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Abstract

In chapter 1.1, the basic theory of radiation-matter interaction is introduced.
Some relevant properties of density matrix equations and the derivation of in-
teraction Hamiltonian in dipole approximation are discussed. In chapter 1.2,
an overview of the atomic coherence effects, like coherent population trap-
ping, lasing without inversion, electromagnetically induced transparency is
presented. Specific emphasis on dispersion management as an important as-

pect of coherent control is given.

In chapter 2, propagation of a linearly polarized pulse through an anisotropic
medium is analyzed. It is shown that the orthogonal pulse components can
be separated in time due to application of a resonant control field in suitable
transition. The property of electromagnetically induced transparency (EIT)
is properly exploited in this context. Demonstration of pulse splitting phe-
nomenon is presented to support the physical prediction. An estimate of the

broadening of the pulse component at the output end of the medium is given.

In chapter 3, dependence of the absoprtion coefficient on the direction of mag-
netic field is analyzed in context of propagation of an unpolarized light in an
anisotropic medium. It is shown that using a resonant coherent field, it is
possible to create asymmetry in the output intensity of the unpolarized field,
for two opposite directions of the applied dc magnetic field. This phenomenon
is termed as magnetic field reversal asymmetry (MFRA). Typical parameter
zone is identified so that upon reversing the direction of this magnetic field,
an opaque medium can be made transparent and vice versa. Effect of atomic
velocity on this phenomenon is investigated. It is emphasized that the MFRA is
a manifestation of dipole effect and thus much larger in magnitude compared
to a similarly looking phenemenon called magneto-chiral anisotropy, which is

an effect of higher order moments.

In chapter 4, the effect of nonmonochromaticity of the interacting field on

the magneto-optical rotation (MOR) angle is investigated. The linear depen-

viii



dence of the MOR angle on the optical density breaks down for larger values
of spectral width of the field. The theoretical results are shown to be in good

agreement with a relevant experiment.

In chapter 5, the possibility of non-zero susceptibility at two-photon resonance
and of gain in a medium is predicted. This can be understood as an effect of
coherence induced by an extra control field in a A system. Proper dressed state
analysis is provided to show that the gain arises due to population inversion
in dressed state basis. Further, large MOR angle can be achieved by applying
this extra control field.

In chapter 6, the effect of a classical control field on fidelity of an atomic
cloner in a cavity QED situation is investigated. It is shown that the control
field can improve the fidelity for long times much above the optimal limit. The
proper physical explanation of this effect is given in terms of the Rabi cycling.
Further, the question of universality of the cloner driven by the coherent field

is addressed. The case of a two-atom cloner is also analyzed.

In appendices, the analysis of the interaction of fields with atoms in the three
standard three-level configurations, namely A, V, and Ladder system, is pro-
vided. Dressed state analysis of each of these configurations is included. The
analytical result for broadening of the pulse, propagating through a coherent

medium is given.



Chapter 1

Introduction

Optics is one of the most interesting subject by its fundamental nature. Physicists
have put plenty of efforts to understand the nature of light. Further, light-matter
interaction is another key area of research. After the discovery of laser by Schwal-
low and Townes in mid-twentieth century, a new era in this area has emerged.
Our ability of using the coherent light sources for selective transitions and high
tunability of its frequency and energy have extensively contributed to understand
various physical processes. By the end of the twentieth century, lasers have found
immense applications in all facets of life, namely, bio-science, space science, de-
fence, computing and communication etc. Lasers are used for high precision
measurements. In last few decades, further developments in both theoretical
and experimental research have taken place in this field. Lasers are becoming
key instrument in modifying and controlling the optical properties of matter and
spectral properties of the emitted radiation. For example, experiments have been
performed to demonstrate subluminal and superluminal group velocities of light
pulse inside a coherent medium. Bose-Einstein condensation, control of molec-
ular processes etc. are now possible using the atom-laser interaction. A new
field called coherent control has thus branched out in the study of light-matter
interaction. The present thesis describes various application-oriented aspects of

coherent control.
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1.1 Interaction of radiation with matter

Most of the natural optical processes can be easily explained in terms of wave
nature of light. Since the corpuscular theory of Newton, the understanding of
nature of light has been far revolutionized through ages. In present day scenario,
light can be treated either classically or quantum-mechanically, depending upon
the problems one is interested in. However, in most of the problems we deal
with, it suffices to consider only the classical nature of the electromagnetic (em)
field. On the other hand, microscopic systems (like atoms or electrons) are to be
treated quantum mechanically. Thus we adopt a treatment called semiclassical
theory of the interaction of light with matter, in which the radiation field is treated
classically and the matter is treated as a quantum mechanical particle having

discrete energy levels. We describe this theory in the next few subsections.

1.1.1 Classical electromagnetic theory : Classical picture of radia-

tion

We consider propagation of the em field inside a nonmagnetic medium. This prop-
agation can be described by the following four macroscopic Maxwell’s equations

in CGS units [1]:

vV.D = 0, (1.1a)
VB = 0, (1.1b)
. - 10B

E = —--=— 1.1
VX c Ot (1.1c)
o 10D

H = == 1.1d
VX c Ot '’ ( )

where E and B are the macroscopic electric and magnetic induction vectors at
certain space-time point (7, ¢) and ¢ is the velocity of the em field in vacuum. Here
we have assumed that the medium is free of any bound charge and also is non-
conducting. Further, there is no free charge in the medium, as well. Thus all
the source terms like charge density and current density are zero. It should be
mentioned here that the above quantities are macroscopic in the sense they are

the average contributions from all the microscopic constituents, namely the tiny
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atoms, inside the medium. The above equations are valid for contribution from
each atom also, but one requires a quantum mechanical framework for treating
them.

The macroscopic displacement vector D and the magnetic field vector H inside

a static nonmagnetic medium are given by
D=E+4rP+--- , H=B+---, (1.2)

where P is the macroscopic electric dipole moment per unit volume. The macro-
scopic electric dipole moment density is very often called as macroscopic polar-
ization. Here we have assumed that the higher order moments are negligible than
the dipole moment density P in Eq. (1.2). Because the medium is nonmagnetic,
we get B = H. Then using the curl equations in the Maxwell's equations, we
obtain the following:

T N L i
VXVXE—I—C—zw(E—I—éLnP):O. (1.3)
We consider the medium with no bound charges. Thus, V.D = 0. Writing D = ¢E,
where € is the electric permittivity tensor and function of field frequency, we get

V.E = 0, Thus the above equation reduces to

10°E 47 0°P
z _

ViE - _4no'P
ot? cz 0t?

(1.4)

c

Note that the polarization P is induced in the medium by the applied electric
field E. In a dielectric medium due to local field effect, this can be expressed
as P = yE, where y is a dimensional parameter called linear susceptibility of the
medium. However, the polarization P may have nonlinear dependence on the
electric field for large electric field. Thus from (1.2), we can write D = (1 + 47x)E,
such that e = 1 + 4ry.

The Eq. (1.4) can be easily solved with certain boundary condition or with
certain forms of the electric field. We start with a plane monochromatic wave (with
angular frequency w) propagating in the z-direction in an atomic gas medium. The

corresponding electric field can be written as

E(z,t) = é€(z,t)e** ! L c.c. (1.5)
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where € is the polarization of the field and £(z,¢) is the slowly varying amplitude.
Here, it is assumed that the spread of the electric field in the direction transverse
to the propagation direction is negligible. The magnetic field component of the
em field is very weak in magnitude and we will not consider the effect of that
component in the kind of problems to be discussed in this thesis. The polarization

that is induced inside the medium by the applied electric field is given by
P(z,t) = &P(z,t)e**7%t L c.c., (1.6)

Because the bound electron in an atomic medium suffers much larger elec-
trostatic field (due to interaction with the nucleus) than the applied electric field,
then the applied electric field can be treated as a perturbation. Thus we can

expand the polarization as a power series expansion of the electric field as
P(z,t) = XMW E(z,t) + YD E*(z,t) + X\®E*(z,8) + - - -, (1.7)

where x(" is the nth order susceptibility. Because a weak field is used in the
problems to be discussed in the present thesis, so we limit ourselves upto the
linear term above. Further, any physical system requires some time to respond
to the excitation. Thus, the polarization at a given time ¢ depends upon polar-
izations of the medium at earlier times. Then the space component of the linear

polarization can be written as

t
P,(z,t) = Z/ drxgg (t—T1)Eg(z, 1), (1.8)
B — o0

where XS;; represents the linear susceptibility of the medium and is a tensor of

rank 3 !. If we assume that the field under consideration is a continuous wave,
then we can neglect the time-dependence of £. Thus, the above relation reduces

to

P,(z,t) = Z XS& (W) Es(2)e** ! 4 c.c. (1.9)
B

'In general, the susceptibility tensor being a tensor of rank 3 has nine components Y.z, @, 8 €
z,y,z. In our analysis, we have assumed that the light propagates in the z-direction. Thus in
(1.8), only ! contributes, because the polarization P(z,t) has the same direction as of E(z,t). It
can be shown however that structure of an anisotropic medium permits two different polarization
directions with different velocities to propagate in any given direction. As for a given propagation
direction of the electric field, two polarization directions are allowed and for each such direction,
susceptibilities can have two different values in an anisotropic medium.
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where XS;; (w) is the Fourier transform of ijﬁ)(t) and is given by

X{%(w) :/ dtxgg(t)e_m. (1.10)
0

Note that the space dependence of the polarization comes only from the electric
field, but there is no space dependence of the susceptibility. The time-dependence
of the y,3 has been absorbed through Fourier transform. Moreover, we are inter-
ested in the long-time behavior of the medium properties, which is well-known as
the steady-state behavior. In this time-limit, the time-dependence of the medium
properties vanishes.

Now we can consider two different cases : (a) an isotropic medium and (b)
an anisotropic medium. In an isotropic medium, the medium responds to the
electric field symmetrically in all directions. On the other hand, in an anisotropic
medium, the response of the medium becomes different for different directions
of polarization of the applied electric field. Thus for an isotropic medium, only
the diagonal elements of the susceptibility tensor are nonzero and are equal. But
for an anisotropic medium, the tensorial diagonal elements have unequal values,
which means that x.. # xg3. Moreover, from Maxwell’s equations, it can be shown
that this tensor must be symmetric, i.e., xog = Xg [1]. In the present thesis, we
concentrate on the anisotropic medium.

Now we again consider the Eq. (1.4), which for an electric field propagating in

the z-direction [see Eq. (1.5)] reduces to

?E  10°E  4n0°P

922 2012 ¢ ot (-1
We now consider the following approximations, namely
o€ *¢ o€ *E 9 oP o*P
‘ka >>‘@ s w5‘>> W s ‘w P‘>>‘wﬁ > W s (1.12]

which are called the slowly varying envelope approximation (SVEA). These mean
that the amplitudes of the electric field and polarization are slowly varying both
with space coordinate compared to the scale of optical wavelength and with time
compared to optical period of the radiation field. Using these approximations and

using the plane wave forms (1.5) and (1.6) of the electric field and the correspond-
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Ei n(z=0) Eoutl(zzl)
. E |
Probe Input Probe Output
—_— Atomic Medium =

E

| B ——>

7z=0 7=l

Figure 1.1: Figure representing a dilute atomic medium. The medium is driven
by control field E’ and the external magnetic field B’. The property of the medium
is modified by the application of these fields. A weak probe field E helps to exploit
these modifications.

ing linear polarization, respectively in the Eq. (1.11), we obtain,

0 10€

—+ —— =2mikP. 1.13
0z + c ot kP ( )
In the steady state, when there is no reasonable time-variation in the electric field,

from the above equation, we get,

g—i = 2mikx(w)€(w, 2) , (1.14)
where we have used P(w, z) = x(w)&(w, z). Here we have dropped out the tensorial
notation and order of the susceptibility for brevity. Here onwards, we will be con-
sidering only the linear susceptibility. The solution of the above is now extremely

simple and thus the output electric field is given by
E(z =1) = & (w, 0)emkix(@) gkl =ivt 4 ¢ ¢, (1.15)

Clearly the information of the susceptibility lies in the measured output intensity.
Thus properly probing the medium, one can get the information of the property of
the medium from the output. We are much interested in dilute atomic medium,
as shown in Fig. 1.1, in which the atomic density is of the order of 10!! atoms
cm~3, In this kind of medium, the absolute value of the susceptibility y becomes

much less than unity. Thus, the dielectric constant e = 1 4 47y = n? yields

n=+e=14+2nY, (1.16)
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where n is the complex refractive index. From the result (1.15), we thus infer that

the linear refractive index n(w) and the absorption coefficient o/ can be defined as

nw) = 14 27Re[x(w)], (1.17a)
aw)l = 4rklIm[x(w)], (1.17b)

such that

_ in(wwy _ -
al/2€ - le wt

E(z=1)=¢&(0)e +c.c., I(z=1)=TI(0)e . (1.18)

The frequency-dependence of the terms 7 and o come from the same of the linear
susceptibility x. Two important points are in order. First, measurable quantities
n and a depend upon the medium susceptibility. The susceptibility of the medium
can be changed by applying strong external coherent electric (or magnetic) field.
Thus we can 'coherently control’ the properties of the medium. One applies a
suitable weak field ("probe field”) to probe this change by measuring the quan-
tities like probe absorption spectrum etc. Note that this is possible unless the
strong field changes much while propagating through the medium. It is further
assumed that the probe field does not change the properties of the medium to
any measurable extent. Second, the relation of the term ¢ with the susceptibility

provides us an dispersion relation, namely, k?(w) = e(w)(w?/c?).

1.1.2 Quantum statistical analysis of atoms

So far, we have discussed how the properties of a plane em wave depends upon
the atomic properties. We now concentrate on the quantum treatment of the
atoms to find how its properties depend on the applied em field. We assume that
the atoms have quantized energy levels and we use the standard Dirac’s bra-ket
notation [2] now onwards.

Density matrix formalism

For a quantum mechanical system with the state |¢), the dynamics is governed

by the Schroédinger equation

8,
i %zle, (1.19)
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where, H represents the Hamiltonian of the system. This equation is exactly
solvable, if the initial state of the system is precisely known. But for an atomic
vapor cell, where many atoms reside and obey only the Maxwell’s distribution of
velocity at a given temperature, it is impossible to know the exact state of the
either atom. Thus, a quantum statistical theory of the atoms is warranted.

Any arbitrary quantum state |¢’) can be expanded in terms of the orthonormal
basis states {|i)} as [¢)) = Y, ¢;|7), where Y, |¢;|*> = 1. This state is called a pure
state [3]. The density operator (or density matrix) p is defined as p = [¥){(%]|.
The matrix element of p in {|:)} basis is given by p;; = (i|p|j) = ¢ c¢;. Some of
the important properties of the density operator p are now in order: (1) Tr(p)=1,
which indicates the conservation of probability. (2) The expectation value of any

arbitrary operator A can be written as
(4) = (¥|A]p) = Tr(pA) . (1.20)

(3) Tr(p?) < 1, where the equality sign holds only for a pure state. (4) p is hermitian
and positive definite. We should mention that the designation of a single isolated
quantum system either by an arbitrary state |¢) or by the corresponding density
operator p are equivalent.

In certain situations (as in the case of atomic vapor cell), one may have an
ensemble of such identical systems |7;). Then one cannot exactly know the state
of the system. What one is left with is only a set of certain probabilities {p;} to
be in the states {|¢;)}. Clearly the wave-function approach is not suitable. In
this case, one not only need to take the quantum mechanical average (1.20), but
also the ensemble average over all the identical systems that have been similarly
prepared:

(A) = S (il Al = Tr(pA), (1.21)

2

where the density operator p is defined as
P22p1|¢z><¢i| ,Zpizl- (1.22)

The matrix elements p;; in the basis {|i)} are now given by 3_, prc} ck. In this case,

one can easily find that Tr(p?) < 1.
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Before proceeding further, let us discuss the physical interpretation of the
density matrix. The diagonal element p;; of this matrix represents the ensemble-
averaged probability that the system is in the energy eigenstate |i¢) (eigenstate
of the Hamiltonian H, when there is no perturbation) and is often called as the
‘population’ in the |i) state. The off-diagonal term p;; of the density operator rep-
resents the coherence between the levels |i) and |j). For a coherent superposition
of the states |i) and |j), clearly p;; = ¢}c; becomes non-zero. Moreover, for an en-
k* k

3 Cj.

Thus, there arises a possibility of destructive interference to make the coherence

k
J

semble of atomic states, p;; is given by the ensemble average of such terms ¢
zero, as all the cross terms like ¢¥"c* are complex in nature. If p;; # 0, then some
kind of coherent addition of interference terms exists. In the subsequent part of
this thesis, we calculate the ‘population’ of the atomic levels |7} and the coherence
between the levels |7) and |j) for different kinds of atomic models, in presence of
external fields.

It is clear from the above discussion that irrespective of the exact nature of the
system, we always can use the density matrix approach in a more general sense.

The dynamics of the system is governed by the following Liouville equation:

p=—71Hpl. (1.23)
This equation can easily be derived for a pure state from the Schrédinger equa-
tion. Note that the Schrédinger equation is very difficult to work with for an
ensemble of identical systems. On the other hand, Eq. (1.23) is quite general in
nature, because it can be applied in treating the system irrespective of its state.
Moreover, it gives both the quantum-mechanical as well as the statistical infor-
mation of the system.

However, the above Liouville equation is not quite realistic. In any physical
system, there lies a spectrum of incoherent processes, namely the spontaneous
emission of the excited atoms, Doppler effect, collisional mechanism etc. These
give rise to broadening of the atomic levels. One always has to incorporate these
in the Liouville equation. Thus we obtain our working equation as follows.

) ?

p=—3H pl+Lp, (1.24)
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where £ represents the matrix containing decay terms. The explicit form of this
matrix can be derived using rigorous master equation formalism [4]. We provide

the relevant form of this matrix in Appendix A.

1.1.3 Interaction between classical fields and atoms

In this part of the section, we describe the interaction of radiation with atoms. We
use the classical picture of the radiation and quantum mechanical picture of the
atoms. Thus the analysis described here is essentially semiclassical in nature.
Electric dipole approximation

Consider an electron of mass m and charge e situated at a distance # from the
nucleus (assumed to be motionless) and bound to it by a potential V'(r) [5]. This
electron is interacting with a plane em wave and the quantum mechanical Hamil-

tonian for this interaction can be written as

- - 2
He [P cimn)] +eUEn +V(r) (1.25)

2m
where A(7,t) and U(,t) are the vector and scalar potentials, respectively, for the
external field and P is the momentum operator for the electron. In the following,
we first derive this equation from a gauge invariance point of view.
The dynamics of a free electron is governed by the equation

oY) . I =
o H= =57 (1.26)

If (7, t) is a solution of the above equation, then (7, t) exp(i£) is also a solution

H|p) =1ih

which does not change the probability density, where £ is an arbitrary phase. But
if one allows the phase to vary locally, i.e., to be a function of space and time

variables,
B t) = (7 £)et ) (1.27)

then though the probability density does not change, the Schrodinger equation
no longer is satisfied. Now to satisfy the local gauge (phase) invariance, the
Schrodinger equation must be modified by adding new terms in (1.26). Then
the new Hamiltonian takes the following form:

H L S e 1.28
_{—%{ —iy (7 t)| +e (r,t)}. (1.28)
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where A(7,t) and U(7,t) are the functions which must be inserted into (1.26) if we
want to be able to make the transformation (1.27) and to keep the Schrodinger

equation gauge-independent. These are given by

—

- h
A(ﬁ t) — A(F7 t) + EVX(F7 t) )

_ hox(t)

URt) — U - -

(1.29)

Clearly, the A(7,t) and U(7,t) are the gauge-dependent potentials. Now inserting
the potential V (r) into the expression (1.28), we get the intended Hamiltonian
(1.25) for a bound electron.

Now let us assume that the electron is bound to the nucleus (assumed to be
static) which is situated at 7. Thus the vector potential is given by A(7 + 7, t).
Now we consider the dipole approximation k.7 < 1 such that ff(FO + 7,t) can be

written as A(7,t). Then the new Hamiltonian reads as

[ PPN E
H:{—%[v—z%fl(ro,t)] —|—V(r)} , (1.30)

where we have used the radiation gauge such that U(7,t) = 0 and V.A = 0. By

defining a new wave function

&(F,t) = (7, 1) exp [%efi(ﬁo, t)] : (1.31)
and using the above Hamiltonian H in (1.19), we lead to the following equation:
2 .
{ [QP— + V(r)] — ei". (7, t)} $(7, ) = ihd(F, 1) , (1.32)
m

where we have used the relations E = —8[1'/ Ot (see [1]) and p'= —ihV. The square
bracketed term in the above equation is the unperturbed Hamiltonian of the
bound electron. On the other hand, the second term H; = —d.E(,t), where
d = eF, is the perturbation term that is given in terms of gauge independent field
E. We shall use this Hamiltonian for further studies of atom-field interaction.
We should mention here that another form of the perturabation part 7.A is well-
known. However, it can be proved that these two forms of the Hamiltonian are
equivalent, only upto a gauge trasformation (For detailed analysis, see [6]).

Note that the dipole approximation amounts to neglecting the terms like k.7

compared to unity. This refers to the assumption that the Bohr radius (typical
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Figure 1.2: Level diagram for two-level system

dimension of the atom) is much smaller than the wavelength A of the interacting
field. Thus, the electric field remains nearly constant within the atomic length

scale.

1.2 Atomic coherence effects

Coherence in atomic systems is a manifestation of the coherent superposition of
atomic levels. This can be created by using external fields. In the following, we
show how this coherence is created and manipulated. We use the density matrix
formalism.

In the context of interaction of atoms with radiation, only few energy levels of
the atom are relevant. Because, the monochromatic radiation 2 can be resonant
or near-resonant to only a few levels, the atom can be treated as a two-level, three-
level atom and so on, accordingly. The other off-resonant levels remain irrelevant

in all practical calculations.

1.2.1 Two-level problem

We start with a two-level atom with the excited state |e¢) and the ground state |b)

[see Fig. 1.2]. The quantum mechanical Hamiltonian of this atom can be written

2In practice, radiation with a single frequency is not achievable. However, if the spectral width
of the radiation becomes much smaller than the natural line-width of the level, then the radiation
can be treated practically as a monochromatic light and all the present analysis will be relevant.
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as
Hy = hwqla)(a| + hwp|b)(b| = hwap|a){al , (1.33)

where w, and wj; are the absolute energy eigenvalues of the corresponding levels.
The last part of the above equation has been written assuming that the zero of
the energy lies in the state |b). Thus w,; gives the relative energy of the state |a).

The dipole moment operator can be written as
d = dgpa)(b| + h.c. (1.34)

where the diagonal elements of d are zero due to parity reasons3. Let the atom

interact with a monochromatic electric field given by
B(7 1) = e€eF™ivt | ¢ c. (1.35)

where, w is the angular frequency of the field. Then the interaction Hamiltonian

using the dipole approximation can be written as
Hy = —d.E = —h(Qe™!|a)(b| + Q" |a) (b] + Q'™ [b)(a] + Q*™“|b)(a])  (1.36)

where

Qi
A

dpa& 7
0 k.7 ;Q/: bhgelk-r_ (137)

€

The spatial dependence of the 2’s can be neglected if we consider the atoms to be
static and a9 < A (case of dipole approximation). However, for moving atoms, the
s can be spatially dependent. The entire Hamiltonian for the atom+radiation
interaction is written as H = Hy, + H,;. We now apply an unitary transformation
|y = e~*la)al|4) to the Schrodinger equation (1.19), so that the transformed

equation becomes

i % = Heg|@) , Heg = I |—Ala){a| — (|Q] + Q¥ |a)(b] + h.c. (1.38)

where, A = w — wg is the field detuning from the |a) < |b) transition. Note that the

expression for H.g contains two terms - one oscillating in frequency 2w (which are

5The matrix element of the dipole moment operator between the same levels or between the same
parity [defined by (—1)'] involves an odd function in space coordinate. Thus the matrix elements
becomes zero while taking the relevant integration.
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anti-resonant terms) and the other one is dc. For a cw laser in optical domain,
Y < 2w. Only for high-intensity laser fields, €2’ can be comparable to 2w. As we are
interested in ordinary light in optical domain, the anti-resonant components can
be neglected. This approximation is called rotating wave approximation (RWA) [7].
Further, as one measures any quantum-mechanical observable for finite time, the
time-averaged contribution of the off-resonant term (which is highly oscillating)
becomes negligible for any practical purpose. Note that by using RWA, one can
remove the explicit time-dependence of the Hamiltonian. Finally, the effective

Hamiltonian for a two-level system interacting with plane em field becomes
He = —h[Ala)(al + |€2[a)(b] + [€2][b)(al] - (1.39)

Now using the Liouville equation (1.23) and using the effective Hamiltonian H.g

under RWA, we find the following equations of atomic density matrix elements:
Paa = —01p = 1(Qba = Xfab) s fay = =it = 12paa = p1) (1.40)

where p is the density matrix in rotating frame.
The same equations could be obtained by imposing RWA on the density matrix
elements instead of on the wave function, as in (1.38). Using the entire Hamilto-

nian H = Hy + H; in Eq. (1.23) and then making a transformation like

Paa — ﬁaoz y Pab — ﬁabe_iwt 3 (141]

we could obtain the above equations. We should comment here that though we
are obtaining the same equations, making RWA on the wave function and on
the density matrix elements are not equivalent. Rather, the former one is more
revealing as it provides the proper account of the vacuum shift (so-called Lamb
shift) [4].

The above density matrix equations can be solved exactly, assuming that all

the atoms reside initially in the level |b), i.e., pp(t = 0) = 1. The solution is

P A? _|_4|Q|2
b — Paa — ~5
02 " 0%
pab = T —2Ae™t — (Qp — A)e @R L (Qp 4 A)em @R (1.43)
R

cos(Qrt) , b+ Paa =1, (1.42)
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where, Q% = A? 4+ 4|QJ%2. Note that the atomic inversion (population difference
between the two levels) oscillates sinusoidally with a frequency Qz. If the field is
in resonance, i.e., if A = 0, then the frequency of this oscillation becomes 2|Q|. If
the detuning increases, the frequency of oscillation increases, but the amplitude
decreases. This oscillation is called Rabi oscillation due to historical reason * and
the corresponding frequency is called the Rabi frequency. An analysis of two-level
atom and its interaction with classical fields has been given in [7]. Some other
reviews on two-level atom can be found also in [9, 10].

So far we did not consider the decay process involved in an atomic system.
In fact, the decay mechanism brings the Rabi oscillation to a dynamic steady
state. The population of the excited levels decay spontaneously and the coherence
between any two levels decay at a rate defined by the spontaneous emission rate
of the levels involved. We add the phenomenological decay terms to the Liouville

equation (1.23) so as to use the master equation (1.24) and find the following

equations:
5aa = i(Qﬁba - Q*ﬁab) — YbaPaas (1.44)
Py = 1 Pab — ba) + YoaPaas (1.45)
pab = iDpab — iQpaa — pob) — TabPab, (1.46)
Pra = —iApba + Q" (Paa — pbb) — Labhbas (1.47)

where T'y, = %%a + veou is the decay rate of the coherence p.;, 75, is the sponta-
neous decay rate from the level |a) to |b), and 7. is the collisional decay rate (see
Appendix E for details).

Due to presence of the spontaneous emission process, the Rabi oscillation
gradually damps. One thus attains a steady state in a time-limit much longer
than the spontaneous life time (= 1/v;,) of the level |a). Then the time-variation of

the density matrix elements ceases to exist. Thus the above equations become a

“I. I. Rabi (1937) discovered that the probability of a spin-1/2 particle oscillates between its two
possible spin states with the radio-frequency of the applied magnetic field [8].
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set of simple algebraic equations. We solve them to obtain the following:

2\Q2T s
“Vba (AZ + P?zb) + 4f|(2|2]-—‘ab7
iQ")/ba (2A + Pab)

Na = . 1.49
Pab Yba (A2 + Pib) + 4|Q|2Pab ( )

ﬁaa ﬁbb =1- ﬁaa 3 (148)

In the following, we discuss different aspects of the steady state coherence pgp.
It is known that, quantum mechanically, the expectation value of the dipole

moment is written as
@Tr{p(r}n{pz@jw} = pijdi - (1.50)
i#]
Thus the a-th component of the polarization density = N(dj, N being the num-

ber density of the atomic medium, can be written as

Po = Npids

o, AP, = Npyld?)?

or, dl(»;“)xsg(w)gg = Npij|dz('?)|2

or, hxgﬁ)(w)ng)(w) = Npij|d£;)|2
ij

Thus we could attain a relation between the coherence p,; between two levels and
the first order susceptibility ng of the medium. Using this general relation, we
can write the susceptibility of the two-level system under consideration. This is
given by

(w) = N|dab|2 I -N|dab|2 Vba (1A + Tap)
BT TR T TR (AP 4T + 41T

(1.52)

Note that the imaginary part of the above susceptibility, which gives the ab-
sorption profile [Eq. (1.17b)], is Lorentzian in nature. This is given by

N d‘abl2 7barab

h Yba (A2 + ng) + 4|Q|2Pab

Nldgp|? Tapm  ve/7 4|Q|2T 4
. .= ¢/? . 1.53
h e Mgz 7 - (1.53)

Im(y) =
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Figure 1.3: Driven two-level system probed by an weak field.

Here . is the line width of the Lorentzian absorption spectrum (absorption profile
in the frequency domain). The width has a dependence on the Rabi frequency
of the interacting field. This result explains the power broadening of the atomic
levels. The position and the width of the absorption peak could be obtained by
finding the pole of the absorption profile. Because the function is analytic in the
upper half of the complex A-plane [11], this pole is given by

A = iy /T2, + 41902 (Tab/90a) (1.54)

which represents a single absorption peak at A = 0 with a width equal to [I'?, +
4|Q|*(Tap/75a)]'/ %, which is the same as v, above.

Further, the real part of the susceptibility provides the dispersion profile of the
medium and is given by

_ Nldab|2 _")/baA

. 1.55
h 7ba(A2 + Pib) + 4|Q|2Pab ( )

Re(x)

Note that at A = 0, the dispersion vanishes. Also, the slope of the dispersion in A-
domain is negative at the resonance, which refers to the anomalous dispersion.
Thus we infer that, it is the applied electric field, which induces the coherence
between the atomic levels. This coherence makes the medium highly absorptive
and anomalously dispersive in nature. We next show that this coherence (or
susceptibility) can be modified and new effects can arise due to usage of extra

control fields.
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1.2.2 Driven two-level problem

We now consider the effect of an external strong field ("control” field) of angular

frequency w;
E, = et  Exeit (1.56)
on the atomic properties of a two-level system as shown in Fig. 1.3. We apply a

weak field with angular frequency w
E = et 4 greiwt (1.57)
to probe this effect. The Hamiltonian of the system under the action of these fields

in dipole approximation can be written as

H = Hy+ H;
= hwola){a| — AR eV a) (B] + Qe |B)(a] + Qae ™ |a) (b] + e~ b)(a| + hc]
(1.58)

where,

3 dpa &, dap.& dpa-E
, ng%, 92:%, and Q) = "h : (1.59)

Here wy is the atomic frequency and we have assumed the energy of the level
|b) to be zero. Using the Liouville equation and making the RWA, we obtain the

following density matrix equations:

faa = —VoaPaa +i(Q + Q2e™) pyg — i(Q + e pas, (1.60)
s = —Paas (1.61)
Pap = —(A+Tap)pab + (1 + Q2™ (fth — faa), (1.62)
fra = (1A —Tap) —i(Q + ) (Pob — faa), (1.63)

where the transformation /., = pape™tt has been used and the detunings and the

decay rates have been defined as

1
A=wy—w, and d=w—w, Ty = 3 ba + Yeoll: (1.64)
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We are treating the field with Rabi frequency 2(2; as the weak probe field and that
with Rabi frequency 2€; as strong pump field. Thus the above equations can be
solved in a perturbative method in terms of probe field. We expand the density

matrix elements g,3 upto the first order of €2, as
Pap = )+ AU Qa4 L) e, (1.65)

Substituting this in the density matrix equations, we equate the coefficients of
Qe Q% and the constant terms. Thus we obtain the following solutions for

all the relevant coefficients as follows:

) 2[4 2T 4p

) — ! 1.66
Paa Voa (A2 +T2,) 4+ 42Ty’ (1.66)
S0 _ 8 7ab(A? + T3,) 167
pab (1A —|— Fab)[7ba(A2 ‘|’ ng) + 4|Ql|2rab] ' ( ’ )
P [{ (760 = i6) (Tap — iA) = 2| |*H{Tap — i(6 4+ A)} — 2| [*(Tap — iA)]

ab {=4[Q[2(Tap — i8) + (Ypa — 16) (1Tap + 0 — A)(iTap + 6 — A)}

Yoa(A — iTap) (1.68)

X )
{41 2Tap + 76a(T2, + A2)}
(=) 2|92 ¥pa (Tap — iA) (204 + 16)

Pab™ = TT40, 2T + Yoa (T2 + A2) 4| Q|2 (=T ap + 8) + (—i7pa + 0){(Tap + 16)2 + A2}]

(1.69)
- ~(0) Q) ~(+) _ Q* ~(+)

ﬁ((ljl_) _ 7’pba +1 P);pbj - v lpab 7 (170)

S0y i+ i) — i) (1.71)

aa ")/ba + 26 b) :
(1.72)

and 3 = 550", o) = 5.

We should mention here that the effect of intense laser field on a two-level
system was first dealt with by Mollow [12]. He studied the resonance fluorescence
spectrum from a two-level atom driven by a monochromatic strong source of light.
Using a semiclassical calculation, he showed a triplet structure (at the frequencies
w; and w; + Q1) in the power spectrum of light scattered by the two-level atom.
This structure is known as Mollow triplet. Note that, the similar result can be
attained from the solution for the coherence p, in (1.40), which shows that the

dipole will exhibit induced oscillation in the frequencies w + Qp apart from the
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frequency w. Thus the fluorescence spectrum will have new frequency side-bands
corresponding to w4+ Qp. However, a strong control field (£2; > v,) is necessary for
these sidebands to appear, which is the same situation we dealt with in the above
analysis. The Mollow triplet was experimentally verified by Hartig et al. [13] and
Grove et al. [14].

Mollow further has shown that the stimulated absorption and emission spec-
trum of the probe become asymmetric due to this coherence [15]. He observed
gain of the probe in certain probe frequencies. The probe field gets amplified at
w = w; — Q; and gets absorbed at w = w; + €4, when A > 0. The reverse occurs
when A < 0. The gain is not due to any intuitive population inversion between
the levels |a) and |b). Rather, the gain arises due to the probe coherence p,; in-
duced by the pump field, as we calculated above. Mollow’s work has stimulated a
series of theoretical [16] and experimental [17] investigations. This gain can show
lasing action also [18]. We should note further that in the absorption spectra, a
dispersive feature appears around w = w; which is related to stimulated Rayleigh
scattering. Agarwal has discussed its origin in much details [19]. The gain asso-
ciated with this has been utilized for optical parametric oscillator [20]. We should
note that classical fields lead to many other interesting effects in a two-level atom.
For example, strong bichromatic field interacting with a two-level atom gives rise
to complicated Rabi splitting [21, 22]. Rabi sideband can be generated by four-
wave parametric interaction [23]. Even population trapping state can exist when a
two-level atom is driven by frequency modulated field [24]. Agarwal has developed
a complete theory for quantum statistical treatment of the spontaneous emission
in a collection of two-level atoms, and even in multilevel atoms [4, 25]. We will

consider multilevel atoms in the following.

1.2.3 Coherent control in Multilevel systems

The idea of coherence developed in the earlier section will now be extended to
multilevel systems, especially to three-level systems. Increasing the number of
the levels in atoms provides much more freedom in possible configurations and
in number of new effects. Depending on the level structure and dipole allowed

transitions, there can be three types of three-level systems, as shown in Fig. 1.4.
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Figure 1.4: Three different configurations of three-level atomic system: A, =, and
V.

The detailed analysis of these configurations have been given in Appendices B, C,
D. In the following we discuss some interesting optical phenomena occuring in
these three-level systems.

Coherent Population Trapping

The development of monochromatic and tunable laser sources has boosted
numerous high-resolution spectroscopic studies in these three-level structures.
Out of these, the coherent population trapping (CPT) has been extensively stud-
ied in literature. Alzetta et al. have observed a decrease in fluorescence emission
from Sodium atoms driven by two laser fields [26]. This was the first observation
of CPT. At the same time, Whitley and Stroud studied CPT theoretically [27] and
Grey et al. has done an experiment on Sodium atoms to verify the ideas [28]. It
has been shown that when two resonant fields interact with two coupled atomic
transitions, then the atomic population gets trapped in certain state. Physically,
an atomic coherence arises due to the applied radiation such that the atomic
evolution is out of phase with the radiation and destructive interference occurs
between these two to meet a situation of no absorption. CPT is much important in
coherent control studies because this exploits the macroscopic (observable) effect
of coherence between the atomic states. Though in the absence of any sponta-
neous relaxation processes, all the three configurations as shown in Fig. 1.4 are
equivalent, for relevant purpose the A configuration is the most suitable one for
study of CPT. This is because, the population gets trapped in the two ground
states, lifetime of which is very large. A theory of Lambda system interacting with
two coherent fields of arbitrary strengths has been developed by Cohen-Tannoudji
and Reynaud using dressed state approach [29] and by Agarwal and Jha [30] us-

ing master equation approach. We provide a qualitative analysis of CPT in this
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part of the present thesis.

Let us consider two laser fields of frequency «w; and w, interacting with the
transition |a) « |b) and |a) < |c), respectively. The Hamiltonian of this system
in dipole approximation can be written as (B.2) [see Appendix B]. Using RWA, we
obtain the effective Hamiltonian (B.9) which can be diagonalized. Under condition
of two-photon resonance (A; = Aj), one of the eigenvalues of this Hamiltonian is

found to be zero. The corresponding eigenstate is given by

1
INC) = Glule) - 2[p)], @=/0F+03, (1.73)

such that H.g|NC) = 0. (Note that we are not assuming the either field much
stronger than the other, as one often does in the study of EIT). This state is called
CPT state or dark state, which is uncoupled from the applied field and does not
evolve further [31]. To understand the process of CPT, one has to consider the
relaxation processes which are always present in an atom. The spontaneous
emission from the level |¢) constantly populates the state |[NC). As this state
remains uncoupled form the interacting fields, at long time limit (at time much
longer than the spontaneous life-time of the level |a)) the population gets trapped
in the state |NC), irrespective of the initial condition. On the other hand, the

interacting fields couple the state |a) with the state
1
C) = Gulb) + Q)] (1.74)

with an effective Rabi frequency Q2. CPT can also be understood as the destructive
interference between two different excitation pathways [28, 32]. Note that the
CPT state |NC) involves the states which are long-lived. However, in presence of
atomic collisions, Doppler effects etc., broadening of these levels occur and thus
the CPT state does not remain stable. The population further decays from this
state. Several progress have been made to explore the effect of these broadening
processes on CPT. Phase fluctuation of the interacting fields are also known to
affect the stability of CPT state [33]. Truly speaking it is very difficult to find a
closed® system in nature. The simplest model of a Lambda system is the J =

1 + J = 1 with circularly polarized fields. More general level schemes have been

5If the excited levels decay only to the coupled ground states, then the system is said to be a
closed one. Otherwise it is an open system.
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investigated in the context of CPT [34]. It is shown that if there is one more
ground level than the excited levels, then CPT can occur. Different other systems
like molecular systems [35], atoms with excited continuum [36], dense atomic
systems [37] etc. have been investigated also. CPT in open systems [38] and in
the system driven by large magnetic field [39] have also been reported.

Besides different aspects of CPT, many applications of CPT have also been ex-
plored. It has found immense application in metrology [40], laser cooling [4 1], and
in generation of microwave field [42]. Time-dependent CPT state has been exten-
sively utilized in the study of adiabatic population transfer [43]. Harshawardhan
and Agarwal have reported the use of CPT in optical bistability [44]. Use of quan-
tized fields give rise to novel field properties under trapping conditions [45].

CPT has a close bearing with some other phenomena like electromagnetically
induced transparency (EIT), lasing without inversion (LWI), enhancement of re-
fractive index etc. We provide a brief discussion of these in the following.

Electromagnetically induced transparency : EIT

According to quantum mechanics, if several transition amplitudes (or several
pathways) co-exist for any specific transition process, then these transition am-
plitudes can interfere with each other either constructively of destructively. We
have already mentioned that CPT can occur for destructive interference of two
different pathways. Fano interference is another example of this quantum inter-
ference process. Similar kind of destructive interference occurs in the process of
EIT. The phenomenon that an otherwise optically opaque atomic medium can be
made transparent to a weak probe field by using a strong control field is referred
to EIT.

EIT was first demonstrated by Harris and coworkers in a Lambda-type system
in atomic vapor of Strontium [46]. The control field at resonance (A = 570.3 nm)
was applied on the |¢) ¢ |b) transition, whereas the probe field (A = 337.1 nm)
was applied in the transition |¢) < |c). The probe laser has an intensity about
10® times less than the control laser. Thus the state |¢) will be the effective dark
state, as ©Q; > Q, [see Eq. (1.73)]. Note that here lies the difference between
the basic mechanisms of CPT and EIT. In CPT, both the interacting fields dress

the ground levels and the CPT can be explained in terms of interference due to
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both the fields. But in EIT, only stronger field dresses the two levels |e¢) and |b)
which it couples. The other state |c), which is a ground state remains practically
unaffected by this strong control field. Thus EIT is understood by the interference
between transition from this state to the dressed states, given by

1
+) = ﬁ(laﬂt 16)) - (1.75)

In Raman resonance condition (two-photon resonance condition : A; = Aj), the
transition amplitudes for the |+) + |c) interfere destructively. Then an absorption
minimum arises in the absorption spectra of the probe Q. The population gets
trapped in the level |¢) at the Raman resonance frequency of the weak probe field.
Thus the medium appears transparent to the probe. This situation is called EIT.
Further, the absorption in the transitions |¢) — |1) give rise to new resonances at
the frequencies wy; = wy, £ . These absorption peaks are known as Autler-Townes
doublet [47]. The dip in the absorption at the frequency w; = w,; between these
two peaks corresponds to EIT dip. We should mention that the first observation
of this doublet in optical domain was reported by Hertz et al. [48]. Agarwal has
shown that EIT spectra can be interpreted through Lorentzian contributions from
the new resonances and dispersive contributions from interference terms [49].
Moreover, it should be emphasized that not only a small field, but also a small
control field (of the order of the decay rate of the excited level) is sufficient for EIT
to occur [50].

There have been several demonstrations of EIT in different kinds of level schemes
[51, 52, 53, 54, 55, 56, 57, 58]. EIT is best obtained in Lambda type of config-
uration, whereas in the other standard three-level configurations (namely V and
Ladder schemes), one does not get complete transparency. A comparison of these
configurations has been studied in somewhat different context [53]. EIT has been
observed in different kinds of media, e.g., in laser-cooled samples [56], in plasma
[59], in solid samples [57], and in sample kept in cavities [53]. Agarwal and Boyd
have applied the EIT in controlling the band-gap in dielectric media [60]. EIT has
been shown to be useful as a coherent switch also [61]. Dependence of EIT on
phase [62] and on the polarization [63] of the interacting fields have also been

explored.
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EIT has found immense application in isotope separation [64], controlling opti-
cal bistability [44], electromagnetically induced grating [65]. Laser pulse matching
and soliton like propagation which have applications in optical communication,
can be observed in EIT-like situation [66]. Agarwal has extended this issue to
quantum regime to show matching in photon statistics [67]. Agarwal and Har-
shawardhan have generalized the idea to achieve control of two-photon processes
[68]. Photon switching at a single photon level has been proposed by Harris and
Yamamoto using a similar idea [69]. Recently two-photon switching has been ob-
served by Yan et al. [70]. Many review articles on EIT now exist in the literature
[71].

Lasing without inversion : LWI

Lasing occurs due to population inversion between the relevant levels. In-
terestingly, one can get lasing even without population inversion in the relevant
levels. This can be achieved by using the atomic coherence. Thus, LWI has cre-
ated a lot of attention after its advent by Kocharovskaya and Khanin [72] and
Harris [73]. The authors in Ref. [72] have found that ultra-short pulses get am-
plified due to CPT even without any inversion in the atomic levels in a Lambda
system. Harris observed that decay from discrete states to an identical continuum
causes an absorption in absorption, whereas the stimulated emission spectra re-
mains unaffected. Thus there creates an asymmetry between the absorption and
emission spectra. Hence, there arises a possibility of LWI. Imamoglu and Harris
have shown that the similar kind of effects can be produced by using a control
field [74]. On the other hand, Scully and coworkers have proposed that coherent
superposition of the ground levels of a Lambda system can give rise to LWI [75].
Agarwal has shown that a laser based on LWI exhibits ultra-narrow line-widths
due to quenching of spontaneous emission [76].

After the discovery of LWI, several theoretical proposals and experimental ver-
ifications have been reported. The first experimental indication of gain without
inversion (GWI) was in a four-level model [77]. In this work, in 3S,,, <+ 3P;),
transition in Na, atomic coherence among the ground hyperfine levels F = 1 and
F = 2 have been created giving rise to gain of a probe field along 3S,,; ++ 3P,

transition. This work was based on the model proposed by Narducci et al. [78],
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but the experiment did not have concrete evidence that the gain was in fact with-
out inversion. Nevertheless, the results did show atomic coherence effect. The
first unambiguous demonstration of GWI was given by Fry et al. in a A system in
Na [79]. It has been found that though there is no inversion in bare basis, there
exists inversion in dressed basis. In some cases, there exists no population inver-
sion even in any basis. Some of the experimental observations based on this have
been reported in 8Rb (V configuration) [80] and in ?*Na (A configuration) [81].
Agarwal explained that LWI in this case is due to the coherence of the dressed
states [82]. Menon and Agarwal have shown that LWI can be observed in a A
system due to cross-coupling of control and probe fields [83]. Many reviews exist
in the literature on LWI [84].

Dispersion management : Harmonic Generation

So far we have discussed the coherent control of the absorption of the probe
field. Applying the interacting field, one can also manipulate the dispersive prop-
erty of the medium. It is known that one can generate different harmonics of the
incident frequency using several available nonlinear optical techniques, which is
associated with large nonlinear susceptibility. On the other hand, in context of
atomic vapors interacting with coherent fields, one also can generate large nonlin-
ear susceptibility at resonance condition. But both the dispersion and absorption
are very much high in this case. To probe the dispersive property of the medium,
one would like to have less absorption and as much as high dispersion. Here lies
the basic goal of dispersion management. The first work in this context was done
by Tewari and Agarwal to show harmonic generation using strong saturating field
[85]. This field can change the phase matching condition in the four-wave mixing
process and radiation in vacuum-ultraviolet region can be enhanced by orders of
magnitude. Harris et al. have shown that EIT results in destructive interference
in linear susceptibility and constructive interference in third order susceptibility
[86]. As the efficiency of four-wave mixing depends upon the ratio of the sus-
ceptibilities of the third order and the first order, thus any reduction of first order
susceptibility will cause the efficiency to increase. In fact, both the proposals were
closely related and the large efficiency arises from the same mechanism [87].

A series of demonstration have been reported in context of harmonic genera-
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tion using coherent control. Hakuta and coworkers have achieved resonantly en-
hanced second harmonics accompanied with reduced absorption in 2s+2p tran-
sition of Hydrogen [88]. This work demonstrated that EIT is possible with dc field,
also. Zhang et al. demonstrated sum-frequency generation at the frequency 103
nm in VUV region from the 2s+3p transition strongly coupled with a laser [89].
Phase matching induced by control field was observed in an off-resonant scheme
of four-wave mixing in °®Pb [90]. In this work, transparency has a little role
in enhancement due to large detuning. In another experiment CPT is shown to
play the major role in generating new frequencies [91]. Many other experiments
exploiting the nonlinear coherence effects include observation of giant Kerr non-
linearity [92], efficient phase conjugation [93], nonlinear two-photon spectroscopy
in optically dense media [94].

Dispersion management : Ultra-high refractive index

The real part of the dispersion gives the refractive index. In atomic vapor, re-
fractive index is, in general, high at resonance associated with large absorption.
In EIT, one obtains vanishing absorption as well as vanishing dispersion. Using
atomic coherence effects and quantum interference, Scully and coworkers have
shown that in some spectral region, refractive index can be kept large, but the ab-
sorption can be suppressed [95]. This has been experimentally verified by Zibrov
et al. in Rb vapor [96]. Using a different technique, Kocharovskaya and cowork-
ers have shown that large refractive index associated with zero absorption can
be achieved by suppressing the spontaneous emission using control fields [97].
This happens in a situation where the ground states have a larger energy than
the Stark-shifted levels, which are created due to application of the control field.

Dispersion management : Magnetometry

The frequency dependence of the dispersion in EIT condition can be employed
in measuring very feeble magnetic field. It can be shown that in the vicinity of
probe resonance, the phase shift of the probe field is proportional to the two-
photon detuning. This phase change can be measured using such a medium
in the Mach-Zehnder interferometer. Scully and Fleischhauer have shown that
two-photon detuning of the order of 10~° Hz can be detected using this technique

[98]. This has immense application in determining frequency standard. Even
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very small Zeeman splitting due to weak magnetic field can be measured by this
technique. In [98], it is shown that magnetic field of the order of pico-Gauss can
be detected, which otherwise would require large superconducting devices.
Dispersion management : Manipulation of group velocities
Recently, atomic coherence effects have been demonstrated in a series of theo-
retical and experimental investigation in manipulation of group velocities. Histor-
ically, concept of group velocity has been extensively studied by Brillouin in his

famous book [99]. The group velocity is defined by [see Eq. (A.15)]

c

. (1.76)
n(w) + wit

'Ug:

where 7 = 1 4+ 27Re[x(w)] is the linear refractive index. We describe how to derive
this formula in Appendix A in general and in Appendix E for propagation of a
cw pulse through a dilute atomic vapor medium. Near the EIT window, both
the real and imaginary parts of the susceptibility almost vanish. Thus the group
velocity is entirely determined by the slope of the real part of the susceptibility y.
If it is large enough, then the group velocity can be reduced. One thus defines
a slow light, group velocity of which is much less than the velocity ¢ of light in
vacuum. The positive slope (dn/dw > 0) is referred to as normal dispersion. Thus
normal dispersion is responsible in slowing the group velocity. The amount of
this slope depends upon the width of the EIT window. Narrow EIT windows can
be created by using very small control field. Thus group velocity can be controlled
using the coherent control technique. However, in atomic vapors, the inelastic
collision with the wall, Doppler broadening etc. may suppress the EIT effect, in
presence of weak control field. Harris et al. have shown that for a large control
field (intensity ~ 283 kW cm~2) group velocity can be reduced to ¢/250 in EIT
window [100]. Kasapi et al. have investigated the propagation dynamics of the
optical pulses inside an optically thick medium and have shown that the group
velocity can be reduced to ¢/165 [101]. They have used strong control field also
(~ 200 kW cm~2?) with the probe of intensity of the same order. However, due
to recent developments in experimental techniques, one can attain slow group
velocity using weak control field also. In the first experiment of this kind, Hau

1

et al. have been able to reduce the group velocity to 17 m s~ in a Sodium Bose
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condensate medium using a weak control field (power ~ 1 mW cm~?2) [102]. Even
in hot gases [103] and vapors in room temperature [104], one can create slow
group velocities, by using anti-relaxation coating on the wall of the vapor cell
to suppress collisional effects. In [104], a group velocity of 8 ms™' has been
reported. Schmidt et al. have shown that group velocity can be reduced below
¢/3000 in a CPT condition [105]. In a Raman scheme, one can achieve extremely
slow propagation even without satisfying any EIT condition [106]. Xiao et al
have shown that in a Ladder system (where EIT is not complete, see Appendix C),
one can achieve a reduction ~ ¢/13.2 [107]. Large group delay (i.e., slow group
velocity) has been reported in photonic band edge [108] and in solid medium like
Ruby crystal also [109]. Slow light pulses in moving media have been investigated
[110, 111, 112]. Entanglement of slow photons has also been reported [113].

Extending the idea of coherent manipulation of group velocity, Fleischhauer
and Lukin have shown that the light pulses in quantum domain can be decel-
erated and even trapped inside a medium [114]. This is done by transfering the
quantum correlations from light field to collective atomic states. This stored quan-
tum information can be transferred back to the light fields. Thus this process has
potential application in quantum information processing. Further Lukin et al.
have shown that this procedure can help in producing entanglement in atomic en-
sembles, in creating atomic squeezed states, and in teleportation of atomic states
[115]. In a different development, Liu et al. have been successful to halt the
light pulses in an atomic medium and to make it useful in information processing
[116]. On the other hand, Phillips et al. have independently demonstrated that
the light field can be stored in atomic vapor [117]. Kocharovskaya and cowork-
ers have used hot atoms to stop the light inside the medium [118]. Grobe et al.
have interpreted that in adiabatic limit, storage of light refers to transfer of the
information of the light field to the ground state coherence of the atom [119].

So far we have discussed the slowing and stopping of light pulse. From the
expression of group velocity v,, one can see that it is ’in principle’ possible to
enhance the group velocity larger than c. This can be done in a situation, when
the medium shows anomalous dispersion (i.e., dn/dw < 0). There are a lot of theo-

retical studies [120, 121] on this issue. Specifically, in [121], the conditions that
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an amplifying medium would show superluminality, have been derived. The first
demonstration of superluminality in an absorbing medium have been reported
by Chu and Wong [122] to verify the prediction of [120]. In degenerate two-level
configuration of Rb atoms, a negative group velocity ~ —¢/23000 has been reported
[123]. Superluminous soliton is possible in a Brillouin fiber ring laser also [124].
Chiao and coworkers have proposed experiments in the present context in a de-
tuned high-gain medium [125, 126]. However, the most interesting contribution
came from Wang et al. who have demonstrated the superluminal propagation
(with a group velocity ~ —¢/310) of a Gaussian pulse in a resonant gain medium
[127]. The ultracold atoms [128] and photonic band gap [129] also have been
shown to be useful to exhibit superluminal behavior. A lot of theoretical studies
inside inverted medium [130], in bandpass filter [131], in a medium with gain
doublet [132] etc. have been performed. We should emphasize here that the
observed superluminal behavior does not conflict with the basic assumptions of
relativity as well as with causality. The information cannot be transferred super-
luminally [133, 134], as this behavior is proved to be a manifestation of pulse
reshaping inside the medium. Further, the theory of relativity demands the ve-
locity of light not to exceed ¢ in a vacuum, while, the superluminality have been
demonstrated inside a medium.

More interestingly, some proposals have been recently made to obtain both
subluminal and superluminal propagation in the same medium. Phase control of
group velocity has been reported in this regard [135]. By changing the power of
control field, Kim et al. have shown that it is possible to change the superluminal
group velocity to subluminal one [136]. Agarwal and coworkers have proposed
a ‘'microwave knob’ to continuously change the group velocities from subluminal
to superluminal and vice versa [137]. By changing the dye concentration, and
thereby, the optical density of the medium, Talukder et al. could be able to control
the group velocity of the medium [138].

Dispersion management : Magneto-optical rotation

When a linearly polarized light passes through a medium in the direction of
magnetic field, it experiences a rotation of polarization, called magneto-optical
rotation (MOR). This was first formulated by Faraday [139, 140]. The MOR angle
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can be written as
0 = wkiRe(x- — x+) , (1.77)

in case of a non-attenuating medium, where £ is the wave number of the electric
field, ! is the length of the medium, and y. are the linear susceptibilities of the
medium for the right or left circularly polarized components of the input field (see
Chapter 4 for derivation of the above expression). In conventional Faraday rota-
tion, the rotation angle is extremely small, and is difficult to measure. One can
see from the above equation that the larger the asymmetry between the x’s, the
larger the MOR. As we have discussed earlier and will show in the following part
of this thesis, coherent field can create large dispersion at even atomic resonance.
Thus large asymmetry in the susceptibilities can be achieved. Thus in principle,
it suffices to use even dilute medium (N is small) to attain large MOR angle [141].
There have been a lot of theoretical [142, 143] and experimental studies [144]
which discussed the usage of atomic coherence to enhance the MOR. Effect of
magnetic field and strong electric field on MOR have been studied by Budker and
coworkers [145]. Large atomic coherence in optically thick atomic vapor can also
enhance the MOR [146]. The authors in [146] have utilized the idea to improve
the signal-to-noise ratio. Effect of Doppler broadening on MOR has been inves-
tigated [147]. Further studies in saturated medium (case of strong electric field)
[148] and for arbitrary direction of magnetic field [149] have been reported. In
saturated medium, nonlinear MOR (NMOR) comes into picture. Using the idea
of enhancement of refractive index using atomic coherence and NMOR, Scully
and coworkers have investigated the possibility of high-precision magnetometry
in optically thick cell both theoretically [98, 150] and experimentally [146, 151].
Budker et al. have used anti-relaxation paraffin coating to reduce the Doppler
effect in a Rb vapor cell in study of high-precision magnetometry [145, 152]. Cold
atoms have also been employed to reduce the ground state relaxation in study
of NMOR [1583, 154]. MOR has been utilized in radiation trapping in an opti-
cally thick atomic vapor [155] and in group velocity studies in an optically dilute
medium [156]. It has been shown by Patnaik and Agarwal that even laser field

alone can create the above asymmetry and optical rotation can be controlled as
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well as enhanced applying a control field only [157]. Recently MOR has been
extensively reviewed by Budker et al. [158].

1.3 Outline of this Thesis

Different chapters in this thesis develop the framework and models for laser field-
induced coherence effect in anisotropic systems. We predict many new interesting
effects arising due to application of coherent control field. The motivation and
important results of these chapters are briefly discussed below.

Chapter 2: In an anisotropic medium, the orthogonal polarization compo-
nents of a linearly polarized pulse have different susceptibilities. Thus, they travel
through the medium with different group velocities. But at the resonance of the
either component, its absorption becomes very large. In this chapter, we show
that applying a resonant laser field, it is possible to create EIT at the resonance
of the either. In this condition, both the components have different group veloci-
ties but negligible absorption. Thus it is possible to split them so that they come
out of the medium at different times. We demonstrated this effect numerically
in context of propagation of a Gaussian pulse through the medium. An analyti-
cal estimate of the broadening of the pulse component at the output end of the
medium is given.

Chapter 3: When an unpolarized light propagates through an anisotropic
medium, the output intensity becomes the same irrespective of the direction of
the applied dc magnetic field. However, if one drives the medium with a resonant
electric field in suitable transition, then the susceptibilities of the polarization
components of the field get modified. Then the output field intensities become
different for two opposite directions of the magnetic field. We can find a typical
parameter zone, such that the absorption coefficient can be switched from nearly
zero to nearly unity or vice versa by just reversing the magnetic field. Thus we
show the coherent control of the medium absorption. We show that the large
asymmetry in the output intensities can also be created in a Doppler-broadened
medium. We note that similar kind of effect, called magneto-chiral anisotropy,

exists, which is an effect of the higher order moments, and thus too small in
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magnitude to detect. On the other hand, we show that magnetic field reversal
asymmetry, as we discuss, is an effect of dipole moments and thus quite easy to
detect experimentally.

Chapter 4: It is known that the MOR angle depends upon the optical density in
a linear fashion. This is true for a near monochromatic light. But, for a sufficiently
nonmonochromatic light, nonlinear dependence of the MOR angle on the optical
density occurs. This has been observed in a related experiment. We provide an
theoretical explanation of this effect. The theoretical results are shown to be in
good agreement with the experimental results. We further investigate the effect of
the applied magnetic field in this context.

Chapter 5: In an EIT situation which occurs in a standard A configuration,
there arises situations like zero absorption and zero dispersion of the medium. We
show that, coupling a noninteracting level with an extra control field in this con-
figuration, one can obtain non-zero absorption associated with zero absorprtion.
Further, in certain probe frequency region, the medium exhibits gain behavior.
These results are understood as a coherence effect induced by the control field.
The gain behavior can be explained in terms of population inversion in dressed
state basis. We further show that large MOR angles are possible to attain, by
applying control field.

Chapter 6: An excited atom in V-configuration, interacting with a two-mode
cavity can serve as a quantum cloner of a photon in either mode. The stimulated
emission emits a second photon, which can serve as a clone of the initial one. The
fidelity of this process is reduced due to simultaneous existence of spontaneous
emission in the other mode. Our motivation is to enhance the fidelity beyond
the optimal limit. This is possible by applying a coherent field to couple the
excited states to an upper metastable state, so that the population can be cycled
in that transition for longer time. Thus the relative probability of the stimulated
emission is enhanced, so that the fidelity of quantum cloning is also enhanced.
We investigate the effect of two atoms in this context. We further show that the

universality of the cloning process breaks down by the applied control field.



Chapter 2

Coherent medium as a polarization

splitter of pulses

So far we have discussed the basic analysis of the interaction of radiation field
with atom. We explained the concept of various coherent control effects, namely
EIT, dispersion management and so on. Using the concept of EIT, we show in the
following, how an anisotropic coherent medium can be used to separate out two

polarization components of a pulse.

2.1 Anisotropic medium

As we have explained in the previous chapter, in an anisotropic medium, different
polarization components for a given direction of propagation of the electric field
have different susceptibilities, In other words, the response of the system becomes
different for different polarization directions. It is well known that an applied
magnetic field makes an isotropic medium anisotropic. Note that the long-known
Faraday effect [139] is a manifestation of the anisotropy of the medium. In this
process, the polarization of a cw field is rotated, if this field propagates through
the anisotropic medium along the direction of the magnetic field. We already
referred to this process as MOR in the previous chapter. Though, it is now known
that even the control field alone can create anisotropy, we make use of magnetic
field for this in the present context.

Consider the propagation of a linearly polarized laser pulse through an anisotropic

34



Coherent medium as a polarization splitter 35

medium of length /. A pulse is a coherent superposition of many monochromatic
plane waves, which are given by the Eq. (2.1). We assume a linearly polarized

pulse which is given by

E(z,t) = :%/_Oo E(w) exp{iw (% — t) }dw—I—C.C., 2.1

where we assume that the pulse has a small spectral width. Note that because,
a pulse consists of many Fourier components, its amplitude becomes frequency-
dependent. In time-domain, this pulse has certain temporal profile also, as we
will discuss in details later on in this chapter.

The amplitude € can be resolved in terms of two circular components
GE=é,E 46 6, EL=E/V2, (2.2)

where, unit orthogonal polarization vectors é4 correspond to o* (we use the con-
vention that o4 correspond to left circular and right circular polarization, respec-
tively) polarizations, and are given by

R ..

€y = E(a@ + 17). (2.3)

The induced polarization in the medium due to the interaction with the linearly

polarized probe can be expressed accordingly as

—

P(z,t) = €4 Py(z,t) + é_P_(z,1), (2.4)
where,
Py(z,t) = /OO X+ (W)Ex(z,w)e ! dw. (2.5)

Here, x4 (w) are the complex susceptibilities for the two circularly polarized com-
ponents inside the medium for a given frequency w.

If we assume that the density N of the medium is small so that the back
reflections are negligible (i.e., a case when 47|x+| < 1), then the field at the output
can be written as

Bun = e [ aweeenfi (1) + T 0]

— 00

+ é /+OO dw E_(w) exp {iw (é — t) + QWZle_(w)}. (2.6)

— 00
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3>

Figure 2.1: The level configuration for splitting of a linearly polarized pulse. The
ot components of the input pulse with respective Rabi frequencies 2¢; and 2g,
interact with the |e) < |1) and |e) « |3) transitions, respectively. The pump field
with Rabi frequency 2G is applied in the |e) <> |2) transition.

+

Clearly the two components of the pulse travel with different group velocities vy

inside the medium which are given by

v;t =c/ n;t (2.7)
where the group indices néﬁ are given by (see Appendix E)
J
n;t ~ 14 2nxs(w) + 27rwxaiiw(w>, (2.8)

where the expression (2.8) is to be evaluated at the central frequency v, of the

pulse.

2.2 Model configuration

We will now demonstrate how the ideas of coherent control can be used to sep-
arate temporally the two components of a linearly polarized pulse given by the
expression (2.1). This is possible if one can produce large anisotropy between
n} and n;. We consider a generic four-level model as shown in Fig. 2.1 for this
purpose. The relevant energy-levels are found in many systems such as in ?Na
[159], “Li [160], and Pr:YSO [161]. The upper level |¢) which is a |mp = 0) state
is coupled to the ground levels |1)(mr = +1) and |3)(mr = —1) by a Z-polarized
laser probe, given by (2.1). The orthogonal components of the probe with o_ and

o4 polarizations interact with |e) «» |1) and |e) +» |3) transitions, respectively. The
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degeneracy of the ground level has been removed by applying a static magnetic
field of strength B in the direction of the propagation (parallel to %) of the ap-
plied laser fields, as in the case of Faraday effect [139, 140]. Thus the medium
becomes anisotropic. Note that Renzoni et al. [38] used the same atomic configu-
ration to investigate the possibility of coherent population trapping using cw field
of arbitrary intensities. In a dressed state approach they have shown that the
long-interaction-time-evolution of the system can be completely characterized by
the effective line-width of the noncoupled state.

We should mention here that the following analysis is performed for the **Na
atoms. Because the Landé g-factor of the ground levels is negative in this case,
thus the level |1) = mp = +1 (|3) = mr = —1) shifts upwards (downwards) upon

application of the magnetic field (see Appendix F).

2.3 Analysis

In the previous chapter, we have described the detailed method to treat the inter-
action of an atom with monochromatic field. For a pulse, we start with the similar
treatment and assume the frequency dependence of the pulse later on. Thus, in
dipole approximation, the Hamiltonian for the system under consideration can be

written as
H = hlwes|e)(e] + wis|1)(1]] = (der|e) (1] + des|e)(3]).(Ee™ + c.c.) . (2.9)

We use the Liouville equation (1.24) and obtain the following equations for the

density matrix elements using RWA:

e = —(71e + V3¢) Pee + 1[g1P1e + g2P3 — C.C.]

P11 = —ViePee + i[g1per — C.C.]

pa = (i6=Ta)per +ilgr(P11 = pec) + g2p31] (2.10)
,5e3 = [i(6 4 2B) — Tcs]pes + i[g1913 + 92(p33 — Pee)] »

p15 = —[2iB+Ti3]p13 + (g7 Pe3 — 92P1¢) »
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where the g; and g, are half of the Rabi frequencies of the s components of the

input field, as shown in the figure. These are defined as

. da3f DE_ _ _dadf  DE,
291—2 B — 5 3 292—2 B - = B 3

(2.11)

where, D is the magnitude of the dipole moment matrix element between the levels
le) and |1) and is proportional to the reduced matrix elements for the relevant
|Fe, mp = 0) <> |Fy, mp = £1) transitions and can be calculated using the Wigner-
Eckert theorem for the hyperfine levels [see Appendix F].

The probe field detuning is defined as § = w — w.;, we; being the atomic tran-
sition frequency between the levels |e) and |1). The parameters v,3 denote the
spontaneous decay rate from the level |3) to |a) and I'y3 denotes the decay rate
of the coherence between the levels |a) and |3). Note that in the above equations,
we have ignored the decay of the level |e) to the level |2) (a case when the system
could be an open system). These equations can be solved in steady state. Assum-
ing the fields to be weak enough so that the system behaves like a linear medium,
we can use the perturbative method as described in Appendix A. Thus, we obtain

the following solutions for the susceptibilities of the o1 components of the probe:

ND? T ND?\ il
X+ (@) = ( AT ) SipteB —1) W= ( [ ) 2(i6 —T)’ (2.12)

where N is the atomic number density of the medium. Here we have considered

I'e; =T (5 € 1, 3) without loss of generalization.

The results we have obtained in (2.12) refer to two-level problems in the tran-
sitions of o.. Thus, at its resonance, either component suffers large absorp-
tion [large Im(y)] and large normal dispersion (referring to slow group veloc-
ity). The other component at this frequency suffers less absorption due to off-
resonance from the corresponding transition! as well as almost flat dispersion,
i.e., dx/0w =~ 0 (leading to no change of the group velocity from that in the vac-
uum). Thus both the components would come out from the medium at different
times due to different group velocities inside the medium. But due to large ab-

sorption of the resonant component inside the medium, only the off-resonant

'Both the components have the same frequency as they are derived from the same z-polarized
light field.
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component survives till the output end. Thus the system under consideration
could be termed as a polarizing medium, but not as a polarization splitter.

The requirement for splitting of the pulse into its two polarization components
is that the absorption of both the components must be much less so that both
of them will come out of the medium almost unattenuated. On the other hand,
the difference between their group velocities must be sufficiently large so as to
resolve them in time domain (i.e., the time separation of them at the end point of
the medium must be larger than the width of the pulse). We should emphasize
that the time-separation is to be calculated between the peaks of the pulse com-
ponents. This requires large asymmetry between y+. This could be done using
large magnetic field [see Eq. (2.12)], which however would create Paschen-Back
splitting in both the excited and ground state manifold. To circumvent these dif-
ficulties, one can employ a control electric field with suitable polarization and
frequency to make use of EIT. We apply a coherent cw field on the transition

le) <+ 2) (Fy =0,mp = 0)
E.(z,t) = E.(z)e" ™! + c.c. (2.13)

Thus the equations (2.10) become modified. We take the decay from the level
le) to |2) into account now. The new density matrix equations can be solved
analytically in steady state assuming the Rabi frequency of the control field 2G =
2d.9.E. /h to be much larger than the Rabi frequencies 2¢; of the o, components.

The susceptibilities of these components get modified by the control field and are

given by
. _ (ND?\1 ~iT[i(8 4+ 2B — A) — T'g3]
X+w) = ( AT ) 5T0+2B) —Ti(0+ 2B - A) Tyt |G %
_ _ (ND*\1  —iI[i(6 — A) — I'yy]
X-(w) = ( AT ) 2(i6 —T)[i(6 — A) — T1q] + |G’ (2.14b)

where A = w. — we is the detuning of the control field from the corresponding
transition.
2.3.1 Numerical analysis

These susceptibilities in units of N D?/AT" have been plotted with respect to probe
detuning ¢/T in the Fig. 2.2. We have used the parameters for 2*Na vapor with the
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Figure 2.2: The variations of real (solid line) and imaginary (dotted line) parts of
the susceptibilities y; [upper tick-labels in z-axis] and y_ [lower tick-labels in z-
axis] in units of N D?/AT with probe detuning §/T are plotted here. The parameters
used are G = 0.15T", and A = 0. All the other parameters are explained in the text.

At the EIT window § = A = 0 of the ¢_ component, the Im[y,] attains a value of
3.38 x 1077,

spontaneous decay rate of the level |e) (the A-coefficient) A = 6.2 x 107, s~'2, the
wavelength for the ground to excited level transition A = 5890 A3, density of atoms
in the medium N = 2.2 x 10! atoms cm™3. We have assumed a Zeeman splitting of
B = 10T for the present case, which corresponds to a magnetic field of amplitude
~ 70 G (see Appendix F), For ?*Na, T can be calculated to be 6y, where v = 4/12.
Because the transition between the ground levels are not dipole-allowed, there
is no spontaneous decay between them. Further, we have assumed that there

is no collisional relaxation and Dopler-broadening between the levels such that
g =T13="T9 =0.

2This is the decay rate from the level 2P, , to the ground level 2S, ;,. The treatment of the decay
rate requires caution if these levels get resolved as in our case. Here A = )", ;. to take into account
all the dacays from the upper level.

5The corresponding angular frequency is 2zx 5.1 x10'* Hz, whereas, the detuning we consider

in this kind of problem becomes of the order of 10° Hz, which is much less than the transition
frequency.
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2.3.2 Explanation

Now onwards in this chapter, we assume that the electric field amplitude to have
certain frequency profile. This pulse has certain central frequency, same as w
we have introduced in (2.1) and the amplitude of the pulse at this frequency is
maximum.

From Fig. 2.1, it is clear that upon application of the control field, either com-
ponent sees a A configuration for (2¢;, 2G) field combination. Thus they experience
EIT at respective resonances, i.e., at the detunings § = A (for ¢_ component) and
d = A — 2B (for o, component).

The lower tick-labels in the z-axis in Fig. 2.2 shows that when § = A, i.e.,
when the central frequency of the pulse is near-resonance with the |e) < |1) tran-

sition, the ¢_ component shows a normal dispersive nature, which corresponds

to a slow group velocity v, ; whereas the dispersion of the o, component shows
a flatter behavior in frequency domain, which means that this component will
propagate with a group velocity not too different from its velocity ¢ in vacuum.
Note that because the o, component is far detuned, its absorption through the
medium is small (Im[y,(§ = A)] ~ 3.38 x 1077 for the chosen parameters). The
medium will appear transparent to the o_ component also, because this satisfies
the condition of EIT in the A-type sector comprising of the levels |e), |1) and |2)
of the configuration in Fig. 2.1. A similar situation prevails when § = A — 2B,
i.e., when the input pulse has a central frequency which is near-resonance with
the |e) + |3) transition [upper tick-labels in z-axis; Fig. 2.2]. In that case, the o_
component would propagate faster than the other [s; component will satisfy the
condition of EIT with the pump in the |e} <+ |2) transition and thereby experiences
slow group velocities]. However both the components still propagate with negligi-
ble absorptions. In either case, because of the difference in group velocities inside
the medium, the two circularly polarized components will come out of the medium
at different times, without being absorbed significantly. Thus, the medium sep-
arates the two polarization components of the input pulse temporally. We have
shown the response of the medium for the off-resonant control field in the Fig. 2.3
under the EIT condition § = A. For this condition n; attains a value of 3.92 x 10°,
whereas n; depends on the value of A. But still n;' remains much less than n .
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Figure 2.3: This figure shows the variation of »} with the pump detuning A/T

at the EIT window § = A of ¢_ component. The parameters used here are N =
2.2 x 10'" atoms cm™3, A = 5890 A, and T' = 3.1 x 107 s~'. All the other parameters
are the same as in the Fig. 2.2. Here n; remains constant at a value ~ 3.92 x 10°.

Thus the group velocities have significant difference in order of magnitude.
Further, we have compared the time-difference between the pulse components
at the end point of the medium of length / = 1 cm. In Fig. 2.4, we have plot-
ted the variation of temporal separation I'(t; — ¢_) between the two polarization-
components of the pulse with the probe-detuning §/I'. Here ty = [ /vgi are the
times taken by the ¢4 components to travel through the medium. We assumed
that the peak of the pulse enters into the medium at time ¢ = 0 and the pump is in
resonance (i.e., A = 0). The maximum time separation between two components
is found to be about —130 ps. This occurs at § = 0, i.e., when the pulse is in
resonance in its central frequency with the |e) < |1) transition as well as with the
pump. The negative sign appearing here refers to the fact that the o, component
takes less time than the ¢_ component, as expected. Clearly we can reverse the

role of o, and o_ by working at § = A — 2B.
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Figure 2.4: The variations of temporal separation between the two pulses with the
probe detuning §/I' are shown here. The parameters used here are / = 1 cm and
A = 0. All the other parameters are the same as in the Fig. 2.3. Note that the o,
component moves faster inside the medium than the ¢_ component around the
EIT window ¢ = A.

2.3.3 Verification

We next confirm these results by studying the propagation of a Gaussian pulse

through the medium [see Fig. 2.5(a)]. We choose its normalized envelop as follows:

1
o\

where, o gives the width of the pulse in frequency domain. To avoid unwanted

Ew)=©& exp [-w?/a?;  E(t) = Eyexp (—a*t?/4). (2.15)

absorption of the frequency components of the pulse, which are off-resonant, one
has to choose a narrow-band pulse (small o), so that it remains well within the
EIT window. For our numerical calculation, we choose ¢ = 27 x 4.775 kHz which
is much less than width of the EIT window (cf. I' = 3.1 x 107 s™'). Next using Egs.
(2.6) and (2.14), we evaluate numerically the output pulse and show the results
in the Fig. 2.5(b). Clearly the pulse-components are well resolved in time-domain.
This means that the peak-to-peak separation between the pulses is much larger
than the temporal width of the pulses (Note that the width of any Gaussian pulse
can be calculated in terms of the separation of times at which the pulse amplitude
reduces to 1/e times its maximum value).

In Fig. 2.5(b), it is observed that the amplitude of the ¢, component is much
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reduced. It suffers from broadening also. This is due to substantial absorption
of this component through the medium, for our specific choice of number density
and central frequency of the pulse. If we would use less number density, the
absorption would be less accordingly. On the other hand, the c_ component also
suffers from the absorption, even though we have chosen sufficiently small width
of the pulse in frequency domain, so that the off-resonant components would not
get absorbed much. We can trace out the reason of this from the following. We
evaluate the envelop of this component at the end-point of the medium.

/ / 2
E_(l,t) = SO%exp [—%2 (t— i) ]; (2.16)

Ug

o= 2 pe 21 [d—z{w[uzﬁ (w)]}]
V=T = 2c |do? = e

Detailed derivation of the above formula is given in the Appendix E. The inten-
sity of the o_ component thus gets reduced by Im(x) [see Appendix E]. From the
expression of k, it is clear that the second order derivative of the susceptibility
is the main contributing factor for this reduction. The reduction in amplitude as
seen in the Fig. 2.5(b) is in conformity with it as Im(x) is about 0.15 for the chosen
parameters. Despite absorption, the two components are still well separated in
time. The time separation between the two peaks in Fig. 2.5(b) is of the order of
4000 in units of 1/T", which is in agreement with the value given in the Fig. 2.4
which is based on the calculation of group velocities. The time separation can
in principle be made larger if we increase the density of the medium. However,
the latter option would make the absorption of o, quite large leading essentially
to an output pulse which is primarily ¢~ polarized, i.e., the medium would act
like a polarizing medium. The results that are shown in the present chapter are
quite optimum in terms of the chosen parameters. Any major change in the pa-
rameters would degrade the time-separation so that one cannot resolve the pulse
components properly.

We have investigated the above effect in a different atomic system, where the
configuration of the kind as shown in Fig. 2.1 is available. For example, in "Li
[160] (nuclear spin I = 3/2), we identify the level |e¢) with the 2P, /2 F=3mp=0
state and the ground levels (|1),[2), ad |3)) with the 2S,,,, F = 2,mp = —1,0,+1



Coherent medium as a polarization splitter 45

1.0 0.5
b
0.8 r 04+ (b)
o 06 03+
=
=
£ 04t 0.2+
027 0.1r+r \
|
0.0 L \ \ 0.0 o L s
~5000.0 -2500.0 0.0 25600.0 5000.0 ~5000.0 0.0 5000.0 10000.0
M M

Figure 2.5: (a) This displays the input Gaussian pulse in time-domain with a
width of 27 x4.775 kHz; |£,.]? = |E_|? = |€|*/2. (b) The two orthogonal components of
the linearly polarized input probe pulse at the output of the medium are displayed
here. It also demonstrates the temporal separation between them for § = A.
The solid line shows the o, component and the dashed curve refers to the o_
component. The parameters used here are the same as in the Fig. 2.3 and 7 =
t—1/c.

state. In this configuration, the transition wavelength is A = 670.96 nm. Be-
cause the Landé g-factor of the ground hyperfine levels is positive, the sublevel
mp = —1 shifts upwards. The result for pulse separation in this case can thus
be obtained by changing B to —B. For this configuration, we have calculated the
time-separation between the two pulse components keeping the other parameters,
e.g., length of the medium /, atomic number density N etc. the same. We found
that the time-separation ¢, — t_ is +282.5us. This means that the ¢_ component

will come out earlier than the o, component for § = A.



Chapter 3

Laser induced magneto-chiral anisotropy

So far in the previous chapters, we have described the propagation of polarized
pulse through an atomic medium. In this chapter, we describe an interesting

situation considering the incident field to be unpolarized.

3.1 Magneto-chiral anisotropy

The situation we will be describing in this chapter has large resemblance with
the phenomena like natural optical activity [140] (discovered by Arago, 1811) and
the magneto-chiral anisotropy (MCA) which occur in many systems in nature
[162, 163, 164]. We already mentioned that the MOR refers to the difference in
refraction between the two circular components. On the other hand, the NOA
involves in a difference in absorption in ‘chiral’ media. However, the physical
origin of these two are completely different. The MOR is a consequence of breaking
of symmetry of the susceptibilities of the circular components by a magnetic field.
But the NOA is a result of nonlocal optical response in a media which lacks all
mirror symmetries.

There are several media in which under certain conditions both the time-
reversal and mirror symmetries break down. A newer effect called the MCA arises
in that case. Its existence can be appreciated by the following arguments. We
expand the dielectric tensor of a chiral media subjected to the magnetic field to

the first order in k& and B as [165]

ii(w, Ky B) = ;;(w) + aijikr + Biji(w) Bt + Yijtm (@) k1B (3.1

46
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where the tensors a and [ describe the NOA and the magneto-optical activity,
respectively. Here w is the optical frequency. For high symmetry media like gases,
liquids, cubic or uniaxial crystals with the optical axis parallel to the applied

magnetic field etc., the above can be simplified as
£+ (w, E, E) = 8((.4}) + OANOA(w)k + ﬁMOR(w)B + 'YMCAEB: , (3.2)

where ¢4 are the relative dielectric constants for the left and right circularly po-
larized components (¢4). The material parameters «, 3,y and ¢ are all generally
complex-valued. The magneto-chiral anisotropy is basically represented by the
fourth term in the above expression. It depends upon the relative orientation of kE
and B and hence the name. It is independent of the polarization also.

There have been a large number of theoretical and experimental investiga-
tion on MCA. After an implicit prediction of the MCA [166], the existence of the
MCA in crystals was reported by Portigal and Burstein [165] who showed that
two enantiomers (mirror images) of a chiral molecule can be discriminated as a
consequence of MCA. Later, for molecules several predictions of MCA in absorp-
tion [167] and in refraction [168] have been made. A detailed theory of MCA,
both dichroism (asymmetry in absorption) and birefringence (asymmetry in re-
fractive index) in molecules have been developed by Barron and Vrbancich [169].
The first experiment on magneto-chiral dichroism was reported by Rikken and
Raupach [163], whereas several papers have investigated magneto-chiral birefrin-
gence [170]. These later experiments were unsuccessful to measure the change in
refractive index upto the correct order, as theory predicts [167]. Vallet et al. [164]
have been able to correct this discrepancy and measured the change in refractive
index upto order of 10719, as predicted. The MCA has been observed in electri-
cal conductors also [171]. Further using the magneto-chiral effect, selectivity of
the either enantiomer has been demonstrated recently by Rikken and Raupach
[172]. In their experiment, chiral molecules interact with unpolarized light, and
they have investigated the effect of the magnetic field on this interaction. So far
we have given a brief relevant discussion of the effect of MCA.

In the present work, we describe how one can create asymmetry in the output

intensity upon reversal of magnetic field as an effect of coherent control. Thus this
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is quite similar in the effect (as the MCA in absorption refers to the sensitiveness
of the output intensity on the direction of the magnetic field), but very much
differs in the physical content. The experimental techniques to verify MCA are
quite cumbersome, as the effect itself is very small to measure. This smallness
arises from the fact the the MCA is a manifestation of the simultaneous effects
of magnetic dipole and electric quadrupole moments. On the other hand, the
present work should be understood as a electric dipole effect. As dipole effect is
very large in order of magnitude than the higher order multipole moments, the
asymmetry discussed in this work will be much larger and easily measurable.
Thus we can distinguish it from the MCA that arises from a term in polarization

which is a product of B and % [see Eq. 3.2].

3.1.1 Magnetic field reversal symmetry

Let us first describe what does it mean by magnetic field reversal symmetry. In
this chapter, we will be dealing with a monochromatic field which can be written

in the form
E=(Epép +E e et L cc., (3.3)

where ¢4 is given by (2.3) and

(& F gy _w
si_( NG ) k=2 (3.4)

Note that there are no Fourier components in the expression for E above, as we

are not considering any pulse here. The output field thus can be written as
Eo = t?()eikz_i“’t + c.c., (3.5)
where
&y = Epepe?™ixe g g 2mikix— (3.6)

For an unpolarized field, there is random phase difference between the amplitudes
&, and &,. Further the intensities (observable quantity) along any two orthogonal

directions (7, 7)) are equal. This means

(E:6) =0, (&8 =(EE) =7, 8.7
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I being the intensity of the incident field. From Eqgs. (3.4)-(3.7), we can evaluate
the output intensity I, = (|&|?):

Io

I
2
= g [exp{—4mkiIm(x4)} + exp{—4nkilm(x-)}]. (3.8)

2miklx 4+ |2 T |62‘rriklx_ |2

Note that the real part of y+ contributing to the phase of the field only does not
appear in the square moduli of the pulses. Clearly the output intensity is a sym-
metric function of y; and y_. The medium we are considering is an anisotropic
one, being subjected to a dc magnetic field. In most cases, one can find a situa-
tion, where the susceptibilities y+ obey the following relation when the direction

of the magnetic field is reversed

X+ (B) = xz(=B). (3.9)

Here — B stands for the amplitude for the reversed magnetic field. Then from (3.8),

we find that for an unpolarized input field
Iy(B) = Iy(—B). (3.10)

i.e., the output intensity remains the same irrespective of whether the magnetic
field is parallel or antiparallel to the direction of propagation of the electromag-
netic field as long as (3.9) is satisfied. This situation is referred to as magnetic
field reversal symmetry.

In this chapter we investigate how this symmetry can be broken down, i.e., we
are aiming at a situation when Iy(B) # Iy(—B). We are calling this effect as mag-
netic field reversal asymmetry (MFRA). Thus, the transmission of unpolarized light
through an otherwise isotropic medium can be made sensitive to the direction of
the magnetic field. In what follows would be perhaps the first demonstration of
the dependence of transmission of the unpolarized light on the direction of B in

an atomic vapor.
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3.2 Large magnetic field reversal asymmetry using EIT

3.2.1 A qualitative idea

Consider the following scenario. Let us consider first the case when B is ap-
plied parallel to the direction of propagation of the electromagnetic field. Suppose
the control field is applied such that the medium appears transparent to the o
component of the unpolarized light, i.e., Im[y4(B)] ~ 0 due to outset of EIT. For
magnetic field bigger than the typical linewidth (of the relevant atomic levels), the
component o_ is off-resonant. Thus ¢_ exhibits very little absorption Im(x_) =~ 0.
Under such conditions, Eq. (3.8) shows that the transmitted intensity ~ I. Now
if the direction of the magnetic field is reversed, then we easily find the situation
when o, component becomes off-resonant from the corresponding transition, i.e.,
Im(x4) ~ 0, whereas the c_ component can become resonant and suffers large
absorption, i.e., exhibits large Im(y_). Thus only the s, component survives the
medium. This gives rise to an intensity ~ I/2. Thus the transmittivity reduces
by a factor 1/2 upon reversal of the magnetic field. It is thus clear how coherent

fields can be used to create large MFRA.

3.2.2 Atomic configuration

We now demonstrate the feasibility of these ideas. We consider a configuration
[see Fig. 3.1] which can be found, for example, in hyperfine levels of ?3Na [173].
The level |g) (|3%S1/5; F = 1, mp = 0)) is coupled to the upper level |e_) (|3°Pyy; F =
2,mp = —1)) and |e;) (|32Py/y; F = 2, mp = +1)) by the o_ and ¢, components of
the probe field, respectively. Thus the system is equivalent to two coupled two-
level systems. The susceptibilities for the two components of the probe acting on
the transitions |g) <> |e_) and |g) <> |e4) can be easily calculated as
—i1yag
i(0—B)—Tc 4’

_ —1y0g _ _
X+(B) = i(5+B)—FE+g75_w Weyg(B=0), (3.11b)

X-(B)

(3.114a)

where, aq is given by N|d|2/hvy and is related to the absorption in the line-center

for B = 0. It should be borne in mind that B represents the Zeeman splitting of
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Figure 3.1: The ?’Na hyperfine level configuration is shown here. Here, B > 0
is the applied magnetic field strength, 2¢g, are the probe Rabi frequencies for the
o+ components, and 2 is the half of the pump Rabi frequency. The respective
detunings § = [w, — we,4(B = 0)] and A for the probe and pump fields are defined
with respect to the energy separation between the levels (|32P, 2 F = 2,mp =
0),lg)) and (|3*P;/y; F = 2, mp = 0), 325 /9; F = 2, mp = 0)), respectively. Changing
the direction of the magnetic field interchanges the positions of |e_) and e ).
Besides, the level | f) moves above the dashed line for |325, /s F=2,mp=0).

the level mr = —1. Thus B has the unit of frequency. Here 2+ is the spontaneous
decay rate from the level |e_), T._, = v is the decay rate of the off-diagonal density
matrix elements between the levels |ex) and |g), N is the atomic number density,
|d] is the dipole moment matrix element between the levels |e_) and |g), and § is
the detuning of the probe field from the |g) « [32P, /2; F = 2,mp = 0) transition.
We consider B to be a positive quantity. Thus a reversed magnetic field will be
represented by —B. The detuning § would always be defined with respect to the
levels in the absence of the magnetic field. It is interesting to note that though
X+(B) # x—(B), the relation (3.10) holds for all § [see Egs. (3.8) and (3.11)]. Also
note that the condition (3.9) holds in this case.Thus to breakdown the magnetic
field reversal symmetry, one has to breakdown the above symmetry (3.9) of the

susceptibilities y .
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Figure 3.2: The variation of imaginary parts of the susceptibilities y, (solid curve)
and y_ (dashed curve) in units of oy with probe detuning §/v are shown for the
X+ (B) [(@)] and x+(—B) [(b)]. The parameters used here are Q = 0.5y, B = 5y
corresponding to 105 G, I'e, ; = 4v/3, T4 =0, I'c_; = v, and A = 2B,

3.2.3 How one can obtain the asymmetry ?

To create a large asymmetry between the output intensities Io(B) and Iy(—B), we

now apply a 7-polarized coherent control field
E,(t) = e f c.c. (3.12)

on the transition |e}) < |f) (|3%S1/2; F = 2, mp = +1)). This modifies the suscepti-
bility y, of the o, component to
T (B) = —tyopli(6 — A+ 3B) — T'4,]
* [i(5+ B) _P€+g][i(5_A+3B) —ng]+|9|2’
A = wp—we,f(B=0). (3.13)

Here, A = 2B is the detuning of the pump field from the transition [3’P, /5; F =
2,mp = 0) ¢ |325)9; F = 2, mp = 0) transition [see Fig. 3.1], Q = cfe”fp/h is the
half of the pump Rabi frequency. The parameter I';, represents the collisional de-
phasing between the states |f) and |g). In what follows we use I';, = 0, i.e., we are
assuming no collisional relaxation in the medium. HereI'._, =y and I'., , = 4v/3,
taking all the spontaneous decays from the upper levels into consideration. The

level | f) is Zeeman separated from the level |325; /2; F = 2,mp = 0) by an amount
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Figure 3.3: This figure shows the variation of the transmittivity T'(B) (solid curve)
and T(-B) (dashed curve) with respect to probe field detuning é/v. The parame-
ters used here are N = 10'° atoms cm™3, A = 589 nm, and L = 1 cm. All the other
parameters used are the same as in Fig. 3.2.

of 3B, whereas the levels |e1) are separated by an amount FB. All these Zeeman
separations can be calculated by using the Landé g-factors of the corresponding
manifolds!. The susceptibility y_ remains the same as in (3.11a). Thus one could
create large asymmetry between the susceptibilities y4. Clearly the equality (3.9)
no longer holds. Note that in presence of the control field, the response of the sys-
tem is equivalent to a two-level system comprised of (|e_),|g)) [for c_ component]
and a A-system [for ¢, component] comprised of (|ei),|f),|g)) connected via the
common level |g).

It is clear that applying a coherent pump field, one can generate an EIT window
at 6 = —B (cf., A = 2B) for the ¢, component [Im (x+) = 0] in the relevant A-type
sector comprising of the levels |g), |e4), and | f). On the other hand, the absorption
peak of the o_ component occurs at § = B. Thus, this component suffers a little
absorption [Im (y_) ~ 0] at § = —B as the field is far detuned from the |e_) < |g)
transition as long as we choose the magnetic field much larger than the width of
the transition [see Fig. 3.2(a)]. Thus the unpolarized probe field travels through
the medium almost unattenuated. The transmittivity 7(B) = Iy(B)/I becomes

'For |e+) manifold gr = 1/6 and for the level |f), gr = —1/2; see Appendix F
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almost unity at § = —B as obvious from Eq. (3.8) [see Fig. 3.3].
If now the direction of the magnetic field is reversed (B — —B), the level |e)
exchange their positions, whereas the level | f) also shifts upwards above the cor-
responding mr = 0 level. The corresponding susceptibilities for ¢_ and o polar-
izations become
—iy0g
i(6+B)—T._,’

~ B —iyopli(6 — A —3B) — T'y,]
R (T ) VO {0 T2 R A R TR

(3.144a)

We continue to take the quantization axis as defined by the direction of the
propagation of the electromagnetic field. This means that we are keeping the
direction of the electric field % the same and only reversing the direction of the
magnetic field. Clearly now at § = —B, x_(—B) has absorption peak and o_
component of the probe will be absorbed. If we continue to use A = 2B, i.e., if
we keep the control laser frequency fixed while we change the direction of the
magnetic field, then y, (- B) exhibits resonances at § = 3B 4 v/4B2 + Q2, both of
which are far away from the point § = —B unless we choose Q? = 12B? (a case
we discuss later). Clearly, for § = —B and Q? # 12B?, the o, component of the
probe will suffer very little absorption. This is in contrast to the behavior of the o_
component which will be attenuated by the medium. Thus the output field would
essentially have the contribution from the ¢, component only. The transmittivity
T(—B) = Iy(—B)/I of the medium decreases to about 1/2. Thus by using EIT we
can produce the result T(B) ~ 2T (-B), i.e., we can alter the transmittivity of
the medium by just reversing direction of the magnetic field. The equality (3.10)
no longer is valid and the medium behaves like a magneto-chiral medium. This

becomes quite clear from the Fig. 3.3, at § = —B.

3.2.4 Magnetic switching of transmission of an atomic medium

A quite different result is obtained by choosing the parameter region differently.
We can find a condition when the absorption peak of both the s+ components
coincide with each other. For the case when the magnetic field is applied in the

opposite to the direction of propagation, the absorption peaks of the ¢ compo-
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Figure 3.4: (a)The transmittivities 7'(B) and T (- B) calculated at the value § = —B
is plotted here with respect to B/~, for 2 = 10y and A = 2B. The inset shows the
magnetic field dependence of the ratio T'(B)/T(—B) for the same parameters. All

the other parameters are the same as in Fig. 3.3. (b)The variation of the imaginary
parts of the susceptibilities x4 (—B) and x_(B) in units of g with the magnetic

field B/~ for 6 = —B. The inset shows the variation T'(—B) with B in the vicinity of
Q = 2v/3B. The parameters used here are the same as in Fig. 3.4(a).

nents occur at § = —B and § = 3B + v4B? + Q?, for a specific choice of pump
detuning A = 2B. Equating them, we find a relation

O =2V3B.

(3.15)
Clearly, for this value of pump Rabi frequency, the ¢_ component gets attenuated

due to resonance with the corresponding transition. Moreover, the ¢, component
also gets absorbed significantly. This is the case of antiparallel orientation of B
and k. Thus T(—B) becomes insignificant compared to T(B) as shown in Fig.
3.4(a). For larger values of B, the result is shown in the inset. Here T'(B)/T(—B)
is in the range 2 to 3. The case displayed in Fig. 3.4(a) is quite an unusual one.
Such a large dichroism (asymmetry in absorption of two polarization components)
of unpolarized light is the result of the application of a coherent control field
whose parameters are chosen suitably. Clearly, this effect can be viewed as a
process in which an optically transparent dilute atomic medium becomes opaque
(I'(—B) < T(B)) and vice versa by just reversing the magnetic field direction. We

may call it a magnetic switch of transmittivity of the unpolarized light.

The behavior shown in the Fig. 3.4(a) is easily understood from the magnitudes
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of the imaginary parts of the susceptibilities xy+(+B). In the parameter domain
under consideration, Im[y; (B)] = 0 due to EIT and Im[y_(—B)] = ag, because the
o_ component is on resonance for B antiparallel to the direction of propagation.
Further as shown in the Fig. 3.4(a), in the region around Q = 2v/3B, Im[y_(B)] <
Im[y, (—B)]. Thus both ¢_ and ¢, components are absorbed if B is antiparallel
to & (the absorption peaks of the components coincide with each other), making
the medium opaque as shown in the inset of Fig. 3.4(a). The opacity disappears if
direction of B is reversed (see Fig. 3.4(a), solid curve). For values of B away from
the equality Q = 2v/3B, Im[y, (—B)] decreases leading to a sharp increase in the

transmission 7'(—B).

3.2.5 Question of time-reversal symmetry

We already have mentioned that in the process of MCA, the time-reversal sym-
metry (TRS) breaks down. In fact, the magnetic field reversal interchanges the
positions of the Zeeman sublevels. This has close resemblance with the time-
reversal [174]. Thus it is sufficient to examine the symmetry properties of the
Hamiltonian under the transformation B — —B, in the present case. We note
from the Fig. 3.1 that the unperturbed Hamiltonian in the absence of the control
field is

Ho = (=6 — B)lesMes| + (=6 + B)le_)e_|. (3.16)

A transformation B — —B is like interchanging the states |e;) and |e_). Thus
any physical result which involves states |e1) symmetrically will not change by
changing the direction of B. This is the case with the transmission (3.8). Next

when we apply the control field 2, then the unperturbed Hamiltonian is

Hy = (=6-B)les)(es|+ (=5 + B)le_){e-|
+(=8+ A = 3B) [ F)(Fl + Qles) (£ + [ H)es]): (3.17)

The states |e;) and |f) are mixed by the control field with an amount of mixing
that is independent on the magnetic field. Clearly we have lost the symmetry
property of Hy, and hence of the transmission (3.8). It is easily seen that (3.16)

has the TRS (i.e., symmetry under the transformations B — —B and |e4+) — |ex)
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Figure 3.5: The “°Ca level configuration has been shown here. Here, 2¢. are the
probe Rabi frequencies for the o+ components, B is the magnetic field strength,
Q is the half of the pump Rabi frequency, § and A are the respective detuning for
the probe and the pump fields. These detunings are defined with respect to the
energy separation between the levels (|0}, |g)) and (|0), |f)), respectively.

as well) whereas (3.17) has no such symmetry. Thus in terms of the TRS, the
MCA and MFRA are analogous to each other.

3.3 Large magnetic field reversal asymmetry in ladder

system

It may be recalled that there are many different situations where pump cannot be
applied in a Lambda configuration. This, say, for example, is the case for 4°Ca.
The relevant level configuration is shown in Fig. 3.5 [144]. The level |g) (|4s%;j =
0,m; = 0)) is coupled to |ey) (|4s4p;j = 1,m; = +1)) and |e_) (|4sdp;j =1, m; = —1))
via the ¢, and ¢_ components of the input unpolarized probe field, respectively. In
this configuration, the susceptibilities of the two circularly polarized components
of the probe are given by
X+(B) = % )

_ T o _
x-(B) = i(5+B)—'y’5_w we_g(B=0), (3.18)
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Figure 3.6: The variation of imaginary parts of the susceptibilities y, (solid curve)
and y_ (dashed curve) in units of oy with respective to the probe detuning §/v
are shown here for yi(B) [(@)] and y+(—B) [(b)]. The parameters used here are
2 = 0.5y, B = 5v corresponding to 123 G, I' = 0.45y, and A = —B.

where, ag = N|d[?/hy, N is the number density of the medium, § is the detuning
of the probe field with respect to the |g) < |0) (|4s4p;j = 1, m; = 0)) transition,
|d] is the magnitude of the dipole moment matrix element between the levels |e, )
and |g), and 2~ is the decay rate from the levels |e;) and |e_) to the level |¢). Note
that y4 satisfy the condition (3.9). This clearly predicts perfect symmetry in the
transmittivity of the medium upon reversal of the direction of the magnetic field,
irrespective of 4.

We will now show how one can use a coherent control field to create asym-
metry between T'(B) and T(—B). We apply a coherent pump (3.12) to couple
le;) with a higher excited level |f) (]4p*;j = 0,m; = 0)) with Rabi frequency
20 = 2d, fes .fp /h. This helps to create a ladder configuration for the o, component
in the (|g), |e4), |f)), while the c_ component interacts with an effective two-level
configuration, at least upto the first order of the probe field. The susceptibility for
o4+ component now changes to [157]

—iyag[i(A+46) =T

R A I g e s T
A = wp—wys, (B=0), (3.19)

where, T' = 0.5(\c,4/Afe, )y = 0.457 is the spontaneous decay rate of the upper
level |f) [cf., Ae,y = 422.7 nm and Ay, = 551.3 nm], A,g is the wavelength of the
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Figure 3.7: The variation for the transmittivities T'(B) (solid curve) and 7' (—B)
(dashed curve) with the probe detuning §/v are shown in this figure. The parame-
ters used here are N = 10'° atoms cm™>, A.,, = 422.7 nm, L = 1 cm, and the other
parameters are the same as in Fig. 3.6.

transition between |a) and |3), A = —B is the detuning of the pump field from the
|f) < |0) transition [see Fig. 3.5]. Thus a transparency dip in the absorption profile
of the o, component is generated at 6 = B (which is a condition of two-photon
resonance from the level |g) to the level |f); § + A = 0). On the other hand, as the
o_ component remains far-detuned from the corresponding transition, as shown
in Fig. 3.6(a), its absorption is much less at § = B. Note that the transparency
for o, is not total which is in contrast to a Lambda system. We display in the
Fig. 3.7 the behavior of the transmittivity 7'(B) of the medium as a function of the
detuning. At § = B, the transmittivity becomes large.

Now upon reversal of the magnetic field direction, the o, component gets de-
tuned from corresponding transition and thereby suffers little absorption. But
the o_ component, being resonant with the corresponding transition, gets largely
attenuated inside the medium. This is clear from the Fig. 3.6(b). Thus the contri-
bution to the transmittivity T'(—B) comes primarily from the ¢, component. The
Fig. 3.7 exhibits the behavior of T'(—B) as the frequency of the probe is changed.
In the region of two-photon resonance (EIT), T'(B) is several times 7'(—B). Note

that in the present configuration also, one could create MFRA using the notion of



Laser induced magneto-chiral anisotropy 60

— 00
25 : : . et
——- Q=2
; ——- 05
FoN —-— Q=10
[ N
20+ ,’:‘_.,-—-—'—“‘_'—'—'—'—M—-u;:;—;
v
—~ A
() [y .
L i
=150\ e
s
= f
1.0

0%0 50 100 150 200 250 300
Bly

Figure 3.8: The variation of the ratio T'(B)/T(—B) calculated at § = B with the
magnetic field strengths B/~ are shown in this figure for different values of Q2. All

the parameters are the same as in Fig. 3.7.

coherent control.

In Fig. 3.8, we have shown how the ratio T(B)/T(—B) calculated at 6 = B is
modified with change in the magnitude of the applied magnetic field for different
control field Rabi frequencies. Note that for large B and (2, this ratio approaches

the value of two, though for intermediate values it can even exceed two.

3.4 Effect of Doppler broadening in MFRA

We next consider the effects of Doppler broadening on the MFRA in the level
configuration in Fig. 3.1. We would like to find parameter regions where 7'(B) and
T(—B) could differ significantly.

Maxwell-Boltzmann velocity distribution function is based on the assumption
that in any gaseous sample, the atoms are moving in random direction and with
random velocities. The velocity distribution function is Gaussian in nature, the
width of which depends upon the temperature of the sample. In the present
context, in the presence of the moving atoms, the atom sees that the frequency of
the electric field is shifted by an amount k.7, where # is the velocity of the atoms

itself. If the atomic moves opposite to or along the direction of propagation of the
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interacting field, then the frequency shift of the field would be Fk.v,, assuming
that the field is propagating in the z-direction. Thus the detuning of the field
would be shifted accordingly. In the present case, the detuning of the pump
becomes A, = 2B + k,v,, where v, is the component of the atomic velocity in
the direction of the propagation of the electric fields, where &, is the wave vector
amplitude of the pump field. We assume that the pump field propagates in the
same direction &, as the probe field wave vector £ and we further take & and k, to
be approximately equal.

We calculate the Doppler-averaged susceptibilities through the following rela-

tion:
(Xx(v2)) = / X+ (v:)op (v2)dvs, (3.20)
where,
1 —v2 /202
op(vy) = ———=e""/**D (3.21)
QFM%

is the Maxwell-Boltzmann velocity distribution at a temperature 7 with the width
wp = \/m , Kpg is the Boltzmann constant, and M is the mass of an atom.
The integration (3.20) results in a complex error function [175] (see Appendix
G). The result could be interesting in mathematical term. However, to have a
physical understanding, we integrate (3.20) by approximating op by a Lorentzian
or(v.) of the width @p = 2wp In2. This method has been developed by Kash et al.
[103], who have used the notion that the area under a normalized Gaussian and
a normalized Lorentzian is the same, if the width is chosen appropriately. This
Lorentzian is given by
Op/w
24’

or(v.) = (3.22)

Using this profile in lieu of op, the integration above is analytically possible with-
out any mathematical jargon. One has to use the method of residues. Noting that
the profile o7, has two complex poles at v, = +iwp, and writing the expressions for

X+ (4,) in form of

— k
e = —200/k (3.23)
Uy — U4
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Figure 3.9: The variation in T'(B)/T(—B) with the probe detuning §/v in a 6 cm
Doppler-broadened medium. All the other parameters are the same as in Fig.
3.4(a). Note that T'(B) is the transmission for B parallel to %.

we are led to the following results:

. _ Yo
(Xx(v:2)) = T(ox — o)’ (3.24)

where,

Hli(0+ B) =Tey o] P + 97}

T kP
P = i(6—A+3B)-Ty, (3.25)
i[i(6 — B) — Tu_,]

k

Here we have used the expressions (3.11a) and (3.13) for x4 (v,). These suscepti-
bilities (3.24) are used to calculate the transmittivities at the point § = —B. In Fig.
3.9 we have shown the corresponding variation of T'(B) and T'(—B) with §/v. We
find that the ratio T(B)/T(—B) increases to a value ~ 1.6, for a 6 cm medium. It
is clear that, if we choose a longer medium in this case, the MFRA will be further
enhanced. We have actually also carried out numerically the integration (3.20).

For the parameters of the Fig. 3.9, the results do not change substantially.



Chapter 4

Magneto-optical rotation of spectrally
impure fields and its nonlinear

dependence on optical density

We have already mentioned that the MOR angle is proportional to the number
density of the medium. Thus, increasing the number density of the medium helps
in achieving large rotation angles. Recently, very large rotation angles (~ 150°) in
a cold sample have been reported [154]. In this experiment, optical densities of
the order of 10 — 20 were achieved. This experiment also reported a very inter-
esting result, viz., the departure from the linear dependence of the rotation angle
on the optical density. This departure has been ascribed to the nonmonochro-
matic nature of the input laser. The standard MOR theory does not explain this
nonlinear behavior. In this chapter, we provide a complete theory of this in a
quantitative manner. We will discuss the dependence of the rotation angle on the
spectral profile of the input laser. We present a first principle calculation of this

dependence.

4.1 Magneto-optical rotation

4.1.1 Basic equations

We consider a plane polarized probe field given by the Eq. (3.3), propagating

through an anisotropic medium in the z-direction. Thus the polarization induced

63
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in the atomic medium due to this probe field is given by
P =[Eixiéy + E_x_é_]e®* ™ L cc. . (4.1)

Here y+ are the susceptibilities of the two circular components o, (= é+). Clearly,
when the incident probe passes through the medium, different polarization com-
ponents evolve according to its own susceptibility. The dynamics is governed by
the equation (1.4). We assume that £, and yi are independent of time. Thus
substituting (4.1) in (1.4) and invoking the SVEA [see Eq. (1.12)] we obtain the

following first order differential equations:

% = 27Ti]€X+5+,

0z

% = 2miky_E_ . 4.2)
0z

Here we have assumed that the medium is so dilute that |[47x4+| < 1. In general
x+ are the functions of £.. However we consider a weak probe, thus y; are

independent of £1. The solutions of the above equations can be easily written as
E+(l) = €4(0) exp[2miklx4] . 4.3)

Thus we get the output field (3.6), where [/ is the length of the medium along
z direction. For an z-polarized light, we can write £.(0) = £,/v/2. Thereby the

output field can be rewritten as

> & : .
g = [A 621rzklx+ + é_€2ﬂzklx_} ’
l VLt
— % {j {eQﬂiklx+ + eZTriklx_} + iy{elrriklx-}- _ e?friklx_}} ] (44)

If we assume that the absorption of the ¢, components to be small or equal, then

the ratio of the field-amplitudes in the polarization direction 7 and # is given by

% = tanf = tan [7kIRe(x- — x+)] - (4.5)

Thus the rotation of polarization of an z-polarized incident probe is given by the

angle

6 = rkiRe(x- — x+) - (4.6)
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This rotation is referred to as MOR, as we have mentioned in the Introduction.
Because the susceptibilities y+ are proportional to the number density N, thus

the MOR angle 6 in turn is proportional to the optical density o defined by

2
o= N (4.7)
o ’

where ) is the wavelength of the input field. Clearly, it is expected that an in-
crease in number density would lead to large rotation angle. However, because of
onset of absorption for large N, the standard theory of MOR that is developed for
a nonattenuating medium becomes invalid. In fact, the input field no longer re-
mains linearly polarized after passing through such an absorbing medium. Thus
the medium becomes both circularly birefringent (difference in dispersion) and
circularly dichroic (difference in absorption). The output field becomes elliptically
polarized under the action of such an medium. To treat this kind of situation, we

adopt the Stokes’ formalism.

4.1.2 Stokes formalism

To fully characterize the polarization state of the output field, one has to use
the Stokes parameters [176]. The four Stokes parameters for an electric field are

designated by S, (o € 0,1,2,3) and can be defined as follows:

So = Ij+1IL, (4.8a)
S = L) —1IL, (4.8b)
Sy = Iyso — I_450 (4.8¢)
Sz = I,, —I,_, (4.8d)

where, I, = |n.E;|? is the measured intensity along the polarization direction #.
Then the output polarization state can be characterized by the following three

quantities:

W
p = VOitoats (4.92)

So '
Sy
tan26 = 5 0gb<m), (4.9b)
1
tan 2¢ 53 (—m/4< ¢ < /4), (4.9¢)

SoP
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where, P is the degree of polarization, i.e., the ratio of the intensities of the
polarized component to the unpolarized one, 6 is the MOR angle of the input field
and is measured between the major axis of the ellipse and the z-axis, ¢ provides
the ellipticity of polarization through the relation e = tan¢. For a fully polarized
light P = 1 and for an unpolarized light P = 0.
From Eq. (3.5) one can express the output intensities along different polariza-

tion directions in the following way:

- I, .. .
I||(<-U) — |i51|2 — Z|€2mklx-|- T ekalx—|2 7 (4.10a)
- I, .. :
IL(w) = |3.8= Z|e2’”’f’><+ — e?mkix- 2 (4.10b)
Ftg 2|
I o|W = f,’
+450(w) Nl
Io ) . ) .
= §|(1 + 2)62“’le+ +(1F z)ezmkl"— |2 , (4.10c¢)
o I,
L,(w) = |&x.8)° = 5 €XP [—47kl.Im(x+)], (4.10d)

where, I, = |£|? is the input intensity of laser field.

4.1.3 Recent experiment

Labeyrie et al. performed an experiment on cold ®*Rb atoms which are subjected
to an external magnetic field (so as to make the system anisotropic). A weak laser
field with different Lorentzian line-widths have been sent through the medium
along the direction of the applied magnetic field. Next they investigated its out-
put intensity measured at different polarization directions by changing the optical
density a. They have reported very large MOR angle (~ 150°) in this experiment.
Optical density of the order of 10 — 20 has been achieved. The authors have shown
that the MOR angle depends nonlinearly on the optical density for larger densi-
ties. This departure has been ascribed to the the nonmonochromatic nature of
the input field. If one increases the line-width of the electric field, then this non-
linearity arises even for smaller values of a. Clearly, as the standard theory of
MOR does not explain this behavior, a more quantitative analysis is warranted.
Specifically, in this chapter, we show how the spectral impurity of the input field
affects the polarization of the output field.
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N— lg>

Figure 4.1: Level diagram for a three-level configuration. The excited levels |+)
(m. = £1) are Zeeman shifted from the level m. = 0 by an amount s. The detuning
4 is defined between the levels m. = 0 and m, = 0.

For simplicity, we assume that the line-shape of the input is Lorentzian in
nature:
Sw)= I,/ (4.11)
T+ (w—w)?

where, w; is the central frequency of the laser field and 2y, is the full width at
half maximum. Note that all the measured quantities defined by Eq. (4.10) are
functions of the frequency of the exciting field. If the exciting field is spectrally
impure, then the Stokes parameters (S,) are to be obtained by averaging over the

spectrum S(w) of the laser field. Thus, I's in Eq. (4.8) are to be obtained from
() = Ii / ol (0)S(©) . (4.12)
We next use these equations to uncover the effect of optical density and non-

monochromaticity of the exciting field on MOR angle.

4.2 A simplified atomic model

We first consider a three-level atom in V' configuration (see Fig. 4.1). The levels
|£) (Je = 1,m. = £1) are coupled to the ground state |g) (J, = 0,m, = 0) by
two circular components o4 of Z-polarized electric field [Eq. (3.3)]. The excited
level degeneracy has been removed by an uniform magnetic field B applied in the
direction of propagation of the applied electric field. The levels |e+) are shifted
about line-center by an amount of Fu3B/h (up=Bohr magneton). The field E is
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Figure 4.2: Variation of MOR angle # with optical density « for s = 2y and different
laser line-widths v, = 0.1v (solid line), v. = 0.5y (dashed line), v. = v (dot-dashed
line), and v, = 2v (long-dashed line). We have chosen A = 422.67 nm corresponding
to °°Ca 1S, «+ 1P; transitions. Note the nonlinear dependence of # on « for larger

Ye-

detuned from the line center by an amount § = w;,(B = 0) — w, w44(B = 0) being
the atomic transition frequency in absence of the magnetic field.

The susceptibilities of the o+ components inside the medium can be written as

_ Nd? iy

AW =0 4.13
X+ Ty p+; P+ TEi0 T ( )

where, 2y = 4|d|>w3/3h¢? is the spontaneous decay rate of the levels |+), |d| is the
magnitude of the dipole moment vector for the transitions |+) « |g), N is the
atomic number density, and s = pgB/h is the Zeeman splitting of the excited

levels. Using these y., we can now write the field amplitude from Eq. (3.5) as
&= e Epezrt e E 2| | (4.14)

where, a = 47kIN|d[?/hy = (3A2/27) Nl is the optical density of the medium.

4.2.1 Numerical results

In what follows, we will assume that w; = wy,(B = 0), i.e., the applied field is in
resonance with the m. = 0 level at its central frequency. We calculate (I;;)’s using
Egs. (4.11) and (4.12) numerically for different values of 7. and s. We show the
results in Fig. 4.2. We clearly see that for 7. < s, the rotation angle 4 is linearly
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Figure 4.3: Variation of the output intensities I, 45- (solid line), I (dashed line),
I, (long-dashed line), and I,, (dot-dashed line) multiplied by the Lorentzian line-
shape profile S(w) for (a) v. = 0.5y and (b) 7. = 2v. We have chosen a = 10, s = 2~,
and the input intensity to be normalized. Note that for lager ~., the contribution
of the off-resonant components to the output become larger.
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Figure 4.4: Variation of the output intensities (with the same legends) for s = 8y
and v, = 2v. The other parameters are the same as in Fig. 4.3.
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proportional to «. But for 7. 2 s, this variation deviates from linearity in large o
domain. This behavior can be explained in terms of the off-resonant components

which dominate for the large 7. and large «.

4.2.2 Analysis

In order to understand the numerical results, we first consider the limit of small
optical densities whence

1
S = =]

5 2+ aRe{i(p+ +p-)}] , (4.15a)

Sy = %Re(p_— e . (4.15b)

Thus, the departure of the rotation angle from the linearity has to do with the
averages of the exponentials appearing in I's [Eq. (4.10)]. If one were to make the

approximation of replacing all x’s in Eq. (4.10) by their averages, i.e.,
(exp [2miklx+]) = exp[2mikl(x+)], (4.16)
then the Stokes parameters (S;) and (S;) would be

(S1) = =3I+ co [%(<pl+>_<p1—>)], (4.17a)

(S5) = —e 53U+ gin [%(<p1+>_<p1—>)], (4.17b)

where, (p+) = (pT) +i(pf) and thus

0) = 00~ D) = 5 Tt

(4.18)
Clearly, the absorption does not contribute to the rotation angle. We have again
obtained the linear dependence of § on «, provided the approximation (4.16) is
valid. Thus, any departure in linearity of # with respect to a indicates the break-
down the approximation (4.16). The numerical results of Fig. 4.2 clearly show
the breakdown of the mean field description obtained by replacing x’s by their
average values.

From the Eq. (4.18), we readily see that in the low a-domain, by increasing s

(or ~.) while keeping . (or s) constant, the slope of § with « decreases. This is

clear from the numerical results of Fig. 4.2. Also, for larger values of 7., variation
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Figure 4.5: Level diagram for the F, = 4 <+ F, = 3 transition. The numbers at the
top of the figure indicate the magnetic quantum numbers of the sublevels. The
relevant Clebsch-Gordan coefficients for the corresponding transitions are given
by a1 = —1/V42,ay = —/5/3V14,a3 = —1/2v21,a4 = —/5/2V21,a5 = —1/6V/7, a6 =
~1/2v/3,a7 = —1/3,a8 = —1/6,a9 = —1/v/21,a10 = —/15/6vV/7,a11 = 2/3/7. The

Zeeman splitting of the various sublevels are not shown.

of § with « is deviated from linearity. We should emphasize that linear variation
of § with « is attributed to the monochromatic laser field. If the electric field is
spectrally impure, then the off-resonant components also contribute to 4, through
the relations (4.8), (4.9), and (4.12). Thus, 6§ starts varying with « linearly in low
o limit, then saturates, and finally decreases to zero to change the direction of
rotation, for larger 7. (see Fig. 4.2). But for smaller ~., the linear behavior is
retained even for larger «, as the off-resonant components are not dominant in
this parameter zone. We show in Fig. 4.3 how the intensities of the off-resonant
components vary with ¢ for different .. Clearly, for larger 7., the intensities at
the output become larger for the frequencies § # 0, which means the off-resonant
components contribute to the MOR angle # to a large extent through the relations
(4.8), (4.8b), (4.8¢), and (4.9b). However as shown in the Fig. 4.4, for a given ~.,
if one increases the magnetic field s, then the contribution of the on-resonant
components prevails and thus the linearity between # and « would retain.

Next we consider the variation of the degree of polarization P and the ellipticity
e with . We have noticed that P decreases from unity for increasing «. This
means that the output field no longer remains fully polarized, rather it becomes
partially polarized.

Again, from the Eqgs. (4.8d), (4.10d), and (4.13), it is clear that an integration

over the entire range of detuning § would yield (Ss) = 0, as the integrand is an odd
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Figure 4.6: Variation of magneto-optical rotation angle # with o« for magnetic field
(a) 2 Gauss (= 27 x 2.8 MHz) and (b) 8 Gauss (= 27 x 11.2 MHz) for laser line-widths
2v. = 27 x 0.5 MHz (solid line), 27, = 27 x 1 MHz (dashed line), 2y, = 27 x 3 MHz
(dot-dashed line), and 2v. = 27 x 5 MHz (long-dashed line). The dot-dashed curves
correspond to the width of the laser used in the experiment [154]. Note that the
line-width of the D, line is 27 x 5.88 MHz.

function of w. Thus the ellipticity e becomes zero. This means that the polarized
part of the output field remains linear.

From the above discussion, it is clear that the output field gets rotated as
a manifestation of cumulative effect of optical density, magnetic field, and laser

line-width. Also it becomes partially polarized with no ellipticity.

4.3 Quantitative modeling of experimental results of

Labeyrie et al. for MOR in spectrally impure fields

We now extend our understanding of resonant MOR as described in the previous
section to explain the experimental data of Labeyrie et al.. In their experiment,
a cold atomic cloud of Rb® is subjected to a static magnetic field. The laser
probe beam passing through the medium in the direction of the magnetic field
is tuned to the D, line of the atoms (2S,/, ++ 2P3/; A=780.2 nm). They have
measured the intensities of outputs with different polarizations, as function of
laser detuning and also at different values of optical density. They have found
a nonlinear dependence of the MOR angle ¢ on optical density. They found for
larger magnetic field that the linear behavior persists.

To explain these observations in light of our previous discussions, we consider
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Figure 4.7: Variation of degree of polarization P with « is shown for magnetic field
(a) 2 Gauss and (b) 8 Gauss, for laser line-widths 2+, = 27 x 0.5 MHz (solid line),
2v. = 27 x 1 MHz (dashed line), 2v. = 27 x 3 MHz (dot-dashed line), and 2y, =27 x 5
MHz (long-dashed line). The dot-dashed curves correspond to the width of the
laser used in the experiment [154].

the relevant energy levels of Rb® as used in the experiment (see Fig. 4.5). The
#-polarized electric field (3.3) is applied to cold Rb® medium near resonantly. The
medium is subjected to uniform magnetic field B applied in the z-direction, i.e.,

along the direction of propagation of (3.3).

4.3.1 Calculation of y. and optical density

The circular components o4 of the input electric field (3.3) interact with the tran-
sitions m. < m,; = m. — 1 and m. < my; = m. + 1, respectively. We assume that
the electric field is weak enough so that it is sufficient to use the linear response
of the system to the laser field. We neglect the ground-state coherences. As we
are considering the cold atoms, we neglect the collisional relaxations and Doppler
broadening of the sublevels. We also assume that the atomic population is equally
distributed over all the ground sublevels.

Using all these assumptions, we can write the susceptibilities y+ for the o
components as the sum of the susceptibilities of all the relevant m. <> m, transi-

tions in the following way:

2

1 N|dp, m, -6+ i
xe= ) - :

_ | , (4.19)
7 h Pmmmg + l((s + Sme,mg)

Me,My

where, s,,.m, = (94m4— geme)s is the relative amount of Zeeman shift of the excited
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sublevel m. with respect to the Zeeman shifted ground sublevel m,, g, = 1/3 and
ge = 1/2 are the Landé-g factors of the ground and excited levels, respectively. The
factor 1/7 comes into the expression (4.19) as we have assumed equal population
distribution in all the (2F, + 1) = 7 ground sublevels. The coherence relaxation

rate I'y,, », in Eq. (4.19) is given by
1
Fme,mg = 5 zk:PYk,me 3 (420]

where, v; ; is the spontaneous relaxation rate from the sublevel j to i. Here we

have assumed that there is no spontaneous relaxation from the ground sublevels.

The terms afme’m ,and T, . ’s can be calculated from the relevant Clebsch-Gordan

coefficients (see Fig. 4.5) [177]. The Einstein’s A coefficient for the D, line is known

to be

4l [(J=3 DT =HP 40 (3341 D4.33)P
3hc3 4 3hc3 9 '

A (4.21)

where, ( || D || ) represents the reduced matrix element of the dipole moment
vector dﬁme’mg (see Appendix E). The three symbols 3/2, 5/2, and 4 correspond to
J, I, and F values respectively of the upper levels. Thus all I',,, ,,’s in (4.19) are
found to be equal to (4w?/3hc%)[(3,3,4|| D | 1,3,3)|?/2.

We calculate the optical density « of the medium, when the input light field is
resonant with m, = 0 <> m, = 0 transition (§ = 0) in the absence of any magnetic
field (B = 0). For this, we first obtain the total output intensity from Eq. (4.8a) av-
eraged by a very narrow laser line-shape, i.e., in the limit v, — 0. Using Eq. (4.19),

we thus find that the transmittivity of the medium becomes

1 1
T = I—<50>%—>0 = I—So|5:0 = exp(—a) , (4.22)

where, o = (3/7).(3\2/27)N1. It should be borne in mind that it is different from
the definition in Sec. 4.2.
4.3.2 Discussions

Using the above expressions of y+ [Eq. (4.19)] and Eq. (4.12), we calculate the av-

eraged intensities (I;;) in different polarization directions. The Stokes parameters
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S«, degree of polarization P, and the MOR angle # are calculated using the rela-
tions (4.9). In Fig. 4.6, we show how 6 varies with the optical density « for different
values of 7. and B. Clearly, for v. < s, the rotation angle 6 varies linearly with a.
But for larger 7. (2 s), the variation of § with o deviates from linearity in large o.
This is because the off-resonant components contribute to the output intensity.
Also, note that for a given value of ~,, if s is increased, the linearity is maintained
even in the large a-domain. This is because for larger s, the off-resonant com-
ponents do not contribute much to the output intensity. The resonant frequency
component is always dominant in the optical density range considered. We also
note that, as . increases, the linear slope of § with « decreases in the small «
domain.

In Fig. 4.7, we show the variation of degree of polarization P with « for various
values of the B and v.. These results reveal that with increase in «, the degree of
polarization deviates from unity, i.e., the output electric field not only rotates in
polarization, but also it becomes partially polarized. However, the ellipticity of the

output field still remains zero as we have argued in Sec. 4.2.



Chapter 5

Electromagnetically induced
transparency, gain without inversion, and
magneto-optical rotation in

J=1/2 + J =1/2 transition

We have discussed in Chapter 1 that EIT occurs in a driven atom in A configura-
tion. This refers to probe-transparency associated with zero probe coherence. We
show that an extra control field in such a driven medium (so that the configuration
becomes a four-level one) can lead to transparency associated with non-zero probe
coherence and thereby decreases the refractive index of the medium to zero, and
even negative. Also, in a driven A system, there arises Autler-Townes doublet [47]
in the absorption spectrum. An extra control field can make such a system a gain
medium, and thus can lead to lasing without inversion in bare basis. Moreover,

such a medium enhances the MOR angle, when subjected to the control field.

5.1 Model configuration

We consider the .J = 1/2 +» J = 1/2 transition in alkali atoms, as shown in Fig. 5.1.
This kind of configuration has been used to show gain arising due to cross-talk
of the pump and probe fields [178]. We apply a dc magnetic field to remove
the degeneracy of the excited and the ground states. In general, the Zeeman

separation 2B of the excited magnetic sublevels m. = +1/2(= |es)) is not the same

76
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m=+1/2 m=-1/2

la >

Figure 5.1: Relevant configuration of a four-level atom. The degeneracy of the
excited sublevels |e+) and the ground sublevels |¢g1) have been removed by apply-
ing a dc magnetic field, so as to make the system anisotropic. The corresponding
Zeeman separations are 2B and 2B’, respectively. The o, components (with Rabi
frequencies 2¢4) of the z-polarized input field interact with the |e) ¢ |g4) tran-
sitions. 2G; and 2G; are the pump Rabi frequencies. Here, w; and w; are the
angular frequencies of the probe and pump fields, respectively, § and A are the
pump and probe detunings as shown in the figure.

as the Zeeman separation 2B’ of the ground manifolds (= |g)), due to difference
in Landé g-factors in these manifolds. For example in 3K atom B’ = 3B, where
B = upgeM/h (pp is the Bohr magneton), g. = 2/3 and g, = 2 are the Landé
g-factors of the excited and the ground sublevels.

We allow an i polarized weak field E, = #&,¢'**~"“1* 4-c.c. to probe the properties
of the atom, where k& = w;/c is the wave number of the field and w; is the corre-
sponding angular frequency. The o4+ component of this probe field interacts with

lex) ¢ |g+) transitions. The respective Rabi frequencies are 2g. = 2(dc; g, -2E,)/h-

Next we apply a wr-polarized strong field

E . =Ee ™!t c.c., (5.1)
which interacts with the |ey) < |¢g1+) transitions. The corresponding Rabi frequen-
cies are 2G5 = 2d.,,,.£./h. Here d;; is the electric dipole moment between the

levels |¢) and |j).
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The interaction Hamiltonian of this system in dipole approximation is

H = h{(we_g_le-){e—|+weyg_les)es| +wopg_|9+)(g+])
~(de_g,le-)g4| + deyg_lep){g-| + huc.) (86,67 4 c.C0)
~(deygylex)(gsl + deg_le Y|+ hoc). (€™ £ cc)| . (5.2)

Here the zero of energy is defined at the level |¢_) and Aw,g is the energy difference
between the levels |a) and |3).
We consider the natural decay terms in our analysis and hence invoke the den-

sity matrix formalism to find the following equations for different density matrix

elements:
'56+g— = - [’(A +2B) + 1ﬂ6+9—] Perg— +1 [g—e_iwwt(ﬁg—g— — Peyey)
+Glﬁg+g— B G2/3e+e_]
Pergr = —[i(A=2B)+Te g ] pe gy +i [04¢ " (g0, — Pec)
+G2:59—g+ - Glﬁe_e+]
'56+9+ = - [’A + I16+9+] Pergy T1 [g—e_iwwtﬁg—ﬂ - 9+‘3_w12tﬁe+e—
+G1(ﬁg+g+ o 156+6+)]
feg. = —[iI(A=2B+2B")+Te g ] peg +ilgse ™2 py, g —g_e ™2 p .,
+G2(ﬁg—g— - ﬁe_e—)]
15g+g— = —(2iB"+Tgyq )Pgiq- + [gj—eiwwtﬁmg— - g—e_iwlztﬁg+6+ +Glpesg. — Gopgpe_]
peey = (2B =Te c)pe_cy +1 (917 fgrey — g7 by + Gapg_c, — Gipe_g,]
Pygg. = Vg—e_Pe—e + Vg_esPeser +1 195 pe g+ Gipe_g. —h.c]
fereo = ~(Ygoeo T Vgpe)Pe—er +ilgre 2 py o+ Gopy_e_ —h.c]
Porer = —(lgoes +Vgses)Peses +1i (971250 o, + Gipgye, —hucl] (5.3)

where, A = w,, 4, — w; is the pump detuning from the transition |e;) < [g4),
wig = w1 —ws = A — § + 2B’ is the probe-pump detuning, § is the probe detuning,
Yap is the spontaneous emission rate from the level |3) to |a), I'y3 is the dephasing
rate of the coherence between the levels |a) and |3). where v.,1 accounts for the
collisional broadening.

To obtain the above equations, we applied the RWA to neglect the highly oscil-

lating terms. In the original frame of reference, the matrix elements are given by
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Figure 5.2: The variation of (a) real and (b) imaginary parts of y_ in units of
N |d; +g_|2 /h~y with probe detuning ¢ for G = 0 (solid line), G = 0.5y (dashed line),
and G = 2.5v (dot-dashed line). Variation of the (c) real and (d) imaginary parts of
the same with ¢ for G; = 0.5y and G, = 0 have been shown also. The parameters
chosen here are A = B — B', B = 2y, B’ = 3B, Ygiey = 27, Ygies = 47, and
Yeoll = 0. The parameter ~v is defined as v = A/12, taking all the decays from |e)
to |g+) levels into account, A = 27 x 6.079 MHz being the corresponding Einstein’s
A-coefficient in *°K.
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—iwg i

, and Pe_g_ = ﬁe_g_e s

e—iwgt — A e—iwgt —iwgt

Pepg— = Peyg- » Pe_gy = Pe_gy s Peygy = Peygr€
whereas the other elements remain unchanged.
The steady state solutions of the above equations (5.3) can be found by ex-

panding the density matrix elements in terms of the harmonics of w3 as

Pap = ,6552+g emionty )+g*e“"12tp£31)

+gpe 2t ( )+g* ’“’12tﬁa(g+l). (5.4)

Thus, we obtain a set of equations of ﬁgg which can be solved algebraically. We

found the following zeroth order population terms:

B T
Py = o (5.5a)
5 1
Pgo_)g_ = 6(79_6_ + Ygye— + $)7 (55b]
B 1 (=z
Pgi)ng = é {_(79—6+ + 79+6+) + :C} ) (5.5¢)
Yy
where
_ 2[Ga"Te_y_ y— 2|G1]°Te, g,
a2 e 7
X
Q= ;(')/g_e.; + 7g+e+) + (79_6_ + 7g+6—) + 4z,
c=—iA+Tc,g4,, (5.6)
d=—i(A—-2B+2B)+T._, .
Here, we have assumed v,,._ = 74_, ,» without loss of generalization.
Therefore, the relevant zeroth order coherence terms turn out to be
. 2G*
Pier = =gy Cmes T lgses). 6.7)
. 1G5
Pgo_)e_ = _w(%q_e_ + 7g+6—)' (5.8)
Thus the probe coherence terms for ¢z components can be written as
-y 1 2 2 ~(0) 2 2 5(0)
P = 3 (GG — 16 +arpa)ilf), — Ga(GiP ~ [Gal* = bipy)if.
Hilagbyps + G112y +1GalPar) (5%, - A9.,)] | (5.9)
pe(+gl_3 = - [G1(|G1|2 — |G +b-q- )., — Ga(|G1I? — |Gal?* — a—q_)pY.

tilabog + |G Pac +1Gab0) (50, — A% )] (5.10)

+9+
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Figure 5.3: Variation of real part of y_ in unit of N|d, +g_|*/ By with respect to (a) A
and (b) G at the EIT point § = A = B — B’. The parameter chosen in (a) is G = 0.5y
and in (b) is A = B — B’. The other parameters are the same as in Fig. 5.2.

where,
My = qp(agpbypy +1Gi[°by + |Gofay)
+(|G1]? = |G2?)? + |Gl Pagps + |Gal*bips,
My = p_(ab_g- +|Gi|*a_ +|Gofb-)
+(IG1|* = |Gal*)? + |G1*b_q- + |G2Pa_q_
and
a4 = —iwlg + 2:B + Fe_e+7
bi = —iwlg + 2’LB/ + Fg+g_a
P+ = _iw12 + Z(A - 2B) + Fe_g+7
q+ = —iwlz :*:Z(A—}—QB/) +Pe+g_-

5.2 Absorption and dispersion profile of v, components

We first analyze the configuration in Fig. 5.1. It is clear from this figure that if

both G; and G, are made zero, the configuration for o, components become like
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a two-level system. The

) = i |
Pe_gy 2[i(6 — 2B — 2B') +F6_g+] y» Peyg_ 2(i5+re+g_) . (5.11)

The absorption profile of the ¢_ components has a peak at its resonance. We
show the corresponding absorption and dispersion profiles in Figs. 5.2(a) and (b).
Now let us introduce the control fields. Note that if G; = 0, then the system
would attain the configuration of a A system for the ¢_ component with the non-
zero pump G;. Then the corresponding coherence of the ¢_ component becomes

P H{i(0—A)+ Ty 4}
I {i(0 = A) 4Ty 30+ Teyg )+ G112

(5.12)

However, because we apply a wm-polarized pump, it must interact with both the
le+) ¢ |g+) transitions. Thus G; must be non-zero and we assume that G, = G; =
G. Thus all the new features in the susceptibility of o_, we describe in the rest
of this chapter, can be interpreted as the effect of an extra control field (namely,
G3) in a driven A-system. We show the absorption and dispersion profiles of o_
component for G, = Gy = G # 0 as well as for G, = 0 in Figs. 5.2 for non-zero
pump detuning A = B — B’. The similar profiles of o, component could also be
considered. However in terms of physical origin, the profiles of 0. components are
complementary to each other. Thus it suffices to consider the either component.

In the dispersion profile in Fig. 5.2(a), one clearly sees that, at two-photon res-
onance (i.e., at § = A), the real part of the susceptibility y_ [= (N |d. va_2/hy) ﬁ;(jgl_)
which provides the dispersion] of the ¢_ component is non-zero and negative.
This is unlike the case in a A-system, where, at two-photon resonance, Re(x_) is
zero [see Fig. 5.2(c)]. Thus, an extra control field creates negative Re(y_) region in
a A-system. On the other hand, in the absorption profile in Fig. 5.2(b), gain arises
in the medium at certain region of the probe detuning §. If G, would be zero, then,
there would be no possibility of gain in the medium [see Fig. 5.2(d)]. However, at
the EIT point § = A, transparency (i.e., zero absorption) persists irrespective of
the value of Gs.

In the next section, we analyze these new features, like non-zero and negative
susceptibility and arising of gain in the medium, in terms of the effect of the extra
control field G;.
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Figure 5.4: (a) Variation of the imaginary parts of the first term in Eq. (5.14) (solid
line), the second term (dot-dashed line), and of ﬁ;(fgl_) (dashed line) with probe
detuning §. We have chosen G = 0.5y and the other parameters are the same as
in Fig. 5.2. (b) Variation of imaginary part of y_ in unit of N|d, +g_|*/hy with A,
The parameters chosen here are the same as in Fig. 5.3(a).

5.3 Discussions

5.3.1 Origin of non-zero susceptibility

We start with the expression (5.9) for ﬁ/e(:g

ﬁl(_l) Zb_|_

If G, is made zero, it is found that,

5(0)

pg_g_

- p0 . (5.13)

eteyt

Thus, the population difference between the relevant levels contributes to the

probe coherence. Note that at the EIT (§ = A), b, = 0! and then ,6&)9_ vanishes.
But, if we make G;3 # 0 and Gy = G2 = G, then one can find

i 1 - ~
pt) = — |Gagpepl., + Gorppl?

erg_

g+e+ g—e_

My

(0

+ i(a+b+p+ + G20+ + G2b+) (ﬁgo_)g_ - ﬁgg_)m.)

(5.14)

Clearly, the coherence g +)e +» which is non-zero due to the spontaneous decay

from |e_) to |g4+), also contributes to the probe susceptibility. We next show that

it is the effect of this coherence, which gives rise to all the new features being

discussed in this paper.

This is because we are assuming there is no spontaneous emission from the ground states |g+).
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Further at the EIT point (§ = A), b4 = 0 and thus, contribution from ,65(,0_)6_ to

the probe coherence vanishes. Then, we can write,

Al = i (1- qf) g , (5.15)
where, ¢ = py = ¢ =3+ i{(B - B'), and ¢ > 0. Here the first term inside the
bracket is due to the contribution of ﬁgo_)g_ — ﬁgr)e + and the second term is due to
the coherence ﬁgi)e +- We clearly see from the above expression, that the real parts
of these two terms cancel each other, and it is essentially the imaginary parts
which contribute to the probe susceptibility. We find that
(-1) —(B'-B)/2

AR Sy iy e (5.16)

which is negative as B’ > B in the present case. Thus nonzero susceptibility in the
configuration of Fig. 5.1 manifests itself as an effect of the zeroth order coherence
in the |e;) + |¢g4+) transition (which, in turn, is an effect of the extra control field
G3). Further we should comment here that the negativity of the susceptibility
comes into the picture due to larger Landé ¢ factor of the ground state manifold.
One has to choose the atomic configuration accordingly. Without any magnetic
field applied to the system, i.e., in an isotropic medium one could not obtain any
special features in the dispersion profile, indeed.

In Fig. 5.3(a), we show how the parameter Re(y-) varies with pump detuning
A at the EIT point. Thus even for resonant pump (A = 0), the susceptibility
is negative. In Fig. 5.3(b), we show that, the extra control field can be a good
control parameter for the susceptibility. The susceptibility remains negative for
the entire range of G; = G5 # 0 at the EIT point. However for G, = 0 and G, # 0,
the Re(x_) would become zero at two-photon resonance which is an usual case in

a A-system.

5.3.2 Origin of gain

It is well understood that, for G, = 0, the present configuration becomes like a
A-system. Thus the probe absorption spectrum shows Autler-Townes doublet.
Moreover, there does not arise any gain in the medium. At the EIT point § = A,

the absorption becomes zero.
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Figure 5.5: Varifltion of real part (solid line) and imaginary part (dashed line) of
X- in unit of N|d., ,_|*/hy with respect to G;/G1, where G = 0.5y. We have chosen
the other parameters as in Fig. 5.3(b).

However, the case of G; = Gy # 0 is different. We already have noted that
the probe coherence is contributed by two terms : ,653)6 + and ﬁg(i)g_ - ,6&3)6 +- We
show the individual contribution of these two terms in the absorption spectra in
Fig. 5.4(a). From this figure one can see that in certain region of probe frequency
(6 < B — B’), the negative contribution of ﬁé?r)e + is larger in magnitude than the
positive contribution of ﬁs(,o_)g_ — ﬁgr)e +- Thus the gain arises in the medium. This
novel feature can be attributed to the extra control field G;, which gives rise to
the coherence ﬁg,(i)e .- This coherence is the key source of gain. If G, would be zero,
then, ,55‘1)6 + would vanish and there would be no possibility of gain in the medium.
Note that at two-photon resonance, é = A, the contributions from both the terms
to the absorption profile cancel each other. Thus one obtains a transparency at
this point. We should mention here that the contribution of ;35)_)6_ to the gain is
negligible for all 4.

In Fig. 5.4(b), we show, how the imaginary part of y_ varies with A at § = 2B'.
Clearly at A = B — B’, the EIT situation arises. For A < (B — B’), one achieves gain
whereas, for A > (B — B’), there is no possibility of gain.

Form the above discussions, we identify certain parameter zone, namely § =

A =B - B’ and G 2 0, where one can obtain large negative susceptibility, associ-
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Figure 5.6: Variation of eigenvalues /\f' (solid line), A; (dashed line), /\;' (dot-
dashed line), and A, (long-dashed line) with respect to (a) A and (b) G. The
parameters in (a) and (b) are the same as in Figs. 5.3(a) and (b), respectively.

ated with no absorption. Then the refractive index can be written as

INA3
—Re(p ), (5.17)

n=1+2rRe(x-) =1+

which, in principle, can be made much less than unity by suitably choosing the

number density N of the medium and the transition wavelength A.

5.3.3 Effect of different values of control field

We further discuss the situation, when G; and G; are different. We plot the
imaginary and real parts of xy_ at the EIT point with respect to the ratio G;/G; in
Fig. 5.5. Clearly for G, /G, = 1, the non-zero susceptibility appears associated with

zero absorption. In fact, this is the optimal condition for attaining this situation.

5.4 Dressed state analysis

In this section, we analyze the gain in the medium in terms of the dressed states
of the system. From the expansion of ﬁgi)g . and ﬁgi)e + [Eq. (5.5)], one sees that
the zeroth order populations in both the |g+) states are larger than those in the
levels |e1) due to presence of the non-zero decay rates v,4’s. Thus there is no

population inversion in the bare basis. We arrive at a situation, namely, gain
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without inversion. We show, however, that population inversion really occurs in

dressed state basis and thereby the gain arises.

5.4.1 Calculations of dressed states

We start with the Hamiltonian (5.2). The state |¢') of the system obeys the following

Schrodinger equation:

L 0lY) _

We now apply an unitary transformation |¢) — |¢) = U|®), where
U = expliwat(les){es| + le-){e_])]. (5.19)

Then the effective Hamiltonian H’ for |¢) can be written as

HI

= —wale){e+| —wale_)(e-| + UHU™

= (A+2B)es)(es] + (A = 2B +2B)|e_)e_| +2B'|g4 ) (g4
— [(g-les)(g-] + gale-)(gs)e™™ = + (G lex Y| + Gale-)(g_) + h.c]

(5.20)
Without any probe field terms, the above Hamiltonian reads as
H// , ,
S = (A+2B)[es)es| + (A - 2B +2B)|e )(e|
+ 2Bg4)(g+] = [Grlex)(g+| + Gale){g-| + h.c] . (5.21)

The dressed states (dressed by the pump fields) are the eigenstates of this Hamil-
tonian.

Rewriting the Hamiltonian in the following matrix form in (|e4), [g+), |e=), |9-))

basis
A+2B" -Gy 0 0
-G 2B’ 0 0
, (5.22)
0 0 A —-2B4+2B" -Gy

0 0 ~G3 0
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the corresponding eigenvalues can be calculated as

A= %[(A+4B’)i\/(A+4B’)2—|—4|G1|2], (5.23)

A= %[(A _2B 1 2B)+ /(A _2B 1 2B 1 4Go7 ,
(5.24)

where i € 1,2. The eigenvalues A/ correspond to the dressed states comprised
of the bare states |e;) and |g;), whereas the eigenvalues A; correspond to those
comprised of the states |e_) and |g_). These eigenvalues have been plotted with A
and G; = G; = G in Figs. 5.6.

The dressed states can be calculated as

A
|+>1 — (A +2B /\1 )|6+> + G1|g+> 7 (525)

V(A +2B - 32 +|Gy
* R
|+>2 _ G1|€+> + (2B ’\2)|g+> 7 (526)
VIGI2 + (2B - 2}y
— /_ -
) = (A —=2B+2B"— AT )|e) + Galg-) (5.27)
V(A= 2B+ 2B~ X\))2 4 |Gyf?

|_>2 _ G§|€_>—/\2_|g_> (5.28)

VIG: |2+ 25

We show these eigenstates explicitly in the Fig. 5.7.

5.4.2 Explanation of gain

The population in any dressed state |s) in steady state is given by
Pss = <S|:5(0)|8>7 (5.29)

in absence of any probe field. We plot the total population in the dressed states
|[+Y; (2 € 1,2) in (|e4), |¢g+)) manifold and that in the dressed states |-); (i € 1,2)
in (|e~), |g—)) manifold with respect to A in Fig. 5.8. One clearly sees that the
population inversion dressed basis (total population in |+); states exceeds that in
|—); states) occurs for A < (B— B’), which gives rise to gain in this region. and this

result is quite consistent with the Fig. 5.4(b). When A = B — B’, the population
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Figure 5.7: Schematic diagram for the dressed states for the parameter zone used
in the present model.
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Figure 5.8: Variation of total population in the states |+); (solid line) and |-),
(dashed line) with A. The other parameters are the same as in Fig. 5.3(a).

in the (|e4+), |¢+)) manifold and in the (Je_), |¢-)) manifold are the same. Thus
no gain or no absorption arises. In other words, there arises a transparency in
the medium, which can be easily identified with EIT. Moreover, for A > B — B’
the medium becomes absorptive, because, there is no inversion in dressed basis
in this region. Note that for no control field (G = 0) there is no possibility of gain
as the the dressed states |+); are never populated; all the population reside in
the states |—), irrespective of the values of A. Thus population inversion does not

occur at all.
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Figure 5.9: Variation of MOR angle 4 (in degrees) and ellipticity angle ¢ (in degrees)
with (a) G, (Wwhen G; = 0) and (b) G; = G, = G in the output of an atomic medium
with length L = 1 cm. We have used N = 7.5 x 10'° ecm~ and A = 769.89 nm, as for
D, transition of the *?K. All the other parameters are the same as in Fig. 5.3(b).

5.5 Coherent control of MOR : Large MOR

In this section we investigate the magneto-optical rotation (MOR) of the input
i-polarized field Ep propagating through the medium under consideration. The
MOR angle # can be defined in terms of difference in the susceptibilities xy. of the
o+ components, only if their absorptions inside the medium are negligibly small.
But, as we have discussed in chapter 4, if the absorption is significant enough,
one has to adopt the Stoke’s formalism to fully characterize the polarization state
of the output field.

We use the relevant equations (4.10), (4.8), and (4.9) to calculate the MOR
angle 6, ellipticity angle ¢, and the degree P of polarization of the output field.

When both the pumps are not present, then the o1 components interact with
corresponding two-level configuration and the respective probe coherences are
given by (5.11).

We now consider three cases: (i) When only the pump G, is applied and G; =
0, then the o_ component interacts with an effective three-level A configuration
and its coherence is given by Eq. (5.12). On the other hand, the ¢, component
interacts with an effective two-level configuration and its first-order coherence is

given by Eq. (5.11). (ii) When only the pump G, is applied and G; = 0, then the
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probe coherence of the o components are given by Eq. (5.11) and

1) i{i(0— A —4B') + Ty, }

Pe_gy = 2{i(6 — A —4B")+ Ty g Hi(0 —2B —2B') + Tc_g, } +|G2]?] (5.30)

We calculate the variation of angles # and ¢ with G; and G; at § = A, respectively.
We noticed that these angles remain constant at § ~ 117° and ¢ ~ —33° for all
G,. This is because, the susceptibilities become independent of GG; at two-photon
resonance é = A, when G, = 0. On the other hand, when G; = 0, the variation
of these angles, calculated at § = A using the formulae (5.30) with G, are shown
in Fig. 5.9(a). Note that the angles can be altered with G; and can be much large
(~ 180°) for G; 2 12.5v. In case (iii), we consider that both the pumps G, and G, are
present and they are equal to G. In Fig. 5.9(b), we show the variation of the angle
# and ¢ with respect to control field Rabi frequency G (= G; = G3). It is clear from
this figure that the MOR angle can be enhanced to an angle as large as ~ 180°
by applying an extra control field G, = G;. Interestingly, large MOR angle can
also be procduced as in case (ii), but for large G,. If one switches both the pumps
on, then even for small G ~ 27, one can achieve large MOR. Note further that for
certain range of G, the variation of § remains linear with G. However, the output
field most often does not remain linearly polarized. The non-zero ellipticity angle
¢ reflects the fact that large absorption of the field components occurs inside the
medium. Also, at a definite value of G' (> 10), the ellipticity angle ¢ becomes zero.
This is because, at this point, the absorptions of both the ¢, components become
zero. We also have investigated the behavior of the degree of polarization P of the
output field, which remains unity for the entire range of G. This means that the

output field always remains fully polarized.



Chapter 6

Coherent Control of the Fidelity of

Quantum Cloning

So far we have discussed how dispersion and absorption of a probe field inside
an anisotropic medium can be controlled by a strong coherent field. In chapter 4,
we have described some remarkable effects arising due to the monochromaticity
of the probe field. Indeed all the previous discussions in this thesis are based
on a semiclassical treatment for the interaction of atoms with fields. As we have
mentioned earlier, the field can be considered quantum-mechanical which helps
in understanding and exploring many new phenomena which could be impossible
to observe in a semiclassical treatment. This chapter devotes to a fully quantum-
mechanical treatment of this interaction and a new application of coherent con-

trol.

6.1 No-cloning theorem

In a seminal paper, Wootters and Zurek [180] have shown that an arbitrary quan-
tum state cannot be cloned, i.e., one cannot prepare a true replica of the state
keeping the initial state intact. They have followed the following argument.

Let us consider a perfect cloning device can clone an incoming photon which

are in either vertical or horizontal polarization basis, i.e.,

[A)| 1) — [Aver) 315 [A0)| ) — [Anor)| 242) 6.1)

92
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We ask the question whether the above cloning device can clone an arbitrary
polarization state |s) = «| ]) + 5| +3) properly. The cloning device will result in the

following:
|Ao)[s) — alAver)| 3T) + Bl Anor| £2¢3) (6.2)

If the states of the cloning device at the end of the process are identical, then the

photon state can be written as

al 11) + Bl «r¢) . (6.3)

On the other hand, the perfect cloning requires that the output should be
|ss) = o’| 11) + 57| ) +ap(| T0) + ©1) (6.4)

which clearly is not the same as (6.3), which one gets. Clearly, perfect cloning is
not performed. In fact, it is in the heart of quantum mechanics. The linearity of
the superposition principle itself prevents perfect cloning. In fact, this linearity
has many important implications. For example, Dieks [181] and Bussey [182]
independently have shown that it is not possible to have faster-than-light com-
munication, thanks to linearity of the quantum mechanics. In fact, no-cloning
principle and no-signalling constraint are complementary to each other [183]. It
has been proved that only any set of mutually orthogonal quantum states (not
their superposition) can be cloned perfectly by a cloning device [184].

Milonni and Hardies were first to propose a physical process regarding quan-
tum cloning [185]. They have shown that it is the unavoidable presence of sponta-
neous emission, which prevents perfect cloning of photonic states by stimulated
emission (Note that the probability of spontaneous emission and stimulated emis-
sion when there is one photon are the same ; see [3].). Making use of two two-level
atoms with orthogonal transition dipole moments, Mandel [186] proved that one
can make the output of the photon amplifier independent of the input polariza-

tion.

6.1.1 How better one can clone an arbitrary state ?

Because it is not possible to perfectly clone any arbitrary state, one may ask to

what extent the cloning can be done. It is already shown that the cloning process
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destroys the original state also. Thus one can rather compromise by assuming
that the cloning device should at least clone all the possible states (including the
orthogonal ones) equally well. This is referred to as optimal cloning. A decade
after the conjecture in [180], Buzek and Hillery have shown that the fidelity® (de-
fined by the square of the overlap amplitude of the input and the output states) for
1 — 2 optimal cloning should not exceed 5/6 [189]. This is universal for all input
qubits and is compatible with no-signalling constraint too. A series of investiga-
tion of quantum cloning followed this paper. The optimal cloning has been gener-
alized [190, 191] for the case of N — M (M > N) cloner. The upper bound for the
fidelity of a N — M cloner has been established [192]. Results are also available
for the optimal cloning of arbitrary pure and mixed states in d-dimensions (d > 2)
[191, 193]. Besides, cloning of entangled states [194] and of Gaussian-distributed
quantum variables [195] has been considered. It has also been shown that it is
impossible to perfectly clone any arbitrary mixed state also [196]. Besides optimal
cloning, state-dependent cloning (different fidelity for different initial states) has

been investigated too [197].

6.2 Quantum cloning based on stimulated emission in a

V-system

6.2.1 Quantization of electric field

In the rest part of this chapter, we focus on the quantum cloning of polarization
state of the photon inside a cavity. To explain this issue, we first explain how the
em field can be quantized in a cavity. Next we describe its interaction with atoms.

Inside a cavity resonator, a limited number of oscillation modes are possible
which depends upon the cavity length and volume of the cavity. The electric and

magnetic fields in the Maxwell's equations can be expanded in terms of normal

'We should mention that the concept of fidelity for information transfer was first introduced by
Shannon [187] in classical sense and was reformulated later in contexts of quantum coding [188]
and cloning [189].
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modes of the cavity of length L in CGS unit as
E,(z,t) = ZAJqJ sin(k;z) ,
Hy(z,t) = ZA ( ) cos(k;z) , (6.5)

where ¢; is the normal mode amplitude, k; = jr/L (j € 1,2,3,...), w; = ck; =
jmec/L is the cavity mode frequency, V is the cavity volume, m; is a constant with
dimension of mass, and A; is a constant determined by w;, m;, and V. In the
above we have assumed that the electric field is linearly polarized in z-direction
and propagating in the z-direction. One can write a classical Hamiltonian for the
field as

1 2
H = sﬁ/ dr(E? + H?) (6.6)

where the integration is carried over the volume of the cavity. After substituting

the mode-expansions of electric and magnetic field, we obtain

1 2o D

j J

where p; = m,q; is the canonical momentum of the jth mode and we have identi-
fied the constant A; = (87m;w?/V)'/2. The above equation expresses Hamiltonian
of the radiation field as a sum of independent oscillator energies. Each mode of
the field is thereby dynamically equivalent to a mechanical harmonic oscillator.
Quantization of field refers to identify the ¢; and p; as operators and to make

use of a canonical transformations as

1

aje it = T (Mawits tipi)
m;hw;
1 .
f ewit  — 7(mjquj - ’ij) . (6.8)
2mjhw;

Thus the quantized Hamiltonian reads as

1
H=hY w (a}aj + 5) : (6.9)
J
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In terms of two new operators, the quantized electric and magnetic fields inside

the cavity become
E.(z,t) = Z E;(aje it 4 a;ei“’jt) sin(k;z) , (6.10)
J

Hy(z,t) = Z —i&j(aze™ it — a;ei“’jt) cos(k;z) ,
J
where £; = A;(h/2m;w;)'/? is a constant.
Two important points are in order. The quantized forms of the electric and
magnetic fields in a free space (which satisfies the periodic boundary conditions)

are as follows.

BE(rt) = Y epape i L hc., (6.11)
k
H(mt) = ) Fxé Eraremiwrt+ET L h o, (6.12)
3 - wk. Lk 3

where £} is a constant determined by w; and V. Secondly, we should mention
some of the properties of the newly introduced operators a; and a}%. These are
called annihilation operators and creation operators, respectively, because they
annihilate a photon or create an extra photon inside the cavity. In number state

basis |ng) of the cavity field with » photons in k-mode, we can write

agln)g = ymgln = g, abln)g = /g +1n+ 1) (6.13)

6.2.2 Optimal photon cloner with a V-configuration

Recently Simon et al. [198, 199] have proposed a new scheme for quantum
cloning of a photonic qubit. They considered a cloning device consisting of an
ensemble of atoms trapped inside a cavity. The relevant atomic transitions corre-
spond to the V-system. These are three-level systems with two degenerate excited
states |e;) and |e;) and a common ground level |g). The ground level is coupled to
the excited states by two orthogonal field modes a; and ay, respectively.

The unperturbed Hamiltonian of this system can be written as

Hy = h(werler){e1| + wez|e2)(ea]) + h(wla]{al + WQ(Z;QQ) , (6.14)
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where w,; is the energy of the level |e¢;) (i € 1,2), with respect to the energy of the
ground level |g) (i.e., the energy of the level |¢) is assumed to be zero of the energy),
w; (7 € 1,2) is the frequency of the the orthogonal modes a«;.

We assume the interaction of the field modes with the atoms in dipole ap-
proximation. The electric field in this approximation should be considered in
its quantized form [see Eq. (6.10)]. Thus the dipole interaction part of the total

Hamiltonian can be written as
N

H = hg Z(Uilale_iwlt + Ui202€_iw2t) + h.c.
k=1
+ (Uf_laiei“’lt + Uiza;ei“’2t) + h.c., (6.15)

where ¢ is the coupling constant between the atoms and the cavity modes with
dimension of angular frequency and, ail (2)S [= (le1(2)){g])x] are the raising opera-
tors between the corresponding states of the £-th atom. Here ¢ is assumed to be
equal for all the atoms. This means that all the atoms are in equivalent positions
relative to the cavity mode. This condition can be achieved by trapping the atoms
inside the cavity, so that the field interacting with the atom is the same for all
atoms. This kind of trapping of atoms has been reported recently in [200].

Now in the interaction picture, the effective Hamiltonian under RWA can be

written as

N

H;y=hg Z(Uilal + G'izaz) + H. c., (6.16)
k=1

Here we have assumed that the field modes are in resonance with the atomic tran-
sitions. Note that while using RWA, we have discarded the terms like |0_’“H (2)“1 (2)°
which are in fact energy nonconserving terms (see [179], chapter 6). These terms
are associated with the excitation of the atom as well as creation of a single pho-
ton, which is intuitively impossible in the present situation.

Let each atom be prepared initially in a mixed excited state

p= 5 (len)er] + lea)eal) 6.17)

This is possible by spontaneous emission from a higher energy level. We assume
that the photonic qubit is in a state a‘;|07 0) = |1,0). Here |n, u) refers to the pho-

tonic state in which » photons are in ¢; mode and p photons are in a; mode. The
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time-development operator U = e/t

will provide the time-evolution of the entire
(atom+photon) system and this is used to study quantum cloning.
The quality of cloning is characterized in terms of fidelity [187], which can be

defined [198] in the following way:

N+1 N k
F=>" pkl) (k—ﬂ) : (6.18)

k=0 1=0

Here p(k,!) represents the probability of finding k¥ photons in the initial mode and
[ photons in the orthogonal mode «; in the evolved state. It should be noted
that for an ensemble of N atoms, the maximum value of £ will be N + 1, which
corresponds to all the atoms decaying to the ground state through the emission of
the a,-photon. Thus F is a kind of an average of the relative frequency of photons
in initial mode «; in the final state.

As shown by Simon et al., the fidelity is optimal for short interaction times
and for N = 6. It decreases for later times. They have explained this behavior
in terms of stimulated and spontaneous emissions on the transitions |e;) — |g)
and |ez) — |g), respectively. We should precisely mention that if there is an extra
photon in ¢;-mode, it can be considered as a clone of the initial qubit. Note that
the probability to get a clone is reduced if there is an extra photon in the other

(a2) mode, which is due to spontaneous emission.

6.2.3 Question of universality of cloning by a V-system

It is mentioned in Ref. [199] that the above scheme is universal, i.e., the V-system
cloner can clone even any arbitrary photonic qubit, say, (ozaj{ + ﬁa;)|0, 0) with the
same non-unity fidelity. Simon et al. argued that this is because the initial mixed
state and the Hamiltonian are invariant under a unitary transformation. In what
follows, we demonstrate explicitly this universality by changing the basis to a
general qubit state.

Consider a single atom in V-configuration, initially prepared in an incoherent
superposition of the two excited states. We will work with wavefuntions and hence
we use an initial state

1

5) =% (|61> + e""|e2>) : (6.19)
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and average the final results over all possible values of the parameter #. Let the

photon be in a superposition state
b1]0,0) = <aa{ +ﬁa§> 10,0) = &/1,0) + 5|0, 1) (6.20)

as well, where « and 3 are the complex numbers satisfying |«|?+|3|? = 1. Note that
an average over # will give an initial state of the atom, which is a mixed state. We
consider the photon as a qubit [188], which can be in any linear superposition of
the two orthogonal states. Let us define the basis state b£|07 0), which is orthogonal

to (6.20). The new operators b; and b, must satisfy the commutation relations
b1, by] = [by, bS] = 0. (6.21)
Using Eqgs. (6.20) and (6.21), we get

bl = —g*al 4+ a*al. (6.22)

The time-evolution of the entire system is determined by the Schrodinger equation
L d
tho [2(t) = Hi|¥()), (6.23)

where H; is given by Eq. (6.16) for N = 1. We expand |¥(¢)) in terms of the
relevant basis states. Starting with the initial conditions [Egs. (6.19) and (6.20)],

these relevant states were found to be

en)]1,0) 5 le2)[1,0) 5 19)[2,0) 5 19)[1,1) 5 19)[0,2) 5 |e1)]0,1) 5 [e)]0, 1). (6.24)
The only non-zero expansion amplitudes C'* at time ¢t = 0 are

@ o1 _ﬁ,m _ @ 6. 01 _ﬁia
\/5,061(0)—\/5,062(0)—\/56 7C’EQ(O)_\/§e, (6.25)

where the subscript (superscript) denotes the atom (photons) in the state « (m, n).

Cer(0) =

Then all the expansion amplitudes can be evaluated in closed form with the fol-
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lowing results:

) = s cos(Vagt),

€M) = —isin (Vgt).

) = [ (ae? ~5) + (5 +ac?) cos (Vagt)]

o) = % (8~ ae) + (5 +ae?) cos (Vagt)| (6.26)
Cp'(t) = —5 (B+ae?)sin (Vagt),

Cot) = —z-%ew sin (V2gt).,

o) = %ewcos (Vagt)

The reduced density matrix of the field is defined by

pr = Tra(lT ()T )], 6.27)

where the trace has been taken in the atomic basis. Thereby the field is prepared
in a mixed state defined by pr. Using Eq. (6.27), the probability p(k,!) that &
photons will be in b;-mode and ! photons in b;-mode can be written in terms of
b-operators as

b b bT b 1o
TSRy

Further in order to get the initial atomic state used by Simon et al., we average

Bk, 1) = (0,0]—

0,0). (6.28)

p(k, 1) over all values of . A lengthy derivation yields the following:

Ba(2,0) = —sm 2 (Vagt), (6.29a)
Ba(1,1) = %sin2 (vV2gt), (6.29b)
5a(0,1) = %COSZ (ﬂgt)—%cos (\f gt) ; (6.29¢)
5a(1,0) = §cos2 (Vagr) + %cos(\/ﬁgt)—l—é, (6.29d)

where p,(k,!) is the §-averaged value of p(k,!). The Egs. (14) lead to the following
expression for the fidelity:

. - 1. 3 1
F =p.(1,0) 4+ pa(2,0) + §pa(17 1)= 1 + 1 cos (\/§gt). (6.30)
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Figure 6.1: An atomic level configuration to improve the fidelity of quantum
cloning. Here the classical fields with Rabi frequency 2¢G; (i = 1,2) couple the
levels |e;) and |e;) with the metastable state |f). The atom is inside a cavity,
which allows only two field-modes «; and a;.

Clearly the fidelity does not depend upon « and . This reflects the fact that the
V-scheme is universal as a cloner, which can clone even a general superposition
of two orthogonal modes of the field, albeit imperfectly. A similar result has been
reported recently using an atomic system in A configuration [201].

We should emphasize here that while calculating the fidelity, we have consid-
ered the probabilities of the event like spontaneous emission of a single or two
photons in b;-mode. Different definitions of fidelity also exist in the literature,

which does not consider these events into account [199].

6.3 A method to improve the fidelity of the V-scheme for
arbitrary state of the input photon

From the discussion in the previous section, it is clear that the fidelity of cloning
is degraded by the emission of a photon of the “wrong” type (in a mode which is
not the initial one). This is possible irrespective of whether there is any photon in
a; mode or not. Thus we obtain the non-zero values of the probabilities like p(1,1)
and p(0,1). The fidelity oscillates sinusoidally between O and 1 with times [see
Eq. (6.30)]. To improve this fidelity (so that it becomes close to unity for longer
times), one should reduce the probability p(1,1) and p(0,1) of emitting photon in
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the mode «a;. This emission is caused by the atomic population in |e;) level. One
possible way of doing this is to cycle this population away, so that this unwanted
spontaneous decay does not occur very often. We show that it can be done by
applying a classical pump field, which causes the population in the state |e;)
to pulsate between a metastable state |f) and |e;). However any biasing by the
external field is likely to take away the system from universality. By making the
bias dependent on the state, any state can be cloned better than the optimal limit,

or even perfectly at some times.

6.3.1 Model configuration

We consider a four-level atomic configuration as shown in Fig. 6.1. The excited
states |e;) and |e3) are coupled to the common ground level |g) through the two
orthogonal modes «; and a; of the quantized electromagnetic field, respectively
as in the model in [198]. The coupling constant between each of these excited
states and |g) is g. We consider the action of classical fields coupling the state
le;) (+ = 1,2) with the metastable state |f). The corresponding Rabi frequency is
2¢G;, where G; is a multiplying factor and is related to the number of photons in
the classical field. We assume all the fields to be resonant with the corresponding
atomic transitions.

We start with a single atom prepared in the state |s) [Eq. (6.19)]. The initial
photonic qubit is in #;-mode. We will work in the interaction picture. Then us-
ing the rotating wave approximation to eliminate the fast-oscillating energy non-

conserving terms, we obtain the effective Hamiltonian as
Hr=hg |041a1 + 04203 + Z Gile:){f|| +H.c., (6.31)
i=1,2

where o,1(3) = |ei(2))(g| are the raising operators of the atom as defined in the

previous section.

6.3.2 Analysis

In order to understand how all the states can be cloned by choosing state-dependent

bias, we rewrite (6.31) in terms of the b; and b;-modes and redefined atomic states
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Figure 6.2: Equivalent level diagram for G| = 0. The new field operators b;’s and
the levels |e!)’s have been defined in the text.

le}) and |e}) as
Hy = Tig [le1){gb1 + |e5)(g|b2 + G1len)(f| + Ghler)(f]] + H.c., (6.32)

where

|€/1> = aler) + [lez) ; |€/2> = a’ley) — 7er) ; G/1 = o G+ 0°Gy ; Glz = —pG; + aGy.
(6.33)

Clearly if we choose G} =0, i.e.,
G1/Gz = —(8"/a%), (6.34)

then the Hamiltonian in the new basis is like a single bias field acting on the
atomic transition. We show this equivalent configuration in Fig. 6.2. This analysis
implies that we can deal with arbitrary input states of the qubit by just choosing
the bias field appropriately [Eq. (6.34)]. Note also the important property

len)(ea] + [ea)(eal = [eh)(er] + ) (esl, (6.35)

so that the initial incoherent superposition remains an incoherent superposition
in the primed basis.

We next calculate the effect of the bias field on the fidelity of the system by
setting G| = 0 in Eq. (6.32). Let the eigenstates of b){bl and b‘;bz be denoted by
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————

|n, m). Thus
|n, m) = mlw) , (6.36)

where |0, 0) represents the vacuum in the (a;, a3) basis. From (6.32) we find that

the following states participate in time evolution:

1E€1,0) 5 [e)]1,0) 5 [AL,0)5 [9)]1,1) 5 [9)]2,0 5 |€})]0, 1), (6.37)

——— —_—~—— e

Note that the state |¢})|0, 1) is produced by the two-step process |e})|1,0) — |¢)[1,1) —

o~

le1)]0,1). We expand |¥(¢)) in terms of these basis states and we obtain the follow-
ing first order differential equations for the corresponding expansion amplitudes
C’s, using the Schrodinger equation:

- 10

Cei (t) = _\/52.9@30(1:)7

= 20 ~

Cy (1) = —ﬂigC@liO(t),

- 10 ~ ~

Ceé (t) = —lgC;l(t) - lgG/ZC}O (t)7
- 10 ~

Cplt) = —igGhCl(t), (6.38)
11 ~ ~

Cy (t) = —igCll(t) —igCl(t),

- 01 . A1

Co(t) = —igCy (1)

We assume that the atom is initially in a state |e;) = (|e}) + €'|e})) /V/2, i.e.,

~10 _ 1 . ~10 _ 1 10
Cei (0) = ﬁ y Ceé (O) = ﬁe s (639]

Thus we obtain the following solutions of the above equations:
Q Q

Cl(t) = Asi —lt) B'(—zt)

g ( ) sin (ﬁg + bsin ﬂg ,

. 1 Q Q
Clo) = —[92—4A' (—175) Q% — 4)Bsi (—215)],

0 = 5 |- 9asin( et +©F - 9Bein (2

~10 _ i 2 Q1 2 Qz
Ceé (t) = m [91(91 - 4)A COs (ﬁgt) + 92(92 — 4)B COS (ﬁgt)] s

501 _ i 2 2 O 2 2

Cei (t) = —m [91(91 — 2G 2 — 4)ACOS (ﬁgt) + 92(92 — 2G 2 — 4)B COS (ﬁ
~ 1

C'elio(t) = ﬁ cos (\/égt),

~ 7.

C'gZO(t) = _ﬁ sin (ﬂgt),

(6.40)

)]
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where

0 = (G’22+2+\/W)% . Q= (G’22+2—\/m>%7

1. (93 -2G", - 4)
A = g2 , 6.41
RN O (o4
— =€
2 QG5+ 4

Using the relation (6.27), we get the reduced density matrix of the field. The

B

diagonal element of this density matrix in field basis |kA,7> gives the probability

p(k,1) that & photons are in b;-mode and ! photons are in b;-mode and these are

given by
~ 1 .
B2,0) = [CPWI* = 5sin® (V2gt),
p(LY) =[G
A(L,0) = |CPOP+ICY®I +ICROI, (6.42)
0,1 = [CU )

Hence the fidelity F takes the following form:

1
F =1~ 15a(0,1) + 3ha(1,1) . (6.43)

6.3.3 Numerical results

We have plotted this as a function of time for G}, = 0, 3 in Fig. 6.3. It is found that
as G increases, the fidelity becomes unity more often. Whenever both p,(1,1)
and p,(0,1) become zero, F(t) becomes unity. In fact, by introducing the classi-
cal pump field, we cycle the atomic population in the state |¢}) to the state |f)

and back. This inhibits the spontaneous decay of the atom in the state |e}) to

the ground state |g) irrespective of whether there is any photon or not in “right”
(initial) mode. There are two time-scales of oscillation of F(¢). The faster small-
amplitude oscillation is attributed to that of [p,(0,1)+4(1/2)p4(1, 1)]. This oscillation
can be increased by G/, so that the atom effectively goes to the state |f) very fre-
quently. This means that F(¢) becomes close to unity more frequently. The effect

of spontaneous emission from the state |f) is ignored assuming that the time
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Figure 6.3: These figures show the time-dependence of the fidelity of a four-level
atomic cloner comprising a single atom for no cycling field (G} = G, = 0 ; dashed
curve : tick levels are on left side) and in presence of external fields (G}, =0, G, =3
; solid curve : tick levels are on right side). It is obvious that the bias field improves

the fidelity of cloning considerably. We assumed that the atom is initially in the
state |ey).

scale for this decay is much larger than that for Rabi oscillation between |e}) and
| f)-levels.

In Fig. 6.4 we display the mean number of “right” and of all photons. These
are given by

Nyight = Trr(biblpr) , Nay = Trp[(b161 + biby) pr] - (6.44)

In the present case, we can calculate
Nright - 2p(27 0) + p(17 0) +p(17 1) ) Nall - 2p(27 O) ‘|’p(17 0) + 2P(17 1) ‘|’p(07 1) . (645]

This figure also supports the improvement in cloning by the use of a cycling or
bias field.

6.4 Fidelity of cloning with two atoms

In this section, we consider a cloning machine consisting of two atoms and we
demonstrate improvement in the fidelity for a larger domain of times if we adopt

the use of the cycling or bias field. We consider the case of two V-atoms. The
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Figure 6.4: These figures display the time-dependence of average number of pho-
tons in “right” mode, i.e., in b;-mode (N,gh¢ ; solid curve) and of all photons (N
; dashed curve) in a single atom cloner under the conditions G| = G/, = 0 [Fig.
(@] and G} =0, G, = 3 [Fig. (b)]. It is seen that for non-zero G%, Nyghe and Nay
approach each other. We have seen that for G}, = 8, i.e., for faster cycling of the
population, they are nearly equal for almost all times.
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interaction Hamiltonian is obtained by summing (6.32) and a similar Hamiltonian
involving the interaction of the another atom B with the fields. The initial state of

the atomic system is

pas= [T (en)uuler|+ le2u ueal), (6.46)
n=A,B

i.e., both the atoms are in mixed excited state. We further assume single photon in
the mode b;. We work under the condition (6.34) so that the Hamiltonian reduces

to

Hi=hg 3 (e ulglbr + 1€bb ulolbn + Ghleu u(fl) + Heeo (6.47)
u=AB

In order to use the wavefunction picture we use the initial condition for the atom
as

1 .
p=1Ta)Tsl5 1) = 5 (Ieh) e leh)u) (6.48)

and average the final results over 6, and fg. For the two-atom case with bias field
we have to use a large number of relevant basis states — the size of the Hilbert
space increases very rapidly with increase in the number of atoms.

The equations for the amplitudes are solved numerically using fifth-order Runge-
Kutta method. From the numerical solutions we calculate the fidelity F. It is clear
from the Fig. 6.5 that the cycling field makes the fidelity much higher for a very
large range of times. Note that the fidelity of the two-atom cloner can be expressed

as

F(t) = 1= 3521+ 25a(1,2) + 55a(L) + 70, 1) 4 5a(0,2)| . (6.49)

Obviously, it becomes unity only if the probabilities of spontaneous emission in
by,-mode (both in presence and in absence of photons in #;-mode) are zero. Then all
the photons present in the cavity would be in b;-mode. However due to complex
nature of time-dependence of p,(k,!)’s, one does not find any periodicity in the
variation of F(t). To calculate the average number of “right” photons and of all
photons in the evolved state of the two-atom cloner, one has to find the reduced

density matrix of the field only. This can be obtained by tracing the total density
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Figure 6.5: The fidelity of a two-atom cloner is plotted as a function of time for
no cycling field (G} = G, = 0 ; dashed curve : tick levels are on left side) and in
presence of the bias field (G| = 0, G, = 3 ; solid curve : tick levels are on right
side). Clearly the fidelity of cloning is improved by cycling of atomic population
through a metastable state using a classical bias field.

matrix of the atom+field system over the atomic basis. These average numbers
have been plotted as functions of time in the Fig. 6.6(b). A comparison of Figs.

6.6(a) and 6.6(b) shows tremendous improvement in cloning due to the cycling

field.

6.5 Average fidelity of cloning for a fixed biasing field

In the previous sections we had discussed the possibility of improvement in fi-
delity by changing the bias field as one changes the input state of the qubit. The
question arises what is the fidelity of cloning for a fixed bias field. In such a case
we have to work with the average of fidelity over all the input states of the qubit.
To be precise let us consider the input state of the qubit as given by Eq. (6.20). We
calculate the probability p(k,!) as defined by (6.28). We next average this probabil-
ity over all values of « = cos (y/2) and (8 = sin (y/2)e'?, where 0 < y < 7, 0 < ¢ < 2.
Averaging over « and 3 are equivalent to average over all values of y and ¢. Using
average probabilities p(k,!) we obtain the average fidelity for all the states of the

input qubit. The calculations are lengthy and we present results in the Fig. 6.7a.
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Figure 6.6: The time-variation of average number of the photons in the b,-mode
(Nyignt ; solid curve) and all photons (N,; ; dashed curve) in a two-atom cloner
have been displayed for G| = G}, = 0 [Fig. (a)l and G| =0, G}, = 3 [Fig. (b)]. This
shows that N4, and N,; become closer for larger value of GY.
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Note that for no bias, the fidelity is periodic in time whereas in presence of the
bias field it is quasiperiodic. We conclude from this figure that there is consider-
able improvement in fidelity upto times of order gt ~ 2. This is also reflected by

the behavior of the mean photon number in the “right” mode (Fig. 6.7b).
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Figure 6.7: (a) The fidelity of a single atom cloner averaged over all states of
the input qubit is plotted as a function of time for the cases G| = G/, = 0 (dashed
curve) and G} = 0, G/, = 8 (solid curve). (b) The time-variation of number of “right”
photons (solid curve) and all photons (dashed curve), averaged over all states of
the input qubit are shown for some external field parameters G} =0, G, = 8.

112



Conclusions and Future Outlook

In conclusion, this thesis reports the several coherent control effects in an anisotropic
medium. Manipulation of atomic coherence by external cw fields leads to many
interesting phenomena. These have been elucidated by analytical and numerical
results based on the parameters which are experimentally achievable. In the fol-
lowing, the main results of each chapter and possibility of further study on it are
discussed in brief.

In chapter 2, it is shown that it is possible to temporally separate the two
orthogonal polarization components of a weak linearly polarized pulse by using
coherent control. This is possible in a situation where the group velocities of the
components are different and have negligible absorption, as well. A four-level
atomic system is studied in details in this context. It is shown that by applying
a strong coherent field, one can achieve a EIT condition so as to split the input
pulse in time domain. Numerical demonstration of pulse splitting phenomenon is
described in context of propagation of Gaussian pulse through the medium. An
analytical estimate of the the broadening of the pulse at the output is given which
is in good agreement with the numerical results.

In chapter 3, dependence of the output intensity on the direction of the applied
magnetic field is described in context of propagation of unpolarized light through
an anisotropic medium. The idea was to create a EIT condition at the resonance
of either polarization component using a coherent field, whereas the other compo-
nent remains detuned from the corresponding transition. Thus, for the magnetic
field applied parallel to the direction of propagation, absorption of both the com-
ponents are negligible. On the other hand, for the magnetic field applied in the
direction opposite to that of the field, one of the polarization components gets

absorbed at its resonance, whereas the other one remains unabsorbed due to
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off-resonance. Thus the intensity gets reduced substantially at the output. Thus
a situation arises, where the intensity at the output depends upon the direction
of the magnetic field. This idea is demonstrated using atomic models. Effect
of Doppler distribution of atomic velocities has been explored. One can find a
situation where, the transmittivity of the medium can be changed much more
drastically, so that an opaque medium becomes transparent and vice versa upon
reversal of direction of the magnetic field. Effect of collisional broadening and
large magnetic field on MFRA can also be explored.

In chapter 4, we set out to explain the experimental results of Labeyrie et al.
on the optical density dependence of the MOR angle. We have provided a possi-
ble model for this. We have shown that MOR angle of a linearly polarized field
with nonzero spectral width does not depend linearly on the optical density of the
anisotropic medium in large optical density domain. This can be understood in
terms of contribution of the off-resonant components of the input field to the out-
put intensity. This has been shown that for small optical density, the absorption
does not substantially affect the MOR angle, and thus this angle exhibits linear
dependence on the optical density. This occurs because the mean field approx-
imation remains valid for small optical density. The results of this chapter is
in good agreement with the experimental findingsof Labeyrie et al.. The effect of
large magnetic field to achieve large MOR angle can be investigated as a possible
extension. It is expected that the polarization of the input field can be reversed
(which is equivalent to a MOR angle ~ 180°).

In chapter 5, possibility of non-zero susceptibility at two-photon resonance
and of gain at certain probe frequencies has been explored. It can be understood
in terms of the effect of atomic coherence that is induced by an external control
field. The dressed state analysis shows that the gain arises due to population
inversion in the dressed state basis. Further, it is shown that the control field can
control the MOR angle inside such a medium.

In chapter 6, we have shown that the fidelity of photon cloning can be improved
much beyond the optimal limit by suitably choosing classical cycling fields. The
Rabi frequencies of the fields depend upon the initial superposition of the input

polarization state. The dynamics of fidelity of a quantum cloner based on single
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atom and two atoms is analyzed. However, the atomic cloning machine deviates
from the universality due to usage of external coherent fields.

Recently, EIT is used in the context of implementation of logic gates in quan-
tum computation. One can use the idea of coherent control to improve the speed
of these gates so that decoherence effect would become much less. Further, it
would be interesting if one can find a coherent system, which can produce polar-

ized light from an unpolarized light with more than 50% efficiency.



Appendix: A

Basic procedure for semiclassical treatment for atom-field interaction

Here we provide a brief outline how to calculate the probe susceptibility for any

driven multilevel system. We write down the unperturbed Hamiltonian H, as
Hy=h)Y wili)(il. A.1)

We assume that the perturbation arises from the interaction of the atomic dipole
operator d with the interacting classical field E. This interaction part is thus
given by H, = —d.E, where d = Disi d;;]iY(j] and E = e~ + £*¢*“!. Here we have
assumed that there is no dipole transition between the levels of the same parity.
The Rabi frequency in this interaction can be defined as 29 = 2d:»j.5 /h.

We start with the Liouville equation for the density matrix equations:
. i
p=—zH pl+Lp, (A.2)

where the dot represents the time-derivative and H = Hy+ H; is the total Hamilto-
nian. We have added the second term phenomenologically on the right hand side
of the above equation, which represent the incoherent processes like decays due
to spontaneous emission, collisional process etc. The explicit forms of this term
are as follows: In the equation for diagonal density matrix element p;;, one adds
— 22, Yiipii + 2 vijpj;» Where the first term stands for all the decays from the rele-
vant level |i) to a manifold {|j)} of other levels, where the decay is allowed and the
second term stands for the all possible decays to the level |7) from the other levels.
Here +’s represent the decay rate and have dimension of angular frequency. On
the other hand, in the equation for the off-diagonal matrix elements p;;, one adds
the term —T';;p;;, where I';; = % >k (Vki+7k5) +7con. Here yon refers to the collisional

decay rate.
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Next we change p,; — p;; in a rotating reference frame so that all the explicit
time-dependence on the right hand side of the above equations will be removed
making use of RWA. As we have mentioned that in presence of decay channels,
the system comes to a steady state in the time-scale much larger than the atomic
decay time. Thus, we work under steady state condition p,; = 0. Thus we obtain
a set of algebraic equations, which can be solved perturbatively. We expand the

density matrix elements p;; in terms of the weak probe field as

), 2

pij = py) + N (A.3)

where (Q is the half of the Rabi frequency of the probe field. We then equate the
coefficients of Q" (n € 0,1,2,...) and solve algebraically for ,65;1).

We have already discussed in subsection 1.2.1, how the first order suscepti-
bility of the medium is related to the off-diagonal density matrix element between
the levels which are coupled by the probe field. This matrix element is often called
as probe coherence. In fact, if we assume that pl(»?) = 0, then the relation (1.51)
becomes

(1)) g()2
X(l)(w) _ Npij |di; "]

A.4
v e (A4

where N is the number density of atomic medium. Thus the phase change ® and

the absorption coefficient oL as defined in (1.17) can be rewritten as

wi; L N|d£?)|2

— (1
al = 4« Ty Im[p;.’], (A.5)
1 N|d)2
3 :fh%ﬁ—LiL&me (A.6)
c hyji J

where L is the length of the medium.

Now we introduce the Einstein’s A-coefficient which is given by?

(a)2, .3
A=2y;=-—2L Y A7
’)/]l 3 hCS Y ( )

2If there are two or more transitions involved, then one has to find the ratios of the corresponding
dipole matrix elements using Clebsch-Gordan coefficients. Then A-coefficient is to be defined in
terms of sum of all the decay rates, i.e., A = 24[1 + 5 (ratio of dipole matrix elements)?].
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where w;; is the atomic transition frequency. Then substituting |all(-;“)|2 [hvji =

3¢®/2w7;, we obtain

Aw) = 32155/),(}) : (A.8)
ij
We can rewrite L and ® accordingly as
_ o) _3NLAY
o = aollmlp;;’], aol = 5
o = %NL/\?jRe[pl(;)] , (A.9)

where )\;; = 2nc/w;;. Clearly the coefficients of the real or imaginary parts of
pg;) are easily calculable if one knows the number density N of the atomic vapor

medium, transition wavelength };;, and length L of the medium.
Derivation of group velocity:

We start with the plane wave solution (1.5), and assume that the frequency w
is a function of %, i.e., w = w(k). Since dispersive property does not depend upon
the direction of propagation, w(k) can be considered as an even function. We as-
sume that w(k) is real. In most of the practical situations, even a monochromatic
light is not truly monochromatic. A finite spread of frequencies or wavelengths
exists. Origin of this spread may be due to finite duration of the pulse or some
incoherent broadening in the source. Since the Maxwell’s equations are linear, so
a linear superpositions of the plane wave solutions at different frequencies is also

a solution. We consider such a superposition

E(z,t) = \/% / E(k)yetkz—iwklt gpe (A.10)

where £(k) describes the properties of the linear superpositions of the different

waves and is given by

E(k) = \/%/_OO E(2,0)e""*dz . (A.11)

We assume now that the pulse, we are considering, is not too broad in the wave-

number spectrum. Further the medium, in which the pulse is propagating, is
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such that w has a weak dependence on k. Then we can expand

(k—ko)+--- | (A.12)

where we have assumed that £(k) is fairly sharply peaked around k = k;. Then

the pulse at some time ¢ is given by

dw
t,0 1 ko | — — A (A.13)

This shows that apart from an overall phase factor, the pulse travels along undis-

d
E(z,t):E(z— i

torted in shape with a group velocity

_do
-~ dk

Vg (A.14)

ko
For light waves, w(k) = ck/n(k). For most optical wavelengths, (k) is greater than

unity in almost all substances. Then

C C
N (A.15)
g pw) e

where n = 1 4+ 27Re[x(w)] is the linear refractive index, and n, is the group index.

Normally, one is much interested to calculate the group velocities at resonance.

Thus the group index n, is given by

n, = [77(“) + wag—g&)] w=wj;

0
= 14 27rReng (wij) + 2mw;; a—w(RexSﬁ)

w=wij

3NecA2 p
2 Y ReptV)
w=w;j + 2T &u ep”

3 NA2
= 14522 Relpl})

32 (A.16)

w=wij
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Coherent control in A systems : Basic equations

We consider the level diagram in Fig. B.1. We assume that the transition
between the levels |b) and |c) is dipole-forbidden. The pump (probe) is acting with
the transition |a) < |b) (|a) <> |¢)). Spontaneous decay can occur from the level |a)

to the other two levels. The pump and probe fields are given by

E;= e ™t 4 £ et (i e1,2). (B.1)
The Hamiltonian in the dipole approximation can be written as

H = h(wala){a] + wplB) (] + wele) (el) — h(dipla) (b] + dicla) (el + c.).(By + Br).  (B.2)

We use the Liouville equation and consider all the decays possible in the system.

Then the density matrix equations under RWA in the rotated frame

ﬁab — pabeiwlty ﬁac — paceiW2t7 and ﬁcb — pcbe_i(Wl _w2)t- (BS)
A >
S
| T [
Ql yba I :
W Chb e Yea (%22

|lc>

Figure B.1: Level configuration of a Lambda system
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can be written as

by = 1(PabS2} — c.c) + YbaPaay

Pec = 1(Pacfs — c.C) + YeaPaas

pap = (iA1= Tap)pab — 1 (Paa — Pob) + 1Q2pe,

o = (iD= Tac)pac — 1 (Paa — Pec) + 1 fre,

o = {i(A2 = Ay) = Toe} e + i fac — 12/ , (B.4)

where we have used A; = w; — wap, Az = w3 — Waes Tab = Tac = 5(Voa + Yea) + Yeolls
The = Yeon. Here Q4 = dyy.Ey/h and Qy = d..E,/h represent half of the pump and
probe Rabi frequencies. These equations can be solved in the steady state, i.e.,
in the long time limit (¢ > 1/v), when the time-dependence of the p,3 can be
neglected. We assume that atomic population initially resides in the ground level
).

We consider €2; > 2, and expand

. . Qy

Fap = Py + 00 (B.5)
upto first order of the probe Rabi frequency. Comparing the coefficients of QF
(n € 0,1), we obtain the following solution for the probe coherence:

. Q ~(1) _ & iv[i(A1 — Ag) 4 Tpe]

ac — — Pac — - - ) B.6
Pac = e = T~ iAg) (Toe - (A1 — Ag))] F |02 (5.6

under the condition that the atoms initially reside in the level |¢). Note that the

imaginary part of p,. under two-photon resonance can be written as

_ Pbc(racrbc + |Ql|2)
{Facrbc + |QI|2}2 + A%ch 7

Im(pac) B.7)

which becomes zero if there is no collisional relaxation, i.e., if y.on = 0 (i.e., Ty = 0).

This situation corresponds to EIT, which will be described later.
Dressed State analysis

Using the transformation

|¥) = exp [—iwgt|a){a| — i(w1 — w2)t|b)(b]]|®) (B.8)
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so that the Schrodinger equation |¥) = —iH/k|¥) becomes |¢) = —iHz/h|¢), we

obtain the following effective Hamiltonian under RWA:

PHa = —Dgla){al + (A~ A2)[5)(] - [915)al ~ [94]la) o
~[2lla)e] — |9} al ®.9)

The eigenstates of this Hamiltonian are the dressed states of the Lambda system

and can be expanded as
|k) = agla) + Br|b) + vklc) ; k= =,0. (B.10)

The coefficients are as follows:

o . wr (A — Ay —wy)
ﬁk - 0,12 2 A A 2 0,12 2 |Ql|wk
\/(| 2| ‘|‘wk)( 1 Z_Wk) ‘I'l 1| “r —|Qz|(A1—A2—wk)

(B.11)

Tk

The corresponding eigenvalues are

1 2 1, [_27C+2A%-9A4B
wk:—gA:tgvAZ_?)Bcos[gcos {ZF 2(A2—3B)3/2 }:| (B.12)

with
A= (A1 —2A3), B=—Ay(A; — Ag) — |]? — [Q2)?, C = |2*(A — Ay) . (B.13)

In case of two-photon resonance A; = A; = A, the eigenstates become

Oé+ —LJ+
1 1

ol Bl werenyed WH wi = 5 [A = VAT AT F %P

wi + +
o e T\ 1
(0] 1 0
= —] —|Q ;0 wo=20

oo o | %

Yo Q4|

O _ —W_
1 1

o | = | 1l |t e-=5 A VAT IRP)
Q Q

- Vel + 192+ () %]
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Bare Picture Dressed Picture
|->
o> ————— - 2/c|
) |[+>
Pump
Ib> Probe Probe
lc>
|0> (|c>)

Figure B.2: Dressed state picture of Lambda system for resonant pump field.

Utility of the dressed state analysis : EIT

In a A system, under the condition A; = A; = A, a zero occurs in the absorp-
tion spectra, referring to a transparency point for the probe field. This is called
electromagnetically induced transparency (EIT). Also there are two Autler-Townes
peaks positioned at w; and w_. If we consider Q; = 0 then the positions of these

peaks become

1
wi = FlA-VAT+ Q1]

1
oo = SlA+ VAT, (B.14)

The dressed states (dressed by the pump field only, assuming ; = 0) for Ay =0

(resonant pump) can be written as

1 1
+) = EHQH 0)), 10) =le) s [-) = E(MH 10) - (B.15)

These states have been shown in Fig. B.2. The frequency separation of these
states is 2|2;|. The two absorption peaks are at A, = +|€;| corresponding to the
|c) & |—) and |¢) <> |+) transitions, respectively.

Consider now the expression for p,.. The imaginary part of it is zero if I',, = 0
and the real part of it is zero if A; = A, (two-photon resonance). These are the
characteristics of EIT. Lambda systems are very useful to obtain EIT, because the

decay rate of the ground levels is very much small. This leads to large coherence
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time of the ground state coherence.
Positions and widths of absorption peaks

To calculate the exact positions and widths of the EIT peaks without any ap-

proximations, we write p,. as the sum of two Lorentzians
F(A) F(A.)

Pac = + ) (B.16)
(A —A0)(A: - Ay T AT ANB - A
where
1 i
F(A:l:) - _§(A1 + M) + §(Fac - Fbc)
M = /4[2 — (Tpe — Tac +iA)2. (B.17)
Here, Ay are the two poles of the denominator of p,. and are given by
Ay 1
Ay =— — —(Lac+Th) £ =M. B.1
=5 ~3act+ D)+ 35 (B.18)

Real part of this would give us the positions and the imaginary part gives the
widths of the absorption peaks. If we consider the pump field to be one-photon

resonant, i.e., A; = 0, then

A = /AU = (Toe = Tac)?) = 5(Tac +Tc) (B.19)

Thus, the position of the absorption peaks are given by the first term above and
the width of the peaks becomes (I'y. + I's.) /2. Note that for A; = 0, the positions of
the absorption peaks are not exactly +[,

, rather it has some I'-dependence.
Further, if we assume that Im(y) has very small variation at resonance, then

we can expand

82
Im(x) = Imx (6 = 0) + 52W1m(x)|5:0 S (B.20)

At EIT, the first term of the above expression vanishes and thus the absorption

coefficient can be written as

82
al = 4rkl52wlm(x)|5:0 . (B.21)
Thus the width ¢ of the EIT window can be expressed as ¢? = §2/2al such that
1 20 |4
o? = = , (B.22)
8kl 25Im(y)|s=0  SNKINTZ

for Ay = 0. Clearly, EIT window narrows down with increase in number density

N. This width increases with Rabi frequency |©2;| of the control field.
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Coherent control of = systems : Basic equations

We consider the level diagram in Fig. C.1. We assume that the transition between
the levels |a) and |c) is dipole-forbidden. The pump (probe) field is acting with the
transition |a) < [b) (|b) <> (c)). These fields are given by

E; = e it 4 Ereit (i€ 1,2) (C.1)
The Hamiltonian of the system in the dipole approximation can be written as:

Hy = h(wa|a)(a| + wp|b) (] 4+ we|e)c|) — Adap|a)(b] + dye|b){c| + c.c.).(Ey + E3) . (C.2)

The density matrix equations can be obtained using the Liouville equation
considering all the possible decay channels into account and using the RWA in

the rotating frame

ﬁab — pabeiwlty ﬁbc — pbceiwﬁy and ﬁac — pazcei(w1 Fuz)t . (CS)
We thus obtain the following equations:
ﬁaa = z.(Qlﬁbﬁl - Qiﬁab) - 7bap~aa7
ﬁcc = (iQ2ﬁbc - 29;56[)) + ’chﬁbby
lbbb = _(Ibaa + :5cc)7 (04]
bab = Z.Alﬁab - Fabﬁab - iﬂl(ﬁaa - ﬁbb) — iQ;ﬁacy
ﬁbc = iA?ﬁbc - Fbcﬁbc - Z.92(ﬁbb - ﬁce) + Z'Q»{ﬁac,

lbac — 7(A1 + A2),5ac - Pacﬁac + lQTﬁbc - iQZﬁaby

where we have used, A; = w1 —wap, Az = wy — Wbe, Tac = $Va + Yeolls Tbe =
v+ Yool Tab = 3(Yba + 7eb) + Yeon- Here Qi = dup.E1/h and Qy = dy..E»/h are half

of the pump and probe Rabi frequencies, respectively.
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Y Ib>
' ! A
______ \ 0 2

' o

Figure C.1: Level diagram for Ladder System

In steady state 7, 3 is made zero. Also in our consideration Q; < €2;. So we will

expand pj,g in terms of Q; as:

Fan =P+~ 7 (C.5)

Using the above, we have the following perturbative solution for the probe coher-

ence: Thus,

Q1) _ i7{Tae — (A1 + Az)}

) | . . (C.6)
Pe = T Poe = I (A + Ag) HTpe — 10 4 [022

Position and widths of the absorption peaks

We consider the expression for g,. above. The poles of this complex function

can be found by solving the denominator for A,. The solution for A, gives

_{AI + i(rbc + Fac)} + \/{AI + Z.(]-—‘bc + Pac)}z + 4(Fachc - iAIPbc|Ql|2) .
(C.7)

Ay =

DO | —

For Ay =0 and I',. = I'y. =T, this yields Ay = £[Q,| — iI". Clearly, there will be two
absorption peaks at A, = £|Q;| with width T3.

3For |Q:| = 0, one retrieves the two-level result A, = —iT., which refers to a single peak at A, = 0
with width I',.. Because, we are not solving the present problem with all orders of 2., so we are not
getting the power-dependence of the width of the absorption peak in two-level limit [see Eq. 1.54].
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Further, we note that at two-photon resonance (i.e., Ay + Ay, = 0),

Luc(Tac + Toe + [21]?)
(Pacrbc + |QI|2)2 + A%PZC

Im(jy.) = (C.8)

Note that the imaginary part can never be zero, as I',. # 0. However, at two-photon
resonance,

—AoT2,

Re(fre) =
©Pe) = (T, T 5 1 [7)? + AL,

(C.9)
can be zero only if Ay = 0.
Dressed State Analysis

Using the transformation
|9) = exp [—iwnt{b) (5] — iwr +w2)tla) al]|)

and RWA, we obtain the following effective Hamiltonian H.g with no explicit time-

dependence:

FHa = —al)(bl - (A1 + Agla)(al - 9I5| - [2alle)

=[S [la){bl = [€2|b){al. (C.10)

The eigenstates of this Hamiltonian are the dressed states of the present sys-

tem. They can be written as:
|k) = agla) + Bilb) + vklc) 5 k= +,0. (C.11)
These eigenstates are given by:

ag . [€2; |wg
= —Wi (Al + Agy + wk) . (C.12)

0,12 2 A A 2 0,12 2
\/(| 2| +wk)( 1+ 2+wk) +| 1| @k |Qz|(A1—|—A2+wk)

Tk

The corresponding eigenvalues are

1 2 1 27C + 243 — 9AB
_ _ = z 2 _ z -1
wE = 3A:i: 3\/A 3B cos [3 cos {:F S(A2 = 3AB)3/2 H (C.13)

with

A= (A1 +2A;), B=Ay(A14+Ag) — |2 — Q]2 C =~ (A1 +Ay) . (C.14)
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In case of two-photon resonance A; = —A; = A the eigenstates are

ay . |€2:] .

By | = NE —— |~y |1 e =5 A VATT AP TP
ws +112 4|22

7 FHMEEIRE o,

g . — [

= —————— | 0 |; w=0

. VIl + P

Y0 €|

°- 1 ] 1

b | = oo |0 wn= g5 (A VAT R F RP)
w2 4| ]? 4 |Q2]?

. . T

Utility of the dressed state analysis

The dressed state analysis provides us the exact physical understanding of the

0),

process. To start with, we set Q; = 0. Then the eigenvalues for the state |+),

and |—) become

1
w4 = §[A:F \/A2+4|Ql|2], wo = 0. (015)

The dressed states under this condition become,

4) = e [1]la) — wy [B)],

NG
0) = o), (C.16)
o) = e [|]la) — w[B)].

Vw2 4 Q]2

Clearly we can see that from the above expressions that the levels |a) and |b) are

dressed by the pump filed ©; and the level |¢) remains unchanged. For simplicity,

if we now consider the case of one-photon resonance, i.e., A =0, then w; = —|Q4],
w_ = || and
+) — [la) + 1)1, =) — [la) = 16)] (C.17)
— a , —) = a) — . .
V2 V2

These states have been shown in Fig. C.2. Clearly, there are now two levels |+)

, which are the dressed states

and |-) separated by a energy difference of 25|,
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Bare Picture Dressed Picture

la>

T Pump [->
> ———— L2

‘Az [+>

T Probe T Probe
|c> |0>
(Ic>)

Figure C.2: Dressed picture for Ladder system for resonant pump (A; = 0).

comprised of the levels |a) and |b). So if now one applies the probe (= 2;), then
there will be two Autler-Townes peaks in the absorption spectrum separated by
2|€4|, corresponding to |c¢) <> |*) transitions, respectively. Note from the expres-
sions for w;, that the absorption spectrum becomes symmetric about A; = 0 only

if the pump is also resonant (A; = 0).
Pump-probe interchanged

Here we consider the case, when the pump (probe) field is applied in the |b) +»
lc) (la) <> |b)) transition. This is a situation reverse to the case discussed above.

Thus we can consider ©; < Q,. Then we can expand j,3 in terms of ; as follows:
. . Q _
ag = Py + 7k (C.18)

then we can get the following steady state solutions:

i =0,

5O 2[Q2|° Ty
" Yeb(TE, + AF) + 4|22,

15(0) — 2|QZ|2Pbc + 7cb(rl27c + A%) 7 (C.19)
“ 4[|y + 7cb(rgc + A%)

(0) 1Q297ep(Doe +1A9)

Py - 2 2\
¢ 4|92l2rbc + 7cb(rbc + Az)

~(1) i) {(Toe + iA2)yep + 2Dpe[—1(A1 + Ag) 4 Toc]}

Pab {7eb (The + A) + 4l0°Toe H{ (Tap — iA1) [Tac — i(A1 + Ag)] + [Q22[?}
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Coherent control in 'V’ systems : Basic equations

We consider the level diagram in Fig. D.1. We assume that the transition be-
tween the levels |a) and |b) is dipole-forbidden. The pump (probe) field E, (B, is

interacting with the transition |a) <> |c) (|a) < |b)). These field are given by
E;= e ™t 4 Erewit | (1e1,2). (D.1)
The Hamiltonian in the dipole approximation can be written as

Hy = h(wa|a)(a] + wp|bY(b] + welc)e|) — (duela)(c] + dpe|b){c| + c.c.).(E1 + E,) . (D.2)

Using the Liouville equation taking all the decays possible into account, we

[a>
o> ‘ _______ P
S s
I ' Wy
(VY Y,
W Ve lec :c ca Q,
Q, I |
\ \
|c>

Figure D.1: Level Configuration for a V-system

130



Appendix: D 131

obtain the following equations for the density matrix elements:

faa = —VeaPaa + (1 fea — Vifac),

Py = —YebPob + 1(Q2peh — Vpve),

Pec = —Paa— Prb (D.3)
fac = [iA1 = Taclpac + i[Q (Pec — faa) — Q2fa],

fre = [iD2 = Tuelpve + i[Q(Pec — o) — Q1 fbals

Pap = [I(A1 = Ag) — Taplpab + i peb — 10 pacy

where we have used the RWA in a rotating frame such that

twit -(‘Ul _W2)t

ﬁac = Pact 3 ﬁab - pabel 3 ﬁbc - pbceiw2t- (D4)

Here we have defined the detunings A’s and the decay terms I'’s in the following
way: Ay =w — Waces Ay =wy — Whe; Lae = %’Yca + Yeoll; Lpe = %7cb+7coll; Lap = Yeoll- The
half of pump and probe Rabi frequencies are defined as

_ ducti

g

Q
! h

Qy (D.5)

In steady state condition (5, 3 = 0), we expand the density matrix elements in

terms of the probe field Q, (<« Q) as

N N Qy
fas = Pap+ 72[)&1/; (D.6)

Using above, we have the following perturbative solutions:

N 2C 4| 2
0 _ acl°l D.7
P = T8 T AT) + AT O -7
,5(1) _ —Z"’)/{Fab + (A — AZ)}{'VCG(FZC + A%) + 2PGC|QI|2} + |QI|276a(Pac —1Ay)
be {7ca(r(21c + A%) + 4Pa6|91|2}[{rab + 'i(Al - AZ)}(iAZ - I-‘bC) - |Ql|2]
(D.8)

Dressed state analysis

Using the transformation |¥) = exp[—iwit|a)(a| — iw2t|b)(b[]|¢) the Schrodinger
equation becomes,

.0
22— pglo) (0.9)
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where H.g is the effective Hamiltonian and is given by

Ha = —Adla)al - 2alb)(8] - 19116} 0] - [al18) (e

—[$21]a)(c| = [ ]]c){a] (D.10)

The dressed states are the eigenfunctions of this Hamiltonian. For the V' config-

uration, the three dressed can be written as :
|k) = agla) + Belb) + vxlc) ;5 k==,0. (D.11)

So the eigenstates of the Hamiltonian are given by

ag . =21 [(Ag + wy)
Be | =% — |22 (A1 + w) , (D.12)
Tk (A1 4 w) (A + wi)

where N = \/(Al +wr)?(Ag +wi)? + [21|2(A2 + wi)? + Q2 (A + wi)?. The correspond

ing eigenvalues are,

1 2 1 2 243 — 9AB
wp = ——A+=4/A2 —3Bcos |=cos™! F %5 93 ) (D.13)
33 3 2(A? - 3B)2
where,
A=—(A14+Ay), B=AA;— |2 = Q)% C=|0°A1 +|0)%A, . (D.14)

In case of single-photon as well as two-photon resonance, A; = A, = 0, the

wy =4/ 492, w=0, (D.15)

and the eigenstates are given by,

eigenvalues reduce to

oy . =[]
B+ | = — (€]
Q12 + [Q2? +
T+ \/ * Wt
ag . —[€2|
= |

” e
7o
o . =[]
B- = — || (D.16)

V19112 4 1902 + 2
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Bare Picture Dressed Picture
la>
|b> |0>
(Ib>)
Probe
Probe Pump
-2 |[+>
o>——————— - 2icy]
|->

Figure D.2: Dressed state picture of V system for resonant pump field.

Now for Q, = 0, the dressed states become

1 -1
)= Z5(la) 1) 10 =), 1) = 5 (la) +1e) (D.17)

These dressed states are shown in Fig. D.2. The absorptions in the transitions

|b) ++ |£) produce the two peaks in the absorption spectrum at Ay = £(€;].
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Pulse propagation in an atomic media

We start with a Gaussian profile of a pulse passing through the medium:

. —_ 50 —(w—w0)2/o-2
Ein(w) = Uﬁe . (E.1)
Thus the temporal profile of this pulse can be calculated as
Ein(t) = / dwEin(w)e@U=2/¢) = goe=7 T [1gmiw0T (E.2)

where 7 =1t — z/c.
After passing through the atomic medium, the output electric field in time-
domain becomes

Eout (t) = /oo dw&ip (w) exp[—iw{t — %(1 + 27 x(w)}] (E.3)

where x(w) is the susceptibility of the dilute medium, such that |47 x| < 1.
To integrate the above, we now expand x(w) in a Taylor’s series about the
central frequency wy of the input pulse. We expand upto second order derivative

of y. Thus after integration, we obtain

o 50 . 4 4 _P2/4Q
Eout (t) = N exp[—iwo{t . 27rcx(w0)}]e , (E.4)
where
P = ¢ {t _Z 27rix(w0) — 271'w0i 8_)( } , (E.5)
c c ¢ 0wy,
_ 19 P2 )W X ox
Q =1 27TCG' {2! 2 . o w:wo} . (E.6)
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Clearly, the input and output intensities are given by

2

En(®)]* = |50|2exp[—%(t—§)2]7 (E.7)
Eou®)* = |solzﬁe—fﬂ/2@

_ |50|2 ~ 0'2 z 2

e 7t [_E (t—g> : (E.8)

where

c %)
vy = — ng = 14 2mx(wo) + 27wo a—i
g

(E.9)

w=wo
defines the group velocity.

Clearly, in course of propagation through the atomic medium, the amplitude
reduces to 1/|Q|th of the initial amplitude, width of the output pulse changes to
\/@Qth of the initial width, and the velocity changes from ¢ outside the medium to
¢/ng inside the medium.

We should emphasize that while passing through the medium, the width of the

pulse changes. This is determined by the factor ), which can be rewritten as

) o [ d?
Qr1—izk, K= 5 |02 {w[l+ 27rx(w)]}] . (E.10)
Thus the reduced output intensity becomes
2 2
1ol _ 5ol ~ |&|* (1 — zImk). (E.11)

VQQ*  \/1+ 2zImk + 2[k?
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Some important issues

Calculation of spontaneous emission rate for hyperfine manifold

The problems we have dealt with in this thesis frequently require the exact val-
ues of the spontaneous emission rate from the atomic excited level. The available
value A (i.e., the Einstein’s A-coefficient) of this rate is defined in terms of J — J'
transition (All the primed parameters are defined for the ground levels). However,
whenever the problem involves the hyperfine structures, the decay rate should be
properly calculated. We summarize the required formulae for this from [177] for
quick reference.

The A-coefficient is defined by
45 |(J]| D I
3hc3’ 2J+1 ’
where (27 + 1) is the multiplicity factor. The term |(J || D || J')?| is the reduced

Ajsy = (F.1)

matrix element and can be written in terms of the reduced matrix element of the

involved hyperfine levels through

2
. J F I
ldpp| = [(JIF || D | J’IF')2(2F+1)(2F’+1){ oo } [(JIID T

(F.2)
The terms .J, I, F are self-explanatory. The curly bracketed term is the Wigner
67-symbol and can be calculated from the standard tables [177]. We define

403

oy = =
¥ 3hc3|(

JIF || D | JIF)?. (F.3)

Thus, v can be calculated using the known value of A;_, ;.. This helps in calculat-
ing the total decay rate Ar ' from the F level to F’ level.
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Now one has to calculate the dipole matrix elements between the levels (mg, mg/)

through the formula

F 1 F
(JIFmp|Dy|J' IF'mpy = (~1)F =™ (JIF || D || J'IF') . (F.4)
—mp q Mg

where ¢ = +1 for mp — mp = +1. The reduced matrix element is the same for
a given F — F’ manifold. The last term is the Wigner 3j-symbol and can be
calculated from the standard table [177]. Thus, when there are multiple decay
channels, one can calculate 35 symbols for each transition and combining all
these, one finds the value of v from the known value of A. As A has the dimension
of frequency (conventionally it is defined as 27 x a few MHz), the parameter v also
has the same dimension.

Here we are using the following convention: For mr — mp = %1, the unit vector
for the dipole moment matrix element will be éz and the o4 (= é4+) component of

the input electric field interacts with corresponding transition. Note that ¢} .é;x = 1.
Zeeman splitting

Having known the value of v, we can calculate the value of magnetic field
required for certain Zeeman splitting, say, B = nv, n being any multiplicity factor.

We identify this with the Zeeman separation AF through the relation
AE = —upgrmprM = hB (F.5)

where M is the magnitude of the applied magnetic field, g7 is the hyperfine Lande’
g-factor, and pp is the Bohr magneton. Note that the level mp = +1 (mp = —1)
shift downward or upward upon application of the magnetic field, depending upon
whether gr is positive (negative) or negative (positive). The term gz can be calcu-
lated from the following formulae.

JWJ4+1)-L(L+1)4+S(S+1)

g7 = 1+ 27+ 1) . (F.6)
B FF+1)+JJ+1)-1I(I+1)
gr = g5 X SE(F+ 1) . (F.7)

Calculation of power of the applied field

Because most often in the thesis, we are dealing with weak and strong fields,
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it is very important how much power it refers to. The half of the Rabi frequency is
generally defined as a multiple of the parameter v. Thus it has the dimension of
frequency. Further, we know G = |Ja5||é)|/ h. Clearly one has to know the dipole
moment matrix element |d, 3|, so that we can calculate |&|. The power of the field
is given by the magnitude of the Poynting vector § = (c/47)(E x B) [1] and it can
simply expressed as

pP= 2i|50|2 . (F.8)
™

As we have discussed in this Appendix, the dipole moment matrix element is
given by the reduced matrix element |(J || D || J')| multiplied by some number.

This reduced matrix element is given by

, 3/ 2)\?
D=5 (52) 4. F.9)

where A is the transition wavelength. Using all these relations and putting the
values of all the relevant parameters in CGS unit, one calculates the power P in

erg s~! cm~? unit.
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Analytical calculation for susceptibility in a Doppler-broadened medium

In this appendix, we show how one can integrate the Eq. (3.20). We replace §
and A in the expressions for y+ by their Doppler-shifed values 4§, = § + kv, and
A, = 2B + kpv,. Thus changing the integration variable from v, to 4., we find that
the integration in (3.20) takes the following form:

1 > 5y — 6)2
/ X+ (51;) exp{—%}d&] . (G 1)

<Xﬂ:(5v)> = 2 2

2
2rwi,

The standard form of the error function [175] is given by

$2

W) = %/_OO ;__tdt. (G.2)

Comparing the form (G.1) and the above formula, we have the following results

for the averages:

2
To
(v (B) = T ) ©.3)
uuD
where
_ 1 2 :
& = V2wp | 6—A+3B+ily, (O+B+iley)]
—§+ B —il,
€ = +\/§w Uesg (G.4)
’ D
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