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ABSITRAQGT

 A.stﬁdy of the nbniinear dispérsiVe properties and the |
 furbg1eﬁt.behaviour of plasmag is pre egented in this thesis, Theb
.pféééﬁcekdf a small fraction of cold é¢lectrons in a plasma is
Lféahﬁ to affect the spectrum of modulationally ungtable Lo
Waves. The envelope hole state of the Ton~Acoustic
found to be broadened by the presence of random’imho?
’mo&on31t1es In a collisional plasma, obliquely propagating
 fLanbmu1r waves are modulationally stable and the angle betwee

| ,Qirectlong of propagation and modulation HfiGCbb the
iéhvelopé hole state, The plane wave solutions of the Sine-
;&Gdrdon equation are modulationally unstable, whereas those of
: the Nonlinear Klein--Gordon equation can bestable or unstab
 depending on the sign of the cubic nonlinear term, The
,;stability of a generalised nonlinear dispersive wave equation
.v (Hirota equation) and the Boussinesg equa tion against long-
 5?Waﬁe mbdulations and congequent envelope states are investi-
tgated - The sa aturation of the hot bheam-plasma Lnbbablllfy due
fIbulonb diffusion and the effect of particle Lhcrmal

~ velocities on the nonlinear saturation and energy balance are

_discussed.




GHAPTER T

 NTRODUGTION

_The collecbi&éwosﬁlllationé 1ﬁ’a.pla$ma make ﬁhé\
tudykoi plaﬁmao a Iabolnatlnb and rich field, In general
smé wavps are dlsper81ve in nature. By definition, a
asper51ve Wave oi frequency {0 and wavenumbér k gatisfies
,t ékcond1t1on, 6“03/dk # 0. In general () can be oompléx}
_Wlth.an.lmaglnary part Q) that is small compared with
’ the real part LQ However, for our work, we have
'OllbWedﬁthgvdefinition.of dispersive waves adopted Dby
1974), namely '
dl()\) d Vs | N P
= f b () (1.12)
bR dk T | |

real, In Bq.(1.1) V_ = a0 /dk is the group
[

YéIOCiﬁy‘of the waves., The phase velocities of the dispersg-

iYQ;Waves‘depend,on.the wavenumbers and thus digperse the



jlso thb dcflnltlon (1.1) ensures that the group
ylVé is not a constant but a function of the wave
The electron plasma or Langmuir waves have the
:5"duenoies given by

, J -
0 2 . 3}Q ?é

W= W ¥ (1.2

Whgféiybdp = (4nnbez/m)l/2 is the plasma frequency of
-’ﬁrdps'qf charge ¢, mags m, in a plasma of average

U beyf@éﬁéify oy and'Te is the average kinetic énergy“Of
1ﬁhé éiéctfons. The ion-acoustic waves have the frequency
S

QQQ:: e - (1.3)

,}O >\2

5;Where C = (T, + Ti)l/g/(m + M)l/z is the ion-acoustic

}Yelqoity; T, is the average kinetic energy of the iong, M

ﬁhe'ion mass, am@.-%T): (Te/énn 62>1/2 is the Debye lengfh.

; and thg ion-acoustic waves are disgpersive,

Nonmlinearity is an inherent feature of plasmas and
hence the waves in it, whether in equilibrium or growing,
are essentially monlinear, In an equilibrium plasma the

~ honlinearity is exhibited in the form of wave steepening

.jﬁqs.‘(l.l) (1.3), it is clear thdb both the Langmulr‘,_ \



Lrd

9]

tak;ﬁé;“ﬁhéféas in a growing wave the nonlinearity

_khéﬁigbréQSimg amplitude of the wave is more dominant,

léﬁiinéarity of an equilibrium plasma in one dimension

’éétjillustrated by the equation of motion,

‘617
0

where v is the velocity of the fluid element anmd I' is the

+'Y7 X‘:= o (1.4)

;SQlf;écnsistent field, If v ig linearized around a constant

Eq. (1.4) in absence of F haé solutions of the

;iﬁé Vo9
f% vy (x - v t): Thus a sinusoidal perturbation
propagatos without any change in form, However, the non-
il;near.equatlon has implicit solutiong of the form

, 0) ; s0 that if the perturbation is

'fﬁifially sinusoi&al, the crest moves fas er’than the trough
fé@ﬁ this leads to the gteepening of those parts of the
 W@V?erm’for which 3v/ex < 0., As the wave propagates it
’Téteepens more and more, leading eventually to wave breaking
or_overfaklnﬁ. In the presence of the field F in Hq. (1.4),
WaVe breaking may not occur because the nonlinearity
'TCaﬁ‘be balanced by a suitable choice of F. For éxaﬁple'in
»f%hé:CaSe of lon-acoustic waves using appropriate spacetime
kISCaleSg Bg. (1.4) can be reduced to (Washimi and Taniuti
 1966) |

3

T O‘ ¥*€j‘j§;zg‘: O. (1.5)

B



 Wéli"kﬂ®Wn.KdrteWe@mde Vries (KdV) equation

vesfln.water of relatively shallow depth. (Korteweg and

?V¥iés 1895). ~This equation'preserves both nonlinearity
L d1spe1s1on1 and ig b one of the important equations that
deaérlbe nonllnear dispersive propertieg of physical ; 8y 5 tem
iIhe third space derivati?e term in Eq} (1.5) represents
diéﬁeféioh{&ndvas the wave steepens this term becomes more
impdrtaht'so that the nonlinearity can be balanced by»the
éioh.‘ Indeed such a balance does dccur“ahd oohsém‘
;quentlﬁiﬁq;((l.5) has, in a frame moving with speed U, the

localized stationary solutions,

,‘U‘: weoh {Q /2\/2"(’)(:*0%)} ’ (1.6’);

ygﬁhi§ looa1ized hump has been found to be stable a’ajn
f&?éft&rb&tiong andkoollimionﬁ amongst themselves, Consequently
\they have been given the name solitons (Zabusky and Kruskal
1965) this is a property of nonlinear dispersive media., It
e npted that the speed of the solifon iS’diréotlj’
frtlonal to its amplitude whereas the width is inve““o]y

,proporblolal to the square root of the amplitude.

In a nomlinear dispersive medium the study oi the
 enVeLope of waves is important because in such a medium the

famplitude of a plane wave, as 1t propagates, does 1ot remain



but ohanues olowly due to the nonlinearity dnd the

TSlqn; \The slow varlatlons of the amplitude a of the

o/b‘:: o QKP{&(EX“QD&)}’FC.Q T

ln’é‘n@nlimear dl)perulVO medium is descrlbed by the equat-

'1on.(Karpman i967, karpmdn and Kruskal 1969)

\3 71 ’}‘Q{,‘mﬂ %“)’(Q\ O “‘(1'5)

 wf%r=:6\( t), T= Gzt. = g(dV /dk q and f\inu

e u) are funcbjon of k and (W, and ¢ is a small

kexpanplon‘paramete appropriate for the system. Because of

1ts close similarity with the Schrodinger cquation of quantum

jmeohanlcs, Eq. (1.8) is generally known as the nonllmear ,

3 i5chrod1ngcr (NS) equation,

Lhe plane waves represented by Eq. (1.7) can be
' unsﬁab1e against longwavelength perturbations. This instabi-
'”’lity is called the modulational instability’(Livhthill 1965).
lThe phy51cal origin of this 1nstab111ty can bn dlucu sed

5elthcr by using the analogy of Eq, (1. 8) Wlth the chrodlnfex

equablon of quantfum MQChdHlCu, or through the wave kinﬁtics

_ of the phcnomenon* these two are discussed below.

OUn dividing Lq. (1.8) by P and then defining a proper

 time variable, the resulting equation can be looked upon ag



iﬁggr\eqqatioh for quasiparticles(With_the“wavén
V linfé $é1f;generated potential of strength

£ p;ViIf pq > O, this.potential is attractive and these
siparticles can be 'trapped! in it, This will increase

quasiparticle density |a|2 and hence the strenzth of the

ténﬁial.k Consequently more quasiparticles will be trapped~;

hus Leadlmé to instability. Because of this'trapping the
'modulatlonal ingtability is algo known as the self-trapping
1nsbabilltj (Hasegawa 1970, 1971 and 1975). If pg < 0, the
qlent potential is repulsive and the system is stable,
To discuss the wave kinetic picture of the’ modulat~
flOﬂdl ingtability, let us congider the plane waves in the
medlum to be described by the pOﬂllﬂeal dlbner 01 Lelatlong
(D) = (}Q)C\QJ\Q ) : (1.,9)
; Onkfaylor expandinz about,ko and [aOI2 and on retaining the

_ lowest order dispersive and nonlinear terms, we get,

. 30 L2 270
K)J - Wo + (R-R >g,b ':z(l< ) ”a”;«?

BLO a
‘{"(\Q “\u\)—é*i—(i; ,7{’ , |
(1.10)
.jﬁhére QQO:QOJ(K;§ ) %5% N Q%ﬁf; )
k ] ¥ l~——
9’ W (é’“w\ aw M(aw, \
29 - (29)  gmd 2 =(SEn
IR, ‘%‘Ql’}k‘ko ’ ACd” N0 *) \(1\1'-—;\0.9\‘~



la/ax and GA> QQ) by 18/6“{. ‘Then opefating
ffomkthe 1eft and transforming to a moving frame

{; V.t , we get the,NS equation
BC( o d Vg 3¢ \?CL

Aor T adke o o (-

Q\)OL \)(1 il)
cdmﬁariSOn of Bq, (1,11) with Eq. (1.8)‘shows,that the
,Oeffiéient'q of the latter corresponds to the nonlinear

“, Eq. (1,10), which may be

frequency shift, -80J/8|a,

W (R) - ? OQ\Q" m“’\rz) » (1.12)

éhéﬁs‘that thevwave phase velocity is proportional to the
aﬁﬁiitude. If the plane waves are subjected to a loﬁgwavé
 p§f£ﬁrbation then for g < O the waves falling in the crest
ﬁ;¢f the perturbation will move fagter than the rest. This
?%illflead to wave compression and energy concentration in
7ffonﬁ oi the crest, The local wave number in this region
Williconsequentiy increase. Nowr, the group velooity
eprbsents bhu velocity with thch energy is tran gorted in
ithe medium, Therefore if p < 0, the energy concentrated in
ffront of the crest will be preferehtially deposited on the
‘ for et because of the wave number dependence of the group
31V61001ty, and thisg leads to thé imstability.' On-the other

-lhand if p > 0, the energy will be transported into the



fo;

;aiﬁed by

067

phase

Qn Nith>K
rate, which

For
_ Dg > 0 case
to

is found

i’e’g\iqii .

q > 0,

The linear qrowth;rate of this in

urbatiom,modulating

om'thlg relation,

bohlnd bhb crest Similar considerations,
bhOW thab bho instability occurs only

Thus the general criterion for modulational

gtability can be

expressing the complof amplitude a in terms of

Cdl funLLlOH“ ? and. § , as

o= ep{to 50, (1.13)
Ea;mrnw
f/ ?\ /?(\ ‘.. ) \\
— e oxh M (KE-QLT)Y :
)" (\0’7/\ PSS S (1as)

the frequency and K the wavenumber of the pert—

the constant amplitude %g and the
Bg. (1.8) leads to the dispersion relation
2 rogog e qlo?
e DD O
SL = K 1) q,%% . (1.15)

it is clear that for pg > 0, a perturba-

< (2q ? /) l/? is unstable,  The maximum grthh'
i N1/2 .
occurs al K = (q %g/p) /,, is q Qg

the modulationally ungtable case, viz., the

the localized stationary solution of iq.(1.8

be



@) \) ech (CL?D/ZM %} (1.16)
1utlon fep uentu the envelope of the waves and
gateu with the Zroup velocity Vg. Like the soliton;

1. 16) also °ep“eFent& a localized hump and is called
yn\envelbpe oLlLon (Karpman.1967) The amplitude and the
96 01 bhe envelope soliton are not related though the
_thfis invers blj pLOpOTthﬂaJ to Lhc square root OL the
ag in the case of the Solitoﬂ, some authors

solitons as compression-envelopt.

For the module 1¢onu11 gtable case, 1.¢.,, pg < O,

,i

= 0 [ - @eeel™{(IP4IS/2P")EEY] (an

ig a constant representing the asymtotic value of

where
 ;9Mamd g ig the depth of modulation. Bq. (1.17) represents
 ig;depl@ted region propagating with the velocity Vg and is
 @11@& the emvelope hole (Hasegawa 1975, Karpman 1975a),
_Whlch ig alternatively known.as'rarefaotionmenvelopef |
gsoliton in contrast to compression-envelope soliton. When
the depth of modulation a is unity the envelope hole

becomes

V= 3 Lok 5(\\36\\‘?;/'2 \DQBEWS. (1.18)
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/ be called the envelope shock,
From the above dis scussion it ig.clear that to
qufthe envelope properties of & nonlinear dispersive

mjf;um3,it ig appropriate to first derive the nonlineaxr

Schrbdinger equation, Bq. (1.8), for the'amplitudes of the

‘1éﬂé waves in the medium, Eg., (1.8) has been.derived by

aséumlﬂy thah the amplitudes vary slowly on distances oi

fthe order of wavelength and for times of the 01der of thc
;osoLllablon period, This assumption is the ceniral point
k/fhe various schemes for studying the envelope prop “t—’
ies of waves and these schemes are as follows:

1) The simple expansion around the linear values
j.‘;:-Jz'lke'tainimg; the nonlinearity snd the dispersion to the lowest
'”  ofder.(Karpman 1967 and 1975a, Karpman and Kruskal 1969,
Bomucy and Newell 1967).

ii) The general vafiatiomal aprroaoh of Whitham
(Whitham 1965 and 1974). In this scheme the slowly varying
 wave traims, in a continuous medium, are treated in a
manner analogous o the probléms treated by.fhé‘theory of 
adiabatic invariants in.ciassical mechénios (Landau and
Lifshitz 1969).

iii) The reductive perturbation scheme,kwhﬂzh’is esgent-—

ially a perturbation method with appropriate scaling of the



11

the tlme (Tnnlutl and Yaglm 1969) In this

  _The KrleV»BogoliubovuMitfopolsky (KBM) multiple -
acé;time method, which 1is aléb‘a perturbation theoretic
h@ﬁe in which the secularities, due to the fast Scale4
ﬁdﬁiafions during the slow scalés are g) ohematioally annie
ihlimted by imposing approperr@ condltlons (Booollubov nﬁd
Kifropolsky 1961). In thl; mcthod 110 prlor oalln ~of the
~time variables is ﬁecessary. M | |

‘ 'The mejor portion of the present thesis deals withv
5 héjstudy of envelope properties of some physical states bfk
VQUlllblluH plasmas, and of some plasma-~like media. As
r Do1nted out earlier, Hthese properties are best Stﬁdied by
‘ der1v1nO the rnonlinear Schrodinger equation for the system,
" In Chopters IT -~ VI, the KBM method hag been usced because

of its mathematical elegance and advantage.

The’propertigﬁ of the emvelope of ianacoustio
W@V@S in é two—electron-temperature plagma are inves LL.aLOd 
in Chapter II, In a plasma with the electrons having a
31ﬂ.iu temperature the lon~acoustic waves with kf%D > 1.47
rare modulationally unsgtable (Kakutani and Sugimoto 1974).

It is shown here that the presence of a low-~temperature
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uomponcnt gtrongly modifies this gpectrum, Even a

11 Lractlon.01 cold elocbron can quench the modulational

1stability. Tor dllLCrBﬂt values of the ratio between the

dem51blos of the two Llootronicomnonent% and their temperat-—

thu orltlcal Vﬂluus of k Whlch marks thc transition

tween MOQU¢&ulOHml ins Lablllty nnd Stdblllty is obtmlﬂeu.

In Chapter IIL the ion—acoustic waves in the presence

jof*fandom density inhomogeneities are studied. The density

flactuations increase the dispersion and the digsgipation of

lese waves without altering the norlinearity. For taussian

~demsity inhomogeneities; we find that the dissipation is

”Smdll compared with the dispe rgion., A study of the properly

“bodlcd Lquuuion governing the system shows that the stability

 of the system ig not dflb@tbd by the presence of the density

fluctuations but the stationary states of the system, 1.4,

the envelope holes, respond to the increased dispersion by

increasing their width,

A study of the Langmulr waves in a collisional
&

plasme is presented in Chapter IV. The collision frequency

. is properly scaled and the NS equation is derived from the

plasma hydrodynamic cquations. The Tangmuir waves in a Two-

dimensional plane are modulated at an angle Lo 1its direction

of propagation, It is found bthat these waves are stable

against oblique modulation. The collisions damp the wave



13

miéﬁgmuir:wavesi

| 'Bééides‘tho plasﬁas,a iafgéthumber of other physical
T ﬁ6fa1$o arc nonlinear and dispersive. In the fields of
 ﬂlln€al ODblCS theory of surfaces, hydrodynamics, theory
’sQlldS uUPLlCOﬁduCthlby, ﬂODllnC&I quwnbum field |
ﬁhéories, etc;, the study of nonlincar dispersive waves 13

of importance. The Sine-Gordon (SG) equation,

1 T : T
r’\) T - E L
G Ry R jxnm =0, 1.19

'déscribés a number of these systems (Barone et al, 1971).
In Chapter V the plano wave solutions of the SG equation is
@Shown.to be modulationally ungtable, The nonlincax Klein--
f GordQn.(NKG) equation, ;

. 3 . ‘ ,
P - +PraP=0, (1.20)
, e X ! R
where g is a constant, is also studied in this chapter. The
plane wave solutions of the BEq. (1.20) are found to e

modulatlonally unateble for o < 0 and modulationally stable

cn

‘for « > 0., The ults presented in this chapter have
1 {>1nLoresLing impiioations in the nonlinear field‘thedry of
particles (Sharma and Buti 1976&). ’

The propagation of waves in a one-dimensional non-
linear lattice, ¢.g., the conbtinuum appr ximation of the
Fermi-Pasta-Ulam problem (Toda 1975) and waves in ghallow

water under gravity propagating in both directions, are



described by the Zabusky-Boussinesg equation,

..<1 0 q(
O,‘HBC}D_ _BM_Q_? A 0 (1.21)

S T T oxt
Moroever, a nonlinear Schrodlnger equation and a modified
Korteweg—de Vries cquation can bp Uﬂlflbd into a geﬂeralized

nonlinear dispersive equation kHlEOL& 1975) OL thb Iorm,

. , 3
X a2 a X X o
{ﬁiﬁwsmﬂlgxf¥®3xz+&§a +5\ 1%~i1(1£m

The envelope properties of these two equations have been
imvestigated in Chapter VI, The plane wave solutions of
Bq. (1.21) are found to be modulationally unstable for

k > 0.6866, However, the planc wave solutions of Bq. (1.22)
can be modulationally stable oxr unstable dependiﬂg'om.the
coefficients of the different terms, Both these equations
admit envelope soliton or envelope hole solutions. It 18
well known that the nonlinear Schrodinger equation corres-
ponding to the stable aituation can be converted into thé‘
Korteweg~de Vries cquation, Here it hag been shown that

the latter can also be comverted into the former,

The nomlinﬂarity discussed in Chapter I = VI is
the inherent nonlinearity of a plasmd in.equilibrium.
However, the study of nonequilibrium plasmas, i.e.; plasmasg
with unstable waveg present in<th@m, are also of great

interest. In such plasmas, the waves. initially have small



amplitudes and hence the gystem behaves linearlys As the

unstable waves grow, their amplitudes are no longer small
 and hence the system goes over to the nonlinear regime, In
J%he,lihgar regime,; the OLblts of the plasma ptrbloiwﬂkare
. not influenced by the waves but as their amplitudes grow,
,fhe Waves be in to 1nflubnoe the parchlu orbite, Depending
on the Spectrum of the g rowing waves, this leads to two
physically distinet processes, viz., particle trapping and
dif*UBlOnALﬂ.VOlOClby gpace (Dupreﬁ 1965), as discugsed
below,

Tf the gpectrum of the waves is narrow the partioles
gan be srapped in the potential of the wave (Bohm and Gross
1949), If an electron is trapped in a wave with amplitude'
B and wave mumber k, the trapping time, defined by
\mr (m/bll /B, characterizes the trapping pfOC@SS;
Physically FFEr ig the time during which a particle trapped
near the bottom of the potential well of the wave will bounce

up and down, The corresponding frequency UJB‘ﬁ ’ktr g

called the bounce frequency. Also ’t%ﬂ glgnifies the time
forwhich the linearization ig valid (Dawson 1961). In cage

of the growing waves having a broad spectrum, the i1 phase

velocitics will have o spread A (0 /k) and the fluotuationS

autoccrrelation time T defined ag (Davidson 1972)

-1
|

have a

i

This $ime scale physically

.



"represents}the time for which a wave retains its individual
waveform, ‘Thus for the particles to be trapped by the wave

- TS UN S & o TTord e et e 4
the necessary condition is, '&ao >> rtér' Under this condite
ion, the width of the spectrum can be neglected and thus the
trapping prccess is cssentially a coherent process., An
equilibrium between the wave and the trapped particles
follow the trapping process, thus leading to the’saturatn
jon of the instability.

For a broad band of growing waves we can have

rtac <<’?%r; in which case a numper of waves, around &

central wave grow and each of them perturbs the orbits of the

particles, The interaction between the waves and the particles

in this case ig incoherent, This stochasticity is the basis
of the Perturbed Orbit Formaliem discusgeakby Dupree (1966),k
Weinstock (1969), Rudakov and Tsytovich (1971), Benford and
ThomsQnA(1972)9 Cook and Taylor (1973) and Misguich and
Baloescu  (19785), In this formalism, the evolution of the
plasma particles, as they interact with the waves, is
represented by a diffusion equation in.velooity‘spaoe; This
diffusion which ariges because of wave-particle interact-
iong, brings about the saturation of the growth and |
consequent equilibrium sharing of the available free energy.
The beam~plasma instability is a simple but rather

interesting phenomenon occuring in plasmas. The waves 1in



this case grow due to the energy fed by the beam particles.

A gtudy of the nonlinear saturation of this instability
due to the above diffusion process when the particles héve
finite thermal velocities is presented in Chapter VII, It
is found that the particle thermal velocities influence the
saturation level and the subsequent enefgy balance

appreciably( Sharma and Buti 1976b)



CHAPTER IT

MODULATIONAL INSTARILITY OF ION-ACOUSTIC WAVES

IN A TWO-ELAGTRON TEMPSRATURE PLASMA

II,1 INTRODUCTION

The ion-acoustic waveg (IAW) in a plasma arise due
to the restoring action of the electron thermal pregsure on
ion density perturbations, The properties of these waves

are therefore functions of electron temperature, In the

linear regime, the presence of a small fraction of cold
electrons ih a plasma of hot electrons and cold ions ig
found to affect the IAW characteristics appreciably (Jones
et al, 1975). Recently Goswami and Buti (1976) have shown
that due to decreased dispersion, which results due to the~ \
decreage in the Debye length injsuéh a plasma, the ion- ‘
acoustic solitons have increased amﬁlitude forva given
soliton Width.

In a plasma compoged of cold iong and hot isothermal

electrons, 1f a small fraction of cold isothermal electrons
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_is intfoduced,'the'eleotron.velocity distribution can be
repfesenﬁed by a supérpositioh.of two Maxwellians. Thig
plasma is referred to as the two-electron temperature (TET)
~ plasma. Such plasmag are not uncommon; The plasma produced
by hot cathode discharge are‘exactly TET plasmas (Oleson
and Pound 1949, Jones et al,'1975). The plésmashof fhérmom
nuclear interest are generally turbulEnt and héve high k
energy tails, €eZ., the interaction of charged ﬁarticles
with localized fields give rise to highly populated'superw_
thermal tails (lorales and Leé 1974). The nomlin@ér beam@
plasma interaction results in high-energy tails., Computer
simulations also show the formation.of high energy tails
(Sudan 1973). The plasma produced by the radio-frequency
breakdown in the ELMO confinement device (Krall and |
Trivelpiece 1973) is also a TET plasma.

The envelope properties of the IAW’in.a TET plasma
are discusgsed in this chapter, The Krylov-Bogoliubov-
Mitropolsky (KBI) perturbation method isg used to derive the
nonlinear Schrodinger (NS) equation go#éfningytﬂé\énﬁél¢pef;
of these waveg., The modulational sﬁabiiiﬁy 6fvfhé IAW'fdf
différent ratios of the densities of the cold and not
electrons and also of their temp@ratures is gtudied. The
envelope solutiong for the different physical states of the

plasma are obtained,
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~ II.,2 Perturbation Scheme

Congider a one-dimengional plasma in which the
electrons are divided into two groups-the hot component
with dengity n, and temperature L,» and the cold component

with density n, and temperature’i1. We assume the electrons

1
to be igothermal amd neglect the effect of electron inertia.
‘The propagation of IAW in this TEL plasma can be de scribed

by the following fluid equations:

Oat; _—_Cﬂu‘) | (2.1a)
%U‘k Jr\ a)c : E O '(2.113)
%F;f+W€(“ﬂ*ﬂfﬂh):oj o (2.10)
AL —NE =0, ‘ (2a9)
X
%%:b -+ %TME:(L, . ' (2.1e)

where e and I are the charge and the mass of a proton, Ty LS
the average kinetic energy of the cold electrons and Ty Lhab
of the hot electrons; n and B b@lng the ion density and the

electric field respectively.

The quantitiecs describing the system, may be expanded

around the unperturbed values as
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n = n. - i+g 1 +Gg n, S (”'0)
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The charge neutrality demands that
M= Tt

Let us take a monochromatic plane wave for El’ l.€.,

\[ = (1 ex ;‘-(/\‘If +Oexp(=a) . (2m)
where a is the amplitude, a its complex conjugate and
Vo= kx - w bt is the phase; k being the wavenumber and (o
the frequsncy, The quantities other than the zero-order
quantities in the expansion (2.2) depend on x and t only
through a, a and W, On substituting Bq. (2.2) into

Hg. (2.1), We obtaimtthe E~orderx 6quatiom$, whose. solutions

are 1LT (Q_ Kb(&W) oe kDGLWW\

'm

s ks N
iL — ‘L}“Q ﬁ OLe )CP (&_ \\J )= Qoex ]D (“ @V)) ?

= WY} o(GLenp (i) - O expl py), (2

. eﬁ}hu :

Y\ = ‘\ WGJKP(&W} Q QmJ)(\% ﬂ

i e
J



22
From Eqs, (2.1a) - (g,ie)'of order ¢ We.obtain;
L= .
L(E)=0, (

where the operator J is defined as

fav]
.
(&)1
~

/

popl )k lmelig ’ﬂw}l >
7 —_— e ‘3 '5 i 2

bJp& = (4nnoe2/M)l/2 being the ion plasma frequency., If we

define the effective temperature of the electrons as

T - ‘Loﬁ\_ TL _
ey Mo W\—\JL

and the corresponding effective Debye length >\Deffa3

\ . “_.:‘E_L%;

/\D“HT kst o>’

then from Eqs. (2.3) and (2.5), we get the linear dispersion

relation
1'\‘2 b
— WI g & \ e ,
W) = — PN e =
DR,w) =~k 4 i~ il O (2.5)
- ~ Adell

The complex amplitude a is.a slowly varying function

of x and © through the relations

ol _ e h (o) s € SYAW (CHIC D E

ot
\ (2.8)
gi = ¢B(a,d) + e By(a,a) + s

and their complex conjugates. The funotions Al’ Blg Aogﬁgj..
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are‘yét unknown_and are to be determined from the condition
that the perturbatién.é sheme envigaged. by Bgs. (2.2) and
(2.8) are free from seoularitieé, Thig is the essence of the’
KBiM method uged here, This method belonggs to the class of
perturbation schemes baged on the multiple space-time scales
where the seoularity'arisipg from the fast scales are
systematically amnihilated (Jackson 1960, Bogoliubov and

Mitropolsgky 1961, Frieman 1963 and Sandri 1963).

Egs. (2.1a) — (2.1e) to order egg yield,

n L . .
Ol n OeWh £ 3R ) AN
,ii( 5 ) = f*if4ii { ;¥TT.NM 7Tf”7 ‘Jk Q”NE)LQZ(WJ}
AVANL P Mo L Ay ‘
._/’/ 3 ) \) \) \r I
__(l__ “\_‘_‘_ ,,_i.__’ﬂ_;‘ /—\l ——:\* E) Ij)’\‘} (’\.\{/ ~
. g W a
(2.9)
where

ke \UTL [
Ve o Relt bn
M’ (Tkw th *Ttho\ )

In Eq. m.) the terms proportional to exp (iW) gi rise
1 PToy ! N

to resonant se cula‘lty because of the llnpnr dig p sion
relation (2.7). Thig resonant secularity can be annihilated
by the condition

/\ Vc.w =0, (2.10)

where
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is the group velocity of the plane waves, The secular-free

solution of Rq, (P 9) is then given by

o '\E:’C)\)sz ,_S,E;-.,w——\-«——* , AU
ko = M\ QF R \*/\O‘ xp(24Y)

4+ bhla,@expy)+ C.C +¢,(a, ),

(2.11)
where b and C; are constants with respect to W Also we
have from BEq. (2.1b) to order 62,

olg &> Whi [ 3k [ 2k
T ool vl + =350 enb(24
W BMQOJ \.U)L }{5\/4 WLy >( P KP)

4

_,_ﬂr..”)pmpw)+c o, - el

On integrating this equation we notice that the last term

gives rige to secularity in the expression for Ug s Therefore
for the solution to be free of any secularity, we must take
Cl = 03 1in which case, the secular-free solution is

AN

A2l . -
e S 2 /' A TN
} T e el () 3Lt e e et Y k
2 GM* () L(N L' Lf‘\/’“') * (a):( O( enp(2tY)
e

MLJ&L+ A)%
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Similarly we get, from Rqs, (2.1a), (2.14) and (2.1.e) to

order €%,
2 A

’ {\‘10 ‘\.Q k ( n /;\;}M . _L‘w\ 9 - L
Mo ==umaz | ”‘\m gl ) T (e (2ty)
Q\L k( b+ 2A v L \Jj m(w)
+ c.Co+ Cz(a,a),

‘w

- P 052 /3 \ . ot & (2.13)
o= Iy RIS ) BN
My & ImT \oor “jiyh ) T > Tﬂ& €f><\§(:my)

¢ Mg

-l (lg LbYexp(iV) + ¢.C. 4 Cofa @),

ndh (2.14)
- _ ’R}m@ S (A»‘{n { _5; N i _:)_ _m\ 2 oK
A e I R A Vi) T 2T o MMJ)

-2 (15 g .+ (0

TR (2.15)

The constants 02, Cv, 04 and GS are determined from the
conditions for the removal of secularities in Bq. (B.i.a); :
(2.1e) to order 63. Thege five conditions involve the fbur h
unkﬁownﬁ'Cg, CB’ 04 and Cg, and another constant that would
occur in the expression for EB' On eliminating the latter

we are left with four equations in four unknowns. Tron

thege conditions we fing
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3 ST 0
1 Q.M) L % TL\Q l( h J (2.17)
~ e e/ a )“L- 3
- __”_“_“_::_ L ool U st ____ — &Q+Q} O ,
L \_ YLP\O Iy Hj \91 M J ’ (2.18)
and | |
= _*®aa + Cyy (2.19)
Whefc o
2 Tl oTh Mo 1,
= M\ -0 h ) ) (2.20)
%7 VAV}<\ WlM{T—> wlh%
2
, 2 @ Nuoy 3 1
=-MV ”‘:"_’.'“‘*?’*'{:“:“'“’::
%z & u}f \ 1&‘ “\)
e* T, M 2kVey 21)
T ml T;ﬁg e

620, 0309 040 and OSO are independent of a, a and ﬂf » Lec,,

they are absolute constants.

From Egs. (2.la) -~ (2.1e) to order 63, we obtain,
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(2.22)
w* ot* k* ox* j :

As indicated above the ter

L hredmy kaedn )

s proportional to exp (1V) on the

right hand side of Rq, (2.22) will give rige to resonant

secularity in the gsolution for EB‘ The condition for the

removal of thig resonant secularity is found to be
o / ) + 1 Roo=a B &=
BOL o0 -

1@&MLFR&307

where
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and : ( 2.25)
» I @Ji‘,‘f‘ § O 4900, — ™M 9’3( Cug N 9_’;\\
TR0 WP Ingk T T @ T T T

(2.26)

e — (1 _lr_TLwTL N 2T M (\ ,r”f}_ﬂ:_j.h
%5 K“ rn_hgTh T C}R ML hf‘\/%}, ,\no‘Yb\)? Ylh\)TLQ )7

and (2.27)
2 ; A oo, ’
Yoo &MU/ A NG 207 (0 M
T M T\ Ty ’\}} = M?\/j__(\ T
A4 e MM to< \ ) > N (2.28
THT N\ T T T ) e
IY)“OTLZ )L ’h )?\b

and vy, Yo are defined by Lgs. (2.20) - (2.21).
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II.3 Envelope Equation

The slow variatidms of a with respect to Space and
time are govermned by the conditions (2.10) and (2.23). 1In
Eq. (2.8), which defines the quantities 4, B, 4y, ng.. 5
we can introduce multlple Space and time scales to convert
these conditiong into differential equations governing the

evolution of the amplitude a,

On defining the new space and time variables ag

t,=¢et,, t,=¢t,

XQ:QX,) X, = EX | (2.29)
we can Interpret the quantities Al’ Bl’ Ag, Bg as
9Q
/¥' BTH E%] a:x'
Ag= = —c B T )
. 5'&2 S P, &)(2 € (2.30)
9 3 |
LN W LT Yo T o
A oQ A'aa"‘ 5t2" B aa+Blaa dxt

With these definitions g, (2.10) becomes

o >Q
ot \/(«*r N, =0

This equation indicates that in the slow scale ti and xl,

the amplitude a bropagates with the group velocity V_ without
_ : : &
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any change of form Using thedeflnltlon given'by‘Eq.(2x29);

Eq.(2.23) can be ruwrlttﬁn as

/ol . a__C‘_{__‘ a ' Lo e
55T %Ss) Hv S+ A0 RA=0. (2.0)
On. uSlng the coordinate tranuformation : ’

T = C(XVat) = X~ Vo, = .é..(xzevétz),

Bq. (2.31) becones

{1;5._@& +T;‘§_Q;- A Q]QLSQQ‘{QRQL:Q) o | | (:3.:35)

which is the Nonlinear Schrodinger equation governing the

envelope of the IAW,

For the sake of comveniemce, we now introduce dimension-
less quantities; Lunfuh is normaliged to the efiootlve Debye
length >\Deff’ time to (A)pig velocities to the effective
o . - o nLl/8 B
ion~acoustic velocity C serf = (L ’ /M) , electric field by

eif/e Defi> and densities by the density of the hot

electron component Hho' Also we define the ratios o and

5 as ,\
' n, o
o0 = %ﬁg and B = ¥£m
"o _ “h

In the rest of the chapter all the quantities are mormalized
as above. Eg. (2.24) - (2,26) then become

P — P? mg

2. (a+[5)’ o

g | , (2.34)
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ok | ame 30 (o) (B

fi= o0 msv” T (ROt
0 = ‘ZLH% 6/ U+ 3)

( 137’“' o +p)?*

= k4202 o,

Fo= Qo) (o) (o +p) - 5+ RPR

F2 (1 )P (2 F o4 3o T 6B 3P re0)
and - |

Py = (1 4e) £ 26 (1oOR + ok (1= o)

) , .
(R 2apr 4
From Egs. (2.34) - (2.35), we get,

PO = IBCO‘ )ﬁ
e %(d+]%)h6(3+5k+ )
with

X= 6+ \i+63k+6;‘a+osk+sh (2.38)

In the limit a ~ 0, i1.e,, in the absence of the cold

electron component, the expressions (2.34) -~ (2.38) reduce

to those obtained by Kakutani and Sug lmo(o (19{4)
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£E.4 Modulational Ingtability and Envelope Soluﬁ;qns

The NS equatiOﬂ,'i.e., Bq. (2.33) governs the evolu-
tion of the envelope of the plane TAW. In order to gtudy the
envelope behaﬁiour of these waves we express the complex
amplitude a in terms of two realvfumctionS‘g) and ¢

(Hasegawa 1975), namely,

0= "%z, fr)mp{m\z;o} (2.29)

Eq. (2 3%) can then bo separated into its real and lMd&lﬁdIV

parts as

and

o) - oo

In obtaining HEqs. (2.40) and (2,41), the R-term in fq (2.33)
has been eliminated by using the transformation a ~ 2 exp(iRT).
Now if we linearize Eqs. (2.40) and (2.41) as
7S, 9,

( + |

= o)+ (0] expticks-amy,

we obtain the didpefoionArelation,

2\\.4‘2,) |

—

Q%= P K- 2P00 = (PKE-00) - Q?’m (2.48)

which shows that there is mno instability if PQ < 0. On the

other hand if PQ > 0, the perturbations with wavenumber
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K < (2Q QQ/P)l/z are unstable and the mode with ¥ = (Q_QO/Png
grows fastest with the gerth rate Q.QO

From Bq. (2.37) it ig clear that PQ > 0 only if
X > 0. For different values of « and B, the critical wave-
numbers k, for modulational inétability can then be obtained
from the equation ‘X = 0. The variation of the critical
Wavenumber squared, kfg'with the different values of a and 8
is dépicfed in the Table,

The localized stationary OOWutlons of thu NS cquﬂtlon
in the form given by Bqs. (2.40) and (2.41) for the modulat-
ionally stable and unstable cases can be obtained as follows
(Hasegawa 19%75), TFor a localized solution, i.e, with a
81nmle hump for example, we require thcb<? = a| be bounded
between the extremum value (?S and the asymtotio Value C?D’
For stationary € , i.e., 8§ /0C = 0, Eq. (2.40)kcan be
integrated to give

| ?'52"“'<3(T>3 (2.44)

C(Q‘) being a function offr alone, Moreover Iq. (2.41)

can he rewritten as

+P( NI 2§}

<i C d & » JL.CX?
AT/ gr  §d%
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0.1

TABLE

as function of o and B

0.2

03

0:4

0.5

OQYF

Oritigél‘Wavemumber,(kg)‘fox“Mb@ulational Instability

0.9

0.01
0.05
0.10
0.15

0,20

0.25
0,30
0+35
0.40

0.50"

0.55
0,60
0.65
0.70
0,75
0.80
0.85
0.90
0.95

2,163

2,163

2,163
2,163

2.163

2.163
2,163
2,167
2.163

2.163

2.163
2,163

£.163
2.163

£.183

2,163

2;163
2,163
2,163
2,163

*
W

0,313

L.671

1.874
1,944
1.959
1.956
1.94%
1.927
1,908
1.890

1.872

1.855
1.839
1.825

*
0,217
1,433
1.646
1,713
1,727
1,718

1,698

1,673
1,646
1.618
1,590
1.564

1.539

*

0.044
0.264
1,485
1,410
1.471
1,483
1,471
1,448
1.419
14387
1,354
1.321
1,288

*
*
0.008
0.98%7
0,893
0.980
1,167
1,226
1.237
1.225
1,200
1,169
1,135
1,098

1,062

3

0.039
0,116
0,284
Q.720
0.916
0,977

0,990

0.979
0.955
0.925
0.887
0,848

*

* N

0.007

0.036

0.076

0,133
0.213

0,318

0,419

0;477

0.496
0.492
0.4753
0,446

*indicabtes modulational stability for all k.

S
*
0.012
0,032
0.056
0,084

0,115
0.145
0.172

0.191

0.201

0,202

0,196



Since for a localized solution, we cannot have
g‘f?’d? /A% = const., we conclude that

C(7) = const. =0, say.
Eq. (2.41—4) can 1711611 be integrated to give

5 = §%Ag+A(T%
with A(™T ) as constant of integration. Since 30 /o is a
Tunction of ¥ only, it follows from Eq, (2.45) that 8¢ foT
is a function ;of g only. Consequently

&b
=37 = Neay,

and then _ |
& T‘S %’O\E + AT (2.486)

On substituting Eq. (2.46) into Bq, (2.45) we get

@g?)?_‘ QQ??’ LH\QQ QP*QCQ o (2.47)
(d»s TP Ty Jr"P Y
I£ PQ > 0, i.e., when the waves are podulationally unstable,
BEgs. (2.46) - (2.47) can be intesrated to give the following
localized Soluuon

? ?SQQ %styi})'
0=AT.

This is an envelope soliton, If PQ < O, i,e. when the waves

with

ON
P.s::"@"

‘(2.4’8)\

are modulationally stable, Eqs. (2.46) - (2.47) can be

integrated to Cr:i;vc

Y=01-¢ 0. Sech® (F%gj%fﬂ,

i) cxlmnhi( QISP RaEY
1[‘ ~ QL gcchl§( PRIS, /2P 26 EH 7

= + N7 *’93



where : ‘
' =2 ?\’.95 :
=252

S

The solution.(2.49)\is an‘envelope hole and represents a

(2.50)

region of depletion in the wave iﬂtenéity. The depth of
depletion or modulation is given by @, as defined by

Eq, (2.50).

II,5 Conclusions and Digcugsion

If the electrons in a plasma can be divided into
hot and cold groups the behaviour of the ion-acoustic waﬁes
are drastically changed by the relative abundance of the two
groups and their femperatures. We have discussed the
properties of such a plasma by considering the cold electrons
to be a fraction of the hot electrons, and for various ratios
of their temperatures, The variation of the critical wave-

2 . . I : -
number ko with o« and B are shown in the Table. When a = U,

3]

i.e., the cold electron component is absent, k = 2.163., For

Q

nonzéro a, the waves are stable for all k until a critical
value of § is reached, Below this critical B, the preSénoe
of the cold electron component stabilizes the wave, This
critical $ increases with «. For a giVen «, as B %noreas@sy

2 N . 4 _
kc reaches a maximum and then decreases slowly.

ot

Ag discugsed

in Chapter I, the modulational insta-

bility and consequent envelope states are due to the balance
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of thé'diSpersionfand*nonlinearity; Ags seen from Lqggs.
(2.34) and (2.35), the dispersion, given by P, and the
nonlinearity, given by Q, are functions of o and B. The
sign of the nonlinear term.Q can change for different
valueg of k.' The functional‘depéndenoe of P and Q on o

and B are different and hence the dispersion and non-

linearity vary differently, Consequently, for a given
¢ and B, the critical wavemumber for modulational insta-
bility changes., Similarly the characteristics of the

envelope states also change.




CHAPITER I1IL

ERFEGT OF RAWDOM INHOMOGAENETUTS Ol NONLI NwAR -

TON-ACOUSTIC WAVES

III.1 Introduction

‘The ion-acoustic waves in a plasma give rigse to
inﬁeréétimg phenomena, viz,, solitons, modulational insta-
bility, envelope solitons and‘enyelope holes., Weakly non-
linear longwavelength ion-acoustic Waves in a homogeneous
plasma is governed by the KdV equation and admits soliton
solutions (Washimi and Taniuti 1966). In the préséhbé bf”a 
magnetic field both the slow and fast‘ionraéoustic modes
‘are described by the KAV equation (Pokroev and Stepanov
1975, Tagare and Sharma 1976). The envelope characterigtics
of ion-acousgtic waveg are govermed by the NS equation. In =

colligionless gystem these waves are modulationally unstable
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for k >\D > 1.47, The modification of the spectrum of
unstablé waves due to collisions have been discussed by
Buti (19%6) and that due to electron inertia and ion tempe--

rature by Chan and Seshadri (1975).

The effect of random fluctuations is oi great import-
ance for systems like fluids and plaSMas, Plasmas, in general
are turbulent ahd consequently can be treated as random
media. The propagation of nonlinear waves in these random
media has been an active field of investigation. The effect
of random fluctuations in plasmas is of special iﬁterest\t@
the study of nornlinear dispersive waves because both the"
dispersion and digsipation of the system are affected. This
influences the balance between the nonlinearity and the
dispersion of the waves and consequently their stationary.
states, such as solitons, etc. In plasmas the nonlinear
interaction among waves in the presence of random inhomoge--
neities has been studied by averaging the equations over
the inhomogeneities (Tamoikin and Fainshtein 1972 and 1976),
It has been shown that fluctuations can lead to the collapse

of magnetohydrodynamic shock waves (Akhiezer et al, 1971) .

- The ilon~acoustic waves in the presence of wealk
random inhomogeneities hag been studied by Lamoikin and
Fainghtein (1973). By averagling the relevant equations
over the random inhomogeneities, they obtained a Kérﬁewegmde,

Vries-Burgers type equation. A study of the stationary
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solutidns,of this quation.shOWs\that the random electron
densify fluctuations introduce osoillations‘behind the
shock-front. Here we study the envelope‘properties df the
ion-~acoustic waves in the preéence of random inhomogeneities
in the electron‘Concentratidn. Ag in Chapter IL we use the
Krylov-Bogoliubov-NMitropolsky method, Iirst wé obtain the
linear ion-acoustic modes in such a medium and then study

the nonlinear states of these modeg.

11T,2 Plasma Fquations in a Randomly Inhomogencous Medium

Let us consider a plasma in which the electrons have
average kinetic enerzy T, and the ions are cold. The ion

density n, the fluid velocity v and the electric potential

¥ for such a plasma are described by the equations

?:m ~
5t T (m =\,

oY ,ﬂ} [N | 5
ot Vo Twman Bl

20
e erre(”ﬂg“ﬂ,)
The response of the electrons to the ion-acoustic waves is

described by the Boltzmarm digtribution
oYy - /T ' 3.8
TLQW"YLOQﬂqDC €ﬁ¥/‘e>> ( )

where n, is the average muuber don41ty.
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In the PrbuOﬂCQ of random ﬂbﬂ&lty thomogeneltlus

én(x);the ion denSL(y n can bu prﬁesscd as
qlzzyL%~5ﬂ(%)+ TR + W ()
= No H<R(Y + 1 (64D

where the brackets indicate averaging over on(x). Tilde

denotes the average wave fluctuation, whereas prime denotes

its deviation due to the wave. The equlllbrlum density N,

is free of the wave fluctuations but has the random inhomo--

geneities embedded in it, Consequently,

<N%/ <h4+%ﬁl®0> Mo

The ele~tric potential ?)and the fluid velocity v can similary

0= (B Py,

~ _ (5.4)
7= LU ()Y V().

On considering the density fluctuations to be weak, we define
2

the small parameter fk as

B"ﬂ ()]
P

Also for the weakly nonlinear system

€2<(ywmx> <W1> <Q}/

r\flc C S )

>

oo b A e gt

le |
vihere C_ ig the ion-acoustic velocity.
2

S
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NOW on averaging equations (3.1) over the random

inhomogeneitiesg, the ion-acoustic waves are found to bhe

b

described by the equation (Tamoikin and Iainshtein iQ?%)

é o\ !/ Q_ e &x Fois \ ) A\
() + G0+ f"{g@ 255 + 5 Gl A
S SRR i
1 04.51311\?9} 0423“3'_5;(’\%> + 35%%{@)* 0, (3.5)

where iji is the ion plasma frequency and )\D the Debye
length, The parameters al, @ and 6 are defined- as

{ :
=S (B oy- O,

rLOl /

m().. S==:1 <@~“{\,> ‘

For a given correlation function f(x) of the random density

inhomogeneities, the quantities I and L® are determined by -

<0

= g %C}()A'X\ amd |2 g;c %(adok X .
| o QN
Thus L and L? are the integral scaloo of the inhomogencities.

In gunerdl the random fluctuations can be represenﬁed by a
Gaussian distribution (Landau and Lifshitz 1974). Hence we

take

%‘< ) (%5(1}>/2 Y\< L,
where 12 ig the mean square scale-length of the randonm

fluctuations., Then the integral scaleg defined above are
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glven by

L= Og (XDO\X = i*“ QA L)- “)7(%(3()& w§<§7671

On normalizing lengths by the Debyo length %D’ he
time by bspl’ the clectrlc potential @)bJ the characterigtic

potential (T_/e), a; by (Ap/ ()Qpi)’ ay by ( %D/ Wpi> and 8
by ( ?\D/ (})pi), equation (3.5) Teduces %o

e L
51$9) + 1+ () %{@@f? o

+OC'§W§IC \\P> MQ“ 131‘“<(P> +ba7®’c\(‘?>—’0(7 b)

LI1.3 Linear lon-Acoustic Waves

The linear ion-acoustic waves can be represented by
the plane waves :
§)= Oﬁb”'P(“V)*‘”C ¢y (5.7)
where W = kx - (01t denotes the phase. The dispersion relal-
ion governing these waves ig,from eq, (3.6),
w(QJrR”“lik%MOC»\?«@Q‘“ (xl‘éw~'&5k® = 0. (3.8)

Among the contributions from the random inhomogeneitieg,
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aq and'ag terms are of the same order and contribute to
the'diSPGISion.df the waves, whereas the 6 term is a
digsipative term. The ratio of the dissipation to the
dispersion term ig ~ (kl)".1 which is small for k1 >> 1
l.ewv; for wavelengths much smaller than the characteristic

scalelength,

The dispersion relation (3.8) can be solved by
writing Qj‘: ggr + ifbgi. The two modes of oscillations

are given by

V2 2 a |
W = R (1= gR-R =06,k (3.92)

L |

with the corresponding damping reates

- ; 2. 2 -
=T - 5}5j(\““‘%:k§"“:1ocikifﬂ520<2¥1:)

and P
bD{Z:LVNEEt )

The Solutiqn Qbri is the ion~acoustié mpde and is Weak;y

damped by the randdm_inhomogeneities. The other solution

W s is entirely due to the random inhgmogeneities and is

heavily damped with the damping rate Ug.g‘ ThiS node ig

similar to the usual thermal noige in a plasta duc to the

particle thermal motions.,
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L11.4 Nonlinear Ion-Acoustic Waves

The envélopé propertics of ion-acoustic waves are
governed by the NS equation, To study the effect of the
random density fluctuations on these propefties we apply the
KBM method to (3.6). As shown dboVe the contribution of
the diésipative term is’small compared to that of the disper-
sive terms, and hence we take 6’to be of order 62; i.e4,

5 ,
b= €768,
where € is the smallness parameter, For convenience we

write @=< §§> and make the expansion

¢:€“7?+€Q(J‘/‘§+'” ‘,  (3.10)

where ¢, is the planc wave described by the dispersion
relation
boew . | 43 9 V2oL
Dkw=-wtk-sk—o(Rw - KW= 0.

, (3.11)

- Since the mode given by BEq.(3.9b) is heavily damped, we
will discuss the evolution of the ion-acoustic mode of fq.
(3.9a), The variations of the amplitude a of the planc wave

representing this mode are given by Eq. (2.8).

On defining the operator

. 3 3 2
== EZ ' Ji‘ AL*§,~ _ j2¢-« — P& J—
~ ot a‘x.+ 2 3x3 kOc‘aata{-l D(’—axlat’ (3.12)

and subgtituting the expansion (3.10) in Eq. (3.6), we get,

i(“ﬁ)# 0.

to order €,
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This yields the dispersion relation (3.11). The equation

to order 82

f(4>)~~&\%(l @Mﬁix\{/) (*“w O”DP)WB V(3.13)

+ C.C.
- The terns, pLopOftlonnL to exp (l\P)Oﬁthb Llohh hand BLQO

of Lq (3.13) give rise to resonant 51nou1of1+y in the

solution OL AP and the condition for its removal is simply
AV%V§B%::03 \ :' (&1%)
where Vg is the group velocity, mnamely
BD 2 2 ij
3 33/5
The secular-free Soluﬁion of Bg.(3.13) is
R
B = —F 0% omd (209) 4 b(aexh(LV) |
2 Glk-w) P P (3.16)

+0.¢. +0(0,Q),

where b(a, a) and ¢(a, @) are constants with respect to

.

3 an 4 of~
To order €7, Iig., (3., .6) can be written as

£ld)=—2(bd)- ST

DXt
Ntk 51#)} SX®).

On collecting the K? independent Lbfﬂo in Eq. (3.17), we

17)

get the condition for bne renoval of secularity:
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'BC _ o o .

S WAFB)FBA+c.c. = O,
On usging Bq. (3.14), this can be immediately integrated to
gilve | "
C :ﬁﬁﬁﬁ*f),
where f is an absolute constant.

The terms proportional to exp (ti%))’on the right

side of Eq,(3.17), however, give rise to the resonant
secularity in the solution for ¢5. This resonant secularity

can be removed by the condition

(A4 B,)- _.«w(g 3B | 1&3

D] laOL /(\

R_§_R_ L} xg . _RP-tw)
W50 | 6(R-W) Vg WO+ &=0

which on writing

-

S\ ?;Y%
b= 2 dR ~
- 575375“ | 2ot i
AT X
S (264 Teai) T S - Rkl

~ > R \
Nn__k & 1 i
Q 3@@@{%0%%®'¥Vg45) (3.20)

and
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R, s

with

EI (]+Qmwg+mg%)

w0

can be reduced %o

|

Q&tﬁ

ES\ ::‘3
(A me(&ia 55

L Qo e +RA=0.  (5.22)

On using the definitions given by Egs. (2.29), (2.30)

and (2.32), Eq. (3.22) reduces to
2 v
3 1 Q' ~,
éﬂ ol + Q1 Q) A+ RO=0, (3.23)

which ig the nonlinear Schrodinger equation for the system-

under consideration,

The R-term in Lq, (3,23) can be eliminated by the
transformation a - a exp (iR7T ). It may be noted that the
effect of the digsipative term is manifested through this
term only. By appropriate choice of the constant p, we can
choose thig damping to be negligible for the time scales of
our interest. On keeping upte the first order terms only in

aq and a2 we find that

. , 2 2
\}(-‘:m%(\m&;o(,kAS(sz ), (3.24)

so that PQ < 0. Consequently the ion-acoustic waves in the
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- presence of weak random 1nhonogen01tlos are stable against

ionﬂwnvo uodulat¢on

To discuss the enVelope Stationéry states of thev
ion-acoustic waves, we express the éomplex amplitude a as
in Eq. (2.29). The stationary Sélution is’thé envelope hole
given by Bq, (2.49), where P and Q are givenAby Bgs. (3.19)
and (3.20) respedtively. Ehu” the ion~acoustic wave may be

represented agymtotically as

cb f’g‘}: 3% sech” {QQ‘PP% )/‘“Q]
”@%P%&(R'X~w{ ‘\’O“DWS) (s.e5)

where the phase change G is given by Eq. (2.49) with P and

Q of Egs. (3.19) and (3.20),

The width of the emvelope hole igs defined ag
Q.

_ )Py 3R S
h=zzlal= QPC,-E +200, (23R ot Ky

In the abgence of the randon inhomogeneities the width is

simply :%k?

g0 that the rath of these two widths is ‘
A o I ‘ 0y 2 \/ ‘;] 2. i
N \+QO(‘(4~*3E)+Q\Q(L%“ k") (3.26)

Since both o, and «, are real pogitive, and k
o

1
A>Ae,

and hence thb random inhomogeneitics increase the width of

? e,

the envelope hole state.



III,5 Discussion

The modulatioﬁal ingtability of longwave ion-acoustic
waves is not affected by the presence of The weak randon 170
homogeneitiecs, However the stationary envelope states of the
waves are affected as depicted by Eq. (3.26), i.e. the

inhomogeneities increase the width of the envelope state.

Physically this can be explained by looking into

the process of formation of the envelope hole. The balance

between the nonlinearity énd dispersidn leads to the format-
ion of a hole of a certaihfWidth;’ As seen aboVe;‘the randomn
inhomogeneities contribute to the dispersion of the waves.
Hence the balancing of the same nonlinearity against this
increased dispersion will lead to the formation of an

envelope hole with increased width,

In a homogeneous plasma the ion-acoustic waves with
k Xy > 1.47 are modulationally unstable (Kakutani and
Sugimoto 1974) and the presence of collisions modifies the
spectrum of the unstable waves (Buti 1976). The present
analysis is restricted to the longwavelengths, K? >?D\<< 1,
‘and for this region of the spectrum it is evident from
Eq. (3.24) that ion-acoustic waves are modulationally
stable in the presence as well ag in the absence of randon

inhomogeneities.



CHAPTER IV

MODULATIONAT, STABILLTY OF OBLIQUELY PROPAGATING LANGMUIR

WAVES TN COLLISIONAL PLASMAS

LV,1 Imtroductipn

The stwdy of the nonlinear properties of Langmuir
waves i1s of increasing interest because of its relevance
to the problems of the relativistic beam and laser heating
of plasmag, and to the strong plasma turbulence theory
( Mishikawa et al. 1975, and borales and Lee 1975)., The
longtime behaviour of Langmuir waves ig governed by the
norlinear Schrodinger (NS) equation and in a bollisionleés
plasma they are found to be modulationally stable (Asano et
al, 1969). Usging the reductive perturbation technique, the
NS equation for Langmuir waves hag been derived from the |

isothermal plasma fluid equations by Asano et al. (1969) and
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from the plasma kinetic eqguations by Ichikawa et al. (1972).
In the latter work the effects of the resonant wave-particles

were neglected, The resonant particles moving with the

group velocity of the wave are expected to give rise to the

nonlinear Landau damping, This interaction introduces a
nonlocal-nonlinear term, which makes the Langmuir waves
modulationally unstable (Ichikawa and Taniuti 19%73). Sﬁartm

ing from the adiabatic plasma fluid equations, Kakutaﬁi and
Sugimoto (1974)vdefived the NS equation for these waves by
using the KBM method. Moreover, Zakharov (1972) showed that

the strong Langmuir turbulence is described by the TS equat-
ion coupled to a wave equation for the asgociated low frequency
lTon-Acoustic oscillations, In this case, the Langmuir solitons,
which normally db not interact among themselves, emit sound

ol

waves and coalesce together (Abdulloev et al., 1974).

The influence of collisions on the nonstationary

P

evolution of the electroacoustic waves has been discussed by
Gurovich and Karpman (1970) and on the Langmuir waves, when
the perturbation propagates with near sound speed, by Karpman
(19%75b), The effect on the modulational stability and stat-
ionary states was not discussed by these authors, The effect
of collisions on the modulational instability of ion~acoustic
waves has been discussed by Buti (1976) by uéing the KBM
method, The spectrum of the modulatidnally unstable 101

acoustic waves is found to be drastically modified by the



oollisidns,

The oblique modulation of the ion-acoustic waves has
been discussed by Kakoand Hasegawa (1975). The modulation-
ally stable ion-acoustic waves'are found to become unstable
when modulated at an angle to the direction of the phase

velocity.

The Langmuir oséillations are rapid procésses and ‘we
can associate a fast space-~time scale to it., Over these
rapid variations are superimposed slow variations of the
amplitudes and these are oharaotérized by slow space-time
scales, The presence of weak collisions in the system is not
of much significance during the initial stages where the
system is governed by the fast space-time scale and these
collisions may be neglected in this regime; However it may
be of interest to Stﬁdy the effects of collisions during the

glow space-~time scale,

In this chapter, we investigate the modulational
stability of Langmuir waves in a weakly collisional plasma
when modulated at an angle to the direction of the phase

velocify. The KBM method is used for the present study.
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LV.2 Nonlinear Schrodinger Lquation

Consider a two-dimensional warm colligsional plasma
with the ions providing the neutralizing background, If the
electron fluid is taken to be isothermal and the wave pPropa-
gates in the x-y plane, its dynamics ig governed by the
equations >N '

N TN
a ﬁ"V(YLu) 0,

*ku +~»—~ ﬂ+-—-t +yll =0,

ot |
V-E = bsre(men) =0, o (4.1)
N \

where \J = (a/0x, 9/0y), = (u., uy ) and B = (&, ﬂy). In
this set of equations the first three are the familiar conti.
nuity equation, momentum-baleance equation and Poisson's

equation respectively The fourth equation is

with the magnetic field B taken to be zero and the current
density J = netl, The first and the last equations of the set
(4.1) imply that the Poisson's equation holds good for all
times, provided it is valid initially. BEgs. (4.1) can be
expressed in the dimensionless £01m on normalizing the lenwthn

to the Debye length.’)ﬁy the tlmu to the inverse of electron

plasma frequency, (X);l’ the electron number dens 1ty n to the
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average density ngs the'eleotron fluid velocity U to the
characteristic sound spee& OS, the electric field B to the
characteristic field (Te/ejNDD and the collision frequency

) to CK)P; We choose the first, second and fourth equat-
ions of the set (4,1) to describe the system in terms of

the three functiong n, U and B, Prom these three equations,
E can be climinated, So for a two-dimensional system our

basic equations become

by .
d lix P Elgﬂ\ w;iﬂ
Py gzg(\u%a vt m%
30 AUx |
+2 wz”sszﬁm FEYSE=0, (g

1"£%+ \.t (LL){

PN ERE-118 _a___@_% . ik
7 at(\ﬂ 24 +7Uk\4 L ey 0, (4\', 1)

where P is the scaled collision frequency, Y =gy ; this
guarantees the collisions to be weak,

Considering a weakly nonlinear sysbem we take the

-

following expansions in powers of the small parameter



N =)+em, +€7“ni+' R

u%; C: U\é\+ € U%Z + T 1

and choose ny to be the monochromatic plane wave

M= QL (CP)+ D erp (-ip), (4.6)

where \}J kx = W*t, The complex amplitude a ig a slowly

varying function of x and t, defined by Bq. (2.8), but does
not depend on y, Thus the system under consideration ig not
strictly two-dimengsional. In Fgs. (4:.5)9 Ny oy Uy négp
Uy o, uy&” -«+ arc functions of x and t only through a, & and

\}J ;and are functions of .y only through \}J .

From Eqs. (4.2) - (4.4) to order € and from Iig. (4.6)

we get

Aux; ‘f\xw

or Qerpp)+rce.

(a.7)
'\/k ké(f\ QUCJ(Q\P)%—C C.
with the linear c&ispersion relation of the system
- s o z , ! ;
DU{)UO:——: — WTHR + = O, (4.8)

wheTre kz = !%27;(‘%- kjgt ‘

llow let us consider Eqs. (4.2) - (4.4) to order £~
From these equations we eliminate w D uyg and then subgti--

tute, into the resulting equation, for Ny, Ug.q and uyl’



alongwith the definiti@ns_given by Hq. (2.8). Thenwe get
. N N 2 o
I 2l 5 2, = = 2(2R 3+ 3) exp@i W)
+(leA,+(§&NX+QiRQBQQMPU¥Q+«;Q,

(4.5)

The resonant secularity arigsing from the term with exp(i%f)
and its complex conjugate can bhe removed by impoéing the
condition
A%V W~VQ 0, |
Y L. (4.10)

where the group velocity along the x-axis ig defined as

v" = - §91§K1_:: kx'
e SYZInE GO

The secular-free solution of LEq, (4.9) then is

. I SR .
n, =% K+3) 0 enp(2 \p}
+h(na) WPUY) +con+ x (). (4.11)

where b(a, a) is complex function of a and a, but a congtant
with respect to ﬁJ « From Egs, (4.2) - (4.4) to drdér e” and
Eg. (4.11), we get

W = ::,x@iiiﬁ} 0 exh(2 W)

i 1 . 9 . , :
S ik:\(_%*‘fDA | ;f_f_.".),_ k“’ W h AR W Q\%Q,g.;P({\y)



Uy, = Mw(#k T3) o wp(mw)

Ry TR enplcy)

+C,e. M&'@‘ (4.12b)

Iﬂ order to determine o we consider Bg, (4.2) to order e,
The condition for the removal of the secularity in this

equation is

which implies that o is an absolute congtant,

Now let us consider Eqs, (4.2) - (4.4) to order g°.
From these equations U, and uy3 can be eliminated and the
1]

=1 S} ’ 1 } 1 T T :
expressions for Nys Ugq uyl’ Ny, Uyo and u ., substituted.

y
In the resulting equation for g the coefficient of +the

A

exp (iﬁ)) term gives rise to resonant secularity, which is

removed by the condition

LAV, B )4 A 2B 4 5 28 (2R SR

l&a.

249 kx BWR‘ f._”?%\m
rg&{ﬁ\; " ‘*’Z'kl “ﬁ‘”i B+ 303

~Ua 22 g2b b)— & (s +9)lal™n

oa.

TRV L A SR N T ,_
T ( e >)L A=0. (4.13)
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‘The function b(a, a) occuring in (4.13) is the complementary
fun@tion of the differential equation (4;9). In.the present
case this function cannot be determined uniquely and we
choose bg(l_%‘é* | »———Bb ‘
aCL EX
go that b = oonstant(ng)l/g. On using Eq. (4.10) into Iq.

(4.13), we get,

: ~ N, B‘R‘ Bbl
L<A2+V%xb1>+ 2W Xb, aon B gy
Y, \5 ~ DB
R 2. A= + ==
A B +Osg S0,
2

«.ﬂﬂ_(ng q )\u] .t QCO(D(+ 1>(X 0. <4.14‘)

From Eqs. (2.8) and (4,10) we get

0o BB: BBu

so that with tha. defini LLOIL: (2.29), (2.30) and (2,32), B

)

(4.14) b@come

“‘(*Q\ \ ,"\"FROAT—O)

B?l (4.15)
where k«'l o
dVgy |+
\33}3_@5}: Q@é‘*, Qz~_~——-(9+%k) (4.16)
and \ |

w Y SN _L""D__'
R= s X+ ¢y,
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Eq. (4.15)’18 the NS equation describing the envelope of
the Langmuir waves in the x-direction, i.e,, at an angle
to the direction of the phage velocity, in a colligional
plasma, For the oollisiomleés one-dimensional case, i,e.,

Pt

Y =0and k =k, k =0, Bq, (4,15) reduces to that

Y
obtained by Asano et al, (1969), The R term ig due to the
integration constant and the colligions, and is absent in -
the work of Asano et al, (1969). This term is not of much

significance and can be eliminated by the transformation

a = aexp (1R7).

IV.3 Modulational Stapility and Envelope Holes

The stability of the envelope of Langmuir waves
against oblique longwave perturbations can be studied in the
same manner as in Chapter II, We express a as in Bq. (2.39)
and the resulting equations, i.e., figs. (2.40) - (2.41) are

perturbed as in Eq. (2.42).

From Eq., (4.16) we find that
R U+RY(9+ sk
FDCQ?:l*” < ( QJ( )

| - 12 w2
so that for all k, PQ < 0. As shown in Chapter IT, modulat-

9

“ions are unstable when PQ > 0. Hence the Langmuir waves in
two-dimensions in a collisional plasma are stable againgt

oblique modulations, The corresponding localized stationary
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solutlong are the cmvelop “holes, Bq., (2.49), with P and Q
given by Eq. (4.16), The collisions do not affect the shape
of the envelope hole but the obliqueness of the modulations

affects itg width,

LV.4 Conclusions and Discussion

The Langmuir Waves im;a onemdimensional coliigi0nm
less plasma are known to be modulationally stable’ (Asﬂno et
al, 1969) We tind the collisions and Oblqu@B@SS of the
perturbation do not change thiS §tability. Uging thekdefinitm

ions given by Eq, (2.30)9 Eg. (4.10) can be written ag
C \ o
51, Haxgy, +5YA=0.
Transforming to a frame moving with velocity V@y and then
- . b.&.
integrating, we get
Q= Q{tF ) P55,
Thus the envelope, which propagates with the group velocity

\ is damped by the collisgions in this space-time gcale,

gx’
However, in the space-time scale defined by Ig. (2.32),
is seen from Eq, (4.15) that the collisions have ing lgni.-
ficant effect,

The width of the emvelope hole, given by iq. (2.49),

is defined as



| 2 /\ o S

A = *ﬁ;r ?\ = (4.17)
3 o

For the Langmuir waves modulated obliquely, from fiq, (4.16),

we have

(4.18)

S 3(+\25m6>
o kelwwr k)’

where tang = ky/k{. If the wave is modulated parallel to

éf—d

the phase velocity, then
P 5
Qlg=o~ R2(S+ B8R

From Egs., (4.17) - (4 19), it can be secen that the ratio of

(4,19)

the widths for the oblique and parallel cases is

é\((j)o ( +k q,m@'/;

Thus the width of the énvelope hole increases with the angle
between the direction of propagation and modulation, This

effect is duc to the change in the dispersion of the system.



CHAPTER V

ENVELOPE SOLITONS AND HOLES IOR SINE.-GORDON AND NONLINBAR

KLEIN-GORDON EQUATIONS

V.1 Introduction

The Sine-Gordon (SG) equation ig one of the few ‘v
nbnlinear equations that can be solved exactly in various
 ilmportant cases. This equation has travelling wave solut-
ions called kinks (Barone et al, 1971), Also it can be
factorized into a scattering problem involving the degired
solution and an evolution equation for the eigen-functions
(Ablowitz et al, 19073 and Damb 1974). Then the\inver&e
sbattering method (Zakharov and Shabat 1972) may bhe direétly
applied to obtain the solution of an initial value problen,
The SG equation is found to admit an exact doubly periodic
solution, whicu in the limiting case corresponds to the

kinks ( Ben-Abraham 1976).



.'The evolution of a variety of physical system is
governed by the eQuation : |
- R L/ TN '

\ij){; '«ij- Vi(P)=0, (5.1)
where V'(ﬂ?) is a nonlinear function of @? and may be taken
as the derivative of a potentiai_energy V(@?) (Barone et al,
1971, Whitham 1974), For V(P ) = ~ cos® , Bq. (5.1) becomes
the Sine-Gordon (SG) equation, namely,

Sttt
. i . e ‘
and when V() = $°/2 + « %?4/49 we get the nonlinear

Klein-~Gordon ( NKG) equation,

D - @X}Jr@“f‘()@{@g: 0. N (5.3)

“tk
In Egs. (5.2) and (5.3) the variables {E , x and t, and the
constant a have been made dimensionless by appropriate
normalizations. BEq, (5.3) corresponds to a small amplitude
expansion of Eq.(5.2) when ¢ = - 1/6, The NKG equation
describes the many-body behaviour of elementary particles
(Schiff 1951), Many physical systems representedvby Eg.(5.2)
are described by Barone et al, (1971) and Whitham (1974).
This equation arises in the study of Josephson junctions,
theéry of surfaces, dislboations in crystals, ferromagnetic
materials, Laser pulse propagation, etc. Also based onqu.
(6.2), Perring and Skyrme (1962) have discussed the strong

interation among elementary particles. A lucid discussion
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of the relevance of Bgs, (5.2) and (5,3) to guantum field

theory is given in the recent review by Rajaraman (1975).

The SG and NKG equations play an important role in
the nonlinear field theories, classical as well ag quantum.
The localized solutionsyof these equations have particle
like properties such as localized position and velocity. A
clasgsical field theory for the interaction of elementafy
particles can be constructed by using the 5G equation as the
model (Caudrey et al, 1975). Recently there have been
several attempts (Goldstone and Jackiw 1975, Rajaramam 1975
and, Gervais and Neveu 1976) to use the known propertieS,of
the classical theories as a starting point for the imvesti-
gation of the quantum theories, The correspondence of such

theories with the direct theories have been obtained, e.g.,

ot
E5
)]

Sine-Gordon theory has been found to be equivalent to

the masgive Thirring model (Coleman 1975) in particle theory.

The modulational instability of the NKG equation,

Bg. (5.3), has been studied by Asano et al, (1969) by using
the reductive perturbation method (Taniuti and Yajima iQGQ);
In this chapber, we study the modulational instability and
then obtain the localized stationary solutions of Egs. (5.2)
and (5,3). Tor this purpose we use the KBMimethbd to obtain
the nonlinear Schrodinger (HS) equation which describes fthe
slow variations of the amplitudes of the plane wave solutions

of these equations.




67

V.2 Sine~Gordon Equation

In order to study the envelope properties of the
St equation, we use the transformation q& = tan(%;/ﬂ);

Eg. (5.2) then reduces to

(+ 2N e Rt $) =20 (4= 4+ $)=0. G

The NS equation describing the envelope of the plane wave

solutions of this equation can be derived as follows,

Let us consider a perturbation solution of Bq,(5.4)

of the form :
: i 2 - o |
- €AV +€B @IVt (us)
where a 1s the complex amplitude and ﬂ’ = kx -~ t is the

phase, The scalar dﬁ depends on x and t only through a,a

and %/ . The slow variations of the amplitudes are defined
by Eq. (2.8)., The lowest order (order €), Bq, (5.4) has the
plane wave solution given by
D = erxh( 4 c.C
CL‘ Lep(Ly) +
where () and k satisfy the linear dispersion relation
D)= -0"+R +1 =0, (5.6)

The équation to order 62 is

rl_
< 1 |
CQD* %,_{‘7 — ,A ff.f_'bl -} Q\W 2(_(&;(}\ +'—”P\Lf)c k\)) (5.7)
, )
o )V 4 C.C.
The terms on the right hand side give rige to resonant

secularity and thisg is removed by the condition
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where Vg kG , is the group velocity. The secular free

= O

solution of Eq. (5,7) is then given by

@ = b(o,a)exp(iy) + C.c
where b(a,a) is a function of a and a, but is constant with
respect to \P .« Eq. (5.4) to order e? may similariy be
written down; the condition for the removal of the resonant
secularity in this case is simply

ol (528 5B L ke oty g

{(A,FV B) de(a,m+‘% =)+ Q- L.’\<5’8
On using the definitions given in Eqs. (2.29), (2;30)~aﬂd'

(2-32), Eqg (5 8) reduces to

\(1\ (L = | (5.9)

o

U‘{\

Where

0

b adVe
Tar “aw omd Q=4

Eq. (5.9) is the NS equation governing the envelope propert-

les of the plane wave solutions of Bq, (5.4).

We investigate the gtability of Bq, (5, 9) against
longwavelength perturbations in the same mamner as in
Chapter LI, Since according to BEq, (5.10), PQ = 4,/(,.\}4
we find that the perturbations with K < (4&)?%1/2) are
unstable. These equations have emvelope soliton solutions

given by Eq. (2.30) with P and Q given by Bq.(5.10).
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Vo3 Nonlinear Klein-Gordon Equation

The NS equatibn dgséribing‘the envelope of the plane
wave solutions of the NKG equation, Eq, (5.3), can be obtained
in the same manner as above by uSing the KBM method, On
considering a perturbation expansgion of the form of Bq. (5.5),
we find that the plane ane solutions of Eq, (5.3) satisfy |
the dispersiom.relétion given by Eq. (5.6). The oondition
for the removal of the resonant secularity in Bq. (5.3) to
order 65 yields the NS equation, given by Eq. (5.9), with
the coefficients P and Q given by '

P::M“(B% OJ‘fh Q,ﬁ“‘ ”Z{B " (5.11'> .
These coefficients are identical to the ones obtained by
dgano et al, (1969), If o < 0, the plane wave solutions
of the NKG equation are modulationally unstable and have
envelope soliton solutions, as given by Eq, (2.48), On the
other hand if « > 0, these plane waves are modulationally
stable and have the envelope hole solutions of the form

given by Eq. (2.49) where P and Q are as defined by BEq.(5.11).

Ag pointed out earlier, Eq. (5.3) corfesponds to the
small amplitude expansion of Eq., (5,2) when « = -~ 1/6. On
putting this value of « in Bq, (5.11) we get pg = 1/(8w?)s0
and thus under this approximation also the plane wave solut-
ions of the SG equation are modulationally unstable and hence

the equation admits envelope solitons,
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V.4 Diécuésibn

Here we have”studied the envelope properties of the
Sine-Gordon equation by transforming it into the NS equation
which admits envelope solitons.k The envelope solitons
discussed here are the bound states of n(= k/K) quasiparticles
represented by the plane waves in contrast to the two kkink o
Soliton bound states which have been given various names:
'mesons' in the nonlinear field theory of elementary particles
(Perring and Skyrme 1962), 'Oxn' pulses in the self-induced
transparéncy problems’(Lamb’i971), 'bions! (Caudrey et %l
1975) and ’douﬁlets' (Ragdramﬂn 1975) In comparison with
the doublets, these envelope solitong may be called
Ymultiplets‘ - In the nonlinear field theory of Llumuntary
p&rtlblLu, the kinks correspond to extended or dressed
particles and the mesons or bions or doublets are the bound
states of two such particlés. The congtituents of the
miltiplets in our case are the plane waves which unlike the
kinks do not carry the effect of the nonlinearity and>heice

may correspond to 'bare' particles,



CHAPTER VI

MODULATIONAL INSTABILITY AND ENVELOPE SOLUTIONS OF
NONLINEAR DISPERSIVE WAVE EQUATIONS |

VI,1 Introduction

The nonlinear schrodinger (1S) @quation.governg-a
variety of phenomena, €.g., the selfnfooussimg and self-
modulation of plane waves, . the propagation of heat'pulses
in salids, the propagation of a number of blasme waves e,zg,,
Langmuir, TIon-Acoustic and lMagnetogonic waves, eto.’(boott
et al, 1973), The modifiecd Kortoeweg-de Vries (KdV) equation
on.the’other hand arises in the study of acoustic waves in
arharmonic lattices, AlfVen waves in a collisionleas plasma,
ete. (Jeffrey and Kakutani 1972). Both these equations can
be unified into the following generaliszed nonlinear disper-

sive wave equation (Hirota 1973)
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18% 3 B)(

é"{; + (13X W«‘ ”\"P)axl l )}(/ 0(6 1)

where o, B, § and 8 are real congtants. This equation,

which is known as the Hirota bquatlon. reduces to a N3
equation for ¢ = ¥ = 0, and to a modified KdV equation for

B =06= 0. TFor the case af = W&, by_using’a rather heuristic
approach, the exact envelope soliton solutions of fq. (6,1)

were obtained by Hirvota (1973).

Ihe propagation of waves, in one-dimensionsl non-
linear lattices e.g,, continuum approximation of the Permi-
Pasta~Ulam problem (Zabusky equation) and in shallow Watér
under gravity propagating iniboth directions (Toda 1975),

are described by the nonlinear wave equation

2 2 .2 L}'s)
84/‘ 3P -_B<I>LQJL,:Q7 (6.2)

S0 e O e T T

where <#:, x and t are normalized to the quantities appro-
priate to the particular problem. Thig is the well known
Boussinesq equation (Boussines sq 1872). The exact-N-soliton

solution of this equation was also obtained by Hirota (1973).

Both the equations (6,1) and (6.2) dré nonlinear and
their plane wave solutions are dispersive, and hence they‘
describe nonlinear dispersive media. As discussed in
Chapter I, such media can give rise to modulational insfability

and consequent localized envelope states, In thisg chapter,



we study thesge properties of .iqs, (6,1) and (6,2) by

using the KBM method,

VI.2 Nonlinear schrodinger Iquation

bet us first congider Eq. (6.1). To obbain the N3
equation.d¢saribing‘the‘5ystems governed by this equation;
we use the KBMiméthod as in Chapter IIL, The solution to
Eq. (6.1) can then be written as
X=X, (@, )+ €Y (a0, 0+, (e
where )é!iS chosen to be the monoohromﬁtic plane ane'giVGn
by ﬂ’
Xo= Qemp(cp) + aendp-iw),
Here a is the complex amplitude, \P = kx -~ Wt is the phase
factor and & is the complex conjugate of a, In lig, (6.3),
Kois KXo Xzy+.. are functions of x and t only through a,a
and #J. The complex amplitude a is a slowly varying funct-

lon of x and % as given by Eq, (2.8).

On substituting Eq. (6.3) into Bqg. (6.1), we get
equations of different orders in €. The equation to ofder

€ gives the linear dispersion relation, namely

D(km)= w—pK +¥K . - (6.5)

-

R . . . .
To order €7, Eq., (6.1) contains terms proportional to
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exp(+i\W ) which give rise to regonant secularity. The
oohditioﬁ for the removal of this secularity is
where Vg = 2Bk ~ Sjli% is the group velocity of the plane

waves. The sccular free soluulom.oan.thcn.bo wrlbcon as

X, = bQ@ @) end( (wy+c.c. 20, (8, a) (6.7)
where b(a,a) and j(gO (a,a) are congtants with 1cspcct to *).~

The equation to order 639 which is obtained by using
Eqgs. (5. 4) and (6,8) in Lq. (G 1), has two sources of |
secularities: the re sonanb secularlty nLlslng irum cxp(+1ﬂj)
terms, and the second one due to \P independent terms which
- become proportional to #/ on integration. The condition for
the removal of the latter secularity determines )620 to‘be
an absolute constant, The resonant secularity however is
removed by the dondition
\ o\ ogx éEs
L<Az+\"35 >+2’i<&ﬂa ’aa> 5@\? O>Q\
(6 8)
Defining
P= 20;\:5 -~ f5- 3FR ama Q= -2(k-§) (6.9)

and using Eqs, (2.29) and (2.30), Eq. (6.8) can be written

a8

aa 3%3<3+ S QK\ = 0.



Thig, on introducing the new variables as in Bg. (2.32),
reduces to the familiar I NS equation: _
BC{ BC(
Exactly similar analysis is carried out for Eq, (6.2)
The linear dispersion.relation.for the plane wave solutions
in this cage is given by %
T e
k Ui)'** - W ﬁ«}(‘“-ki '

2 secular free solution of Eq. (6,2) is

To order 6

q’f‘ Q/k):(,u\P)+ Clab)exp(ty) +c.c. +<£>2(QQ a)

Prom the SLCQlaLluJ removal condition for Eq. (6.2) (to ordcr‘

qJZO(w a) is found to be

b =

. Q&CL +pe,

where /A\is an absolute COnutaﬂt. As before the condition

£

for the removal of the resonant secularity in Bq, (6.2) to

3

order €% yields the NS equation.
ol B/L [EEe
( 37 + ¥ Bilﬁ}‘@ \af 0.+ R Q= O (6.11)
with

.me&i~_<<* -2k )
27 2dR T ow()-

wi(\l*\;kl“HZ,‘Q[*) and o N
A W(3-1k*) =T L[
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6.3 Modulatlonal Ing tabllltv and anolope Solutlop

The equations (6.,10) and (6.11) describe how the
amplitudes of the plane wave'solutions of the equmtions (6.,1)
and (6.@) respectively will evolve accordlnp to thplr disper-
sion, determined by E, and nomllnearlty, determined by |

(i = 1 and 2),If P. Qi > 0, pb7LuLbdthﬂS with
K < K= (BQ ” /E )1/“ are unstable and grow w1th the maximum
growtn.lﬂbe = Qi(?o for K = "i \O/Pi)i/”, Where 'S ?-[#%)2

is the initial intensity, However, if PiQ. < 0, pe rtuxbntion

of all wavelengths are stable., From Bg. (6.9), we Ilnd that
=-3(p-37k)(xk-5).

S0 that modulational instability of Eq, (6.1) is deéided by
the values of «, 8, 9 and 6. For q :"6: 0, when Eq, (6,1)
becomes NS PquatiOW itself, 1Of = 3 B06; which iﬁ‘confifmm
ation w1bh cearlier results is unstable for gé > 0. Tor
g =20=0, Bg, (6.1) reduces to the modified KavV equation
with PlQl = QQRXKZ; thisg unlike Kav eguation ig unstable
provided aff > O, For nonvanishing wy, B, , 8 howéver;
modulational ingtability can arise only if k > k* where

R = (etp+378) (o PE37E) =12 p 76 'g'/?‘j s
Foxr k* tb be real we mist have either ap o < O“eré > 0
with (af + 3”6‘6)2 > 12ap }(‘yé.

If ¢ =6 =0, Bq.(6,1) is linear ﬂnd dprUTSLV( and

if B =% =0, Eq. (6.1) is nonlinear but dlbpewslonlgbo.
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Bvidently in both these cases we cannot obtain the NS
equation.

In case of Bg. (6.2), Bq. (6.,12) gives

52K )(12- ?télfl’z.k%)zwg (k)

?QZ*E . e e v
2 (1=RDH(3- 4R (-K )"“('3“’%—\5")

8 6 4

where f(k) = 96 k° - 352 k° + 510 k* - 360 k%

+ 108, Thus
Lig. (6.2) is modulationally unstable for f(k) < 0, The
critical wavenumber for modulational instability is found to
be ké = 0,866‘ Thus all waves with k > kC are modulationally

unstable,

Having settled the question of modulational ubibllLLJ
of the cquation (6,1) and (6,2), the corresponding envelope
solutions are obtained immediately, If flOi > 0, i.esy the

unstable case, the localized stationary solutions are +the

envelope solitons given by Eq; (2.48) with P, and Q; given by

H e AR o ] L ‘ - . i) { $
Egs. (6.9) and (6.12). And if PiQ; <0 (P =~ [PiQ),i.e.,
the stable case, the localized solutions are the envelope

holes as given by Bq. (2.49).

Now the localized stationary solutions of Eqs.}(Gzi)
and (6.2) may be easily obtained from these considerations.
For example, in Eq, (6.1) the cases a) o = X =0, pand
both positive, and b) B =6 = 0, a and X\XMﬂﬁLpositive,
admit envelope soliton golutions. In case of Bg. (6.2), the»

oy o

stationary solution is an envelope soliton for k > 0.866
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and an envelope hole otherwise,

VI.4 Conclusions and Discussion

We have shown that the amplitudes of the plane wave
solutions of Eq., (6,1) are goverh@d by the NS équation and
that these plane waves can be modulationally unstable. When
B =06 =0 Eq., (6,1) redﬁces to the modified KAV equation,
which haé soliton solutiomns., And Bq. (6.10) with B = 5 =0
describes the evolution of the amplitudes of the plane wave
solutions of the modified KAV equation, The plane waves are
modulationally unstable for o ¥ > 0 and stable otherwise, and
give rise to envelope soliton or envelope hole solutions
respeotiVely.

i

el

In the case of the Boussinesq equation, plane waves
with k > 0,886 are unstable against perturbations with
K < (2Q ? /P )1/2 and ¢ cquently give rise to envelone
v <,.\,2 o ) » ld consequently g1V ilse To e ne
solitons, When one of these two conditions is violated, it

is stable and hence has envelope hole solutiong,

Equations (6.,1) and (6.2) describe nonliﬁear disper-.
sivelmedia. In such media we can study two types of phenomans.
One is the dynamics of the wave form itself and the other
that of the wave envelope. Here we have studied the relation

between these two phenomena,
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The Kav equation or the modified KAV equation
desdriﬁes"the dynamics of the wave form itself, These
‘equations admit stationary solutions called solitoné. The
KdV equation can be optained 5nly for a specific type of
nonlinear dispersive medium and hence solitons are propertiecs

of such restricted media only.

On the other hand one can always obtain a plane wave
solution of the system of equation describing a nonlinear
digpersive medium. The slow variations of the amplitud@s of
fhe plane waves due to‘thg nonlinearity and dispersion are
described by the NS equation, provided the lowesgt nonlinéarity
is cubic or less, If the medium is modulationally unstable
1t has envelope soliton’solutibns and if stable it hés envelope
’hole SdlutiOBs. Egs. (6.1) and (6.2), whose corresponding
NS equations are given by Bqs. (6.10) and (6,11) respeotively7

are examples of thisg fact,.

Lt has been shown that the NS equation, if modulatioh~
ally stable, can be converted into the Kav equation (Taniuﬁi
and Yajima 1969). In the present analysis, however,‘WQghave
shown that the modified KAV equation can also lead to the
NS equation which may be modulationally stable or unS‘ablg

depending on the congtants « and’g .



CHAPTER VIL

NONLINEAR SATURATION OF HOT BEAM-PLASMA TNSTABILITY

VITI.1 Introduction

The evolution of beam-plasma systems, linear asg
well asynonlinéar, has been recently studied extensiﬁely
In most of the theoretical studies the model chosen is
that of a monoenergetic beaun traversing through a cold
plasma. In a real physical gituation however neither
the beam is monoenergetic nor the plasma i cold., The
laboratory experiments corregpond mogtly to the case where
the plasma and the beam particles have Small‘butwfihite‘
thermal velocities (Carr et al, 1973 and, Mizuno and Tanaka
1972);‘ Moreover a delta function beam broadens during the‘
evolution of the ingtability (Shapiro 1963 and Sugaware
et al. 1976), The influence of such thermal velocities on

the linear growbth of the instability and on the subsequent
< "
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nonlinear processes, like the saturation and the energy

transfer, is discussed in the present chapter,

In the linear regime the beam and the plasma
temperature effects on beam instability for the high
temperature case were discussed by O'Neil and Malmberg (1968),
and Briggs (1971). They found that for hizh beam temperature
(vy, »> nobu/nop) the growth rate decreases ag 1/ﬁ€ and for
high plasma temperature (vp >> u).the instability can be
excited only by the resistive medium effect rather than
the reactive medium effect; vy and vp being the thermal
speeds and oy,
and the plasma electrons respectively, and u is the stream-

and nop the equilibrium densities of the beam

ing velocity of the electrons.

‘The nonlinear stabilization of the beam-plasma
ingtability due to particle trapping has been discussed,
among others, by Onisghchenko et al. (1970) and Drummond et
al, (1970). The effect of beam temperature was included in
the work of Onighchenko et al. (1970). The saturation of
the linear growbth due to the diffusive interaction between
the waves and the particles wag discussed by Manheimexr
(1971) and Gupta (1972). The experimental results of Apel
(1969) support such a situation., The influencevof the weak
thermal motion, both of beam and plasma, in such a situation

is studied here by using the Perturbed Orbit Formaligsm,
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which WQS originally:formulated by Dupree (1966) and later
on geﬁeralized by various‘authoré (Weiﬁétdck 1969, Rudakov
and Tsytovich 1971, Benford and Thomson 1972, Cook and
Taylor 1973 and Misguich and Balescu 1975).

The complete dispersion 3elafioﬁ, linear as well as
nonlinear, isg derived and the effects of thermal motion on
the linear growth and on the oscillation frequency are

obtained, The diffusion ooéffioient gOverning the hohlimear~
interaction between the waves and the particles is derived
using the Perturbed Orxbit Formalism, We get the saturation
level by solving the complete digpersion relation, TMinally
the redistribution of energy during the wave particle

interaction and some associated problems are discussed,

VIL,2 Dispersion Relation

Let us comsider a collisionless beam plasma system

in which the plasma electrons are initially distributed as

: ‘ . L A (..2. L\ \)’\\
%OFW) = o, P b(~F /29 ) (7.1)
'\ -
and the beam electrons, which gtream through the stationary
plasma with a velocity u, are governed by the distribution

function
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e \'(‘7.2)'
For ()= Z"i}“’{}fﬁ"i‘ i~ (0107 0

The system is taken to be 1sohroplc homoconeous, fleldfree
and unbounded, MOreover the ions simply provide the neutrali-
zing background,  The elugtro tatic behaviour of such a

system igs described by the Vlasov equation,

SN .

:..{. i (715)

(ST V5 T E 5 fulowo= 0. ,
In order to s tudy the nonlinear behaviour of theysystem we

will use the perturbed orbit formelism., On following Dupree's

technique ag used by Gupta (1972) for the beam~plasma’sy8%ém,

we write
~ oA A vo — L}{ s L ,
%D&X,\/,l) - <%oe(\/‘(’>> + >‘; e ' %:ﬂa (0){). (7.4)
and

£ = 3B, enplikuri)-5 Ecompf-in nsig)

R : (7:0)
where BES are the initial phases and the brackets <{......>
indicate ensemble average over the initial phases, The
turbu]@nt wave particle interactlions are rc;r,sonu@d )y a
diffusion process in the velocity space and the bﬂﬁumbiL
averdge distribution function evolve according to the

equation,

r§f< ,)0‘(\33@\): 5?@ U’)gﬁ <% W Jc>> (7.6)
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where the diffusion coefficient is giVOﬁ by

Bz,::“”z_EAﬂ QY@ﬁS&GLQkUTT~~ IﬁWIU’U

On usging qu (7. 4) to (7.6) in Eq, (7.3), we obta1n4the

dlSper81on Tblﬂbl@ﬂ

<\B<%‘X> i ~r/2. N
jos j Moxbji(Qu Rv)t- ;‘k%ﬁ%

Ut
p—
3

which describes the nonlinear behaviour of the system., On
putting D = 0 in the expoment of Eq, (7.8) we get the linear
dispers lOH‘IlethH. While deriving Bq. (7.8) the diffusion
coefficient D has been assumed to be independent of v. Such
a restriction, however, is not néceS$ary in the formalism

of Weinstock (1969),

gs. (7.6) to (7.8) completely describe the evolutl-
ion of the system within the limitations of +the formalism
used, e.g, the mode coupling terms are neglected, In the
initial stages the wave grows by extracting energy from
the streaming motion of the beam, ig the anplitude of tte wave
increases the particles start feeling its presence. @hig
takes the system to the nonlinear regime and the orbits of
the particles now get perturbed by the growing amplitu&e of
the wave., Pinally when the saturation takes place, the WAV E
particle interaction reaches an eqﬁilibrium.state. This

readjustment of the waves and the particles against each




'other‘is the physical origin of the diffusion process
enviSaged im.Eqs.-(7.6) and (7.7).

The unstable waves start growing from the initial
thermal noise level of the plasma and hence the diffusion‘
prooéss, which’is dependent on the 1argeness of the
amplitude, may be negledted during the initial stage of the
evolution, Thus putting D = 0,< I P 8 LV) into (7.8)

we obtain the linear dlsp@rglon xulatlon

@)= 1+] Peland ﬁm@a(ﬂ (&zkk\/)“(}

.,—-bp
— ‘Y-C“‘ %C)%(‘}) = v
:\”*wggib( =0, (7.9)
“=QP g~ R@ﬁ
12
where ()~ = (4nnb /m) isz the electron plasma frequency,

VII.S Effects of Thermal Motion on the Tinear Stability

Since we are donling with low tempgrﬂtulcs9 we
Qhﬂll solve the dlSpOfSlon.lelnblon.(7.9) by thrntloﬂ
Now for a cold beam- -plasma, we have

%}Déﬁﬁ“ = %(¥§> ) %ﬁab W§>:: EBCtr*LL>)

and the dispersion relation is

- "2_.
et & J R ST S — (7.10)
< - | e (L—kw*

This dispersion relation has been solved, to the lowest



7 order9'by’Br1fos (i@?l) On d611n1ng

.GiP::~‘ "¢£i§§ QUWA» é5 g>¢2 ‘Q\k

and taking & to be small ccmpﬂred to C)k, from Eq, (7.10)

we get

N . ‘1\ vl k
@b: CoN Mm\g \_Lw~§3 & (7.11)

ez b : 2}
0 ¥ kO k) S -k '
R =k Q= RuU
The growth rate is maximam whcn CL ‘.Lgp o~ ku. On neglect-

ing terms O(é ), fg. (7.11) immediately offers the solution

Pl

SQU:CQO+LX3 _ | | (7.12)
with ' J_% . \\/3) s .
()\)():‘- (JDP"\]L%YQ QJY'\A YO—:; ai—( .i.?: LQ'P)
o ]
where ’Y«Q Q)b mﬁfnob
)w ?; T ’Y)o;::

In the present analySlu"ql/d will be taken ag the parameter
of smallness and all the terms upto second order in thisg
parameter will be retaimned throughout. With this B . (7,11)>
reduces ﬁo,a guartic equation in &, which by iterative

procedure can be further reduced to a cubic equation in &,

namely , :
. ek % \ S :
O, 3 (019 " @b 9} A7)
where C

(8]

Lo s
Eq. (7.13) con now be golved to give

g:\) R—:: w..(x),. LC): (,QLQ"}”'(‘, XL—O ) ( 7 .14—)
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where R o
W

wmzwwa koky

5 5
I ABeh

and

R R S e

In OLG“C to include the thermal motion 1n.tho system,

we use the distributions (7.1) and (7 o) into (7. 9) to obtain

the dispersion relatlon
Q

(Qk/\@> E)]: oy £(% «)=0, (7.17)

where 7 Cta) ig the derivative of the dispersion functidn

Z(Z&) (Fried et al, 1961). The arguments of 7 are defined

by
— — . ? R (7.18)
d - -
V2 kU |
éab in (7.18) is the kronecker delta, Since the thermal

velocitieg involved are small, we can usc the inequallty

B, te (BE«t o (\% «\.

Theée inequalities hold good for the experiments of'Mizuno
and Tanaka (1972) and Carr et al, (1973). We také hoth these
quantities to be of order € = fn}/B; this implies that
(vb/vp)rwfe . On using the aéymtotio expansion.for’Z(?;a)

and on retaining terms 0(62)9 RBg. (7.17) reduces to




Et'(ﬂk,k)“‘f ‘G’-’P“’-Xb: O, o (7.19)
where 0 ;ZL o
()J(ﬁ 3k Up We

EPZ\ 0L o~ ’ o (7.,20)

7 P!

and
2_

.y NETLANS
b~ (m RUWY ' (SLp-RWY
For low temperatures we can take L) K :DLO + N thus
Eq. (7.19) becomes | |
QP(QLO*A,‘(Q):XB(DLJA)\R) S (r.21)
Taylor expanding both sides of this equation around '

D‘I«TZD‘LO and keeping term 0(62), we get

QA -bAY¥C=0, (7.22)
-~ with R & |
0 = Ak ) 9 W f Awp
- G
L‘S‘\““L.\TT%‘?‘U‘>H~ (l LERM} Lo
and :
2 2 '
0 - 3R Wb 3RGPLE (7.23)
(D—Lo'" R u>Lk | &lqu.fa |

In deriving Eq. (7.22), we have made use of Bqg. (7.10). On
substituting Bq. (7.14) into Bq. (7.22), we obltain -

Y =Wy + iy, whej:'e | G
| %bs 3> ¥2 Vv

@, = (JQPO;*‘”L ; o 2 % . L ¥ RVUp -

VB P 3 303 wp Bwp W

VR 3RW B \<197~> (7.24)

,,\... PR SRS~
2 (Dp 16 “5,:,00)9 4 ¥, dp
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2ad L Ll 2 .2

fog -k Kl S EW 3K
= Jo\! "= T T Ar Lvaa L . (7.25)
L. ENCTIENOCTS LA S AR

In the above expressions for QDL the last two termg are of

3 . . . . .
order €: in order to be consistent with our approximations,

we must neglect these terms, From Bq. (7.24), it is
apparént that thermal motions incfease the oscillation
frequency. Because of the finite thermal veloCity, the
plasma electrons become more mobile and regpond to the
oscillations more easily thereby increasing its frequency.
The effect on the growth of the amplitude.of these oscillat-
ions is, however, just the opposite, The growth corresp-
onds to increasing the spacec density of charge or leading
to stronger charge bunching, When the electrons posses
random thermal velocities they are less easily 1ocalized in
space than when they are cold. Consequently the growthA
rate degreases with increasing thermal motion, as depicted

by Bg. (7.25)

VII.4 Diffusion Coefficient and Nonlineaxr Dispersibn Relation

As the beam-plasma system evolves, the nonlinecar
effects become more and more important, The feedback action
of the growing wave on the particles may be considercd, ag

indicated before, Lo be a diffusion process in the velocity
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space, This diffusion brinss about the saturation of the
growth,

The growth rate of the 1nstmbll¢by psﬂks around

CL%,= ku, So from the initial thermal noise present in the
plasma,'a number of waves Qenfred around the above start
growing, ‘However, this fastest growing wave begina to
suppress the growth of the neighbouring waves and thus
generaté a’narrow s?eotrum. The random the rmal motlon of
-the,particlés coupled with this mnarrow but finite spectrum
of waves provide the stochasticity required foxr describing
the system by a diffusive process which is fully described

by Eq. (7.6).

The orbit integral of ig. (7.8), namely

= SCQT Q/)(\ng';(@@”l?\}%* i\é\hwh(* \B‘E%D‘t’ils |

can be rLVLILan as

1= (R DY /QSC\‘TQMVQ“ T3 CB) (7.26),
with y = \K%*—L(RN}‘JLHQSE(kaB LZ If we Conside: the
number of trapped particles to be small, then the orbit
lnbevral of (7.26) can be expanded (cf. Gupté,’1972) asg

’ L/
KDL =40~ S ), for 131 =151,
Consequently, we obtain
‘ 2

| - Qk D L (7.27)

Tt A(ko-@R) ¥+ i (RT-0R))t

=
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Putting this into Bg. (7.7), we get the diffusion coeffw

icient for the untfapp’ed par'biCles
Ye
: g (7.28)

D=3 |58 ey

- In the 1imit of small ’fk this expression reduces to that

of guasilinear difquion coefficient (Sagdeev and Galeev
1969), thuskihdicating that the resbnance broadeningrin
(7.28) is due to finite ﬁ{kbwhich corresponding to Strong
tﬁrbulence.

 On using Bq. (7.27) for the orbit integral aﬁd 
writing | '

Ful80) = Focl0)F (Folv, 1)

the nonllnear disper SlOﬂ.TeldUloﬁ.Of (7.8) simplifies to

Em@’—kﬁ = € g )*FE b (m& N 9(7.29)

where €, ( L) g0 k) is blven by Lq (7, 17) and

%9/ ((OR 5?2) — CWS a\%\ %dﬂ

"w L % +i(RU-0p)
e _ 9_!.’*-1 " %-004(\)9 \\7 50)
with | } b 4L (.R“j - wgﬁ;

(31
%"(> 1& zm D) n&%@f*(“j’) o

1o (7.30), with the help of BEq, (7.28), can be written in

terms of the dispersion function Z(T;a). Once again for
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| Socl >> 1y we can use the agymbotic expansion for 72(3% CY)'

Then after some straightforward but cumbersome algebra, we

get 2 ko a2, 3
8 Oy We 3 1 o B (=B S)
X0 = S i 4 C4F

+Qgﬁmﬂwﬁq®;:(mf@% %}m

L " :3 _jfi;w H E *’JYA (7.32)

,anct Gy is the oomplex

where C,O,L* \f € {\’_k Ht)i P =
conjugate of % (JQB deflﬂes the bounce frequency of a

particle of mass m and charge e bounm_:ng in the poren‘tlal of
the electric finla B.(t). Now for kw << uﬁ and kv, << }{Oy

S
(”cc @ gg - 0 and hence Eq, (7. 3<) reduces to

M@w@:@”“§ | k¥

e iy s
T

+
B l(\lk RUB O (SLpe R4
—3AY 2L YRR U

( \'27{ '{‘JY\,\ L) - —

R (—:_Ll \1 O(X )"* | L&}\;"‘ \Ei A (\jO’. 5) ;Jf |
_¥%Q$ 1903 K% 415 R0l e
(ﬁl = RU Sotls) (SRR Oub)

\ \. ]
- (3R (v — R Saoot 5k UL‘X (D~ KW dux)6)

(\}

N

sSeporating the real and the imaginary parts of Bq, (7.33), we

obtain



Wy WE
g(@z? MLS(XL) J“{Rg 1

Re Iy = 5(% mo@
‘ o RUS T

~‘5;L(mmq ué;m@ sz I %(cor WQy) Tp= 11
' 1

%(u ,\uéo,gka—f- %]
(7.34)

and ‘ ’ (l(ﬂiw%(@ki“k\kgw@?{h o~ o K
T )Co{:-—“ < Y VA {d(@gb\u?}ﬂ) L
%(pbh“W?kkq*g§ %—7&2 % :

+ Slr(com kU Sxo) B — 299,
+ %"Q{; §S(oo el d Q 26 (K %w%dgxk

Foyre 2 KR e kuda)
S

10 (k- k\\a,g Az =381

In the 1limit of vanishing thermal velocity oi Lhe particles,

(7.35)

expressions (7.34) and (7.35) reduce to those of Gupta (1972)

for the cold case,
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VII.O anlihear_Saturaﬁion

The dis; 1on4fcldtlor (7.29) may be solﬁed to
obtain the nonlinear effects on the srowth and the osoillat;
ibn‘ohafaoteristios of the system under consideration. Let
us write e k

AR C%*” (f =310 F 00y, (7.36)

where ) _ is defined in Bq. (7.24) and 680, = 800,67y
with Iéﬁlkl << lgll k

Now Bq. (7.29) may be Taylor expanded to give

3€
@ L_ fv ly
,’r\lk T % QDLX >’Jf X\(\DLV‘> (K 57
-\ ofL
D=0
On separating the real and imaginary parts of fq. (7. 37) we

oP

get two simultaneous equations whose solutions are:

2
tDs <} 4~—Ck1 C, f;&; j

L= — o et o (7.28)
and :
N . C”& . Q)_ b\ Q?;: _
O bk (\MUM @, T, @1>3 K ,(’r.osa)v
where é ‘ ‘ '
Q\ ~ Re < D0 ) O=0
/ 2
LQP 3 wp Wp Iy o P o
L Lo 40
I 33 B 2 B0 | 3 KUy
2 W% AR M N




8 QSL ' ‘- |
=% ( Lt +\2 ¥ o2 g0 | =3 R
T e\ Wp YT g B 4D 6 JTOp
| _3E Bk 2B RV
= ;L B OD%‘ ]
vb RQ%&KQL%J>”;A)X? Uhﬁdz( ?JB yL
k 1O (Qb
| o WU
L'\‘O "\60(0'

tD %£Q>LF>(Q5L ) P

=— 5 (J\)LE
A%

(3 =—1 VH')Cl (W B’T) |
:;.m’iﬁiétm_mﬁ . 5 e e
2 af ﬁm ’T T Y.op (7.80)

29 ¥ 27 kii%é ‘?Hﬂ}p - kgmﬂz“
and P UUP A - X;*i
€=~ Im Kp(uit)==5 24 @Q*\% EEN .

o

On Su‘)gvti't'l_l'blllg j‘_‘,qs (’/ 40) - (7.45) 'dl’ld Aretail’lil’lﬂ"\ghv

terms, we iumediately oeL the nonlinear contridl sution to the

oscillation frequency and growth rates which ave given by

I N 23 B . A3 ROEN
S0k= ¥5X§(v+ﬁgg~§$+~§f§§§;)<%%>

and



=2 L A » e 4 rd L““""‘““ 5:‘
SER O S I 0p 2 %,
The nonlinear growth rate is thus given by

hetbor 8
9 ()38 |
A-.X ( %5 ~XQ.FL>7
L2 g0l i,sz;
M H"q o T WO

29 K er\O%r\W‘ 27 B9
7\ QQP leo P Lf‘ (\J/OL'

The growth of the instability saturates when /X%:: 0 which

(7 .48)

where

é
Wp +f\13

happensg only if

\ s D .(?’i% ('7,49)'
T ¥k ™ |

In the limit of vanishing thGlmaL Volooltles 01 the particles
and considering only the ae;o order term, Dqg. (7,49) reduces
to the condition obtained by Gupta (1972) for the cold
beam-plasma. case., ' ‘

The saturation level of the electric field fluctuations

can now be obtained from g, (7. 49) and is viver by

el = $10| 25| = B0

- !\“




Ry

L o -
where-|Ey(t)i“ is the saturat lon level for the cold cag e.

2

The above expression gives a saturation Spectrum u (t)]PVR .

This agrees with the Langmulr tﬁrbulence spectrum obtained
by Kihgsep et al. (1973). >However for longwave region the
spectrum is |L1|2 ~ KB4 (Tsytévioh 1972). The effect of
the thermal motions on the saturqtlon level is seen from thp
above relation which may bhe rewritten as ' :
o ¥ _Ik3¥S SR
\E\\()O\ \ Q( )\ N;‘\—\é Wpe SL\— W N3 Y Wp
\OF ‘Q’K*u 179 RVE zﬂ-\?\?é’j
TS Twr qu mp S P

The dominant term arising from the thermal motion is the term
2.2 ' ] et w1 e e s
( -5k VU/VB o UQP) and consequently the saturation level is
£ - .
lowered with respect to the level for the zero thermal velo-
city case., ‘The finite thermal velocity of the particles
enhances the diffusive interaction between the waves and the

particles,

- On using Bq. (7.49), Bq. (7.46) becomes

%oz
gmk_ \ Qfo 2—.2_ ME‘)

| aooa(sp SV Y,0p
and thus the OSCllL&tLOH frequency at saturation is given by
; _ 5 o 9
0 (\- 3 4o 46 b \“§¥ RV
ks PP 2 2F WE R o)
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VII, 6 lbnerzy Balance

In the pregent problem\éf beam~plasma interaction the

initial energy comprises of the streaming energy of the beam

, s 1 D ~ o
electrons (Ib =3 Ny mu?)9 the thermal energy of the plasma
: o th 1 2 . i
electrons (Tp“ == ﬂop mv_)? the thermal energy of tbe bean
: < _L ; E

: 1
electrons mb = 5 Iy v, ) and the initial fluct u%LlOﬂ.bﬁCTOy
c the waves s 2

of the waves (E;i = Z IE,(Q);f/gn .

£n1Ll111y Lhe gystem ig taken to be in thermal equili-
brium so that gii ig the thermal noise. Usually this energy
ig very i mdll comparud to the mean purtlolo KLﬂELJC opuwﬂy,
v é ¢ T th qbb fbh
1.6.9 B 1:) b

The wave grows by extracting ensrgy from the gtreaming
motion of the beam and as the amplitude becomes appreciable,

it influences the orbits of the particles - thus changing thelr

@
3]

distribution and energy content. These physical processe
are represented by the diffusion equationA(V.G) with the
diffusion coefficient given by BHq. (7.28).

| The gtreaming velocity of the beam after the non-

linear interaction is

U= e chaoyr= s o (g ) W3()

After substituting for D(v) from g, (7.28), the integral
may be expressed in terms of the dlsnolsion.functiom.Z(?;)

and its derivatives, Once again if we use the asymtotic
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o&pan81on.for A(g), we obtain
N N leuJ
%X5- LA k Cr S 212 '
} (g p\)a—“&j
. it 2
xawgm e Te
, HOTSNES (7

.52),

On using Eqs. (7. Bﬂ)g'(?;25) and (7.49)'this zives
= E CJOB ( “Ao S \2\?> _~
the energy being . ITeE :
N ?.. ¢
Tt _ ok EERNNIT RN
T =1, ~9& ()4 I O 3 (bp 5 m{g)(

Where Ei EE Eit /%ggrilg the fluctuation energy after the
nonlinear process, The changes in the energy of the different

components ghall be expressed in terms of 8 .

The thermal encrgies of the plasma and the beam

particles can be obtained in the same way., They are given by

— T ¢ S22 %e .@5(”5”
= T c(\i\—igag“fgzgﬁ TWp
and '
C\;’"H'\ \ - .
= NG oMV
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From fg. (7.54) it is obvious that the energy lost
by thé‘stfeaming motion of. the beam increases because of the
thermal mofion. Also there is an increase in the thermal
energies of the plasma and the-beam, as 1s evident from Eogs.
(7.55) and (7.56). On the other hand Eq. (7.50) shows a
decreage in fluctuation energy Wifh thermal motion. Thus the
finite temperature of the particles result in an enhanced
transfer of energy from the gtreaming motion into the thermal
motion. The quagilinear theory predicts an equal sharing of
the energy lost by the resonant particles among the non--
resonant particles and the fluctuations (Davidson 1972).
Equations (7.50), (7.54), (7.55) and (7.56) suggest a
modification of this result; the particles pick up more

energy than the weves during the nonlinear interaction.

VIT,7 Discuggion and Conclusions

The nonlinear interaction of the growing waves with
the nontrapped particles is the cause of the nonlinear
processes studied here, The saturation of the beam-plasma
imétability due to trapping as discussed by Drummond et al,
(1970) requires a single wave with large enough amplitudé to

trap the beam particles. Here we have discussed the diffusive

interaction between the waves and particles. This could be
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considered as an alternative“way of saturating the beam—
plasma ingtability.

The basis for using the diffusion type interaction

rather than the trapplng Process are :

i) The waves we discuss here are the ones that prow
from the thermal nolse énd thus have a very small;amplitud@
to begin with. T the experiments shere the saturation

due tb particle trapping are observed (Mizum@vet al. (1972)
and Carr et al. (1973) ), the wave is a large amplituds
1aunched single wave. Alsd in these experiments the @article$
are found to be detrapped when other waves appear'in.the
system. According to theoretical model of O'leil et al.
(1972),‘Similar detrapping of particles would take place due

+to mnonlocal interactions.

ii) When the waves gTow Up rrom the thermal noise, a

numb ex Qf waves around the, Qpp = ku, mode grow and thus
generate a gpectrum of waves,., The presence of a S}eotrﬁm
ka Waves, though narrow, 18 & favourable oonditiom.for the
diffusion process Lo ocCUL. loreover diffusion can také

place ab not--go-large amplitude of the wave bectuse unlike
the trapping process it does mnot mneed a large critical

amplitude.
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iii) : The random thermwlfmdtidn'of3the particles also
contribute to the Lochd nglty9 whichiiStthe essential
ruqu11cmcnﬁ for diffusion. The phcnﬂmpnon.ln.tnlo cagse is
analogous to the linear Landau damplng, which is abuenb

for particle distributions repres ntcd by delta functions.

Biskamp and Weltcr (1972) had ghown that the diffuw
sion model be valid if k DN( WO/k)_ > (AJB’ AW /) being

the spread in the phLbG VGlOClLy at saturation, In our

case, from Eq. (7.51), we find that

ka(R)=F W™~ < R

In beam-plasma case, 1t was pointed out by Drummond et al.
(1970) that (Ak/k)r~ € ond hence it is a reasonable model
to be used.

We have considered the be 1 particles to be non-
trapped, As discussed by Gupta (1972), the required
condition for nontrapping 18

(Ro- MQ>&&® >
whlch can be rewritten as r‘[P > (kZD) / And for non-

resonant particles Bq. (V 28), gives - |
“ 5 /. . ~6 /.
@pn (£REN L2 & (a2
; m> RONIC

Since at saturation QQBovyzy the condition for nontrapping
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The bcumupLasma ing Lmblllty dlscussud here re sul,sﬁ
in the turbulence of the e ctron‘plnsma or Langmu1r wavc&.

Ag shown in Chapter IV, the electric potentlal QP of these

turbulent waves are governed by the nornlinear Schrodinger

va111 nglw acp W B (Q W-(B 30 (p} q) Q

, at:’% Qﬂ‘\kﬂh W§?. alqﬂl
When (0 OJ/ok )(obl/alCP\“) < 0, the system is modulttlondlly
.umstable. from Bgs. (7.24) and (7. io) it is seen that the
‘Langmuir turbulence is modulationally stable; thisvigvin

agreement with the resultes of Asano and Taniuti (1969).

The thermal motions of the particles, which are
inevitahrly present in a plasma have an appreciable effect
on the evolution of the system, The prescnce of thé thermal
motion results in the IOduUblOﬂ.Ol the saturation level of
the electric field. Thls is because of the fact that the
diffusion in velocity space, which brings about the;saturatw’
ion, is strengthened by the randomness in the particle motion.
The streaming motion of the beam loges wore enﬁrgy in.the
presence of thermal motion. This energy is shared 1 by tnugr
ffluotuatibns and the particles (thermal motion), the latter
taking the bigger fraction due to the finite temperature. It
known thet the nonlinear saturation of the hean-plasma.
insgta allltj cesults in a heating of the plasnma electrons,

The particle thermal motions produce 2 more bleblﬁnt heating
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by slowing down the beam further and by bringing the level
of saturation down, As is seen in the various resultyg, the
thermal velocity of the plasma particles have a more promi-

nent effeot than that of the beam particles,

Initially the system under consideration consigts of
a plasma, a beam traversing through it, and badkground
fluctuations, The beam drives the resonant mode unstable
and this instability is stabilized by the feedback effect
of the growing waves on the particles, The end pfoduot of
the analysis is a plasma with a larger spread in the thermal
velocitigS, a becam with a reduced streaming velocity but
larger thermal velocity traversing through the system, aﬁd a
1arge~amplitude~stablé wave (the saturated wave), The final
configuration is stable as far as the saturated wave is
concerned but not necessarily against other modes. In fact
the resonant mode (()Qpc:.kus) may now be expected to grow.
The nonlinear behaviour of this later time ingtability may
be studied approximately by carrying out the oomplete_analysis
all over again.. However, there are other factors like ﬁhé\
presence of a large amplitude wave, broader sp@otrum of waves,

which should also be taken into consideration.
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