
Some Studies of Growing Networks with Non-Linear
Dynamical Elements

A THESIS

submitted for the Award of Ph.D degree of

Mohan Lal Sukhadia University

in the

Faculty of Science

BY

Sarika Jalan

Under the Supervision of

Prof. R. E. Amritkar

THEORETICAL PHYSICS & COMPLEX SYSTEM DIVISION

PHYSICAL RESEARCH LABORATORY, AHMEDABAD.

MOHANLAL SUKHADIA UNIVERSITY, UDAIPUR

Year of submission: 2004



CERTIFICATE

This is to certify that the thesis entitled “Some Studies of Growing Networks with Non-

Linear Dynamical Elements” submitted for the award of the degree of Doctor of Philos-

ophy of Mohanlal Sukhadia University in the faculty of Science is a record of bonafide

investigations carried out by Miss. Sarika Jalan under my supervision and guidance.

This is an original piece of work on which no one has been awarded a degree in this

University or in any other University.

The literary presentation of the thesis is satisfactory and it is in a form suitable for

publication. The work presented in the thesis has been done after registration in this Uni-

versity.

Further, the candidate has put in attendance of more than 200 days in my institution as

required under rule 7(b) and thus completed the residential requirement.

Prof. R. E. Amritkar

(SUPERVISOR)

ii



to my mother ...

iii



Contents

Acknowledgement vi

Abstract viii

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Key Ingredients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Networks : They are Everywhere . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 Synchronization of Dynamical Elements . . . . . . . . . . . . . . . . . . . . . . 7

1.2.3 Nonlinearity and Chaos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Chaotic Dynamics on Networks: Models to Study Different Phenomena . . . . . . . 13

1.3.1 Coupled Maps Revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3.2 Coupled Maps on Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4 Organization of the THESIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Synchronized Clusters on Coupled Map Networks (CMNs) 17

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Model of a Coupled Map Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Phase Synchronization and Synchronized Clusters . . . . . . . . . . . . . . . . . . . . 18

2.4 General Properties of Synchronized Dynamics . . . . . . . . . . . . . . . . . . . . . . 19

2.4.1 Behavior of Individual Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.2 Mechanism of Cluster Formation . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.3 Self-organized and Driven Cluster Formation in a Tree Network . . . . . . . . 20

2.4.4 States of Synchronized Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 Quantitative Measures for Self-organized and Driven Behaviour . . . . . . . . . . . . 21

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Numerical Analysis And Results 23

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Coupled Maps on Scale-free Network: A Case Study . . . . . . . . . . . . . . . . . . 24

iv



3.2.1 Linear Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.2 Nonlinear Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.3 Dependence on the Number of Connections . . . . . . . . . . . . . . . . . . . 33

3.3 Coupled Maps on Other Different Networks . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.1 One-Dimensional Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.2 Small World Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.3 Cayely Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.4 Higher Dimensional Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.5 Random Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Examples of Self-organized and Driven Behavior . . . . . . . . . . . . . . . . . . . . . 46

3.5 Circle Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 Temporal Dynamics and Synchronization in CMNs: Stability Analysis 50

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1.1 Linear Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1.2 Global Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Stability Analysis for Self-organized Synchronization . . . . . . . . . . . . . . . . . . 52

4.2.1 Coupled Network with
�����

. . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2.2 Globally Coupled Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.3 Lyapunov Function Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3 Stability Analysis for Driven Synchronization . . . . . . . . . . . . . . . . . . . . . . . 61

4.3.1 Coupled Networks with
�����

. . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3.2 Complete Bipartite Coupled Networks . . . . . . . . . . . . . . . . . . . . . . 70

4.3.3 Lyapunov Function Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4 Self-organized and Driven Synchronization . . . . . . . . . . . . . . . . . . . . . . . . 75

4.5 Coupled Maps on Multipartite Networks . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.5.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.5.2 Linear Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.6 Floating nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5 Conclusions and Future Outlook 82

Appendix 84

References 85

List of Publications 98

v



Acknowledgement

It gives me great pleasure to express my gratitude to Prof. R. E. Amritkar for his excellent guidance

and valuable suggestions. I have benefited immensely from his sound intuition and deep insight in

the subject. I will always be indebted to him for what I have learned from him in these five years.

I acknowledge Prof. C. K. Hu for his useful comments. My sincere thanks to Profs. V. B. She-

orey, J. Parikh, Dilip Angom for their suggestions and encouragements at various stages. Special

thanks to Dr. Arul, for exploring the excitement of the subject to me, in my first year of joining

CSCPN (now ThPhCS) division. My sincere thanks are due to academic committee for critically

reviewing my work at various stages.

I thank all the staff members of PRL for their kind corporation at all stages. I specially acknowl-

edge computer center staff, particularly Dholakia ji, for providing excellent computers facilities and

library staff for maintaining excellent on-line journal facilities.

I take this opportunity to thank my class 10th Physics teacher Vanshraj Verma, who gave me

the first direction towards my carrier in science.

It is my pleasure to acknowledge all the NLD members ‘Sagar, Sankar, Jayendra, Murali, newly

joined Parimal,’ and other 7th floor seniors/ colleagues Sudhir, Rishi, Pattu, Sunish, Arun, Hyder-

abadi gang (Charan, Atre), for always making lab atmosphere very lively and supportive to me. I

thank to Sankar for his help during my programming and computational difficulties. My special

acknowledgment to Jayendra, both of us got immensely benefited from the discussions on the sub-

ject. I will always cherish our company of more than five+1/2 years, form the first day to the last

day at PRL.

I was fortunate to get very supportive atmosphere of PRL hostel form the beginning, I thank my

all seniors for showering their affections on me, just to name a few Ratan, Kunu, Vinai, Alok, Ann

and Soumen da. I also acknowledge here all my affectionate juniors. I acknowledge my hardworking

and simple batchmats Jayendra, Lokesh from Raipur, Tarak from Berdhaman, Sanjay from UK(C)

and Satraj from Malluland, I can not forget all the enjoyable and comfort moments shared with

vi



them starting from the very first day of joining PRL.

Without mentioning Volley, TT and occasionally Cricket, my acknowledgment remains incom-

plete. I specially acknowledge all the PRL’s TT players (champions !) with whom I enjoyed playing

TT. These sports have always given me new energy whenever I felt tired.

Finally I acknowledge my parents and my Bhaiya for their unconditional love and constant

support. The journey to this thesis would have not been possible without my mother’s supports and

constant interests in my studies. I thank to my all Chachee’s and my dear Bhabhi for their love and

care for me. I owe a lot to my little niece, for giving me a great happiness in the mid of this thesis

writing.

Sarika Jalan

vii



Abstract

We study the synchronization of the coupled dynamics on a variety of networks in-

cluding one-d, 2-d and higher dimensional networks, small world networks, scale-free

networks, random networks, tree networks, globally coupled networks, bipartite net-

works and multipartite networks. The dynamics is governed by a local nonlinear map

for each node of the network and interaction connecting nodes via the links of the

network.

Chapter 2 of my thesis introduces our model for the coupled dynamics on the net-

works. We define different states of coupled dynamics by considering the number and

type of synchronized clusters, and also formulate a quantitative measure for synchro-

nization.

In chapter 3 we study the phase synchronization of the coupled maps on the various

networks. We define phase synchronization as follows; two nodes � and 	 are phase

synchronized if all the local minima (maxima) in the time series of the dynamical vari-

able at node � , match with that of the node 	 . In a phase synchronized cluster, all the

pairs of the nodes are phase synchronized. We find that, for small coupling strengths

nodes show turbulent behaviour but form phase synchronized clusters as coupling

strength increases. We identify two different ways of cluster formation, namely self-

organized synchronization which leads to clusters with dominant intra-cluster couplings

and driven synchronization which leads to clusters with dominant inter-cluster cou-

plings. We also observe ideal clusters of both self-organized and driven type. In the

novel driven synchronization the nodes of one cluster are driven by those of others.

Most of the time when synchronized clusters are formed, they are accompanied with

the isolated nodes. Some of these nodes are of the floating types which show intermit-

tent behaviour between getting attached to some clusters and evolving independently.

The residence time of a floating node in a synchronized cluster shows an exponential

distribution. Numerical calculations of the largest Lyapunov exponent 
����� for cou-

pled dynamics on the various networks show that mostly whenever ideal clusters are

formed �  is negative. But for some cases, ideal clusters are formed with the positive
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�� .
For the local dynamics governed by the logistic map we study phase diagram in the

plane of the coupling constant ( � ) and the logistic map parameter ( � ). For large cou-

pling strengths and nonlinear coupling we find that the scale free networks and the

Cayely tree networks lead to the better cluster formation than the other types of net-

works with the same average connectivity. For most of the our studies carried in the

chapter 3, we use number of connections of the order of the number of nodes, which

allows us to distinguish between the two mechanisms of cluster formation. As the

number of connections increases both the number of nodes forming clusters and the

size of the clusters in general increase.

Chapter 4 presents the analytical results and understandings for self-organized and

driven synchronization. For the analytical studies in this chapter, we take exact syn-

chronization. We use linear stability analysis and Lyapunov function approach to de-

termine the stability conditions for various synchronized and periodic states in the

coupled dynamics on small networks, viz. two and three nodes, and their extension

to the larger networks. As an example of large networks, showing both self-organized

and driven synchronized clusters, we take complete bipartite networks. The phase

diagrams for the the networks studied in this chapter have features very similar to

the different kinds of random networks studied in the chapter 3. Lyapunov function

analysis gives the hint for the origin of the two mechanisms of synchronization.
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Chapter 1

Introduction

1.1 Motivation

Complex systems have underlying structures that are described by networks or graphs.

The study of such networks is emerging as one of the fastest growing subject in the physics

world [1, 2]. In the past few years we have witnessed considerable advances in this di-

rection, prompted by several parallel developments. First, the computerization of data

acquisition in all fields led to the emergence of large database on the topology of various

networks, second, the increased computing power allowed to investigate networks con-

taining millions of nodes and finally, instead of considering individual element of a system

there is an increasingly voiced need to understand the behaviour of the system as a whole

[3]. One significant discovery in the field of the complex networks is the observation that

a number of naturally occurring large and complex networks, from many diverse fields,

have some similar underlying features bringing them in universal classes of small-world

[5] and scale free [4] networks. Recently Barabási et. al and Strogatz et. al have provided

simple algorithms to generate these networks representing the natural systems. Since their

introduction, small world networks and scale free networks have received tremendous at-

tention [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17].

Several real networks (networks representing the natural systems) consist of dynamical

elements interacting with each other. The behaviour of an isolated dynamical system in the

long term limit could be described by stable fixed points, limit cycles or chaotic attractor,

but when many of such dynamical systems are coupled together, the details matter. Now

we address a question that, how an enormous network of interacting dynamical systems

will behave collectively, given their individual dynamics and coupling architecture. One of

1



Introduction 2

the most fascinating phenomena observed in the behaviour of complex dynamical systems

made up of many elements, is the spontaneous emergence of order and the phenomenon

of collective synchronization, where a large number of the system’s constituents form a

common dynamical pattern, despite the intrinsic differences in their individual dynamics

[18, 19, 21, 80]. This observation of patterns helps us in understanding the behaviour of the

system and provides the motivation for the present thesis work. To resemble the natural

situation, chaotic elements can be taken as evolving units at individual nodes which are

coupled via the links of the network.

There is extensive research on coupled maps/oscillators on one-d lattices and globally

coupled lattices [22, 23], but studies of coupled dynamics on the different random net-

works have just begin. Coupled maps on networks provide us a computationally simple

model which displays several phenomena of scientific and technological interest relevant

for such systems, such as synchronization, spatio-temporal intermittancy and chaos, and

periodic behaviour. Apart from it coupled maps on different networks deal with many

other issues, namely whether dynamical systems coupled in the small-world and/or scale

free networks would display enhanced signal propagation speed, synchronizability and

computational power, as compared with lattices of the same size; how topology of a net-

work affects the dynamics of nodes forming the network, how dynamical behaviour of a

single node which is a part of a large network, gets affected by the dynamics of other nodes

in the networks, both that are directly connected and that are not directly connected.

In my thesis I study the synchronization and cluster formation properties of coupled

maps connected via the links of the various networks. Local dynamics being in the chaotic

regime, for small coupling strengths nodes show turbulent behaviour, but form synchro-

nized clusters as coupling strength increases. The most important finding of our investi-

gations is that, starting from random initial conditions the asymptotic behaviours of cou-

pled map networks (CMNs) reveal two different ways of clusters formation. First there

are clusters with dominant intra-cluster couplings which are referred as self-organized syn-

chronization and secondly there are clusters with dominant inter-cluster coupling which

are referred as driven synchronization. In order to understand the relation between syn-

chronized dynamics and topology of the underlying network, for most of the our studies

we take networks with small average connectivity.
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Figure 1.1: Figure shows a random networks (graph). Solid dots denote nodes (vertices) and solid lines
denote the connection (edges) between the nodes

1.2 Key Ingredients

In this section I introduce and explain important key concepts used in my thesis, namely

complex networks, synchronization and chaos.

1.2.1 Networks : They are Everywhere

Complex networks describe a wide range of systems, starting from biology to social sci-

ences [1]. Some natural, scientific and technological systems where network properties are

important, are given in the Table 1.1.

Mathematically networks are described in terms of graphs [24]. A graph (or network)

is a pair of sets, ��������� where � is a nonempty set of � vertices (nodes) ��� �!�#"$� % % %&�!�('
and � is a set of edges (couplings) that connect two elements of � . Following we introduce

some basic tools of characterization of networks.

Nodes degree and degree distribution : The number of edges incident at the nodes is called

the degree. Degree distribution �*),+.- , is the probability that a randomly selected node has

exactly + edges.

Connected graphs : A Graph � is said to be connected if there is at least one path (edges

connecting a pair) between every pair of vertices in � . Otherwise, � is disconnected. Size

of a graph is the number of vertices in the graph.

Node-Node distance : The distance between two nodes is defined as the number of edges

between two nodes. For lattices average shortest distance, / is of the order of number of
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Table 1.1: Examples of some networks representing natural systems

EXAMPLES NODES EDGES REF.

1 crystal atoms bonds [25]
2 electrical circuit points resistances, capacitors [26]
3 polymer atoms bonds [27]
4 percolation sites bonds [28]
5 neural network neurons axons [29]
6 cellular network chemicals reactions [30]
7 protein folding conformations differ by one fold [31]
8 food webs species predator-pray [32]
9 power grid generators / high voltage links [33]

transformers
10 citation network papers citations [34]
11 co-authorship net. authors co-authors [35]
12 world-wide-web web pages hyperlinks [36]
13 internet network computers physical/wireless links [12]
14 social network people social relationship [37]
15 election network candidates votes [38]
16 actor network actors acted in same movie [39]
17 disease network people contact with infected person [40]
18 phone call network phone no. completed calls [41]
19 linguistic network words synonyms [42]
20 railway network stations rail lines [43]
21 airport network airports flights [44]

nodes in the graph, /102� . The diameter of a graph is the maximal distance between any

pair of its nodes.

Clustering coefficient : Complex systems exhibit clustering, and tendency of a network

to cluster is quantified by the clustering coefficients. Consider any node 3 with +54 edges

connecting 3 to +64 other nodes. If any of these +74 nodes are connected to each other then,

triangles are formed. If � 4 is the number of edges between the + 4 nodes, then the ratio

of number of actual triangles to the maximum possible number is given as the clustering

coefficient 894 and average clustering coefficient 8:� �'<; '4>=?� 8@4 .
Now I give introductions of some different types of graph/networks, we have used for

our studies.
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Random graphs/networks

The theory of random graphs was introduced by Erdös and Rényi (ER) in 1959. They de-

fine a random graph as � labeled nodes connected by + edges, which are chosen randomly

from the �<)!�BADC�-FEGC possible edges [45]. Generation of a random network according to

ER model is as follows.

Generation : Starting with � nodes, connect every pair of nodes with probability � .

It creates a graph with approximately +H�I�#�J)!�KAML&-FEGC edges/connections distributed

randomly.

In a random graph, with connection probability � , the degree +N4 of a node 3 follows a

binomial distribution, �O),+P4Q�R+.-1�:8TS'�UV� �#SN)WLXAY�(- 'XUV�FU S
which for large � can be replaced by a Poisson distribution. Clustering coefficient of a ran-

dom graph is, 89ZF[�\G]^�`_ Sba' . For all random graphs with � nodes and connection probabil-

ity � , the range of values for which diameters vary is concentrated around, c>de)!�f-FEgchdQ)i�#��- .
It shows that random networks tend to have small diameters, provided � is not too small.

Average (node-node) distances of networks representing the natural systems are close to

the average distance of random graph with the same size.

Small World Networks

Networks representing natural systems (real networks) have small diameter like ran-

dom networks but they have large clustering coefficients, appearing to be independent

of network size [5, 11, 12]. The latter property is characteristic of lattice, whose clus-

tering coefficient is size independent and depends only on coordination number. For a

d-dimensional hypercubic lattice the average node-node distance scales as � �kj ] , which

increases much faster with � than the logarithmic increase observed for random graphs

and real graphs. In 1998 Watts and Strogatz (WS) proposed a model to generate the small

world networks [46] which have high clustering coefficients and small average node-node

distance [5]. Generation of a small world network according to WS model is following.

Generation : (1) Start with order : Start with a ring lattices with � nodes in which every

node is connected to its first + neighbours ( +.EGC on either side).

(2) Randomize : Randomly rewire each edge of the lattice with probability � such that

self-connections (connection of a node to itself) and duplicate connections (two connec-
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tions between a same pair of nodes) are excluded. By varying � one can go form an order

network (�l�nm ) to a random network (�Y��L ).
This model shows that for small � , average distance ( / ) scales linearly with the system

size, while for large � the scaling is logarithmic i.e average node-node distance grows asc>d�� . These networks have mostly local edges and long distance edges are fewer. These

long distance edges play an important role in reducing average shortest distance. In ad-

dition to a short average distance, small-world networks have a relatively high clustering

coefficient. The results obtained from simulated small world networks can not be directly

compared to most real networks because the rewiring probability � is not known. Note

that rewiring does not change the average degree, it only modifies the degree distribution.

Scale Free Networks

In real networks, nodes with small degrees are most frequent and the number of nodes

having high connections is few [29, 30, 32, 34, 12, 37, 16]. These networks are scale free,

i.e. the probability that a node in the network is connected to + other nodes of the network

decays as a power law [15]. �O),+.-10R+ U5o (1.1)

where p is a constant. In 1999, A.-L. Barabási and Reka Albert (BA) gave the mechanism

responsible for the emergence of networks with power law degree distributions [4]. Their

approach to model the networks with power law degree distribution is different from the

approach to model random networks and small worlds networks. Model of scale free

networks put the emphasis on capturing the network evolution. The algorithm of the BA

model is following [14].

Generation : (1) Growth : Starting with a small number ( q�r ) of nodes, at every time

step, add a new node with q�)Wstq r - edges that link the new node to q different nodes

already present in the system.

(2) Preferential attachment : Probability that a new node is connected to node 3 depends

on the degree +64 of node 3 , such that u ),+P4v-1� +P4;xw + w (1.2)

After y time steps this procedure results in a network with �z�{yG|*q�r nodes and qly edges.



Introduction 7

One of the most important properties of the scale-free networks is that they display a

topological robustness against random node failure because a few hubs (highly connected

nodes) dominate their topology. But these scale-free networks are fragile to the removal of

the highly connected nodes or hubs. [13].

After introducing the topologies of various networks, the next step is to study net-

works having dynamical elements at the nodes, coupled on the networks. One important

property shown by the coupled dynamical systems is the synchronization and phenomena

of cluster formation, so in the next section we introduce synchronization in the dynamical

systems.

1.2.2 Synchronization of Dynamical Elements

Synchronization phenomenon [18, 19, 20] was discovered in 1665 by Christiaan Huygenes,

the famous Dutch mathematician, astronomer and physicists [47]. The pendulum clocks

mounted on a wall were the first example of spontaneous synchronization [48]. He ob-

served that as each pendulum swings, it transfers energy to the housing, some of which

will reach to the other pendulum [49].

Definition : Synchronization refers to a process wherein two (or many) systems adjust a

given property of their motion to a common behaviour due to a coupling or to a forcing

(periodical or noisy) [19, 20, 117]. Synchronization in literature is defined in various ways.

(1) Exact synchronization corresponds to the dynamical variables for different nodes

having identical values. } 4W)~y�-1� } w )~y�-�� for all time y��DmN�X3��v�*��� (1.3)

(2) The phase synchronization [19, 50, 51, 52, 53, 54] corresponds to the dynamical vari-

ables for different nodes having some definite relation between the phase. In coupled

oscillators, for the weak coupling strength only phases of the subsystems are locked, while

the amplitude can be highly uncorrelated (see example).

(3) For large coupling strength, there exists a regime of lag synchronization where the

state of two oscillators are nearly identical, but one system lags in time to the other. The

system states may remain almost identical but with a time lag � ,} 4W)~yQ|J�5-1� } 4W)~y�-�� for all time y��DmN�X3��v����� (1.4)
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where } )~y�- is the value of dynamical variable at time t.

Example. A Model to study Synchronization : Collective synchronization in terms

of a huge population of interacting limit-cycle oscillators was studied mathematically by

Winfree [55], �� 4V�{�?4�| �� '�w =?��� ) � w -���:��) � ��-�%^3���L�% % %�� (1.5)

where
� 4 denotes the phase of oscillator 3 and ��4 its natural frequency. Each oscillator �

exerts a phase-dependent influence � ) � w - on all the others; the corresponding response of

oscillator 3 depends on its phase
� 4 , through the sensitivity function ��) � 4,- . When the spread

of natural frequencies is large compared to the coupling, the system behaves incoherently.

As the spread decreases then at a certain threshold small cluster of oscillators suddenly

freezes into synchrony. Motivated by this phenomena Kuramoto introduced the famous

Kuramoto model [56], �� 4V�n�Q4.|��� '�w =?�.��� de) � w A � 4,-�%�3g��L�% % %�� (1.6)

Oscillators are desynchronized completely until the coupling strength � exceeds a critical

value ��� . After this coupling strength oscillators start getting phase synchronized. As a

result of phase synchronization frequencies �14�� �� 4 are locked, i.e.  V�g4VA¡ql� w ��m . These

coupled oscillator models are very well studied in the physics literature [23, 57, 58, 59, 60].

Although, the model was originally motivated by biological oscillators, it has appeared in

many diverse systems, such as the flavour evolution of neutrinos [61], arrays of Josephson

junctions [62], semiconductor lasers [63] etc.

Synchronization in the Natural Systems : There are several examples of synchroniza-

tion in the natural systems. In the biological sciences, for instance, one of the challenging

problems is to understand how a group/cluster of cells or functional units, each display-

ing complicated nonlinear dynamic phenomena, can interact with one another to produce

a coherent response on a higher organizational level. Desperate features of a face, each

analyzed by specific cerebral areas that receive visual input and respond specifically to

movement, angles, color, etc., associated with incidental aspects of background, despite

complex concurrent changes in the visual stimulus. Neurophysiology indicates that it may

be because of the brain’s use of a phenomenon termed synchronous oscillation to correlate
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spatially separated responses to a stimulus. Clusters of neurons exhibits synchronous os-

cillations of neural firing rates [64]. Other biological examples include networks of pace-

maker cells in the heart [65]; circadian pacemaker cells in the suprachiasmatic nucleus of

the brain (where the individual cellular frequencies are also measured), synchronization

and rhythmic processes in physiology [66]; metabolic synchrony in yeast cell suspensions

[67]; congregation of synchronously flashing fireflies [68]; and crickets that chirp in unison

[69]. Examples in physics and engineering start form array of lasers [70] and microwave

oscillators to superconducting Josephson junction [62]. The particles in superconducting

materials, and the orbits of moons around planets, show similar behaviour. Social exam-

ples include crowd behaviour, the behaviour of audience at a concert or ball game, where

everyone starts clapping in unison, even though no one person is the leader [71].

Collective synchronization in the natural systems can be understood by using some

simple mathematical models of coupled systems which we will discuss in section 1.3. The

dynamics of the individual system can be described by nonlinear element. In the next

section we briefly discuss chaos in nonlinear systems.

1.2.3 Nonlinearity and Chaos

Nonlinearity and chaos are widely spread in fields as different as physics, engineering, bi-

ology and even in economics [74, 75, 77, 78, 80, 81, 82, 83]. A nonlinear system is a system

whose time evolution equations are nonlinear. More elaborately, if ¢£) } �FyF- and ¤?) } �Fy�- are

linearly independent solutions of the time evolution equation of a nonlinear system; then¥ ¢£) } �Fy�-�|D¦�¤Q) } �FyF- would not be a solution for that system ( ¥ and ¦ are any numbers). The

basic idea of nonlinearity is following: if a parameter that describes a linear system, such as

the spring constant + in the evolution equation ¦ " } E$¦6y " ��A§),+.Ebq�- } for the position of the

particle subject to the force from an ideal spring, is changed, then the frequency and am-

plitude of the resulting oscillations will change. But the qualitative nature of the behaviour

(simple harmonic oscillation in this example) remains the same. In fact by appropriately

rescaling the length and time axes, we can make the behaviour for any value of + look just

like that for some other value of + . For nonlinear system, a small change in a parameter can

lead to sudden changes in both the qualitative and quantitative behaviour of the system.

For one value, the behaviour might be periodic, for another value only slightly different

from the first, the bahviour might be completely aperiodic. Chaos is the term used to de-
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scribe the apparently complex behaviour of a deterministic system [73]. There are many

possible definitions of chaos, ranging from measure theoretic notions of randomness in

ergodic theory to the topological approach [76, 78, 80].

Definition : We give here the definition adopted in famous book of Robert L. Devaney

[76]. Let ¨ be a set. ©«ªN¨«¬¨ is said to be chaotic on ¨ if,

1. © is Topological Transitive : ©fª�¨«¬®¨ is said to be topologically transitive if for any

pair of open sets ¯9��°���¨ , there exists +Y�Dm such that © S )k¯T-�±²°´³�¶µ .

2. Periodic points are dense in ° : A subset ¯ of ¨ is dense in ¨ if ·¯¶�M¨ .

3. © has sensitive dependence on initial conditions : ©nª¸¨n¬ ¨ has sensitive depen-

dence on initial conditions if there exists ¹§�Hm such that, for any } ��¨ and any neighbour-

hood ¹ of } , there exists ºY�»¹ and  ½¼Dm such that ¾ © \ ) } -�A½© \ )~º�- ¾N�²¹ .

The ’sensitive dependence’ condition captures the idea that in chaotic systems minute

errors in the experiments can eventually lead to large scale divergences. As a function of

time, the ”separation” (suitable defined) between two nearby trajectories increases expo-

nentially, at least for short times. Among all the definitions of chaos, sensitive to initial

condition is the most important and most applicable for general characterization of chaos

in natural systems and it is thus widely understood as the central idea in chaos.

Measure : Lyapunov exponent gives the quantitative test of chaotic behaviour and degree

or measure of chaoticity. In the course of time, two orbits of a given system that had started

out close together will depart exponentially from each other (note that this divergence

cannot go on forever in a bounded space). There distance grows as ¿ o À , where p is called

the Lyapunov exponent. More elaborately, Lyapunov exponents measure the mean rate

of exponential separation of neighbouring trajectories, starting with two different initial

conditions Á r and Á r |DÂfÁ r . Lyapunov exponent for this system would be [77],p�� c �>ÃÀhÄÆÅÇXÈGÉ ÄÊr Ë Ly�Ì chd ¾ÍÂfÁeÎ.)~y�- ¾¾ÍÂfÁ Î )!m6- ¾ (1.7)

Lyapunov exponents of a � dimensional map,Á ÀhÏ?� �nÐÆ)~Á(ÑÒ-
where Á and Ð are N-dimensional vectors, will be a set of � characteristic exponents cor-

responding to the � eigenvalues of the associated tangent map. Lyapunov exponents for
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this � dimensional system can be calculated as following. Evolution of tangent vectorÂfÁ À ��ÓÍÔ } �À ��Ô } "À % % %Õ��Ô } 'ÀXÖØ× along a trajectory can be written as,Â�ÁVÀhÏ?�9�{Ù(ÀkÂfÁVÀ
where Ù1)~ÁVÀ�- is the Jacobian matrix at a time t, given by )k¨¸)~ÁgÀ�-F-k4 w �R¹ } 4ÀhÏ?� EG¹ } w À . EigenvaluesÚ 4��F3���LG� % % %�� , of the matrix, )~ÙQ-kÀ?��)!Ù1)~ÁVÀk-kÙ1)~ÁVÀ!UV�Ò-#% % %�Ù1)~Á���-F-
, gives the Lyapunov exponents as,p.4V�Ûc �>ÃÜ ÄÊÅ Ly c>dÆ¾ Ú 4�)!�5- ¾i��3g��LG� % % %&��� (1.8)

For numerical calculation of Lyapunov exponents in the Chapter 3 and Chapter 4, we

follow Benettin et al. method [72, 77, 84].

Few examples where chaotic behaviour is observed, are fluids [85], plasma [86], solid

state devices [87], circuits [88], lasers [89], mechanical devices [90], biology (chaotic phe-

nomena and nonlinear dynamics in biology are dealt in [48]), chemistry [91], acoustics [92],

celestial mechanics [93], atmospheric physics [94]. More importantly, chaotic behaviour

shows qualitative and quantitative universal features, which are independent of the de-

tails of the particular system. Following I describe logistic map, a most studied and widely

used mathematical model exhibiting chaotic dynamics in biological population growth.

Logistic Map. A Mathematical Model of Biological Population Growth :

In 1976, Sir Robert May gave a very simple mathematical model to describe the growth

of biological population as following [95]: let } À denotes a population at time t, and } ÀhÏ?�
the same one year later, then assume } ÀhÏ?���IÝ } À , where Ý represents the rate of growth.

Population at time yV|RL is given by,} ÀhÏ?�Û� ©�) } Àv- (1.9)� Ý } À�)WLXA } Àk- (1.10)

It is known as the non-linear logistic difference equation or logistic map. Here population

is treated as a fraction of maximum population between zero and one. Zero represents

extinction, one the maximum population. Fixed point of the above map is given by}£Þß �R© ß ) }(Þß -
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The subscript Ý indicates that } Þ depends on the value of Ý . For one-d map. Following

Eq.( 1.8), criteria for the stability of a fixed point ( } Þ ) can be written as, } Þ is a stable fixed

point if ¾ ¦�©eE$¦ } ¾ Þáà L , it is a unstable fixed point if ¾ ¦k©eE$¦ } ¾ Þ �¶L .

Figure 1.2: Figure shows the bifurcation diagram for the logistic map. Trajectories of Logistic map’s variable,â , is plotted as the function of the parameter � . For ��ã �
, trajectories lie on stable fixed point.

The sequence of } values generated by the iteration Eq. (1.10) is called trajectory or

orbit. Fig. 1.2 shows the bifurcation diagram for logistic map [80, 79]. For Ý à L , } �Im
is the stable attractor, i.e. all trajectories approach this value. For L à Ý à:ä , the attractor

consists of a single point } �åLæA�L&EbÝ , at Ýt� ä this fixed point become unstable and

period doubling bifurcation occurs. For Ý���L?|<ç è , trajectories settle into 4-cycle. Further

increase in Ý leads higher periods. Between region Ý:� ä %êéPèPë�%Ø%Ø% and Ý¶� ä %êèPì , there are

multiple chaotic bands. Within each band are periodic windows, with period-3 occurring

to the right (large Ý value) of period-5, which occurs right of period-7 and so on. As Ý
increases, a particular periodic window, which begins with period-n, disappears through

a sequence of period doublings. Then a set of   chaotic bands is formed. Finally, the chaotic

bands suddenly merge, the periodic orbits still exist, but they are unstable. Fig. 1.3 plots
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Figure 1.3: Figure shows average Lyapunov exponent of logistic map, as a function of logistic map parameter� .

the average Lyapunov exponent ( p ) as a function of logistic map parameter Ý . Average

Lyapunov exponent is positive for the logistic map in the chaotic region.

As we have already seen in the section 1.2.1 that the structural complexity of many

biological, social, technological systems are described by the networks having some par-

ticular probability distributions. Models of coupled nonlinear elements on these networks

might shed light on spatiotemporal dynamics of the natural systems where nonlinearity

and spatial complexity coexist.

1.3 Chaotic Dynamics on Networks: Models to Study Different Phe-

nomena

The spatiotemporal dynamics of the natural systems are often very complicated and dif-

ficult to handle both experimentally and theoretically. To develop some understanding

of spatiotemporal nonlinearities, simple models are used whose behaviours are relatively

easy to simulate on computers. However the model does not have any direct connections

with actual physical or biological systems, but general results given by these models give

the proper direction to our thinking as they show some universal features. For the descrip-
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tion of complex dynamics and chaos in extended systems of different nature, a number of

model classes may be used : two- and three-dimensional fluid flow, coupled-oscillator

models, cellular automata, transport models, reaction-diffusion systems and coupled map

models. Some times for qualitative understanding of the complex spatio-temporal dynam-

ics, it is preferable to deal not with a continuous medium, but with lattice models.

1.3.1 Coupled Maps Revisited

Coupled maps on lattices [96, 97] are one of the very important and efficient tool to study

many space and time varying processes of physical interest. Lattice system may be con-

structed, e.g. in electronics and optics, to realize devices with novel operational possi-

bilities. (One of the first works where the model of CML type was suggested had arisen

from analysis of electronic delay-feedback generator.) Coupled maps have been found to

be useful in several practical situations. These include fluid dynamics [98], nonstatistical

behavior in optical systems [99], Rayleigh-Benard convection [100], convection [101], stock

market [102], ecological systems [103], logic gates [104], solitons [105] and c-elegans [106].

Coupled map lattice - CML were introduced in the beginning of eighties with the pioneer-

ing works of K. Kaneko and others [107, 108, 109, 110, 111, 112, 113]. Kaneko studied a

one-dimensional coupled map system,} ÀhÏ?�b)~3�-@��)WL^A � -W©�) } À�)~3�-F-e|´�C ),©$À�)~3?ADL&-e|D©$ÀF)~3V|nL&-F- (1.11)

This expression tells us the that numerical value at location 3 at the time step )~y@|�L&- is

determined by the value at 3 at the y th time step and by the values at the neighbouring

sites 3QA<L and 3#|{L . The parameter � determines the strength of the coupling to the neigh-

bours. The function © might be any function like the logistic map function. The factor � EGC
is normalization factor which assures that the } values stay between 0 and 1. In general

we can use many different map functions and we might also allow for coupling among

more than just nearest neighbour. This simple coupled map model shows a rich variety

of novel phenomenon such as; clustering, hierarchical clusterings, partial order in rela-

tionship with spin glass, chaotic itinerancy, collective chaos and interesting synchronized

behavior. The initial work on CML, shows two phenomena [110], namely spatio-temporal

chaos and coherent or synchronized structures which opened the rigorous investigation

in this direction. Synchronization and cluster formation lead to rich spatio-temporal pat-
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terns when opposing tendencies compete; the nonlinear dynamics of the maps which in

the chaotic regime tends to separate the orbits of different elements, and the couplings that

tend to synchronize them [107]. There are several numerical as well as analytical studies

on coupled maps on lattices as well as globally coupled networks. Here I am only referring

few earlier works and few very recent works on coupled maps on lattices. These works

include very first work on analytical stability analysis by H. Fujisaka and T. Yamada [97].

It deals with the stability of synchronized motion in dynamical systems on nearest neigh-

bour coupled networks and globally coupled networks. Formation of two synchronized

clusters or coherent behaviour and then loss of coherence in globally coupled maps are de-

scribed analytically as well as numerically at different places with different point of view

[115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126]. Chaotic coupled maps on 1-d

lattices show beautiful phase ordering of nodes [127, 128, 129, 130, 131, 132].

1.3.2 Coupled Maps on Networks

Studies of coupled maps have usually been done under the assumption of certain regu-

larity in the connection topology, where nodes are coupled to their nearest neighbours, or

to the all other nodes. Lately, more general networks with random, small-world, scale-

free, and hierarchical architectures have been emphasized as appropriate models of in-

teraction. Refs. [5, 59, 133, 134, 135, 136] shed some light on the collective behaviour

of coupled maps/oscillators with local and non-local connections. Random networks with

large number of connections also show synchronized behavior for large coupling strengths

[137, 138, 139]. There are also some studies on synchronization of coupled maps on other

networks viz. Cayley tree [140], small-world networks [5, 141, 142, 143] hierarchal organi-

zation [144] and, fractional networks [145]. Mostly these studies have considered networks

with large number of connections. For my thesis mostly we have considered the networks

with the connections of the order of the size of the network. This small number of connec-

tions allows us to study the mechanism of formation of synchronized clusters and the role

that different connections play in synchronizing the nodes.
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1.4 Organization of the THESIS

In chapter I, first we give the motivation and main objective for my thesis work, then

we introduce and discuss all the key concepts of my PhD thesis viz. complex networks,

synchronization, and coupled maps.

In chapter 2, we introduce our model for coupled map network (CMN). We define

phase synchronization which we use in our numerical studies. We also define general

properties of CMN’s which include characterization of different mechanisms of cluster

formation, different states of synchronized clusters based on number and behaviour of

nodes forming clusters and quantitative measures for the synchronization.

In chapter 3, we present the detailed numerical results of coupled maps on various

networks. First I discuss coupled maps on scale-free networks using phase diagram, var-

ious node-node plots and different quantitative measures, for both linear and nonlinear

couplings, and then other networks are briefly discussed. We also give some examples of

self-organized and driven synchronization in physical and social systems.

In chapter 4, we study the dynamics of coupled maps on some simple networks using

linear stability analysis and Lyapunov function approach. Mainly we study the asymptotic

stability of self-organized and driven synchronization in networks with small number of

nodes viz. 2 and 3 nodes networks and extension of these small networks to networks with

the large number of the nodes.

In chapter 5, I conclude my thesis with the future directions.



Chapter 2

Synchronized Clusters on Coupled Map

Networks (CMNs)

2.1 Introduction

In this chapter we introduce different properties of the synchronized clusters and coupled

dynamics on networks. For local dynamics being in the chaotic regime, for small coupling

strength there is no cluster formation, as coupling strength increases nodes form synchro-

nized clusters. Through different case studies mechanisms of the synchronized cluster for-

mation and behaviour of the coupled dynamics on various networks will be extensively

explored in the next chapters.

Whole chapter is organized as follows. In section 2.2, we introduce our model for

coupled dynamics. Section 2.3 define phase synchronization and synchronized clusters.

Section 2.4 discusses the general properties of synchronized dynamics on networks, which

include behaviour of a single node in coupled dynamics, mechanism of cluster formation

and different synchronized states. In section 2.5, we provide a qualitative measure for

different mechanism, these measures are based on the number of intra-cluster and inter-

cluster connections. Section 2.6 summarizes the chapter.

2.2 Model of a Coupled Map Network

Consider a network of � nodes and � � connections (or couplings) between the nodes.

Let each node of the network be assigned a dynamical variable } 4 �F3O�íLG��C�� % % %b��� . The

17
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evolution of the dynamical variables can be written as} 4ÀhÏ?� ��)WL^A � -W©�) } 4À -Q| �+P4 '�w Ï?� 8@4 w ¢£) } w À - (2.1)

where } 4À is the dynamical variable of the 3 -th node at the y -th time step and � is the coupling

constant. The topology of the network is introduced through the adjacency matrix 8 with

elements 894 w taking values L or m depending upon whether 3 and � are connected or not. 8
is a symmetric matrix with diagonal elements zero. +N4Q� ; 8@4 w is the degree of node 3 . The

factors )WL�A � - in the first term and + 4 in the second term are introduced for normalization.

The function ©�) } - defines the local nonlinear map and the function ¢£) } - defines the nature

of coupling between the nodes. We present the detailed results for logistic map©�) } -��{Ý } )WLXA } - (2.2)

governing the local dynamics. We have also considered sine maps for the local dynamics.

We discuss the results for the following two types of coupling functions.¢£) } -î� } (2.3a)¢£) } -î� ©�) } - (2.3b)

We refer to the first type of coupling function as linear coupling later as nonlinear coupling.

2.3 Phase Synchronization and Synchronized Clusters

For our numerical investigations (in the chapter 3), mainly we consider networks with the

connections of the order of � . With this small number of connections, local dynamics (i.e.

function ©�) } - ) of the nodes being in the chaotic zone, only few clusters with small number

of nodes show exact synchronization. However, clusters with larger number of nodes are

obtained when we study phase synchronization. For the further study of cluster formation

in coupled map networks we define the phase synchronization as follows [146].

Let ï$4 and ï w denote the number of times the dynamical variables } 4À and } w À , y1�{yWrb�FyWrQ|LG��C�� % % %$�Fy�rð|{ñ2A:L , for the nodes 3 and � show local minima during the time interval ñ
starting from some time y�r . Let ï$4 w denote the number of times these local minima match

with each other. We define the phase distance, ¦N4 w , between the nodes 3 and � by the
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following relation, ¦ 4 w ��L�A ï$4 wÃóò$ô ),ï$4W��ï w - % (2.4)

Clearly, ¦64 w �t¦ w 4 . Also, ¦64 w ��m when all minima of variables } 4 and } w match with each

other and ¦64 w �BL when none of the minima match. In the Appendix, we show that the

above definition of phase distance satisfies metric properties. We say that nodes 3 and � are

phase synchronized if ¦74 w �nm , and a cluster of nodes is (phase) synchronized if all pairs of

nodes belonging to that cluster are (phase) synchronized.

2.4 General Properties of Synchronized Dynamics

We consider some general properties of synchronized dynamics. They are valid for any

coupled discrete and continuous dynamical systems. Also, these properties are applicable

for exact as well as phase synchronization and are independent of the type of network.

2.4.1 Behavior of Individual Nodes

As the network evolves, it splits into several synchronized clusters. Depending on their

asymptotic dynamical behaviour the nodes of the network can be divided into three types.

(a) Cluster nodes: A node of this type synchronizes with other nodes and forms a syn-

chronized cluster. Once this node enters a synchronized cluster it remains in that cluster

afterwards.

(b) Isolated nodes: A node of this type does not synchronize with any other node and re-

mains isolated for all time.

(c) Floating Nodes: A node of this type keeps on switching intermittently between an inde-

pendent evolution and a synchronized evolution attached to some cluster.

Of particular interest are the floating nodes and we will discuss some of their properties

in the next two chapters.

2.4.2 Mechanism of Cluster Formation

The study of the relation between the synchronized clusters and the couplings between the

nodes represented by the adjacency matrix 8 shows two different mechanisms of cluster

formation.
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self-organized clustering driven clustering

(a) (b)

Figure 2.1: Figure represents (a) self-organized clustering and (b) driven clustering. Two big circles in each
figure represent two synchronized clusters in the network, (a) representing ideal self-organized clustering,
where all the nodes in a circle are connected with the other nodes within the same circle and (b) representing
ideal driven clustering, where all the nodes in a circle are connected with the nodes of the other circle and there
is no connection within the nodes of the same circle. Note in the ideal self-organized clustering (Fig. (a)), there
is one connection which is of inter-cluster type. This connection is necessary for a connected graph/network.

(i) Self-organized clusters: The nodes of a cluster can be synchronized because of intra-

cluster couplings (see e.g. Fig. 2.1 (a)). We refer to this as the self-organized synchroniza-

tion and the corresponding synchronized clusters as self-organized clusters.

(ii) Driven clusters: The nodes of a cluster can be synchronized because of inter-cluster

couplings (see e.g. Fig. 2.1 (b)). Here the nodes of one cluster are driven by those of the

others. We refer to this as the driven synchronization and the corresponding clusters as

driven clusters.

In our numerical studies we have been able to identify ideal clusters of both the types,as

well as clusters of the mixed type where both ways of synchronization contribute to cluster

formation. We will discuss several examples to illustrate both types of clusters.

2.4.3 Self-organized and Driven Cluster Formation in a Tree Network

Geometrically the two mechanisms of cluster formation can be easily understood by con-

sidering a tree type network. A tree can be broken into different clusters in different ways.

(a) A tree can be broken into two or more disjoint clusters with only intra-cluster couplings

by breaking one or more connections. It leads to self-organized clusters. This splitting is

not unique and there could be several ways to organize nodes to form self-organized clus-

ters. (b) A tree can also be divided into two clusters by putting connected nodes into

different clusters. This division is unique and leads to two clusters with only inter-cluster

couplings, i.e. driven clusters.
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(c) Several other ways of splitting a tree are possible. E.g. it is easy to see that a tree can be

broken into three clusters of the driven type.

2.4.4 States of Synchronized Dynamics

Normally, the states of coupled dynamical systems are classified on the basis of the num-

ber of clusters as in Ref. [147]. Our finding of two mechanisms of cluster formation allow

us to redefine this classification.

(a) Turbulent state (I-T): All nodes behave chaotically with no cluster formation.

(b) Partially ordered state (III): Nodes form a few clusters with some isolated nodes not

attached to any cluster. We can further subdivide the clusters of the partially ordered state

into subcategories depending on the type of clusters i.e. self-organized (S), driven (D) or

mixed type (M).

(c) Ordered state (IV): Nodes form two or more clusters with no isolated nodes. The or-

dered state can be further divided into 3 substates based on the nature of dynamics of the

synchronized clusters as chaotic ordered state (C), quasi-periodic ordered state (Q), and

periodic ordered state (P). Also, as for partially ordered state we can have subcategories as

self-organized (S), driven (D) or mixed type (M).

(d) Coherent state (V): Nodes form a single synchronized cluster. The dynamical behavior

is usually periodic (P) or of a fixed point (F).

(e) Variable state (II): Nodes form different states, partially ordered or ordered state de-

pending on the initial conditions.

For local dynamics in the chaotic range, initially for small coupling strength all nodes

behave in turbulent manner with no cluster formation at all. As coupling strength in-

creases, after a critical coupling strength value coupled dynamics starts forming clusters.

2.5 Quantitative Measures for Self-organized and Driven Behaviour

To get a clear picture of self-organized and driven behaviour we define two quantities©$õÍö�÷~ø~ù and ©$õÍö�÷�úûø as measures for the intra-cluster couplings and the inter-cluster couplings
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as follows: © õÍö�÷�ø!ù � �ÆõÍö�÷�ø!ù� � (2.5a)© õÍö�÷�úûø � � õÍö�÷�úûø� � (2.5b)

where � õÍö�÷~ø~ù and � õÍö�÷~úûø are the numbers of intra- and inter-cluster couplings respectively.

In � õÍö�÷�úûø , couplings between two isolated nodes are not included. Clearly for ideal driven

clusters ©GõÍö�÷�ø!ù��Rm and ©GõÍö�÷�úvø���L and for ideal self-organized clusters reverse is true.

2.6 Summary

In this chapter I introduce the model for coupled dynamics and define the qualitative and

quantitative characterization of synchronized clusters. We characterize different states of

clusters, first based on the number of clusters and nature of coupled dynamics and second

based on the number of inter- and intra-cluster connections. By considering the number of

inter- and intra-cluster couplings we can identify phase synchronized clusters with dom-

inant self-organized behavior (S), dominant driven behavior (D) and mixed behavior (M)

where both mechanisms contribute. Final attractor may consist of coherent state, ordered

state or turbulent state.
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Numerical Analysis And Results

3.1 Introduction

In this chapter we present the detailed numerical analysis for the dynamics of the coupled

maps on the various networks. Mainly we study the phase synchronization and clus-

ter formation properties of the coupled dynamics. We explore the temporal behaviour of

individual nodes, and study the role of different connections in the formation of the syn-

chronized clusters. For most of the our studies we have taken networks with number of

connections of the order of � because a large number of natural systems fall under this

category of small connections. More importantly, this small number of connections allows

us to study the mechanism of the formation of synchronized clusters and the role that

different connections play in synchronizing different nodes.

Whole chapter is organized as follows. In section 3.2, we present the detailed numer-

ical results for phase synchronization in coupled dynamics on scale-free networks. We

present the results for both linear and nonlinear coupling functions. Section 3.3 consists

brief descriptions of coupled dynamics on other networks viz., 1-d nearest neighbour cou-

pled network, small world network, higher dimensional (2-d and 3-d) nearest neighbour

coupled network, tree networks and random networks. In these sections, coupled map

networks are studied with the help of phase diagrams (for local dynamics governed by

logistic map), Lyapunov exponents results and different quantitative measurements, all

describing the nature of dynamics, the mechanisms of synchronized cluster formation and

the behaviour of individual dynamical elements. In section 3.4, We discuss some examples

of self-organized and driven synchronization in various physical and social systems. Sec-

23
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tion 3.5 considers coupled dynamics with circle map as a local function. In section 3.6, We

summarize the whole chapter and state some important results.

3.2 Coupled Maps on Scale-free Network: A Case Study

The evolution of the dynamical variables can be written as,} 4ÀhÏ?� ��)WL^A � -W©�) } 4À -Q|î�+P4 '�w Ï?� 8@4 w ¢£) } w À - (3.1)

where all the terms have their usual meaning (see Eq. (1) of the chapter 2). The scale free

network of � nodes is generated by using the model of Barabasi et.al. [14], given in the

first chapter (see section 1.2.1). For the type of probability law u ),+.- that we have used,p�� ä . Other forms for the probability u ),+.- are possible which give different values of p .

However, the results reported here do not depend on the exact form of u ),+.- except that it

should lead to a scale-free network. In the following sections we discuss the coupled maps

on the scale-free network with two types of coupling functions. Note that for the scale free

network we generated using above algorithm, number of connections, � � �²q�r�ü»)!�ýA½L&- ,
where q r is the number of nodes at the starting and � is the total number of nodes in the

network.

3.2.1 Linear Coupling

Phase diagram: For linear coupling ¢£) } -ð� } , Fig. 3.1 shows the phase diagram in the two

parameter space defined by Ý and � for the scale-free network with qþ�ÿq½r�� LG��� �éGmN�Wñ� L mPm . For Ý à ä , coupled dynamics lies on a stable coherent region (region V-

F). To understand the remaining phase diagram, consider the line Ý{� �
. Fig. 3.2 shows

the largest Lyapunov exponent p as a function of the coupling strength � for Ýn� �
. We

identify four different regions as � increases from 0 to 1; as shown by regions I to IV in

Figs. 3.1 and 3.2. For small values of � , we observe a turbulent behavior with all nodes

evolving chaotically and there is no phase synchronization (region I-T). There is a critical

value of coupling strength ��� beyond which synchronized clusters can be observed. This is

a general property of all coupled map networks and the exact value of �Õ� depends on the

type of network, the type of coupling function and the parameter Ý . As � increases beyond
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Figure 3.1: Phase diagram showing different regions in the two parameter space of � and � for scale free
network for �(
 â � � � â 
���� â � and ��
 â � � â . Different regions based on number of clusters (as character-
ized in the chapter 2) are I. Turbulent region, II. region with varying behaviour, III. Partially ordered region,
IV. Ordered region, V. Coherent region. The symbols T, S, M, D, P, Q and F respectively correspond to
turbulent behaviour, self-organized synchronization, mixed synchronization, driven synchronization, peri-
odic, quasiperiodic and fixed behaviour.Region boundaries are determined based on the asymptotic behaviour
using several initial conditions, number of clusters and isolated nodes, synchronization behaviour and also
the behaviour of the largest Lyapunov exponent. The dashed lines indicate uncertainties in determining the
boundaries. Calculations are for

���	��
���M� � ����� � 
�
 . The inset shows the phase diagram for the entire
range of parameter � i.e. from 0 to 4.

� � we get into a variable region (region II-S) which shows variety of phase synchronized

behavior, namely ordered chaotic, ordered quasiperiodic, ordered periodic and partially

ordered, depending on the initial conditions.

Next region (region III-M) shows partially ordered chaotic behavior. Here, the num-

ber of clusters as well as the number of nodes in the clusters depend on the initial con-

ditions and also they change with time. In this region there are several isolated nodes

not belonging to any cluster. Many of these nodes are of the floating type (for definition

of floating nodes, see Chapter 2, section 2.4.1). Last two regions (IV-DQ and IV-DP) are

ordered quasiperiodic and ordered periodic regions showing driven synchronization. In

these regions, the network always splits into two clusters. The two clusters are perfectly

anti-phase synchronized with each other, i.e. when the nodes belonging to one cluster
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Figure 3.2: Largest Lyapunov exponent, � , is plotted as a function of � for scale free network and �(
 â � �� â 
���� â � and �N
 â � � â . Different regions are labeled as in Fig. 3.1.

show minima those belonging to the other cluster show maxima.

Mechanism of cluster formation: To investigate the nature of phase synchronization in

different regions of the phase diagram first, we discuss the Fig. 3.3. This figure shows

node-node plots of the synchronized clusters. Any two nodes belonging to the same clus-

ter are denoted with the open circles and the couplings between the nodes ( 8 4 w � L ) are

denoted with the solid circles. Fig. 3.3(a), which is plotted in the region I-T, shows turbu-

lent behaviour. Fig. 3.3(b) shows an ideal self-organized synchronization, with two clus-

ters observed in the middle of region II-S. Exactly opposite behavior is observed for the

region IV-DQ, this driven synchronization is further stabilized in the region IV-DP with

two perfectly anti-phase synchronized driven clusters. Fig. 3.3(d) shows an ideal driven

synchronization obtained in the middle of region IV-DP. The phenomena of driven syn-

chronization in this region is a very robust one in the sense that it is obtained for almost

all initial conditions, the transient time is very small, the nodes belonging to the two clus-

ters are uniquely determined and we get a stable solution. In region III-M, we get clusters
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Figure 3.3: The figure shows several examples illustrating the self-organized and driven phase synchroniza-
tion. The examples are chosen to demonstrate two different ways of obtaining synchronized clusters and the
variety of clusters that are formed. All the figures show node verses node diagram for

���½���g����

. After an

initial transient (about 2000 iterates) phase synchronized clusters are studied for
��� � 
�
 . The logistic map

parameter � ���
and coupling function �N
 â � � â . The solid circles show that the two corresponding nodes

are coupled and the open circles show that the corresponding nodes are phase synchronized. In each case the
node numbers are reorganized so that nodes belonging to the same cluster are numbered consecutively and
the clusters get displayed in decreasing sizes. (a) Figure shows turbulent phase for � ��
� � 
 . (b) An ideal
self-organized phase synchronization for � �	
� � � . (c) Mixed behavior for � ��
� �b� . (d) A ideal driven phase
synchronization for � �	
� ��� . The scale free networks were generated with

���@� � and
�2� � .
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Figure 3.4: The fraction of intra-cluster and inter-cluster couplings, �� "!$#&%(' (solid circles) and �� )!$#*',+ (open
circle) are shown as a function of the coupling strength � for the scale-free networks with �(
 â � �	� â 
��-� â �
and ��
 â � � â . The figure is obtained by averaging over 20 realizations of the network and 50 random initial
conditions for each realization.

of mixed type (Fig. 3.3(c)), here inter-cluster connections and intra-cluster connections are

almost equal in numbers.

Quantitative measures for self-organized and driven behaviour: Fig. 3.4 shows the plot of© õÍö�÷~ø~ù and © õÍö�÷~úûø as a function of the coupling strength � . The figure clearly shows that for

small coupling strength (region I-T), both © õÍö�÷~ø~ù and © õÍö�÷�úûø are zero indicating that there is

no cluster formation at all. As the coupling strength increases ( � greater than some critical

value ��� ) we get © õÍö�÷�ø!ù nearly one at � 0zmN%êC (region II-S). As coupling strength increases

further © õÍö�÷�ø!ù decreases and © õÍö�÷�úûø increases i.e. there is a crossover from self-organized to

driven behavior (regions III-M). As coupling strength enters into regions IV-DQ and IV-DP,

we find that © õÍö�÷�úûø is large and in region IV-DP we get © õÍö�÷~úûø almost one corresponding to an

ideal driven synchronized behaviour.

Behaviour of cluster nodes, isolated nodes and floating nodes: Figs. 3.5 (a) and (b) show plot

of time evolution of some typical nodes. Fig. 3.5(a) is for nodes in self-organized region
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Figure 3.5: Figures show time evolution of nodes belonging to different clusters. This figure is plotted for
scale-free network with 50 nodes coupled with �N
 â � � â . (a) A few nodes belonging to two phase synchro-
nized clusters are shown. Nodes denoted by circles belong to one cluster and nodes denoted by squares to
another cluster. Here � ��
� � � . (b) Time series of three nodes which are not phase synchronized with each
other are shown with three different symbols. Here, � ��
� ��� .
( � �¶mN%>LÕé ), where nodes belonging to the same cluster are marked with the same symbols.

It is clearly seen that nodes with the same symbols i.e. belonging to the same cluster are

phase synchronized and those belonging to different clusters are completely anti-phase

synchronized, i.e. when the nodes in one cluster are showing minima, the nodes in other

cluster are showing maxima. (This behaviour is observed for driven behaviour where two

clusters are formed, i.e. nodes belonging to different clusters are anti-phase synchronized

with each other.) Fig. 3.5(b) plots the time evolution of three nodes in the partially ordered

region ( � �nmN% ä é ). We see that these nodes are not phase synchronized with each other.

Now we explore different regions further to understand time evolution of individual

nodes attached to some specific cluster. Fig. 3.6 plots all the nodes belonging to a cluster

as a function of time, symbols indicate the time for which a given node belongs to a clus-

ter. Fig. 3.6(a) shows a set of nodes (crosses) belonging to a cluster in the mixed region

(region II S) for � �nmN%>LÕë and another set of nodes (open circle) belonging to another cluster

for the same � but obtained with different initial conditions. For this � value all the nodes

form self-organized clusters with no isolated nodes and nodes in the individual cluster are
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(a) (b)

Figure 3.6: Figure shows the time evolution of nodes in a cluster for scale-free network. (a) shows two
stationary clusters of self-organized type for � �.
� �0/ and �N
 â � � â . The two clusters are for the same �
value but for two different initial conditions. The nodes belonging to the two clusters are denoted by open
circles and crosses. Note that some nodes are common to both the clusters while some are different. This
illustrates the nonuniqueness of nodes belonging self-organized clusters depending on the initial conditions.
(b) shows a cluster with some permanent nodes and some floating nodes. Here � ��
� �

and �N
 â � � â . Node
number 12, 24, 38 and 50 are � �1
2� �

and ��
 â � � â . Node number 12, 24, 38 and 50 are of floating type.
They spend some time intermittently in a synchronized evolution with the given cluster and the remaining
time in either a synchronized evolution with other clusters or in an independent evolution as an isolated
node.

permanent members of that cluster. Comparing the members of two clusters which are

obtained from different initial conditions we see that there are some common nodes while

some are different. For both the initial conditions coupled dynamics from self-organized

clusters but organization of the nodes in the clusters are different. We have already de-

scribe in the chapter 2 (Section 2.4.3) that for the networks generated for q ��L , self-

organized splitting is not unique. While ideal driven synchronization observed in region

IV-DP, leads to a unique cluster formation and does not depend on the initial conditions.

Next we look at � � mN% � (region III-M) where we get several clusters with some iso-

lated nodes. In Fig. 3.6(b), nodes belonging to a cluster are plotted as a function of time.

We observe that there are some nodes which are attached to this cluster, intermittently

leave the cluster, evolve independently or get attached with some other cluster and after
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some time again come back to the same cluster. These nodes are floating nodes. For ex-

ample, node number 12 in Fig. (tseries-clus)(b), which forms phase synchronized cluster

with other nodes, in between leaves the cluster and evolve independently for some time.

Time it spends with the cluster is about 90%. On the other hand node number 24 evolves

independently for almost 90% of the time and evolves in phase synchronization with the

cluster for the rest of the time.

Figure 3.7: The figure plots the frequency of residence time �(
&36� of a floating node in a cluster as a function
of the residence time 3 . The data is for node no 12 in Fig. 3.6(b). A good straight line fit on log-linear plot
shows exponential dependence.

Let � denote the residence time of a floating node in a cluster (i.e. the continuous time

interval that the node is in a cluster). Fig. 3.7 plots the frequency of residence time ©�)!�5- of

a floating node as a function of the residence time � . A good straight line fit on log-linear

plot shows exponential dependence,©�)!�5-10�4 ô 5 )WAX�5E$� Z - (3.2)

where � Z is the typical residence time for a given node. We have also studied the distribu-

tion of the time intervals for which a floating node is not synchronized with a given cluster.

This also shows an exponential distribution.
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3.2.2 Nonlinear Coupling

Now I discuss results for the nonlinear coupling of the type ¢() } -¸�¶©�) } - . This is equivalent

to a diffusive type of coupling. Phase space diagram in the ÝÆA � plane is plotted in Fig. 3.8.

Again the phase diagram is divided into different regions I to VI, based on the criteria

given in the previous chapter. For Ý àIä %êé , we get coherent behaviour (regions V-P and

VI-F). To describe the remaining phase diagram first consider Ý{� �
line. Fig. 3.9 shows

the largest Lyapunov exponent as a function of the coupling strength � for Ý´� �
and

Figs. 3.10 are node-node plots showing different clusters and couplings (as in Figs. 3.3)

for different values belonging to the different regions. For small coupling strengths no

cluster is formed and we get the turbulent region (I-T). As the coupling strength increases

we get into the variable region (II-D). In this region we get partially ordered and ordered

chaotic state, depending on the initial conditions. In a small portion in the middle of

region II-D, all nodes form two ideal driven clusters (Fig. 3.10(a)). These two clusters

are perfectly anti-phase synchronized with each other. Interestingly the dynamics still

remains chaotic (Fig. 3.9). In region III-T, we get almost turbulent behaviour with very few

nodes forming synchronized clusters. Regions III-M and III-D are partially ordered chaotic

regions with few nodes forming clusters and several isolated or of floating type nodes.

Fig. 3.10(b) is plotted for � in region III-M and it shows clusters of different types. The

largest two clusters have approximately equal number of inter-cluster and intra-cluster

couplings (mixed type), the next two clusters have dominant intra-cluster couplings (self-

organized type) while the remaining three clusters have dominant inter-cluster couplings

(driven type). Fig. 3.10(c) shows clusters in the region III-D.

Fig. 3.11 shows the plot of © õÍö�÷~ø~ù and © õÍö�÷~úûø as a function of the coupling strength � forÝ´� �
. For small coupling strength both quantities are zero showing turbulent region.©$õÍö�÷~úûø is one at � � mN%>L ä , which shows clusters of the ideal driven type (Fig. 3.10(a)). As

coupling strength increases further, © õÍö�÷�úûø and © õÍö�÷�ø!ù become almost zero (region III-T) and

subsequently start increasing slowly (region III-M) but we see that © õÍö�÷~úûø is always greater

than © õÍö�÷�ø!ù leading to the dominant driven phase synchronized clusters. For � �RmN%)6 , © õÍö�÷~ø~ù
starts decreasing and for � �DmN%êì , driven behaviour becomes more prominent (region III-D

and Fig. 3.10(c)).

For regions III-M and III-D, we get phase synchronized clusters but the size of clusters

as well as number of nodes forming clusters both are small. We will see later that for some
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Figure 3.8: Phase diagram showing turbulent, phase synchronized and coherent regions in the two parameter
space of � and � for scale free network for �(
 â � � � â 
���� â � and ��
 â � � �(
 â � . The determination of
region boundaries and their classification and symbols are as explained in Fig. 3.1. Calculations are for������
���M� � ���½� � 
�
 . The inset shows the phase diagram for the entire range of parameter � i.e. from 0
to 4.

other networks (with ©�) } -«� ¢£) } - ) having same degree per node, phase synchronized

clusters are observed for small coupling strengths only (region II-D) and not in region III

(see e.g. one dimensional nearest neighbor coupled network with degree two per node). It

is interesting to note that for the scale-free network and for the nonlinear coupling, largest

Lyapunov exponent is always positive (Fig. 3.9) i.e. the whole system remains chaotic but

we get phase-synchronized behavior.

3.2.3 Dependence on the Number of Connections

So far we have treated the scale free network with qÿ�ýL which gives a tree structure and

the number of connections is of the order of the number of nodes ( � � �ÿ� A:L ). As q
increases the number of connections increases. Now we present some results for networks

with large number of connections.

For q � L and ¢£) } -l� } , though perfect inter- and intra-cluster couplings between
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Figure 3.9: Largest Lyapunov exponent, � , is plotted as a function of � for scale-free network and �(
 â � �� â 
���� â � and �N
 â � � �(
 â � . Different regions are labeled as in Fig. 3.8.

the nodes as displayed in Figs. 3.3(b) and 3.3(d) are no longer observed, the dynamics

of Eq. (3.1) leads to a similar phase diagram as in Fig. 3.1 with region II-S dominated by

the self-organized synchronization and regions IV-DQ and IV-DP dominated by the driven

synchronization. As q increases the regions I and II are mostly unaffected, but region IV

shrinks while region III grows in size. Fig. 3.12 shows different types of clusters in node-

node diagram for different coupling strengths. Fig. 3.12(a) is plotted for q � ä in the

variable region ( � �RmN%>LÕë ) with nodes forming two clusters. It is clear that synchronization

of nodes is mainly because of intra-cluster connections but there are a few inter-cluster

connections also. Fig. 3.12(b) is plotted for ordered periodic region at coupling strength� �´mN%)6Gì , here clusters are mainly of driven type but they have intra-cluster connections

also. In Figures 3.12(a) and (b) the average degree of a node is 6, and breaking the network

into clusters with only inter-cluster or intra-cluster couplings is not possible. As average

degree of a node increases further ©�4 \ À ZF[ increases and for � � ��� , we observe dominance

of the self-organized behaviour, and when number of connections becomes of the order of
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Figure 3.10: The figure shows several examples illustrating the phase synchronization for scale-free network
with coupling form ��
 â � � �(
 â � using node verses node diagram for

�î�I�7�ó�8��

. After an initial

transient (about 2000 iterates) phase synchronized clusters are studied for
�`� � 
�
 . The logistic map

parameter � �9�
. The solid circles show that the two corresponding nodes are coupled and the open circles

show that the corresponding nodes are phase synchronized. In each case the node numbers are reorganized
so that nodes belonging to the same cluster are numbered consecutively and the clusters get displayed in
decreasing sizes. (a) Figure show an ideal driven phase synchronization for � ��
� � � . (b) Mixed behavior for� �	
� : � . (c) A dominant driven behavior for � ��
� �<; . The scale free networks were generated with

�7�@� �
and

�2� � .
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Figure 3.11: The fraction of intra-cluster and inter-cluster couplings, �  )!$#&%�' (solid circles) and �  "!$#*',+ (open
circle) are shown as a function of the coupling strength � for the scale-free networks with ��
 â � � �(
 â � . The
figure is obtained by averaging over 20 realizations of the network and 50 random initial conditions for each
realization.

� " , for large values of � we get one big synchronized cluster.

For qí��L and ¢£) } -^��©�) } - we get similar kind of behaviour as for qB�IL with domi-

nant driven clusters for most of the coupling strength region, but we do not get any ideal

driven clusters. Fig. 3.12(c) is plotted for coupling strength � � mN%êë and q � ä . As q
increases, region I showing turbulent behaviour remains unaffected, but mixed region II

grows in size while III region shrinks. As q increases, more and more nodes participate

in cluster formation (it is discussed for the 1-d lattice in the section 3.3.1). Self-organized

behaviour increases with increase in q . Fig. 3.12(d) is plotted for q ��L m , all nodes form

one cluster which is obviously of the self-organized type.

We have also studied the effect of size of the network on the synchronized cluster for-

mation. The phenomena of self-organized and driven behavior persists for the largest size

network that we have studied ( �z��L mPmPm ). The region II showing self-organized or driven
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Figure 3.12: Figure illustrates the cluster formation for the scale-free network as node vs node plot for
�����


as in Fig. 3.3 but with larger number of connections. (a) and (b) are plotted for �N
 â � � â and
�2�½�

and
respectively for � ��
2� �=/ and � ��
2�>;�� . (c) and (d) are plotted for ��
 â � � �(
 â � , � �	
� / 
 and respectively for�2���

and
�2� � 
 .
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behavior is mostly unaffected while the ordered regions showing driven behavior for large

coupling strengths show a small shrinkage in size.

3.3 Coupled Maps on Other Different Networks

We now consider several other networks and investigate synchronization properties of

these networks.

Figure 3.13: The fraction of intra-cluster and inter-cluster couplings, �� )!$#&%�' (solid circles) and �� "!$#*',+ (open
circles) are shown as a function of the coupling strength � . Figures (a) and (b) are for the one-d coupled
maps with nearest neighbor coupling (

� � � ) and for ��
 â � � â and ��
 â � � �(
 â � respectively. Figures
(c) and (d) are for ��
 â � � �(
 â � and respectively

�I���
and

��� � 
 . The figures are for
� �?��


and are
obtained by averaging over 50The figures are for

� �@��

and are obtained by averaging over 50 random

initial conditions.

3.3.1 One-Dimensional Networks

For one dimensional coupled map network, each node is connected with q nearest neigh-

bors (degree per node is C$q ). First we consider q ��L , i.e each map is connected with just

next neighbors on both sides. Fig. 3.13(a) and (b) show © õÍö�÷�ø!ù and © õÍö�÷�úûø verses � for ¢£) } -1� }
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Figure 3.14: Largest Lyapunov exponent, � , is plotted as a function of � for 1-d nearest neighbor coupled
network for �(
 â � �A� â 
��-� â � and �N
 â � � �(
 â � . Different regions are labeled as for scale-free network (see
Fig. 3.8 and Fig. 3.9.)

and ¢£) } -T�I©�) } - respectively and ÝH� �
, ��téGm . For ¢£) } -T� } , after an initial turbulent

region ( � � ��� ), nodes form self-organized clusters (region II-S in Fig. 3.1) and as the cou-

pling strength increases we observe a crossover to the driven clusters. The behaviour of

clusters as well as Lyapunov exponent graphs are similar to the scale-free network with

the coupling form ©�) } -Æ� } . Note that the nearest neighbor coupled map network withqÛ� L is a tree and can be geometrically organized into both self-organized and driven

type of clusters.

However, for ¢£) } -ó�ÿ©�) } - coupling and qÛ� L we observe a considerable deviation

from the corresponding behavior for the scale free network. In region I-T of Fig. 3.8, we

get turbulent behavior as for the scale-free network but we observe cluster formation only

for small coupling strength region (corresponding to region II-D of Fig. 3.8) as seen from

Fig. 3.13(b). Fig. 3.14 shows largest Lyapunov exponent as a function of � for ¢£) } -ð��©�) } -
and Ý�� � % m . In region II-D the largest Lyapunov exponent is positive or negative, depend-

ing on the initial conditions and � values and for the rest of the coupling strength region
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Lyapunov exponent is positive. For rest of the coupling strength region, i.e. region III in

Fig. 3.8, there is almost no cluster formation and the behavior is close to turbulent and

chaotic.

Fig. 3.15 shows node-node plot showing synchronized clusters. Fig. 3.15(a) shows one

self-organized cluster in region II-S (see Fig. 3.1) for ¢() } -Æ� } . In this region we also get

two self-organized clusters depending on the initial values and � . Fig. 3.15(b) shows two

clusters of mixed type as well as several isolated nodes for � in region III-M for ¢£) } -ð� } .

Figs. 3.15(c) and 3.15(d) show driven clusters for ¢£) } -^��©�) } - for � values in regions II-D

of Fig. 3.14.

We now consider the case q �¶L . For ¢£) } -¸� } we observe self-organized clusters with

some inter-cluster connections for coupling strength region II-S and as coupling strength

increases there is a crossover to driven clusters. As q increases ©�4 \ À ZF[ increases and for � ���� we observe dominance of self-organized behaviour and for � �2mN%)6 instead of forming

driven clusters (as is observed for q`��L ) nodes form one synchronized cluster. For q`�Ré ,

and for coupling strength � � � � )û�RmN%>L ä , all nodes form one or two clusters. For one cluster©$4 \ À ZF[ �ýL and for two clusters intra-cluster and inter-cluster couplings are almost equally

distributed. As number of connections increases and typically becomes of the order � "
that is a globally coupled state, after coupling strength greater than some critical value, we

get one cluster of self-organized type.

For ¢£) } -§�`©�) } - and q �`L , we find that as the number of connections increases for

small coupling strength (region II-D) we get two dominant driven phase synchronized

clusters. For large coupling strength number of nodes forming clusters and size of cluster

both increase with the increase in number of connections in the network. This behaviour

is seen in Figs. 3.13(c) and (d) which show © õÍö�÷~ø~ù and © õÍö�÷~úûø verses � for ¢£) } -^��©�) } - , Ý¡� �
and respectively for q`�Ré and q`��L m .

Fig. 3.16(a) shows the fraction of nodes forming clusters as a function of the number

of connections � � normalized with respect to the maximum number of connections �CB¶��<)!� A�L&-FEGC for two values of � . The overall increase in the number of nodes forming

clusters is clearly seen. Fig. 3.16(b) shows the fraction of nodes in the largest cluster as a

function � � for two values of � . The overall growth in the size of the clusters with � � is

evident.

Cluster formation with large number of connections (of the order of � " ) and its depen-
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Figure 3.15: The figure illustrates the cluster formation for one-d nearest neighbor network using node-node
plot as in Fig. 3.3. (a) and (b) are for ��
 â � � â and � �D
� � : , and � �D
� ��


respectively. (c) and (d) are for��
 â � � �(
 â � and � ��
2� � � and � �	
� � � respectively.
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Figure 3.16: Figure (a) shows the fraction of nodes forming clusters as a function of the fraction of couplings�E�GF��IH
where

�EHx��� 
 � �J��� FÕ� . The figures are plotted for 1-d coupled maps with �N
 â � � �(
 â � and for� �	
� � / (closed circles) and � �	
�K; (open circles). The results are for
������


and are obtained by averaging
over 100 random initial conditions. Figure (b) shows the fraction of nodes in the largest cluster as a function
of

���LF��IH
for � ��
� � / (closed circles) and � ��
2�>; (open circles). Other parameters are same as above.

dence on coupling strength is discussed in Refs. [148, 149]. It is reported that for these

networks it is the coupling strength which affects the synchronized clusters and not the

number of connections. We find that when the number of connections is of the order of� there are significant deviations from this reported behaviour. We find that the size of

the clusters and number of nodes forming clusters increases as the number of connections

increase as discussed above. This behaviour approaches the reported behaviour as the

number of connections increases and becomes of the order of � " .
3.3.2 Small World Networks

The general construction and properties of small world networks are given in the chapter

I. We construct small world networks using the algorithm given by Watts and Strogatz [5].

Here we present results for �þ� éGm and qÛ� L . Figs. 3.17(a) and 3.17(b) plot © õÍö�÷~ø~ù and© õÍö�÷~úûø for ¢£) } -á� } and ¢() } -á�ý©�) } - respectively as a function of � for Ý<� �
. We find that

for ¢£) } -¸� } , behaviour is very similar to that for the scale free networks and one-d lattice.

We get self-organized clusters for � � �Ò� and there is a crossover to driven behavior as
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epsilon increases (Fig. 3.17(a) ). But for ¢£) } -§��©�) } - , nodes form clusters only for region

II-D of coupling strength and there is almost no cluster formation for larger values of �
( Fig. 3.17(b) ). This behaviour changes as + increases and we observe some clusters for

large � values also. This behavior is similar to that of one-d network. Fig. 3.18(a) shows

node-node plot of clusters for � �`mN% � é , qå� L and ¢£) } - � } showing dominant driven

clusters.

Figure 3.17: Fraction of intra-cluster and inter-cluster couplings, �  "!$#&%(' (solid line) and �  )!$#*',+ (dashed line)
are shown as a function of the coupling strength � . Figures (a) and (b) are for the small world network for��
 â � � â and �N
 â � � �(
 â � respectively and

��M��

. Figures (c) and (d) are for the Cayely tree with��
 â � � â and �N
 â � � �(
 â � respectively and

�����N;
. The figures are obtained by averaging over 50 random

initial conditions. Small world networks are generated with
� � � and O �P
� 
�:

[3]. Cayley trees are
generated with coordination number three [27].

3.3.3 Cayely Trees

Cayley tree is generated using algorithm given in Ref. [140]. Starting with three branches

at first level, we split each branch into two at each level. For ¢£) } -�� } , the behaviour is

similar to all other networks with same number of connections (Fig. 3.17(c)). Fig. 3.18(b)
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shows node-node plot of two ideal driven phase synchronized clusters for � �nmN%êëPC , ·+ó�RC ,��� � 6 and ¢£) } -æ� } . For ¢£) } -æ�`©�) } - we get all nodes forming clusters for for region

II-D, and for larger coupling strengths about 40% of nodes form clusters of driven types

(Fig. 3.17)(d)).

3.3.4 Higher Dimensional Lattices

Coupled maps on higher dimensional lattices also form synchronized clusters. First we

give the result for two-d square lattices. Figs. 3.19(a) and 3.19 (b) plot © õÍö�÷�ø!ù and © õÍö�÷�úvø
for ¢() } -�� } and ¢£) } -�� ©�) } - respectively as a function of � for Ý�� �

. For ¢£) } -�� }
cluster formation is similar to other networks described earlier except for very large � close

to one where we get a single self-organized cluster. For ¢£) } -»� ©�) } - cluster formation

is similar to that in one-d networks with nearest and next nearest neighbor couplings.

In small coupling strength region II-D (see Fig. 3.8), nodes form two clusters of driven

type and for large coupling strength also driven clusters are observed with 25-30% nodes

showing synchronized behaviour (Fig. 3.19(b)). Fig. 3.18(c) and (d) show node-node plot

of self-organized behaviour for ¢£) } -¸� } and dominant driven behaviour for ¢() } -1�R©�) } - .
Coupled maps on three-d cubic lattice (degree per node is six) for ¢£) } -@� } show clus-

ters similar to the other networks discussed earlier. For ¢£) } -§� ©�) } - , nodes form driven

type of clusters at small coupling strength (region II-D) and mainly it gives three clusters.

For large coupling strength also nodes form driven clusters and the nodes participating in

cluster formation is now much larger than two-d case.

3.3.5 Random Networks

Random networks are constructed by connecting each pair of nodes with probability � .

First consider the case where the average degree per node is two. For linear coupling¢£) } -Ê� } cluster formation is same as for other networks with same average degree. For¢£) } -»�í©�) } - driven type clusters are observed in region II-D and no significant cluster

formation is observed for larger coupling strengths. This behaviour is similar to one-d

network with +Y�2C but different from the corresponding scale free network. For coupled

maps on random networks with average degree per node equal to four and ¢£) } -á��©�) } - ,
clusters with dominant driven behaviour are observed for all � � �Õ� .
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Figure 3.18: Figure illustrates the cluster formation for different networks as node vs node plot as in Fig. 3.3.
(a) is plotted for small world network with � ��
� �<�

,
�`����


and ��
 â � � â . (b) is plotted for Cayley tree
with � �@
� / � ,

� �Q�R;
and �N
 â � � â . (c) and (d) are plotted for 2-d lattice (

� �@� / ) with � �@
2� � � ,��
 â � � â and � ��
2� �=/ � �N
 â � � �(
 â � respectively.
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Figure 3.19: The fraction of intra-cluster and inter-cluster couplings, �� "!$#&%(' (solid line) and �$ "!$#*',+ (dashed
line) are shown as a function of the coupling strength � for two-d lattice. Figures (a) and (b) are for ��
 â � � â
and �N
 â � � �(
 â � respectively. The figures are for

�ÿ��� / and are obtained by averaging over 50 random
initial conditions.

3.4 Examples of Self-organized and Driven Behavior

There are several examples of self-organized and driven behaviour in naturally occur-

ring systems. An important example in physics that includes both self-organized and

driven behavior, is the nearest neighbor Ising model treated as Kawasaki dynamics. As

the strength of the Ising interaction between spins changes sign from positive to negative

there is a change of phase from a ferromagnetic (self-organized) to an antiferromagnetic

(driven) behavior. In the antiferromagnetic state, i.e. driven behavior, the lattice splits into

two sub-lattices with only inter-cluster interactions and no intra-cluster interactions.

Self-organized behaviour is more common and is easily observed. Examples are social,

ethnic and religious groups, political groups, cartel of industries and countries, herds of

animals and flocks of birds, different dynamic transitions such as self-organized criticality

etc. The driven behaviour is not so common. An interesting example is the behaviour

of fans during a match between traditional rivals. Before the match the fans may act as

individuals (turbulent behavior) or form self-organized clusters such as a single cluster of

fans of the game or several clusters of fans of different star players. During the match there

can be a crossover to a driven behaviour. When the match reaches a feverish pitch, i.e. the

strength of the interaction increases, the fans are likely to form two phase synchronized

groups. The response of the two groups will be anti-phase synchronized with each other.
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3.5 Circle Map

We have studied cluster formation by considering circle map as defining the local dynam-

ics, given by ©�) } -1� } |<��|n),+.EGC u -,SÕ3û ¸),C u } -�� ) Ã TVU L&-
Due to the modulo condition, instead of using the variable } À , we use a function of } À
such as ��� dV) u } Àk- satisfying periodic boundary conditions to decide the location of maxima

and minima which are used to determine the phase synchronization of minima which are

used to determine the phase synchronization of two nodes (Eq. (2.4)). With circle map

also we observe formation of clusters with the time evolution starting from initial random

conditions. Here we discuss the results with the parameters of the circle map in the chaotic

region ( ���ImN% �R� and +���è ). For linear coupling ¢() } -Ê� } and scale-free networks withq �íL , for small coupling strength nodes evolve chaotically with no cluster formation.

As coupling strength increases nodes form clusters for mN%êCNL à � à mN%êCPé . In most of this

region the nodes form two cluster and these clusters are mainly of the driven type except

in the initial part, � �RmN%êCNL , where self-organized clusters can be observed. As the coupling

strength increases nodes behave in a turbulent manner and after � � mN%êèGm nodes form

clusters of dominant driven type. Here the number of nodes forming clusters and the

sizes of clusters, both are small. For the one dimensional linearly coupled networks, for

linear coupling the nodes form phase synchronized clusters for coupling strength regionmN%êCNL à � à mN%êCPé . The clusters are mainly of the driven type except in the initial part,� �´mN%êCNL , where they are of the self-organized type. For large coupling strength they do

not show any cluster formation.

For ¢£) } -X��©�) } - we found very negligible cluster formation for the entire range of the

coupling strength for both scale free and one-d network. However, as q increases the

nodes form phase synchronized clusters for � larger than some critical �Õ� .
For the circle map the normalization factor )WLÊA � - in the first term of Eq. (3.1) is not

necessary and the following modified model can also be considered.} 4ÀhÏ?� �R©�) } 4À -e| �+P4 '�w =?� 8 4 w ¢£) } w À -�� ) Ã TWU L&-�% (3.3)

We now discuss the synchronized cluster formation for the same parameter values as

above ( � � mN% �R� and +R� è ) for this modified model. For linear coupling, clusters are
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formed only for mN% m�C à � à mN%>L�6 with dominant self-organized behaviour for most of the

range except near � �2mN%>L�6 where the behaviour is of dominant driven type. For the scale

free networks ( q �tL ) we have ordered states while for the one-d networks we have par-

tially ordered states. For nonlinear coupling, the clusters are formed for mN% m à � à mN% m�ë . The

scale-free networks show mostly mixed type clusters while one-d networks show domi-

nant self-organized clusters. There is no cluster formation for larger coupling strengths for

both linear and nonlinear coupling. However, as for the logistic map, as the number of

connections increases, synchronized clusters are observed for large � values.

3.6 Summary

We study the properties of coupled dynamical elements on different types of networks. We

find that in the temporal evolution, dynamical elements show the formation of phase syn-

chronized clusters. We have mainly studied networks with small number of connections)!� � 0n��- . With small number of connections, it is easy to identify the relation between the

dynamical evolution, the cluster formation and the geometry of networks.

We identify two mechanisms of cluster formation, self-organized (s) and driven (d)

phase synchronization. Apart from dominant s- and d- synchronization, we observe ideal

behaviour of both types that is all the nodes forming driven clusters ( © 4 \ À*X Z �®L ) or all

nodes forming self-organized clusters ( ©64 \ À*X Z � L ). For the local dynamics in the chaotic

regime, in most cases where ideal behaviour is observed, the largest Lyapunov exponent is

negative or zero giving stable clusters giving periodic evolution. However, in some cases

ideal behaviour is also observed in the chaotic region.

By defining different states of the dynamical system using the number and type of

clusters, we consider the phase-diagram in the ÝÊA � plane for the local dynamics governed

by the logistic map. When the local dynamics is in the chaotic region, for small coupling

strengths we observe turbulent behaviour. There is a critical value �&� above which phase

synchronized clusters are observed. For ¢£) } -9� } type of coupling, self-organized clusters

are formed when the strength of the coupling is small. As the coupling strength increases

there is a crossover from the self-organized to the driven behavior which also involves re-

organization of nodes into different clusters. This behaviour is almost independent of the

type of networks. For non linear coupling of type ¢£) } -@�R©�) } - , for small coupling strength
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phase synchronized clusters of driven type are formed, but for large coupling strength

number of nodes forming cluster as well as size of cluster both are very small and almost

negligible for many network. Only for scale-free networks and Cayely tree show some

cluster formation for large coupling strengths. In the partially ordered regions synchro-

nized clusters are associated with isolated nodes which do not belong to any cluster. Some

of these nodes are of floating type, the time spent by a floating node in the synchronized

cluster shows an exponential distribution.

It is interesting to note that nodes can form two or more stationary clusters even though

coupled dynamics is in the chaotic regime. Here a stationary cluster means that con-

stituents of the cluster are unique and once nodes form a stationary cluster they belong

to that cluster forever, that is the structure of the cluster does not depend on time. ForÝD� �
, we get stationary clusters when the nodes form two clusters, but they are not sta-

tionary when they form three or more clusters. Note that three or more stationary clusters

can be formed for Ý à �
. For Ýf� �

if the largest Lyapunov exponent is negative, the vari-

ables show periodic behaviour with even period. For Ý à �
the periodic behaviour can

have both odd and even periods.

As the number of connections increases, most of the clusters become of the mixed type

where both the mechanisms contribute. We find that in general, the self-organized be-

haviour is strengthened and also the number of nodes forming clusters as well as the size of

clusters increase. As the number of connections become of the order of � " , self-organized

behaviour with a single spanning cluster is observed for � larger than some value.



Chapter 4

Temporal Dynamics and Synchronization in

CMNs: Stability Analysis

4.1 Introduction

In this chapter we study the dynamics of some simple networks analytically and numeri-

cally with a view to get a better understanding of the two mechanisms of the cluster for-

mation discussed in the previous chapter. Mainly we study the asymptotic stability of self-

organized and driven synchronization in networks with small number of nodes, i.e. two

and three nodes, and extension of these small networks to networks with large number of

nodes. As an example of large networks showing self-organized synchronized clusters we

take globally coupled maps [112, 113, 114] and for driven synchronized clusters we take

complete bipartite coupled maps [151] and multipartite coupled maps.

Here in this chapter we will mostly concentrate on exact synchronization. Though the

numerical work in the previous chapter was carried out using phase synchronization, it

is not easy to treat phase synchronization analytically and hence, for the analytical work

we restrict ourselves to exact synchronization. Interestingly the phase diagrams for exact

synchronization have considerable similarity with that of phase synchronization. Thus

some general conclusions can be drawn from the analytical studies.

We use two types of analysis to determine the stability of synchronized state. First is

the linear stability analysis [97, 135, 128, 122, 123, 124, 125, 126] and the second is Lyapunov

functional [152, 153]. We briefly discuss these two methods.

50
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4.1.1 Linear Stability Analysis

If Jacobian matrix ÙeÀ (see ‘Measure of Chaos’ in Chapter I), corresponding to evolution

of tangent vector is a diagonal matrix, or the similarity transformation which diagonal-

izes Ù À is independent of y , then the Lyapunov exponents can be written in terms of the

eigenvalues of ÙVÀ as follows, p�4e� c �>ÃÜ ÄÊÅ L� Ü� Àh=?� chdÆ¾ Ú 4F)~yF- ¾ (4.1)

where
Ú 4 )~y�- is the 3 -th eigenvalue of Jacobian matrix at time y . If ¨ À does not satisfy the

above mentioned conditions then it is necessary to consider product of Jacobian matrices

to obtain Lyapunov exponents (see chapter I).

To study the stability of synchronized state it is sufficient to consider transverse Lya-

punov exponents which characterize the behavior of infinitesimal vectors transversal to

the synchronized manifold, and these determine the stability of a synchronized state [152].

If all the transverse Lyapunov exponents are negative then the synchronized state is stable.

4.1.2 Global Stability Analysis

Condition for global stability can be derived using the Lyapunov functional methods [152,

153]. Global stability in a neighborhood of an equilibrium (stable) point is confirmed if

there exist a positive definite function defined in that neighborhood, whose total time

derivative is negative semi-definite.

To get the conditions for the global stability of synchronization of two trajectories } 4À
and } w À , we define Lyapunov function as,° 4 wÀ ��) } 4À A } w À - " (4.2)

Clearly °54 w )~yF-�¼Dm and the equality holds only when the nodes 3 and � are exactly synchro-

nized. For the asymptotic global stability of the synchronized state, Lyapunov function

should satisfy the following condition in the region of stability,° ÀhÏ?� à ° À
This condition can also be written as, °�ÀhÏ?�°�À à LG% (4.3)
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The chapter is organized as follows. After giving the introduction of linear stability

analysis and Lyapunov function analysis in the first section, in section 4.2, we discuss two

networks showing self-organized synchronization, i.e. two nodes network and globally

connected network. Section 4.3 considers two networks showing driven synchronization,

i.e. three nodes bipartite network and complete bipartite network. In these sections we

study coupled maps dynamics using linear stability and Lyapunov function analysis. In

section 4.4, we discuss the origin of self-organized and driven mechanisms based on anal-

ysis presented in the earlier sections. In section 4.5, we present our results for coupled

dynamics on multipartite networks. It is just a extension of coupled dynamics on bipartite

networks and both the analysis remain almost same except few changes because of ex-

tra dimensionality introduced by the multipartite structure of the multipartite networks.

Section 4.6 discuss the origin of floating node. Section 4.7 summarizes the chapter.

4.2 Stability Analysis for Self-organized Synchronization

We first consider the simplest and smallest network showing self-organized clusters, i.e

synchronization of two coupled nodes which is obviously of self-organized type. As a

generalization of two nodes network to larger networks, we study the self-organized syn-

chronization in globally coupled maps.

4.2.1 Coupled Network with Y[Z]\
We begin by taking the simplest case where number of nodes is two and these two nodes

are coupled with each other [151]. The dynamics of the two nodes can be rewritten as

(Eq. (2.1)), } �ÀhÏ?� � )WLXA � -W©�) } �À -e| � ¢£) } "À -} "ÀhÏ?� � )WLXA � -W©�) } "À -e| � ¢£) } �À - (4.4)
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Linear stability analysis

Following Ref. [19], we first define addition and difference variables as follows,S&À � } �À | } "ÀC¦6À � } �À A } "ÀC (4.5)

Dynamical evolution for these newly defined variables is given by,S&ÀhÏ?� � LXA �C ÓÍ©�)(SÕÀ5|<¦6Àk-e|<©�)(SÕÀeA�¦6Àk- Ö| �C Ó ¢£)(S&À£|<¦6Àk-e|�¢£)(S&ÀQA½¦�Àk- Ö¦6ÀhÏ?� � LXA �C ÓÍ©�)(SÕÀ5|<¦6Àk-�A½©�)(SÕÀeA�¦6Àk- ÖA �C Ó ¢£)(S&À£|<¦6Àk-�A«¢£)(S&ÀQA½¦�Àk- Ö (4.6a)

For synchronous orbits to be observed, the fully synchronized state ¦5À9��m i.e. } �À � } "À �} À �^S À , should be a stable attractor. The Jacobian matrix for the synchronized state is,

¨�À?� �� )WLXA � -W©`_!) } Àk-V| � ¢a_,) } Àk- mm )WL^A � -W©`_,) } À -�A � ¢2_,) } À - ��
where the prime indicates the derivative of the function. The above Jacobian is a diagonal

matrix and Lyapunov exponents can be easily written in terms of eigenvalues of product

of such Jacobian matrices calculated at different time. The two Lyapunov exponents arepcbGd ] � c �>ÃÜ ÄÆÅ L� Ü� Àh=?� c>dÊ¾ )WL^A � -W© _ ) } Àk-fe � ¢ _ ) } Àk- ¾ (4.7)

The synchronous orbits are stable if Lyapunov exponent corresponding to the difference

variable ¦6À , i.e. p5] or the transverse Lyapunov exponent, is negative. If the other Lyapunov

exponent p b is positive then the synchronous orbits are chaotic while if it is negative then

they are periodic.

Coupling function ¢£) } -¸�R©�) } - : Two coupled maps with ¢£) } -�� ©�) } - type of coupling

are studied extensively in the literature both analytically and numerically [19, 122]. For

the synchronized state Lyapunov exponent p b is nothing but the Lyapunov exponent for

uncoupled logistic map ( pcg ) and the other Lyapunov exponent can be written in terms of
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the phg and from Eq. (4.7) we get,p b � pigæ�åc �>ÃÜ ÄÊÅ L� Ü� Àh=?� c>dÆ¾ © _ ) } Àk- ¾ (4.8a)p.] � c>dÆ¾ LXA�C � ¾Õ|Dphg (4.8b)

The synchronous orbits are stable if Lyapunov exponent corresponding to the difference

variable ¦6À is negative, i.e. p#] à m . Thus the range of stability of the synchronized state is

given by L�A�¿ U5o�jC à � à mN%êé L�|x¿ U5o�jC (4.9)

For logistic map with Ý<� �
, above expression gives mN%êCPé à � à mN%)6Gé , as the range for the

stability of the synchronized state.

Coupling function ¢£) } -¸� } : For ¢£) } -¸� } type of coupling, numerical results show that

as the coupled nodes evolve, dynamics shows different types of synchronized and periodic

behaviors depending upon the coupling strength � and the parameter of the map © . First

let us start with the general case where coupled dynamics lies on a synchronized attractor.

Using Eq. (4.7), Lyapunov exponents can be easily written aspkbld ]^�Ûc �>ÃÜ ÄÊÅ L� Ü� Àh=?� c>dÊ¾ )WL^A � -W© _ )(S&Àk-fe � ¾
For stable synchronous orbits Lyapunov exponent corresponding to the difference vari-

able, i.e. p5] , should be negative. Now we consider some special cases, when coupled

dynamics lies on periodic or fixed point attractor.

We will restrict ourselves to period two orbits. Higher periodic orbits exist but are

difficult to treat analytically. Also major features of phase diagram are understood by

using fixed point and period two orbits.

Case I. Synchronization to period two orbit : Consider the special case where the solution of

Eq. (4.4) or Eq. (4.6a) is a periodic orbit of period two, with the difference variable given by¦ ÀhÏ?� �n¦ À �nm and addition variable given by S ÀhÏ(" �mS À �mS � �cS ÀhÏon �pS ÀhÏ?� �mS " . Eigenvalues

for the product matrix ¨5� ¨6" , where ¨�� and ¨QC are Jacobian matrices for consecutive time

steps, are given by Ú � d "X��)WLXA � - " © _� © _" | � " | )WLXA � - � ),© _� |x© _" - (4.10)

where ©`_� and ©`_" are derivatives of © at the two periodic points )(SN� ��¦l��m6- and )(Sb"$��¦l��m6-
respectively. The � range for which the dynamical evolution gives a stable periodic orbit, is
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obtained when the modulus of the eigenvalues for matrix ¨(� ¨6" are less than one. For local

dynamics given by logistic map ©�) } -��{Ý } )WLXA } - , the two periodic points are,S�� d "X� L¸| � |<Ý¸)WLXA � -qe^r � ) � A½C�-Ò)~Ý�ADL&- " A ä A½C$Ý�|JÝ "C$Ý¸)WL^A � - (4.11)

For Ý�� �
, S�� d "X� éáA ä ¿�| ç éTAxLÕìP¿�|xëP¿ "ì�)WL^A�¿b- (4.12)

which gives the coupling strength range mN%>LÕì�%Ø% à � à mN%êC � %Ø% for which the periodic orbit,)(S��Õ��¦æ�nm6- and )(Sb"$��¦æ�Rm6- , is stable.

Case II. Attractor on period two orbit: There is a range of � values that give the following

stable period two behaviour, } �À � } "ÀhÏ?� � } �ÀhÏ(" � � s � �} "À � } �ÀhÏ?� � } "ÀhÏ(" � � s"
Lyapunov exponents for this periodic state can be found from the eigenvalues of the prod-

uct of Jacobians at the two periodic points. Jacobian matrix at ) � s � � � s" - is given by,

¨��9� �� )WLXA � -W©`_� �� )WL^A � -W©`_" �� (4.13)

where © _� and © _" are the derivative of © at � s � and � s" respectively. Eigenvalues of the

product matrix ¨5� ¨6" are, Ú � d " � Ë � eR)WLXA � -ut © _� © _À Ì "
(4.14)

If © _� © _" à m which is the interesting case, then the condition for the stability of the periodic

orbit become © _� © _" ADL© _� © _" |nL à � à LG% (4.15)

For ©�) } -��{Ý } )WL^A } - , � s � and � s" which satisfy Eq. (4.13) are given by

� s � d " � )WL@| �ß -fe t )WL@| �ß - " AQvß )WL@| �ß -C (4.16)

For stable periodic orbits modulus of both eigenvalues
Ú � and

Ú " are less than one which

gives the coupling strength range for stability as,L�A CÝ " A½C$Ý»A ä à � s¶L (4.17)
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For Ý¡� �
, we get coupling strength range )!mN%êè à � à L&- for which periodic orbit as given

in Eq. (4.13) is stable and coupled dynamics lies on a periodic attractor.

Lyapunov function analysis

From Eqs. (4.2) and (4.4), Lyapunov function for two nodes is written as° �v"ÀhÏ?� � ° ÀhÏ?�� w~)WL^A � -Ò),©�) } �À -gA�©�) } "À -F-�A � )�¢£) } �À -gAf¢£) } "À -F-�x " (4.18)

Using Taylor expansion of ©�) } �À - and ¢£) } �À - about } "À , we get Lyapunov function at timeye|nL as, °.ÀhÏ?� � °.À w )WLXA � -W© _ ) } "À -�A � ¢ _ ) } "À -| } �À A } "ÀC )F)WL^A � -W© _ _ ) } "À -�A � -v¢ _ _ ) } "À -F-Q|1yY) } �À A } "À - "=z " (4.19)

If the expression in the square bracket on the RHS is less than one then the synchronized

state is stable.

For the nonlinear coupling function ¢£) } -�� ©�) } - the expression (4.19) for Lyapunov

function simplifies and we get°�ÀhÏ?�°�À ��)WL^A½C � - " ÓÍ© _ ) } "À - } �À A } "ÀC © _ _ ) } "À -V|1yY) } �À A } "À - " Ö " (4.20)

If the expression in the square bracket on the RHS is bounded then there will always some

range of � values around 0.5 for which the synchronized state will be stable. For logistic

map ©�) } -1�{Ý } )WL�A } - , we get,°.ÀhÏ?�9�¶°�À�)WLXA¡C � - " Ý " Ó LXAH) } �À | } "À - Ö "
Using mós } �À | } "À s²C , we get the following range of � values for which the synchronization

condition given by Eq. (4.3) is satisfied,LC Ë L^A LÝXÌ à � à LC Ë L9| LÝXÌ (4.21)

For Ý2� �
, it gives the coupling strength range mN% ä CPé à � à mN%êè6Gé . However, a better �

range can be obtained by putting more realistic bounds for } �À | } "À asLC Ë LXA LÝ � Ì à � à LC Ë L9| LÝ � Ì (4.22)

where � � �l{ 5 À )�¾ L^A } �À A } "À ¾Í- .
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4.2.2 Globally Coupled Networks

Globally coupled networks have all pairs of nodes connected to each other i.e. number of

connections, � � �{�<)!�`AHL&-FEGC where � is the number of nodes. For such global coupling

we write our dynamical model as} 4ÀhÏ?� ��)WLXA � -W©�) } 4À -e| �� ADL '�wN|=£4 d w =?� ¢£) } w À - (4.23)

Let the state } �À � } "À �~}$}$}?� } 'À � } À be the fully synchronized state. We now consider

the stability of this state.

Linear Stability Analysis

Jacobian matrix at time y for the fully synchronized state is

¨�À?�
�������� )WLXA � -W©`_À �'XUV� ¢2_À % % % �'XUV� ¢2_À�'XUV� ¢ _À )WLXA � -W© _À % % % �'XUV� ¢ _À

...
...

...
...�'XUV� ¢2_À �'XUV� ¢2_À % % % )WL^A � -W©`_À

�$�������
where ©o_À and ¢2_À are the derivative at the synchronous value } À . Eigenvectors of the above

Jacobian matrix are,� \ ���Õ¿ } �g),C u 3 q� -���¿ } �g) � u 3 q� -#% % %&��¿ } �g),CG� u 3 q� -L� ×
where q �åmN�ÕLG� % % %&���îA�L and ñ denotes the transpose. From these eigenvectors we

find that ¨6À has an eigenvalue )WLæA � -W© _À | � ¢ _À and )!�A2L&- -fold degenerate eigenvalues)WLáA � -W©`_À A �'�UV� ¢2_À . Lyapunov exponents can be written in terms of the eigenvalues of the

Jacobian matrix as, p(� � c �>ÃÜ ÄÆÅ L� Ü� Àh=?� c>d��� )WLXA � -W© _À | � ¢ _À �� (4.24a)p."þ� phn�}$}$}��:p5'� c �>ÃÜ ÄÆÅ L� Ü� Àh=?� c>d ���� )WLXA � -W© _À A ��`AHL ¢ _À ���� (4.24b)

Lyapunov exponents p£"G��phn�% % %Òp \ are transverse Lyapunov exponents since they charac-

terize the behaviour of infinitesimal vectors transverse to the synchronization manifold.
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For the stability of the synchronous orbits, all transverse Lyapunov exponents should be

negative.

Coupling function ¢£) } -¸�R©�) } - : Linear stability analysis of the globally coupled maps

for the fully synchronous state, are studied extensively with ¢£) } -��M©�) } - type of coupling

[97, 123]. Following reference [123], Lyapunov exponents for globally coupled maps, with¢£) } -¸�R©�) } - type of coupling, can be wriiten as,pV� � pigæ� c �hÃÜ ÄÊÅ Ü� Àh=?� c>dÆ¾ © _ ) } Àk- ¾ (4.25a)p " � p n �@}$}$}��¶p ' �¶p g |<c>de)WL^A ��`AHL � - (4.25b)

Except phg other Lyapunov exponents are transverse to the synchronization manifold. The

critical value of coupling strength � � beyond which the synchronized state with all nodes

synchronized with each other is stable, is given by,��� � � ADL� )WLXA¡¿ U5o j - (4.26)

For large � with ©�) } - � � } )WLTA } - , we have pcgl��c>dXC . So from above expression we get��� �RmN%êé .

Coupling function ¢£) } -¸� } : From the expressions (4.24a) and (4.24b), it is difficult to

determine when the synchronous orbits are stable. Rather it is easier to determine the

stability of the synchronous orbits using Lyapunov function which we will consider in the

next subsection. Here, we consider some special cases when coupled dynamics of the fully

synchronized state lies on periodic or fixed point attractors.

Case I. Synchronization to fixed point : First we consider the fixed point � Þ � } À of the

fully synchronized state. The fixed point is given by � Þ �ý©�) � Þ - . The conditions for the

stability of the synchronous fixed point are c>dÆ¾ )WLeA � -W© _ | � ¾ à m and c>dÆ¾ )WLeA � -W© _ A �'XUV� ¾ à m .

where ©o_ is the derivative of © at � Þ . For ©`_ à m which is the interesting case, the fixed

point is easily found to be stable in the range¾ ©`_,¾$ADL¾ © _ ¾$A �'�UV� à � à LG% (4.27)

For �Û�´C this solution is not stable and the range of stability increases with � . This is

a surprising result since with increasing � the number of transverse eigenvectors along

which the synchronized solution can become unstable also increases. This feature of in-

creasing range of stability with � is more general and will be noticed for other solutions
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also as will be discussed in subsequent analysis. For large � synchronous fixed point is

stable for ¾ ©`_,¾GADL¾ © _ ¾ à � à L (4.28)

For ©�) } - given by logistic map, ��� ��LXADL&EbÝ���©f_,) � Þ -1�¶CÊA½Ý and range of stability of the

synchronous fixed point is given by Ý�A äÝ�A¡CTA �'XUV� à � à LG% (4.29)

Case II. Synchronization to period two orbit : We now consider synchronous period two

solution. The Lyapunov exponents can be obtained using Eqs. (4.24a) and (4.24b). The

conditions for the stability of the period two solution arec>d ���� )WL^A � -W© _� | �0� � )WL^A � -W© _" | �0� �� à m (4.30a)c>d ���� Ë )WLXA � -W© _� A �� ADL Ì Ë )WLXA � -W© _" A ��`ADL Ì ���� à m (4.30b)

For ©�) } - given by logistic map, the period two synchronized solution is the same as given

by Eqs. (4.11) and (4.12). For Ý�� �
, the range of stability of this solution is

LXA ç é �ë à � à L m | �'XUV� A t èGmð| nFr'�UV� | �� '�UV�����ìáA "'XUV� A �� '�UV��� � (4.31)

For �å� C , this gives the � range (0.18..,0.24..) for the stability of period two solution as

noted in Case1 of two node case with ¢£) } -�� } . For large � , this range of stability for �
values expands to (0.18..,0.28..). Here increase in the stability range is accompanied by the

decrease in stability attractor range. So starting with any random initial conditions, this

increase in the range is not observed numerically.

4.2.3 Lyapunov Function Analysis

From Eqs. (4.2) and (4.23), we write Lyapunov function for any two nodes of globally

coupled network as,° 4 d wÀhÏ?� ���F)WLXA � -��b©�) } 4À -gA�©�) } w À -L�lA ��`ADL ��¢() } 4À -gAf¢() } w À -L� z "



Temporal Dynamics and Synchronization in CMNs: Stability Analysis 60

Performing Taylor expansion around } w À , we get° ÀhÏ?�°.À � � )WLXA � -W© _ ) } w À -gA �� ADL ¢ _ ) } w À -| } 4À A } w ÀC Ë )WLXA � -W© _ _ ) } w À -gA �� ADL ¢ _ _ ) } w À - Ì |1yYÓØ) } �À A } "À - "=� " (4.32)

Coupling function ¢£) } -¸�R©�) } - : In this case the expression (4.32) simplifies to° ÀhÏ?�°.À � Ë L�A �� ADL � Ì "�� © _ ) } w À -V| } 4À A } w ÀC © _ _ ) } w À -V|1yYÓØ) } �À A } "À - "0� "
If the expression in the square bracket on the RHS is bounded then for large � there will

be a critical value of � beyond which the condition (4.3) will be satisfied and the globally

synchronized state will be stable. For ©�) } -��{Ý } )WL�A } - and using )!mós } 4À | } w À sHC�- , we get

the following range of coupling strength values for which the globally synchronized state

is stable. �`ADL� Ë LXA LÝ Ì à � s¶L à �`ADL� Ë L¸| LÝ Ì (4.33)

For Ý�� �
and for very large � , coupling strength range is mN%)6Gé à � à L . A better � range is

obtained by putting more realistic bounds as � U s } 4À | } w À s � Ï , which gives the range

of stability as, �`AHL� Ë LXA LÝf� Ì à � s¶L (4.34)

where �¶� Ãóò$ô )�¾ LXA � Ï ¾i�b¾ L^A � U ¾Í- .
Coupling function ¢£) } -¸� } : In this case, for logistic map, the expression (4.32) simplifies

to ° 4 wÀhÏ?�°�À � � )WLXA � -Ò)WLXAH) } 4À | } w À -F-�A �� ADL z "
Since m*s } 4À | } w À s²C we get a range of � values for which the globally synchronized state

is stable (Eq. (4.3)) Ý�ADLÝ�A �'XUV� à � à Ý*|nLÝ�A �'XUV� (4.35)

which for large � reduces to Ý�ADLÝ à � à Ý*|nLÝ (4.36)

For Ý�� �
, we get the coupling strength range mN%)6Gé à � s:L for which the globally synchro-

nized state is stable. We also note that for �í��C the condition (4.35) for synchronization

is not satisfied for any value of � s¶L .
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4.3 Stability Analysis for Driven Synchronization

Driven synchronization leads to clusters with dominant inter-cluster couplings. For the

ideal driven clusters, there are only inter-cluster connections with no connections between

the constituents of the same cluster. A complete bipartite network consists of two sets of

nodes with each node of one set connected with all the nodes of the other set. Clearly

this type of network is an ideal example for studying driven synchronization. We take a

bipartite network consisting of two sets of nodes, � �B�l��|:�§" , with each node of �*�
connected to every node of � " and there are no connections between the nodes of the

same set [151]. We study dynamics of coupled maps on such type of bipartite network and

determine the stability criteria for formation of driven synchronized clusters. Our model

for coupled complete bipartite network can be written as,} 4ÀhÏ?� � )WL^A � -W©�) } 4À -Q| ��«C '�w =V'��vÏ?� ¢£) } w À -�� � TR� 3���LG�$}$}$}?���O�
� )WL^A � -W©�) } 4À -Q| ��¡L '���w =?� ¢£) } w À -�� � TR� 3��R�ó�?|nLG�$}$}$}?���»% (4.37)

where all terms are having the same meaning as defined for Eq. (2.1).

4.3.1 Coupled Networks with Y�Z��
First we take a simple network of three nodes with �JLÆ��C����fCO�tL which is the smallest

possible network to show the behaviour displayed by Eq. (4.37). The evolution equations

can be written as } �ÀhÏ?� � )WLXA � -W©�) } �À -V| � ¢() } nÀ -} "ÀhÏ?� � )WLXA � -W©�) } "À -V| � ¢() } nÀ -} nÀhÏ?� � )WLXA � -W©�) } nÀ -V| �" )�¢£) } �À -e|¡¢£) } "À -F- (4.38)

Here, the driven synchronized state corresponds to the nodes 1 and 2 being synchronized

with each other but not with node 3.

Linear Stability Analysis

Here, we use addition and difference variables SPÀ and ¦6À as defined in Eq. (4.5) for the
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first two nodes. Thus Eqs. (4.38) can be rewritten as,S&ÀhÏ?�å� LXA �C ÓÍ©�)(SÕÀ5|<¦6Àk-V|x©�)(S&À(A�¦�Àk- Ö | � ¢£) } nÀ - (4.39a)¦6ÀhÏ?� � LXA �C ÓÍ©�)(SÕÀ5|<¦6Àk-gA�©�)(S&À(A�¦�Àk- Ö (4.39b)} nÀhÏ?� � )WLXA � -W©�) } nÀ -e|I�C Ó ¢()(SÕÀ£|x¦�Àk-V|¡¢£)(S&ÀQA½¦6Àk- (4.39c)

Jacobian matrix for the driven synchronized state )(SPÀF��¦�À��nmN� } nÀ - is given by,

¨�Àg� ���� )WLXA � -W© _� m � ¢ _"m )WL^A � -W©`_� m� ¢a_ � m )WLXA � -W©`_" �$��� (4.40)

© _� and ¢ _ � are derivatives at SbÀ�� } Àl� } �À � } "À and © _" and ¢ _" are derivatives at ) } nÀ - .
Lyapunov exponent corresponding to the difference variable is found as,p5]þ� c>de)WL^A � -V|Dp � (4.41)

where p � is, p � �Ûc �>ÃÜ ÄÆÅ Ü� Àh=?� c>dÆ¾ © _ )(SÕÀk- ¾ (4.42)

The coupling strength range for which the driven synchronized solution is stable, 1.e pg] àm , is given by, L^A L4 ô 5 p � à � (4.43)

Coupling function ¢£) } -¸�R©�) } - : We have investigated the network containing three nodes

numerically with ¢£) } -��2©�) } - . For logistic map with Ý�� �
, we find that nodes get driven

synchronized for coupling strength ranges mN%>LÕé à � à mN%êC and mN%êé à � s¶L . When we inves-

tigate further these two � ranges we find that in the lower range the behaviour is mostly

periodic while in the upper range it is periodic in the middle portion and is chaotic at both

ends. For mN%êé à � s¶L it is easy to see why the synchronized dynamics gives a stable attrac-

tor. Since c>de)WLðA � - à A�c>d�C for � �2mN%êé , from Eq. (4.41) we see that till p � is less than c>dXC ,

the value of Lyapunov exponent for an isolated logistic map at ÝR� �
, the synchronized

solution will be stable. The stability of the driven synchronized state for mN%>LÕé à � à mN%êC
appears to be because of either periodic attractor or chaotic attractor close the periodic

attractor with very small value of p � .
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Now we discuss the special cases where nodes are synchronized with variables show-

ing periodic or fixed point behaviour. For this study we use the original variables.

Case I. Synchronization to Fixed point : Nodes get synchronized to a fixed point with one

set of nodes having one value and the other set of nodes having a different value such as) } �À � } "À � ���� - and ( } nÀ � ���" ). Eigenvalues of Jacobian matrix (4.40) with ¢£) } -1�R©�) } - are,Ú � � )WLXA � -W© _� (4.44a)Ú " d nþ� LXA �C ),© _� |x© _" -e LC t )WL^A � - " ),© _� |<© _" - " A � )WLðA�C � -W© _� © _" (4.44b)

where ©o_� and ©`_" are the derivatives at � � and � " respectively. By putting the condition

that the magnitude of the above eigenvalues should be less than one, we get the � range

for which the fixed point state is stable. When the first two nodes synchronize with each

other, the three coupled maps system behaves like just two coupled maps and within this� range all the solutions are those of the two coupled maps. The expressions for � �� and� �" are � �� d " � )WLXA�Ý*|xC$Ý � -qe r )WLXA�Ý*|DC$Ý � - " A � � )WLXA�Ý*|xC$Ý � -C$Ý¸),C � ADL&- (4.45)

From Eqs. (4.44a) and (4.44b) the coupling strength values for which the fixed point solu-

tion is stable must satisfy ¾ )WLXA � -W© _� ¾ à L
and the following conditionLC�� L¸| äÝ¸)~Ý�A�C�-R  à � à ä |xC$Ý¸)~Ý»A¡C�-e| r ) ä |<C$Ý¸)~Ý�A�C�-F- " A � Ý¸)~Ý�A�C�-Ò)~Ý�ADL&- "� Ý¸)~Ý�A�C�-

(4.46)

Case II. Synchronization to period two orbit : Consider a periodic orbit of period two where

the first two nodes are driven synchronized and have the value � s � , and the third node has

has the value � s" . The period two orbit is obtained by interchanging these two values at

successive time steps. The Jacobian matrix for this periodic orbit can be written as ¨«�M¨Q�Ò¨6"
where ¨���� ���� )WLXA � -W©`_� m � ©`_"m )WL^A � -W©`_� � ©`_"�" © _� �" © _� )WLXA � -W© _" �$��� (4.47)
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where ©o_� and ©`_" are derivatives at � s � and � s" respectively and ¨�" is obtained by inter-

changing suffixes 1 and 2 in the expression for ¨ � . Eigenvalues of ¨ are given byÚ �å� )WLXA � - " © _� © _" (4.48a)Ú " d n � � �C ),© _� |D© _" -qe^¡ � "�O),© _� |x© _" - " |R)WLXA¡C � -W© _� © _"   "
(4.48b)

For ©�) } - given by logistic map, the periodic points are

� s � d " �mS¢e ¡ S�)WLXA	SðA LÝ -�� (4.49)

where S � LC Ë L¸| LÝ¸)WLXA�C � - Ì %
After imposing the condition ¾ Ú � d " d n6¾ à L we can get the � range for which the period two

orbit is stable. The first eigenvalue gives us the condition thatLXA � à ¾ LXA�C � ¾r )WL@|JÝ�A�C � Ý?-Ò) � � AHL¸|JÝ�A�C � Ý?- % (4.50)

The other two eigenvalues give us the same condition as in Eq. (4.46) except that � in this

inequality is substituted by L?A � similar to the case of two coupled maps [122]. For logistic

map with Ý�� �
, this range is given by mN%>LÕè�%Ø% à � à mN%êCGmN%Ø% .

Case III. Synchronization of all three nodes : It is also possible that all the three nodes get

synchronized (self-organized synchronization). The eigenvalues of Jacobian matrix for this

synchronized state ( } �À � } "À � } nÀ � } À ) can simply be written from Eqs. (4.44a) and (4.44b),

by putting ©o_� �R©`_" �n©`_,) } Àk- , which gives Lyapunov exponents as,pV�Û� phg§� L� c �>ÃÜ À*£FÅ Ü� Àh=?� chdÆ¾ © _ ) } Àû- ¾ (4.51a)p5" � chd()WL^A � -e|Hpig (4.51b)pkn � chd()WL^A�C � -e|Hpig (4.51c)

where phg is the Lyapunov exponent for an uncoupled map ©�) } - . For synchronous or-

bits to be stable, the two Lyapunov exponents ( p(" and pkn ) corresponding to the transverse

eigenvectors should be negative. We get the following � range for which both the trans-

verse eigenvalues are negative, L�A�¿ U5o�j à � à LC )WL9|x¿ U5o�j - (4.52)
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In this region coupled dynamics may lie on a chaotic or a periodic attractor depending

upon the value of p g . For ©�) } -O� Ý } )WL§A } - with Ý�� �
, p g �Bc>dXC and thus the range

of stability of the self-organized synchronization of all three nodes is (0.5, 0.75) and the

dynamics is chaotic.
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Figure 4.1: Phase space diagram showing different features of coupled dynamics in the two parameter space of� and � for three nodes bipartite network with logistic map as local map and coupling function ��
 â � � �(
 â � .
Different regions are T. Turbulent region, DP. Driven periodic, DF. Driven fixed point, DC. Driven Chaotic,
S. Self organized region and F. Fixed point. Region boundaries are determined based on the asymptotic
behaviour using several initial conditions, synchronization behaviour and the largest Lyapunov exponent.
The dashed lines indicate uncertainties in determining the boundaries. The inset shows the phase diagram
for the entire range of parameter � from 0 to 4.

Phase diagram in Ý�A � plane : Fig. 4.1 shows phase diagram in the Ý»A � plane for three

nodes bipartite network with ¢£) } -ó� ©�) } - . For Ý à´ä we get a fixed point solution. To

understand the remaining phase diagram consider the line ÝI� �
. Fig. 4.2 shows two

sets of differences between the values of variables, ¾ } � A } " ¾ (open circles) and ¾ } � A } n ¾
(crosses) as a function of the coupling strength � . Bipartite driven synchronized state and

global self-organized synchronized state are clearly seen.

Fig. 4.3(a) shows largest Lyapunov exponent and Fig. 4.4(a) shows the fractions of inter-

and intra- couplings, ©P4 \ À*X Z and ©$4 \ À ZF[ , as a function of � for q¥¤x� �
(for the definition of
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Figure 4.2: The figure shows the variation of two sets of difference, ¦ âc§# � âa¨# ¦ (open circles) and ¦ âi§# � âa©# ¦
(crosses) for a three nodes network as a function of the coupling strength � for �(
 â � � � â 
���� â � with � ���
and ��
 â � � �(
 â � . For each � , 100 values of the differences are plotted after an initial transient.© õÍö�÷~ø~ù and © õÍö�÷~úûø , see section 2.5, chapter 2).

Initially for small coupling strength values nodes are in the turbulent region (region

T). As the coupling strength increases beyond a critical � � we get bipartite driven syn-

chronized state (region DP). This region corresponds to the Case II of period two orbits

discussed above in this subsection. When the coupling strength increases further we get

a reappearance of turbulent region. As the coupling strength is increased further all the

nodes are synchronized giving one cluster with global self-organized synchronization (re-

gion S). This region corresponds to the case III discussed above and the range of � for this

region is given by Eq. (4.52). In this region the coupled dynamics lies on a chaotic attractor.

In the last three regions (DC, DP and DC), we get driven bipartite synchronization. The

middle region (DP) displays driven fixed point solution (case I) while the other regions

show chaotic behaviour.

For Ý à � , the coupling strength range where all the nodes are synchronized (region S)

increases in size and the coupling strength ranges where nodes show driven synchroniza-

tion shift towards the nearest boundaries � �nm and � ��L .
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Figure 4.3: (a) The figure shows the largest Lyapunov exponent � as a function of the coupling strength �
for the three nodes bipartite network with logistic map as local map with � �A�

and ��
 â � � �(
 â � . (b) Same
as for (a) but for a bipartite network of 50 nodes with

� � ���O�X�����
.

Coupling function ¢£) } -¸� } : Numerical analysis shows periodic solutions which we now

consider in detail. When the first two nodes are driven synchronized the solutions of the

dynamical equations are similar to the two nodes case. This simplifies the analysis consid-

erably.

Case I. Driven synchronization to period two orbit : First we consider the case where the

coupled dynamics shows periodic attractor with period two behaviour and the variables

take the values } �À � } "À � } nÀhÏ?� � � s �} nÀ � } �ÀhÏ?� � } "ÀhÏ?� � � s" (4.53)

Using the product of Jacobians of Eq. (4.40) for two consecutive time steps the eigenval-

ues for this periodic orbit can be easily obtained. The eigenvalue
Ú ] associated with the

difference variable ¦7À is given by Ú ] ��)WLXA � - " © _� © _" � (4.54)

The other two eigenvalues are the eigenvalues of product matrix ¨V� ¨6" , where ¨�� is given

by Eq. (4.13) and hence the eigenvalues are given by Eq. (4.14). The solution of the periodic
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Figure 4.4: (a) The figure shows the fractions of inter- and intra-cluster couplings, �< )!�#&%(' and �� )!�#*'L+ , as a
function of the coupling strength � for the three nodes bipartite network, logistic map as local map with � ���
and ��
 â � � �(
 â � . The values are obtained by averaging over 50 random initial conditions. (b) Same as for
(a) but for a bipartite network of 50 nodes with

� � �½�O�X�½���
.

orbit is the same as for two coupled maps (Eq. (4.16)). Using all the three eigenvalues of Ja-

cobian matrix, the coupling strength range, for which the periodic orbit given by Eq. (4.53)

is stable, is given by

Ãóò$ô � L�A Lr © _� © _" � ¾ ©`_� ©`_" ¾$ADL¾ © _� © _" ¾ |nL   à � à L (4.55)

The periodic points � � and � " are also the periodic points of uncoupled map © (Eq. (4.11)).

For logistic map, we get the following range of coupling strength in terms of logistic map

parameter Ý , L�A CÝ " A½C$Ý»A ä à � à L (4.56)

which is the same as Eq. (4.17). The lower bound of � matches exactly with the boundary

between the regions IV-DP and IV-DQ of Fig. 1 of Chapter 3 and regions DP and DQ of

Fig. 4.5.

Case II. Synchronization of all three nodes : All three nodes get synchronized for a small

coupling strength region with dynamics lying on periodic orbits of period two such that} �À � } "À � } nÀ � � s �} �ÀhÏ?� � } "ÀhÏ?� � } nÀhÏ?� � � s" (4.57)



Temporal Dynamics and Synchronization in CMNs: Stability Analysis 69

0.6
3 4

1

3.5 3.7 3.93.6 3.8 43.4

0

0.2

0.4

0.8

1

0

DP
F

S

D

T

µ

ε

T

ε

µ

Figure 4.5: Phase space diagram showing different features of coupled dynamics in the two parameter space
of � and � for three nodes bipartite network with logistic map as local map and coupling function ��
 â � �â . Different regions are T. Turbulent region, DP. Driven periodic, DF. Driven fixed point, DQ. Driven
Quasiperiodic, DC. Driven Chaotic, S. Self organized region and F. Fixed point. Region boundaries are
determined based on the asymptotic behaviour using several initial conditions, synchronization behaviour
and the largest Lyapunov exponent. The dashed lines indicate uncertainties in determining the boundaries.
The inset shows the phase diagram for the entire range of parameter � from 0 to 4.

The eigenvalue of the Jacobian for this periodic orbit for the difference variable is simply)WL A � - " ©`_� ©`_" and the other two eigenvalues are the same as for two coupled maps and are

given by Eq. (4.10). The periodic points are given by Eq. (4.12). The coupling strength

range for which all three nodes are synchronized for logistic map with Ý<� �
, is mN%>LÕì�%Ø%Ø% à� à mN%êC � %Ø%Ø% which is same as Case I for two coupled maps with ¢£) } -¸� } .

Phase diagram in Ý<A � space : Fig. 4.5 shows different phases in the ÝxA � plane for

three nodes bipartite network with ¢£) } -�� } . For Ý àzä we get a fixed point solution.

To understand the remaining phase diagram consider the line ÝH� �
. Fig. 4.6 shows two

sets of differences between the values of variables, ¾ } � A } " ¾ (open circles) and ¾ } � A } n ¾
(crosses) as a function of the coupling strength � . Bipartite driven synchronized state and

global self-organized synchronized state are clearly seen.

Fig. 4.7(a) shows largest Lyapunov exponent and Fig. 4.8(a) shows the fractions of inter-

and intra- couplings, ©P4 \ À*X Z and ©$4 \ À ZF[ , as a function of � for q¥¤l� �
. Initially for small cou-
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Figure 4.6: The figure shows the variation of two sets of difference, ¦ âc§# � âa¨# ¦ (open circles) and ¦ âi§# � âa©# ¦
(crosses) for a three nodes network as a function of the coupling strength � for �(
 â � � � â 
���� â � with � ���
and ��
 â � � â . For each � , 100 values of the differences are plotted after an initial transient.

pling strength values nodes are in turbulent region with no cluster formation at all (region

T). As the coupling strength increases beyond a critical �Õ� , we get global self-organized

state (region S). This region is the case II considered above. When the coupling strength

increases further we get a reappearance of turbulent region. In the last two regions we get

driven bipartite synchronization (regions DQ and DP). The last region corresponds to case

I of period two discussed above in this subsection and the critical coupling strength for it is

given by Eq. (4.55). For Ý à �
, the coupling strength region for driven synchronization gets

wider and that for self-organized synchronization gets thiner with a shift towards � �Rm .

4.3.2 Complete Bipartite Coupled Networks

Let us now consider a complete bipartite network of �®�t�l�@|²��" nodes and dynamics

defined by Eq. (4.37). We define a bipartite synchronized state of the bipartite network as

the one that has that all ��� elements of the first set synchronized to some value, say � �b)~yF- ,
and all ��" elements of the second set synchronized to some other value, say � "�)~y�- . Linear
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stability analysis of the bipartite synchronized state can be done using the Jacobian matrix,

¨�À��
��������������

)WLXA � -W©`_� m % % % m �' � ¢2_" �' � ¢2_" % % % �' � ¢a_"
...

...
...

...
...

...
...

...m m % % % )WLXA � -W© _� �' � ¢ _" �' � ¢ _" % % % �' � ¢ _"�' � ¢2_ � �' � ¢2_ � % % % �' � ¢2_ � )WLXA � -W©`_" m % % % m
...

...
...

...
...

...
...

...�'�� ¢ _ � �'�� ¢ _ � % % % �'�� ¢ _ � m m % % % )WLXA � -W© _"
�$������������� (4.58)

where ¢ _ � and ¢ _" are the derivative of ¢£) } - at � � and � " respectively. It is easy to see that

the eigenvectors and eigenvalues of the above Jacobian matrix can be divided into three

sets, �Æ�lª���8 , as,

set Eigenvectors Eigenvalue No of eigenvalues condition� )(« � % % %0« ' � ��m¬}$}$}�m6- )WLXA � -W©`_� � � ADL ®«f�nmª )!m�% % %�mN�G¯V�?% % %l¯#' � - )WLXA � -W© _" ��"�ADL ¢¯f�nm8 )(«1� % % %u«1�G¯1� % % %=¯g- - 2 -

Here, ( «1� � % % %=«g'�� ), ( ¯e�Õ� % % %°¯£' � - and «1�G¯ are complex numbers satisfying the conditions

specified in the last column. The two eigenvalues corresponding to the set 8 are the eigen-

values of the matrix �� )WLXA � -W© _� � ¢ _"� ¢a_ � )WL^A � -W©`_" �� (4.59)

We make the following observations. (a) The three sets of eigenvectors, �Æ�lª���8 , are or-

thogonal to each other and the total space of eigenvectors may be written as a direct sum

of these three sets. (b) The three sets of eigenvectors do not mix with each other under time

evolution. (c) The eigenvectors belonging to the first two sets ( � and ª ) are also the eigen-

vectors of the product of any number of Jacobian matrices under time evolution. (d) The

two sets of eigenvectors � and ª are transverse to the synchronization manifold which is

defined by the last set of eigenvectors 8 .
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Lyapunov exponents corresponding to the transverse eigenvectors can be easily writ-

ten as p 4 � c>dÆ¾ )WLXA � - ¾Õ| L� c �>ÃÜ ÄÊÅ Ü� Àh=?� c>dÆ¾ © _ ) � � - ¾i�.� TR� 3���LG� % % %&��� � ADL (4.60a)

p.4 � c>dÆ¾ )WLXA � - ¾Õ| L� c �>ÃÜ ÄÊÅ Ü� Àh=?� c>dÆ¾ © _ ) � "&- ¾i�±� TR� 3��n�O�Ò� % % %b���ÿA�C�% (4.60b)

The synchronized state is stable provided the transverse Lyapunov exponents are neg-

ative. If ©o_ is bounded as is the case for the logistic map then from Eqs. (4.60) we see that

for � larger than some critical value, � � ) à L&- , bipartite synchronized state will be stable.

Note that this bipartite synchronized state will be stable even if one or both the remain-

ing Lyapunov exponents corresponding to the set 8 are positive, i.e. the trajectories are

chaotic.

Now we study the periodic behaviour of coupled dynamics of Eq. (4.37). Here we

consider two cases, fixed point attractor and periodic attractor with period two, as we

studied for three nodes.

Coupling function ¢£) } -¸�R©�) } - : The fixed point bipartite synchronized solution with one

set of nodes taking value � Þ� and the other set � Þ" , is given by Eq. (4.45). Jacobian matrix

for this solution gives three sets of eigenvalues, first set of �¡L§A:L degenerate eigenval-

ues )WLáA � -W©o_� , second set of �«C§AnL degenerate eigenvalues )WLáA � -W©²_" and third set of two

eigenvalues given by Eq. (4.44b). The conditions for the stability of this solution is given

by Eq. (4.46) and ¾ )WL^A � -W©q_� ��C.¾ à L .
The bipartite synchronous period two solution is obtained when one set of nodes take

the value � s � and the other set of nodes take the value � s" and the two values alternate

in time. This solution is the same as given by Eq. (4.49). The eigenvalues ( Eqs. (4.48a)

and (4.48b), with the �zAxC fold degeneracy of
Ú � ) and the conditions for stability of the

solution are the same as for Case II of three nodes with ¢£) } -¸�R©�) } - .
The global synchronized solution where all nodes of the bipartite network are synchro-

nized, has the same Lyapunov exponents (except the degeneracy) as in Eqs. (4.51c) and the

stability criterion is again given by Eq. (4.52).

Coupling function ¢£) } -¸� } : Consider a periodic orbit of period two with bipartite syn-

chronized state where all nodes of one set take value � � and the other set take value � " ,
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Figure 4.7: (a) The figure shows the largest Lyapunov exponent � as a function of the coupling strength � for
the three nodes bipartite network with logistic map as local map with � �D�

and ��
 â � � â . (b) Same as for
(a) but for a bipartite network of 50 nodes with

� � �½�O�X�½���
.

and the two values alternate in time. The solutions is same as for case I of three nodes

bipartite network. The stability ranges are given by Eqs. (4.55) and (4.56).

Fig. 4.3(b) plots the largest Lyapunov exponent as function of � and Fig. 4.4(b) plots© õÍö�÷~úûø , © õÍö�÷~ø~ù as a function of � for the bipartite networks with ¢() } -��î©�) } - and Ý´� �
.

Comparing with the three nodes networks (Figs. 4.3(a) and 4.4(a) ) we find that the major

difference is in the range mN%êCGmN%Ø% à � à mN%êé where the turbulent region reappears for the

three nodes network while mixed region having both driven and self-organized clusters

is observed for the larger bipartite networks. The region boundaries for the period two,

globally self-organized state and fixed point are the same as given for cases II, III and I

respectively for three nodes bipartite network.

As in the case ¢() } - ��©�) } - , there is a similarity between the three nodes bipartite net-

works and the larger bipartite networks for ¢£) } -¸� } . Fig. 4.7(b) and Fig. 4.8(b) plot respec-

tively the largest Lyapunov exponent and ©6õÍö�÷~úûø , ©$õÍö�÷�ø!ù as a function of � for the bipartite

network with ¢() } -Ê� } and ÝH� �
. Comparing with the three nodes network (Fig. 4.7(a)

and Fig. 4.8(a) ), we find that the main difference is in the range mN%êC � %Ø% à � à mN% ä é�%Ø% .
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Figure 4.8: (a) The figure shows the fractions of inter- and intra-cluster couplings, �  )!�#&%(' and �  )!�#*'L+ , as a
function of the coupling strength � for the three nodes bipartite network, logistic map as local map with � ���
and ��
 â � � �(
 â � . The values are obtained by averaging over 50 random initial conditions. (b) Same as for
(a) but for a bipartite network of 50 nodes with

� � �½�O�X�½���
.

4.3.3 Lyapunov Function Analysis

For the complete bipartite networks, Lyapunov function as defined by Eq. (4.2), for any

two nodes belonging to the same set is given by° 4 wÀhÏ?� ��ÓØ)WL^A � -Ò),©�) } 4À -�A�©�) } w À -F- Ö " (4.61)

Expanding around } w À gives the ratio of Lyapunov functions at two successive times,° 4 wÀhÏ?�° 4 wÀ ��)WLXA � - " � © _ ) } w À -V| } 4À A } w ÀC © _ _ ) } w À -e|³yY)F) } 4À A } w À - " - � "
If the term in the square bracket on the RHS is bounded then there will be a critical value

of � beyond which ´fµ ¶·¹¸ �´²µ ¶· à L and thus the bipartite synchronized state will be stable.

We see that for driven synchronization, Lyapunov function for any pair of nodes does

not depend on the size of the complete bipartite network and type of the coupling because

in the expression for Lyapunov function, contribution of such couplings cancel out. This

is not the case for globally coupled networks where contribution of the coupling terms for

the two nodes under consideration do not exactly cancel and the size of the network has

an effect on the asymptotic behaviour.
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For the logistic map and using mós } 4À | } w À sHC and Eq. (4.3), we get the following range

for � values for synchronization of nodes 3 and � ,Ý�AHLÝ s � s:L (4.62)

A better � range can be obtained by taking a more appropriate boundary as � U à } 4À | } w À à� Ï , which gives LXA LÝf� à � s¶L
where � is defined after Eq. (4.34).

4.4 Self-organized and Driven Synchronization

The analysis presented so far shades some light on the dynamical origin of the two types of

synchronization namely self-organized and driven, that we have studied. From Eq. (4.6a)(b)

we see that in the dynamics of the difference variable ¦.À for the two nodes network the

coupling term adds an extra decay term. This is also seen from the expression (4.19) for

Lyapunov function. On the other hand, from Eq. (4.39b) we see that in the dynamics of the

difference variable for the three nodes network the coupling terms with the third variable

cancel out (see also Eq. (4.61) for Lyapunov function). The situation is more complicated

when we consider larger networks. The driven synchronization shows the same trend i.e.

cancellation of the coupling terms in the dynamics of the difference variables and as well

as in the expression for Lyapunov function (Eq. (4.61)). On the other hand, Eq. (4.32) for

Lyapunov function for the globally coupled maps shows that the direct coupling term, be-

tween the two nodes under consideration, adds an extra term in the difference variable

while the coupling terms to other variables cancel out.

4.5 Coupled Maps on Multipartite Networks

In this section we study the coupled maps on the multipartite networks. It is just a exten-

sion of the study of the coupled maps on bipartite networks.
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4.5.1 Model

A complete multipartite network consists of many sets of nodes with each node of one

set connected with all the nodes of other sets. We take a network consisting of   sets�æLG���TC�� % % %&�   , �í��� � |²� " |^}$}$}6|D� \ nodes and º ' ��|9º ' � |^}$}$}�|9º 'f» connections.

Each node of any set � is connected to all the nodes of other  §A«L sets. We will refer to this

network as   -partite network. Model for coupled complete multipartite can be written as,} 4ÀhÏ?� � )WLXA � -W©�) } 4À -e| �� A½�O� �� ' � ÏV' ��w =V' � Ï?� ¢£) } w À -e| ' � ÏV' � ÏV'q¼�w =V' � ÏV' � Ï?� ¢£) } w À -e|p}$}$}$| '�w =V'�U#'q» ¢£) } w À - ����
f ½<¾�3���LG� % % %b���ó�

} 4ÀhÏ?� � )WLXA � -W©�) } 4À -e| �� A½��" �� ' ��w =?� ¢£) } w À -V| ' � ÏV' � ÏV'f¼�w =V' � ÏV' � Ï?� ¢£) } w À -e|�}$}$}$| '�w =V'XU#'q» ¢() } w À - ����
f ½<¾g3��{�O�g|nLG� % % %&����"

...
...

...
...

...
...

...
...} 4ÀhÏ?� � )WLXA � -W©�) } 4À -e| �� A½� \ �� ' ��w =?� ¢£) } w À -e| ' � ÏV' � ÏV'q¼�w =V' � ÏV' � Ï?� ¢£) } w À -V|p}$}$}G| '�U#'f»�w =V'�U#'f»GU#'�¿ »�ÀW��Á ¢£) } w À -�����

f ½<¾g3��{�ÿA½� \ � % % %Õ���
(4.63)

We define a multipartite synchronized state of the multipartite network in the same man-

ner as we defined for bipartite state in the previous section. In multipartite synchronized

state, all �O� elements of the first set synchronized to some value, say � �&)~yF- , all ��" elements

of the second set synchronized to � " )~yF- and so on. In the following sections we study linear

stability analysis for coupled dynamics on the multipartite network.

4.5.2 Linear Stability Analysis

Eigenvalues and eigenvectors of Jacobian matrix for the   -partite synchronized state can

be divided into  *|nL sets as,
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set Eigenvectors Eigenvalue No of Condition

Eigenvalues�Æ� )(«��e% % %=«?' � ��m¬}$}$}�mN�$}$}$}�}$}$}Q��m¬}$}$}�m6- )WLXA � -W© _� �ó�¸AHL ®«f�nm� " )!m�% % %�mN�G¯V�Q% % %l¯#' � �$}$}$}�}$}$}e��m�% % %�m6- )WLXA � -W©`_" �§"�AHL ¬¯«�nm
...

... }$}$}�}$}$} ...
...

...
...� \ )!m�% % %�m¬}$}$}�}$}$}�m�% % %�mN�GÂ � % % %lÂ 'f» - )WLXA � -W©`_" � \ ADL ¢Âó�nm� \ Ï?� )(«¸� % % %=«¸�G¯1� % % %0¯¸�$}$}$}�}$}$}lÂ % % %°Â.- - n -

Here, ( «1�Õ� % % %0«g' � ), ( ¯V�Õ� % % %l¯£' � -��$}$}$}æ)ÃÂN�Õ� % % %lÂ6'f»�- and «¸�G¯1� % % %$�®Â are complex numbers

satisfying the conditions specified in the last column. The   eigenvalues corresponding to

the set �EB�Ï?� are the eigenvalues of the matrix�������� )WLXA � -W©`_� ' � �'�U#' � ¢a_" }$}$} ' » �'�U#' � ¢2_\' � �'�U#' � ¢2_ � )WLXA � -W©`_" }$}$} 'q» �'�U#' � ¢2_\
...

...
...

...'�� �'�U#'f» ¢2_ � }$}$} }$}$} )WLXA � -W©`_\
�$������� (4.64)

where ¢a_ � �W¢2_" � % % %&�W¢2_\ are the derivatives of © at � �Õ� � "G� % % %b� � \ respectively.

The )~ *|nL&- sets of eigenvectors follow the properties of eigenvectors for bipartite syn-

chronized state given in section 4.3. Set � \ Ï?� defines the synchronized manifold and other  sets of eigen vectors � � }$}$}°� \ are transverse to the synchronized manifold. Lyapunov

exponents corresponding to the transverse eigenvectors are,pV�9�¶p.4 � c>dÆ¾ )WLXA � - ¾Õ| L� c �>ÃÜ ÄÊÅ Ü� Àh=?� c>dÆ¾ © _ ) � ��- ¾i� for 3��2LG��� AHL
p " �¶p 4 � c>dÆ¾ )WLXA � - ¾Õ| L� c �>ÃÜ ÄÊÅ Ü� Àh=?� c>dÆ¾ © _ ) � " - ¾i� for 3��{� � ��� � |<� " A�C

...
...

...p \ �¶p 4 � c>dÆ¾ )WLXA � - ¾Õ| L� c �>ÃÜ ÄÊÅ Ü� Àh=?� c>dÆ¾ © _ ) � \ - ¾i� for 3��n� A½� \ A½ ����`A� 
(4.65)

where pe�Ò��p5"G�$}$}$}Òp \ are respectively �*�^A¶LG����"TA¶LG�$}$}$}Ò� \ A¶L fold degenerate. The syn-

chronized state is stable provided the transverse Lyapunov exponents are negative. If ©�_
is bounded as is the case for the logistic map then from Eqs. (4.65) we see that for � larger
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than some critical value, �0Ä ) à L&- , multipartite synchronized state will be stable. This bipar-

tite synchronized state will be stable even if one or all   remaining Lyapunov exponents

corresponding to the set �7B�Ï?� are positive, i.e. the trajectories are chaotic.

We study different cases of synchronization, and for this we make one simplification

in the structure of the multipartite network. We consider equal number of nodes in all the

sets of the multipartite network, i.e. �Y�X�¶��" �P}$}$}.�:� \ . With this simplification we can

write rest   Lyapunov exponents corresponding to the Jacobian ( Eq. (4.64) ) as,

p5'XU \ Ï?�å� c �hÃÜ ÄÊÅ L� Ü� Àh=?� c>d �� )WL^A � -W© _À | � ¢ _À �� (4.66a)

p5'XU \ Ï(" � p5'XU \ ÏonÅ}$}$}��¶p#'²�Ûc �>ÃÜ ÄÊÅ L� Ü� Àh=?� c>d ���� )WLXA � -W© _À A � �AHL ¢ _À ���� (4.66b)

Coupling function g(x) = f(x) : The global synchronized state, where all the nodes are

synchronized, has the following Lyapunov exponents,pV� � p ß � L� c �>ÃÜ ÄÊÅ Ü� Àh=?� c>d �� © _ ) } Àk- ��p " � c>de)WLXA   �ADL � -e|xp ßpknþ� }$}$}Òp#'²�Rc>de)WLXA � -V|Dp ß
where p5" and pkn are respectively   A�L fold degenerate and ��AY  fold degenerate. Both pe"
and pkn are transverse Lyapunov exponents. Condition for stability can easily be calculated

as, LXA�¿ U5o�Æ à � à  �ADL  )WL@|x¿ U5o�Æ - (4.68)

We see that this range depends on the number of sets in the multipartite networks, not on

the total number of nodes in each set.

Coupling function ¢£) } -¸� } : From the expressions in Eqs. (4.66), it is difficult to deter-

mine the stability of the global synchronous state or periodic driven state. We consider a

special case when coupled dynamics of the fully synchronized state lies on the fixed point

attractors. Using set of Eqs. (4.66) and (4.65) and for © _ à m , the stable range for fixed point

attractor is easily found as, ¾ © _ ¾GADL¾ © _ ¾$A �\ UV� à � à L (4.69)
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It is clear from above expression that the fully synchronous fixed point solution is stable

only for  ��zC . For bipartite network we did not observe this global fixed point state,

instead coupled dynamics got settled on periodic driven state for large coupling strength

region.

4.6 Floating nodes

As discussed in the Chapter II, the nodes of a network can be divided into three types

based on their asymptotic dynamical behavior, namely (a) cluster nodes: These nodes re-

main in a synchronized cluster for all the time, (b) isolated nodes: these nodes do not

belong to a synchronized cluster at any time and (c) floating nodes: these nodes show an

intermittent behavior between evolution synchronized with some cluster and isolated evo-

lution. Here we try to analyze the reasons for the occurrence of floating nodes. Consider

a floating node of degree + such that there are +#� connections to nodes belonging to the

cluster and +7"*�´+YAH+�� connections to nodes outside the cluster. Consider an evolution

when the floating node is synchronized with the cluster. The dynamics of the floating node

is given by } ÀhÏ?�9��)WLXA � -W©�) } Àk-V| �+ � +���¢() } À�-V| S �� 4>=?� ¢£) } w À -   % (4.70)

Assume that the other nodes of the cluster remain in the synchronized state. Hence small

deviation ¹ } À of the floating node evolves as

¹ } ÀhÏ?����)WLXA � -W© _ ) } Àk-W¹ } À£| �+ S �� 4>=?� ¢ _ ) } 4À -W¹ } 4À % (4.71)

Since other nodes in the cluster remain in the synchronized state, we expect that on the

average ¾ )WL A � -W©o_!) } À - ¾ à L (see the expressions for the transverse Lyapunov exponents in

Eq. (4.24b) for large � and Eq. (4.60)). Hence, the floating node can leave the cluster only

if the magnitude of the second term in Eq. (4.71) is sufficiently large to overcome the first

term. For this to happen, one or more of the following possibilities exist.

(1) +6" is large.

(2) These + " nodes do not belong to a single synchronized cluster.

(3) The +6" nodes evolve chaotically.

The numerical observation of the floating nodes supports these observations. We note
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that the floating nodes are observed in the partially ordered region (region III in Figs. 3.8

and 3.9 of the previous chapter) where the evolution is chaotic. There are several clusters

and isolated nodes. The floating nodes in general have some connections to other isolated

or floating nodes. Though this simple argument is not sufficient for identifying the exact

nodes which show floating behavior, it does give us some understanding of why and when

a node can be a floating node.

4.7 Summary

We study self-organized and driven synchronization in coupled map networks using some

simple networks, namely two and three nodes networks and their natural generalization

to globally coupled and bipartite networks respectively. For this study we use both linear

stability analysis and Lyapunov function approach and find out the different region for

which synchronized states are stable.

For the globally coupled network we analyze the global synchronized state while for

the complete bipartite network we analyze the bipartite synchronized state. We also con-

sider fixed point and period two synchronized states. The linear stability analysis for dif-

ferent states gives different regions in the phase diagram, plotted in the Ý»A � space. Syn-

chronized states lie on different periodic or chaotic attractor depending on the coupling

functions, coupling strength and underlying topology of the network. We see that most of

the features of coupled dynamics of small networks with two or three nodes, are carried

over to the larger networks of the same type. We also find that the phase diagrams for sim-

ple networks studied here in this chapter have features very similar to the different kinds

of networks studied in the previous chapter.

From the Lyapunov function approach we see that for the difference variable for any

two nodes, that are in driven synchronization, all the coupling terms cancel out whereas

when they are in self-organized synchronization though coupling terms for couplings to

other nodes may cancel, the coupling terms corresponding to the direct coupling, between

the two nodes under consideration, do not cancel. We also make a simple analysis of the

dynamics of a floating node and it gives us an understanding of the conditions for the

occurrence of the floating nodes.

We also study the coupled dynamics on multipartite networks. It is a extension of work
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done for the coupled dynamics on bipartite networks. We perform linear stability analysis

for the stability of different synchronized states. Though it is difficult to get the exact

analytical range for   -partite driven synchronized state but we see in section 4.4.2 that  
ideal driven synchronized state exists. Lyapunov function analysis for two nodes, in the

driven synchronization, remains same for complete bipartite and complete multipartite

networks.

The analysis presented in this chapter is for exact synchronization while previous chap-

ter (Chapter III) considers phase synchronized clusters. However, we feel that the dynam-

ical origin for the two mechanisms of cluster formation should be similar in both cases.

This is supported by the very similar features of plots of phase space, largest Lyapunov

exponent, ©G4 \ À*X Z and ©G4 \ À ZF[ for the three nodes and complete bipartite networks and the

corresponding plots for several networks considered in the previous chapter.



Chapter 5

Conclusions and Future Outlook

In conclusion, this thesis reports the different mechanisms of synchronization and clus-

ter formation in coupled dynamics on the networks. We find that as dynamics evolves with

time, after some critical coupling strength dynamical elements coupled via the links of the

network, form synchronized clusters. Arrangement of the nodes in the synchronized clus-

ters are of the two different types, based on the connections among them in the network.

We study the mechanism of cluster formation as well as the behaviour of the individual

nodes, both forming clusters and evolving independently. Our new findings are presented

with extensive numerical results which are further supported by the physical explanations

and analytical solutions. Following I present the brief summary of all the chapters and the

future outlook.

In the temporal evolution of coupled maps on networks, we identify two different

ways of cluster formation, self-organized synchronization which leads to the clusters with

dominant intra-cluster couplings and driven synchronization which leads to the clusters

with dominant inter-cluster couplings. We define different states of coupled dynamics as,

turbulent state, partially ordered, ordered and coherent states depending on the number

of clusters and the number of nodes forming clusters. We make extensive studies for the

phase-diagram in the Ý�A � plane, for the local dynamics governed by the logistic map.

We study the stability of self-organized and driven synchronization in some simple

networks using both linear stability analysis and Lyapunov function approach. Linear

stability analysis shows that self-organized and driven synchronization is stable with peri-

odic, quasiperiodic and chaotic solution depending on the local dynamics, coupling func-

tion, coupling strengths and topology of the networks. Lyapunov function analysis shows

the origin for self-organized and driven synchronization in the globally coupled and com-
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plete bipartite networks and we feel that similar mechanisms are valid for other random

networks studied in the chapter 3.

Now I restate the main theme of my thesis and provide the outlook for the future prob-

lems. The main theme of my thesis lies in the fact that different chaotic dynamical el-

ements, when connected with each other via the links of a network, form synchronized

clusters, and there exists two different ways (mechanisms) of cluster formation depending

on the nodes, which are directly connected and nodes which are not directly connected.

The study of coupled maps in the light of our newly found mechanisms of synchronization

raises many questions. Few questions are; How does the dynamics of coupled maps select

a particular configuration of synchronized clusters? In the partially ordered region we find

floating nodes, what role these floating nodes play in synchronizing orand desynchroniz-

ing the other nodes connected with them ? What role do the highly connected nodes play

in cluster formation? How does the synchronization gets affected with coupling strength ?

By looking at the dynamics of one single nodes or few nodes of the network whether one

can know the topology of the entire network ? Apart from above queries to be investigated

in future, there are several other extensions of this thesis work, a simple and important ex-

tension is, to study the synchronization properties of coupled oscillators on the various

networks.



Appendix

Here we show that the definition of phase distance ¦�4 w between two nodes 3 and � satisfies

metric properties. Let Ç 4 denote the set of minima of the variable } 4À in a time interval ñ .

The phase distance satisfies the following metric properties.

(A) ¦64 w �R¦ w 4 .
(B) ¦64 w ¼Hm and the equality hold only if Ç�4e�DÇ w .
(C) Triangle inequality: Consider three nodes 3 , � and + . Denoting the number of elements

of a set by ¾i%�¾ , let,

(1) È ��¾ Çl4iÉÊÇ w ÉËÇ S ¾ .
(2) Ì���¾ Çl4iÉ�Ç S ¾$A�È .

(3) ¥ �ý¾ Ç w ÉÊÇ S ¾GA�È .

(4) ¦ ��¾ Çl4iÉÊÇ w ¾$A�È .

(5) ¿á��¾ Ç 4 ¾$A	Ì9A½¦�A�È .

(6) ©��ý¾ Ç w ¾$A ¥ A�¦ÆA�È .

(7) ¢ó��¾ Ç S ¾GA	Ì9A ¥ A�È .

We have   4 S � ÈÊ|DÌ  w S � ÈÊ| ¥  4 w � ÈÊ|J¦ V4 � ÈÊ|DÌ1|<¦á|x¿  w � ÈÊ| ¥ |<¦á|x©  S � ÈÊ|DÌ1| ¥ |¡¢
Consider the combination ¦ 4 S |<¦ w S A½¦64 w ��L�A � (1.1)
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where � �   4 SÃóò$ô )~ V4k�F  S - |   w SÃóò$ô )~  w �F  S - A  V4 wÃóò$ô )~ V4��F  w -The triangle inequality is proved if � s¶L . Consider the following three general cases.

Case a.   4 sx  w sx  S :

� � ÈT|³Ì  S | ÈT| ¥  S A ÈT|<¦  ws ÈT|³Ì�| ¥ A½¦  Ss L (1.2)

Case b.  e4gsx  S sx  w :
� � ÈT|³Ì  S | ÈT| ¥  w A ÈT|<¦  ws ÈT|³Ì�| ¥  Ss L (1.3)

Case c.   S sx V4�sx  w :
� � ÈT|³Ì V4 | ÈT| ¥  w A ÈT|<¦  ws ÈT|³Ì�| ¥  4s ÈT|³Ì�| ¥  Ss L (1.4)

This proves the triangle inequality.
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