=300 MeV, the differences between the Polyakov loop value obtained

within both cases reduced significantly) for the behavior of the drag coefficient.

We observed temperature dependence of heavy quark drag coefficient obtained

with PQM Polyakov loop value is quite consistent with the results obtained with

other quasi-particle models [235, 236] and T-matrix approach [210]. It is impor-

tant to mention that the temperature dependence of the drag coefficient plays a

significant role [235] to describe heavy quark RAA and v2 simultaneously, which

is a challenge to almost all the models on heavy quark dynamics. A constant or

weak temperature dependence of the drag coefficient is an essential ingredient to

reproduce the heavy quarks RAA and v2 simultaneously, whereas in pQCD the

drag coefficient increases with temperature.

The momentum variation of the drag coefficient has been shown in the right

panel of Fig.(6.8) for charm quark interaction with light quarks and gluon obtained

with PQM and lattice Polyakov loop value. We observe a strong momentum de-

pendence of heavy quark drag coefficient as compared to the same estimated within

pQCD [85, 221]. This is mainly due to the inclusion of non-perturbative effects

through the Polyakov loop background. At T=300 MeV the drag obtained with the

PQM Polyakov loop (at p=0.1 GeV) is marginally larger than the drag obtained
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Figure 6.10: Variation of drag coefficients (A) with temperature (left) for different
values of momentum and with momentum (right) for different values of tempera-
ture.

with lattice Polyakov value. Hence, the momentum variation of drag coefficients

obtained with inputs from PQM is marginally larger than the one obtained with

inputs from lattice simulation in the entire momentum range considered here.

In the left of Fig.(6.9) heavy quark diffusion coefficient B0 has been displayed

as a function of temperature obtained with input parameter from PQM and lat-

tice. The diffusion coefficients increases with temperature for both the cases as it

involves the square of the momentum transfer. In terms of magnitude the diffusion

coefficient obtained within both the cases follow similar trend of drag coefficient

due to the same reason (i.e., interplay between Debye mass and Polyakov loop

value). In the same plot we have also included the diffusion coefficient obtained

within the standard LO pQCD calculation for a constant coupling to highlight

the non-perturbative features arising from non-trivial Polyakov loop and chiral

condensate.

The momentum variation of the diffusion coefficient has been shown in the

right side of Fig.(6.9) for charm quark interaction with light quarks and gluons

for the same values of Polyakov loop. Similar to the drag coefficient, the diffusion

coefficient also shows the same trend with PQM having larger value then that

from the lattice as a function of momentum. Stronger suppression of distribution

function at high momentum in lattice Polyakov loop than that of from PQM also

play a marginal role in the momentum variation of heavy quark drag and diffusion

coefficients obtained.
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Figure 6.11: Variation of diffusion coefficients (B0) with temperature for different
values of the momentum(left) and with momentum (right) for different values of
temperature.

To understand the temperature dependence of the transport coefficients, we

plot the temperature variation of the drag coefficient in the left side of Fig. 6.10 at

different momentum obtained with Polyakov loop value from lattice simulations.

We obtain almost similar temperature dependence of heavy quark drag coefficient

at both the momentum having larger magnitude at p=2 GeV than at p=5 GeV.

In the left side of Fig. 6.11 we have depicted the temperature variation of diffu-

sion coefficient at different momentum for the same values of Polyakov loop. As

expected, the magnitude of the diffusion coefficient is large at p=5 GeV than p=2

GeV having similar temperature variation for both the momenta.

In the right side of Fig. 6.10 we have shown the variation of drag coefficient with

momentum at different temperature obtained with the lattice inputs. We observe

a larger magnitude of the drag coefficient at T=320 MeV than T=200 MeV but

the momentum variation is similar at both temperature. Momentum variation of

the diffusion coefficient has been depicted in the right side of Fig. 6.11 at difference

temperature. At both the momenta the diffusion increase with temperature having

larger magnitude at T=320 MeV than T=200 MeV.

It is worth mentioning here that, non-perturbative effects from a different per-

spective has been investigated recently in Ref. [262, 263, 264] and employed to

calculate the transport coefficients [264]. The method here consisted of using

T-matrix with an in-medium potential for the heavy quarks. This potential is

constrained by the heavy quark free energy from the lattice data. The lattice
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Heavy quark diffusion in Polyakov loop medium

heavy quark free energy is directly related to the Polyakov loop and hence is cor-

related with the strength of the confining potential. Therefore it is nice to see

that the behavior of drag coefficient being rather flat with regards to temperature

dependence whereas the diffusion coefficient having a strong temperature depen-

dence as observed here was also observed in Ref.[264]. This consistency suggest

of having a possible existence of model independent correlation between Polyakov

loop and the heavy quark transport coefficients.

6.6 Summary

In this chapter, we have computed the heavy quark drag and diffusion coefficients

in QGP including non-perturbative effects via a Polyakov loop background. In or-

der to incorporate these effects we first calculate quark and gluon thermal masses

also taking the quark constituent mass into account. We found that for tempera-

tures below 300 MeV quark thermal mass and gluon Debye mass starts deviating

from its perturbative value this effect significant for even higher temperatures

when Polyakov values are taken from the lattice simulations. This decrease in the

Debye mass of gluon and the thermal mass of light quarks is due to color suppres-

sion manifested in the quark and gluon distribution functions in the presence of a

background Polyakov loop field. In the calculation of HQ diffusion coefficient the

distribution function of the light quark and the Debye mass play complimentary

roles. While the distribution function with Polyakov loop tend to decrease the

HQ transport coefficient the Debye mass has the effect of increasing these trans-

port coefficients. We have found a weak temperature dependence of the heavy

quark drag coefficient with Polyakov loop value taken from PQM which is con-

sistent with other models like T-matrix and quasi particle model which also take

into account the non-perturbative effects in a different manner. This consistency

suggests existence of possible model independent correlations between the results

obtained with the Polyakov loop and other non-perturbative models and reaffirm

the temperature and momentum dependence of heavy quark transport coefficients.

In the present investigation, we have aconfined our attention to the elastic 2→ 2

processes within the matrix model. Inclusion of other effects arising from 2 → 3

processes, LPM effects are expected to be sub-dominant due to the large mass of
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6.6 Summary

the heavy quark[265] but, none the less, can be important at high parton density.

In order to continue our discussion on HQ transport coefficient, in the next chap-

ter we shall investigate the viscous correction (both shear and bulk) along with

the inclusion of Polyakov loop.
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Heavy quark diffusion in a

viscous medium

The aim of HIC experiments is to characterize the properties of deconfined state of

matter. In order to do this, well-calibrated probes are required. In this regard, the

transport properties of HQ; especially charm and bottom is considered as one of

the promising probes. As already mentioned, the HQs interaction with the thermal

partons in the QGP medium reflects in the transverse momentum (pT ) spectra of

open heavy flavor (HF) meson such as D-meson for charm quark, and in the elliptic

flow v2 of open meson for a non-central collision[266, 267, 222, 233, 268, 269, 85].

HQs are useful especially in the sense that these are produced in the ini-

tial stages of the collisions during hard scatterings that governed by perturbative

quantum chromodynamics (pQCD) mostly through gluon fusion[270, 271, 272].

Moreover, the thermal production (in medium) is suppressed due to the large

mass, i.e., M � T . Therefore, once produced in the hard collisions, HQ propa-

gates throughout the space-time evolution of the medium and interact with the

light thermal partons of in bulk medium, consequently, this interaction modifies

the spectra of HF hadrons. The HQ and bulk medium interaction is described by

the scattering of HQ with the light thermal partons. At low momenta, the dom-

inant contribution to the HQ and bulk particle scattering arises from the elastic
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Heavy quark diffusion in a viscous medium

scatterings and can be described by the diffusion akin to Brownian motion. Fur-

ther, the thermalization process of HQ in the bulk medium is slowed down by its

large mass. Therefore, the transport of non-equilibrated HQ in the thermalized

medium yield valuable information throughout its propagation. In particular, the

low momentum interaction of HQ with the bulk medium is characterized by the

spatial diffusion coefficient.

Perturbative QCD based calculations for HQ transport coefficients namely

the drag and the diffusion cannot explain the observed suppression and collec-

tive flow [168] so it is required to include the possible non-perturbative effects.

There have been various efforts to incorporate non-perturbative effects using var-

ious phenomenological models such as T-matrix model[92, 263], quasi particle

model[93, 236, 235], resonance model[95] for estimating the HQ transport coeffi-

cients. The most reliable results for the HQ spatial diffusion comes from the first

principle lattice simulations[96, 273, 274]. Indeed, a smaller value of the spatial

diffusion coefficient as compared to the perturbative QCD is predicted by the lat-

tice simulations which is essential to explain observed RAA and v2. In Ref.[210],

HQ transport coefficients (the drag and the momentum diffusion) are evaluated

in the T-matrix approach including non-perturbative effects by employing the po-

tential interaction of heavy-light quark extracted from lattice QCD simulations.

A good agreement with the observed RAA and collective flow v2 of this calculation

suggests existence of the strongly interacting nature of QGP. Recently, based on

a Polyakov loop model, heavy quark drag and the diffusion coefficients have been

computed for charm quark in Ref.[212]. The estimation of the drag coefficient

here is observed being rather somewhat flat with temperature while diffusion co-

efficient exhibited a strong temperature dependence similar to the results obtained

in Refs.[210, 92]. The consistency in the results suggest that there could be some

model independent correlations between the results obtained within the Polyakov

loop and other non-perturbative models from a different perspective.

On the other hand, it may also be mentioned here that QGP formed in HICs,

behaves like almost an ideal fluid with a very small value for the ratio of shear

viscosity to entropy density η/s. Evidence for such a small η/s is provided by

the large elliptic flow data that requires η/s ∼ 0.08 − 0.2[275, 276, 277, 278].

Viscous coefficients in the QGP as well as in the hadronic medium have been
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studied in Refs.[279, 280, 281]. In these studies it was found that the dominant

contribution of dissipation in both the QGP and the hadronic medium arises from

shear viscosity. However, bulk viscosity is equally important and may dominates

near transition temperature i.e., ξ/s ∼ 1[282] and can significantly affect hadrons

pT spectra and elliptic flow v2[283]. Viscous corrections have also been studied

for dilepton production in QGP[284, 285], photon production[286], damping rate

of heavy quark[287], heavy quark radiative energy loss[288, 289, 290], event-plane

correlations[291, 292] etc. Effect of shear and bulk viscosities on the HQ drag and

diffusion coefficients have been studied in Ref.[214] using a fugacity model. In

the present study, we intend to include the viscous corrections (both shear and

bulk) along with a non-trivial Polyakov loop background that is used to describe

the “semi QGP” within a matrix model. We find that in the perturbative limit

our results are consistent with the previous results, however, with the inclusion

of Polyakov loop (φ), at low temperature our results are different from that of

Ref.[214]. In this work, we include the viscous corrections (both shear and bulk)

in the single particle distribution functions of quark and gluon to estimate the

viscous effects on the HQ transport coefficients. We estimate this using Fokker-

Plank equation and use the matrix model of semi QGP to evaluate the relevant

scattering amplitudes. The single particle distribution function (see Eqs.(??) and

(??)) is modified using second moment ansatz. In Ref.[288] it was shown that

viscous effects induce a larger energy loss of HQ. So one may expect that, viscous

corrections may be important and significantly affect the transport properties of

HQ in the bulk medium. However, we find that for small shear and bulk viscosities,

the dissipative effects on the drag and the diffusion coefficients are somewhat weak.

We organize this chapter as follows. In section (7.1), an ansatz for the first

order viscous correction on quark/gluon distribution is discussed. In section (7.2),

we discuss the interaction of HQ with the light thermal parton and present matrix

element squared for Coulomb and Compton scatterings within the matrix model.

These matrix element squared are used to evaluate the drag and diffusion coeffi-

cients . In section (7.3) we discuss the viscous effects on HQ quark transport and

present the numerical results for the drag and the diffusion coefficient for constant

values of η/s and ξ/s. Finally, we summarize and give an outlook in section(7.4).
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Heavy quark diffusion in a viscous medium

7.1 Viscous corrections in the distribution func-

tions

In this section, we briefly describe the first order viscous corrections on the thermal

distribution function of quarks and gluons. We start with the energy-momentum

tensor of a non-ideal fluid which is given as[283]

T µν = (ε+ P )uµuν + Pgµν + πµν + Π∇µν , (7.1)

where ε, P, uµ are the energy density, pressure density and four-velocity of the

fluid. For metric tensor, we use the convention gµν = diag(−1,+1,+1,+1) so

that uµuµ = −1 and the term ∇µν = gµν + uµuν . The first two terms at the right

hand side of Eq.(7.1) describes the energy-momentum tensor for an ideal fluid

and the rest two terms are part of viscous corrections that summarizes the effect

of shear and bulk viscosities respectively. The dissipative terms are constructed

from the derivatives ∆α = ∇αβ∂β and ∇µν . In the first-order approximation, the

symmetric tensor πµν satisfying the condition uµπ
µν = 0, in the local rest frame

is given as

πµν = −η
(

∆µuν + ∆νuµ − 2

3
∇µν∆αu

α

)
(7.2)

and the bulk viscosity dependent term

Π = −ξ∆αu
α. (7.3)

Dissipative effects can be incorporated in the color dependent distribution func-

tions fa/ab(E) which contains the ideal part as well as viscous corrections. For

this purpose, we write fa/ab(E) = f 0
a/ab(E) + δfa/ab(E) (f 0

a/ab(E) is equilibrium

distribution function of quark/antiquark and gluon) and use the second-moment

ansatz as in Refs.[293, 294, 283], so that

δf(E)a/ab =
1

T 3s
f(E)0

a/ab(1 + f(E)0
a/ab)p

µpν
(
A

2
πµν +

B

5
Π∇µν

)
(7.4)
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where A and B are constants. Constrain on δfa/ab comes from the continuity of

stress-energy tensor across the freeze-out hypersurface [294] i.e.,

δT µν =

∫
d3k

(2π)3

kµkν

Ek
δfa/ab(E). (7.5)

The choice of δfa/ab is not unique, as pointed out in Ref.[295], δfa/ab can have

linearly increasing form with momentum and also quadratically increasing with

momentum or anything in between linear to quadratic increasing behavior. How-

ever, we will continue with the form as in Ref.[294, 283]. In the local rest frame of

the fluid i.e., u0 = 1, ui = 0, ∂µu0 = 0 and ∂µui 6= 0, the deviation in distribution

function can be written as [294, 283]

δf(E)a/ab =
1

T 3s
f(E)0

a/ab(1∓ f(E)0
a/ab)p

µpν
(

1

2
πµν +

1

5
Π∇µν

)
. (7.6)

The first term of Eq.(7.6) i.e., the shear viscosity dependent term is

pµpνπµν = −pµpνη
(

∆µuν + ∆νuµ −
2

3
∇µν(∂

α + uαuβ∂β)uα

)
. (7.7)

One can use the normalization condition uµu
µ = −1 and differentiating this rela-

tion leads to uµ∂νuν = 0. Using this and the relation ∆µ = ∇µνu
ν one obtains

pµpνπµν = −η
(
pµpν(∂µuν+∂νuµ)+2(p·u)pνuβ∂βuν−

2

3
(p2−(p·u)2)∂αuα

)
. (7.8)

Now, one can further use the relations ∂µuν = (g̃µν − uµuν)/τ and ∂αuα = 1/τ [296],

where τ is the proper time so that in the local rest frame of the fluid, Eq.(7.8)

reduces to[288]

pµpνπµν =
2η

τ

(
− p2

z +
p2

3

)
. (7.9)

Similarly, the bulk viscosity dependent term can be written as

pµpν∇µνΠ = −ξpµpν(gµν + uµuν)∆αu
α. (7.10)
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Using the same relations as for the case of shear viscosity, Eq.(7.10) can be written

as

pµpν∇µνΠ =
ξ

τ
p2. (7.11)

Thus the distribution functions of quarks and gluons of Eq.(7.6) with the effect

of shear and bulk viscosities can be written as

f(E)a = f(E)0
a +

f(E)0
a(1− f(E)0

a)

T 3τ

[
η

s

(
− p2

z +
p2

3

)
+
ξ

s

p2

5

]
(7.12)

f(E)ab = f(E)0
ab +

f(E)0
ab(1 + f(E)0

ab)

T 3τ

[
η

s

(
− p2

z +
p2

3

)
+
ξ

s

p2

5

]
. (7.13)

In the present investigation, for evaluating drag and diffusion coefficients, we shall

use Eqs.(7.12) and (7.13) for quark/antiquark and gluon distribution function in

Eq.(6.14).

7.2 Scatterings amplitudes within matrix model

In this section, We shall discuss the scattering of HQ of mass M and energy

E =
√
p2 +M2 with the light thermal partons in the bulk medium and we shall

also compute the scattering amplitude squared within the matrix model of semi

QGP. To compute the drag and the diffusion coefficients of HQ transport we shall

follow a similar approach to include screening effects as in Ref.[97, 100]. For the

elastic collision, there are two types of scattering processes that contributes to the

drag and the diffusion coefficient of HQ. One is Coulomb scattering i.e., scattering

off of HQ with light quark and another is Compton scattering i.e., scattering off

of HQ with gluons. In the following we present these in detail.

Coulomb scattering: The Feynman diagram for the Coulomb scattering of

HQ and a light quark is shown on the left side of Fig.(6.6). Here a, c, b, d are the

color indices of initial and final quarks. In the double line notation, the scattering

amplitude for this process is

iMqQ =
(ig)2

(t+ (m2
D)mljk)

(tjk)ab(t
ml)cd[ūb(q

′)γµua(q)][ūd(p
′)γµuc(p)], (7.14)

152



7.2 Scatterings amplitudes within matrix model

where g is coupling constant, t is Mandelstam variable and m, l, j, k are the color

indices of gluon propagator. In the limit of soft momentum transfer, only time-

like component of the propagator contributes and the propagators simply become

Debye screened propagator with 1/t → 1/(t + m2
D) [97, 100] where m2

D is color

dependent Debye mass and can be given as

(m2
D)abcd =

g2

6

[
δadδbc

( 3∑
e=1

(
D(Qae) +D(Qeb)

)
−Nf (D̃(Qa) + D̃(Qb))

)

− 2δabδcd

(
D(Qac)−

Nf

N

(
D̃(Qa) + D̃(Qc)

)
+
Nf

N2

3∑
e=1

D̃(Qe)

)]
,(7.15)

where

D(Qa) =
3

π2

∫ ∞
0

dEE

(
1

eβ(E+iQa) − 1
+

1

eβ(E−iQa) − 1

)
, (7.16)

and D̃(Qa) = D(Qa + πT ). In the perturbative limit, Eq.(7.14) can be written as

iMqQ = −g
2

t
(tjk)ab(t

jk)cd[ūb(q
′)γµua(q)][ūd(p

′)γµuc(p)], (7.17)

and the product of projection operator with open color index a, b can be written

as

PjkabPjkcdPj
′k′

ba Pj
′k′

dc = (N − 1)

(
1− δba

N

)
. (7.18)

However, for the computation of the drag and the diffusion coefficient, we shall use

Eq.(7.14). Simplifying Eq.(7.14) for massless light quark and massive heavy quark

by summing and averaging over final and initial spins, the scattering amplitude

squared (|MqQ|2) can be written as

|MqQ|2 =
g4

16N2
c

PjkabPmlcd Pj
′k′

ba Pm
′l′

dc

(8(s−M2)2 + 8(u−M2)2 + 16M2t)

(t+ (m2
D)mljk)(t+ (m2

D)m′l′j′k′)
(7.19)

Let us note here that the drag and the diffusion coefficient of HQ as defined in

Eqs.(6.15) and (6.16) depends on the color of incoming and outgoing light quark

i.e., Qa and Qb in the distribution functions; see Eq.(6.14). So to compute the

color-averaged quantity, the color index a and b in Eq.(7.19) will be summed with

the distribution function. With the distribution function as defined in Eq.(??),
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Heavy quark diffusion in a viscous medium

for Coulomb scattering the bracketed quantity in Eq.(6.14) becomes

〈X(p′)〉 =
1

2Ep

∑
abcd

∫
d3q

2Eq(2π)3

d3p′

2Ep′(2π)3

d3q′

2Eq′(2π)3

∑
jkj′k′

∑
mlm′l′

|MqQ|2

× (f 0
a (q) + δfa(q))(1− f 0

b (q′)− δfb(q′))〈X(p′)〉 (7.20)

Compton scattering: There are three types of scatterings (s, t and u chan-

nels) that contribute to the Compton scattering i.e., scattering off of a gluon from

a quark. For s and u channel scatterings, the corresponding Feynman diagrams

are shown in Fig.[6.7] and for the t channel scattering the relevant diagram is

shown in right side of Fig.[6.6]. We shall evaluate the scattering amplitude for

Compton scattering below.

s-channel: The relevant diagram for this channel is shown on the left side

of Fig.[6.7] where ef(gh), a(b) are color indices of incoming (outgoing) gluon and

quark. In the double line notation, the scattering amplitude for the process is

given as

iMs = i(ig)2(tef )ac(t
gh)cb

[
ūb(p

′)/ε(/p+ /q +M)/εua(p)

s−M2

]
. (7.21)

where s is Mandelstam variable and M is the mass of HQ. Note here that unlike

Coulomb scattering there is no color dependence on the HQ propagator. This is

because of the large mass of heavy quark. For massive quark and massless gluon

the matrix element squared for s-channel Compton scattering can be written as

|Ms|2 =
8g4

16Nc(N2
c − 1)

PefacPefac′Pghcb Pghc′b
(
M2(M2 − u− 3s)− us

(s−M2)2

)
. (7.22)

Note that the scattering amplitude depends on the color of quarks and gluons.

For the evaluation of the transport coefficients one needs to perform a color sum.

Same as in the case of Coulomb scattering, the color indices of incoming and

outgoing gluon (ef, gh) in Eq.(7.22) will be summed with the distribution functions

appearing in Eq.(6.14).

u channel: The corresponding Feynman diagram for u channel Compton

scattering is illustrated at the right side of Fig.(6.7). Scattering amplitude that
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7.2 Scatterings amplitudes within matrix model

depends on the color of incoming and outgoing color particles can be written as

iMu = i(ig)2(tef )cb(t
gh)ac

[
ūb(p

′)/ε(/p− /q′ +M)/εua(p)

u−M2

]
. (7.23)

Simplifying Eq.(7.23) with the polarization sum of massless gluon and spin sum

and average over heavy quark gives

|Mu|2 =
8g4

16Nc(N2
c − 1)

Pghac Pghac′Pefcb Pefc′b
(
M2(M2 − 3u− s)− us

(u−M2)2

)
. (7.24)

In the Eq.(7.24), the product of projection operator can be simplified by summing

over the color indices a, b and c. However, the color indices of initial and final

gluon should be summed with the distribution function in Eq.(6.14). Keeping

ef, gh as open indices, the product of the projection operators can be simplified

to

Pghac Pghac′Pefcb Pefc′b = δeh −
1

Nc

(
2δefδfhδeh + δghδegδeh

)
+

1

N2
c

(
δef + δefδgfδehδgh

+ δefδfhδegδgh + δehδfgδefδgh + δgh

)
− 1

N3
c

(
δefδgh

+ δefδehδgh

)
. (7.25)

t channel: The relevant Feynman diagram for the t channel Compton scat-

tering is shown on the right side of Fig.[6.6]. For the color dependent scattering

amplitude one can write

iMt = (ig)2(tml)abf
cd,ef,gh

[
εµ(q)ε∗ν(q

′)Cµαν(q − q′,−q,−q′)ūb(p′)γαua(p)
(t+ (m2

D)mlcd)

]
,

(7.26)

where

Cµνρ(k1, k2, k3) = [(k1 − k2)ρgµν + (k2 − k3)µgνρ + (k3 − k1)νgµρ]. (7.27)

In Eq.(7.26), f cd,ef,gh is structure constant as defined in Eq.(6.24) and εµ(q), ε∗ν(q
′)

are the polarization vectors for incoming and outgoing gluon. The matrix element
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squared can be obtained by performing appropriate polarization sum for gluons

and spin sum and average for heavy quark. Doing so, matrix element squared

becomes

|Mt|2 =
16g4

8N(N2 − 1)
Pmlab P l

′m′

ba f cd,ef,ghfd
′c′,fe,hg

( −(M2 − s)(M2 − u)

(t+ (m2
D)mlcd)(t+ (m2

D)m′l′c′d′)

)
.

(7.28)

The corresponding interference terms among Compton scatterings are given in

appendix(A). To that the total scattering amplitude of Compton scattering that

enters in Eq.(6.14) for evaluation of the drag and the diffusion coefficients is

|MgQ|2efgh = |Ms|2 + |Mu|2 + |Mt|2 + |Ms|†|Mu| + |Mu|†|M|s + |Ms|†|Mt| +
|Mt|†|M|s|+ |Mt|†|Mu|+ |Mu|†|M|t. For computational simplification, we shall

use the leading order contribution in the Debye mass that appears in the t channel

scatterings.

7.3 Results and discussions

With the scattering amplitude for the processes lQ → lQ (where l stands for

light quark/antiquark and gluon and Q stands for HQ) as evaluated in the previ-

ous section, we numerically compute the drag and the diffusion coefficients using

Eq.[6.14] and incorporate the dissipative effects in the quark/antiquark and gluon

color distribution functions as defined in Eqs.(7.12) and (7.13).

For this purpose, we use charm quark mass M = 1.27 GeV and the two loop

running coupling constant [261]

αs =
1

4π

1

2β0 ln πT
Λ

+ β1
β0

ln(2 ln(πT
Λ

))
(7.29)

where

β0 =
1

16π2

(
11− 2Nf

3

)
(7.30)

β1 =
1

(16π2)2

(
102− 38Nf

3

)
(7.31)

with Λ = 260 MeV and light quark flavor Nf = 2. We also evaluate the HQ

transport coefficients in pQCD by evaluating scattering amplitude squared within
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Figure 7.1: The ratiso A(η)/A(η = 0) and A(ξ)/A(ξ = 0) of drag coefficients as a
function of temperature for p = 1 GeV, η/s = 0.1, ξ/s = 0.03 and τ = 0.3 fm−1.
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Figure 7.2: The ratio A(η)/A(η = 0) and A(ξ)/A(ξ = 0) as a function of tem-
perature respectively for HQ momentum p = 1 GeV, ξ/s = 0, η/s = 0.1, 0.17 and
ξ/s = 0.03, 0.15, η/s = 0 and τ = 0.3, 0.5 fm−1.

the pQCD framework.

In general, there are two factors that essentially affect the heavy quark trans-

port properties. One is the Debye mass that appears in the evaluation of the

matrix elements and the other is the Polyakov loop dependent distribution func-

tions of quark/anti-quark and gluon. At low temperature, a lower value of the

Debye mass increases the transport coefficients. On the other hand, the distribu-
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Figure 7.3: The ratios A(η)/A(η = 0) and A(ξ)/A(ξ = 0) of drag coefficients as a
function of HQ momentum for η/s = 0.1, 0.17, ξ/s = 0.01, 0.03, τ = 0.5, 0.3 and
and T = 220.

tion function with the non-trivial φ tend to reduce it. These apart, a third factor

that plays an important role here is the momentum dependence of departure δfa/ab

in Eqs.(??) and (??) of the distribution function from the equilibrium distribu-

tion function. Now let us examine the results in somewhat detail. In Fig.(7.1),

we show the dependence of the drag coefficient as a function of temperature. In

the left panel, we have plotted the drag coefficient (Eq.(6.15)) for a constant value

of η/s and ξ/s = 0 normalized to the drag coefficient for η/s = 0, ξ/s = 0 i.e.,

A(η)/A(η = 0). In both the figures of Fig.(7.1), we have taken τ = 0.3 fm−1 and

the HQ momentum p = 1 GeV. The blue curve corresponds to the pQCD results

and the red curve corresponds to the effect of the Polyakov loop within the matrix

model. It is clear that at low temperature, for η/s = 0.1 and τ = 0.3 fm−1, the

drag coefficient is small within the matrix model compared to pQCD. As the tem-

perature increases the suppression in the drag coefficient decreases and approaches

the perturbative value at high temperature beyond which it decreases similar to

the perturbative results. This non-monotonic behavior is mainly because of the

negative contribution from the momentum factor (q2/3 − q2
z) in δfa/ab and can

be understood as follows. In the Polyakov loop background, a smaller value of

the Debye mass at low temperature lead to more negative contribution due to the

momentum factor in δfa/ab and hence smaller drag coefficient with finite η/s. An-
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other reason for more suppression in the drag coefficient within the matrix model

is due to the distribution function i.e., colored particles are suppressed due to

small value of Polyakov loop compared to pQCD. In the right panel of Fig.(7.1),

the temperature behavior of the normalized drag coefficient (A(ξ)/A(ξ = 0)) is

shown for ξ/s = 0.03 and η/s = 0. It can be observed that with the inclusion

of the bulk viscosity the drag coefficient is large compared to the ξ/s = 0 case.

The drag coefficient within the matrix model is large compared to pQCD. This is

because the ξ/s term in δfa/ab is always positive so the smaller value of the Debye

mass within the matrix model enhances the drag coefficient.

The ratio A(η)/A(η = 0) of the drag coefficient as defined in Eq.(6.15) is

plotted as a function of temperature for HQ momentum p = 1 GeV in Fig.(7.2)

for various value of η/s and τ to see the effect of both (η/s, τ) the quantities.

Here the scattering amplitude squared for the relevant scatterings are evaluated

within the matrix model. As anticipated from the effect of phase space (momen-

tum dependent term in δfa/ab), Polyakov loop dependent distribution functions of

quark/anti-quark and gluon, and the Debye mass, with an increase in η/s the HQ

drag coefficient decreases as shown by the black dashed and the blue curves on

the left panel of Fig.(7.2). Here the blue line is for η/s = 0.1 and black dashed

line for η/s = 0.17 with τ = 0.3 fm−1. With increase in the proper time the drag

coefficient increases which is shown by the red and the blue curve of the same

figure. This can be understood from 1/τ factor in Eqs.[7.12] and [7.13]. It is also

observed that, for small value of η/s and sufficiently large value of τ , the effect of

η/s on the HQ drag coefficient is weak. On the right panel of Fig.(7.2), the effect

of ξ/s and τ on the drag coefficient is shown. As expected, with an increase in

ξ/s, the drag coefficient increases as shown by a dashed black and the blue curve

i.e., ξ/s = 0.015 (dashed black lines ) and ξ/s = 0.03 (blue lines) for τ = 0.3 fm−1.

Same as earlier, with an increase in τ , the drag coefficient decreases.

Drag coefficient A(η) normalized with A(η = 0) as a function of HQ momentum

p for T = 220 MeV is shown in Fig.(7.3). Here, we have also shown the results

for HQ momenta p ∼ M . The extrapolated results for higher momenta will not

be reliable as we have not taken contribution from gluon radiation. As may be

observed from the left panel of the same figure, for finite η/s, the drag coefficient

increases with an increase in the HQ momentum. However, with an increase in η/s,
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Figure 7.5: The ratio B0(η, ξ)/B0(η = 0, ξ = 0) of diffusion coefficients as function
of temperature and HQ momentum for η/s = 0.1, 0.15, 0.2, ξ/s = 0.01, 0.03, 0.05
and and τ = 0.3 fm−1.

the drag coefficient decreases as shown by the black dashed curve (η/s = 0.17) and

the blue curve (η/s = 0.1). As earlier, this behavior can be explained by taking

account of phase space suppression (momentum dependent term in δfa/ab). Same

as earlier, with an increase in τ , the drag coefficient decreases. On the right panel

of the same figure, the effect of bulk viscosity on the HQ drag coefficient is shown.
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Here, the drag coefficient decreases with an increases in the HQ momentum. Note

that unlike η/s, with increase in ξ/s, the drag coefficient increases. Same as earlier,

with an increases in τ the drag coefficient decreases.

On the left panel of Fig.(7.4), the effect of both the bulk viscosity (ξ/s) and

the shear viscosity (η/s) for τ = 0.3 fm−1 on the normalized drag coefficient (

A(η, ξ)/A(η = 0, ξ = 0)) as a function of temperature is shown. At low temper-

ature, shear viscosity dominates due to the phase space suppression so the drag

coefficient decreases. At moderate temperature i.e., around 250 MeV, the bulk

viscosity dominates so the drag coefficient increases, again at high temperature

i.e., around 320 MeV, as seen earlier in Fig.(7.2), both η/s and ξ/s decreases

the drag coefficient. As can be noted, for a smaller value of η/s and ξ/s e.g.,

η/s = 0.1, ξ/s = 0.01, the dependence of the drag coefficient on temperature is

somewhat weak, however, the dependence is strong for a larger value of η/s and

ξ/s. On the right panel of Fig.(7.4) the same ratio as a function of momentum

is plotted. Similar to the case of temperature behavior, for smaller values of η/s

and ξ/s the drag coefficient is somewhat weakly dependent on the HQ momentum

(see blue curve; η/s = 0.1, ξ/s = 0.01), however, it strongly depends on the same

for larger values η/s and ξ/s. Also note that at low momentum, for finite value

of η/s and ξ/s, the drag coefficient is small and increases with an increase in the

HQ momentum.

The ratio B0(η, ξ)/B0(η = 0, ξ = 0) of diffusion coefficients as defined in

Eq.(6.16) is plotted as a function of temperature and momentum in Fig.(7.5). On

the left panel of Fig.(7.5), the black curve corresponds to η/s = 0.2, ξ/s = 0.05, the

red curve corresponds to η/s = 0.15, ξ/s = 0.03 and the blue curve corresponds to

η/s = 0.1, ξ/s = 0.01. Here, we have taken τ = 0.3 fm−1 and the HQ momentum

p = 1 GeV. It is observed that with an increase in η/s, ξ/s and temperature, the

diffusion coefficient increases. However, for smaller values of η/s and ξ/s e.g.,

η/s = 0.1, ξ/s = 0.01, the diffusion coefficient is not affected much. Note also that

at low temperature for a smaller value of η/s and ξ/s e.g., blue curve, the diffusion

coefficient is smaller as compared to the case of η/s = 0, ξ/s = 0 . Similarly, as

can be seen in the right panel of the same figure, with as increase in the HQ

momentum the diffusion coefficient decreases. For the HQ momentum p � M ,

with an increase in η/s and ξ/s, the diffusion coefficient increases. In pQCD, the
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Figure 7.6: The spatial diffusion 2πDxT as a function of temperature scaled by
Tc for τ = 0.3 fm−1,η/s = 0.1, 0.2 and ξ/s = 0.01, 0.005.

results for the drag and the diffusion coefficients for various values of η/s, ξ/s, τ

as a function of temperature and momentum that are presented here are similar

as pointed out in Ref.[214]. However, the differences are due to the effect of the

Polyakov loop.

It may be noted that with the Fokker-Plank formalism, one can relate the

momentum diffusion coefficient B0(p) as estimated here to the spatial diffusion

coefficient Dx that appears e.g., in the Ficks diffusion law. The diffusion coefficient

Dx is also estimated in the lattice QCD simulation. The two coefficients are related

as [297]

Dx =
T 2

B0(p→ 0)
. (7.32)

In Fig.(7.6), we have plotted the quantity 2πDxT from leading order (LO) pQCD

along with the lattice simulations and within the matrix model for various values

of η/s, ξ/s and τ = 0.3 fm−1 as a function of T/Tc. The brown dotted line

is LO pQCD result for constant coupling αs = 0.4. The blue (dashed dotted),

red (dashed) and black (solid) lines are within the matrix model respectively for

η/s = 0, 0.1, 0.2 and ξ/s = 0, 0.01, 0.05. The green dots are the lattice results

from Ref. [96].

The main observation in this figure are the following. The spatial diffusion co-
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efficient is smaller compared to the perturbative QCD estimate. Inclusion of the

viscous effect makes the coefficient even smaller. However, even with the inclusion

of viscous effects as well as Polyakov loop, the spatial diffusion coefficient is still

larger being almost about three times the corresponding lattice estimate. This

indicates that there could be other non-perturbative effects possibly the contribu-

tion of finite light quark mass and also the radiative corrections for the estimation

of diffusion coefficients.

7.4 Summary

In this chapter, we have computed the corrections due to the effects of the shear

and the bulk viscosities on the HQ drag and diffusion coefficients within the ma-

trix model of semi QGP. To incorporate the viscous corrections we first write the

distribution function of quark and gluon (fa/cd = f 0
a/cd+δfa/cd, where f 0

a/cd is equi-

librium distribution function and δfa/cd summarizes the effect of shear and bulk

viscosities) as defined in Eqs.(??) and (??). We next calculate the color dependent

scattering amplitudes of HQ from the light thermal partons in the bulk medium

within the matrix model of semi QGP. Non-perturbative effects are included via

the Polyakov loop in quark/antiquark and gluon distribution functions as well as in

the Debye mass. In all the calculations, we have taken the constant values for the

viscosity to entropy density ratio .e., without their temperature dependence. With

a reasonable constant value of η/s for the temperature range we have considered,

we find that the drag coefficient within the matrix model is small compared to that

of perturbative QCD. Similarly, for a constant value of ξ/s, the drag coefficients is

large within the matrix model compared the pQCD results. Furthermore, with an

increase in temperature and momentum the drag coefficient increases, however,

the diffusion coefficient increases with an increase in temperature and decreases

with an increase in momentum. The spatial diffusion coefficient decreases with

increase in the η/s and ξ/s. For a small value of η/s and ξ/s, both the drag and

the diffusion coefficients have a weak dependence on temperature and momentum

for all range of temperature and momentum considered here.
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Conclusion

Measurements related to heavy quark-antiquark bound state and the HQ open

meson has been a promising tool to study the properties of the deconfined mat-

ter in the HICs. The in-medium modifications to the quarkonia binding are well

described by the potential models, which is rigorously validated by the effective

field theories. Here, we have attempted to incorporate the magnetized in-medium

effects on both the Coulomb as well as the string part of the Cornell potential.

In medium permittivity is used to include the impact of the medium on the vac-

uum Cornell potential. The jet quenching data suggestive of more energy loss of

high/intermediate momentum heavy quark jet. In addition to the temperature,

we estimate the contribution from the magnetic field in the strong-field limit. We

found that in this limit, both thermal and magnetic field contributions are of a

similar order. In the low momentum limit, the magnetic field gives rise to the

anisotropic nature of the diffusion coefficient. These anisotropic drag/diffusion

may be useful to estimate the directed and collective flow of the open mesons. In

the low momentum regime, the large collectivity also requires the coupling to be

large, i.e., non-perturbative effects. We employ these effects via the Polyakov loop

and constituent mass of light quarks within the matrix model of semi-QGP.

The brief introduction of the topics considered in the present work is discussed

in chapter1. After the short presentations of the introductory topics, we have dis-
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cussed the in-medium quarkonia potential in a magnetized thermal QGP medium

in chapter 2. For the magnetic field, we have considered the strong-field limit, i.e.,

LLL approximation. To incorporate the magnetic field and temperature effects

on both the Coulomb as well as the string part of the Cornell potential, we have

used the generalized Gauss law with the in-medium permittivity. We have found

that both the real and the imaginary part of the potential gets modified. The

imaginary part of the potential increases in magnitude with the increase in mag-

netic field and temperature. As a result, the width of the quarkonium states (J/ψ

and Υ ) get more broadened with the increase in the magnetic field and results in

the earlier dissociation of quarkonium states in the presence of the magnetic field.

The width for Υ is much smaller than the J/ψ because bottomonium states are

tighter than the charmonium state. Thus the bottomonium states dissociate at a

higher temperature. The change in decay width from (11-14)% at T = 200 MeV

and from (5- 7)% at T = 250, for the magnetic field ranging from (5-25) m2
π. For

the magnetic field B ∼ T 2, one also needs to take higher LLs contribution in the

quarkonia potential. In order to fully understand the suppression of quarkonia

potential, one not only needs to know the quark-antiquark pair evolution but also

the non-perturbative effects that so far have not been understood quite well. The

real-time quarkonium dynamics is further simplified within the open quantum sys-

tem framework that allows one to incorporate all the relevant time scales. So far,

the implementation of non-perturbative effects within the open quantum system

approach is not explored.

In chapter 4, we have estimated the effect of the magnetic field on the HQ

collisional energy loss. Here, we have assumed the strong-field limit of the magnetic

field, i.e., eB � T 2, so that only LLL is active. We have also considered the scale

hierarchy M �
√
eB � T � g

√
eB so that the HQ is not directly affected by

the magnetic field. Thus, at leading order in the coupling, out of four scattering

diagrams, only t-channel scatterings contribute to the collisional energy loss. For

these scatterings of HQ with the thermalized light partons we have considered the

soft momentum transfer limit i.e., g
√
eB ≤ |k| � T �

√
eB. With M �

√
eB.

Out of these two t-channel scatterings, Coulomb scattering, i.e., Qq → Qq, is more

sensitive to the magnetic field because of its dependency on the spectral function

which increases with the magnetic field. Furthermore, this finally leads to an
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increase in energy loss with the magnetic field. For the magnetic field eB = 5m2
π,

the energy loss with and without the magnetic field are quite similar. For the

realistic situation for the magnetic field in the HIC, one also needs to take the

contribution from the higher LLs. In addition to the magnetic field contributions,

a systematic study of non-perturbative effects on HQ collisional energy loss is

needed in order to understand the thermalization of HQ/jet quenching in the bulk

medium.

In chapter 5, we have studied the anisotropic nature of the momentum diffu-

sion coefficient of HQ in the presence of the magnetic field. Here again, we have

considered the strong-field limit of the magnetic field along with the scale hierar-

chy M �
√
eB � T � g

√
eB. Similar to the collisional energy loss in chapter

4, here also, the HQ is not directly affected by the magnetic field, and only t-

channel scatterings contribute to transport coefficients. Depending on the relative

directions of the HQ velocity and the magnetic field, there are five diffusion coef-

ficients. For the case HQ velocity to align along the magnetic field, there are two

momentum diffusion coefficients. Out of these two, the diffusion in the transverse

direction is larger than that of the longitudinal one, i.e., κ
‖
TT � κ

‖
LL. On the other

hand, for the case of the HQ velocity to align perpendicular to the magnetic field,

there are three momentum diffusion coefficients. Out of these three, the diffusion

coefficient transverse to the HQ velocity and longitudinal to the magnetic field is

the dominant one, i.e., κ⊥TL � κ⊥LT � κ⊥TT . The anisotropic nature of the diffu-

sion coefficient signifies the anisotropy in the drag force. For the case where the

magnetic field is of the order of temperature, i.e., eB ∼ T 2, the contribution of

higher LLs becomes significant and can not be ignored. One important question

one can ask is up to what extent these anisotropic diffusion coefficients contribute

to the directed as well as elliptic flow of HQ. In fact, the directed flow of heavy

open mesons has been proposed as one of the potential observable to probe the

magnetic field in HICs. So far, with the current understanding of HQ evolution

in the medium, it has not been possible to quantify this effect.

In chapter 6, we have discussed the possible non-perturbative effects arising

from confinement and chiral symmetry on HQ transport coefficients. The first one

is summarised via the non-zero expectation value of the Polyakov loop while the

later one is included via constituent quark mass. In order to incorporate these
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two effects, we first estimate quark/gluon thermal/Debye mass. It was found

that temperatures below 300 MeV quark thermal mass and gluon Debye mass

start deviating from its perturbative value; this effect significant for even higher

temperatures when Polyakov values are taken from the lattice simulations. This

decrease in the Debye mass of gluon and the thermal mass of light quarks is due

to color suppression manifested in the quark and gluon distribution functions in

the presence of a background Polyakov loop field. In the calculation of the HQ

diffusion coefficient, the distribution function of the light quark and the Debye

mass play complementary roles. While the distribution function with the Polyakov

loop tends to decrease the HQ transport coefficient, the Debye mass has the effect

of increasing these transport coefficients. We have found a weak temperature

dependence of the heavy quark drag coefficient with Polyakov loop value taken

from PQM, which is consistent with other models like the T-matrix and quasi-

particle model that also take into account the non-perturbative effects in a different

manner. This consistency suggests the existence of possible model-independent

correlations between the results obtained with the Polyakov loop and other non-

perturbative models and reaffirm the temperature and momentum dependence of

heavy quark transport coefficients.

In chapter 7, we estimate viscous effects on HQ transport coefficients within

the matrix model of semi-QGP. In order to do this we first write the distribution

function of quark and gluon, i.e.,fa/cd = f 0
a/cd + δfa/cd, where f 0

a/cd is equilibrium

distribution function and δfa/cd summarizes the effect of shear and bulk viscosi-

ties. We next calculate the color-dependent scattering amplitudes of HQ from the

light thermal partons in the bulk medium within the matrix model of semi QGP.

Non-perturbative effects are included via the Polyakov loop in quark/antiquark

and gluon distribution functions as well as in the Debye mass. With a reasonable

constant value of η/s for the temperature range, we have considered, we find that

the drag coefficient within the matrix model is small compared to that of pertur-

bative QCD. Similarly, for a constant value of ξ/s, the drag coefficients are large

within the matrix model compared to the pQCD results. Furthermore, with an

increase in temperature and momentum, the drag coefficient increases; however,

the diffusion coefficient increases with an increase in temperature and decreases

with an increase in momentum. The spatial diffusion coefficient decreases with
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increase in the η/s and ξ/s. For a small value of η/s and ξ/s, both the drag and

the diffusion coefficients have a weak dependence on temperature and momen-

tum. Indeed, there are enough hints, both theoretically, and experimentally that

appreciate the need of (strong coupling) non-perturbative effects on HQ transport

coefficients. Experimentally, observable such as v2 and RAA of open heavy fla-

vor meson require a large drag coefficient of HQ compared to perturbative QCD

predictions. On the other hand, the radiative corrections in the non-perturbative

regime are not understood quite well. Some of these questions will be explored in

the near future as in continuation of the work presented in this thesis.
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A P P E N D I X A

Appendix

A.1 Gluon self energy in a magnetic field back-

ground

In the RTF, the retarded self energy of gluon in the Keldysh basis can be written
as

Πµν
R (p0,p) = Πµν

11 (p0,p) + Πµν
12 (p0,p), (A.1)

where Πµν
11 and Πµν

12 are 11 and 12 component of the gluon self energy. Both 11
and 22 components of self energy can be obtained by using the quark propagators
to acquire

Πµν
R (p0,p) = Ω

∫
d2k‖
(2π)2

(
Tr[γµS11(Q)γνS11(K)− γµS21(Q)γνS12(Q)]

)
,(A.2)

where

Ω =
−ig2|qfB|

16π
exp

(
− p2

⊥
|2qfB|

)
. (A.3)

In Eq.(A.2), the B dependent term (i.e., Ω) comes from the transverse part in
the quark propagator. In the LLL, the dynamics in the transverse direction is
restricted due to dimensional reduction from (3+1)-dimension to (1+1)-dimension.
Therefore, the gauge invariant form of the gluon self energy in a magnetic field
background can be written as

Πµν
R (p0,p) = Π

‖
R(P )

(
gµν‖ −

pµ‖p
µ
‖

p2
‖

)
. (A.4)
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To estimate the energy loss, we need Π
‖
R(P ) which can be obtained from the

relation Π
‖
R(P ) = −(p2

‖/p
2
z)Π

00
R (p0,p). Therefore, we focus only on the time-like

component (Π00
R ) of retarded self energy. Taking the trace over Dirac matrices in

Eq.(A.2), we get

Π00
R (p0,p) = 8Ω

∫
d2k‖
(2π)2

(K · Q)

(
∆11(Q)∆11(K)−∆21(Q)∆12(K)

)
,(A.5)

where ∆11 and ∆12 are defined in Eqs.(4.31) and (4.32) with K·Q = k0q0 +kzqz +
m2. Similar to ∆11, ∆21 can also be obtained from S21. Eq.(A.5) can further be
simplified by writing the propagators ∆ij in terms of the retarded, advanced and
symmetric propagators similar to the one defined in chapter2 to acquire

Π00
R (p0,p) = 4Ω

∫
d2k‖
(2π)2

(K · Q)

(
∆F (Q)∆R(K) + ∆A(Q)∆F (K)

)
. (A.6)

Replacing K → −Q and using the relation ∆R(−Q) = ∆A(Q), Eq.(A.6) becomes

Π00
R (p0,p) = 2π|Ω|

∫
d2k‖
(2π)2

(K · Q)(1− 2f̃(k0))δ(k2
‖ −m2

f )
1

q2
‖ −m2

f − iεq0

.(A.7)

The first term of Eq.(A.7) which is independent of the Fermi Dirac distribution
function, is the vacuum contribution to the time-like component of the gluon self
energy. The time-like component of the gluon self energy can be separated into
the vacuum and the thermal parts to get

Π00
R (p0,p) = Π00

R (p0,p)|vac + Π00
R (p0,p)|th, (A.8)

where the vacuum term is given as [144]

Π00
R (p0,p)|vac =

2|Ω|p2
z

p2
‖ + iεp0

[
1−

4m2
f√

p2
‖(4m

2
f − p2

‖)
arctan

(
p2
‖√

p2
‖(4m

2
f − p2

‖)

)]
.(A.9)

For the thermal contribution to the time-like component of the gluon self energy,
the energy integral in Eq.(A.7) can be done by using the energy delta function to
obtain

Π00
R (p0,p)|th = −

2π|Ω|m2
fp

2
z

p2
‖

(
J0(P ) +

2pz
p2
‖
J1(P )

)
, (A.10)

with

Ja =

∫ ∞
−∞

dkz
2πE

f̃(E)
kaz

(kz − pz/2)2 − p2
0/4 + p2

0m
2
f/p

2
‖ − ip0ε

, (A.11)
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A.1 Gluon self energy in a magnetic field background

where a = 0, 1. Using Eq.(A.10) and the relation Π
‖
R(P ) = −(p2

‖/p
2
z)Π

00
R (p0,p),

the parallel component of the medium dependent gluon self energy can be written
as

Π
‖
R(P ) = 2π|Ω|m2

f

[
J0(P ) +

2pz
p2
‖
J1(P )

]
. (A.12)

Imaginary part of the gluon self energy: The imaginary part of the
retarded self energy of the gluon can be obtained from the imaginary part of the
11 component of gluon self energy by using the relation [5]

=Πµν
R (p0,p) = (1− f̃(p0))=Πµν

11 (p0,p), (A.13)

where

Πµν
11 (p0,p) = ig2tatb

∫
d2k⊥
(2π)2

e
− k

2
⊥+q2⊥
|qfB|

∫
d2k‖
(2π)2

Tr[γµS11(K)γνS11(Q)]. (A.14)

S11(P ) in Eq.(A.14), is the 11 component of the quark propagator in RTF that
can be obtained from the retarded, advanced and symmetric propagators obtained
by inverting the relations given in Eqs.2.28, 2.29 and2.30. Using the Eqs.(4.9) and
(4.10), the imaginary part of Πµν

11 (P ) can be written as

=Πµν
11 (p0,p) = πg2tatbΩ

∫ ∞
−∞

dkz
2π

1

4EkEq

[(
1− f̃(Ek)− f̃(Eq) + 2f̃(Ek)f̃(Eq)

)
×

(
N µν(k0 = Ek)δ(p0 − Ek − Eq) +N µν(k0 = −Ek)δ(p0 + Ek + Eq)

)
+

(
− f̃(Ek)− f̃(Eq) + 2f̃(Ek)f̃(Eq)

)(
N µν(k0 = −Ek)δ(p0 − Ek + Eq)

+ N µν(k0 = Ek)δ(p0 + Ek − Eq)
)]
, (A.15)

where
N µν = Tr[γµS0(K)γνS0(Q)], (A.16)

with
S0(K) = (/k‖ +mf )(1 + iγ1γ2). (A.17)

The imaginary part of the retarded self energy i.e., =Π
‖
R can be obtained from =Π00

R

by using the general structure of the retarded self energy as given in Eq.(A.4). So
only the time-like component of =Πµν

11 i,e., =Π00
11 is relevant which can be obtained

from Eq.(A.15). The momentum integration in Eq.(A.15) can be done by using
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the energy delta functions. Let us first simplify the energy delta functions and
re-write those in terms of kz. By using the relation

δ(f(x)) =
∑
n

δ(x− xn)∣∣∣∣∂f(x)
∂x

∣∣∣∣
x=xn

, (A.18)

one can write

δ(p0 − Ek − Eq) =
δ(kz − k0

z)Ek0zEq0z
k0
z(Ek0z + Eq0z )

+
δ(kz − k1

z)Ek1zEq1z
k1
z(Ek1z + Eq1z )

, (A.19)

δ(p0 + Ek − Eq) =
δ(kz − k0

z)Ek0zEq0z
k0
z(Ek0z − Eq0z )

+
δ(kz − k1

z)Ek1zEq1z
k1
z(Ek1z − Eq1z )

, (A.20)

where

k0
z = −pz

2
+

1

2|p‖|
√
p2
zp

2
‖ − 4p2

0m
2
f + p4

‖, (A.21)

and

k1
z = −pz

2
− 1

2|p‖|
√
p2
zp

2
‖ − 4p2

0m
2
f + p4

‖. (A.22)

With further simplification, the imaginary part of Π00
11 can be written as

=Π00
11(p0,p) = g2tatbΩπ2m2

f

[(
1

k0
z(Ek0z + Eq0z )

+
1

k1
z(Ek1z + Eq1z )

)
− (f̃(k0

z) + f̃(q0
z)

− 2f̃(k0
z)f̃(q0

z))

(
2Ek0z

k0
zpz(2k

0
z + pz)

)
− (f̃(k1

z) + f̃(q1
z)− 2f̃(k1

z)f̃(q1
z))

×
(

2Ek1z
k1
zpz(2k

1
z + pz)

)]
. (A.23)

As mentioned earlier, Eq.(A.23) can be used to obtain =Π
‖
R.

A.2 Qg → Qg scattering

The contracted terms of Eq.(4.51) are

Term-1:

T µν1 Aµν = − 16Π
‖
R(q)

q4(q2 − Π
‖
R(q))

[P µP ′ν + P ′µP ν − (P.P ′)gµν ][KµK
′δP
‖
δν +K ′µK

δP
‖
δν ]

= − 16Π
‖
R(q)

q4(q2 − Π
‖
R(q))

[(P.K)(K ′.P‖.P
′) + (P.K ′)(K.P‖.P

′)

+ (K.P ′)(K ′.P‖.P ) + (P ′.K ′)(K.P‖.P )− 2(P.P ′)(K ′.P‖.K)]. (A.24)
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A.2 Qg → Qg scattering

Term-2:

T µν1 Bµν = − 16Π
‖
R(q)

q4(q2 − Π
‖
R(q))

[P µP ′ν + P ′µP ν − (P.P ′)gµν ][KδP
‖
δµK

′
ν

+ K ′δP
‖
δµKν ]

= − 16Π
‖
R(q)

q4(q2 − Π
‖
R(q))

[(P ′.K ′)(K.P‖.P ) + (K.P ′)(K ′.P‖.P )

+ (P.K ′)(K.P‖.P
′) + (P.K)(K ′.P‖.P

′)− 2(P.P ′)(K.P‖.K
′)].(A.25)

Term3:

T µν1 Cµν =
16(Π

‖
R(q))2

q4(q2 − Π
‖
R(q))2

[P µP ′ν + P ′µP ν − (P.P ′)gµν ][KδP
‖
δµK

′δ′P
‖
δ′ν

+ K ′δP
‖
δµK

δ′P
‖
δ′ν ]

=
16(Π

‖
R(q))2

q4(q2 − Π
‖
R(q))2

[(K.P‖.P )(K ′.P‖.P
′) + (K ′.P‖.P )(K.P‖.P

′)

+ (K.P‖.P
′)(K ′.P‖.P ) + (K ′.P‖.P

′)(K.P‖.P )

+ 2(P.P ′)(K.P‖.K
′)]. (A.26)

Here, we make use of the identity:

gµνP
‖
δµP

‖
δ′ν = −P ‖δδ′ . (A.27)

Term-4:

T µν2 Aµν = − 16M2Π
‖
R(q)

q4(q2 − Π
‖
R(q))

gµν [KµK
′δP
‖
δν +K ′µK

δP
‖
δν ]

= − 32M2Π
‖
R(q)

q4(q2 − Π
‖
R(q))

(K.P‖.K
′). (A.28)

Term-5:

T µν2 Bµν = − 16M2Π
‖
R(q)

q4(q2 − Π‖(q)R)
gµν [KδP

‖
δµK

′
ν +K ′δP

‖
δµKν ]

= − 32M2Π‖(q)

q4(q2 − Π‖(q))
(K.P‖.K

′). (A.29)
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Term-6:

T µν2 Cµν =
16M2(Π

‖
R(q))2

q4(q2 − Π
‖
R(q))2

gµν [KδP
‖
δµK

′δ′P
‖
δ′ν +K ′δP

‖
δµK

δ′P
‖
δ′ν ]

= − 32M2(Π
‖
R(q))2

q4(q2 − Π
‖
R(q))2

(K.P‖.K
′). (A.30)

A.2.1 Four vector product and tensor contractions

With the assumption that the HQ quark moves in the direction of the magnetic
field, the four-vector products in the matrix element squared i.e., |M̄|2 as given
in Eq.(4.52) can be given as

P.K = Ek − p.k = Ek − pk cos θk = Ek − pkx
P.K ′ = Ek′ − p · k’ = Ek′ − pk′y
P ′.K = E ′k − (p + k− k’) · k = Ek − vkk′y + vk2x− pkx− k2 + k · k’

P ′.K ′ = E ′k′ − (p + k− k’) · k’ = Ek′ − vk′2y + vkk′x− pk′y + k′2 − k · k’

P.P ′ = EE ′ − p · (p− q) = M2. (A.31)

Here k.k’ = kk′[
√

(1− x2)(1− y2)(cosφk cosφk′ + sinφk sinφk′) + xy] with x =
cos θk and y = cos θk′ . The tensor contractions can be splitted into the four-vector
dot products as

P.P‖.K =
(P.q‖)(K.q‖)

q2
‖

− P.K‖

P.P‖.K
′ =

(P.q‖)(K
′.q‖)

q2
‖

− P.K ′‖

P ′.P‖.K =
(P ′.q‖)(K.q‖)

q2
‖

− P ′.K‖

P ′.P‖.K
′ =

(P ′.q‖)(K
′.q‖)

q2
‖

− P ′.K ′‖

K.P‖.K
′ =

(K.q‖)(K
′.q‖)

q2
‖

−K.K ′‖ (A.32)
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A.3 Solution of A0 and Ai

The dot products in Eq.A.32 can also be simplified by taking the same assumption
for the heavy quark motion as

P.q‖ = Eω − pqz = Eω − p(k′z − kz) = Eω − pk′y + pkx,

K.q‖ = ωk − kzqz = ωk − kz(k′z − kz) = ωk − kk′xy + k2x2,

K ′.q‖ = ωk′ − k′z(k′z − kz) = ωk′ − k′2y2 + kk′xy,

P ′.q‖ = E ′ω − (p+ kz − k′z)(k′z − kz)
= Eω − vωk′y + vωkx− pk′y + pkx+ k2x2 + k′2y2 − 2kk′xy,

P.K‖ = Ek − pkz = Ek − pkx,
P.K ′‖ = Ek′ − pk′y,
P ′.K‖ = E ′k − (pz + kz − k′z)kz = Ek − vkk′y + vk2x− pkx− k2x2 + kk′xy,

P ′.K ′‖ = E ′k′ − (p+ kz − k′z)k′z = Ek′ − vk′2y + vkk′x− pk′y − kk′xy + k′2y2,

K.K ′‖ = kk′ − kzk′z, (A.33)

A.3 Solution of A0 and Ai

Solving Eqs.5.36 and (5.37) to obtain

A0 =
∑
i,k

Dik∆̃ik, (A.34)

Ai =
∑
k

D0k∆̃ik, (A.35)

where

Dik = −(D−1)0kj0
ext + (D−1)i0jkext, D0k = (D−1)0kj0

ext − (D−1)00jkext, (A.36)

∆̃ik =
1

(D−1)00(D−1)ik − (D−1)i0(D−1)0k
. (A.37)

Subtracting the bare terms, the explicit form of all the terms in A0 is

D11∆̃11 =
(D−1)10v − (D−1)11

(D−1)11(D−1)00 − (D−1)10(D−1)01

=
q2 − q2

x

ω2q2
x − (Q2 + q2

x)(q
2 + q2

zΠ‖)
− q2 − q2

x

ω2q2
x − (Q2 + q2

x)(q
2)
, (A.38)

D12∆̃12 =
(D−1)20v − (D−1)21

(D−1)21(D−1)00 − (D−1)20(D−1)01

=
ωv − qx

qx(ω2 − q2 − q2
zΠ‖)

− ωv − qx
qx(ω2 − q2)

, (A.39)
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D13∆̃13 =
(D−1)30v − (D−1)31

(D−1)31(D−1)00 − (D−1)30(D−1)01

=
qx − ωv(1 + Π‖)

qx(ω2 − q2 − q2
‖Π‖)

− qx − ωv
qx(ω2 − q2)

, (A.40)

D21∆̃21 = − (D−1)12

(D−1)12(D−1)00 − (D−1)10(D−1)02

= − 1

Q2 − q2
zΠ‖
− 1

Q2
, (A.41)

D22∆̃22 = − (D−1)22

(D−1)22(D−1)00 − (D−1)20(D−1)02

=
Q2 + q2

y

(Q2 + q2
y)(q

2 + q2
zΠ‖)− ω2q2

y

− Q2 + q2
y

(Q2 + q2
y)q

2 − ω2q2
y

, (A.42)

D23∆̃23 = − (D−1)32

(D−1)32(D−1)00 − (D−1)30(D−1)02

= − 1

Q2 + q2
‖Π‖
− 1

Q2
, (A.43)

D31∆̃31 = − (D−1)13

(D−1)13(D−1)00 − (D−1)10(D−1)03

= − 1

Q2 + q2
‖Π‖

+
1

Q2
, (A.44)

D32∆̃32 = − (D−1)23

(D−1)23(D−1)00 − (D−1)20(D−1)03

= − 1

Q2 + (ω2 − q2
z)Π‖

+
1

Q2
, (A.45)

D33∆̃33 = − (D−1)33

(D−1)33(D−1)00 − (D−1)30(D−1)03

= − ω2Π‖ +Q2 + q2
z

(ω2Π‖ +Q2 + q2
z)(q

2 + q2
zΠ‖)− ω2q2

z(1 + Π‖)2
+

Q2 + q2
z

(Q2 + q2
z)q

2 − ω2q2
z

,(A.46)
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A.4 Polyakov loop extended Quark Meson model

Polyakov loop extended quark meson model(PQM) captures two important fea-
tures of quantum chromodynamics(QCD) - namely chiral symmetry breaking and
its restoration at high temperature and/densities as well as the confinement - de-
confinement transitions. Explicitly, the Lagrangian of the PQM model is given
by[247, 248, 249, 250, 251]

L = ψ̄ (iγµDµ −m− gσ(σ + iγ5τ · π))ψ +
1

2
[∂µσ∂

µσ + ∂µπ∂
µπ]

− Uχ(σ, π)− UP (φ, φ̄). (A.47)

In the above, the first term is the kinetic and interaction term for the quark doublet
ψ = (u, d) interacting with the scalar (σ) and the isovector pseudoscalar pion (π)
field. The scalar field σ and the pion field π together form a SU(2) isovector field.
The quark field is also coupled to a spatially constant temporal gauge field A0

through the covariant derivative Dµ = ∂µ − ieAµ; Aµ = δµ0Aµ.
The mesonic potential Uχ(σ, π) essentially describes the chiral symmetry break-

ing pattern in strong interaction and is given by

Uχ(σ, π) =
λ

4
(σ2 + π2 − v2) − cσ. (A.48)

The last term in the Lagrangian in Eq.(A.47) is responsible for including the
physics of color confinement in terms of a potential energy for the expectation
value of the Polyakov loop φ and φ̄ which are defined in terms of the Polyakov
loop operator which is a Wilson loop in the temporal direction

P = P exp

(
i

∫ β

0

dx0A0(x0,x)

)
. (A.49)

In the Polyakov gauge A0 is time independent and is in the Cartan subalgebra i.e.
Aa0 = A3

0λ3+A8
0λ8. One can perform the integration over the time variable trivially

as path ordering becomes irrelevant so that P(x) = exp(βA0). The Polyakov loop
variable φ and its hermitian conjugate φ̄ are defined as

φ(x) =
1

Nc

TrP(x) φ̄(x) =
1

Nc

P†(x). (A.50)

In the limit of heavy quark mass, the confining phase is center symmetric and
therefore 〈φ〉 = 0 while for deconfined phase 〈φ〉 6= 0. Finite quark masses break
this symmetry explicitly. The explicit form of the potential Up(φ, φ̄) is not known
from first principle calculations. The common strategy is to choose a functional
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form of the potential that reproduces the pure gauge lattice simulation thermo-
dynamic results. Several forms of this potential has been suggested in literature.
We shall use here the following polynomial parameterization [247]

UP (φ, φ̄) = T 4

[
−b2(T )

2
φ̄φ− b3

2
(φ3 + φ̄3) +

b4

4
(φ̄φ)2

]
, (A.51)

with the temperature dependent coefficient b2 given as

b2(T ) = a0 + a1(
T0

T
) + a2(

T0

T
)2 + a3(

T0

T
)3. (A.52)

The numerical values of the parameters are

a0 = 6.75, a1 = −1.95, a2 = 2.625, a3 = −7.44

b3 = 0.75, b4 = 7.5. (A.53)

(A.54)

The parameter T0 corresponds to the transition temperature of Yang-Mills theory.
However, for the full dynamical QCD, there is a flavor dependence on T0(Nf ). For
two flavors we take it to be T0(2) = 192 MeV as in Ref.[247].

The Lagrangian in Eq.(A.47) is invariant under SU(2)L×SU(2)R transforma-
tion when the explicit symmetry breaking term cσ vanishes in the potential Uχ
in Eq.(A.48). The parameters of the potential Uχ are chosen such that the chiral
symmetry is spontaneously broken in the vacuum. The expectation values of the
meson fields in vacuum are 〈σ〉 = fπ and 〈π〉 = 0. Here fπ = 93 MeV is the
pion decay constant. The coefficient of the symmetry breaking linear term is de-
cided from the partial conservation of axial vector current (PCAC) as c = fπm

2
π,

mπ = 138 MeV, being the pion mass. Then minimizing the potential one has
v2 = f 2

π −m2
π/λ. The quartic coupling for the meson, λ is determined from the

mass of the sigma meson given as m2
σ = m2

π + 2λf 2
π . In the present work we

take mσ = 600MeV which gives λ=19.7. The coupling gσ is fixed here from the
constituent quark mass in vacuum Mq = gqfπ which has to be about (1/3)rd of
nucleon mass that leads to gσ = 3.3 [298].

To calculate the bulk thermodynamical properties of the system we use a mean
field approximation for the meson and the Polyakov fields while retaining the quan-
tum and thermal fluctuations of the quark fields. The thermodynamic potential
can then be written as

Ω(T, µ) = Ωq̄q + Uχ + UP (φ, φ̄). (A.55)
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A.4 Polyakov loop extended Quark Meson model

The fermionic part of the thermodynamic potential is given as

Ωq̄q = −2NfT

∫
d3p

(2π)3

[
ln
(
1 + 3(φ+ φ̄e−βω−)e−βω− + e−3βω−

)
+ ln

(
1 + 3(φ+ φ̄e−βω+)e−βω+ + e−3βω+

)
(A.56)

bigg], (A.57)

modulo a divergent vacuum part. In the above, ω∓ = Ep ∓ µ, with the single

particle quark/anti-quark energy Ep =
√

p2 + M2. The constituent quark/anti-
quark mass is defined to be

M2 = g2
σ(σ2 + π2). (A.58)

The divergent vacuum part arises from the negative energy states of the Dirac
sea. Using standard renormalisation, it can be partly absorbed in the coupling λ
and v2. However, a logarithmic correction from the renormalisation scale remains
which we neglect in the calculations that follow [298].

The mean fields are obtained by minimizing Ω with respect to σ, φ, φ̄, and π.
Extremising the effective potential with respect to σ field leads to

λ(σ2 + π2 − v2)− c + gσρs = 0, (A.59)

where, the scalar density ρs = −〈ψ̄ψ〉 is given by

ρs = 6Nfgσσ

∫
dp

(2π)3

1

EP
[f−(p) + f+(p)] . (A.60)

In the above, f∓(p) are the distribution functions for the quarks and anti quarks
given as

f−(p) =
φe−βω− + 2φ̄e−2βω− + e−3βω−

1 + 3φe−βω− + 3φ̄e−2βω− + e−3βω−
, (A.61)

and,

f+(p) =
φ̄e−βω+ + 2φe−2βω+ + e−3βω+

1 + 3φ̄e−βω+ + 3φe−2βω+ + e−3βω+
, (A.62)

The condition ∂Ω
∂φ

= 0 leads to

T 4

[
−b2

2
φ̄− b3

2
φ2 +

b4

2
φ̄φφ̄

]
+ Iφ = 0, (A.63)

where ,

Iφ =
∂Ωq̄q

∂φ
= −6NfT

∫
dp

(2π)3

[
e−βω−

1 + 3φe−βω− + 3φ̄e−2βω− + e−3βω−

+
e−2βω+

1 + 3φ̄e−βω+ + 3φe−2βω+ + e−3βω+

]
. (A.64)
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Similarly, ∂Ω
∂φ̄

= 0 leads to

T 4

[
−b2

2
φ− b3

2
φ̄2 +

b4

2
φ̄φ2

]
+ Iφ̄ = 0, (A.65)

with,

Iφ̄ =
∂Ωq̄q

∂φ̄
= −6NfT

∫
dp

(2π)3

[
e−2βω−

1 + 3φe−βω− + 3φ̄e−2βω− + e−3βω−

+
e−βω+

1 + 3φe−βω+ + 3φ̄e−2βω+ + e−3βω+
.

]
. (A.66)

By solving Eqs.(A.59),(A.63) and (A.65) self consistently one can get the values of
constituent quark mass, Polyakov loop variable and the conjugate Polyakov loop
variable as a function of temperature.

A.5 Feynman rules in double line notation

In this appendix, we shall discuss the relevant Feynman rules used in chapter6 and
chapter7 for evaluating diagrams within the matrix model of semi-QGP. We write
these rules in Euclidean space with the anti-commutation relation {γµ, γν} = 2δµν .
Let us start with the Lagrangian of matrix model [256]

L =

Nf∑
f

ψ̄f ( /D +m)ψf +
1

2
tr(Fµν)

2. (A.67)

Here Nf stands for flavor and quark ψ is represented in the fundamental repre-
sentation of SU(3) gauge group. In order to get background field fluctuation, we
expands about the background static gauge field as Aµ = A0

µ + δAµ; where δAµ
is represents the fluctuations and SU(3) matrix A0

µ = 1
g
δµ0Q

a with Qa = 2πqaT .

The covariant derivative /Dµ = ∂µ − igAµ and field tensor

Fµν = ∂µAν − ∂νAµ − ig[Aµ, Aν ]. (A.68)

The gauge fixing and ghost terms for gauge parameter ξ are defined in terms of
background field [256]

Lgauge =
1

ξ
tr(D0

µδAµ)− 2tr(η̄D0
µDµη), (A.69)

where D0
µ = ∂µ − igA0

µ so that D0
µψ

a(K) = −iK̃a
µ with K̃a

µ = Kµ + Qa + πT
and η denote ghost field. With these, the explicit form of color dependent quark
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A.5 Feynman rules in double line notation

= − 1
N

c, d

µ
b

a

c

d

a

b

c

d

a

b

Figure A.1: Quark gluon vertex in double line notation

propagator can be written as

〈ψa(K)ψ̄b(−K)〉 =
δab

−i /̃K +m
. (A.70)

Similarly, for gluon and ghost, the color dependent propagator is

〈δAabµ (K)δAcdν (−K)〉 =

(
δµν − (1− ξ)K

ab
µ K

cd
ν

(Kab)2

) Pab,cd
(Kab)2

, (A.71)

〈ηab(K)η̄cd(−K)〉 =
Pab,cd
(Kab)2

, (A.72)

where Kab
µ = Kµ +Qa −Qb. For an SU(N) gauge group

Pab,cd = δadδ
b
c −

1

N
δabδdc. (A.73)

It is worth mentioning here that for Ka = k0 + Qa both color flow and particle
momentum are in same direction. For the case when momentum and color flow
are in opposite direction Ka = k0−Qa. The vertices between the fluctuation δAµ,
ψ and ghost η are given as

δAabψaψ̄b = ig(tcd)abγµ, (A.74)

where tabcd is generator of the group. In diagramatic notation the corresponding
vertex is shown in Fig.A.1. Similarly, gluon ghost vertex can be written as

δAdcηfeη̄ba(K) = igfab,cd,efKab
µ . (A.75)

In diagramatic representation this is shown in Fig.A.3. Further, the tripple gluon
vertex can be written as

δAλfe(R)δAνdc(Q)δAµba(P ) = −ifab,cd,efCµνλ(P ab, Qcd, Ref ), (A.76)

where with all lines going outward from the vertex and

Cµνλ(P
ab, Qcd, Ref ) = (P ab

λ −Qcd
λ )δµν + (Qcd

µ −Ref
µ )δνλ + (Ref

ν − P ab
ν )δλµ. (A.77)
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Figure A.2: Tripple gluon vertex in double line notation
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=
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Figure A.3: Gluon ghost vertex in double line notation
.

In diagramatic representation this is shown in Fig.A.2. Finally, the four gluon
vertex can be written as

δAλfe(R)δAνdc(Q)δAµba(P )Aσgh(S) = −g2

N∑
i,j=1

[
fab,cd,ijf ef,gh,ji(δµλδνσ

− δµσδνλ) + fab,ef,ijf gh,cd,ji(δµσδλν

− δµνδλσ) + fab,gh,ijf cd,ef,ji(δµνδσλ

− δµλδσν)

]
. (A.78)
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