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Abstract

The advances in cooling and trapping of atoms present the unique op-

portunity to study exotic many body phases which were previously elusive

in conventional condensed matter systems. In these systems, the inter

atomic interaction can be tuned via Feshbach resonances and the popu-

lation of each atomic species can be controlled. In this thesis, we study

Cooper pairing in two component degenerate atomic Fermi gases. The su-

perfluid systems with matched Fermi surfaces are well described by cele-

brated Bardeen-Cooper-Schrieffer (BCS) theory. We discuss, in this frame-

work, the crossover from Bardeen-Cooper-Schrieffer (BCS) limit of weakly

bound Cooper pairs of fermionic atoms to the Bose-Einstein condensate

(BEC) of diatomic molecules as the strength of the interaction is varied. In

presence of mismatched Fermi surfaces, however, the system is proposed

to admit variety of exotic superfluid phases.

This mismatch can arise due to population imbalance or the mass dif-

ference between the two trapped components or both. We, in particular,

study the breached pairing phase which is potential candidate as a ground

state for such imbalanced systems. In this state, excess unpaired fermions

occupy the negative quasi-particle energies thereby minimizing the thermo-

dynamic potential. Moreover, it exhibits gapless modes and is also termed

as gapless superfluidity.

We consider a variational ground state for the system of nonrelativistic
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fermions with a four fermion point interaction to model the phase structure

of the ultracold atomic Fermi mixture with equal and unequal population

and the mass. We find that breached pairing phase with one Fermi surface

which admits only one gapless mode, is the stable phase. This rules out

the proposal that mass asymmetry between the pairing components can

lead to breached pairing with two Fermi surfaces also referred to as interior

gap state. We also present the temperature effects on these systems within

mean field approximation. The temperature effects are taken into account

by thermal Bogoliubov transformation. We then extend the formalism from

homogeneous system to trapped systems where present day experiments

are carried out.

We study equal mass population imbalanced two-component atomic Fermi

gas with unequal trap frequencies (ω↑ 6= ω↓) at zero temperature using

the local density approximation (LDA). We consider the strongly attracting

Bose-Einstein condensation (BEC) limit where polarized (gapless) super-

fluid, breached pairing phase with one Fermi surface (BP1), is stable. The

system exhibits shell structure: unpolarized superfluid → gapless superfluid

(BP1) → normal state. Compared to the trap symmetric case, when the ma-

jority component is tightly confined the gapless superfluid shell grows in size

leading to reduced threshold polarization to form a polarized (gapless) su-

perfluid core. In contrast, when the minority component is tightly confined,

we find that the superfluid phase is dominated by the unpolarized super-

fluid phase with the gapless phase forming a narrow shell. The shell radii

for various phases as a function of polarization at different values of trap

asymmetry are presented and the features are explained using the phase

diagram.
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Chapter 1

Introduction

The ultracold atomic systems provide highly controllable systems to explore

the various aspects of the many-body physics. The possibility to control the

interaction strength together with variety of trapping configurations, both of

magnetic and optical nature, make these systems ideal testing ground to

explore exotic and novel many-body phenomena facilitating contact with the

ideal conditions of theoretical conjectures. The recent developments along

with future directions can be found in (1; 2).

Below a certain critical temperature, Bose systems become Bose-Einstein

condensed (BEC) superfluids, with a macroscopic fraction of the particles

occupying the lowest single particle mode of the system. With development

in the techniques of cooling and trapping of atoms, BEC was finally achieved

in 1995 (3; 4). After exploring the condensed bosonic atoms, the search for

superfluid transition in ultracold Fermi gases started. The key ingredient

in these experiments is to reach quantum degeneracy where thermal de

Broglie wavelength λdb = ~/(2MkBT )1/2 is comparable to interparticl spac-

ing n−1/3 where n is density of the system.

The microscopic theory explaining the dissipationless flow of current was

first formulated by Bardeen, Cooper and Schrieffer (5) based on the work of

Cooper (6) referred to as BCS theory. In the BCS theory a degenerate Fermi

liquid undergoes pairing instability at a temperature Tc ≪ EF . The forma-

tion of Cooper pairs and their condensation, i.e., macroscopic occupation of
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single quantum state occur simultaneously at the transition temperature Tc.

The BCS theory proposes the non-trivial many body ground state wave-

function which below critical temperature admits an energy gap in excita-

tions spectrum. This proposal for the wave-function is based on the work

of Cooper (6) who first showed that for an arbitrarily small attractive inter-

action between two electrons above a filled Fermi sea, a bound state called

Cooper pair is formed.

In the conventional theory, s-wave Cooper pairing occurs between spin-

up and spin-down electrons with opposite momenta, and a similar pair-

ing could also be realized with hyperfine states considered to be the two-

pseudo-spin component atomic Fermi gas. The statistics of the neutral atom

is determined by the number of neutrons in the nucleus since neutral atom

contains equal number of proton and electrons. For Fermi atom this neutron

number is odd, for example, 40K ,6Li Alkali atoms have only one electron

(S = 1/2) out of closed shells. This electron is in a zero orbital angular mo-

mentum L = 0 state, and its total angular momentum J = L + S is J = 1/2.

The nuclear angular momentum I and electron angular momentum J are

combined in a hyperfine state with total angular momentum F = I + J giv-

ing F = I ± 1/2 for alkalis. Furthermore, the electron and nuclear spins are

coupled by the hyperfine interaction that splits the atomic levels in the ab-

sence of magnetic field Hhf ∝ I · J. A weak magnetic field causes Zeeman

splitting of the hyperfine levels |F, mF 〉 with different mF , and atoms trapped

in these hyperfine states can be considered to correspond to pseudo-spin

labels. Therefore, it is, in principle, possible to study pairing problem in ul-

tracold atomic experiments.

According to Pauli exclusion principle, no two fermions can occupy the

same state. This excludes interaction between same hyperfine states re-

quiring two-component system for the singlet pairing. For ultracold regime,

the relative kinetic energy between interacting atoms is small unable to sur-

mount the centrifugal barrier due to higher angular momentum states. Only
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s-wave scattering is significant which is characterized by the s-wave scatter-

ing length a.

The standard BCS theory predicts the critical temperature that is expo-

nentially dependent on the inverse of scattering length a, describing the

strength of the interactions between the atoms, as (7)

Tc =
8eγ−2

π

EF

kB
exp

(

− π

2kF |a|

)

(1.1)

where γ is Euler’s constant and kF and EF are Fermi momentum and energy

respectively. Thus critical temperature required to achieve superfluidity is

exponentially suppressed and presented major difficulty. In addition, there

is no clear experimental signature for the onset of the superfluid phase as

there is with bosons (8). The use of Feshbach resonances (9) has solved

both of these problems.

The interaction potential between the two atoms depends on their elec-

tronic spin states referred to as spin singlet (closed) and spin triplet (open)

channel leading to two channel problem. The two colliding atoms are pre-

pared in triplet channel. The threshold of the singlet channel appears above

that of the triplet (open) channel. Thus atoms in the closed channel can-

not scatter out to large separation. However these channels couple to each

other via hyperfine interaction. This produces different Zeeman shifts of the

two channels in an external magnetic field. The position of the bound state

in closed channel can be tuned with respect to the open channel by varying

the magnetic field.

Feshbach resonances appear when the total energy in an open channel

matches the energy of a bound state in a closed channel (Fig. 1.1). The

two particles in an open channel can scatter to an intermediate state in a

closed channel, subsequently decaying to give two particles in the open

channel. This second order process, according to perturbation theory, has

contribution to scattering length a proportional to (E−Eres)
−1, where E is the
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Fig. 1.1: The two-channel model for a Feshbach resonance. Atoms which are
prepared in the open channel, undergo a collision at low incident energy. In the
course of the collision, the open channel is coupled to the closed channel. When
a bound state of the closed channel has an energy close to zero, a scattering
resonance occurs. Adapted from (1).
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energy of the particles in the open channel and Eres is energy of the bound

state in the closed channel. By changing the magnetic field one can have

the bound state in the closed channel just below the continuum threshold in

the open channel, in which case a is negative, to just above it in which a is

positive. The scattering length can be expressed as a function of magnetic

field B (1; 2),

a = abg

(

1 − ∆B

B − B0

)

, (1.2)

where abg is the off-resonant background scattering length in the absence

of the coupling to the closed channel while ∆B and B0 are the width and

position of the resonance.

First quantum degenerate Fermi gas was prepared by De Marco and

D. Jin at JILA in 1999 (10) followed by realization of strongly interacting

Fermi gases using Feshabch resonance (11; 12). Next on the BEC side

a > 0 molecules made of fermions were created and condensed (13; 14;

15; 16; 17). The Bose-Einstein condensation of pairs of Fermionic atoms

was achieved (18; 19) followed by observation of quantized vortices on both

sides of the Feshbach resonance by Ketterle group at MIT (20) providing

convincing proof of superfluidity. In all these experiments equal population

of hyperfine states of single species was considered. One can consider the

more complex configuration where two components have unequal popula-

tion as well as different masses.

Within the BCS theory, superfluidity breaks down at the Clogston- Chan-

drasekhar limit (21; 22) of applied chemical potential difference. However, in

imbalanced Fermi mixture the system is expected to show a very interesting

and rich phase structure with the appearance of exotic superfluids. These

include the existence of breached pairing (23) and Sarma phase (24). It

is also possible to have inhomogeneous phases like Larkin-Ovchhinnikov-

Fulde-Ferrel (LOFF) phase wherein the Cooper pairs have nonzero net mo-

mentum (25; 26; 27), superfluidity with deformed Fermi surfaces (28) or a
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phase separated state (29). These exotic phases emerge when pairing oc-

curs between two species whose Fermi surfaces do not match. This can

happen when the number densities of the two species are different or there

is a mismatch in their masses or both.

In a BCS superconductor, mismatch in Fermi momenta can be intro-

duced by applying magnetic field. The applied magnetic field couples not

only to the spins but also to orbital motion of the charged conduction elec-

trons. Thus the magnetic field is screened by the orbital motion of the elec-

trons via Meissner effect. However, for sufficiently large magnetic field the

energy cost required to expel magnetic field is larger than the condensation

energy of the superconducting state. Hence the system makes first order

transition to normal state (2; 27). The situation of mismatched Fermi surface

with different masses arises in context of color superconductivity in quantum

chromodynamics where two different colors of the quarks form condensate.

The color superconductivity has implications in astrophysics, e.g., formation

of neutron stars and pulsars (27).

The ultracold Fermi gases provide favorable situation to realize superfluid

system with mismatch Fermi momenta where population of each component

of the mixture can be controlled relating it to chemical potential difference.

This is equivalent to applied magnetic field in the BCS superconductor. Re-

cently, series of experiments with population imbalanced systems were per-

formed (30; 31; 32; 33; 34; 35). These experiments led to intense theoretical

activity (36; 37; 38; 39; 40; 41; 42; 43; 44; 45; 46; 47; 48; 49; 50; 51).

To date, the two fermion species experiments are with the two hyper-

fine states of the same alkali atoms forming the condensate. Very recently

two fermion species of different masses, lithium and potassium, were laser

cooled and trapped to degeneracy (52). Another recent work reports the

observations of Feshbach resonances (53) with the same system. Thus

achievement of superfluidity with this mass difference could be the next

frontier of ongoing experiments in the field of ultracold Fermi gases. Fur-
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thermore, the possibility of having equal mass two-component Fermi gas

where each component experience different trap frequency were explored

in the regime of BCS-BEC crossover (54; 55). Most recently, the Bose-Fermi

mixture was realized with two-component system in the BEC regime where

breached pairing phase is proposed to be stable (35).

To describe the microscopic physics of a two-component Fermi gas with

a Feshbach resonance, in this thesis we use a single-channel model ap-

propriate for wide Feshabch resonance relevant to present experimental

set-ups. The wide and narrow Feshbach resonances are distinguished by

comparing Fermi wave vector to the length scale associated with the inverse

width of the resonance. For the wide resonance the condition is given by

kF |R∗| ≪ 1. (1.3)

The R∗ is the effective range of the interaction intimately connected to

the width of the resonance (1; 2). The effective range is defined by

k cot(δ0) ≃ −1

a
+

1

2
R∗k2

where δ0 is s-wave phase shift. The single channel model describes two

species of fermions interacting via a tunable s-wave interaction whose ef-

fective range R∗ is much less than the interparticle distance k−1
F . At low

energies the interaction is thus described by the s-wave scattering length a.

The outline of the thesis is as follows. In Chapter 2, we present the for-

malism to study the superfluid nature of population imbalanced two-component

Fermi systems. This formalism is based on the variational ansatz where

temperature is taken into account via thermal Bogoliubov transformation.

In Chapter 3, using the formalism developed in Chapter 2, we study

breached pairing phase. We first consider the BCS-BEC crossover and

then the equal and unequal mass breached pairing phases. We, in particu-

lar, focus on 6Li-40K mixture.
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In Chapter 4, we consider the trapped system with isotropic harmonic

potential. Starting with the construction of phase diagram in grand canonical

ensemble, we derive equations to study trapped system under local density

approximation (LDA). We later consider the situation when each trapped

hyperfine state experience different trap frequency. The implications of this

trap asymmetry are discussed presenting the shell radii of various phases.

Finally, in Chapter 5, we present the conclusion and the possible future

directions related to the work presented in the thesis.
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Chapter 2

Formalism

In this chapter we obtain the expression for the thermodynamic potential

using a general pairing ansatz. This ansatz can be modified to calculate

thermodynamic potential in more complex situation, for example, Cooper

pairing with non-zero center-of-mass momentum. The temperature effect

is included under thermal Bogoliubov transformation using the methodology

of thermo-field dynamics (TFD) (56; 57; 58; 59; 60). The variational pa-

rameters are determined by minimizing the thermodynamic potential. This

method has earlier been considered to describe degenerate ultracold fermionic

atoms with equal masses for homogeneous (61) as well as inhomogeneous

pairing (62). This method has also been applied to relativistic system like

cold quark matter and color superconductivity (58; 59; 60).

We first model the fermionic system with a four fermion point interac-

tion and then using the pairing ansatz we obtain the generalized Bogoliubov

transformation in Sec. 2.2. Including the effect of temperature in Sec. 2.3,

the expectation values of various operators are obtained in this ground state

in Sec. 2.4. Using these expectation values we evaluate thermodynamic

potential, however, still in terms of variational functions. By functionally min-

imizing the potential with respect to variational functions, their relation with

the thermodynamic quantities are obtained in Sec. 2.6. The thermodynamic

potential together with regularized gap equation are presented in Sec 2.7.

We then establish the stability condition in Sec. 2.8 and finally summarize

10



all the important equation together with relevant quantities in Sec. 2.9

2.1 Ansatz for the ground state and the Hamiltonian

To examine the superfluidity for Fermionic atoms, we consider a Hamiltonian

describing two interacting Fermionic species with four-fermion point interac-

tion given as

H =
∑

i

Ψi†

r (z)

(

−~
2~∇2

2mi

)

Ψi
r(z) +

∑

r,s

gΨ1†

r (z)Ψ1
r(z)Ψ2†

s (z)Ψ2
s(z),

(2.1)

where r and s are the spin indices and i denotes the species with mass mi.

The constant g is the bare interaction strength between the two species and

is related to the s-wave scattering length a. To describe pairing between two

different Fermionic species, we consider the ansatz for the ground state (61)

of the system as

|Ω〉 = e(B†−B)|0〉, (2.2)

where

B† =

∫

dkǫijΨi†

r (k)f(k)Ψj†

−r(−k). (2.3)

Here ǫij is the Levi-Cevita tensor, with i and j denoting two different Fermionic

species. The function f(k) is the variational function related to the order

parameter, as will be seen later. In the case of equal population and for

negative weak coupling, this ansatz corresponds to the standard BCS wave

function. Clearly the ground states, |0〉 and |Ω〉, are related by the unitary

transformation operator U = e(B†−B). Hence the field operators transform as

Ô′ = UÔU †, where as Ô is any operator.
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2.2 Operator transformation under the Ansatz

Now we derive transformation for operators in the new basis in terms of

old operators. Specifically let us consider the annihilation operator Ψk
s and

define

F (λ) = eλ(B†−B)Ψk
s (q) e−λ(B†−B). (2.4)

For λ = 1 we have 1

Ψi
′

s (q) = e(B†−B)Ψk
s (q) e−(B†−B). (2.5)

Differentiating F with respect to λ, one obtains

F
′

(λ) = eλ(B†−B)
[

B†Ψk
s (q) − Ψk

s (q)B†
]

e−λ(B†−B). (2.6)

The quantity inside the bracket is evaluated as follows:

consider

B†Ψk
s (q) =

∫

dkǫijΨi†

r (k)f(k)Ψj†

−r(−k)Ψk
s (q) . (2.7)

Using
{

Ψa
p(q), Ψb†

q (k)
}

= δpqδabδ (q − k) , (2.8)

we obtain

B†Ψk
s (q) = ǫikf(q)Ψi†

−s(−q) − ǫkjf(q)Ψj†

−s(−q) + Ψk
s (q) B† (2.9)

rearranging the above equation

B†Ψk
s (q) − Ψk

s (q) B† = ǫikf(q)Ψi†

−s(−q) + ǫjkf(q)Ψj†

−s(−q)

= 2
∑

i

ǫikf(q)Ψi†

−s(−q). (2.10)

1one way to do Campbell-Baker-Hausdorff (CBH) expansion
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We use this in the F
′

(λ) expression, Eq. (2.6), and obtain

F
′

(λ) = 2eλ(B†−B)

[

∑

i

ǫikf(q)Ψi†

−s(−q)

]

e−λ(B†−B). (2.11)

Now differentiating F
′

(λ) w.r.t λ

F
′′

(λ) = 2
∑

i

ǫikf(q)eλ(B†−B)
[

BΨi†

−s(−q) − Ψi†

−s(−q)B
]

e−λ(B†−B). (2.12)

The quantity in the bracket can be evaluated similar to Eq. (2.9). This gives

BΨi†

−s(−q) − Ψi†

−s(−q)B = 2
∑

l

ǫlif(q)Ψl†

s (q). (2.13)

This leads to further simplification and we thus obtain

F
′′

(λ) = 4
∑

k.l

ǫikǫli |f(q)|2 eλ(B†−B)Ψl†

s (q)e−λ(B†−B) (2.14)

= −4
∑

l

δk,l |f(q)|2 eλ(B†−B)Ψk†

s (q)e−λ(B†−B)

= −4 |f(q)|2 eλ(B†−B)Ψk†

s (q)e−λ(B†−B)

= −4 |f(q)|2 F (λ) . (2.15)

The solution to this equation admits the following form,

F (λ) = A cos [2λf(q)] + C sin [2λf(q)] . (2.16)

Next we proceed to calculate the coefficients A and C. When λ = 0, we

obtain

F (0) = A,

Now by definition

F (λ) = eλ(B†−B)Ψk
s (q) e−λ(B†−B),

13



which for λ = 0 reduces to

F (0) = Ψk
s (q) ,

comparing F (0) values, we get

A = Ψk
s (q) . (2.17)

Similarly evaluating F
′

(0) one obtains

C = ǫikΨi†

−s (−q) . (2.18)

The F (λ) can now be written as,

F (λ) = Ψk
s (q) cos (2λf(q)) + ǫikΨi†

−s (−q) sin (2λf(q)) . (2.19)

For λ =
1

2
,

Ψk′

s (q) = Ψk
s (q) cos (f(q)) + ǫikΨi†

−s (−q) sin (f(q)) . (2.20)

Renaming the indices we obtain,

Ψi′

s (q) = Ψi
s (q) cos (f(q)) − ǫijΨj†

−s (−q) sin (f(q)) . (2.21)

Similarly

Ψj′†

−s (−q) = Ψj†

−s (−q) cos (f(q)) + ǫijΨi
s (q) sin (f(q)) (2.22)

The two equation can be written as the matrix equation





Ψi′

s (q)

Ψj′†

−s (−q)



 =





cos (f(q)) −ǫij sin (f(q))

ǫij sin (f(q)) cos (f(q))









Ψi
s (q)

Ψj′†

−s (−q)



 . (2.23)
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The inverse transformation gives





Ψi
s (q)

Ψj′†

−s (−q)



 =





cos (f(q)) ǫij sin (f(q))

−ǫij sin (f(q)) cos (f(q))









Ψi′

s (q)

Ψj′†

−s (−q)



 . (2.24)

The operators are thus Bogoliubov transformed.

2.3 Effect of temperature

To include the effect of temperature and density, we use the method of

thermo-field dynamics (TFD) (56; 57; 58; 59; 60) that is particularly useful

while dealing with operators and states. Here, the thermal “ground state" is

obtained from the zero temperature ground state |Ω〉 through a Bogoliubov

transformation in an extended Hilbert space associated with thermal dou-

bling of operators. Explicitly, |Ω, β, µ〉, the ground state at finite temperature

and density is given as

|Ω, β, µ〉 = exp(B†
β,µ − Bβ,µ)|Ω〉 (2.25)

where

B†
β,µ =

∫

[

Ψ′(k)†θi(k, β, µ)Ψ′(−k)
]

dk. (2.26)

In Eq. (2.26), the function θi, as we shall see later, will be related to the distri-

bution function of the ith species and the underlined operators are the oper-

ators in the extended Hilbert space associated with thermal doubling. Let us

note that the ansatz for the thermal ground state as in Eq. (2.25) is obtained

from the perturbative vacuum |0〉 by two successive Bogoliubov transforma-

tions. In the description of the ground state we have three functions, the

condensate function f(k) and the two thermal function θi(k, β) (i = 1, 2). All

these ansatz functions shall be determined through variational principle i.e.

through an extremization of thermodynamic potential Ω = T + V − s/β − µρ

which is the relevant quantity to be extremized for finite temperature. Let us
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note that, with the state defined as in Eq. (2.25), the expectation value for

the number operator, for example, is given as

〈

Ω, β, µ
∣

∣

∣
Ψa

′†

r (k1)Ψb′

s (k2)
∣

∣

∣
Ω, β, µ

〉

= sin2 (θa (k)) δrsδabδ (k1 − k2) . (2.27)

We henceforth use the notation 〈Ω, β, µ |G|Ω, β, µ〉 ↔ 〈G〉

We also note that we are not using anywhere any perturbative technique

using propagators and expansion in any coupling, however, the approxima-

tion lies in the ansatz for the ground state. As we shall see later, such an

ansatz corresponds to the meanfield approximation.

2.4 Expectation values of the Operators

Noting that the variational state in Eq. (2.25) arises from successive Bogoli-

ubov transformations, one can calculate the expectation values of the var-

ious operators using Eq. (2.24) and Eq. (2.27). With 〈Ô〉 representing the

expectation value of an operator Ô in the new ground state of the system

〈Ω, β, µ)|Ô|Ω, β, µ〉, we thus have

〈

Ω
∣

∣

∣
Ψ1†

r (k1) Ψ1
s (k2)

∣

∣

∣
Ω
〉

=
〈(

Ψ1′†

r (k1) cos (f (k1)) + Ψ2
−r(−k1) sin (f (k1))

)

·
(

Ψ1′

s (k2) cos (f (k2)) + Ψ2′†
′

−s (−k2) sin (f (k2))
)〉

= cos2 (f (k1)) δrsδ (k1 − k2) sin2 (θ1 (k1)) +

sin2 (f (k1)) δrsδ (k1 − k2) cos2 (θ2 (k1)) . (2.28)
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Similarly, one obtains

〈

Ψ1†
r (k1)Ψ

1
s(k2)

〉

=
[

cos2(f(k1)) sin2(θ1(k1)) + sin2(f(k1))

cos2(θ2(k1))
]

δrsδ (k1 − k2) , (2.29)
〈

Ψ2†
r (k1)Ψ

2
s(k2)

〉

=
[

cos2(f(k1)) sin2(θ2(k1)) − sin2(f(k1))

cos2(θ1(k1))
]

δrsδ(k1 − k2), (2.30)
〈

Ψ1
r(k1)Ψ

2
s(k2)

〉

= −sin(2f(k1))

2
[1 − sin2(θ1(k1))

− sin2(θ2(k1))]δr−sδ(k1 + k2), (2.31)
〈

Ψ1†
r (k1)Ψ

2†
s (k2)

〉

=
sin(2f(k1))

2

[

1 − sin2(θ1(k1))

− sin2(θ2(k1))
]

δr−sδ(k1 + k2). (2.32)

2.5 Evaluation of Thermodynamic potential

The thermodynamic potential density Ω is given by

Ω = T + V − s

β
− µiρi, (2.33)

where T and V as the kinetic and potential energy contributions respectively,

s is the entropy density and µi is the chemical potential for the species ‘i’.

Now each term in the Hamiltonian can be calculated, for example

〈

Ω
∣

∣

∣
T − µiN̂i

∣

∣

∣
Ω
〉

=
∑

a=1,2

∑

r,s

〈

Ω
∣

∣

∣
Ψa†

r (z) (εa − µa) Ψa
s (z)

∣

∣

∣
Ω
〉

=
[〈

Ψ1† (z) (ε1 − µ1)Ψ1 (z)
〉

+
〈

Ψ2† (z) (ε2 − µ2) Ψ2 (z)
〉]

(2.34)

where we have defined the number operator N̂i = Ψi†Ψi with kinetic energy

of each particle given by

εi =
~

2k2
i

2mi

(2.35)
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This gives

〈

Ω
∣

∣

∣
T − µiN̂i

∣

∣

∣
Ω
〉

=

(

1

2π

)3 ∫

d3k1 (ε1 − µ1)
[

cos2 (f (k1)) sin2 (θ1 (k1))

+ sin2 (f (k1)) cos2 (θ2 (k1))
]

+

(

1

2π

)3 ∫

d3k2 (ε2 − µ2)
[

cos2 (f (k1)) sin2 (θ2 (k1))

+ sin2 (f (k1)) cos2 (θ1 (k1))
]

. (2.36)

Consider the potential term due to interparticle interaction,

〈Ω |V |Ω〉 =

〈

Ω

∣

∣

∣

∣

∣

∑

p,q,r,s

gΨ1†

p (z)Ψ1
q(z)Ψ2†

r (z)Ψ2
s(z)

∣

∣

∣

∣

∣

Ω

〉

. (2.37)

By applying Wick’s theorem,

〈Ω |V |Ω〉 = g
∑

p,q,r,s

〈

Ψ1†

p (z) Ψ1
r (z)

〉〈

Ψ2†

q (z)Ψ2
s (z)

〉

− g
∑

p,q,r,s

〈

Ψ1†

p (z) Ψ2†

q (z)
〉

〈

Ψ1
r (z)Ψ2

s (z)
〉

= gρ1ρ2 + gI2
D, (2.38)

where we have defined the densities as

ρ1 =
〈

Ψ1†
r (k)Ψ1

s(k)
〉

=

(

1

2π

)3 ∫

d3k
[

cos2 (f (k)) sin2 (θ1 (k)) + sin2 (f (k)) cos2 (θ2(k))
]

,

(2.39)

ρ2 =
〈

Ψ2†
r (k)Ψ2

s(k)
〉

=

(

1

2π

)3 ∫

d3k
[

cos2 (f (k)) sin2 (θ2 (k)) + sin2 (f (k)) cos2 (θ1 (k))
]

,

(2.40)
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ID =
〈

Ψ1
r(k)Ψ2

s(−k)
〉

=

(

1

2π

)3 ∫

d3k
sin (2f (k))

2

[

1 − sin2 (θ1 (k)) − sin2 (θ2 (k))
]

.

(2.41)

Entropy density is defined as

s = −
∑

i=1,2

(

1

2π

)3 ∫

d3k [ni log (ni) + (1 − ni) log (1 − ni)] , (2.42)

where

ni = sin2 (θi (k)) , (2.43)

is the occupation function of the ith species. Thus each term of the thermo-

dynamic potential density Eq. (2.33) is evaluated as a functional of f(k) and

θi (k, β) using Eq. (2.36), (2.38), (2.39), (2.40), (2.41), (2.42).

2.6 Gap equation

To find the gap equation, the thermodynamic functional Ω (f(k), θ1, θ2) , Eq. (2.33),

is minimized with respect to f (k) . This gives

tan [2f (k)] = − 2gID

[(ε1 − µ1) + (ε2 − µ2)] + gρ1 + gρ2
. (2.44)

We define chemical potentials with mean field correction,

νi = µi − gρj

∣

∣ǫij
∣

∣ . (2.45)

Using the above definition,

tan (2f (k)) = − 2gID

[(ε1 − ν1) + (ε2 − ν2)]
(2.46)

tan (2f (k)) = − gID

(ε − ν)
, (2.47)
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where in the last equation we define the average kinetic energy,

ε =
ε1 + ε2

2
, (2.48)

and average chemical potential (with mean field correction),

ν =
ν1 + ν2

2
. (2.49)

This leads to

tan (2f (k)) =
∆

(ε − ν)
. (2.50)

where we have defined order parameter or gap as

∆ = −gID (2.51)

Then using the definition of ID from Eq. (2.41), we obtain

∆ = −g

(

1

2π

)3∫

d3k
sin (2f (k))

2

[

1 − sin2 (θ1 (k)) − sin2 (θ2 (k))
]

(2.52)

Using Eq. (2.50), it simplifies to

∆ = −g

(

1

2π

)3 ∫

d3k
∆

2
√

(ε − ν)2 + ∆2

[

1 − sin2 (θ1 (k)) − sin2 (θ2 (k))
]

.

(2.53)

The variational parameter θi, related to temperature effect, is determined by

the condition

δ〈Ω〉/δθi(k) = 0. (2.54)

This equation, for θ1, leads to

− 1

β
sin (2θ1 (k)) log

(

tan2 (θ1 (k))
)

= (ε1 − ν1) cos2 (f (k))−(ε2 − ν2) sin2 (f (k)) .

(2.55)
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Rewriting the equation

− 1

β
sin [2θ1 (k)] log

[

tan2 (θ1 (k))
]

= (ε1 − ν1) cos2 (f (k))

− (ε2 − ν2) sin2 (f (k))

=
1

2
[(ε1 − ν1) − (ε2 − ν2)] +

√

(ε − ν)2 + ∆2,

(2.56)

where in the second equality, we have used Eq. (2.50). This equation can

now be written as

log
[

tan2 (θ1 (k))
]

= −βω1 (2.57)

tan2 (θ1 (k)) = exp (−βω1) (2.58)

where we have introduced the following quantities

ω1 = ω + δξ

ω =
√

ξ2 + ∆2 (2.59)

δξ =
1

2
[(ε1 − ν1) − (ε2 − ν2)] (2.60)

ξ = ε − ν (2.61)

Here ω1 represent quasi-particle energy for component with mass m1 with

ω as standard BCS quasiparticle energy in absence of mismatch Fermi mo-

menta. The δξ measures the difference between the kinetic energy of the

two components with respects to their chemical potentials νi and ξ mea-

sures the average kinetic energy with respect to average chemical potential.

Following from Eq. (2.58), density distribution for the component of the type

1 is,

n1 (ω1) = sin2 (θ1 (k))

=
1

exp (βω1) + 1
(2.62)
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Now similarly one can obtain for the other component,

ω2 = ω − δξ

with distribution function,

n2 (ω2) = sin2 (θ2 (k))

=
1

exp (βω2) + 1
(2.63)

Thus the quasiparticles follow Fermi-Dirac statistics with energies ωi. It should

be noted that depending on the value of δξ the quasiparticle energies ωi can

vanish leading to the gapless modes. This gapless phase will be discussed

in the Chapter 3.

2.7 Thermodynamic potential and the regularized gap equa-

tion

We have now determined for the variational parameters f(k) (Eq. (2.50))

and θi (Eq. (2.62), (2.63)). This leads to the following expression for thermo-

dynamic potential in the paired state under the proposed pairing ansatz,

Ω =
1

(2π)3

∫

d3k

[

ξ − ω − 1

β

∑

i

ln (1 + exp (−βωi))

]

−∆2

g
. (2.64)
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The number density and gap equation can now be directly obtained through

relations,

0 =
∂Ω

∂∆
, (2.65)

ρ1 = − ∂Ω

∂µ1
, (2.66)

ρ2 = − ∂Ω

∂µ2
. (2.67)

The densities for the two fermion species are then given by

ρ1 =
1

(2π)3

∫

d3k

[

1

2

(

1 +
ξ

ω

)

sin2(θ1)

+
1

2

(

1 − ξ

ω

)

cos2(θ2)

]

, (2.68)

ρ2 =
1

(2π)3

∫

d3k

[

1

2

(

1 +
ξ

ω

)

sin2(θ2)

+
1

2

(

1 − ξ

ω

)

cos2(θ1)

]

. (2.69)

The gap equation for nonzero ∆ is given by

−1

g
=

1

(2π)3

∫

d3k
1

2ω

[

1 − sin2(θ1) − sin2(θ2)
]

. (2.70)

This equation is ultraviolet divergent which is characteristic of the contact

interaction. It is rectified by subtracting the vacuum contribution, i.e., by

subtracting out T = 0 and ν = 0 contribution from the gap equation and

relating this renormalized coupling to the s-wave scattering length a (63; 61).

Thus the regularized gap equation is

− m̃

2π~2a
=

1

(2π)3

∫

d3k

(

1

2ω

[

1 − sin2(θ1) − sin2(θ2)
]

− 1

2εk

)

,

(2.71)
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where m̃ is the reduced mass defined as,

1

m̃
=

1

m1
+

1

m2
(2.72)

2.8 Stability condition

The stability of the pairing state is decided by comparing the thermodynamic

potential of the superconducting matter with that of the normal matter. Thus

the relevant quantity is the difference of the thermodynamic potential be-

tween the paired and normal phases. The thermodynamic potential of the

paired Fermionic mixture is

Ω =
1

(2π)3

∫

d3k

[

ξ − ω − 1

β

∑

i

ln (1 + exp (−βωi))

]

−∆2

g
. (2.73)

Subtracting the thermodynamic potential for normal matter (∆ = 0) from the

above equation, we have the difference in the thermodynamic potential be-

tween the condensed and the normal matter as

δΩ =
1

(2π)3

∫

d3k

[

|ξ| − ω − 1

β

∑

i

ln (1 + exp (−βωi))

+
1

β

∑

i

ln (1 + exp (−βω0i))

]

− ∆2

g
. (2.74)

Here ωi = ω ± δξ and ω0i = |ξ| ± δξ. This difference in the thermodynamic

potential, δΩ has to be negative for the stability of the paired state. Further

one can use the gap equation to eliminate the coupling g in Eq. (2.74) to
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obtain

δΩ =
1

(2π)3

∫

d3k

[

|ξ| − ω +
∆2

2ω
− 1

β

∑

i

ln (1 + exp (−βωi))

+
1

β

∑

i

ln (1 + exp (−βω0i)) −
∆2

2ω

[

sin2(θ1) + sin2(θ2)
]

]

.

(2.75)

This expression is free of ultraviolet divergence and will be used to deter-

mine the stability of the given paired state. It should be noted that sin2(θi)

are quasiparticle distribution function with energies ωi.

2.9 Summary

Here we write the final set of equations: the thermodynamic potential for the

pairing state

Ω =
1

(2π)3

∫

d3k

[

ξ − ω − 1

β

∑

i

ln (1 + exp (−βωi))

]

− ∆2

g
. (2.76)

The thermodynamic potential difference

δΩ =
1

(2π)3

∫

d3k

[

|ξ| − ω +
∆2

2ω
− 1

β

∑

i

ln (1 + exp (−βωi))

+
1

β

∑

i

ln (1 + exp (−βω0i)) −
∆2

2ω

[

sin2(θ1) + sin2(θ2)
]

]

.

(2.77)

The regularized gap equation

− m̃

2π~2a
=

1

(2π)3

∫

d3k

(

1

2ω

[

1 − sin2(θ1) − sin2(θ2)
]

− 1

2εk

)

,

(2.78)
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and total and difference number densities

ρ =
1

(2π)3

∫

d3k

[

1

2

(

1 +
ξ

ω

)

(

sin2(θ1) + cos2(θ1)
)

+
1

2

(

1 − ξ

ω

)

(

sin2(θ2) + cos2(θ2)
)

]

,

δρ =
1

(2π)3

∫

d3k
[

sin2(θ1) − sin2(θ2)
]

(2.79)

Let us consider,

δξ =
1

2
[(ε1 − ν1) − (ε2 − ν2)] (2.80)

introducing

δν =
1

2
(ν1 − ν2) (2.81)

and mass ratio

q =
m1

m2

(2.82)

the δξ can be written as

δξ =
1 − q

1 + q
ξ − δν (2.83)

Thus the related quantities are

ω1 = ω + δξ, (2.84)

ω =
√

ξ2 + ∆2, (2.85)

δξ =
1 − q

1 + q
ε − δν , (2.86)

ξ = ε − ν. (2.87)

To study the system, the coupling strength ( characterized by the scattering

length a) and densities of each component ρi are specified. Solving the

gap, Eq. (2.78), and the density equations, Eq. (2.79), self consistently then

the order parameter ∆ and chemical potential for each component νi are

obtained. The solution thus obtained is used to calculate thermodynamic

potential difference δΩ in Eq. (2.77) to determine which phase has lower
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thermodynamic potential and hence stable.
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Chapter 3

Superfluid: From BCS to Breached

Pairing

In this chapter we mainly focus on breached pair phase in homogeneous

system. This phase describe the polarized superfluid where superfluidity

persists together with population imbalance. The normal and superfluid

phase separate in momentum space but forming homogeneous mixture in

real space.

Using the equations derived in previous chapter, we first consider the

situation in zero temperature limit in Sec. 3.1 which later will be useful for

studying breached pair phase. Expressing the various quantities in dimen-

sionless units we characterize the system by universal dimensionless pa-

rameters in Sec. 3.2. The evolution of BCS state is presented in Sec. 3.3

followed by discussions on BCS-BEC crossover in Sec. 3.4. Finally we

discuss the breached pair phase in Sec. 3.5. We are presented with two

breached pairing phases: breached pairing with two Fermi surfaces (BP2)

and breached pairing with one Fermi surface (BP1). We explore which one

of these two phases is stable for equal and unequal mass cases. Finally, we

summarize our results in Sec. 3.7
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3.1 Zero temperature limit

At finite temperature, the pairing ansatz description is equivalent to mean-

field treatment and thus unreliable at temperature comparable to transition

temperature TC at which order parameter ∆ vanishes. The zero temperature

treatment thus avoids thermal fluctuation and simplifies the mathematical

description giving clear understanding of the breached pairing phase.

In the limit of zero temperature, the quasi-particle distribution of each

atomic species is given by

ni(k) = lim
β→∞

1

exp(βωi) + 1
= Θ(−ωi), (3.1)

where Θ(. . .) is the Heaviside step function. The gap equation in this limit is

− m̃

2π~2a
=

1

(2π)3

∫

d3k

[

1

2ω

(

1 − Θ(−ω1) − Θ(−ω2)
)

− 1

2εk

]

.

The densities of the two atomic species are

ρ1 =
1

(2π)3

∫

d3k

[

1

2

(

1 +
ξ

ω

)

Θ(−ω1)

+
1

2

(

1 − ξ

ω

)

(1 − Θ(−ω2))

]

, (3.2)

ρ2 =
1

(2π)3

∫

d3k

[

1

2

(

1 +
ξ

ω

)

Θ(−ω2)

+
1

2

(

1 − ξ

ω

)

(1 − Θ(−ω1))

]

. (3.3)

The total density and difference equation in this limit are given by

ρ =
1

(2π)3

∫

d3k

[

1 − ξ

ω
(1 − Θ(−ω1) − Θ(−ω2))

]

, (3.4)

δρ =
1

(2π)3

∫

d3k [Θ(−ω1) − Θ(−ω2)] , (3.5)
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and thermodynamic potential density Eq. (2.76) can be expressed as

Ω =
1

(2π)3

∫

d3k [ξ − ω + ω1Θ(−ω1) + ω2Θ(−ω2)] −
∆2

g
(3.6)

where we have made use of the following identity:

lim
x→∞

1

a
ln(1 + e−ax) = xΘ(−x). (3.7)

3.2 Dimensionless equations

We express the thermodynamic potential, gap, number density equation in

dimensionless units amenable for numerical investigation. To this end, we

use the Fermi energy,

EF =
~

2k2
F

2m̃
, (3.8)

as convenient energy scale where kF is corresponding Fermi momentum.

To proceed further we define,

k3
F = 6π2(ρ1 + ρ2) (3.9)

= 6π2(ρ) (3.10)

and

EF = kBTF (3.11)

introducing Fermi temperature TF . Defining

x =
k

kF
, (3.12)
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the average kinetic energy ε can be calculated as follows: by definition,

ε =
1

2
(ε1 + ε2)

=
~

2k2

4

(

1

m1
+

1

m2

)

=
~

2k2

4m̃
. (3.13)

Now dividing both sides by EF and using Eq. (3.8) and Eq. (3.12),

ε

EF
=

x2

2
. (3.14)

We define the following set of normalized or dimensionless quantities,

∆̂ =
∆

EF

, (3.15)

ν̂ =
ν

EF
, (3.16)

δ̂ν =
δν

EF
, (3.17)

ω̂i =
ωi

EF
, (3.18)

Ω̂ =
Ω

E
5/2
F

. (3.19)

(3.20)

This transforms the equations in the following dimensionless forms:

Gap equation

− π

kF a
=

∫ ∞

0

x2dx

[

1

ω̂
(1 − n(ω̂1) − n(ω̂2)) −

1

ε̂

]

. (3.21)

The total density equation,

2

3
=

∫

x2dx

[

1 − ξ̂

ω̂
(1 − n(ω̂1) − n(ω̂2))

]

. (3.22)
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We define the Polarization P measuring relative population of the two com-

ponent.

P =
δρ

ρ
(3.23)

The mixture is unpolarized when population difference δρ = 0 and com-

pletely polarized when δρ = P in which case only one component exists.

This leads to
2p

3
=

∫

x2dx [n(ω̂1) − n(ω̂2] (3.24)

Thus system is described by the universal dimensionless parameters: in-

teraction strength or coupling constant, (kF a)−1, mass ratio q, polarization

P measuring the population imbalance together with temperature T scaled

with respect to Fermi temperature TF . The three interaction regimes with

(kFa)−1 are:

• BCS regime (kFa)−1 < −1

• crossover regime : −1 ≤ (kFa)−1 ≤ 1

• BEC regime : (kFa)−1 > 1

3.3 Thermodynamic Potential

The evolution of BCS phase as a function of chemical potential difference

h at zero-temperature (64) is shown in the Fig. 3.1. We consider the mass

symmetric case here corresponding to q = 1. In this case δξ = −h. The

thermodynamic potential as a function of gap ∆ at different applied chemical

potential difference h is studied. At h = 0, normal state corresponding to

∆ = 0 is maximum and minimum is located at BCS order parameter, ∆. As

h is increased, at h = ∆/2 minimum develops at ∆ = 0 which becomes

degenerate with BCS minimum at critical value hc = ∆/
√

2. This critical

value of h is called Clogston-Chandrasekhar limit. Beyond this critical point

BCS state becomes unstable to normal state. However, there appears an
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intermediate maximum which corresponds to the breached pair (BP) state.
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c

∆
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∆
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Fig. 3.1: The thermodynamic potential Ω in units of EF k3
F for mass symmetric case

at zero-temperature vs ∆ is plotted at (kF a)−1 = −1 at fixed chemical potential
µ = 0.48 for various values of chemical potential difference h. At h0 = 0, without
chemical potential difference, Ω has minimum at ∆ = ∆BCS corresponding to BCS
superfluid. As h is increased , a local minimum appears at ∆ = 0. This local
minimum becomes degenerate at hc = ∆/

√
2. Also, a local maximum develops at

∆ = ∆BP. For h > h3 = ∆, the BCS minimum disappears.

We have found that Clogston-Chandrasekhar limit hc = ∆/
√

2 is accurate

only in BCS regime of interaction and increases as unitarity is approached

thus showing dependence on the coupling (kF a)−1 . In fact we found it to be

hc = 1.44∆ at unitarity in agreement with (38).

3.4 BCS-BEC Crossover

We first consider the crossover from a BCS state to a Bose-Einstein con-

densate (BEC) at T = 0. The system is characterized by equal masses and

densities. There are two extremes of the crossover. BCS regime with weak

attractive interactions, characterized by a small negative scattering length
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Fig. 3.2: ∆̂ is plotted against coupling (kF a)−1 at zero temperature without popula-
tion imbalance.

a, lead to collective Cooper pairing of atoms and BCS superfluidity. In the

opposite limit of strong attraction, characterized by a small positive scatter-

ing length a, one obtains bosonic molecules which exhibit Bose- Einstein

Condensation (BEC).

The first theoretical treatment of BCS to BEC crossover was given by Ea-

gles in the context of superconductivity in systems with low carrier concen-

trations. Subsequently Leggett studied the dilute gas of fermions at T = 0

using a variational approach based on BCS wave function. He showed that

as the strength of the interaction is varied there was a smooth crossover

from a BCS ground state with Cooper pairs overlapping in real space to

tightly bound diatomic molecules.

In this case, gap and number density equation at T = 0 respectively

reads

− π

kF a
=

∫ ∞

0

x2dx

[

1

ω̂
− 1

ε̂

]

, (3.25)

34



2

3
=

∫

x2dx

[

1 − ξ̂

ω̂

]

(3.26)

The weak coupling case in the standard BCS theory, effect of interaction

on the chemical potential is neglected by setting ν ≃ EF . To describe the

crossover, the change in chemical potential due to interaction is incorpo-

rated. Hence the chemical potential ν is determined self-consistently with

the order parameter ∆.

Fig. 3.2 shows the variation of ∆ with coupling (kF a)−1. In the BCS

regime where (kFa)−1 < −1, ∆ is exponentially small in agreement with an-

alytic solution as given in (7). The variation of chemical potential ν is shown

in the Fig. 3.3. The chemical potential ν decreases as the coupling (kF a)−1

increases and it is zero at (kF a)−1 ≈ 0.55. It is negative at higher values

of (kFa)−1, which indicates the formation of Bose-Einstein condensation of

diatomic molecules of fermionic atoms.

Let us consider the single Fermionic excitations ω given by

ω =
√

(ǫk − ν)2 + ∆2. (3.27)

If ν > 0 then minimum of ω attains the value ∆. This is related to pair

dissociation energy. However, if ν < 0, the minimum lies at
√

ν2 + ∆2. Thus,

for ν < 0 which indicates formation of molecule, excitation energy is related

to molecular binding energy.

At the unitary point, |a| → ∞ i.e. (kF a)−1 = 0. It is interesting to note that

in this limit, the scattering length is no longer a physical length scale, and

that the only energy scale in the problem is that set by the density, i.e., the

Fermi energy of the corresponding free gas, EF .

As a result, thermodynamic quantities only depend on the Fermi energy

EF , such that we have ν = (1 + β)EF and where (1 + β) is dimensionless

universal constant.

Quantum Monte Carlo (QMC) calculations (65; 66; 67) obtain (1 + β) =
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Fig. 3.3: ν̂ is plotted against coupling (kF a)−1 at zero temperature without popula-
tion imbalance.

0.44, while experiments (68; 17; 69; 16) find (1+β) in the range 0.32 to 0.44.

In contrast, mean field (MF) theory yields (1+β) = 0.59 and ∆ = 0.68ν. Thus

in the strong coupling case order parameter or pairing gap is of the order

of Fermi energy EF rather than exponentially suppressed as in the weak

coupling BCS regime.

3.5 Breached Pair solution

Consider the system with mismatched Fermi momenta. This can occur

when there is a difference between the densities or a difference in the

masses of the two fermion species. In this case quasiparticle energies have

two branches

ω1,2 = ω ± δξ. (3.28)
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Without loss of generality, one can choose δξ < 0. In this case Θ(−ω2) = 0

as ω2 > 0 always. This convention, that is, δξ < 0 physically means that

component with mass m1 are in majority. This is easily seen for systems

with the same mass. Here δξ = −δν and δξ < 0 means δν > 0. This naturally

leads us to the result that component with mass m1 are in majority. Now

Θ(−ω1) where ω1 = ω + δξ contribute only when ω1 < 0.

The momenta at which ω1 = 0 correspond to gapless modes. This

change from gapped to gapless modes gives rise to change in density dis-

tribution also. These points at which ω1 = 0, are given by

~
2k2

max/min = (m1ν1 + m2ν2)

±
√

(m1ν1 − m2ν2)2 − 4m1m2∆2. (3.29)

The breached pair state is characterized by number of zeroes in ω1. This

corresponds to zero energy surface in the momentum space. If ω1 support

two zeros it is called breached pair state with two Fermi surface (BP2). This

phase is also referred to as interior gap phase (23). Similarly, if ω1 support

one zero then it is breached pair state with one Fermi surface (BP1) (70). Let

us recall that normal matter excitation energies vanish at the Fermi surface.

Notice that the Fermi sea for the excess fermion is spherical shell in kmin ≤

k ≤ kmax for BP2 state and sphere with radius 0 ≤ k ≤ kmax. It should be

noted that when δξ = 0, that is when there is no mismatch in Fermi momenta,

step functions Θ(. . .) don’t contribute as ω ≥ 0. This situation corresponds

to standard BCS case where Fermi momenta are equal.

Next we present the gap, number density equations and thermodynamic

potential. In our convention δξ ≤ 0 corresponding to the situation where

component with mass m1 are in majority. In this case

Θ(−ω1) = 1 for kmin ≤ k ≤ kmax, (3.30)

Θ(−ω2) = 0 (3.31)
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This leads to the following set of equations: Gap equation

− π

kF a
=

∫ ∞

0

x2dx

ω̂

[

1 − Θ(−ω̂1)) −
1

ε̂

]

, (3.32)

the total density equation,

2

3
=

∫

x2dx

[

1 − ξ

ω
(1 − Θ(−ω̂1)] , (3.33)

polarization equation

2p

3
=

∫

x2dx [Θ(−ω̂1)] (3.34)

=
1

3

(

ˆkmax

3 − ˆkmin

3
)

(3.35)

thermodynamic potential density

Ω̂ =
1

2π2

∫

x2dx
[

ξ̂ − ω̂ + ω̂1Θ(−ω̂1)
]

− ∆̂2

ĝ
. (3.36)

3.6 Results and Discussions

Let us note that the dimensionless parameters which describe the Fermionic

mixture are the dimensionless coupling (kF a)−1, polarization P , temperature

T in units of TF and mass ratio q. The gap equation, Eq. (4.15), together

with the number density equations, that is, the average density given by

Eq. (3.22) and polarization given by Eq. (3.24), are solved self consistently

to obtain order parameter ∆̂, and chemical potentials ν̂ and δ̂ν . The thermo-

dynamic potential difference is then calculated using these parameters.

Now we consider the case of nonzero polarization, however, for sym-

metric mass case, i.e., with m1 = m2. In such a case, the breached pair

phase shall have Fermionic gapless modes. The gapless modes occur

when ωi = 0. Without loss of generality, we shall assume here δξ as neg-

ative. For mass symmetric case, q = 1 and hence δξ = −δν . In this case
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only ω1 can become zero. Thus gapless mode means ω = |δξ|. Depending

on the chemical potentials, breached pair solution can exist either with one

(ν2 < 0) or two (ν1, ν2 > 0) Fermi surfaces referred to as BP1 and BP2 phase

respectively (23; 70).
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Fig. 3.4: The momentum space density profile for mass symmetric case q = 1 at
(a) T = 0 (b) T = 0.005TF. Here (kF a)−1 = 2 and P = 0.2. The profile corresponds
to BP1 phase.

We find that breached pair phase with one Fermi surface (BP1) starts to

become stable for couplings (kFa)−1 > 1. The Fig. 3.4 shows the density

profile for mass symmetric case at zero and finite temperatures in the BEC

regime of interaction. The density profile here corresponds to (kFa)−1 = 2

and P = 0.2 and has the characteristic of BP1 phase of a single Fermi

surface. We also verify here that the thermodynamic potential difference

between the paired phase and the normal matter is negative indicating its

stability. The critical polarization Pc up to which this phase is stable for this

coupling is Pc = 0.52. As the coupling increases, the critical polarization

Pc increases and finally reaches Pc = 1 at (kF a)−1 ≈ 2.3. The upper and
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lower curves correspond to zero temperature and T/TF = 0.005. Finite

temperature effects smoothen the distribution functions.

We also observe that, at unitarity ((kF a)−1 = 0), breached pair solution

exists with two Fermi surfaces (BP2). However it is thermodynamically un-

stable i.e. δΩ is positive. The density profile in momentum space is shown

in the Fig. 3.5. We have also shown the effect of temperature in the den-

sity profiles within the present mean field calculation. As before, the density

profiles get smoothened for finite temperatures as quasi-particle density dis-

tribution is no longer a Θ(. . .) function.

Thus, with population imbalanced equal mass case, the breached pair

with one Fermi surface (BP1) is stable in the BEC regime of interaction.

However, in presence of mass asymmetry, i.e., when two components have

unequal masses, the system is proposed (71) to support breached pairing

with two Fermi surfaces (BP2).
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Fig. 3.5: The momentum space density profile for mass symmetric case q = 1 at
(a) T = 0 (b) T = 0.005TF. Here (kF a)−1 = 0 and P = 0.2. The profile corresponds
to BP2 phase. This phase, however, is unstable.
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To explore this situation, we next consider the mass asymmetric case

with the mass ratio q = m1/m2 differing from unity. Specifically, we have

taken the mass ratio q = 0.15. This ratio corresponds to 6Li-40K mixture,

which has been cooled to degeneracy recently (52; 53), with 6Li chosen

as the majority population. The momentum space density profile for this

system at (kFa)−1 = 0.1 and P = 0.2. is shown in the Fig. 3.7. Though the

coupling strength is close to unitarity, the phase corresponds to the gapless

modes with one Fermi surface (BP1). The critical polarization turns out to be

Pc ≈ 0.35. If we consider 40K as majority component, the breached pairing
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Fig. 3.6: The variation of ∆ against polarization is shown for m1/m2 = 0.15 at
couplings (kF a)−1 = 0.1 (dashed) and (kF a)−1 = 0.5 (dot-dashed).

solution with one Fermi surface exists in the deep BEC regime. For example

for (kF a)−1 = 8, we find the stable BP1 state up to the critical polarization

Pc ≈ 0.22.

This trend is found to be common to other mass ratios. We have taken

other values of mass ratios and found that breached pairing with two Fermi

surfaces is never stable phase. Thus breached pairing with one Fermi sur-
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Fig. 3.7: The momentum space density profile for mass asymmetric case q = 0.15
at (a) T = 0 (b) T = 0.005TF. Here q = m1/m2, (kF a)−1 = 0.1 and P = 0.2. The
profile corresponds to BP2 phase. This is stable phase.

face (BP1) is only stable phase. The threshold of stability, i.e., the minimum

interaction strength for BP1 state to be stable, however, can be varied by

changing the mass ratios. With lighter atoms as the majority component,

this threshold decreases whereas with heavier atoms forming the majority

component, it increases further deep into the BEC regime of interaction.

3.7 Summary

In this chapter, we have studied BCS-BEC crossover and compared the re-

sults with Monte Carlo calculations and experiments. It is found that mean

field calculation overestimates the universal constant (1 + β). We have also

found that Clogston-Chandrasekhar limit, beyond which BCS state becomes

unstable to normal state, increases as the unitarity is approached. In con-

trast to its value hc =
∆√
2

in BCS regime, it becomes hc = 1.44∆ at unitarity.

42



We discuss the gapless breached pairing phase which has two possible

states: breached pair with one Fermi surface (BP1) and breached pair with

two Fermi surfaces (BP2). We obtain the important result that breached

pairing with one Fermi surface (BP1) is only ever stable ruling out the pro-

posal that in presence of mass asymmetry, breached pair with two Fermi

surface (BP2) may become stable.

For equal mass case, breached pair with one Fermi surface (BP1) is sta-

ble only in the BEC regime. However, in presence of mass asymmetry the

threshold of stability can be affected. In particular, 6Li-40K, mixture relevant

for present experimental efforts studied. With light atoms forming the ma-

jority component, this threshold decreases and shifts towards unitarity. In

contrast, with heavier atoms as the majority, it further shifts into the BEC

regime.
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Chapter 4

Trapped Systems

We have thus far studied homogeneous or bulk system. The atomic-gas

experiments are performed in the trap. Thus to make connection with the

experiments trap effect has to be included. We consider the equal mass

case and to avoid notational confusion we represent quasiparticle energies

ωi as Eσ where now σ =↑, ↓ represent two pseudo spin (hyperfine) states.

Furthermore we use ωσ to represent trap frequencies.

In particular we consider the trap imbalanced system where each com-

ponent experiences different trapping potential (ω↑ 6= ω↓). The trap imbal-

anced is naturally realized with Fermi mixture with unequal masses where

each component experiences different potential due to the mass difference.

The ground state properties for this system have been studied in (72; 54;

73; 74). However, it was recently proposed in (75) that even equal mass

Fermi mixture can admit trap imbalance and the system was studied with

population balance (75) and small trap imbalance (55). It is proposed, for

example, in the case of magnetically trapped systems (the system we con-

sider here), trapping two hyperfine states of a particular atom which have

different magnetic moments corresponds to a situation where m↑ = m↓ and

ω↑ 6= ω↓.

We include the trap effect via local density approximation. The system

we consider is a trapped cloud of two-component Fermionic mixture con-

fined by harmonic isotropic potential VTσ(r) where r measures the distance
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from the trap center.

Before presenting the method we must construct the phase diagram

where each point in the trap is represented by the corresponding value for

the coordinate (µ(r), h(r)) where µ(r) and h(r) are respectively the aver-

age and difference local chemical potentials. This is achieved in Sec. 4.1.

The method to include trap under local density approximation is introduced

in Sec. 4.2 which is then generalized to imbalanced trap case where each

component of the Fermi mixture experiences different trap frequency from

the other. The effects of this trap imbalance are discussed in Sec. 4.3. The

results are summarized in Sec. 4.4

4.1 Phase Diagram

Now we construct the zero temperature phase diagram in grand canonical

ensemble (64) of fixed µ and h.

We start with h = 0 and using the gap equation find the point where

the superfluid state makes a continuous transition to the vacuum state of

molecules. This value of µ is denoted by µc. For small h < hm this behavior

i.e. superfluid-to-vacuum, persists and leads to a vertical phase boundary

in the phase diagram Fig. 4.1. It should be noted that hm represent the

chemical potential difference beyond which system starts to admit popula-

tion imbalance. The gap equation is given by

− m̃

2π~2a
=

1

(2π)3

∫

d3k

[

1

2E

(

1 − Θ(−E↑) − Θ(−E↓)
)

− 1

2εk

]

. (4.1)

Next, we start with µ < µc and increasing h. Here the system evolve from

vacuum state to polarized normal state as µ↑ = µ+h is now positive quantity

leading to finite population of the ↑-fermions. There cannot be a superfluid

phase here as µ < µc. This leads to the vacuum-to-polarized normal N
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Fig. 4.1: The zero temperature phase diagram for (kF a)−1 = 2.0 showing unpolar-
ized superfluid (BCS SF), polarized superfluid (BP1), vacuum, and polarized normal
(N) phases. The upper (blue) dot denotes the point beyond which the BP1 state
ceases to exist. The lower (red) dot represents the tricritical point. The dashed
(red) line indicates the second-order transition between the unpolarized SF and
BP1 phase. The dot-dashed (black) line indicates the first-order transition between
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point, respectively.
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phase boundary.

Similarly we start with µ > µc with increasing h. Here the system makes

a continuous transition to breached pair state as superfluid starts to admit

finite polarization. The superfluid-to-BP1 boundray is calculated by numeri-

cal comparison of the thermodynamic potentials in the respective states. As

we further increase the h, the BP1 eventually makes transition to polarized

normal state. However, depending on the value of µ the BP1-to-polarized

normal transition can be first or second order. The tricritical point where

first and second order transition meet is indicated in the phase diagram as

red dot. Also the BP1-Normal first order curve intersects the superfluid-BP1

curve at large µ. Beyond this intersection point, BP1 ceases to exist and

there is direct first order superfluid to normal state transition. This com-

pletes the construction of the phase diagram. We next consider the trapped

Fermions in isotropic harmonic potential.

4.2 Trapped Fermions

We have thus far studied homogeneous or bulk system. The atomic-gas

experiments are performed in the trap. Thus to make connection with the

experiment trap effect has to be included. The trap potential in experiments

are harmonic and varies smoothly on the scale of Fermi wavelength. For

simplicity we choose isotropic harmonic trap.

VT (r) =
1

2
mω2

T r2 (4.2)

In this situation trap potential is included as local density approximation

(LDA) approximating the system as locally uniform with local chemical po-

tential. This semi-classical approximation, assume the properties of the gas

at point r to be those of uniform gas having a density equal to the local

density ρ(r). It is valid when Fermi energy is much larger than the trap level
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spacing. This condition is met by the current atomic gas experiments. Thus,

the local chemical potential is given by

µ (r) = µ − VT (r) ,

where µ is the chemical potential enforcing total number of particle con-

straint. The chemical potentials of each component at a given point in the

trap are given by

µ↑(r) = µ(r) + h, (4.3)

µ↓(r) = µ(r) − h, (4.4)

where h is chemical potential difference which remain uniform if the two

components experience the same trapping potential. The quantities µ and h

are determined by enforcing particle number constraints namely total num-

ber of atoms and polarization respectively.

We consider the system where each component experience different

trapping potential VTσ. In this case h is no longer uniform and varies with

position in space. The local chemical potential for each component at any

point in the trap can be written as

µ↑(r) = µ(r) + h(r), (4.5)

µ↓(r) = µ(r) − h(r), (4.6)

where

µ(r) = µ − VT (r), (4.7)

h(r) = h − δVT (r), (4.8)
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and

VT (r) =
VT↑ + VT↓

2
, (4.9)

δVT (r) =
VT↑ − VT↓

2
. (4.10)

In terms of n(r) = n↑(r) + n↓(r) and m(r) = n↑(r) − n↓(r), the total number

of atoms N and population imbalance ∆N are given by

N =

∫

d3r n(r), (4.11)

∆N =

∫

d3r m(r), (4.12)

where

n↑(r) =
1

(2π)3

∫

d3k

[

1

2

(

1 +
ξ(r)

E(r)

)

Θ(−E↑(r))

+
1

2

(

1 − ξ(r)

E(r)

)

(1 − Θ(−E↓(r)))

]

(4.13)

n↓(r) =
1

(2π)3

∫

d3k

[

1

2

(

1 +
ξ(r)

E(r)

)

Θ(−E↓(r))

+
1

2

(

1 − ξ(r)

E(r)

)

(1 − Θ(−E↑(r)))

]

, (4.14)

where Θ(. . .) is the Heaviside step function, the zero-temperature limit for

Fermi-Dirac distribution. The local gap equation is

− m̃

2π~2a
=

1

(2π)3

∫

d3k

[

1

2E(r)

(

1 − Θ(−E↑(r)) − Θ(−E↓(r))
)

− 1

2εk

]

.

(4.15)

The trap introduces the new length scale called Thomas-Fermi radius de-

fined as

RTF =

√

2µ

mω2
T

. (4.16)

Note further that in the BEC regime, chemical potential µ is already negative

at the center of the trap and hence µ(r) does not vanish. We also note that

in the deep BEC regime µ = −Eb/2 (63) where the molecular binding energy
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Eb = 1/2m̃a2. Thus we impose the condition (64),

µ(RTF0) = µ0 −
1

2
mω2

T R2
TF0 = −Eb

2
. (4.17)

This gives,

RTF0 =

√

Eb(2µ0 + 1)

mΩ2
T

. (4.18)

The zero subscript indicates that the quantities are for zero polarization.

To investigate the system numerically we define the dimensionless quan-

tities ∆̂(r) = ∆/EF , µ̂(r) = µ(r)/EF , ĥ(r) = h(r)/EF where we choose

EF = (6N)1/3
~ωT with ωT =

√

ω2
↑ + ω2

↓. We also normalize the distance in

the trap x = r/RTF0 and define kF by the relation EF = ~
2k2

F/2m̃. Hence

µ̂0(x) = µ̂0 − x2

(

µ̂0 +
1

(kFa)2

)

, (4.19)

where we have expressed the binding energy Eb in EF units as Eb = EF/(kFa)2

However for the system with population imbalance we have

µ̂(x) = µ̂ −
(

µ̂0 +
1

(kF a)2

)

x2,

ĥ(x) = ĥ − η

(

µ̂0 +
1

(kFa)2

)

x2, (4.20)

where dimensionless quantity

η =
ω2
↑ − ω2

↓

ω2
↑ + ω2

↓

(4.21)

controls the trap asymmetry of the Fermi gas.

Next we consider the equation for total number of atoms and express it

in normalized or dimensionless form appropriate for numerical investigation.

The equations are N =
∫

d3r n(r) and ∆N =
∫

d3r m(r) with n(r) and m(r)

to be expressed in k3
F and r in RTF0. This normalization leaves us with factor
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k3
FR3

TF0. By evaluating this factor, one obtains,

k3
FR3

TF0 = 48N

(

µ̂0 +
Êb

2

)3/2

(4.22)

Putting this into the equations, we get

1

48
= 4π

(

µ̂0 +
Êb

2

)3/2
∫

x2dx n̂(µ̂(x), ĥ(x)), (4.23)

p

48
= 4π

(

µ̂0 +
Êb

2

)3/2
∫

x2dx m̂(µ̂(x), ĥ(x)). (4.24)

The system for a given coupling strength and polarization P = ∆N/N is

investigated numerically in the following manner: first µ0 is calculated by

setting P = 0. Using Eq. (4.20) together with number and population im-

balance equation, µ and h are then calculated. It should be noted that in

the deep BEC regime BP1 phase can be understood as mixture of com-

posite bosons and fermion quasiparticles (51). In the BEC limit the order

parameter (∆) and density for composite bosons or molecular density are

related (63; 64) via

nm =

√
2cπ

4
√

Eb

∆2 (4.25)

with c =
m3/2

√
3π2

. By calculating the local composite boson density (nm) and

the magnetization (m), the various phases are identified.

4.3 Results and Discussions

We choose experimentally accessible (kFa)−1 = 2.0 for the interaction strength.

The phase at each spatial point of the trap is determined by the local chemi-

cal potentials µ(r) and h(r) [see Eq. (4.20)] mapping it to the corresponding

point in the phase diagram. As radius is increased (µ(r), h(r)) moves to-

wards left in the phase diagram forming a line segment.
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Fig. 4.2: (a) The three radii Rf1 (outer boundary of unpolarized superfluid), RTF

(outer boundary of BP1 phase) and Rf2 (outer boundary of N phase) plotted as a
function of polarization P at trap asymmetry parameter η = 0 and (kF a)−1 = 2.0. (b)
The molecular density nm and magnetization m plotted against radius r measured
in units of k3

F and RTF0 respectively.
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We find three different phases in the cloud. At the center, superfluid

core where the population of the two components are equal, i.e., unpolar-

ized superfluid (BCS SF), then an intermediate gapless superfluid, breached

pairing with one Fermi surface (BP1) shell where fermion quasiparticles and

and composite bosons coexist and finally outer rim of normal majority com-

ponent. This leads to three radii characterizing the shell structure:

• Rf1 where nm 6= 0 and m(r) = 0 forming boundary for BCS SF phase.

The quantity ∆2 measures composite boson density and m(r) indicates

the local polarization or population imbalance. For the BCS superfluid

m(r) = 0. This defines the size of the unpolarized BCS superfluid.

• RTF above which nm = 0. This indicates vanishing of order parameter

and hence superfluidity. This defines the size of the superfluid core.

The region Rf1 < r < RTF where nm 6= 0 and m(r) 6= 0, is composed

of the polarized(gapless) superfluid (BP1).

• Rf2 above which m(r) = 0. Beyond this distance, no atoms exist and

hence it demarcates the system measuring overall size of the system.

The three radii for the system without trap asymmetry η = 0 as a function

of polarization P together with density profiles showing nm(r) and m(r) are

shown in Fig. 4.2. The shell structure consist of BCS SF phase for r < Rf1,

BP1 phase for Rf1 < r < RTF and finally polarized normal (N) state for

RTF < r < Rf2.

We next consider the system with trap asymmetry characterized by the

dimensionless parameter η = (ω2
↑ − ω2

↓)/(ω2
↑ + ω2

↓). The positive (negative)

η value indicates that majority (minority) component is more tightly confined

harmonically than the minority (majority) component. The three radii with dif-

ferent trap asymmetry parameter η as functions of polarization P are shown

in Fig. 4.3. The value η = ±0.9 corresponds to the situation when one of

the component is very strongly confined. We start with η = −0.9 corre-

sponding to ω↑ ≪ ω↓. The BP1 shell here is very narrow and overall size
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boundary of BP1 phase) and Rf2 (outer boundary of N phase) plotted as a function
of polarization P for various values of the trap asymmetry parameter η. (a) η = −0.9,
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(outer boundary of superfluid unpolarized cloud).
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of the cloud (characterized by Rf2) is much larger than the superfluid cloud

without population imbalance (the cloud size is measured in units of RTF0).

As we increase η, the BP1 shell grows in size, however, size of the cloud

decreases. The window of polarization for which BP1 phase forms the su-

perfluid core starting at the center of the trap increases becoming maximum

at η = 0.9. The BP1 phase forms the core beginning at P = 0.76 in this

case which should be experimentally feasible. We also present the density

profiles for the same set of η at P = 0.65 in Fig. 4.4. We note that as η

increases, size of nm representing density of the composite bosons shrinks

but becomes more dense. It also exhibits the large cloud sizes for tightly

confined minority as noted above.
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Fig. 4.4: Density profiles at P = 0.65 for different values of the trap asymmetry
parameter η. (a) η = −0.9, (b) η = −0.5 (c) η = 0.5, (d) η = 0.9. The molecular
density nm and the magnetization plotted as a function of radius measured in units
of k3

F and RTF0 respectively.

All these features can be explained by analyzing (µ(r), h(r)) variations

for each value of η in the phase diagram. To this end, we replot the phase
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diagram enlarging the BP1 state. The line segments representing above

mentioned variations are also shown (Fig. 4.5). We note that η with a posi-

tive (negative) value has a positive (negative) slope with zero value for η = 0.

Note further that BP1 to polarized N transition is second and first order for

positive and negative set of chosen values respectively. These transitions

can be detected via density profiles in the experiments.

The η = −0.9 line segment traverses a small region of the BP1 phase

making a second-order transition to polarized N while the η = 0.9 segment

traverses a larger region in the BP1 phase before making a first-order tran-

sition to polarized N. The order of transition can be detected in experiments

via spatial discontinuities which vanish for the second-order transition. As

η is increased from η = −0.9 the line segments increasingly have a larger

portion in the BP1 region. This explains why the BP1 shell expands in size

as η is increased. Note further that owing to their negative (positive) slopes,

η with negative values have longer (shorter) excursion into the polarized N

state before encountering the vacuum explaining the larger (smaller) size for

their clouds. Since all the atoms are integrated across the trap to conserve

the atoms, the corresponding atom density distributions are also affected

accounting for an increased (reduced) number of atoms in BP1 phase for

ω↑ > ω↓ (ω↑ < ω↓).

4.4 Summary

We have studied the asymmetrically trapped and population imbalanced

two-components Fermi gas in the strongly attracting BEC limit at T = 0.

Using the local density approximation (LDA), we calculated the shell radii of

various phases in the trap as a function of polarization and trap asymmetry.

Compared to symmetric trap case (η = 0), we find that when the majority

component is tightly confined the gapless superfluid shell (BP1) increases

in size. The polarization threshold to form the BP1 superfluid at the core
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is reduced for a given interaction strength in this case. However, when mi-

nority are tightly confined unpolarized superfluid is favored with BP1 phase

forming a narrow shell. We have explained these features using the phase

diagram.
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Chapter 5

Conclusion and Future Directions

5.1 Conclusion

In this thesis, we have studied the superfluid pairing in two-component de-

generate atomic Fermi gas. The atomic Fermions interact via four fermion

point interaction. Alongwith with the usual BCS-BEC crossover physics, we

have also considered BCS pairing with mismatched Fermi surfaces. This

mismatch can be introduced by population imbalance between the pairing

components having two components with different masses or both.

This mismatched Fermi system is proposed to admit exotic pairing phases.

However, in this thesis, we only considered breached pairing phase (BP).

The BP state phase separate in momentum space with excess fermions

occupying the negative quasi-particle energy states.

We have considered a variational ground state for the system of nonrel-

ativistic fermions with a four fermion point interaction to model the phase

structure of the ultracold atomic Fermi mixture. The temperature effects are

taken into account by thermal Bogoliubov transformation. The stability of

the solutions is decided by comparing the thermodynamic potentials of the

paired state and normal matter.

We first considered the equal mass population imbalanced case and

found that breached pair with one Fermi surface is stable in the BEC regime.

However, it is stable only up to some critical polarization Pc for a given inter-
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action strength (kFa)−1 beyond which it becomes unstable to normal state.

We would like to remark here that, with a mismatch in chemical potential

δν , BCS phase is stable for value of δν up to δν = ∆0/
√

2 in the weak coupling

regime. This, so called Clogston-Chandrasekhar limit (21; 22), can increase

as one approaches the strong coupling regime. However in this phase, there

is no population imbalance.

With mass asymmetry taken into account, that is, when the two com-

ponents have unequal mass, the stability region is affected. For heavier

atoms as the majority component, stability threshold for BP1 phase further

shifts into BEC regime being stable for large values of (kFa)−1 compared to

equal mass case. In contrast, for lighter atoms as majority component, it

decreases and BP1 phase becomes stable at lower values of (kF a)−1.

To connect the work with the experiments, we consider the trapped Fermi

mixture and include the trap effect under local density approximation (LDA)

using isotropic harmonic potential. For trapped fermion with population im-

balance, we obtained the shell like structure with superfluid surrounded by

normal matter. The profile also show that they are mixed into each other

characterizing breached pair phase.

We then study equal mass population imbalanced two-component atomic

Fermi gas with unequal trap frequencies (ω↑ 6= ω↓) at zero temperature. Us-

ing the local density approximation (LDA), we calculated the shell radii of

various phases in the trap as a function of polarization and trap asymmetry.

Compared to symmetric trap case, we find that when the majority compo-

nent is tightly confined, the gapless superfluid shell (BP1) increases in size.

The polarization threshold to form the BP1 superfluid at the core is reduced

for a given interaction strength in this case. However, when the minority is

tightly confined unpolarized BCS superfluid is favored with the BP1 phase

forming a narrow shell. We have explained these features using the phase

diagram.
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5.2 Future Directions

The variational method considered here using an explicit construct of the

ground state, corresponds to the mean field approximation of the conven-

tional approach. This treatment is reasonable for zero temperature and cou-

pling away from the unitarity limit. However, the effects of the fluctuations

will be important for higher temperature particularly T close to transition

temperature Tc. This fluctuation was first taken into account by Nozieres

and Schmitt-Rink (76) using diagrammatic perturbation theory. The func-

tional integral approach to the problem was introduced by Sá deMelo (63)

and later extended in (77) including feedback of quantum fluctuation in the

gap equation. This approach recovers the T = 0 and finite temperature

effect within same formalism.

The future work may include application of this formalism to breached

pairing phase which is stable in the BEC limit where fluctuation correction

are particularly important. One can also generalize to the mass asymmetric

case and the efforts in this direction have already been started (54).

We might note here for the relativistic case, inclusion of the condensate

fluctuation have been attempted in (78) for the ground state that contains

the fermionic condensate as well as the quanta of condensate field.

For the trapped systems, we have considered only equal mass case. The

trap anisotropy together with mass asymmetry can be investigated which

may exhibit rich shell structure depending on polarization, mass and trap

frequency ratios. In particular, one can search for the LOFF phase where

Cooper pair carries finite center-of-mass momentum (62; 79). In presence

of trap anisotropy, its window of stability can be affected.

Recently zero-temperature phase structure of a two-dimensional two-

component atomic Fermi gas with population and mass imbalance in the

regime of the BEC-BCS crossover was explored including the possibility

of LOFF phase (80). Similar study without mass imbalance but with trap
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anisotropy can be carried out and fate of various phases in two dimension

can be investigated.

The phase diagram for equal mass population imbalanced system in op-

tical lattice was considered in (81). It was found that the LOFF window,

i.e., the range of chemical potential imbalance within which LOFF phase

is stable, increases considerably in this situation. The same system can

be further probed with trap anisotropy which can affect the topology of the

phase diagram. Furthermore, the mass asymmetric systems in the optical

lattice can be explored.
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