
STUDIES ON NONCOMMUTATIVE

FIELD THEORIES

A THESIS

SUBMITTED IN PARTIAL FULFILMENT

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

BY

T. SHREECHARAN

SCHOOL OF PHYSICS

UNIVERSITY OF HYDERABAD

HYDERABAD 500 046 INDIA

DECEMBER 2005



TO MY PARENTS



Declaration

I hereby declare that the material presented in this thesis is, the result of investigations carried out

by me in the School of Physics, University of Hyderabad, under the supervision of Dr. Prasanta

K. Panigrahi (currently at the Physical Research Laboratory, Ahmedabad-380 009).

The results reported in the thesis are new to the best of my knowledge, original and has not

been submitted in whole or part for a degree in any university.

In keeping with the general practice of reporting scientific observations due acknowledgement

has been made whenever the work described is based on the findings of other investigators.

T. SHREECHARAN

Place: Hyderabad

Date:

i



Certificate

This is to certify that the work embodied in this thesis entitled “Studies on noncommutative field

theories”, has been carried out by Mr. T. Shreecharan, under my supervision and the same has

not been submitted in whole or part for a degree in any university.

Dr. PRASANTA K. PANIGRAHI

DEAN

SCHOOL OF PHYSICS

ii



Abstract

The present thesis is devoted to the study of effect of noncommutativity in space on various aspects

of field theory. We first compute the effect of a noncommutative background on the magnetic

moment of charged particles in a planar field theory. Specifically, we study this in the context

of a Chern-Simons field theory representing anyons. The fact that this theory is relevant for the

fractional quantum Hall effect makes this study worthwhile. We then study the symmetry aspects of

interacting fermions on the plane through the Slavnov-Taylor identity. The non-Abelian structure of

the U(1) noncommutative field theory necessitates the above analysis. This formal study is followed

by the computation of the magnetic and electric dipole moments. Several interesting results are

obtained from the above analysis. The effect of the noncommutative background on the theories

exhibiting phase transition is then analyzed through a non-perturbative approach. In particular,

we study the Bardeen-Cooper-Schreiffer (BCS) theory and find the effect of the noncommutative

parameter θ on the order parameter. The effect of noncommutativity on the structure of the

vacuum is investigated.

This thesis is organized as follows. In chapter 2 we introduce noncommutative Chern-Simons

theories coupled to matter fields, bosonic as well as fermionic, in the fundamental representation.

We state the interaction vertices necessary for various perturbative calculations. In Chapters 3 and

4, we evaluate the one loop vertex diagrams, for the bosonic and the fermionic cases respectively.

These yield various moments for the scalars as well as the fermions. In Chapter 5, the structure of
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phase transition in noncommutative BCS theory is studied and the impact of the NC parameter

on the BCS vacuum is analyzed. We conclude in the final chapter indicating the open problems

and directions for further research work.
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Chapter 1
Introduction

The idea of noncommuting variables made their appearance with the advent of quantum mechanics,

although it was familiar to the mathematicians dealing with matrices. As is well-known [35], the

canonical classical phase space variables, upon quantization, obey,

[xi, xj ] = 0, [pi, pj ] = 0, [xi, pj ] = i~ δij . (1.0.1)

The consequence of noncommuting phase space variables results in the Heisenberg uncertainty

relation: ∆x∆p ≥ ~/2. The presence of non-zero variance ∆x and ∆p means that localization of

points is not possible in phase space, a situation which led von Neumann to a rigorous study of the

“pointless” geometry of the quantum phase space.

In recent times, this noncommutativity of phase space variables has been extended to real

space-time coordinates [1, 2]. The previously commuting coordinates are replaced by the Hermitian

operators xi satisfying

[xi, xj ] = iθij . (1.0.2)

Here θij is a constant real valued antisymmetric matrix with the length dimension two. The

immediate consequence of the above replacement is that the space-time coordinates satisfy the

uncertainty relation ∆xi∆xj ≥ |θij |/2. From the previous experience of quantum phase space, a

space-time point is now replaced with a Planck cell of area ≈ |θ|.
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1.1. Noncommutative classical mechanics

In 1947 Snyder [86], taking a cue from Heisenberg, constructed a new set of Lorentz transfor-

mations where the underlying space-time structure was noncommuting. This was motivated by

the immediate need to tame the divergences that had plagued quantum electrodynamics (QED).

It was believed that the presence of a fundamental length scale would provide a natural ultraviolet

momentum cut-off [39]. This idea of noncommuting coordinates was later abandoned due to the

successful implementation of the renormalization program. Noncommuting geometry resurfaced in

mathematics and physics literature in the 1980’s [1].

On the mathematical front, noncommutative (NC) geometry has been pioneered by A. Connes

[1]. The idea was to study the noncommuting algebra of functions and from this algebra construct

a noncommutative version of the Gelfand-Naimark theorem. This enables one to extend various

aspects of classical differential geometry to the NC setting. In physics, NC coordinates came into

vogue when it was found that certain string theories with background field, naturally gave rise to

NC coordinates. Subsequently it was shown by Seiberg and Witten that, the gauge theories on

noncommuting coordinates can be mapped to the gauge theories with commutative coordinates.

This map goes by the name of Seiberg-Witten map in the literature [83].

This spurred a lot of activity in the physics community. The developments ranged from NC

classical mechanics, NC quantum mechanics to string and gauge theories.

1.1 Noncommutative classical mechanics

Noncommutative classical mechanics [3, 33, 36, 79, 80] may sound, at the outset, quite improbable

due to the absence of operators, but we will see that postulating a symplectic structure on the

phase space of functions, one can consistently construct a NC version of classical physics.
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1.1. Noncommutative classical mechanics

1.1.1 Modification to the Newton’s law

The theory under consideration is defined by a set of canonical variables ζa, with a = 1, 2, · · · , 2n

with a symplectic structure {ζa, ζb}. For arbitrary functions of ζa one can consistently write

{F,G} = {ζa, ζb} ∂F
∂ζa

∂G

∂ζb
. (1.1.1)

The equation of motion with the above symplectic structure is

ζ̇a = {ζa, H}, (1.1.2)

where the Hamiltonian (H) is a function of ζa. Similarly for any function F in this phase space,

time evolution is given by,

Ḟ = {F,H}. (1.1.3)

In three dimensional configuration space ζa = xi for a = 1, 2, 3 and ζa = pi for a = 4, 5, 6 and

i = 1, 2, 3. The new Poisson bracket relations with noncommuting coordinates are

{xi, xj} = θij , {xi, pj} = δi
j , {pi, pj} = 0. (1.1.4)

For any two arbitrary functions F and G in the phase space, we obtain the following modified

Poisson bracket

{F,G} = θij ∂F

∂xi

∂G

∂xj
+

[
∂F

∂xi

∂G

∂pi
− ∂F

∂pi

∂G

∂xi

]
. (1.1.5)

Let us consider the Hamiltonian

H =
pip

i

2m
+ V (x),

here V (x) is some arbitrary potential. The equations of motion are

ẋi =
pi

m
+ θij ∂V

∂xj
ṗi = −∂V

∂xi
, (1.1.6)

which can be cast in the form

mẍi = −∂V
∂xi

+mθij ∂2V

∂xj∂xk
ẋk. (1.1.7)

The above equation can be interpreted as the modified Newton’s second law due to the noncom-

mutative symplectic structure [79, 80].

3



1.2. Noncommutative quantum mechanics

1.2 Noncommutative quantum mechanics

Introduction of noncommuting coordinates in physics is natural in the quantum mechanical setting.

The commutation relation between the phase space operators that needs to be modified is [xi, xj ] =

iθij . This brings in many interesting features as will be explored in the simple below.

1.2.1 The Landau problem

In this section a simple quantum mechanical system is dealt with, which gives rise to NC coordi-

nates. The system that we have in mind is charged particles in a magnetic field [55].

Consider N electrons, whose position and velocities are

rk = (xk, yk), vk = ṙk, k = 1, 2, · · · , N. (1.2.1)

Electrons experience a constant magnetic field in the z-direction i.e., ~B = Bẑ. The gauge is chosen

such that, the vector potential is ~A(xk) = (0, Bxk) and ~B = ~∇ × ~A. The Lagrangian for such a

system is

L =
N∑

k=1

1

2
mv2

k +
e

c
~vk · ~A(rk)− V (rk)−

∑

k<l

U(rk − rl), (1.2.2)

where V is the electron self-energy which can arise from impurity and U is a pair interaction

potential between the electrons.

The Hamiltonian is obtained by the standard minimal substitution

H =
N∑

k=1

π2
k

2m
+ V (rk) +

∑

k<l

U(rk − rl). (1.2.3)

Here πk = pk−eA(rk)/c is the gauge invariant momentum and pk is the usual canonical momentum,

that obeys the usual canonical commutation relations

[xk, p
x
l ] = i~δkl = [yk, p

y
l ] and [xk, yk] = 0 = [px

k, p
y
l ]. (1.2.4)

It follows that

[πx
k , π

y
l ] = i~

eB

c
δkl. (1.2.5)

4



1.2. Noncommutative quantum mechanics

From the above equation we see that the gauge invariant momenta do not commute in the presence

of a magnetic field. This momentum can be written in terms of harmonic oscillator creation and

annihilation operators. In the absence of interactions, V = U = 0, the energy eigenvalues of the

normal ordered Hamiltonian are those of the Landau levels

E =
N∑

k=1

~ω(nk +
1

2
), nk = 0, 1, 2, · · · , (1.2.6)

where ω = eB/mc, the cyclotron frequency of the classical electron orbits in the magnetic field.

The mass gap between Landau levels is the constant ∆ = ~ω.

To see how a NC coordinate space emerges from the above Lagrangian, we take the B →∞ or

equivalently m→ 0 limit. In this limit Eq. (1.2.2) reduces to

L0 =

N∑

k=1

eB

c
xkẏk −

∑

k<l

U(rk − rl). (1.2.7)

We see that for every k the Lagrangian is of the form pq̇ − h(p, q), therefore the following commu-

tation rule is obtained:

[xk, yk] = i
~c

eB
. (1.2.8)

The above can be identified with the NC parameter as θij = εij ~c
eB . This completes our simple

example of the appearance of NC coordinate space.

1.2.2 Two dimensional oscillator

The Hamiltonian for the two dimensional oscillator is given by [44]

H =
PiPi

2M
+
Mω2XiXi

2
. (1.2.9)

Here X and P satisfy the commutation relations:

[Xi, Xj ] = −2i~θij [Xi, Pj ] = i~δij [Pi, Pj ] = 0, (1.2.10)

where θij is a real N × N matrix. Instead of working with the noncommuting coordinates X,

one can work with commuting coordinates x but with the products between the coordinates being

5



1.2. Noncommutative quantum mechanics

replaced by star product. We will have more to say about star products in the next chapter. For

the time being we can perform a change of variable: Xi = xi + θijpj , Pi = pi. These new variables

x, p satisfy the usual commutation relations: [xi, xj ] = 0, [xi, pj ] = i~δij and [pi, pj ] = 0.

The oscillator Hamiltonian in the new variables becomes

H = (1 +M2ω2θ2)Hθ, where

Hθ =
1

2M

[
pipi +M2ω2

θxixi + 2θM2ω2
θεijxipj

]
. (1.2.11)

In the above equation

ω2
θ ≡

ω2

(1 +M2ω2θ2)
(1.2.12)

and θij = θεij , where εij is the antisymmetric Levi-Civita tensor and obeys εijεjk = −δik. One

defines the creation (a†) and annihilation (a) operators such that

xi =
1√
2

(
~

Mωθ

)1/2

(a†i + ai), (1.2.13)

pi =
i√
2

(~Mωθ)
1/2 (a†i − ai). (1.2.14)

These operators satisfy the well-known Heisenberg-Weyl algebra

[ai, aj ] = 0, [a†i , a
†
j ] = 0, [ai, a

†
j ] = δij . (1.2.15)

Writing the Hamiltonian in terms of these operators

Hθ = ~ωθ(N + I + 2θMωθJ3) (1.2.16)

where N = a†iai, J3 = εijxipj~/2 = −a†i εijaj/2 and I is the identity operator. If θij is not

proportional to εij then, the third term of Eq. (1.2.16) will not be proportional to the angular

momentum. It would yield [Hθ, J3] 6= 0, implying that the rotational invariance is broken.

The NC two dimensional oscillator has a SU(2) symmetry. The generators Ja (a = 1, 2, 3) and

the Casimir operator J2 are

J1 =
1

2
(a†2a1 + a†1a2), J2 =

1

2
(a†1a1 − a†2a2), J3 = − i

2
(a†2a1 − a†1a2), (1.2.17)

6



1.2. Noncommutative quantum mechanics

and

J2 =
3∑

a=1

JaJa =
N

2

(
N

2
+ 1

)
(1.2.18)

respectively. One can verify that Eq. (1.2.15) implies that [Ja, Jb] = iεabcJc and [J2, Ja] = 0. Since

the number operator (N) commutes with the generators of the SU(2) algebra (Ja), it follows from

Eq. (1.2.16) that the energy eigenvalue problem becomes

Hθ | j,m〉 = ~ωθ(n+ 1 + 2θmMωθ) | j,m〉, (1.2.19)

where | j,m〉 are the eigenvectors of J2 and J3 simultaneously. The eigenvalues of J2 and J3 are

given by j and m, respectively. In the commutative case (θ = 0), the degeneracy of the nth energy

level is 2j+1 = n+1. Therefore, due to the presence of noncommutativity the degeneracy is lifted.

The angular momentum states | j,m〉 can be obtained using Schwinger’s construction for angular

momentum in terms of oscillators. The oscillator operators A†
±, A± are defined as

A± =
1√
2
(a1 ∓ ia2), A†

± =
1√
2
(a†1 ± ia

†
2) (1.2.20)

which satisfy the commutation relations [Aα, Aβ] = 0, [A†
α, A

†
β ], [Aα, A

†
β ] = δαβ, where α and β are

+ or −. We can define

| n+, n−〉 =
(A†

+)n+(A†
−)n−

√
n+!

√
n−!

| 0, 0〉, (1.2.21)

where n± are semi-positive definite integers, and A± | 0, 0〉 = 0, a complete and normalizable set of

common eigenstates of the Hermitian operators N+ ≡ A†
+A+ and N− ≡ A†

−A−. By construction

[N+, N−] = 0 and N = N++N−, J2 = 1/2(N+−N−), we can conclude that the common eigenstates

of energy and angular momentum can also be denoted as | n+, n−〉. The relationship amongst the

quantum numbers follows from n = 2j the relations for N and J3: 2j = n+ + n−, 2m = n+ − n−.

Instead of Eq. (1.2.21) we can write

| j,m〉 =
(A†

+)(j+m)(A†
−)(j−m)

√
(j +m)!

√
(j −m)!

| 0, 0〉. (1.2.22)

With this the NC two dimensional oscillator has been solved exactly. It is interesting to note that

the Lagrangian that gives the Hamiltonian of Eq. (1.2.16) is

L =
1

2
M ˙̃ql ˙̃ql −M2ω2

θθq̃lεlk ˙̃qk −
Mω2

θ

2
q̃lq̃l. (1.2.23)
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1.2. Noncommutative quantum mechanics

The second term in the above equation describes the interaction of a charged particle with a

constant magnetic field B. The components of the vector potential A are

Al =
M2ω2

θθc

e
εlkq̃k, (1.2.24)

the magnetic field in turn is given by

B = ∇×A = −2
M2ω2

θθc

e
= const (1.2.25)

here c denotes the speed of light in vacuum. Therefore, the NC two dimensional harmonic oscillator

maps into the Landau problem. This also shows that the dynamics of a system in presence of a

NC parameter is similar to the commutative case with a magnetic field.

1.2.3 Monopoles and magnetic fields

In our discussion of the NC oscillator we had mentioned that rotational invariance is preserved in

two dimensions unlike in higher dimension where rotational invariance is broken. In this section we

will take up an example which will show the construction of these generators for higher dimensions

and also bring out the similarities between the dynamics in the presence of a magnetic field to that

of dynamics in a NC space.

Consider a more generalized commutation relation between the coordinates : [xi, xj ] =

i~qθθ
ij(x, p) [9]. Here θ has been elevated to the status of a field instead of retaining it as a

constant tensor. The Jacobi identity

[pi, [xj , xk]] + [xj , [xk, pi]] + [xk, [pi, xj ]] = 0 (1.2.26)

implies that θ is a function of momenta only θ(p). To further explore the properties of the θ field

we examine another Jacobi identity

[xi, [xj , xk]] + [xj , [xk, xi]] + [xk, [xi, xj ]] = 0, (1.2.27)

which gives

∂θjk

∂pi
+
∂θki

∂pj
+
∂θij

∂pk
= 0. (1.2.28)

8



1.2. Noncommutative quantum mechanics

It can be noticed that the above equation is similar to the Maxwell equation ∇ ·B = 0, which can

be written in the above form with Fij = εijkBk.

Defining the angular momentum operator as Li = εijkxjpk the following algebra follows

[xi, Lj ] = i~εijkxk + i~qθε
j
klp

lθik, [pi, Lj ] = i~εijkpk,

[Li, Lj ] = i~εijkLk + i~qθε
i
klε

j
mnp

lpnθkm(p). (1.2.29)

From the above relations it is clear that the SO(3) algebra is broken. Therefore one would believe

that in the (x, p) space there are no rotation generators. To restore the algebra one considers the

transformation Li → Li +M i
θ(x, p):

[xi, Lj ] = i~εijkxk, [pi, Lj ] = i~εijkpk, and [Li, Lj ] = i~εijkLk. (1.2.30)

The second commutation relations leads to the position independence criterion M j
θ (x, p) = M j

θ (p)

and the third commutation relation yields M i
θ(p) = 1

2qθεjklp
iplθkj(p). Substituting these relations

in Eq. (1.2.30), we obtain the dual of the Dirac monopole in the momentum space [9, 40]

~Θ(p) =
gθ

4π

~p

p3
(1.2.31)

where gθ is the dual magnetic charge associated with the Θ field and is related to θ in the following

manner: θij = εijkΘk. Therefore one has

~Mθ(p) = −gθqθ
4π

~p

p
. (1.2.32)

The generalized angular momentum then becomes

~L = (~r ∧ ~p)− gθqθ
4π

~p

p
. (1.2.33)

This angular momentum operator now satisfies the usual angular momentum algebra.

1.2.4 Hydrogen atom

The Coulomb Hamiltonian in terms of the NC coordinates is [22]

H =
p̂p̂

2m
− Ze2√

x̂x̂
. (1.2.34)

9



1.3. Space-time symmetries

Similar to a variable change described in the previous section for the two-dimensional oscillator,

we perform the change given by

xi = x̂i +
1

2~
θij p̂j and pi = p̂j . (1.2.35)

The variables x and p satisfy the usual commutation relations of Eq. (1.0.1). In these new variables

the Coulomb potential becomes

V (r) = − Ze2√
(xi − θijpj/2~)(xi − θikpk/2~)

= −Ze
2

r
− Ze2xiθijpj

2~r3
+O(θ2)

= −Ze
2

r
− Ze2

~L · ~θ
4~r3

+O(θ2), (1.2.36)

where θi = εijkθjk, ~L = ~r × ~p. Using (~r × ~p) · θ = −~r · (~θ × ~p), we can write the modified Coulomb

potential as

V (r) = −Ze
2

r
− e

4~
(~θ × ~p) ·

(
−Ze~r
r3

)
+O(θ2). (1.2.37)

The higher order terms can be neglected since they carry higher powers of θ. To calculate the

energy spectrum and the wavefunctions, the NC effects can be treated as perturbations of the

commutative theory since the effects are assumed to be small. This also enables one to use the

usual wavefunctions and probabilities. Therefore making use of the usual perturbation theory the

corrections to the energy levels, to first order in θ, is given by

∆H−atom
NC = 〈nl′jj′z |

Ze2

4~

~L · ~θ
r3
| nljjz〉. (1.2.38)

It is worth mentioning that the above expression is similar to spin-orbit coupling, with the role of

spin being played by the noncommutative parameter θ.

1.3 Space-time symmetries

Poincaré invariance of the theory is of utmost importance for a consistent construction of field

theories. Using commutation relations for the coordinates given in Eq. (1.0.2), we notice that it

10



1.3. Space-time symmetries

violates Lorentz invariance since only the spatial coordinates are taken to be noncommuting. This

is done for the reasons of protecting the unitarity of the theory [46]. The obvious question then

that springs to mind is “How can we justify the construction of consistent field theories with a

constant theta?”.

In the next section we present the construction of Snyder [86] which states “It is usually assumed

that space-time is a continuum. This assumption is not required by Lorentz invariance. In this

paper we give an example of a Lorentz invariant discrete space-time”.

In the subsequent section, we will present new Lorentz transformations, which respect the

constant character of the NC parameter.

1.3.1 Snyder construction

Special theory of relativity is based on the invariance of S2 = c2t2 − x2 − y2 − z2 from one inertial

frame to another. Here the variables x, y, z, and t take on a continuum of values simultaneously.

Elevating these variables to the status of operators, it is assumed that the spectra of the space-time

coordinate operators are invariant under Lorentz transformations. The main point to be understood

is that this continuum of values is not the only solution and there does exist a Lorentz invariant

space-time in which there is a natural unit of length.

It is this introduction of a natural unit of length that forces the noncommutativity of the

coordinates. To find the explicit form of the operators x, y, z, t that possess Lorentz invariant

spectra we consider the homogeneous quadratic form

−η2 = η2
0 − η2

1 − η2
2 − η2

3 − η2
4, (1.3.1)

here η’s are assumed to be real variables. The coordinates are defined as

x = ia

[
η4

∂

∂η1
− η1

∂

∂η4

]
, y = ia

[
η4

∂

∂η2
− η2

∂

∂η4

]
,

z = ia

[
η4

∂

∂η3
− η3

∂

∂η4

]
, t =

ia

c

[
η4

∂

∂η0
− η0

∂

∂η4

]
, (1.3.2)
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1.3. Space-time symmetries

where a is the natural unit of length, and c is the velocity of light. The operators x, y, z, t are

assumed to be Hermitian operators. From the above equation it can be shown that the spectrum of

the above operators can be positive, negative or zero. The operator t, has a continuous spectrum,

from plus infinity to minus infinity.

The transformations leaving Eq. (1.3.1) and η4 invariant are covariant Lorentz transformations

on the variables η1, η2, η3, and η0. When the transformed variables η′1, η
′
2, η

′
3, and η′0 are substituted

in Eq. (1.3.2) it is found that x, y, z, and t undergo contravariant Lorentz transformation. The

new operators x′, y′, z′ and t′ that are formed by replacing η1, η2, η3, and η0 in Eq. (1.3.2) by η′1,

η′2, η
′
3, and η′0 are linear expressions with real constant coefficients in x, y, z and t and are Hermitian

operators.

Other physical operators can be defined as,

Lx = i~

[
η3

∂

∂η2
− η2

∂

∂η3

]
, Ly = i~

[
η1

∂

∂η3
− η3

∂

∂η1

]
, Lz = i~

[
η2

∂

∂η1
− η1

∂

∂η3

]
,

Mx = i~

[
η0

∂

∂η1
+ η1

∂

∂η0

]
,My = i~

[
η0

∂

∂η2
+ η2

∂

∂η0

]
,Mz = i~

[
η0

∂

∂η3
+ η3

∂

∂η0

]
. (1.3.3)

Here Lx, Ly, Lz, Mx, My and Mz are the infinitesimal elements of three dimensional Lorentz

transformation and commute with the quadratic form S2. It can be seen that Lx, Ly, Lz, Mx,

My and Mz do not involve η4 and as a consequence leave Eq. (1.3.1) invariant. Thus from the

above facts it is clear that the usual assumptions about the continuous nature of space-time are

not necessary for Lorentz invariance. The operators defined in Eq. (1.3.1) and Eq. (1.3.2) have

forty-five commutators, out of which only six differ from the ordinary ones. These are

[x, y] =
ia2

~
Lz, [t, x] =

ia2

~c
Mz,

[y, z] =
ia2

~
Lx, [t, y] =

ia2

~c
My, (1.3.4)

[z, x] =
ia2

~
Ly, [t, x] =

ia2

~c
Mx.
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1.3. Space-time symmetries

1.3.2 Constant θ and Lorentz transformations

As we have shown above the Snyder method is able to preserve Lorentz invariance but not Poincaré.

A way out of this quagmire is to postulate that the NC parameter itself is space-time dependent.

However, such theories have not been fully understood, furthermore in this thesis we have taken

our noncommutativity parameter to be constant hence, we will not venture into these proposals

any further.

The Lorentz transformation of the coordinates: x′i = Λi
jx

j is not compatible with the algebra,

defined in Eq. (1.0.2), since it requires θij to transform as a second rank tensor i.e., θij = Λi
kΛ

j
l θ

kl.

We have taken the NC parameter to be a constant, therefore it makes little sense to accept that it

transforms under Lorentz transformation. To get around this trouble an interesting solution was

provided in [16].

Similar to the commuting coordinates introduced for the Coulomb problem, we denote new

coordinates as xc

xi
c = xi +

1

2~
θijpj . (1.3.5)

These new coordinates are commuting and obey the algebra defined in Eq. (1.0.1). Since time is not

an operator in ordinary quantum mechanics noncommutativity can be restricted to only the spatial

coordinates. We take xc transform as xµ
c = Λµ

νxν
c that leaves the interval s2 = ηµνx

µ
c xν

c invariant

if ηµνΛ
µ
αΛν

β = ηαβ . Further the momentum four vector pµ transforms as an usual Lorentz vector

pµ = Λµ
νpν . Using Eq. (1.3.5), the NC coordinates transform as

xµ′ = xµ′
c −

1

2~
θµνp′ν

= Λµ
νx

ν
c −

1

2~
θνρΛ σ

ρ pσ. (1.3.6)

Using Eq. (1.3.5) once again, the final expression for the Lorentz transformation for the NC

coordinates are given by

xµ′ = Λµ
νx

ν +
1

2~
Λµ

νθ
νρpρ −

1

2~
θµνΛ ρ

ν pρ. (1.3.7)

The first thing to be noticed about the above transformation is that in the limit θµν → 0 we recover

the ordinary Lorentz transformation for the coordinates.
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1.3. Space-time symmetries

The square of the invariant length for the commutative coordinate xµ
c is s2 = ηµνx

µ
c xν

c .

s2nc = xµxµ +
1

~
θµν x̂

µpν +
1

4~2
θµαθµβpαp

β. (1.3.8)

It is easy to verify that s2nc is left invariant by the noncommutative Lorentz transformation Eq.

(1.3.7).
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Chapter 2
Noncommutative gauge theories

2.1 Introduction

In this chapter we outline the construction of gauge theories in the NC setting. Of central impor-

tance is the NC star product or the Moyal product [70, 48]. The convenience of star product lies in

the fact that it preserves the operator character of the coordinates but treating them as ordinary

classical variables. In the next section we derive the Moyal product and subsequently we show that

under the star operation only the U(N) gauge group closes and the others such as SU(N), SO(N)

etc, do not [66]. After that we present the construction of Wess and collaborators [57] where it is

indeed possible to go to other gauge groups including U(N). Then in Section IV we introduce NC

Chern-Simons (CS) theory and present our motivation for the study of magnetic moment (MM)

for the scalars as well spinors, that form chapters 3 and 4 respectively.

2.2 Star product

Noncommutativity of coordinates is incorporated by postulating the commutation relation of Eq.

(1.0.2). One can see that these are operators. Instead of working with operators, taking a cue from

developments in phase space formulation of quantum mechanics, one can work with functions but

by deforming the multiplication rule between these functions. This deformed product happens to
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2.3. Properties of star product

be the star product [48, 70]. Below we give a derivation of the star product for the NC coordinate

operators.

Weyl-Moyal correspondence associates a function to every operator valued object

Ŵ (X̂)←→ Φ(x). (2.2.1)

Now defining

Φ̂(X̂) =

∫

k
dκ ei k X̂ φ(k)

φ(k) =

∫
dx e−i k x Φ(x), (2.2.2)

where k and x are real variables. The multiplication of two Weyl operators is given by

Ŵ1(X̂)Ŵ2(X̂) =

∫

k

∫

p
dk dp ei k X̂ φ1(k) e

i p X̂ φ2(p)

=

∫

k

∫

p
dk dp ei (k+p) X̂− 1

2
kµpν [X̂µ,X̂ν ] φ1(k)φ2(p). (2.2.3)

The BCH formula has been used in obtaining the second equation. This gives the correspondence

Ŵ1(X̂)Ŵ2(X̂)←→ (Φ ? Φ) (x). (2.2.4)

Therefore we finally have the expression for the star product:

(Φ ? Φ) (x) ≡
[
e

i
2
θµν∂y

µ∂z
ν Φ(y)Φ(z)

]

y=z=x
. (2.2.5)

With the star/Moyal product having been defined the NC coordinate commutator can be written

as

(xi ? xj − xj ? xi) = iθij . (2.2.6)

This commutation relation with the star product put in, is called the Moyal bracket.

2.3 Properties of star product

In this section we enumerate a few properties of the star product.
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2.3. Properties of star product

1. An important relation deals with the exponentials. This relation is useful in finding the

Feynman rules in momentum space.

eikx ? eipx = ei(k+p)xe−
i
2
k×p, where

k × p ≡ kµpνθµν . (2.3.1)

2. Associativity:

[(f ? g) ? h] (x) = [f ? (g ? h)] (x), (2.3.2)

this is very easy to prove if we can go to the momentum space and then making use of the

relation given in Eq. (2.3.1).

3. Star products under the integral
∫
d4x(f ? g)(x) =

∫
d4x(g ? f)(x) =

∫
d4x(f · g)(x). (2.3.3)

This can be proved by going to the momentum space and using Eq. (2.3.1). The x integration

is performed yielding a delta function δ4(k + p). Since θ is antisymmetric the exponential

vanishes and hence we get
∫
d4x(f ? g)(x) =

∫
d4kf̃(k)g̃(−k) =

∫
d4x(f · g)(x). (2.3.4)

This particular property of the star product has important consequences for field theories on

NC spaces. It tells that the kinetic part of the action is same as its commutative counterpart.

Hence, only the interaction term of the action is affected by the star product. Therefore, one

can think of NC field theories as ordinary commutative theory but with a highly non-local

interaction.

4. From Eq. (2.3.3), we can obtain the cyclic property of the star products:
∫
d4x(f1 ? f2 ? · · · ? fn)(x) =

∫
d4x(fn ? f1 ? · · · ? fn−1)(x). (2.3.5)

5. Complex conjugation.

(f ? g)∗ = g∗ ? f∗. (2.3.6)

It is clear that if f is a real function then f ? f is also real.
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2.4. Noncommutative Schrödinger equation

2.4 Noncommutative Schrödinger equation

In the first chapter we had presented various quantum mechanical potential problems wherein the

technique of solving for the spectrum mainly relied in going to a new coordinate variable that

satisfied the usual commutative relations: [xi, xj ] = 0. This redefinition of variables looks ad-hoc

at first sight but, with the use of star product we show that such a redefinition of the coordinates

is quite natural. This shift is similar to the Bopp’s shift of the phase space variables, obtained

in the deformation quantization formalism of quantum mechanics. For this we start with the NC

Schrödinger equation

i~
∂ψ(x, t)

∂t
=

[
p2

2m
+ V (x)

]
? ψ(x, t). (2.4.1)

For the sake of generality we have retained the general form of the potential. We have already

pointed out that quadratic terms are unaffected hence, only the potential term is modified due to

the ?-product. Let us evaluate V (x) ? ψ(x)

= e
i
2
θij∂x

i ∂y
j V (x)ψ(y)|x=y

= V (x)ψ(y) +
∞∑

n=1

1

n!

(
i

2

)n

∂x
i1 · · · ∂

x
inθ

i1j1 · · · θinjn

∂y
j1
· · · ∂y

jn
V (x)ψ(y)|x=y.

Replacing ∂y
jk

= ∂/∂yjk ≡ ipy
jk
/~, and introducing the notation p̃y

ik
= θikjk

pyjk , we get

∂x
i1 · · · ∂

x
inV (x)p̃y

i1
· · · p̃y

in
ψ(y) = (i/~)n

∫
dDk eikxV (k)(ikp̃y)nψ(y). (2.4.2)

In the above expression we have gone to the momentum space. Summing over n we get

V (x) ? ψ(x) =

∫
dDkeikxe−

i
2~

kp̃y

V (k)ψ(y)|x=y

= V

[
x− p̃x

2~

]
ψ(x). (2.4.3)

The above equation shows clearly that we can work with operator valued coordinates or using the

star product one can work with the classical variables.
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2.5. Noncommutative gauge theories

2.5 Noncommutative gauge theories

Construction of gauge theories in the NC setting has been studied quite extensively [2]. The

main reason seems to be that it exhibits many interesting features that are absent in commutative

theories. For example one immediate thing that one notices is that due to the noncommuting

nature of the fields the U(1) theory itself has a structure very similar to that of its corresponding

non-abelian commutative theory. Then we have have the interesting feature of the UV/IR mixing

[67, 68]. Finally it must be mentioned that the renormalizability of such theories has been and still

is quite challenging and remains a open problem [27].

2.5.1 Only U(N) gauge groups

In this subsection it is shown that under a star operation only the U(N) gauge algebra closes and

the others do not [66]. Consider the U(N) algebra whose generators, X,Y , are anti-Hermitean

matrices: Xt = −X. The bar stands for complex conjugation. The crucial observation for the

proof is the following property of the Moyal product,

(X ? Y )t = Y t ? Xt. (2.5.1)

Using the ordinary rules for the transpose of matrices,

(X ? Y )t = Y tXt +
i

2
θij∂jY

t∂iX
t − 1

8
θijθkl∂j∂lY

t∂i∂kX
t + · · · (2.5.2)

The higher order terms are obvious. Now applying the complex conjugation and renaming the

indices of θ

(X ? Y )t = Y tXt +
i

2
θij∂iY t∂jXt − 1

8
θijθkl∂i∂kY t∂j∂lXt + · · · = Y t ? Xt. (2.5.3)

Taking into account X t = −X and Y t = −Y yields,

[X,Y ]t? = (X ? Y )t − (Y ? X)t

= Y t ? Xt −Xt ? Y t

= Y ? X −X ? Y = −[X,Y ]?. (2.5.4)
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This shows that the algebra U(N) is closed under the Moyal commutator.

Now turning to the algebras of SO(N), SU(N) and Sp(N). It is first shown that for N = 2

these algebras do not close w.r.t the Moyal commutator. The counter examples for both SO(2)

and Sp(2) are given by the formulae,

X =


 0 α

−α 0


 Y =


 0 β

−β 0


 , (2.5.5)

and the counter example for SU(2) is

X =


 iα 0

0 −iα


Y =


 iβ 0

0 −iβ


 . (2.5.6)

Here α and β are coordinates on the manifold chosen so that θαβ 6= 0. This can always be done

unless θ = 0 and the Moyal product coincides with the ordinary multiplication of matrix-valued

functions. With X and Y as given above one can easily compute the Moyal commutator since all

derivatives of order higher than one vanish. The result for both counter examples is

[X,Y ]∗ = iθαβ


 −1 0

0 −1


 . (2.5.7)

This matrix has a non-vanishing trace. Since the Lie algebras of SO(2), SU(2) and Sp(2) consist

of traceless matrices, it can be concluded that they are not closed under the Moyal commutator.

This conclusion is also valid for SO(N), SU(N) and Sp(N) for arbitrary N because they contain

SO(2), SU(2) and Sp(2) as their subgroups.

2.6 The Munich construction

In this section we present the technique of constructing NC gauge theories developed by Wess

and his collaborators [57, 62]. The goal of this approach is to consider noncommutative theories

as effective theories. The essential ingredient, in their technique, is that the fields and the gauge

transformations do not form a Lie algebra instead satisfy the enveloping algebra. This enables one

to consider gauge theories that are genuinely non-Abelian. Unlike the usual method where the
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2.6. The Munich construction

algebra does not close under star operation hence have to be restricted to only U(N) theories [66].

This technique relies on the idea of covariant coordinates which has also been discovered in [56]

2.6.1 Covariant coordinates

Consider fields ψ(x̂) as elements of the associative algebra Ax. Under an infinitesimal gauge trans-

formation they transform as

δψ(x̂) = iα(x̂)ψ(x̂). (2.6.1)

This transformation is covariant. The gauge parameter α(x̂) is also an element of Ax. If they

are matrix valued then the transformation is non-Abelian in nature. Now we assume that the

coordinates are invariant under the gauge transformation: δx̂ = 0. Multiplication of a field on the

left is not a covariant operation:

δ(x̂iψ) = ix̂iα(x̂)ψ, (2.6.2)

and in general the RHS is not equal to iα(x̂)x̂iψ. Taking cue from ordinary gauge theory one can

introduce covariant coordinates X [56]such that

δ(X iψ) = iαX iψ, (2.6.3)

δ(X i) = i[α,X i]. To find the relation between X i and x̂i, an ansatz of the form X i = x̂i +Ai(x̂), is

chosen. Here Ai(x̂) ∈ Ax. One can notice that the expression for the covariant coordinate resembles

that of the ordinary derivative plus a gauge potential that gives us the covariant derivative. The

transformation of the gauge potential can be obtained from Eq. (2.6.2):

δAi = i[α,Ai]− i[x̂i, α]. (2.6.4)

2.6.2 Gauge transformations

In this subsection the explicit expression for the gauge transformation is derived.

The commutator [xi, .] in the transformation of the gauge potential, Eq. (2.6.4), acts as a

derivation on the elements of Ax. Since, coordinates coordinate do not commute this can be
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2.6. The Munich construction

written as a derivative on elements f ∈ Ax:

[xi, f ] = iθij∂jf. (2.6.5)

The derivative acts as a derivation on Ax. i. e., ∂j(fg) = (∂jf)g + f(∂jg) and on the coordinates

as: ∂jx
i ≡ δi

j . The RHS of Eq. (2.6.5) is a derivation since θ is constant. The transformation of

the gauge field can be written as

δAi = θij∂jα+ i[α,Ai]. (2.6.6)

The gauge potential Â of noncommutative Yang-Mills is introduced by defining Ai ≡ θijÂj . The

transformation law then for the gauge field Âj :

δÂj = ∂jα+ i[α, Âj ]. (2.6.7)

As already pointed out in the beginning of this chapter the usage of star products is more convenient.

Therefore we can represent the elements of Ax by functions of the classical variables xi. In terms

of the star product and the classical variables Eq. (2.6.5) becomes

xi ∗ f − f ∗ xi = iθij∂jf, (2.6.8)

where f(x) is now a function and ∂jf = ∂f/∂xj is the ordinary derivative. This follows directly

from the Moyal-Weyl product. It is interesting to note the form of the covariant coordinates written

in terms of Â:

X̂i = ξi + θijÂj . (2.6.9)

Before we end this section we must point out that this technique of covariant coordinates is quite

general and can be applied to a variety of NC coordinates scenarios namely

• Lie algebra structure: [x̂i, x̂j ] = iCij
k x̂

k.

• Quantum space structure: x̂ix̂j = q−1Rij
klx̂

kx̂l.
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2.7. Noncommutative Chern-Simons theory

2.7 Noncommutative Chern-Simons theory

In 2+1 dimensions conventional Maxwell electrodynamics can be modified by the presence of a

Chern-Simons (CS) term [34, 82]. The latter violates parity and time reversal invariance [77]

and can provide a gauge field, a gauge invariant mass. The U(1) Maxwell-Chern-Simons (MCS)

Lagrangian is given by

S =

∫
d3x

[
−1

4
FµνF

µν +
M

2
εµνρA

µ∂νAρ + ψ̄i 6Dψ −mψ̄ψ
]
. (2.7.1)

Here the covariant derivative is ∂µ−ieAµ and unlike 3+1 dimensional QED here the gauge coupling

e is not dimensionless. Its mass dimension in natural units is [mass]1/2. The Bianchi identity is

given by ∂µ
∗Fµ = 0, where ∗Fµ = 1/2εµνρFνρ. The equation of motion for the gauge field is given

by
[
� +M2

]∗
Fµ = M

[
gµν − εµνρ ∂ρ

M

]
Jν , (2.7.2)

where Jν = −eψ̄γνψ. It is worth mentioning that unlike the conventional massive gauge non-

invariant theory, the transverse vector field ∗Fµ satisfies linear equations. The two polarizations

modes are determined by the signs of the mass M and are independent degrees of freedom in the

absence of interaction.

Pure CS theory has also attracted considerable attention in the context of quantum Hall effect

[37, 87] and Knot theory [91]. CS theory can have dramatic consequences when coupled to matter

fields. It gives rise to particles called anyons, particles whose statistics are intermediate to that of

fermions and bosons [90]. The emergence of anyons can be seen by coupling the CS term to the

matter current Jµ = (ρ, ~J). In terms of components we have

ρ = MB, J i = MεijEj . (2.7.3)

The first expression in the above equation gives the relation of the charge density to the magnetic

field. Therefore a CS term fixes a magnetic flux to the electric charge. The second expression gives

the conservation of charge-flux since, the time derivative of the first expression

ρ̇ = MḂ = Mεij∂iȦj (2.7.4)
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2.7. Noncommutative Chern-Simons theory

along with current conservation equation: ρ̇+ ∂iJ
i = 0 implies

J i = −MεijȦj + εij∂jχ, (2.7.5)

where χ = MA0. Thus this attachment of a magnetic flux to the charge is an explicit realization

of anyons. For many years anyons were considered merely a theoretical construct. Recently it has

been reported that anyons can indeed be experimentally observed [17].

Another feature of the CS term that is worth pointing out is that one cannot write down

such a term in 3+1 dimensions. The CS term is quite intrinsic and a very natural object in 2+1

dimensions. It is known that the CS term can be generated by one-loop effect in the presence of

massive fermions even though one does include it at the tree level [6, 30, 23, 77]. A CS type term

is also generated in the effective action of charged particles in a magnetic field [72]. It was later

on noticed via explicit loop calculations that even though a CS term can be generated by one-loop

fermionic effects, the CS coefficient (M) does not get radiative contributions at the two loop level,

either for the Abelian or in the non-Abelian theory. This peculiar feature in the case of Abelian

theory goes by the name of Coleman-Hill theorem [29]. It must be pointed out that this theorem is

valid at zero temperature and at finite temperature it does not hold. There have been attempts at

generalizing this theorem to the non-Abelian case [14]. But we will not be concerned about these

aspects in this thesis. It must however be mentioned that at finite temperature the coefficient of

the CS term does get modified [6].

In one-loop the vacuum polarization and the self energy do not receive corrections in pure CS

theory. Vertex gets modified by pure CS gauge field. This is expected since the CS field is known

to alter the statistics of the particles interacting with the same. The immediate question that arises

is how does one give the scalar particles a magnetic moment in 2+1? The answer can be found if

one notices the Gordon decomposition for the fermions

γµ =
1

2m
[Pµ + iεµνλKνγλ]. (2.7.6)

With K being the momentum transfer of the incoming p and the outgoing q fermions. The presence

of the antisymmetric object is responsible for the MM. This antisymmetric Levi-Civita tensor can
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2.7. Noncommutative Chern-Simons theory

also be provided to the scalars coupled to a CS gauge field thereby leading to the MM for the

bosons in 2+1.

The U(1) NCCS action is given by [47]

SCS =
M

2

∫
d3xεµνρ

[
Aµ ? ∂νAρ +

2ie

3
Aµ ? Aν ? Aρ

]
. (2.7.7)

The covariant gauge fixing term is

SGF = − 1

2ξ

∫
d3x ∂µA

µ ? ∂νA
ν . (2.7.8)

The new feature of the NCCS action is the presence of the non-linear (Aµ ? Aν ? Aρ) term, leading

to self-interaction amongst the photons; this is similar to the commutative non-Abelian version of

the theory [7, 58]. It is therefore natural to expect that the one loop contributions arising from the

above action will be similar to that of the commutative non-Abelian version of the above theory.

In this thesis we take up the study of the NCCS to which matter fields have been added.

We specially concentrate on the explicit evaluation of the one-loop vertex integrals leading to the

magnetic moment of the bosons and the fermions. The bosonic and the fermionic actions are

SBosonic =

∫
d3x (Dµφ

† ? Dµφ−mφ† ? φ) (2.7.9)

and

SDirac =

∫
d3x ψ̄ ? (i 6D −m)ψ, (2.7.10)

respectively. In both the above cases matter fields are taken to be in the fundamental representation.

Therefore the expression for the covariant derivative acquires the form: Dµφ = ∂µφ− ieAµ ? φ.

It has already been pointed out that the kinetic part of the action is same as their commutative

counterpart thereby the propagators are same in both the theories. The gauge field (Gµν(p)),

Bosonic (D(p)), and the Fermionic (S(p)) propagators are given by

iGµν(p) = − 1

M
εµνρ

pρ

p2
, (2.7.11)

iD(p) =
i

p2 −m2 + iε
, (2.7.12)
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p′p

Figure 2.1: The boson-photon vertex.

≡ ie(p + p′)µ exp
[

i
2
p× p′

]
.

p q

Figure 2.2: The fermion-photon vertex.

≡ ieγµ exp
[

i
2
p× q

]
.

µ ν

p p′

k k′

Figure 2.3: The two scalar-photon vertex.

≡ 2ie2gµν exp
[

i
2
p× p′

]
cos [(k × k′)/2].

µ

ρ

p

q

r

ν

Figure 2.4: The three gauge boson vertex.

≡ 2ieMενµρ sin [(p× r)/2].

and

iS(p) =
i(6p+m)

p2 −m2 + iε
, (2.7.13)

respectively. The interaction vertices are depicted in the figures given below [12]
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Chapter 3
Chern-Simons scalar QED

3.1 Introduction

The possibility of particles carrying fractional angular momentum on a plane is, by now, well

accepted [17, 90]. The role of CS term [82] in inducing fractional spin has been carefully investigated

[89]. Field theoretically, it has been shown in 2+1 dimensions that, one can calculate fractional

angular momentum eigenvalues of single particle states. Furthermore, Polyakov showed that, the

interaction of scalar particles with the CS gauge field leads to the transmutation of a boson into

a spinning particle [75]. An interesting consequence of this is the appearance of spin MM for the

bosons, not possible in 3+1 dimensions. Although not present at the tree level, the boson spin is

induced at the one-loop level, leading to a MM for the bosons [61]. The existence of MM leads to

unusual planar dynamics, as shown for scalars and spinors in the context of MCS electrodynamics

[60, 42]. Therefore, the MM of anyons has been studied extensively [26, 41].

Recently, various aspects of NC theories with a CS term have been under the scrutiny of a

number of authors [10, 31, 64, 28, 47]. Mainly since they have many interesting connections with

other areas of physics and mathematics. NCCS theory and its variants have been quite useful in

explaining the filling fraction of the electrons in the lowest Landau level [88]. Keeping this as well

as the fact that, a spin magnetic moment can play an important role in the planar dynamics, we
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3.2. Calculation of nonplanar integrals

compute the magnetic moment of scalar particles in the context of noncommutative scalar QED in

2+1 dimension with a tree level CS term.

The chapter is organized as follows. In the following section, we give the explicit evaluation of

the non-planar integrals that will be needed for the loop calculations of this chapter as well the

subsequent chapter on fermionic magnetic moment. In Section III, the vertex contributions arising

from all the diagrams at one-loop level are computed. We concentrate on the parity odd gauge

invariant pieces, since the same lead to magnetic moment type interactions.

3.2 Calculation of nonplanar integrals

In this section we evaluate a non-planar integral. It is typical of the integrals that appear in NC

loop calculations. The same method will be used to calculate the vertex amplitudes. Consider a

non-planar integral of the type ∫
d3k

(2π)3
kµ

[k2 −∆2]3
eik×P . (3.2.1)

Introducing an auxiliary variable for the numerator, i.e.,

kµ = −i ∂
∂zµ

eikz (3.2.2)

and also noting that

1

[k2 −∆2]3
=

1

2

∂2

∂(∆2)2
1

[k2 −∆2]
, (3.2.3)

the integral to be evaluated, Eq. (3.2.1),

= −1

2

∫ ∞

0
dαα2e−α ∆2 ∂

∂zµ

∫
d3k

(2π)3
e−αk2+ikz+ik×P

= −1

2

∫ ∞

0
dαα2e−α ∆2 ∂

∂zµ

∫
d3k

(2π)3
e
−α

[
k− i(P̃+z)

2α

]2
− (P̃+z)2

4α

=
1

2

P̃µ

(2
√
π)3

∫ ∞

0
dαα−1/2 e−α ∆2− P̃2

4α . (3.2.4)

In obtaining the above expression we have used Schwinger’s parametrization:

1

[k2 −∆2]
=

∫ ∞

0
dα e−α (k2−∆2). (3.2.5)
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3.3. Induced magnetic moment

Using the standard expression for the integral representation for the modified Bessel function of

the second kind: ∫ ∞

0
dxxν−1 e− γ x−β

x = 2

[
β

γ

]ν/2

Kν(2
√
β γ ), (3.2.6)

the final expression for the integral to be evaluated becomes

∫
d3k

(2π)3
kµ

[k2 −∆2]3
eik×P =

1

2

P̃µ

(2
√
π)3

[
|P̃|

2 |∆|

]1/2

K1/2

[
|P̃||∆|

]
. (3.2.7)

Similarly other types of integrals also arise in the evaluation of the vertex amplitude. These also

can be evaluated in a similar fashion as shown above. For the sake of completeness a lengthy list

of non-planar integrals and their solutions has been provided in the appendix.

3.3 Induced magnetic moment

In this section, we evaluate various scalar one-loop diagrams contributing to the vertex, upto first

order in θ. The calculations have been broken up into different subsections, corresponding to

different diagrams, for the sake of convenience.

3.3.1 Boson-photon vertex contribution

The contribution to the vertex arising from the diagram shown in Fig. (3.1), which is also present

in the commutative case, can be written in the form

Γ1
µ = −e2

∫
d3q

(2π)3
(p+ p′ − 2q)µ(2p− q)ν(2p

′ − q)ρG
νρ(q)

[(p− q)2 −m2][(p′ − q)2 −m2]
e−iq×Ke

i
2
p×p′ , (3.3.1)

where Kµ ≡ (p′ − p)µ. The above can be simplified to yield

Γ1
µ = −4e2

M

∫
d3q

(2π)3
ενραpνp

′
ρqα(p+ p′ − 2q)µ

q2[(p− q)2 −m2][(p′ − q)2 −m2]
e−iq×Ke

i
2
p×p′ . (3.3.2)

The loop integral can be evaluated in the standard manner. After combining the denominators and

shifting the integration variable we get

Γ1
µ = −8e2

M

∫ 1

0
dx

∫ x

0
dy

∫
d3q

(2π)3
ενραpνp

′
ρq̃α[(2x− 1)pµ + (1− 2x+ 2y)p′µ − 2q̃µ]

[q̃2 − ω2
1]

3
e−iq̃×Ke−

i
2
(1−2y)p×p′ ,

(3.3.3)
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p′

µ

(p′ − p)

q

p (p − q) (p′ − q)

Figure 3.1: scalar-gauge field vertex.

where ω2
1 = (1 − y)2m2 − (1 − x)(x − y)K2 and q = q̄ + (x − y)p′ + (1 − x)p. For the sake of

notational simplicity, we continue to denote the new integration variable q̃ as q in this, as well as

later calculations. In solving the above integrals, we retain only the qµqα term, since only this term

gives magnetic moment type interaction. The momentum integral yields

Γ1
µ = −8ie2εµνρp

νp′ρ

(2
√
π)3M

∫ 1

0
dx

∫ x

0
dye−

i
2
(1−2y)p×p′

[
|K̃|

2|ω1|

]1/2

K1/2(|K̃||ω1|). (3.3.4)

The parametric integrals can be handled in an elegant manner by going to a particular frame of

reference: the rest frame of the scalar particle, where p× p′ = 0. Also, we take θ0i = 0, since it is

known that space-time noncommutativity violates unitarity [46]. Using

K±1/2(z) =

√
π

2

e−z

√
z
, (3.3.5)

and retaining terms first order in θ from the above expansion, we get

Γ1
µ = − ie

2εµνρPνKρ

4πM

[
1

m
− |K̃|

2

]
. (3.3.6)

It must be mentioned that, the above expression is obtained in the K2 → 0 limit. Furthermore, we

have replaced p and p′ using the relations for Kµ and Pµ = p′µ + pµ.
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µ

p

(p′ − q)(p − q)

q

(p′ − p)

p′

Figure 3.2: The three photon vertex contribution.

3.3.2 Three-photon vertex contribution

Here, we deal with the three-gluon contribution shown in Fig. (3.2), to the NC vertex:

Γ2
µ = −2ie2M

∫
d3q

(2π)3
(p′ + q)ρ(p− q)λG

να(p− q)εαµβG
βρ(p′ − q)

(q2 −m2)
sin

[
(p− q)× (p′ − p)

2

]
e

i
2
q×K,

=
2ie2

M

∫
d3q

(2π)3
εναλεµαβε

βρδ(p′ + q)ρ(p− q)λ(p+ q)ν(p
′ − q)δ

(q2 −m2)(p− q)2(p′ − q)2 sin

[
p× p′ − q ×K

2

]
e

i
2
q×K.(3.3.7)

The above vertex Γ2
µ, can be written in terms of planar and non-planar contributions in the form,

Γ2
µ =

4e2

M

∫
d3q

(2π)3
εναλpλp

′
αqνqµ

(q2 −m2)(p− q)2(p′ − q)2 [e
i
2
p×p′ − e− i

2
p×p′eiq×K]. (3.3.8)

In obtaining the above expression, we have simplified the numerator using the standard ε manipu-

lations. As before, combining the denominators and shifting the integration variable we get

Γ2
µ =

8e2

M

∫ 1

0
dx

∫ x

0
dy

∫
d3q

(2π)3
εναλpλp

′
αqνqµ

(q2 − ω2
2)

3
[e

i
2
p×p′ − eiq×Ke

i
2
(1−2y)p×p′ ], (3.3.9)

where ω2
2 = m2y2 − (x − y)(1 − x)K2. The vertex can be separated as: Γ2

µ = Γ2P
µ + Γ2NP

µ . The

planar part can be simplified:

Γ2P
µ = − ie2

4πM

∫ 1

0
dx

∫ x

0
dy
εµαλp

′αpλ

my
. (3.3.10)

It can be noticed that the above planar contribution has a logarithmic divergence. The non-planar

contribution can be written in the form

Γ2NP
µ =

4ie2εναλg
µν

M(2
√
π)3

∫ 1

0
dx

∫ x

0
dy

[
|K̃|

2|ω2|

]1/2

K1/2(|K̃||ω2|). (3.3.11)
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p p′

q

µ

(p′ − q)

(p′ − p)

Figure 3.3: The two photon vertex.

p p′

q

µ

(p − q)

(p′ − p)

Figure 3.4: The two photon vertex.

On expanding the Bessel function and retaining contribution linear in the NC parameter, we see that

the log divergence from the planar piece exactly cancels a similar divergence from the non-planar

contribution. Hence, the 3-photon vertex is divergence free. Such a cancellation of divergences

stemming from the planar and non-planar contributions has been noted in the photon self-energy

calculation in 3+1 dimensions [32]. The contribution to the vertex can be combined into a compact

form:

Γ2
µ =

ie2

4πM
εµνρPνKρ |K̃|

4
. (3.3.12)

3.3.3 Two-photon vertices

The two photon vertex amplitude in Fig. (3.3) can be written in the form

Γ3
µ =

2e2

M

∫
d3q

(2π)3
ενρλgµν(2p

′ − q)ρqλ
q2[(p′ − q)2 −m2]

cos

[
q ×K

2

]
e

i
2
p×p′e−

i
2
q×K, (3.3.13)

which yields,

Γ3
µ =

2e2

M

∫ 1

0
dx

∫
d3q

(2π)3
εµρλp

′ρqλ

(q2 − ω2
3)

2

[
e

i
2
p×p′ + e−iq×Ke−

i
2
(2x−1)p×p′

]
. (3.3.14)

In obtaining the above expression we have redefined the integration variable by q = q̄ + xp′ and

defined ω2
3 = p′2x2. It is clear that the planar contribution is zero and only the non-planar integral

survives:

Γ3NP
µ =

2e2εµρλp
′ρK̃λ

(2
√
π

3
)

∫ 1

0
dx e−

i
2
(2x−1)p×p′

[
|K̃|

2|ω3|

]−1/2

K−1/2(|K̃||ω3|), (3.3.15)
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(p′ − q)

p p′

µ

(p − q)

(p′ − p)

Figure 3.5: The two and three photon vertex.

which in the rest frame gives the final answer in the form

Γ3NP
µ =

e2εµνρp
′νK̃ρ

4πM

[
1

|K̃|
− m

2

]
. (3.3.16)

Similarly for the other two photon vertex [Fig. (3.4)] we get,

Γ4NP
µ = −e

2εµνρp
νK̃ρ

4πM

[
1

|K̃|
− m

2

]
. (3.3.17)

3.3.4 Two-photon and three-photon vertex

This last subsection deals with the two photon and three gluon vertex. Similar to the contribution

of Fig. (3.2) the contribution from this diagram is purely due to NC nature of the action. Calling

the contribution from this diagram as Γ5
µ:

Γ5
µ =

4ie2

M

∫
d3q

(2π)3
gαβε

ανλεµνρε
ρβδ(p′ − q)δ(p− q)λ

(p′ − q)2(p− q)2 cos

[
(p′ − q)× (p− q)

2

]

sin

[
(p′ − p)× (p′ − q)

2

]
e

i
2
p×p′ . (3.3.18)

The standard manipulations give

Γ5
µ = −2ie2

M

∫
d3q

(2π)3
εµνλ

(p′ − q)2(p− q)2
[PλKν

2
+Kλqν

]
sin[p× p′ − q ×K]e

i
2
p×p′ . (3.3.19)

Proceeding as before we get

Γ5
µ =

2ie2

M

∫ 1

0
dx

∫
d3q

(2π)3
εµνλKλqν

(q2 − ω2
5)

2
sin[q ×K]e

i
2
p×p′ , (3.3.20)
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where ω2
5 = x(x− 1)K2. Performing the momentum integration, with q = q̄ + p+ xK, one gets

Γ5
µ = −2e2εµνλKλK̃ν

(2
√
π)3M

∫ 1

0
dx

[
|K̃|

2|ω2
5|

]−1/2

K−1/2(|K̃||ω2
5|)e

i
2
p×p′ . (3.3.21)

Upon simplification, the contribution from this vertex diagram turns out to be

Γ5
µ =

e2εµνρKνK̃ρ

4πM |K̃|
. (3.3.22)

Combining the various vertices at first order in θ, one gets

Γµ = − ie
2εµνρPνKρ

4πM

[
1

m
− 3|K̃|

4

]
+
e2εµνρKνK̃ρ

4πM

[
2

|K̃|
− m

2

]
. (3.3.23)

The above vertex contributions, as can be noticed, is separates into real and imaginary parts. The

real part results due to the appearance of the θ dependent spin type term, unlike the other term

where only the magnitude of θ appears. It can be seen from the above expression that, the theta

independent term of the first piece arises due to the original vertex diagram which yielded a finite

value to the parity odd part of the vertex function present in the commutative theory [60]. This

parity odd term can couple to the external magnetic field and hence it was interpreted as the

magnetic moment for the scalar particles. The present term receives a finite NC correction due to

the appearance of non-planar integrals. This correction depends on the value of the NC parameter

and hence can also be interpreted as a correction to the MM structure. The real piece of the vertex

function is interesting because, the parity odd spin term couples not only to the external fields but

it also couples to the NC parameter.

3.4 Discussion

In conclusion, we have evaluated the NC vertex diagrams at one loop level, up to first order in θ,

for the scalar particles. The non-planar contributions brought in corrections to the spin structure

and also coupled the external field to the θ tensor. It is worth noting that, the NC contribution to

the imaginary part of the vertex (the part responsible for the MM in the commutative case) does

not depend on the mass of the fermion. Realizing that, the |K̃| acts as a derivative on the magnetic

34



3.4. Discussion

field, one can infer that the presence of this term in the Hamiltonian (with a structure similar as

the coupling of spin to the magnetic field) will generate additional precession of a charged particle

in a in-homogenous magnetic field. It is also straightforward to see that, the force experienced

by the particles will be different as compared to the commutative case. Hence, a sufficiently

strongly varying magnetic field may make this effect experimentally verifiable, even though the

NC parameter is small. The fact that, NC theories are more apt for condensed matter systems

like fractional Hall effect where scalar CS theories appear, makes our result quite exciting and

potentially amenable to verification. Considering the real part of the vertex, it can be seen that it

does not contribute to the MM interaction since we get a term of the type K.A. This is due to the

fact that noncommutativity is restricted only to the spatial components i.e., θ0i = 0. It has been

shown recently that, the MM for scalar matter fields in NC MCS can lead to the formation of bound

states on plane [43]. Hence, the implication of these loop corrections needs careful investigation.
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Chapter 4
Fermionic matter with Chern-Simons coupling

4.1 Introduction

This chapter is devoted to the study of MM of fermions coupled to a CS gauge field. The MM

calculation for the fermions coupled to the commutative non-Abelian and the Abelian CS term

was carried out in [20, 21, 41]. The calculation for the Abelian version of the theory is rather

straightforward, whereas evaluation of the vertex diagram for the non-Abelian case is non-trivial.

This is due to the self interaction of the gauge fields leading to a three-gauge boson vertex. The

authors of [20], make use of the BRST symmetry of the generating function to set up a Slavnov-

Taylor (ST) identity leading to a considerable simplification in extracting the MM. In this chapter

we will follow [20] because, even though we consider a U(1) NCCS theory, due to noncommutativity

it has a three-gauge boson term in the action.

The chapter is organized as follows. In the next section we evaluate the Abelian vertex diagram.

Then we show that the NCCS action has a ?-BRST symmetry. This is then utilized to derive the

NC ST identity in section 4. The various Feynman amplitudes that are contained in the ST identity,

like the fermion self-energy and the composite ghost-gluon vertices are calculated in section 5 and

section 6.
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4.2. The Abelian vertex

(p − k) (q − k)p q

(q − p)

k

Figure 4.1: The abelian vertex diagram.

4.2 The Abelian vertex

In Fig. (4.1) we depict the Abelian type vertex. The vertex amplitude is given by

IΓµ = e
i
2
p×q e

2

M

∫
d3k

(2π)3
ελσρ

kρ

k2
ū(q)

γσ(6q+ 6k +m)γµ(6p+ 6k −m)γλ

[(q + k)2 −m2][(p+ k)2 −m2]
u(p)eik×K. (4.2.1)

In the above K = (q − p). Here the gamma matrices are defined as γ0 = σ2, γ
1 = iσ3, γ

3 = iσ1,

and gµν is taken to be diag(1,-1,-1) same as that adopted in Ref. [34]. The above integral can be

simplified using the identity γµγν = gµν − iεµνργ
ρ and the mass-shell condition: (6 p −m)u(p) = 0

and ū(q)(6q −m) = 0. Defining P = (q + p) we have

IΓµ =
−e2
M

e
i
2
p×q

∫
d3k

(2π)3

[
4(mγµ − qµ − Pµ)

(2q · k + k2)(2p · k + k2)
+

γµ 6k
k2(2p · k + k2)

+
6kγµ

k2(2q · k + k2)
+

4ελσρk
ρqσpλγµ

k2[(q + k)2 −m2][(p+ k)2 −m2]

]
eik×K (4.2.2)

Before we proceed to calculate the above loop integrals, a few points are worth mentioning. Similar

to the bosonic case we restrict to NC spatial coordinates. Terms proportional to kµ which were zero

in the commutative case, due to symmetry arguments cannot be dropped because of a momentum
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4.2. The Abelian vertex

dependent phase exp(ik × K). Also the last term of the above integral which was zero, in the

commutative case, because of the appearance of terms proportional to ελσρp
ρpλqσ and ελσρq

ρpλqσ,

upon integration are non-zero. Writing the above integral as IΓµ = IΓ
(1)
µ + IΓ

(2)
µ + IΓ

(3)
µ + IΓ

(4)
µ , for

the sake of convenience, and performing the standard noncommutative loop integral yields

IΓ(1)
µ = − ie2

M
√
π3

e
i
2
p×q

∫ 1

0
dx



(mγµ + xKµ + pµ − Pµ)

[
|K̃|

2|∆1|

]1/2

K1/2(|K̃∆1|)

− iK̃µ

2

[
2|∆1|
|K̃|

]1/2

K−1/2(|K̃∆1|)
}
, (4.2.3)

IΓ(2)
µ = − ie2γµ

4M
√
π3

e
i
2
p×q

∫ 1

0
dx e−

i
2
xP×K

{
i 6K̃
2

[
2|∆2|
|K̃|

]1/2

K−1/2(|K̃∆2|)

− 6p x
[
|K̃|

2|∆2|

]1/2

K1/2(|K̃∆2|)



 , (4.2.4)

IΓ(3)
µ = − ie2

4M
√
π3

e
i
2
p×q

∫ 1

0
dxe−

i
2
xP×K

{
i 6K̃
2

[
2|∆3|
|K̃|

]1/2

K−1/2(|K̃∆3|)

− 6q x
[
|K̃|

2|∆3|

]1/2

K1/2(|K̃∆3|)



 γµ, (4.2.5)

IΓ(4)
µ =

ie2γµ

4M
√
π3

e
i
2
p×q

∫ 1

0
dx

∫ x

0
dy e−

i
2
(1−y)P×K iελσρP

λKσK̃ρ

[
|K̃|

2|∆4|

]1/2

K1/2(|K̃∆4|). (4.2.6)

Here and in what follows, a tilde over a momentum indicates that it is contracted with the NC

parameter θ i.e., K̃µ ≡ θµνKν . Furthermore we have abbreviated ∆2
1 = (xK − p)2, ∆2

2 = (px)2,

∆2
3 = (qx)2 and ∆2

4 = m2(1− y)2 − (x− y)(1− x)K2. In solving the above integrals we have used

∫ ∞

0
dxxν−1e−γx−β/x = 2(β/γ)ν/2Kν [2

√
βγ], (4.2.7)

where Kν is the modified Bessel function of the second kind. Using

K±1/2(z) =

√
π

2

e−z

√
z

(4.2.8)
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4.2. The Abelian vertex

the above integrals can be cast in the following form

IΓ(1)
µ = − ie2

2πM
e

i
2
p×q

∫ 1

0
dx

{
(mγµ + xKµ + pµ − Pµ)

|∆1|
− iK̃µ

|K̃|

}
e−|K̃∆1|

IΓ(2)
µ = − ie

2γµ

4πM
e

i
2
p×q

∫ 1

0
dx e−

i
2
xP×K

{
i 6K̃
2|K̃|

− 6p
2|∆2|

}
e−|K̃∆2|

IΓ(3)
µ = − ie2

4πM
e

i
2
p×q

∫ 1

0
dx e−

i
2
xP×K

{
i 6K̃
2|K̃|

− 6q
2|∆3|

}
γµe

−|K̃∆3|

IΓ(4)
µ = − ie

2γµ

4πM
e

i
2
p×q

∫ 1

0
dx

∫ x

0
dy
−iελσρP

λKσK̃ρe−
i
2
(1−y)P×Ke−|K̃∆4|

√
m2(1− y)2 − (x− y)(1− x)K2

. (4.2.9)

The parametric integrals can be solved elegantly by going over to the rest frame of the electron.

Retaining terms to only first order in θ we get

IΓ(1)
µ = − ie2

2πM

∫ 1

0
dx

{
(mγµ + xKµ + pµ − Pµ)(

1

|∆1|
− |K̃|)− iK̃µ(

1

|K̃|
− |∆1|)

}

IΓ(2)
µ = − ie

2γµ

8πM

∫ 1

0
dx

{
i 6K̃(

1

|K̃|
− |∆2|)− 6p(

1

|∆2|
− |K̃|)

}

IΓ(3)
µ = − ie2

8πM

∫ 1

0
dx

{
i 6K̃(

1

|K̃|
− |∆3|)− 6q(

1

|∆3|
− |K̃|)

}
γµ

IΓ(4)
µ = − ie2

8πM

∫ 1

0
dx

∫ x

0
dy

−iελσρP
λKσK̃ρ

√
m2(1− y)2 −K2(x− y)(1− x)

. (4.2.10)

Solving the integrals in the low momentum transfer limit i.e., K2 = 0 and making use of the three

dimensional analogue of Gordon’s decomposition

γµ =
1

2m
[Pµ + iεµνλKνγλ], (4.2.11)

the amplitude for the NC abelian type vertex can be written in the form

IΓµ =
ie2

4πM

[
γµ −

iγµελσρP
λKσK̃ρ

m
− iεµνλKνγλ

m
+
iK̃µ

|K̃|
− 2imK̃µ − iεµνλKνγλ|K̃|

]
. (4.2.12)

This completes the calculation of the NC abelian type vertex. As can be seen that the extra θ

dependent contributions vanish smoothly in the θ → 0 limit. This is because this vertex contribution

does not have any divergences.
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4.3. BRST symmetry

4.3 BRST symmetry

In this section we show the existence of a ?-BRST symmetry for the NCCS action. This is a global

symmetry whose associated charge is nilpotent. Just like the local gauge invariance of the leads to

the Ward identities, the symmetry under ?-BRST transformation will yield a NC version of the ST

identity. This identity will form the topic of the subsequent section.

The NCCS action with fermionic matter fields is given by

SCS =
M

2

∫
d3x

[
εµνρAµ ? ∂νAρ +

2ie

3
Aµ ? Aν ? Aρ

]
, SDirac =

∫
d3x ψ̄ ? (i 6D −m)ψ, (4.3.1)

SGhost =
1

2

∫
d3x ∂µc̄ ? DA

µ c, SGF = − 1

2ξ

∫
d3x ∂µA

µ ? ∂νA
ν .

The covariant derivatives are Dµψ = ∂µψ − igAµ ? ψ and DA
µ c = ∂µc − ig[Aµ, c]MB and c(x)

are the ghost fields. SGhost is the ghost action. Usually ghosts decouple in case of the Abelian

commutative theories, but in noncommutative theories ghost terms cannot be integrated, similar

to the non-Abelian theory. It is worth mentioning here that in [32], it was shown that for NC U(N)

CS theory, in the axial gauge, ghosts completely decouple, furthermore it was shown that there is

no UV/IR mixing. The presence of the ghost term in the action leads to a new vertex between the

gauge fields and the ghosts. This is depicted in Fig. (4.2).

Replacing the gauge parameter of the U(1) gauge transformations, by i g c(x) we get

δ̂BAµ(x) = Dµc(x) = ∂µc(x)− ig[Aµ(x), c(x)], (4.3.2)

δ̂Bψ(x) = ig c(x) ? ψ(x). (4.3.3)

In the above equations δ̂B is the BRST operator that enforces the BRST transformations, and

p q

Figure 4.2: The ghost-photon vertex.

≡ −2eqµ sin[(p× q)2].
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4.3. BRST symmetry

is independent of the space-time coordinates. Another important property of δ̂B is that it is a

Grassmanian object which satisfies the rule

δ̂B(F ? G) = (δ̂B) ? G+ (−1)|F |F ? (δ̂BG), (4.3.4)

where |F | is the ghost number of the field F . The BRST transformation of the ghost field can

be derived from the nilpotency condition of the transformation: δ̂2B = 0. This gives the BRST

transformations for the fields as

δ̂Bc(x) = ig c(x) ? c(x), δ̂B c̄(x) = B(x), δ̂BB(x) = 0. (4.3.5)

In the above we have introduced a field B, and is called the Nakanishi-Lautrup multiplier field.

The use of this field is that, the ghost and the gauge fixing parts of the action can be written in a

unified manner

SGhost + SGF = c̄(x) ? [B(x)ξ/2 + ∂µA
µ(x)]. (4.3.6)

We now show that the BRST transforms of the various fields, equations (4.3.2), (4.3.3), and (4.3.5)

are nilpotent; δ̂2B = 0. For the gauge field Aµ(x) we have

δ̂2BAµ(x) = δ̂B(δ̂BAµ) = δ̂B(∂µc− ig[Aµ, c])

= ig∂µ(c ? c)− igδ̂BAµ ? c− igAµ ? δ̂Bc

+ igδ̂Bc ? Aµ − igc ? δ̂BAµ = 0, (4.3.7)

from the rule given Eq. (4.3.4). Similarly for the other fields we have

δ̂2Bψ(x) = igδ̂B[c ? ψ] = igδ̂Bc ? ψ − igc ? δ̂Bψ = 0,

δ̂2Bc(x) = igδ̂B[c ? c] = igδ̂Bc ? c− igc ? δ̂Bc = 0,

δ̂B c̄(x) = δ̂BB = 0,

δ̂2BB = 0.

Thus we have shown in this section how to obtain the ?-BRST symmetry for the CS spinor action.
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4.4 Noncommutative Slavnov-Taylor identity

Under a ?-BRST variation, δ̂B, the fields transform as

δ̂BAµ = Dµc = ∂µc− ig[Aµ, c]; δ̂Bc = ig(c ? c); δ̂B c̄ = B;

δ̂BB = 0; δ̂Bψ = igc ? ψ; δ̂Bψ̄ = igψ̄ ? c. (4.4.1)

The generating functional with the source terms is given by Z = Z[Jµ, η, η̄, ω, ω̄, ρ, ρ̄, Jµ]. Now

Z =

∫
[DΦ] exp {i(S + Sso + Scomp)} , (4.4.2)

with Φ = (A, ψ̄, ψ, c̄, c,B) denoting the fields participating in the action.

Sso =

∫
d3x (Jµ ? A

µ + η̄ ? ψ + ψ̄ ? η + ω̄ ? c+ c̄ ? ω + H ?B) (4.4.3)

are the source terms for the fields, and

Scomp =

∫
d3x (Jµ ? δ̂BA

µ + ρ̄ ? δ̂Bψ + δ̂Bψ̄ ? ρ+ α ? δ̂Bc) (4.4.4)

are the source terms for the composite BRST variations, that linearize the ST identity [59]. In the

above, source terms η, η̄, ω, ω̄ and Jµ are Grassmann sources while Jµ, H, ρ, ρ̄, α are bosonic.

Under a BRST redefinition of the fields we have S ′ → S + δ̂BS, S′
so → Sso + δ̂BSso, S

′
comp →

Scomp + δ̂BScomp. Since Scomp is already a BRST variation of the fields δ̂BScomp = 0, from the

nilpotency of the transformation. Therefore the BRST redefined partition function is

Z ′ = ei[S+δ̂BS+Sso+δ̂BSso+Scomp]. (4.4.5)

The invariance of the generating functional, δ̂BZ = Z ′ − Z = 0 then yields the Ward identity:

i[δ̂BSso]Z = 0. Where

δ̂BSso =

∫
d3x[Jµ ? δ̂BA

µ + δ̂Bψ̄ ? η − η̄ ? δ̂Bψ − ω̄ ? δ̂Bc+ δ̂B c̄ ? ω + H ? δ̂BB]. (4.4.6)

Since δ̂BB = 0 and δ̂B c̄ = B, the ST identity becomes

∫
d3t[Jµ ? δ̂BA

µ + δ̂Bψ̄ ? η − η̄ ? δ̂Bψ − ω̄ ? δ̂Bc+ B ? ω]Z. (4.4.7)
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4.4. Noncommutative Slavnov-Taylor identity

The above identity can be written in terms of the functional derivatives acting on the generating

function. The usefulness of the sources for the composite BRST variations becomes transparent

here. In terms of the functional derivatives the ST identity can be written as

∫
d3t

[
Jµ(t) ?

δ

δJµ(t)
− η̄(t) ? δ

δρ̄(t)
+

δ

δρ(t)
? η(t)− ω̄(t) ?

δ

δα(t)
+

δ

δH(t)
? ω(t)

]
W = 0. (4.4.8)

In the above expression we have taken Z = exp(iW ). To obtain the relationship between various

Greens functions we will follow the standard technique of differentiating the above ST identity w.r.t

various sources and later setting them to zero. Acting δ/δη̄(x),

∫
d3t

[
Jµ(t) ?

δ2

δη̄(x)δJµ(t)
+ η̄(t) ?

δ2

δη̄(x)δρ̄(t)
+

δ2

δη̄(x)δρ(t)
? η(t)− δ3(t− x) δ

δρ̄(t)

−ω̄(t) ?
δ2

δη̄(x)δα(t)
+

δ2

δη̄(x)δH(t)
? ω(t)

]
W = 0. (4.4.9)

Taking the functional derivative w.r.t δ/δη(y) yields

∫
d3t

[
Jµ(t) ?

δ3

δη(y)δη̄(x)δJµ(t)
+

δ3

δη(y)δη̄(x)δρ(t)
? η(t)− δ2

δη̄(x)δρ(t)
δ3(t− y)

−δ3(t− x) δ2

δη(y)δρ̄(t)
− η̄(t) ? δ3

δη(y)δη̄(x)δρ̄(t)
− ω̄(t) ?

δ3

δη(y)δη̄(x)δα(t)

+
δ3

δη(y)δη̄(x)δH(t)
? ω(t)

]
W = 0. (4.4.10)

Finally taking the derivative w.r.t δ/δω(z) we obtain

∫
d3t

[
Jµ(t) ?

δ4

δω(z)δη(y)δη̄(x)δJµ(t)
+

δ4

δω(z)δη(y)δη̄(x)δρ(t)
? η(t)− δ3

δω(z)δη̄(x)δρ(t)
δ3(t− y)

−δ3(t− x) δ3

δω(z)δη(y)δρ̄(t)
− η̄(t) ? δ4

δω(z)δη(y)δη̄(x)δρ̄(t)
+ ω̄(t) ?

δ4

δω(z)δη(y)δη̄(x)δα(t)

+
δ3

δη(y)δη̄(x)δH(t)
δ3(t− z) +

δ4

δω(z)δη(y)δη̄(x)δH(t)
? ω(t)

]
W = 0.(4.4.11)

Now setting the external sources to zero and integrating out the delta functions we have the final

expression for the ST identity
[

δ3

δω(z)δη(y)δρ̄(x)
+

δ3

δω(z)δη̄(x)δρ(y)
− δ3

δη(y)δη̄(x)δH(z)

]
W = 0. (4.4.12)

The above identity can also written in the form
[
1

ξ
∂µ〈ψ(x)ψ̄(y)Aµ(z)〉+ ig〈c̄(z)ψ̄(y)c(x) ? ψ(x)〉 − ig〈c̄(z)ψ(x)ψ̄(y) ? c(y)〉

]
= 0. (4.4.13)
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4.4. Noncommutative Slavnov-Taylor identity

To obtain the 1-PI expression from the connected Greens function, Legendre transformation has

to be taken:

IΓ[Aµ, ψ, ψ̄, c, c̄,B] = W [Jµ, η̄, η, ω̄, ω,H]−
∫
d3xSso. (4.4.14)

Similar to the commutative theory, the composite operators remain inactive in the above transfor-

mation. Hence we have,

δW

δρ̄(x)
=

δΓ

δρ̄(x)
,

δW

δρ(x)
=

δΓ

δρ(x)
. (4.4.15)

With the above transformation the 1-PI ST identity becomes

1

ξ

∂

∂zµ

∫
d3u d3v d3w

[
iGµν(z − w) iS(x− u) δ3IΓ

δψ̄(u)δψ(v)δAν(w)
iS(v − y)

]

+

∫
d3u d3v

[
δ3Γ

δψ(u)δc(v)δρ̄(w)
iS(u− y) iD(v − z)

+ iS(x− u) δ3Γ

δψ̄(u)δc(v)δρ(w)
iD(v − z)

]
. (4.4.16)

where IΓ(u, v, w) is the 1-PI part of the fermion-gluon vertex function, Γρ̄(x, u, v) and Γρ(u, y, v)

are the composite ghost-gluon vertex functions arising from the source terms ρ̄ and ρ respectively.

Also D denotes the ghost propagator. In order to obtain the above identity we have made use of

the chain rule for the various sources, e.g.,

δ

δω(x)
=

∫
d3u

δc(u)

δω(x)

δ

δc(u)
. (4.4.17)

The above identity in the momentum space acquires the form

1

ξ
Kµ iGµν(K) iS(p) iIΓν(p, q,K) iS(q)+[iΓρ̄(p, q,K) iS(q)− iS(p) iΓρ(p, q,K)] iD(K) = 0. (4.4.18)

K is the same as defined earlier in the text. We have also used the same functional form for the

propagators as well as for the vertices to avoid cluttering of notation. Noting that the longitudinal

part of gauge field receives no quantum correction even in the noncommutative theory, i.e.,

Kµ iGµν(K) = Kµ iG(0)
µν (K) = −iξKν

K2
, (4.4.19)

and using the general form of the full ghost propagator

iD(K) =
1

K2 [1 + Σg(K2)]
, (4.4.20)
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4.4. Noncommutative Slavnov-Taylor identity

p qk

(p − k) (q − k)

(q − p)

Figure 4.3: The non-abelian type vertex diagram.

we obtain the required ward identity

KµIΓµ(p, q,K)
[
1 + Σg(K

2)
]
+ Γρ̄(p, q,K)S−1(q) + S−1(p)Γρ(p, q,K). (4.4.21)

Expanding the above identity up to one-loop order by using

IΓµ(p, q,K) =
[
γµ + g2IΓ(1)

µ

]
exp[

i

2
p× q] +O(g4), Σg(K

2) = g2Σ(1)
g (K2) +O(g4),

S−1(p) = /p−m− g2Σ(1)(p) +O(g4), Γρ̄(p, q,K) =
[
I + g2Γ

(1)
ρ̄ (p, q,K)

]
exp[

i

2
K× q] +O(g4),

Γρ(p, q,K) = −
[
I + g2Γ(1)

ρ (p, q,K)
]
exp[

i

2
K× p ] +O(g4), (4.4.22)

the required one-loop ST identity:

KµIΓ(1)
µ (p, q,K) = −(/q − /p)Σ(1)

g (K2)− i
[
Σ(1)(q)− Σ(1)(p)

]
exp[−ip× q]

+g2
[
Γ(1)

ρ (p, q,K)(/q −m)− (/p−m)Γ
(1)
ρ̄ (p, q,K)

]
exp[−ip× q]. (4.4.23)

In obtaining the above expression we have dropped terms of the form Kµγµ due to the on-shell

condition requirement. Therefore we see that the non-abelian type three photon vertex Fig. (4.3),

is now equivalent to evaluating the ghost self-energy, fermion self-energy and the composite vertex

diagrams. Before we go on to explicitly calculate the individual diagrams in later section it must
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4.5. Fermion self-energy

q

k

q(q − k)

Figure 4.4: Fermion self-energy one.

p

k

p(p − k)

Figure 4.5: Fermion self-energy two.

be noted that the ghost self-energy is zero for the pure CS case. In the next section we calculate

the fermion self-energy.

4.5 Fermion self-energy

In this section we will calculate the self-energy of the fermion. From the ST identity it is clear that

we need to consider two separate fermion self-energy diagrams, these are depicted in the figures

(4.4) and (4.5). The contribution from these diagrams turns out to be the same as the commutative

case since the Moyal phases at the vertices cancel out.

The amplitude for the first self-energy diagram Fig. (4.4) (the second is exactly same with the

momentum factors appropriately put in) is

Σ(q) =

∫
d3k

(2π)3
ieγνe

i
2
(q−k)×q i(6q− 6k +m)

[(q − k)2 −m2]
ieγµe

i
2
q×(q−k)

[
− 1

M
εµνρ

kρ

k2

]
. (4.5.1)

The numerator can be simplified as

Num[Σ(q)] = γν(6q− 6k +m)γµεµνρk
ρ

= [γνγαγµ(qα − kα) +mγνγµ] εµνρk
ρ

=
[
2ik2 − 2iq · k + 2im 6k

]
. (4.5.2)
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4.5. Fermion self-energy

Making use of the relation 2q · k = (q2 −m2) + k2 − [(q − k)2 −m2] in the numerator we get

Num[Σ(q)] = ik2 − i(q2 −m2) + i[(q − k)2 −m2] + 2im 6k

= ik2 + i[(q − k)2 −m2] + 2im 6k. (4.5.3)

where for the last equation we have used the on-shell condition q2 = m2. Similarly the numerator

for the the other self-energy contribution is

Num[Σ(p)] = ik2 + i[(p− k)2 −m2] + 2im 6k. (4.5.4)

The combined contribution from both the diagrams can be simplified to

Σ(q)− Σ(p) = C

∫
d3k

(2π)3
2k · (q − p)

[(q − k)2 −m2][(p− k)2 −m2]

[
1 +
6k
k2

]
. (4.5.5)

Where C = (ie)2/M . We solve the integrals separately for the sake of convenience and denote them

as I1 and I2.

I1 =

∫
d3k

(2π)3
kµ

[(q − k)2 −m2][(p− k)2 −m2]
. (4.5.6)

Combining the denominators and shifting the integration variable we get

I1 =

∫ 1

0
dx

∫
d3k

(2π)3
kµ + [xqµ + (1− x)pµ]

[k2 − ω2
1]

2
. (4.5.7)

Here ω2
1 = [xq + (1− x)p]2 and k̃ = k − [xq + (1− x)p], but we continue to call k̃ as k for the sake

of convenience. The kµ integration is zero. Performing the momentum integration we get

I1 =
i

8π

∫ 1

0
dx

xq + (1− x)p√
x2K2 − xK2 +m2

. (4.5.8)

Solving the above integral and putting all the factors the contribution from I1 becomes

I1 = 2(q − p)µC
iPµ

16πK
ln

[
1 + K/2m

1−K/2m

]
. (4.5.9)

The integral I2 is

I2 =

∫
d3k

(2π)3
6kkµ

k2[(q − k)2 −m2][(p− k)2 −m2]
. (4.5.10)

Following the standard procedure we need to solve the integral

I2 = γα

∫ 1

0
dx

∫ 1−x

0
dy

∫
d3k

(2π)3
A

[k2 − ω2
2]

3
, (4.5.11)

47



4.6. The composite diagrams

p r
k

Figure 4.6: The first composite vertex.

k
r

q

Figure 4.7: The second composite vertex.

where ω2
2 = [xq + yp]2 and k̃ = k − [xq + yp]. Furthermore the numerator A = kαkµ + (xqµ +

ypµ)kα + (xqµ + ypµ)kµ + (xqα + ypα)(xqµ + ypµ). It can be seen that the kα and kµ integrals will

not contribute. Performing the momentum integrals one gets

I2 =
iγα

16π

∫ 1

0
dx

∫ 1−x

0
dy

[
gαµ√

m2(x+ y)2 −K2xy
− x2qαqµ + y2pαpµ + xy(qαpµ + pαqµ)

(
√
m2(x+ y)2 −K2xy)3

]
.

(4.5.12)

The solution of the above integrals give

I2 =
iγα

16π

{
gαµ

K
ln

[
1 + K/2m

1−K/2m

]
− KαKµ

K3
ln

[
1 + K/2m

1−K/2m

]

+(qαpµ + pαqµ)

(
4m

K2(K2 − 4m2)
+

1

K3
ln

[
1 + K/2m

1−K/2m

])}
. (4.5.13)

Remembering that the expression is sandwiched between the spinors ū(q) and u(p) we see that

using the on-shell condition the contribution from I2 turns out to be

I2 =
i

16π

γµ

K
ln

[
1 + K/2m

1−K/2m

]
+
imPµ

16π

(
4m

K2(K2 − 4m2)
+

1

K3
ln

[
1 + K/2m

1−K/2m

])
. (4.5.14)

4.6 The composite diagrams

The composite vertex diagrams that contribute to the magnetic moment are given in figures (4.6)

and (4.7). To calculate the amplitude for the composite vertex diagrams we need the NC Feynman

rule for the vertex. This is shown in Fig. (4.8). Note that in the figures of the composite vertices

we have denoted the momentum K = r. With the above vertex rule the amplitude for Fig. (4.6)
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4.6. The composite diagrams

r
q

p

Figure 4.8: The tree level composite vertex.

≡ −e exp
[
− i

2
K× q

]
.

reads

Γ(1)
ρ = ū(q)

[
−(ie)3

M

]
e−

i
2
p×q

∫
d3k

(2π)3
(6p+ 6k +m)γµεµνρk

ρ(K− k)ν

[(p+ k)2 −m2]k2(k −K)2
(6q −m)(eip×k − eiq×k)u(p).

(4.6.1)

Similarly the amplitude corresponding to the second diagram, Fig. (4.7), is

Γ
(1)
ρ̄ = ū(q)

[
(ie)3

M

]
e−

i
2
p×q

∫
d3k

(2π)3
(6p−m)

(k + K)µεµνρk
ργµ(6q+ 6k +m)

[(q + k)2 −m2]k2(k + K)2
(e−ip×k − e−iq×k)u(p).

(4.6.2)

Combining both the expressions, using gamma matrix algebra and making use of

γµεµνρk
ρ = − 1

2i
(γν 6k− 6kγν); (4.6.3)

the contribution from the composite vertex diagrams becomes

Γ(1)
c =

[
(ie)3

2iM

]
e−

i
2
p×q(qµ − pµ)ū(q)

{∫
d3k

(2π)3
(6k+ 6p+m)(γµ 6k− 6kγµ)(6q −m)

[(p+ k)2 −m2]k2(k −K)2
(eip×k − eiq×k)

+

∫
d3k

(2π)3
(6p−m)(6kγµ − γµ 6k)(6k+ 6q +m)

[(q + k)2 −m2]k2(k + K)2
(e−ip×k − e−iq×k)

}
. (4.6.4)

The numerators of the above two integrals can be simplified and cast in a more illuminating

manner. For example taking the numerator of the first integral in the above equation

Num A = (6k+ 6p+m)(γµ 6k− 6kγµ)

= (6kγµγα− 6k 6kγµ) + (6p+m)(γµ 6k− 6kγµ)

= 2 (6kkµ− 6k 6kγµ) + (6p+m)(γµ 6k− 6kγµ)

= 2 [6kkµ + (6p+m)(kµ− 6kγµ)− 6k 6kγµ]

= 2
[
6kkµ + (6p+m)(kµ− 6kγµ)− k2γµ

]
. (4.6.5)
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4.6. The composite diagrams

Where, in obtaining the above expression we have made use of the relations γµγα = 2gµα − γαγµ.

Similarly for the other numerator we get

Num B = (6kγµ − γµ 6k)(6k+ 6q +m)

= 2
[
6kkµ + (kµ − γµ 6k)(6q +m)− k2γµ

]
. (4.6.6)

Using the expressions of numerator A and B from equations (4.6.5) and (4.6.6) respectively, in Eq.

(4.6.4) we get

Γ(1)
c =

[
(ie)3

iM

]
e−

i
2
p×q(qµ − pµ)ū(q)

{∫
d3k

(2π)3

[ 6kkµ + (6p+m)(kµ− 6kγµ)

[(p+ k)2 −m2]k2(k −K)2

− γµ

[(p+ k)2 −m2](k −K)2

]
(6q −m)(eip×k − eiq×k) +

∫
d3k

(2π)3
(6p−m)

[ 6kkµ + (kµ − γµ 6k)(6q +m)

[(q + k)2 −m2]k2(k + K)2
− γµ

[(q + k)2 −m2]k2(k + K)2

]
(e−ip×k − e−iq×k)

}
u(p). (4.6.7)

For the sake of convenience we will solve the above amplitude in parts first we consider the contri-

butions from the pure γµ terms. We will call the contribution from this as I1

I1 =

[
2(ie)3

iM

]
e−

i
2
p×qū(q)(qµ − pµ)

{∫
d3k

(2π)3
(mγµ − qµ)

(k2 + 2k.p)(k −K)2
(e−ik×p − e−ik×q)

+

∫
d3k

(2π)3
(mγµ − pµ)

(k2 + 2q.k)(k + K)2
(eik×p − eik×q)

}
u(p) (4.6.8)

Solving the above integrals is now a standard matter. Using Feynman parametric integral we get

for the above equation

I1 = C1ū(q)

{∫ 1

0
dx

∫
d3kA

(2π)3
(mγµ − qµ)

[k2
A − ω2

A]2
PA +

∫ 1

0
dx

∫
d3kB

(2π)3
(mγµ − qµ)

[k2
B − ω2

B]2
PB

}
u(p), (4.6.9)

Where C1 = [2(ie)3/iM ] exp(− i
2p× q)(qµ − pµ), kA = k + x(p+ K)−K, kB = k + x(q −K) + K,

ωA = [x(p + K) −K]2 −K2(1 − x), and ωB = [x(q −K) + K]2 −K2(1 − x). Furthermore, for the

phases associated with the integrals, we have used [exp(−ikA×p) exp(−i(1−x)q×p)−exp(−ikA×

q) exp(ip× q)] ≡ PA and [exp(ikB × p) exp(−iq × p)− exp(ikB × q) exp(i(1− x)p× q)] ≡ PB. The

momentum integrals are easy to evaluate, the relevant integrals are tabulated in Appendix A, and
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4.6. The composite diagrams

yield

I1 = C1
2i

(2
√
π)3

ū(q)

∫ 1

0
d3x(mγµ − qµ)

[√
|p̃|

2|ωA|
K1/2(|p̃||ωA|)ei(1−x)p×q

−
√
|q̃|

2|ωA|
K1/2(|q̃||ωA|)eip×q

]
+

∫ 1

0
d3x(mγµ − pµ)

[√
|p̃|

2|ωB|
K1/2(|p̃||ωB|)eip×q

−
√
|q̃|

2|ωB|
K1/2(|q̃||ωB|)ei(1−x)p×q

]
u(p). (4.6.10)

The parametric integrals are solved by going to the Fermion rest frame which results in the phases

present in the above integral becoming unity. This is because p × q = 0. The integral I1 then

becomes

I1 =
iC1

8π
ū(q)

{∫ 1

0
d3x(mγµ − qµ)

[
exp(−|p̃||ωA|)

|ωA|
− exp(−|q̃||ωA|)

|ωA|

]

+

∫ 1

0
d3x(mγµ − pµ)

[
exp(−|p̃||ωB|)

|ωB|
− exp(−|q̃||ωB|)

|ωB|

]}
u(p). (4.6.11)

Expanding the exponentials to first order in θ and performing the parametric integral we get

I1 = (ie)3(qµ − pµ)
(|q̃| − |p̃|)

4πM
ū(q)[2mγµ − (qµ + pµ)]u(p) . (4.6.12)

The other terms of the numerator can be simplified as follows:

Num A = [6kkµ + (6p+m)(kµ− 6kγµ)](6q −m)

= (γαγβk
αqβ −m 6k)kµ + (γαγβp

αqβ −m2)kµ − (6p+m) 6kγµ(6q −m)

= 2q · kkµ + (2p · q − 2m2)kµ︸ ︷︷ ︸
A2

− 2m 6kkµ︸ ︷︷ ︸
A3

− (6p+m) 6kγµ(6q −m)︸ ︷︷ ︸
A4

(4.6.13)

Similarly the contribution from the other composite vertex can be cast as

Num B = 2p · kkµ + (2p · q − 2m2)kµ︸ ︷︷ ︸
B2

− 2m 6kkµ︸ ︷︷ ︸
B3

− (6p−m)γµ 6k(6q +m)︸ ︷︷ ︸
B4

(4.6.14)

For the sake of convenience we have grouped the terms. Making use of the relations 2q · k =

K2 − (k −K)2 + (k2 + 2k · p) in A2 and 2p · k = K2 − (k + K)2 + (k2 + 2k · q) in B2 respectively,
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4.6. The composite diagrams

and K2 = (q − p)2 = 2m2 − 2q · p, integral I2 can be written as

I2 =

[
(ie)3

iM

]
e−

i
2
p×q(qµ − pµ)ū(q)

{∫
d3k

(2π)3

[
kµ

k2(k −K)2
− kµ

k2(k2 + 2k · p)

]

(e−ik×p − e−ik×q) +

∫
d3k

(2π)3

[
kµ

k2(k + K)2
− kµ

k2(k2 + 2k · q)

]
(eik×p − eik×q)

}
u(p). (4.6.15)

We will not elaborate further on the explicit procedure of solving the above integral but merely

state the contribution from I2:

I2 =
(ie)3

16πM
(qµ − pµ)(qµ + pµ)(|q̃| − |p̃|). (4.6.16)

Terms A3 and B3 lead to the integral I3

I3 =

[−2m(ie)3

iM

]
e−

i
2
p×q(qµ − pµ)ū(q)

{∫
d3k

(2π)3

[ 6kkµ

k2(k2 + 2k · p)(k −K)2

]

(e−ik×p − e−ik×q) +

∫
d3k

(2π)3

[ 6kkµ

k2(k2 + 2k · q)(k + K)2

]
(eik×p − eik×q)

}
u(p). (4.6.17)

Combining the denominators in the standard manner and defining the contributions from A3 and

B3 as k = kA3 − (x+ y)p+ yq and k = kB3 − (x+ y)q + yp respectively. With this redefinition of

the momentum variables

I3 = C3e
− i

2
p×qū(q)

{∫ 1

0
dx

∫ 1−x

0
dy

∫
d3k

(2π)3

[
(6kA3 −mx)[kµA3 − (x+ y)pµ + yqµ]

[k2
A3 − ω2

A3]
3

]
PA3

+

∫ 1

0
dx

∫ 1−x

0
dy

∫
d3k

(2π)3

[
(6kB3 −mx)[kµB3 − (x+ y)qµ + ypµ]

[k2
B3 − ω2

B3]
3

]
PB3

}
u(p). (4.6.18)

Where C3 = [−4m(ie)3/iM ](qµ − pµ), ω2
A3 = (xp − yK)2 − yK2, ω2

B3 = (xq + yK)2 − yK2,

PA3 = [exp(−ikA3 × p) exp(−iyq × p)− exp(−ikA3 × p) exp(i(x+ y)p× q)] and PB3 = [exp(ikB3 ×

p) exp(−i(x+ y)q × p)− exp(ikB3 × q) exp(iyp× q)]. Going to the fermion rest frame we have

I3 = C3ū(q)

{∫ 1

0
dx

∫ 1−x

0
dy

∫
d3k

(2π)3

[
(6kA3 −mx)[kµA3 − (x+ y)pµ + yqµ]

[k2
A3 − ω2

A3]
3

]

(e−ikA3×p − e−ikA3×q) +

∫ 1

0
dx

∫ 1−x

0
dy

∫
d3k

(2π)3[
(6kB3 −mx)[kµB3 − (x+ y)qµ + ypµ]

[k2
B2 − ω2

B3]
3

]
(eikB3×p − eikB3×q)

}
u(p). (4.6.19)
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4.6. The composite diagrams

It can be noticed that we need to evaluate three different types of integrals. That is depending on

whether k occurs in the numerator or not, with the denominators being same. We first consider

integral independent of kA3. Denoting this integral by I3(0), we get

I3(0) =

∫ 1

0
dx

∫ 1−x

0
dy

{∫
d3k

(2π)3
mx[(x+ y)pµ − yqµ]

[k2
A3 − ω2

A3]
3

P1 −
∫

d3k

(2π)3
mx[ypµ − (x+ y)qµ]

[k2
B3 − ω2

B3]
3

P2

}

= − i

32π

(pµ + qµ)

6
(|q̃|2 − |p̃|2) . (4.6.20)

where we have defined P1 = [exp(−ikA3×p)−exp(−ikA3×q)] and P2 = [exp(ikB3×p)−exp(ikB3×

q)]. Also the factor C3 is understood to be present in the above integrals as well as those given

below. The above result for the integrals has been calculated in the low momentum transfer limit.

Similarly the integrals with two momenta in the numerator gives

I3(kk) =

∫ 1

0
dx

∫ 1−x

0
dy

{∫
d3k

(2π)3
6kA3kµA3

[k2
A3 − ω2

A3]
3
P1 +

∫
d3k

(2π)3
6kB3kµB3

[k2
B3 − ω2

B3]
3
P2

}

=
iC3γ

ν

96π

[
p̃µp̃ν

|p̃| −
q̃µq̃ν
|q̃| − gµν(|q̃| − |p̃|)

]
− iC3mγ

ν

32π
[p̃µp̃ν − q̃µq̃ν ] . (4.6.21)

Finally we solve the integrals with a single k in the numerator

I3(k) =

∫ 1

0
dx

∫ 1−x

0
dy

∫
d3k

(2π)3

[
(yqµ − (x+ y)pµ)

6kA3

[k2
A3 − ω2

A3]
3
PA3 −mx

kµA3

[k2
A3 − ω2

A3]
3
PA3

]

+

∫ 1

0
dx

∫ 1−x

0
dy

∫
d3k

(2π)3

[
(ypµ − (x+ y)qµ)

6kB3

[k2
B3 − ω2

B3]
3
PB3 −mx

kµB3

[k2
B3 − ω2

B3]
3
PB3

]
.(4.6.22)

Performing the momentum integrals

I3(k) =

∫ 1

0
dx

∫ 1−x

0
dy(yqµ − (x+ y)pµ)γν

[
−1

2

p̃ν

(
√

2π)3

√
|p̃|

2|ωA3|
K1/2(|p̃||ωA3|)

+
1

2

q̃ν

(
√

2π)3

√
|q̃|

2|ωA3|
K1/2(|p̃||ωA3|)

]

−
∫ 1

0
dx

∫ 1−x

0
dymx

[
−1

2

p̃µ

(
√

2π)3

√
|p̃|

2|ωA3|
K1/2(|p̃||ωA3|)

+
1

2

q̃µ

(
√

2π)3

√
|q̃|

2|ωA3|
K1/2(|p̃||ωA3|)

]

+

∫ 1

0
dx

∫ 1−x

0
dy [(ypµ − (x+ y)qµ)γν [ωA3 → ωB3]−mx[ωA3 → ωB3]] . (4.6.23)
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4.6. The composite diagrams

In the above equation ωA3 → ωB3 in parenthesis means that the expression is same as that given

previously in the equation but with ωA3 being replaced by ωB3. Expanding the bessel functions to

first order in θ and after some algebra the parametric integrals that need to be calculated are

I3(k) =

∫ 1

0
dx

∫ 1−x

0
dy

[
2γν(q̃ν |q̃| − p̃ν |p̃|)(pµ − qµ)(x+ y)− γν

m
(q̃ν − p̃ν)(pµ − qµ)

−2yγν

mx
(q̃ν − p̃ν)(pµ − qµ)

]
. (4.6.24)

The parametric integrals give

I3(k) =

[
2(γ · q̃|q̃| − γ · p̃|p̃|)

3
+

(γ · q̃ − γ · p̃)
m

−
∫ 1

0
dx

(γ · q̃ − γ · p̃)
mx

]
(pµ − qµ). (4.6.25)

We have left the last integral in the above expression as it is, for the time being, since it is divergent.

For obtaining the final contribution of the composite ghost-gluon vertex, terms A4 and B4 can

be simplified using gamma matrix algebra

A4 = (6p+m) 6kγµ(6q −m) = 6p 6kγµ 6q︸ ︷︷ ︸
1

−m 6p 6kγµ︸ ︷︷ ︸
2

+m 6kγµ 6q︸ ︷︷ ︸
3

−m2 6kγµ︸ ︷︷ ︸
4

. (4.6.26)

The individual terms can be simplified to give

1 = 4k · pqµ − 2m 6kqµ − 4k · qpµ + 2mk · qγµ + 2p · q 6kγµ − 2mk · pγµ + 2m 6kpµ −m2 6kγµ

2 = 2mk · pγµ − 2m 6kpµ +m2 6kγµ

3 = 2m 6kqµ − 2mk · qγµ +m2 6kγµ

4 = m2 6kγµ. (4.6.27)

Collecting all the contributions

A4 = (4k · pqµ − 4k · qpµ) + (4m 6kpµ − 4mk · pγµ) + 2(p · q −m2) 6kγµ. (4.6.28)

Similarly for B4 we have

B4 = (4k · qpµ − 4k · pqµ) + (4m 6kqµ − 4mk · qγµ) + 2(p · q −m2)γµ 6k. (4.6.29)
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4.7. Discussion

From the above we can see that only two types of integrals occur in the above equations

I4A = C4ū(q)

∫
d3k

(2π)3

[
kµ

k2(k2 + 2k · p)(k −K)2

]
(eip×k − eiq×k)u(p),

I4B = C4ū(q)

∫
d3k

(2π)3

[
kµ

k2(k2 + 2k · q)(k + K)2

]
(e−ip×k − e−iq×k)u(p). (4.6.30)

We have defined C4 = [(ie)3/iM ] exp(−ip × q/2)(qµ − pµ). It is now a easy matter to solve the

integrals. It can be noticed that we have single k in the numerator so we can expect divergent

integrals. These integrals can be read of from the integrals provided in the appendix. From the

expressions of the various non-planar integrals calculated above we notice that the divergent pieces

occur in the terms that do not contribute to the MM.

4.7 Discussion

We can see from the calculation of the vertex diagrams that similar to the vertex corrections of QED

the contributions can be broken into several pieces. There exists purely θ dependent contribution

to the MM namely terms of the type K̃. Furthermore there exists terms of the type Kµ with theta

dependent coefficients. It can be noticed that they do not satisfy the Ward identity. It must be

mentioned that they arise from the composite diagrams.

It is known that in the NC scenario, unitarity may not be preserved. The problems occurring

in the BRST analysis is probably rooted in the above cause. In a physical gauge, like A3 = 0 the

three gluon interaction drops out, indicating that the violation of the Ward identity encountered

in the above calculation may be a gauge artefact.
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Chapter 5
Phase structure of noncommutative field

theories

5.1 Introduction

Noncommutative theories have occupied a great deal of interest in recent years. We have already

pointed out various reasons in the first chapter. In this chapter we study the phase structure of

NC theories. To be precise we study the NC version of the BCS theory. Phase transitions in NC

theories are specially intriguing and challenging due to the fact that these theories exhibit UV/IR

mixing. In many cases the presence of infrared singularities leads to phase transitions. A further

aspect worth mentioning is that these infrared singularities do not arise due to massless propagating

fields but rather due to loop effects. The effect of these singularities on the phase transition in the

context of λφ4 theories has been studied. It was shown that the due to noncommutativity there is

a transition to a non-uniform striped phase [5, 11, ?, 50].

In this chapter, we concentrate on a non-relativistic noncommutative field theory at finite

density. We adopt a non-perturbative approach, through an appropriate Bogoliubov transformation

to find the stable vacuum in the presence of the four fermion contact interaction. It is found that a

LOFF type ansatz is ideal for the same purpose. As will be seen, the presence of the noncommuting
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5.2. Noncommutative gap equation

parameter, yields a non-trivial ground state, even for a single species of fermions. It is worth

pointing out that, for the commutative case, the chemical potential difference between the two

species of fermions was responsible for LOFF type instability.

5.2 Noncommutative gap equation

The NC version of the BCS Hamiltonian is

H = ψ†
r(x)

[
−∇

2

2m
− µ

]
ψr(x)−

g

2
ψ†

r(x) ? ψ
†
s(x) ? ψs(x) ? ψr(x). (5.2.1)

Here g is the coupling constant and µ the chemical potential and r is the spinor index and can take

values ±1/2. In momentum space the interaction has the form

Hint =
g

2

∫ 4∏

i=1

d3ki

(2π)3
e−i(k1+k2−k3−k4)xei/2

∑
i<j ki×kj . (5.2.2)

A suitable trial wavefunction can be constructed for the LOFF state as

| Ω〉 = eλ(B†−B) | 0〉. (5.2.3)

Here the operators appearing in the exponential are defined as

B† =

∫
d3k ψ†

r(k +
q

2
) r ψ†

−r(−k +
q

2
) f(k) (5.2.4)

Here f(k) is the condensate function. It can be noticed from the above definition of the operators

that the particles have a relative total momentum with respect to each other and is characterized

by the vector q. Now using the above operators we can cast the particle creation and annihilation

operators in terms of the quasi-particle creation and destruction operators:


 ψr(k)

ψ†
−r(−k + q)


 =


 cos f(k − q/2) 2r sin f(k − q/2)

−2r sin f(k − q/2) cos f(k − q/2)





 ψ̃r(k)

ψ̃†
−r(−k + q)


 . (5.2.5)

In the above the tilde operators denote the quasi-particle operators and are constructed such that

ψ̃r(k) | Ω〉 = 0.
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5.2. Noncommutative gap equation

One can in principle have a more general operator where in the definition of B† the condensate

function is taken to be complex f ∗(x). With this definition of B†, the transformation matrix for

the quasi-particle operators can be written as


 ψr(k)

ψ†
−r(−k + q)


 =


 cos |f(k − q/2)| 2rf∗(k−q/2) sin |f(k−q/2)|

|f(k−q/2)|

−2rf(k−q/2) sin |f(k−q/2)|
|f(k−q/2)| cos |f(k − q/2)|





 ψr(k)

ψ
†
−r(−k + q)


(5.2.6)

The free energy is obtained by taking the vacuum expectation value (VEV) of the operators 〈ψ†ψ†〉Ω
and 〈ψψ〉Ω in the LOFF state. We calculate 〈ψ†

r(k1)ψ
†
s(k2)〉Ω (From now on we will drop the

subscript Ω in the VEV expressions and it is to be understood that the state is the LOFF state)

going over to the quasi-particle operators, the expectation yields

〈ψ†
rψ

†
s〉 ≡

∫
d3k1√
(2π)3

d3k2√
(2π)3

〈[cos f(−k1 + q/2)ψ̃†
r(k1) + 2r sin f(−k1 + q/2)ψ̃−r(−k1 + q)]

[cos f(−k2 + q/2)ψ̃†
r(k2) + 2s sin f(−k2 + q/2)ψ̃−s(−k2 + q)]〉,

=

∫
d3k1√
(2π)3

d3k2√
(2π)3

2r sin f(−k1 + q/2) cos f(−k2 + q/2)〈ψ̃−r(−k1 + q)ψ̃†
s(k2)〉,

=

∫
d3k1√
(2π)3

d3k2√
(2π)3

2r sin f(−k1 + q/2) cos f(−k2 + q/2)δ−r,sδ
3(k1 + k2 − q). (5.2.7)

With k1 = P ′/2 +Q′ and k2 = P ′/2−Q′, the expectation value can be written in the form

−
∫

d3P ′

√
(2π)3

d3Q′

√
(2π)3

2r cos f(P ′/2 +Q′ − q/2) sin f(P ′/2−Q′ − q/2)δ−r,sδ
3(P ′ − q). (5.2.8)

Next we compute the expectation value of 〈ψr(k3)ψs(k4)〉Ω.

〈ψrψs〉 ≡
∫

d3k3√
(2π)3

d3k4√
(2π)3

〈[cos f(k3 − q/2)ψ̃r(k3) + 2r sin f(k3 − q/2)ψ̃†
−r(−k3 + q)]

[cos f(k4 − q/2)ψ̃r(k2) + 2s sin f(k4 − q/2)ψ̃†
−s(−k4 + q)]〉

=

∫
d3k3√
(2π)3

d3k4√
(2π)3

2s cos f(k3 − q/2) sin f(k4 − q/2)〈ψ̃r(k3)ψ̃
†
−s(−k4 + q)〉

=

∫
d3k3√
(2π)3

d3k4√
(2π)3

2s cos f(k3 − q/2) sin f(k4 − q/2)δr,−sδ
3(k3 + k4 − q). (5.2.9)

Redefining the momentum as shown above, with k3 = P/2 +Q and k4 = P/2−Q:

−
∫

d3P√
(2π)3

d3Q√
(2π)3

2s cos f(P/2 +Q− q/2) sin f(P/2−Q− q/2)δr,−sδ
3(P − q). (5.2.10)
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5.2. Noncommutative gap equation

Performing the P and P ′ integrations in equations 5.2.8 and 5.2.10, the expectation value of the

interacting Hamiltonian becomes

〈Hint〉 =
g

4

∫
d3Q√
(2π)3

d3Q′

√
(2π)3

sin 2f(Q) sin 2f(Q′)eiq×(Q+Q′)/2. (5.2.11)

Similarly the kinetic term acquires the form

〈H0〉 =

∫
d3Q 4 [ε(Q+ q/2)2 − µ] sin2 f(Q), (5.2.12)

where ε(Q + q/2) = (Q + q/2)2/2m. Minimizing the free energy with respect to the condensate

function f(p) viz δ〈H〉/δf(p) = 0, gives

4[ε(p+ q/2)− µ] sin 2f(p) = −g
∫

d3Q

(2π)3
cos 2f(p) sin 2f(Q) cos

[
q × p

2

]
cos

[
q ×Q

2

]
. (5.2.13)

In the above equation we have retained the real part of the phase and have dropped the sine terms

since they are odd functions of Q. Dividing by cos 2f(p) we obtain

tan 2f(p) =
∆(q) cos(q × p/2)
[ε(p+ q/2)− µ]

; (5.2.14)

where

∆(q) = −g
4

∫
d3Q

(2π)3
sin 2f(Q) cos

[
q ×Q

2

]
. (5.2.15)

The gap equation is then

∆(q) = −g
4

∫
d3Q

(2π)3
∆(q) cos2(q ×Q/2)√

(ε(Q+ q/2)− µ)2 + ∆2(q) cos2(q ×Q/2)
. (5.2.16)

Expanding the cosine in terms of series to the first nontrivial order in θ

1 = −g
4

∫
d3Q

(2π)3

[
1√

(ε(Q)− µ)2 + ∆2
− (q ×Q)2

4
√

(ε(Q)− µ)2 + ∆2

]
. (5.2.17)

It must be noted that the form of the gap equation depends crucially on the choice of ∆. For

example, instead of defining ∆ as in Eq. (5.2.15), if we choose

∆(q, p) = −g
4

∫
d3Q

(2π)3
sin 2f(Q) cos

[
q × (Q+ p)

2

]
; (5.2.18)
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5.3. Solution of the gap equation

the gap equation then has the form

∆(q, p) = −g
4

∫
d3Q

(2π)3
∆(q,Q)√

(ε(Q+ q/2)− µ)2 + ∆2(q,Q)
cos

[
q × (Q+ p)

2

]

= −g
4

∫
d3k

(2π)3
∆(q, k − q/2)√

(ε(k)− µ)2 + ∆2(q, k − q/2)
cos

[
q × (k + p)

2

]
, (5.2.19)

where k ≡ Q + q/2. A few points are in order here. We could have separated the phase

cos[q × p/2] since it does not depends on the integration variable. Then defining the gap as

∆(q, p) = ∆̃(q) cos[q × p/2], we see that Eq. (5.2.19) reduces to that of Eq. (5.2.16). But we find

it advantageous to retain the above form of the equation.

5.3 Solution of the gap equation

The solution of the gap equation can be found following the technique presented in [73]. It can

be seen from the definition of ∆(q, p) that it is an even function hence, the ansatz we take is of

the form ∆ + p2δ [73]. In principle we could have started out with a more general ansatz like

∆(q, p) = ∆+p2δ+(p · q)δ1 + q2δ2 +(p · θ)δ3, but as already noted since ∆(q, p) is an even function

of p terms linear in p can be dropped. As for the q2 dependent term, it does not depend on the

integration variable and can be ignored in the contribution to the gap. Keeping in mind the above

considerations we have

∆ + p2δ = −g
4

∫
d3k

(2π)3
(∆ + k2δ)(1− [(q × p)2 + (q × k)2]/8)√

(ε(k)− µ)2 + (∆ + k2δ)2
, (5.3.1)

In the above expression we have ignored the 2(q × r)(q × p) term from the cosine expansion.

Performing the angular integrations and retaining terms to order k2 in the gap equation

∆ + p2δ = − g

8π2

∫ ∞

0
dk

k2∆[1− (q × p)2/8]√
(ε(k)− µ)2 + (∆ + k2δ)2

. (5.3.2)

The above integral can be solved analytically. Computing first the pure ∆ integral i.e., setting

p2 = 0 we get

1 = − g

8π2

∫ ∞

0
dk

k2

√
(ε(k)− µ)2 + (∆ + k2δ)2

. (5.3.3)
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5.3. Solution of the gap equation

Noting that the above integral can be cast in the form

Jα(x, y) =

∫ ∞

0
dt

tα√
(t− 1)2 + (x+ yt)2

, (5.3.4)

the integral becomes

1 = −gmkF

4π2
J1/2(x, y); (5.3.5)

Where kF =
√

2mµ, x = ∆/µ, and y = k2
F δ/µ. For δ we get

δ =
gkFm∆

4π2

(q × np)
2

8
J1/2(x, y). (5.3.6)

Here np denotes the unit vector in the direction of p. It can be seen that in the absence of

noncommutativity (θ = 0) δ becomes zero and the expression reduces to that of the ordinary BCS

gap equation. Making use of the relation

Jα(x, y) = − π

sinπα
(1 + y2)−1/2

(
1 + x2

1 + y2

)α/2

Pα(−z). (5.3.7)

where z = (1− xy)/
√

(1 + x2)(1 + y2), and setting y = 0 in the above expression yields

1

kFa
= (1 + x2)1/4P1/2(−1/

√
1 + x2). (5.3.8)

The Legendre polynomial has a logaritmic singularity as z → 0. The expression for the leading

term is given by [38]

Pα(z) =
sin(απ)

π

[
ln

(
z + 1

2

)
+ γ + 2ψ(α+ 1) + π cot(απ)

]
; (5.3.9)

where γ is the Euler-Mascheroni constant and ψ is the derivative of the log of the gamma function.

The usual gap of the BCS theory is obtained for small values of kFa:

∆ =
8

e2
µ exp

(
− π

2kF |a|

)
. (5.3.10)

To find out the effect of θ on the gap we need to solve for δ from Eq. (5.3.6) we get

δ = −(akFµx)
(q × np)

2

8
(1 + x2)1/4P1/2(−1/

√
1 + x2). (5.3.11)

It must be pointed out that the three vectors available to us θ, p and q are mutually orthogonal.

This feature that the gap depends on the angles between the vectors has also been reported in [19].
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5.4. Conclusions

5.4 Conclusions

In this chapter we have studied the effect of noncommutative interaction on the BCS pairing

mechanism. It can be noticed that due to the presence of noncommutativity the pairing energy

decreases as compared to the ordinary BCS theory. Furthermore, it also supports the existence of

a finite momentum condensate just like the LOFF type of pairing. The crucial difference however

is that, LOFF pairing is possible in the presence of two species of fermions, whereas in our case

just single species is enough. It must also be mentioned that when the NC parameter is set to zero

the non-zero total momentum of the pair tends to zero leading to the usual BCS type of pairing.
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Chapter 6
Summary and future prospects

In conclusion, in this thesis we have studied the effect of noncommutativity on physical quantities

both from perturbative and non-perturbative points of view. the perturbative treatment was carried

out in anyonic planar field theories. The correction to magnetic moment was calculated at the one-

loop level for a bosonic theory. It is worth pointing out that complex scalar field theories can carry

a magnetic moment in a planar field theory. The magnetic moment coupling arises due to induced

spin in a Chern-Simons field theory. In a noncommutative theory corrections were obtained at one-

loop level. It was found that the presence of this dimensional parameter θ can lead to novel type of

coupling of the matter field with magnetic field. In particular, a coupling sensitive to inhomogeneity

of the magnetic field was identified. The planar spin dynamics and motion of charged particles in

a non-uniform magnetic field will be affected.

Keeping in mind the usefulness of noncommutative CS theory to quantum Hall effect, this

effect may find physical applications. We then proceeded to relativistic fermionic field theories and

studied the BRST symmetry of the same with a CS coupling. The fact that U(1) noncommutative

theory is structurally quite analogous to non-Abelian theoires, necessitates the above analysis. The

above study was also required in the context of our calculation of the one-loop correction to the

fermionic moments. Presence of composite vertex made this calculation, rather tedious, which was

accomplished with the help of the above mentioned symmetry analysis. Differences between 3+1
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and 2+1 dimensional theories were highlighted.

We then studied the effect of noncommutativity on the vacuum structure of the BCS theory.

This was carried out using a non-perturbative approach in the context of a Gorkov type four-

Fermi coupling instead of the original BCS coupling. The θ parameter significantly affected the

non-perturbative vacuum. It was found that, instead of the original Cooper-paired ground state,

the θ-term prefers a LOFF type vacuum, where the paired particles can have non-zero center of

mass momentum. The vacuum structure was analyzed in detail for momenta close to the Fermi

surface and the similarity of the non-commutative theory with theories having derivative coupling

was pointed out.

A number of directions can be envisaged where further studies can be profitable carried out. The

precise connection of the noncommutative theories studied here with anyonic theories relevant to

quantum Hall effect should be investigated in order to physically test the effect of noncommutative

parameter as particle or quasi-particle dynamics. Since finite temperature and non-zero θ have

similar effects. The effect of finite temperature and chemical potential in these theories also needs

investigation. It should be noted that in the noncommutative theories, one-loop finite temperature

effects leads to interesting physics in these theories.

The effect of finite temperature on the aforementioned BCS theory in a noncommutative back-

ground is bound to throw light on the phase structure of this theory. The possibility of a quantum

phase transition in this model, where θ and temperature can both play significant roles needs to

be explored. The dynamics of quasi-particles and collective modes should also be studied carefully

for this effect of θ on them.
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Appendix A
Important Integrals

Below we list a few frequently encountered nonplanar integrals that arise in the nonplanar loop

calculations.

1.
∫

d3q

(2π)3
e±iq×K

[q2 − ω2]2
=

2i

(2
√
π)3

[
|K̃|
2|ω|

]1/2

K1/2(|K̃||ω|). (A.0.1)

2.
∫

d3q

(2π)3
qµ

[q2 − ω2]2
e±iq×K = ∓ K̃µ

(2
√
π)3

[
|K̃|
2|ω|

]−1/2

K−1/2(|K̃||ω|). (A.0.2)

3.

∫
d3q

(2π)3
qµqνe

±iq×K

[q2 − ω2]2
= − 2i

(2
√
π)3


K̃µK̃ν

4

[
|K̃|
2|ω|

]−3/2

K−3/2(|K̃||ω|)

−gµν

2

[
|K̃|
2|ω|

]−1/2

K−1/2(|K̃||ω|)


 . (A.0.3)

4.
∫

d3q

(2π)3
e±iq×K

[q2 − ω2]3
= − i

(2
√
π)3

[
|K̃|
2|ω|

]3/2

K3/2(|K̃||ω|). (A.0.4)

5.
∫

d3q

(2π)3
qµ

[q2 − ω2]3
e±iq×K = ±1

2

K̃µ

(2
√
π)3

[
|K̃|
2|ω|

]1/2

K1/2(|K̃||ω|). (A.0.5)
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6.

∫
d3q

(2π)3
qµqνe

±iq×K

[q2 − ω2]3
=

i

(2
√
π)3


K̃µK̃ν

4

[
|K̃|
2|ω|

]−1/2

K−1/2(|K̃||ω|)

−gµν

2

[
|K̃|
2|ω|

]1/2

K1/2(|K̃||ω|)


 . (A.0.6)
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