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Chapter 1

General Introduction

1.1 Background

The phenomenologiéal Interacting Boson Model (IBM) of atomic nuclei proposed by
Arima and Tachello (1975), to describe the low-lying collectivity of even-even medium
;amd heavy mass nuclei, has been extensively studied (Tachello and Arima 1987,Cas-
ten and Warner 1988 ) and has earned its place as a standard model for analysis
of experimental data. Corresponding to the pairing and quadrupole degrees of free-
dom, established to be the most dominant modes of nucléar collective motion, the
IBM-1 assumes, for a pair of valence nucleons, a boson carrying angular momen-
tum J = 0(s-boson) or J = 2(d-boson) respectively. The boson Hamiltonian and
the other operators are then constructed by evaluating their parameters from fits
to experimental data. This model has so far gone through several extensions (See
lachello and Arima 1987) such as (i) IBM-2, where neutron and proton bosons are

distinguished (i) IBM-3 and IBM-4, where bosons corresponding to neutron-proton



paifs ‘are also incorporated, (iii) inclusion of g-bosons (J = 4) corresponding to hex-
-adecapole collectivity and so on. The wide success of phenomenological IBM has
also inspired, concurrent with the development of IBM-2, a great deal of activity
and investigations into the microscopic foundations of IBM in terms of the valence
neutrons(v) and protons(r) (Iachello and Talmi 1987). In these calculations, one
attempts to actually construct the boson states and the Hamiltonian together with
other operators in terms of the valence neutron and proton pairs and the interaction
amongst them. Several schemes and procedures have been proposed to carry out
such calculations and have also been applied, with various degrees of success, to the
study of nuclear vibrational and rotational collectivity and shape transitions between
them. In the present thesis, an alternative procedure to carry out this construction is
presented. This procedure has also been applied to study‘ vibrational and rotational
nuclei. The shape transition from vibrational to rotational in even —A Mo and Sm

isotopes is also studied.

It is well known that nuc_léar shell model calculations, although fundamental
and microscopic, become prohibitive for the medium and heavy mass nuclei with
the valence nucleons occupying closely spaced spherical single particle (s.p.) levels
because of large matrix dimensions. For example, in 1%49m, with 12 valence protons
(relative to Z = 50) and 10 neutrons (relative to N = 82), the number of positive
parity states with J = O‘ and 2 are ~ 41 trillion and ~ 346 trillion respectively
(Otsuka et al. 1978a)! However, in the study of low-lying spectra of such nuclei, we
are concerned with only very few of these trillions of levels which are experimentally
observed and identified. Hence it is obviously desirable to seek for a hypothesis
which allows us to drastically truncate the SM space without losing much relevant

‘information in the process and retrieve the properties of low-lying states from the
truncated space. One effective and practicable method is the well established Hartree-

Fock (HF) procedure along with the angular momentum projection and band mixing



techniques (Khadkikar et al. 1974, Khadkikar and Praharaj 1983, Sahu and Pandya
11984, Praharaj 1989, Rath 1991) where this problem of large multiplicity of states
is circumvented by considering various low lying variational states and particle-hole

excitations based on them.

In an alternative and very instructive Shell Model (SM) calculation, Hecht et
al. (1972) demonstrated that the low-lying collective spectra can be generated to
more than 90% accuracy in a drastically truncated SM space by choosing only a few
low-lying and coherent “favored pairs” of protons and neutrons separately and then
mixing them by neutron-proton term of the surface delta interaction (SDI) (Brussaard

and Glaudemans 1977).

The basic premises of IBM-1 are reflections of the existence of such favoured
pairs. As already stated, they are based on the fact that the pairing and the
quadrupole degrees of free'dom are the most dominant aspects of nuclear collectivity
in the low energy regions of nuclei away from closed shell configurations. The most
important achievement of this model has been that the Hamiltonian Hipn-: With s-
and d-bosons (sdIBM-1) has, as limiting cases, three dynamical symmetries — those
of (i) U(5), (ii) SU(3) and (iii) O(6) groups. These symmetry groups alongwith the
angular momentum conservation given by the O(3) subgroup correspond to three
types of nuclear collective. motion — vibrational, rotational and v-unstable (Iachello
and Arima 1987) as also shown by the Collective Model (CM) of Bohr and Mottelson
(1975).

The complete set of basis states, constructed from the framework provided by
the group reduction chain of any one of these symmetries also allows us to study the

‘transitional nuclei as perturbative cases.

The obvious and natural extension of sdIBM-1 to sdIBM-2 (Arima et al. 1977,



Otsuka et al. 1978a, 1978b) where-distinct neutron and proton bosons were incorpo-
-rated brought it into closer correspondence with the SM and made it possible to carry
out IBM calculation in microscopic basisvand established its foundations in the funda-
mental nucleonic degrees of freedom. This extension also reve‘a,led further systematics
in the nuclear collectivity such as F-spin symmetry among the neutron and proton
bosons. It also led to a natural explanation of magnetic dipole (M1) transitions, and
of the ‘scissors’ mode (m low-lying collective 1+ states) in deformed nuclei (review by

Lipas et al. 1990).

Otsuka et al. (1978a,1978b) initiated the microscopic IBM calculations and in
fact pioneered the most popular procedure, known as the OAI mapping, to establish
the correspondence between the valence nucleon pairs and the bosons and to construct
the boson operators as images of the cofresponding fermionic operators. With the
valence nucleons in a ‘single-j shell for every pair coupled to angular momenta 0 and
2, they demonstrated the method to construct the S- and D-pairs (Otsuka et al.
1978b) corresponding to the s- énd d-bosons. The space constructed by these pairs,
called the S— D subspace, was shown by them to be a very good approximation to
the full SM space. They also established the Marumori mapping of states in the
S — D space onto those in the s— d boson space. This mapping helped evaluate the
parameters of the boson Hamiltonian through calculation of a few fermion matrix
elements in the S— D spa:ce. This method has since been developed and modified to
address more and more complex situations by introducing necessary approximations.
A different technique based on Dyson boson mapping (Ring and Schuck 1980) has
also been employed to this end (Klein and Marshalek 1991).

The three most important questions addressed in most of these calculations

are the following:

1. What are the physically dominant, and hence relevant, collective degrees of

4



freedom in terms of pairs of nucleons in the fermionic space which serve as the
basis for the drastic truncation of SM space and are represented by bosons in

the corresponding boson space?

2. How exactly do we realise the bosons in IBM as coupled pairs of valence nucleons

distributed over the s.p. SM states?

3. How to construct operators in the boson space as images of the respective
fermion operators acting on basis states constructed out of the nucleon pairs

and spanning the truncated SM space?

As stated above, a great deal of endeavour has gone into the vast literature of
microscopic IBM calculations addressing these questions. We shall discuss them at

some length in the next chapter.

1.2 Scope of the Thesis

In this work, an alternative method to construct the identical nucleon pairs and
the IBM-2 operators (Hamiltonian and the E2-transition operator) from microscopic
fermion input is presented. A discussion of its merits and shortcomings compared to
other approaches alongwi%h a brief survey of the latter is also presented. This new
scheme is then applied to study the low-lying collective spectra and E2 transition

probabilities of a large number of nuclei.

The identical nucleon pairs are constructed for each nucleus under consid-
fera,tion, by a prescription(Sarangi and Parikh 1990) from its prolate-deformed HF
solutions. This is a general prescription and applies to any even-even nucleus with
at least two valence nucleons of each kind. The energy of each pair and the inter-

action between a neutron and a proton pair are evaluated by employing standard

5



SM spectroscopy techniques; These matrix elements define the IBM-2 Hamiltonian
‘through a Marumori mapping (Ring and Schuck 1980) from the identical nucleon
pair space onto the boson space. The tWo-body identical boson matrix elements are,
however, ignored as an approximation. These matrix elements cannot be evaluated
from the fermion picture because the necessary one-to-one mapping from the nucleon

pair space of two identical pairs onto the space of two identical bosons cannot be

established.

This scheme of constructing the sdgIBM-2 Hamiltonian and other operators
is then applied to study the low lying spectra of nuclei. The caiculations for simple
nuclei like °Ne, *4T%, ©Zn and %Mo with only one boson of each kind reproduce the
Yrast levels of these nuclei in very good agreement with experimental and SM results
(Sarangi and Parikh 1991). The non-Yrast levels for **Ne, *T1, %°Zn are pushed up
in energy, whereas those of ®*Mo are reproduced well. As the valence ngﬁtrons and
protons in the three lighter nuclei occupy the same s.p. spherical shell model space,
it is more appropriate to carry out the calculations in the IBM-3 domain (Elliott
1985, Elliott et al. 1987) where bosons corresponding to neutron-proton mixed pairs
are incorporated. The IBM-2 Hamiltonian for these nuclei does not conserve the
isospin symmetry. However, our isospin mixing analysis of the eigenstates of the
Hamiltonian for these nuclei shows that for the Yrast levels the isospin still remains
almost conserved. This explams their good agreement w1th the experimental and SM
results. For non- Yrast levels, however, there is substantial mixing of different isospin

states which explains the upward shift of these levels.

IBM studies of collective behaviour of nuclei in medium and heavy mass region
is, quite obviously, numerous and varied. The s.p. shell model space available to the
valence nucleons, even within a major shell is fairly large for these nuclei, and hence

varied collective properties are observed in the isotopes and isotones in these regions.



A épéctacular example is thé shape transition of nuclei from spherical to axial rotor
in even — A Zr and Mo nuclei bin the medium mass and Nd—Sm —Gd nuclei in
the heavier mass regions. There have been several phenomenological IBM studies
(Casten and Warner 1988, Devi and Kota 1992) to study such phenomena. Several
authors have also carried out microscopic IBM calculations to examine the vibrational
and rotational spectra and the shape transitions (Scholten 1983, Pannert et al. 1985,
Druce et al. 1987, Navratil and Dobes 1991). In fact, reproducibility of these observed
phenomena of shape transitions in nuclei has been the test for the various schemes

and procedures to construct the IBM from a microscopic basis.

We have applied our microscopic formulation to the study of the well-known
shape transitions in even-A %6-1% {4 and 46-154 § 1, isotopes. While microscopic IBM
calculations have already been carried out for the the Sm isotopes (Scholten 1983,
Navratil and Dobes 1991), we have carried out the first such calculations for the Mo

isotopes.

Due to the lack of a suitable IBM-2 code explicitly incorporating g-bosons,
we have carried out these calculations in the IBM-1 model. In the first step, to this
ehd, we project the IBM-2 hamiltonian Hypy_, and E2-transition operator 7},(352_),
onto those in IBM-1 by the projection techinque of Frank and Lipas (1990) based on
F-spin symmetry. The parameters of the IBM-1 operators thus determined are then

used in the SDGIBM1 code of Devi and Kota (1990) to generate the spectra and
calculate the B(E2) values.

We have been able to reproduce very closely the experimental and theoretically
calculated spectra and E2-transition probabilities clearly showing the characteristics
of shape transition. It may be noted here that the three formalisms - those of Scholten
and of Navratil and Dobes and ours used for deriving the microscopic IBM parameters

of Sm isotopes are mutually distinct and different. Yet the results agree with each



other quite well. We have also carried out detailed spectroscopic calculations for
- 148Sm which is a spherical nucleus and °Nd and 2Sm which are known to be

rotational.

In these studies we find that in order to consistently reproduce the observed
spectra of the full isotopic chain, we still have to vary a few of the fermion input
parameters like the strength of the effective two-body interaction and the effective
charges. Similar observations have also been made by Scholten(1983) and by Navratil
and Dobes(1991). |

In Chapter 2, a brief survey of earlier approaches in microscopic IBM calcu-
-lations and details of the present scheme are discussed. Its merits and shortcomings
vis d vis other procedures are also pointed out. The results of sdgIBM-2 calculations
applying the formalism of Chapter 2 to 2 Ne, 4T, ©Zn and *Mo and the anal-
ysis are reported in Chapter 3. The study of shape transitions of even-A %-198 7,
and M6-154Gm isotopes and detailed spectroscopic calculations are presented and dis-
cussed in Chapter 4. We also present a comparative study of sdgIBM-2 and sdgIBM-1
spectra for ** Ne and %Mo in this chapter. The thesis concludes with a summary and

a short discussion of future calculations in Chapter 5.



1 3 References

10.

11.

12.

13.

14.

. Arima A and lachello F 1975 Phys. Rev. Lett. 35 1069

Arima A, Ohtsuka T, Iachello F and Talmi I 1977 Phys. Lett. 66B 205

Bohr A and Mottelson B R 1975 in Nuclear Structure Vol. II (W. A. Benjamin,
Reading, Mass.)

. Brussaard P J and Glaudemans P W M 1977 in Shell Model Applications in

Nuclear Spectroscopy (North Holland, Amsterdam), and the references therein

Casten R F and Warner D D 1988 Rev. Mod. Phys. 60 389, and the references

therein

Devi Y D and Kota V K B 1990 in FORTRAN PROGRAMMES FOR SPEC-
TROSCOPIC CALCULATIONS IN (sdg)-BOSON SPACE - THE PACKAGE
SDGIBMI (Physical Research Laboratory) (PRL-TN-90-68)

Devi Y D and Kota V K B 1992 Phys. Rev. C45 2238

Druce C H, Pittel S, Barrett B R and Duval P D 1987 Ann. Phys. 176 114

. Elliott J P 1985 Rep. Prog. Phys. 48 171

Elliott J P, Evans J A and Williams A P 1987 Nucl. Phys. A469 51
Frank W and Lipas P O 1990 J. Phys. G16 1653
Hecht K T, McGrory J B and Draayer J P 1972 Nucl. Phys. A197 369

Tachello I and Arima A 1987 in The Interacting Boson Model (Cambridge Univ.

Press), and the references therein

Tachello F and Talmi I 1987 Rev. Mod. Phys. 59 339, and the references therein



15.
16.
17,
18.
19,
20.
21.
22,
23.
24.

25.

26.

27,

28.

29.

Khadkikar S B, Kulkarni D R and Pandya S P 1974 Pramana 2 259

Khadkikar S B and Praharaj C R'1983 Phys. Rev. Lett. 50 1254

Klein A and Marshalek E R 1991 Rev. Mod. Phys. 83 375 \

Lipas P O, von Brentano P and Gelbex;g A 1990 Rep. Prog. Phys. 53 1355
Navratil P and Dobes J 1’991 Nucl. Phys. A533 223

Otsuka T, Arima A, Jachello F and Talmi I 1978a Phys. Lett. 76B 139
Otsuka T, Arima A and Iachello F 1978b Nuel. Phys. 309 1

Pannert W, Ring P and Gambhir Y K 1985 Nuel. Phys. A443 189
Praharaj C R 1989 Pramana- J. Phys. 32 351

Rath A K 1991 Ph.D. Thesis, Institute of Physics, Bhubaneshwar -

Ring P and Schuck P 1980 in The Nuclear Many-Body Problem (Springer-Verlag,
New York Inc.)

Sahu R and Pandya S P 1984 Nucl. Phys. A414 240

Sarangi Subrata and Parikh Jitendra C 1990 in DAE Symposium in Nuclear
Physics at Madras

Sarangi Subrata and Parikh Jitendra C 1991 DAE Symposium In Nuclear Phy-

sics at Bombay

Scholten O 1983 Phys. Rev. C28 1783

10



Chapter 2

Formulation

2.1 Earlier Approaches

Microscopic studies of IBM began with the extensive and elaborate paper by Otsuka,
Arima and lachello (1978b). They first demonstrated that truncation of the Shell
Model (SM) space to S~ D subspace is a good approximation scheme and more
importantly, they presented a seniority-based mapping technique of the SM states in
the S— D subspace with single-j shell configurations onto those in the s—d boson
space of IBM-1. By virtie of this mapping which is of Marumori type (Klein and
Marshalek 1991), they constructed the boson image of the fermion opérators in the
S~D space. This mapping technique has since been popularly known as the Otsuka-
Arima-Jachello (OAI) mapping and has been developed and applied by many authors
.(Iachello and Talmi 1987),

The OAI mapping procedure can be described in three major steps. First the

nucleon pair creation operators St and DJTW with senjority v = 0,2 respectively are

11



constructed from the single particle (s.p.) creation operators a;fm

St=v0al, = \/g(a}a})hwﬂ o (2.1)

and

D}y =PAl, = —%P(a}a})”“ (2.2)
where the terms (a;a;)"M stand for a coupled pair operator with angular momentum
J and projection M. In eq. (2.1), the S* operator is equivalent to the quasi-spin step
up operator 5. of the Racah seniority scheme, 20 = 2§ + 1 is the degeneracy of the
shell. The operator P in eq. (2.2) projects out that component of Abys which acts on
the highest seniority v-particle state l7*vJM") to generate the highest seniority state
|7*2v+2J'M"). Thus D}, is the highest seniority generator with angular momentum
J = 2. 8t and D}, operating on the fermionic vacuum (the core) |0)z, generate the

corresponding pairs.

In the next step, the normalized n(= even)-particle states

(= L(n +0))!
(3(n = v))I(Q = v)!

i"(SF"=)D#)a M) = J (SN0 (DF)aM)  (2.3)

that span the S—D subspace are constructed. In eq. (2.3) |j“(D§"“)aJM) is the
normalized v(= even)-particle highest seniority state constructed by the operation

of (D)3 on |0)F generating a set of intermediate angular momentum states o =

{Jl) Jay J%—u-—l}'

Similarly, the boson states spanning the N-boson space with N, s-bosons and

Ny d-bosons (N, + Ny = N)
sV dNea T M) = Nigtst™ [dVea s M) (2.4)

are constructed by acting with the corresponding boson creation operators st and

d' on the boson vacuum 0)5. However, for Ny > 4, dN configuration gives rise to

12



muitiple J states. In order to label them, the states are classified using the group
~chain U(5) D O(5) > 0(3) > 0(2) (Iachello and Arima 1987) and labelled by the
quantum numbers Ny , vy (d-boson seniority), n (number of d-boson triplets coupled
to angulér momentum 0), J and M. Otsuka et al. demonstrated that one can relabel
the D subspace states of eq. (2.3) with the boson quantum numbers through a
one-to-one mapping onto the d-subspace. This mapping is realized by a similarity

transformation on the states of eq. (2.3) with vy = 2Ny,

‘Jv(D%u) ”Ud ////nA " JM) — chanAJMIju(D;—u)aJM> (2'5)

Substituting these states in eq. (2.3) and correspondingly in the boson states

of eq. (2.4) we establish the Marumori mapping.
|5 (s7(r=) Dy iy iy "IM) & |sNedNayn, JM) (2.6)
Here we recall that N = N, + Ny =n/2 and N, = 7(n—v).

In the third step, the boson images OB of the fermion operators OF are con-
structed. The above mapping being Marumori type, the parameters of OF are deter-
mined by the requirement that its matrix elements (m.e.) in the boson space spanned
by the states on the r.h.s. of eq. (2.6) reproduce the m.e. of OF in the fermion space
(Lh.s. of eq. (2.6)). In principle, OF of the n’-body opefator OF should be a se-
ries expansion of n”-body boson operator n” > n'. However, Otsuka et al. have
demonstrated that for a number conserving OF, the zeroth order approximation to
OB, ie., n" = n' is sufficient to produce good results in agreement with those of
fermionic calculations. Evaluation of the parameters of @B in zeroth order involves
cialculations of m.e. of OF only in the lower j» (typically, s and j*) configurations.
This is possible because of the applicability of Racah seniority reduction formulae
and their similarity with the reduction formulae for s-bosons. Once these parameters

‘are fixed, the spectroscopic calculations are performed in the boson space which is
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much simpler than that in the fermionic space and the results are almost as good.

Otsuka et al. (1978&) also employed a similar mapping technique in IBM-2
regime and reproduced the low-energy collective spectra of Ba iso;copes. The valence
nucleons here are assumed to be occupying a j = %1— shell, an approximation for
Z = N =50-82 major shell. Yet, the qualitative features of the spectra of Ba isotopes
including the observed vibrational to ratajonal shape transition in the neutron-rich

isotopes are reproduced.

The OAI mapping procedure laid down a method for mapping from the nucleon
pair space onto the boson space and to construct the boson operators as images of the
fermion operators. Applicability of Racah seniority reduction formulae makes these
calculations simple and analytically tractable. It is applicable for the case of single-j
shell or degenerate multi- J shell calculations (Otsuka 1981). The matrix elements
derive their dynamic character through the boson numbers N,, and Ng,. Actual shell
effects of the j-shells in the major shell are, however, glossed over. The pairs S, and

D, do not get a dynamic character with the change of NV,.

Pittel et al. (1982) and Druce et al. (1987) generalised this method of seniority
based mapping to realistic cases of non-degenerate multi-j shell configurations by
invoking the concept of generalised seniority (Talmi 1971).  The S—D space of Pittel
et al. (1982) is spanned b;f N pair states constructed out of the “dominant” collective
pairs 5}|0)r and D}0)r (p=v and = for a neutron and a proton pair respectively).
These collective pairs are chosen to be the energetically lowest J= 0 and 2 eigenstates
of the one-plus-two body Hamiltonian in identical 2-particle configurations of the
model spaée {7*}. The operators 5'; and D; are now correlated pair creation operators

expressed as linear combinations of operators that create the nucleon pairs in specific
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s.p. orbits

SZ = Z‘ij(a}p&jp)oo (27)
L
and
D;,M = Z ﬂjpj’lp(a}p&jlp)ZM (28)
ie <jle

The generalised seniority v, of a state of identical nucleons with N, pairs is defined as
twice the number of non-S, pairs in that state. The OAI mapping is easily established
among pair states of low generalised seniority v, < 2, i.e., states containing a maxi-
mum of one D,-pair for p = v and 7 and the corresponding bosons. Parameters of the
zeroth order boson image OF are determined by demanding that the low generalised
seniority (v, <2, v =v, + v, < 4) m.e. of OF be exactly reproduced by the m.e. of
OF with the corresponding boson states. Once these parameters are determined, the
higher g.enera,lised seniority m.e. in the fermion space are approximated in terms of
the rather easily calculated boson m.e. with higher boson seniority states. The low
generalised seniority m.e. of OF are calculated analytically by Pittel et al. through a
technique of expanding S':[N in terms of J = 0 pair creation operators of the single-j
orbits in the chosen model space {j*}(Pittel et al. 1982; Allaart et al 1988). This
expansion allows the application of seniority scheme to evaluate m.e. of the individual
orbits. Druce et al. (1987) extended the truncated space to include the effects of G,

states pertubatively by renormalising the parameters of the sdIBM2 Hamiltonian.

A shortcoming of this procedure is that the structure of S, and D, pairs, i.e.,
the coefficients cjo and Be;1, do not reflect the presence of many valence nucleons and
hence is not dynamic. This is especially so, in the case of deformed nuclei with many
valence nucleons, where the coefficients evaluated from two-particle configurations
have large discrepancies from their actual values. Pittel et al. attempted to overcome
this problem by phenomenologically choosing the single particle energies (s.p.e.) such

that they vary with the number of valence nucleons. In Scholten’s iterative procedure
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(1983) these coefficients are determined by self-consistently taking into account the

presence of all the neutron and proton pairs.

- The approach of Gambhir et al, (1982a, 1982b) and of Va;l Egmond and Al-
laart (1984) employing the Broken Pair Approximation (BPA) (Allaart et al, 1988) is
clearly more general and dynamic compared to that of Pittel et al, (1982), Following
the generalised seniority scheme of Talmj (1971), it is assumed here that the ground
state (J™ = 0%) of a semi- -magic nucleus with 2N, active identical nucleons consists of
only S, pairs (Allaart et al. 1988) and can be written as (S5)Ne|0) 5. The coefficients
aje (eq. (2.7)) are then variationally evaluated by minimising x(0|($ o) Vo H, (SHNe|0)
where H is the one-plus-two body identical nucleon Hamiltonian. The broken pair
basis states I(PJ,,J,,,) are then constructed by replacing one S,, pair in the ground state

by a two particle creation operator AJPJ,,, with total angular momentum J > 0

JM
l(pjpjlp) X A

jegle

f(shy¥e=1)0), | (2.9)

The structure coefficients ;071 (eq. (2.8)) of the D, pair are determined by diagonal-
ising the Hamiltonian H, in the space spanned by I(DJ,,J,,,) and choosing the energet-
ically lowest-eigenvector. Once these coeflicients are determined, the OAI mapping
is constructed from the $—D space spanned by (51)M|0), and (S;)NP‘ID;‘,IO)F onto
the corresponding states in the boson space spanned by (s1)™2)0) 5 and (s;)NP"leIO)E
and the parameters of the boson Hamiltonian. are determined by equating the cor-
responding boson and fermion matrices (Gambhir et al. 1982a). Van Egmond and
Allaart (1984) evaluate the coefficients @;» and aj= by minimising the energy of the
N, 4+ N, pair states (SHN(SHN=10) » with the Shell Model Hamiltonian. The coeffi-
cients B;0; of the D, pairs are determined by minimising the SM Hamiltonian in the
space of A*iﬁo(S;)NP"l(S;,)Np'!O)F with (p # p' = v, 7). The OAI mapping is then
constructed in much the same way as done by Druce et al. (1987). The SM matrix

elements which define the parameters of the Hamiltonian through this mapping are
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ﬂcalcﬁlated by the broken—paif formulae developed by Gambhir et al. (1969, 1971,
1973) and Lorazo (1970).

This procedure, as discussed by Gambhir et al. (1982b) and Van Egmond
and Allaart (1984), holds good for vibrational nuclei where the ground state, to a
very good approximation, consists of S-pairs only. The situation, however, changes
in case of transitional and rotational nuclei where D-pairs do occur in the ground
states also. Van Egmond and Allaart also present the correction schemes to modify
ti1e S-pair structure coefficients a;» to account for the Pauli blocking effect caused
by the presence of D-pairs in the ground state. They also present a renormalisation

scheme to take into account effects of higher collective pairs such as G, and other

non-collective pairs in the sdIBM2 operators.

Recently, Skouras et al. (1990) and Bonatsos et al. (1991) have presented a
method of mapping the non-orthogonal SM states of a nucleus of 4-active particles
constructed out of two 2-particle (two-pair state) states with spin-isospin quantum
number JT to a corresponding two-boson state. The nonorthogonal two-pair state
is eventually orthonormalised by diagonalising the SM overlap matrix. This method
does not assume, unlike the OAI mapping, any ordering of SM states according to
number of S-pairs and, hence is named by the authors a “Democratic mapping”.
Apart from being applicable to odd-A nuclei (Boson-Fermion systems) (Skouras et
al. 1990), this method has the ﬁotential of widening the boson space (Bonatsos et
al. 1991) to include s’ and d’ bosons to handle the intruder states aﬁd band mixing
~ calculations as well as the proton-neutron bosons of IBM-3 and IBM-4 construct.

Applied to single-j shell nuclei (Skouras et al. 1990) and to 4-particle sd-shell (** Ne)
and fp-shell (**T%) (Bonatsos et al. (1991)) it has been successful. However, as
‘discussed by the authors themselves (Bonafsos et al. (1991)), the real test of its

merit will be when it is applied to heavier (even-even) sd- and fp-shell nuclei.
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As discussed earlier, construction of the correlated pairs S,y D, and G, follow-
ing the seniority based procedures (gengralised seniority or BPA) in spherical basis
had the drawback that it could not apply to the cases of transitional and rotational
nuclei safisfactorily. For such cases, there have been several attempts to construct
the correlated pairs by first constructing a C‘ooper pair in deformed basis and then

projecting out its good J(=0,2,4..) components.

In the Nilsson-plus-BCS calculations (Otsuka et al. 1982, Bes et al. 1982) the

deformed single particle orbits a},|0)» are generated in the a;kaIO) r basis space by
dia,gonalising the Nilsson Hamiltonian. The BCS calculation is then performed on
these states by minimising the energy of the BCS-Nilsson state
IBCS — Nil) = T (Upe + Vkpak,,a )10) - (2.10)
kp>0
where Ugp and Vj, are the non-occupation and occupation probability amplitudes of
the state a,t,,[O)F, atp is the operatof which creates time reversal state éf a,t,,]O)F

k
The normalised number-projected state |[BCS — Nil) with 2N, particles is written as

2N,) = N (A,1)2|0) (2.11)
where Al is the deformed Cooper pair operator
A=Y Copalal0)e (2.12)

normalised by the condition (0]A,Al|0), = 1. This operator is then expanded in
terms of good-angular momentum coupled operators A;{OT with the projection quan-

tum number M =0
=Szl Al (2.13)
J

and the coefficients z]. The A/{OT with J=0,2,4,.. given by

AP = S Blie(aleal,)’. (2.14)

JPLsP
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are 1dent1ﬁed as S,, D,, G,,.. correlated pairs respectively. The expansion coefficients
,ijj,,, here are functions of C,, :cp, Viee apd Uke. These calculations show that the S
and D pairs together account for > 85% of the deformed pair A}, Although @
‘pairs contribute a very small amount ~ 10%, their contribution is very crucial in

reproducing the intrinsic quadrupole moment given by the full wave function.

More accurate procedure was followed by Pittel and Dukelsky (1983) and Pan-
nert et al. (1985) in pursuing number-projected HFB calculations. These calculations
also indicate the small but important role played by the G-pairs in the deformed nu-
clei (Sm 1sotopes as shown by Pittel and Dukelsky). Pannert et al. (1985), in their
extensive calculations on **~1% Dy and 8-154Sm isotopes which exhibit shape tran-
sition in going from lighter to heavier mass A, extensively discuss and demonstrate

the need to extend the truncation of the fermion space from S—D to S—D — G

subspace.

Maglione et al. (1982) proposed a collective pair approximation with the pair

creation operator At given by

At = oSt + 8D (2.15)
and the ground state of a nucleus with 2V valence particles given by

[Wan) = (ANYY]0), | (2.16)

The coefficient of expansion «, A in eq. (2.1‘5) and the structure coeflicients aj, g;;:

of the S- and D- pairs are determined by minimising

(Von[H|¥sn)
(Uon|¥an) (2.17)

with different values of V.

However, calculation of spectra have so far not been reported in sequence to

these procedures in the deformed basis.
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. The OAI mapping technique applied in the work discussed so far is of Maru-
mori type. An alternative method of mapping due to Belyaev and Zelevinsky (BZ) has
also been applied by many authors (Klein and Mashalek 1991). Unlike the Marumori
mapping where state vectors of correlated pairs are mapped onto those of the boson
space and the matrix elements are equated, hefe the nucleon pair (or “bifermion”) op-
erators (namely, the pair creation, annihilation and multipole operators) are mapped
onto appropriate operators in the boson space. These operators in the boson space
are constructed out of the basic boson operators (which obey the standard boson
’commutation relations) in such a way that their commutation relations and those of

their fermionic counterparts, in the respective spaces, are identical.

Our work to be presented in the next section, belongs to the domain of Maru-
mori method. Hence, in the following, we shall for the sake of completeness Very

briefly review the work done in the BZ domain.

Out of several prescribed versions of this general method two have been re-
ported (Navrétil and Dobes 1990) to be successful. Bonatsos et al. (1984) presented
a version, known as Holstein-Primakoff version where the bifermion operators in a
single-j shell with symmetry SO(2(2j + 1)) are mapped onto boson operators sat-
isfying the same Lie algebra. This procedure has the satisfactory consequence that
introduction of g bosons becomes a necessity in order to satiéfy commutators to higher
orders. This method has since been generalised to non-degenerate multi-j shell cases

(Bonatsos and Klein 1987; Menezes et al. 1987)

The other successful version has been the Dyson boson mapping (Gambhir et
al 1985, Geyer 1986, de Kock and Geyer 1988, Navratil and Dobes 1990, 1991). Here
the nucleon pair operators are mapped onto the Dyson boson operators which are
functions of the basic boson operators and are generated by a non-unitary transfor-

mation. The Dyson-boson image OP is obtained by simply replacing the operators
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in OF by their corresponding Dyson boson operators . The non-unitarity involved
gives rise to non- Hermitian boson Hamiltonian M expressed in terms of the basic
boson operators. Gambhir ef al. constructed the correlated identical nucleon pair
operators (or the “collective bifermion excitations”) employing the BPA method and
then mapped them onto the boson space. They advocated construction of the HP
matrix in the bi-orthonormal physical boson basis(Dyson-transformed basis states of
‘the fermion space) and then hermitisation of HP by following Gambhir-Basavaraju

(1979) prescription.

Geyer (1986) and de Kock and Geyer (1988) presented, for a single-j shell case,
an alternative procédure to construct the seniority-boson operators (in the OAI sense)
from the Dyson-boson operators. In their procedure, the pairing Hamiltonian ’Hf in
the fermion space plays a special role. Decomposing the matrix H}? of its Dyson image
which is tringular (non-Hermitian) into a diagonal part Hy and off-diagonal part W,
they construct a similarity transformation Z using Hy and W. This transformation
relates the eigenstates of Hy (which are seniority-like) to those of HP. This similarity
transformation along with the hermitisation prescription (Gambhir and Basavaraju
1979) now can generate a Hermitian boson operator @ from OP and in particular
any H® from the corresponding HP. In this process the OAI results are recovered.
Navratil and Dobes (1990,1991) have been able to generalise this procedure to non-
degenerate multi-j shell ‘for sdIBM-2 and sdgIBM-2 calculations respectively and
have reported good results for rare-earth and actinide nuclei. Recently, Dobes et al.
(1992) have demonstrated the equivalence of this procedure with the OAI procedure

in non-degenerate multi- J shell configurations.

The question as to how good is the S— Dsubspace as an approximation of the
large SM space has also attracted a great deal of attention. Shell model calculations

carried out by McGrory (1978, 1979) showed that the S- and D- coupled nucleon pairs
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exhaust only about 70% of the wave functions even for low spin states and indicated
the necessity to include higher angular momentum pairs such as J = 4(G) pairs in
the truncated space. Sage and Barrett (1980) demonstrated the effect of g-bosons (or
G-pairs) in their microscopic IBM calculations on Ba isotopes. Chakraborty et al.
(1980) also found it necessary to include the g‘-bosons in order to correctly reproduce
the spectra and the intrinsic mass quadrupole moments of deformed nuclei. It has
now been conclusively established by numerous experimental ( Todd Baker et al.
1985, Sethi ef al. 1990, Sethi et al. 1991) and microscopic (Otsuka et al. 1982,
Bes et al. 1982, Scholten 1983, Yoshinaga et al. 1984, P%mnert et al. 1985, Druce
et al. 1987, Dobaczewski and Skalski 1988, Navrdtil and Dobes 1991 and many
others) investigations that the G-pairs (or the g-bosons) do play a crucial role in
the reproduction of spectra and hence must also be taken into coxvnsideration in the
truncation of the SM space. In the IBM literature, the effect of g-boson has been
included in two ways. One method is to renormalise the parameters of the sdIBM
Hamiltonian and other operators in order to include these effects (Otsuka 1984, Van
Egmond and Allaart 1984, Druce et al. 1987). The other is to incorporate the g-
bosons in the calculations explicitly (Scholten 1983, Navratil and Dobes 1991, Dewvi
and Kota (1992)). With the development of sdgIBM-code (Devi and Kota 1990),
such calculations have also been made possible. Explicit inclusion of g-bosons makes
it possible to generate higher J levels in the spectrum which are outside the space of

only d-boson configurations.

The sdIBM with the inclusion of g-Bosons has been referred to as sdgIBM,
or in short gIBM, in the literature. All the work presented in this thesis has been
carried out in gIBM formalism with explicit inclusion of g-bosons. In the following,

we sometimes use the terms “gIBM” and “IBM” interchangeably.
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22 Our Scheme.

We have developed an alternative microscopic method to construct the correlated
S,, D, and G, pairs and derive the parameters of the IBM-2 one- and two-body
operators dynamically for every nucleus. This is a general procedure applicable to
any even-even nucleus with at least two valence nucleons of each kind. AIt is carried

out in three major steps as given below.

(1) We construct the correlated identical nucleon pair states [B%) with J = 0, 2 and
"4 (respectively, for S,, D, and G, pairs) from the axially-deformed and prolate HF
solutions by following a prescription (Sarangi and Parikh 1990).

(2) We then establish the Marumori mapping of single pair states |B%) and v pair
states |(BY, B}, )J) (J; and J; coupled to J) onto the corresponding boson states [69)
and |(b3,63,)J) respectively. This mapping equates the m.e. of the boson one and
two-body operators to the m.e. of the corresponding fermion operators with one-
and two-pair states respectively. This equality gives us the parameters of the IBM-2

Hamiltonian and the transition operators.

(3) Finally, we calculate the m.e. of the fermion oparators with one- and two- pair

states by employing standard methods of the SM spectroscopy.

The rest of this chapter is devoted to the detailed mathematical description
of the procedure. In Section 2.2.1 the construction of the correlated nucleon pairs
|B}) is presented. In Section 2.2.2 the mapping from nucleon pair space onto the
IBM-2 boson space is shown and the construction of Hyg,_, and the 7}1(352?2 operators
is described. The matrix elements of the corresponding operators in the fermion
space involving |Bf) and |(BY, B7,)J) are calculated in Section 2.2.3. The projection

of these IBM-2 operators onto the corresponding IBM-1 operators is described in
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Section 2.2.4.

2.2.1 Construction of the Correlated Identical Nucleon Pair

States

The nuclear Hamiltonian 7 for a system of n, (p = v and ) valence nucleons is given
by

np 1 o Ny N
H= 3 S h+ 52 VY vy (2.18)
P

=T oi=1 P=UT gty i=1 j=1

Here A{ is the one-body part with the harmonic oscillator and [s-coupling potential,
%78 " with 7 and J going over the appropriate particle indices are the residual two-body
interaction operators. The one-body part of the above Hamiltonian is given by the
set of single particle energies (s.p.e.) {;»} in the chosen single particle (s.p.) model
space {j°}. The axially-symmetric, good-parity prolate solutions are obtained by
minimising variationally the expectafion value of this Hamiltonian in the determi-
nantal space of n, nucleons in a major shell. This iterative procedure also gives the

set of s.p. HF orbits |p; £kn) with the HF s.p. energy e

These HF orbits |p; +-kn), where k and 11 are the angular momentum projection
quantum number along the symmetry axis and the parity respectively, are linear

superpositions of spherical s.p. model orbits

lpskn) = 3" Cierlsfkn)  [time—like] (2.19)
it
and
lp; —kn) = 3 Cioplsf~kn)  [time~—reversed] (2.20)

it
where the summations run over all j¢ orbits in the chosen model space. The single

oscillator major shell with the set of s.p. levels {j#} contains at the most one intruder
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- j-sI;eIl from the higher major shell with a different parity n. However, as this intruder
shell is always distinct from the rest of the j-shells in the set {j*}, we do not need
to explicitly carry the label i in the coefficients C’j'pk with which we deal henceforth.

. These coefficients of expansion Ciex and Clp, are related by the phase relation

Clop = (1)~ Cyey (2.21)

From the set of occupied orbits we evaluate the occupancy Xr of each spherical
orbit jf _
npf2
Xjp=2 ; cPP (2.22)
where [ is the index of the occupied orbit and the factor 2 accounts for the occupation

of the time-like and time-reversed orbitals 4k of the spherical orbit jf.

We now define the normalised s.p. deformed orbit |p; k = %)cﬁ‘

Ipik = B = EpieCielitin) (2.23)

i

with the coefficients of expansion C'j‘p given by

_ X;
Cio = +,| =2 (2.24)
] np
and the relative phase factors p;e fixed to be
ci
J‘
Pit = (2.25)
*ole

In eq. (2.25), C};) are the coefficients of expansion of the first (energetically lowest)
HF orbit (see eq.(2.19)). In case of occupied intruder orbits |p; £kn’) the phase of
the lowest ef, is chosen to be the corresponding pjr. Thus, it ought to be noted
here, that the |p; })eq orbit of eq. (2.23) does not have good parity. The motivation
behind choosing the phases pj» (eq.( 2.25)) for the orbit |p;k = 3)en is simply the
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facff that the energetically lowest HF orbit with this phase choice is invariably the
- most deformed orbit with maximum intrinsic quadrupole moment. Thus the average
field here is maximally deformed and the most collective which prompts us to make
the choice. This may be put forth as a plausibility argument for the above phase
choice. In our results presented in Chapter 4 we observe that this works. The time-
reversed orbit |p; k = —1)g is related to the time-like |p; k = L)est by the usual phase
relationship given by eq. (2.21).

From the two-particle determinant defined by these two deformed orbits, we
project out the good angular momentum and positive parity correlated pair states

|Biar=0) with J =0, 2 and 4 for the Sp=y Dp- and G,-pairs respectively

|BS) = NJ Z 1+ 6 ( 2*51:1 ) (32 3 3f — £1J0)

Jk'Jl k<

(—1)%= fpnpj, Cie 1(G%30)J0) (2.26)

Here and henceforth k denotes a s.p. index and not the s.p. projection quantum
number. A7 in eq. (2.26) is the normalisation constant and the quantity in trian-
gular brackets is the Clebsch-Gordan coefficient. From the eq. (2.26), we define the

coefficients C(k,)J
Clrys ——/VJ (=173 /14 6 (2= 6) (5 1 - %Ijﬁff 1 J0) pje pje Cip Che (2.27)
and the state vector |(p; kI)J M = 0)
(o5 k1)JO) = |(5¢5f)J0) (2.28)

Henceforth, we suppress the projection quantum number M = 0 and rewrite the eq.

(2.26) using the definitions of eqs. (2.27) and (2.28)

|1B5) = 2 Cluysl(pi k1)) (2.29)
(pikl)
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Note that the summation in egs. (2.29) and (2.26) are identical. The isospin quantum
numbers (T, T3) of the constructed pairs are (1,+1) and (1, ~1) for a v- and a 7-pair

respectively.

This method of construction of correlated pairs, based as it is on the self-
consistently generated HF solutions, is very similar to the procedure of Dukelsky and
Pittel (1983) and of Pannert et al. (1985) based on the HFB solutions. Projecting
out the good angular momentum states from the two-particle determinantal state
defined by the effective deformed orbits [k = £1).q is in parallel with their way
of isolating the correlated pairs from the expansion of the deformed Cooper pair
A, in terms of good angular momentum operators A;fof(eq. (2.13)). However, our
procedure is rather simple-minded compared to the HFB procedure which is a better
variational procedure explicitly incorporating the pairing interaction. Being based
on the occupancies le,p of the model orbits which vary with n,, i.e., from nucleus to
nucleus, the correlated pairs |B%) are dynamic in character. This proceciure, as also
those based on HFB or Nilsson-BCS calculations, does not demand thaf the ground
state of the nucleus should comprise only of S-pairs. Thus it is well-suited for studying
any even-even nucleus — whether spherical or deformed. In fact, our calculations
show that even in cases of nuclei exhibiting vibrational spectra, the D- and G-pairs
occur in the ground state although in a very small fraction. Van Egmond and Allaart
(1984) take qualitative account of this fact by incorporating Pauli-blocking corrections
into the S-pair structure. In our case these effects are taken care of through the

prescription.
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2.2.2 Marumori Mapping of Nucleon Pair States onto the
Boson States and Construction of the IBM-2 Opera-

tors

Under Marumori mapping (Klein and Marshalek 1991), we have the following corre-

spondence between the nucleon pair states and the boson states

nucleon pairs bosons
BY) - ) =0,24 - (2.30)
I(By,BL)J) = |(b5,65,)J) ;J1,J2 =0,2,4 (2.31)

In eq. (2.31), both the fermion pairs and the bosons being distinguishable, there is no
(anti)symmetry requirement amongst them and the coupled total angular momentum
J can take all the values allowed by the angular mometum coupling rules_. Hence the
one-to-one mapping of eq.(2.31) is straight forward. Mapping of two indentical pair
states |( B, BY,)J) onto the identical bosons states |(57,b7,)J) is not possible, because
the allowed values of J are not the same for the fermions (nucleons) and the bosons

due to the respective symmetry requirements.

The above mapping makes the boson m.e. equal to their nucleon pair coun-

terparts.
boson m.e. nucleon pair m.e.

(6510;165) = (B0, |B) (2.32)

(b7, 005,) T [Vor | (85,63,)T) = (B3, B3,)J [V, |(By,Bj,)J) (2.33)

Here OF and V2 denote the zeroth order one- and two-body boson images of the

respective fermion operators OF and V], .

It is clear from eq. (2.30) and (2.31), that our mapping procedure, though of
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Marumori type, is not an QAI mapping where N-pair states in the fermion space are
mapped onto the NV boson states.

Secondly, since it is not possible to establish a mapping bétween |(B%, BY,)J)
and l(‘bf}l 5,)J); we cannot determine the two-body identical boson interaction pa-

rameters of the IBM-2 Hamiltonian. However, this does not prove to be a severe
handicap because it is known (Scholten 1980; lachello and Talmi 1987) from the
2 — 0f level separation of the isotopes of semi-magic nuclei (Sn, Pb) and their
neighbouring even-even nuclei that the interaction among identical bosons can be
assumed to be negligible. On this ground, in the IBM-2 Hamiltonian we ignore the

interaction amongst identical bosons.

Construction of IBM-2 Hamiltonian

2

The general IBM-2 Hamiltonian H;gy_, can be written as
HIBM—Q - Hf + Hﬁ + Vfﬂ. (2.34)

Here H7 is the identical boson part of Hzy_, and VZ, is the two-body interaction
term amongst the v and 7 bosons. The M, term contains only the single boson

(energy) term as the identical two-body part has been ignored.

The boson matrix elements (b5|HZ|b5) and ((b%, b7,)J|V2|(by,b7,)J) are eval-
uated in eqgs. (2.32) and (2.33).by calculating fermion (nucleon) pair matrix elements
(BSIHE|BS) and ((BY, B3,)J|VE|(BY,Bj,)J) of the identical nucleon one-plus-two
body Hamiltonian #} and the neutron-proton interaction operator VJ, respectively.
We shall refer to these matrix elements as identical nucleon pair energy and the
neutron-proton pair interaction matrix elements respectively. The evaluation of these

fermion (nucleon) pair matrix elements is discussed in the next subsection.

29



The IBM-2 Hamiltonian, in terms of the boson creation and annhilation op-

erators bf}Jr and ¥, and the conventional tensor coupling notations, is given by

HmM_Q-—z L (b5t BY) +Z ey (o3t ) +
(-1)"'wj W(m x b3h" (85, x B3,)") (2.35)
J1JoJ3JyJ!

where Ji, J3, Js, J4 andJ = 0,2,4. The total coupled angular momentum J' in the
third term assumes all the values allowed by the angular momentum coupling rules.
The scalar product between the tensor operators U* and V* of angular momentum -

- rank k is defined in terms of the standard coupled tensor operators as
(U* - VY = (=1)*V2k F T(U* x VF)° (2.36)

The matrix elements €5 and Wy, ; ;. in eq.(2.35) are the boson matrix elements of
the boson operators H} and VZ, evaluated in egs. (2.32) and (2.33) respectively. In
the sdgIBM-2 Hamiltonian, the eq.(2.35) will have 6 single boson energies €5 and 82

distinct two-body (v7)-boson interaction matrix elements W3 ;. ;..

Construction of the E2-Transition Operator

The E2-transition operator 7},(31;7{2__)2 in IBM-2 can be written as

B = 7825 | T(E2).5 (2.37)

IBM~2

where 7;(E2)'B are the boson transition operators in the p-boson space given by

T = 5 () (238)
JJ!

with J and J’ going over the va,lues'().,2 and 4 for the s, d and g bosons. This operator

can be rewritten in expanded form
Tp(m) = eﬁd(‘S;JP + d;‘gp)g + egd(dlgp)g + edg(dfgp + 9, td oo+ egg(glgp‘)g (2.39)
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The parameters e, in eq.(2.38) are calculated microscopically in the fermion basis

by using eq.(2.32) which now reads
(05,1 T2 105,) = (B, 1T, EDF 1B (2.40)

where ’];(Ez)'F on the r.h.s. is the fermion electric quadrupole operator. Substituting
for 7/®2:® from eq.(2.38) in the boson matrix elements of eq.(2.40), we have, by

Wigner-Eckart theorem

(85, T2 2185,) = 3 €602 02011 0)[J1] ¥ (85, 1 (8585.)%185,) (2.41)
JJ! .

with
[J1] =2J; +1 (2.42)
By intermediate state expansion, with the only possible intermediate state[A)=|05)

‘'we have

LoJ 0 1
[2J105)265,060,00 (2.43)

<b51“(b5b51)2”b§2) = (_1)J1+J2—2
. J, .]2 9

where the Wigner 6 —; symbol alongwith the Kronecker delta’s reduces to

Jo 1 0 A
{ Jl Jl 2 } - (_.__1.)-]1+J2+2[J1J2]—-%- (2.44)
2 2

with the quantities [ﬁ] given by

a [a]
| 2 2.45
[bc] (6] [c] (245)
The boson matrix element in eq.(2.41) with substitution from eq.(2.43) yields

1

2717
(5ITE71,) = | ] (020000, (246)

Eq.(2.40) along with eq.(2.46) finally gives

(2.47)

el = [ﬁ}% (B§1|7;(E2)'BSQ>
e =] T(7,0200J,0)

The nucleon pair E2-transition matrix element (B, |7,(52:F| B, ) of the fermion T(ED.F

operator is evaluated in the next section.
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2.2’.3 Calculation of the Nucleon Pair Matrix Elements in

the Fermion Basis
We shall calculate here the nucleon pair matrix elements, namely,

1. The identical nucleon pair energy (Bj|H}|B%)

2. The neutron proton pair interaction matrix element

(By,B3,)J V. |(B3,Bj,)J)

3. The nucleon pair E2-transition matrix element (BS, |TEDF|BY).

These matrix elements are calcualted.using standard techniques of Shell Model
spectroscopy (French 1966; French et al. 1969). We shall henceforth omit the super-
_ script ¥ denoting the fermion operator because in this subsection we shall deal only

with fermion operators.

The identical nucleon pair energy

By virtue of the Marumori mapping eqs.(2.30) and (2.32), we have the single boson

energy €7 equal to the identical nucleon pair energy
€5 = (BJ|H,|Bj) (2.48)
Using eq.(2.29), the linear expansion of |BY) states we have

er= 3 2 Clunys Cluys (ki) T[H,[(p; kal2)J) (2.49)
(pik1l1) (pik2l2)

The Hamiltonian operator H, contains the one -and two-body part, i.e, Hf}) + 'HE,Z),

Recalling the notation of eq. (2.28), we write the m.e. of H, on the r.h.s. of eq.
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(2.49).

((p; klll)Jall(p, kzlz)J) = (Ejfl -+ 6_7" )5 p o b:0 e + VP (250)

IkyIky 1301, Jk111]3k2112

where ejf is thes.p.e. of the SM orbit j£ and Vjp » 1s the two body matrix element

it Ryt

(t.b.m.e.) of the model residual interaction connecting the identical 2-particle states

(G2, 30)JT = 1) and |(5,58)JT = 1).

The neutron-proton pair interaction matrix element

Following the notation of French (1966) (p.330, eq. 5.103) of the article), the two-
body operator V,» that mediates the interaction between two-pair states (| B, B7,)J)
is

1 ] ' - . no
V,./»yr . Z [J’]z‘/;‘]’j”j“’j'” ((a;y X a;n)J X (ajlv X ajhr)J> (2,51)

juim iy
The summation over j¥, % and j, j runs through the v, model spaces {7} and
{77} and the set of coupled angular momentum values J' simultaneously allowed .
< by 7¥,57 and j",j" coupling. The fermion two-body interaction matrix elements
V{J wiiyjins i1 7 formalism, are related to those in JT formalism by

] 1 1 7
VJ ar  _F (VJ /{;] 3_77\' + VJ ?'] }/_7 1r) (252)

ATV T Qe G

where
1

Civim = wm-;

For our purpose, we need to go over to multipole form of the operator from the

(2.53)

normal-ordered form in eq. (2.51) by recoupling the tensor operators therein

VV?T = Z [J/]‘/]{_I] i V‘jlﬂ‘ Z(_l)j"+jlu+Jl+JH [‘]”]%

J I‘n’ Jl JII

" - 1\ 0
((a}u X &j/u)'j X (a}" X ajnr)J ) (254)
J” .
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The neutron-proton pair interaction m.e., with the notation of eq. (2.29) can be

_written as
((Bl.;lB}rz)JthﬁKB;sB:Z)J)

Yo 2 2 > ClanynClamaClisin)r Clin

(vikily) (mikal2) (viksls) (mikaly)
(((V;klll)Jla(W;kﬂz)Jz)JWw!((V; k3ls)Js, (75 kaly)J4)J) ~ (2.55)
The m.e. on the r.h.s. of the eq. (2.55) will, henceforth, be referred to as the basic

matrix element (b.m.e).

We now apply the Wigner-Eckart theorem to reduce the (single bar) basic

matrix element of V,, from eq. (2.54)

(((v; kil) 1, (75 kal2) J2) T |Vor [((v ksls) T3, (75 kals) J4)J)

1 I T , " L ]'l/ j7r J,
- Z [']I]VJJ ]’”g’"Z(-l)" +i+J'+J [J//]; { }

1
[J]E vimivyim g J" J"ﬂ‘ j/V J”

(3 Byl s kala) T (@ x @ )" x ( ,,Xa,")’) (v kals)Js),(; kals) ) JY2.56)

The m.e. on the r.h.s. of eq. (2.56) gets further factorised into m.e. in the neutron

. and proton space.

(((v; kyly)Jh, (705 kol J2) T Vo [ (95 als) Ja), (75 kale) i) J,>

jvjrjlvjlrr;Jl J J4 J3 JI/ jiﬂ" J'Iu J”
. J/I . J/I
((vs klll)J1||(a_];., X @jw) ||(V;k3[3')J3)((7r;kglg)Jg]l(a}n X @) ||(7; kala)Js)  (2.57)
The matrix elements on the r.h.s. of eq. (2.57) are evaluated by employing standard
techniques of SM spectroscopy i.e., intermediate state expansion, recoupling of the
spherical tensors and application of the fermion anticommutation relations. The

detailed procedure of the evaluation of this matrix element is presented in Appendix -

A. The final result of this calculation is
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. Jll'
(63 kele) Tl (o % @jee) ™ |15 Kl 3

= —(=1)R AT 7 TR G e,

AN \
{ , " SkrlrJrgkgfsjaa 4 JP(S IpJp 6le Jp
jp Ja J rils

with &y defined as the exchange operator (French 1966,Appendix)

glif(ka l, J) = f(k’ l» J) - ("1)jk+j‘_‘]f(bl’ k’ ‘])

1,9 73

(2.58)

(2.59)

By substituting from the matrix element eq. (2.58), we write down the final expression

for the b.m.e.
(((v; kih)Jv, (75 kala) J2) T\ Vour | ((v; kals) Js, (75 kals) J4) )

4
= (—1)J1+J‘+J+1 H Ck;l.' [Ji]%gkciw’i

i=1
7 37 Y . (] 1 J J J
Z (_1)1,‘1+1k3+111+3,2+~7 [dem] V]J ir v r 1 2 » )
Jigm ky ko kg ky Js J J"
jllcll ]I:?rg Jl ']1 j}; jll;_ J2 ]}?2 j;;
. : " : " v " 6'7‘1’ i, 61'” i,
JE Ik, Ik 3 J Jeg, Ja J

(2.60)

Finally by using eq. (2.60) in eq. (2.55) we evaluate the neutron-proton pair interac-

tion matrix element.

The nucleon pair E2-transition matrix element

Here we shall evaluate the matrix elements of the fermion E2-transition operator in

the p(v or 7) model space {j°}. The operator 7/? is given by

TP = \/-z (G1Ir2Y 2[5 (ale X dg0e)2

(2.61)

In this expression for the operator, e, is the effective neutron or proton charge. The

term (j°||r?Y?||;') is the reduced quadrupole m.e. in single nucleon space calculated
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in units of oscillator size parameter bz and will, henceforth be referred to as g;eje.
- For a nucleus of mass number A with N neutrons and Z protons, the oscillator size
parameters can be expressed in units of barns(b) (1b = 10~24cm?) (Barangef and
Kumar 1968, Ring and Schuck 1980)

Bo= 0.0102(?-4’- 3 (2.62)

Az
o= 0.0102(?5-)—% | (2.63)

The matrix elements of this operator in the correlated pair space |Bf) is
<B§1|7;(E2)|352> = Z Z C(pklzl)chfkglz)h((/’; klll)J1|7;(E2)|(P; kalo)J5)  (2.64)
(pik1ln) (pik2l2) '
The basic matrix element on the r.h.s. of the eq. (2.64) is evaluated by applying
Wigner- Eckart theorem and then substituting for the 7;()5:2) from eq. (2.61)

((ps knl1) | TLED)| (5 Kala) o)

= — 2502014001

jP

S gioge(pi kil) Ill(als x ape)?ll(ps Rale)J2) (2.65)

Iz
We write down the m.e. on the r.h.s. of eq. (2.65) by applying the general formula

of eq. (2.58) and carry out the summation over j# and j'°. The final result is

((P; klll)Jllj;(Ez)KP; kzlz)JZ).

= e, [12]4(2020 [y 0)(=1) g 0

W I
Chats Chala P EkiquEk,zngc?jﬁj;; (2.66) -
J2 2 i,

Substitution of eq. (2.66) in eq. (2.64) finally yields the value of (B, |TE9|BY,).

We first apply this formalism to a few simple cases where the chosen nuclei
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have only one boson of each kind(N;, = N, = 1). The Hamiltonian matrices in various

J subspaces are easily set up and then diagonalised (Sarangi and Parikh 1991).

~ In the calculations for many boson (N, > N, > 1) system;, we encounter the
problem of unavailability of a suitable IBM-2 code . The code developed by Otsuka
(1977), though available, does not explicitly incorporate g-bosons. We, therefore,
carry out the studies with IBM-1 operators. The parameters of these operators are
calculated from those in IBM-2 by a projection technique based on F-spin symmetry
(Frank and Lipas 1990) and then used in the SDGIBMI code developed and docu-
mented by Devi and Kota (1990). This code incorporates the g-bosons in the IBM-1

formalism.

2.2.4 Projection of IBM-2 operators to IBM-1 operators

- The projection technique (Frank and Lipas 1990) exploits the F-spin symmetry be-
tween the proton and the neutron bosons in IBM-2 construct. The v(r) bosons are
attributed the quantum numbers F' = 1, Mp = —1(}) respectively as those of an
.S'U(2)v doublet. First conjectured by Arima et al. (1977, 1978a, 1978b), it has been
further developed by many authors (Van Isacker et al. 1986, Lipas et al. 1990).

As discussed by L}pas et al. (1990), the remarkable success of the phenomeno-
+ logical IBM-1 which does not distinguish between neutron and proton bosons suggests
the existence of this symmetry. The IBM-2 spectra which are much richer compared
to IBM-1, also exhibit in the low-lying regions almost pure symmetry (Frank et al.
1988, Lipas et al. 1990, Harter 1990) with respect to interchange of neutron and
proton labels of the bosons. The M1 tfansitions which are generated by the vr dis-
tinguishing operators like (dl(i,,)l, are very weak in these low-lying regions of IBM-2

spectra and stronger at higher energies where collective dipole states occur. These

37



obsefvétions strongly suggest fhat F-spin is indeed a good symmetry in the low-lying
‘regions of IBM-2 spectra which is of our interest. They also indicate that to the ex-
tent F-spin symmetry is good in these regions, the IBM-1 Hamiltonian can be treated
as a good approximation to the IBM-2 Hamiltonian. This motivates us to establish
the relationship between the parameters of the operators in IBM-2 and IBM-1 and

construct the projection from the former to the latter in a good F-spin limit.

The present projection technique of Frank and Lipas (1990) is derived with
the assumption that the low-lying IBM-2 levels are completely symmetric under in-
terchange of v-7 labels. For a given nucleus with N, and N, number of neutron and
proton bosons, a completely F-symmetric state corresponds to a state with F' and its

projection quantum number Mg given by

F=F,, = %(NV+N,7)=%N (2.67)
My = %(N,—N,,) O (2.68)

This symmetry can be realised (Lipas et al. 1990) by either constructing a F'-scalar
Hamiltonian or, as a more realistic case, include in a non-F-scalar Hamiltonian a
large Majorana force M,, (lachello et al. 1979, Frank et al. 1988). The Majorana
force given by

Mo = 3 % & (060 - o)) - (B85,)7 - (05,55)7) +

Ji#J2J=even

>3 &sterh? - (,85,) (2.69)

J1=2,4 J=odd
in the sdg space, does not affect the F-symmetric (F = Fpnqz) basis states, but pushes
those with F' < F,,,, up in energy making the low-lying levels almost pure F' = F 4. -
- The microscopically derived IBM-2 Hamiltonians with valence nucleons in different
major shells are quite clearly non-F-scalar. In these calculations the Majorana term
automatically comes up in the IBM-2 Hamiltonian (Pittel et al. 1982, Scholten 1983,
Van Egmond and Allaart 1984, Druce et al. 1987) although its strength coeflicients ¢,
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(eq. (2.69)) evaluated microscopically come out to be comparable or less in magnitude
“ compared to other coefficients of the Hamiltonian. The calculations of Scholten (1983)
and Van Egmond and Allaart (1984) suggest that Majorana forces arise due to the
renormalisation effects of truncation of the SM space. Novoselsky and Talmi (1986) in
their semi-microscopic calculations of Ba and Xe isotopes, were able to reproduce the
experimental results to quite good accuracy without including a Majorana term. Yet,
as shown by Lipas et al. (1990), the eigenstates in their calculations corresponding
to the low-lying levels consisted of ~ 93% (or less) of the amplitude corresponding
to F' = Free. The IBM-2 Hamiltonian constructed in our microscopic procedure is
clearly non-F-scalar. However, we presume that the low-lying levels and, in particular,
the Yrast levels among them that we are interested in do have F' = F,, . and proceed
to project out the IBM-1 Hamiltonian from the IBM-2 Hamiltonian. Those terms
in the expansion of the IBM-2 Hamiltonian which give the Majorana operator (eq.
(2.69)), collapse in IBM-1 because of symmetry requirements of the IBM-1 states. Out
of the 82 parameters of the two-body part of Hpy_, only 68 contribute to Hipy.-, m.e.
and the rest are mapped to zero. As we shall see in Chapter 4, the spectrum generated
by the IBM-1 Hamiltonian, and the B(E2) values calculated with the projected T,
operator are in quite good agreement with experimental and other theoretical results

in the ground state and the first excited bands.
The projection of the IBM-2 operators to those of IBM-1, following Frank and

Lipas(1990) can be summarised as follows

1. First we decompose the second quantised ‘F-decoupled’ v-m operators of one-
. S 0
body type (bf’,:rb"’,z)‘] and two-body type ((b‘}:rb’}:)"( 5 5‘)J) in eq. (2.35) and

(2.38) into linear combinations of ‘coupled’ operators in the SU(2) F-spin space.

0 =3 0/M=0 (2.70)
!
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where f is the F-spin quantum number and M; is its projection. The oper-
ators concerned conserve N, and N, separately. Hence M;=0. For one-body

operators f=0, 1 and for two-body‘operators f=0,1and 2.

2. Assuming that IBM-2 states of our interest are F' = F,, ., = —21—N states, we
denote them as |aF, . Mp) with Mp = %(N,, —~ N,) where a represents the
spatial quantum numbers . We note that the state |@FpasFinaz) will denote a
state with all proton bosons and being a symmetric state with bosons of one
kind, it corresponds to an IBM-1 state. Applying the Wigner- Eckart theorem
twice we relate the general m.e. of O° for any states with F quan’cum numbers

F .o Mp with that of Fi 0o Frnas ¢

(alFmaxMF|Of0|a2Fmaa:MF> = Cf(Fmaa:MF)<alFma.szazIOfola2Fma:cFmax>
(2.71)
where |

(Fma:c - A{Ffo|-Fma.1: - MF)
(Fmaa: - FmaxfolFma:r - Fma::)

Ct(FrasMp) = (—1)*Fmaz=Mr) (2.72)

3. Now we write O° back in the form of v-r (F-spin decoupled) operators. The
states in the m.e. on the r.h.s. of eq. (2.71) are pure proton boson states.
Hence only the pure proton boson states in the decoupled expression of O/°
contribute to the m.e. on the r.h.s. and the others (1/1/ and v terms) drop out.
With this, on the r.h.s., we are left with only proton labels in the m.e. which
are then dropped making the m.e. correspond to that of IBM-1. It is related
to the IBM-2 m.e. through the coefficients of eq. (2.71).

Denoting the above operation by the projection operator P, the final results can be

compiled as below (from Frank and Lipas 1990)
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IBM-2 - IBM-1

. N .
PP = SL(bh bs,)’ (2.73)

N
vtimr v in 0 N N I, 0
P((bJIbJI)J( Js J4)J) P = <J1J2CJ3J4 N( )((b bJQ)J(bJSbJA)J> (2'74)
The normalisation factor (s, 5y, is not explicitly stated in the formulae of Frank
and Lipas. With this we now write our projected IBM-1 operators corresponding to

the IBM-2 operators in eq. (2.35) and eq. (2.37).

HIEM-—] = ““‘E N 6] +N CJ)(bJ bJ)
1 , o .
+ m“; J,( D' W 505 Cn Gy Nu N (bl bs) " (b, 04275)
and |
7;1?31—1 = _E (N,e%, + Ny e”,)(bT bJ) (2.76)
JJ’

In eq. (2.75), the paremeter WY, 5,5, is the sum of all the parameters Wi 1,00, in
the Hypy_, With distinct permutations of (Jy, Ja) and (J3, J4). In this manner, out of
the 68 parameters of Hpy_, We construct the 32 two-body matrix elements (t.b.m.e.)

© of the Higyes-

The single boson energies €;, the boson two body matrix elements VJ‘{'JQ_,;J"
and the boson effective charges e, that are finally fed into the SDGIBMI1 code of
Devi and Kota (1990) are given by

1
€y = N(Nueﬁ + Ny€]) (2.77)
N, N,
V J2J3J4 = _N—(]—V‘“—)—W J2J3J4 (2'78)
1
eJy = —J\T(Nuel;'l’ + Nﬂ-tL/) (2.79)

Thus we shall have the 3 single boson energies and 32 two-body parameters of sy,

and the 4 parameters of 7}1(3},1342_)1 all microscopically determined.
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Chapter 3

sdgIBM2 Studies of Some Simple

Nuclei

3.1 Introduction

The scheme developed in the previous chapter has been applied to a few cases of
simple nuclei to study their low-lying collective spectra in IBM-2 domain and the

results are presented in this chapter.

Our sample nuclei are (i) *T% in single-j shell and (ii) **Ne, ®Zn and ** Mo in
multi-; shell configurations. These nuclei are chosen by the criterion that they have
only two valence neutrons and two valence protons. In other words, they are nuclei
with one neutron and one proton boson (N, = N, = 1). The parameters of Hipy-a,
namely €5 and W3, ;. ;. (eq. (2.35)) derived in the previous chapter are precisely

the matrix elements of the Hamiltonian in the two-boson configurations |(b%, b7,)J)
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of these nuclei,

((b.l;;l SQ)JIHIBM—”( 133 54)']) = (651 + 652)5-71-]36-]2‘]4 + W£J2J3J4 (3'1)

Thus the matrices in different J-subspaces are easily set up and diagonalised. Because
of this straight forward correspondence between the boson states |(b4, 4%, )J) and the
" nucleon pair states |(Bj Bj,)J), we can equivalently say that these spectroscopic
calculations are carried out in the nucleon pair space spanned by the latter. The

low-lying spectra are then compared with the results of available theoretical and

experimental results.

The Yrast levels of all the four nuclei are reproduced to very good accuracy.
The non-Yrast levels of the lighter nuclei, viz., 2°Ne, **T% and ®Zn are pushed up in

energy whereas those of ® Mo are comparable to observed experimental values.

The inclusion of g-bosons in these calculations is found to be essential to
produce not only the levels of low angular momenta (J < 4) to good accuracy but
also the higher levels (J > 4) which lie outside of the (dtdt)’ | 0)5 configuration

space.

The IBM-2 does not include any bosons corresponding to the mixed (v)
pairs. It has been discussed by Elliott (1985) and Elliott ef al. (1987) that when the
valence neutrons and protons are in the same j-shell(s) (as is the case for 2*Ne, “T'
and ®Zn in our calculations) one ought to include the mixed pairs alongwith the
identical particle pairs in order to preserve the isospin symmetry and carry out the
IBM-3 or IBM-4 calculations. On the other hand, the recent calculations of Skouras
et al. (1990) in single-j (= f;) shell for 7%, Cr and V isotopes and Bonatsos et al.
(1991) in the sd-shell and fp-shell for 2 Ne and **T'% respectively indicate that the

effects of mixed pairs are very small. Bonatsos et al. demonstrate that apart from

47



the S,,; d, and g, (p = v or 7) bosons, the higher identical particle (T' = 1) non-
collective and collective bosons, i.e., d;, and i, respectively play more dominant role
than the bosons corresponding to mixed pairs (T' = 0) in reproducing the low-lying

levels including the non-Yrast levels.

Carrying out IBM-3 and IBM-4 calculations or incorporating the higher bosons
is out of the scope of our work. In analysing the results of the IBM-2 calculations for
these light nuclei, we calculate the expectation values of 72 (7 is the total isospin
opertor) in the eigenstates of the Yrast and other low-lying levels. Ideally, this value
should be zero for the low-lying states of the nuclei considered. Because of the isospin
mixing mentioned above they turn out to be non-zero. We find that for the Yrast
levels, (7?) is typically ~ 1072, very close to zero, whereas for the non-Yrast levels it
is substantial, typically of order uﬁity. This explains why the former agree with other

theoretical and experimental results so well and why the latter do not.

The rest of this chapter is organised as follows. In Sec. 3.2, the spectra of the
nuclei, starting with that of 4T as a single-j shell case,. are presented. In case of
the non-degenerate multi-j shell calculations, we also compare the correlated pairs
determined in our procedure with those of the generalised seniority method (Pittel
et al. 1982). In Sec. 3.3, the 72 operator and its matrix elements are calculated and

(T?) values for the three light nuclei are tabulated.

48



Table 3.1: SM matrix elements (D2JT |V | (3)2IT).

J T MEMeV) J T ME(MeV)
0 1 =311 4 1  -0.26
1 0 -250 5 0 -1.60
2 1 -152 6 1  +0.14
3 0 -162 7 0 @ -249

3.2 Spectra of the Sample Nuclei

3.2.1 Ty

" Assuming “°Ca to be an inert core, **T4 is regarded as having two valence neutrons
and protons in {f%} shell. Because of the single-j shell, there is no need to follow
the HF procedure here. The nucleon pairs |Bf) are, then, given by eq. (2.29) with
Cliys = 1. We have used the SM m.e. ((Z)2JT | V | (})*JT) listed by Skouras et al.
(1990). These m.e. are reproduced in table 3.1.

Being a single-j shell case, the identical nucleon pair energies of the S-, D-
and G- pairs, by eq. (2.50) are the J= 0, 2 and 4 (T = 1) two-body matrix elements
(t.b.m.e.) listed in table 3.1. Thus the single boson energies €} of the s,, d, and
g, bosons are (in MeV) —3.11, —1.52 and —0.26 respectively. The m.e. listed in
table 3.1 are then transformed to the vr-basis by eq. (2.52). The neutron-proton
pair interaétion matrix element, is calculated using eqs. (2.55), (2.59) and (2.60).
These m.e., through the Marumori mapping (eq. (2.33)) are the t.b.m.e. Wi 11,0, of
- eq. (3.1). The eigenstates of Hinu_, (eq. (3.1)) with eigenvalues E; of the level J can
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be written as

EQy = 3 ) 85,85,)7) (3.2)

Jy, J2=0,2,4
where 7 is the index of the eigenstate assigned in increasing order of energy E,.

The spectrum generated by this Hamiltonian is plotted in fig. 3.1 (labelled IBM-2)
alongwith the SM and “Model-2" ((sdg)IBM-1) results of Skouras et al (1990). The
agreement of the Yrast levels produced by our calculation, barring the J = 6 level, is
quite good. The non-Yrast levels (25,47 and 0F) are pushed up by a small amount.
This is due to the loss of isospin symmetry mentioned before. This shift of non-Yrast

will be more prominent in the multi-j shell cases to which we now turn.

3.2.2 Ne

The 2°Ne calculations, with O core, are carried out in {d%,s%, d%} SM space with
Wildenthal’s Universal-sd interaction and his choice of s.p.e.(in MeV) —3.95, —3.16
and 1.65 (Wildenthal 1984), respectively. This set of s.p.e. and t.b.m.e. have been
determined by Wildenthal by fitting to the observed data and work well in the entire
" sd shell. The occupied time-like HF s.p. orbits, following the notation of Eq.(2.19),

are
oy k=1 =0.777]p; §1) = 0523 p; } 5)—0350 |45 33) (p=v,7) (33)

The occupied time-reversed orbits are related to these time-like orbits through phase
relationship given in eq. (2.21). These orbits as well as the correlated pair states to
be constructed from them are identical for the neutrons and the protons because the

valence nucleons occupy the same shell.

There being only two valence particles of each kind, the lpik = })es orbit
eq. (2.23) is identical to the occupied HF orbit eq. (3.3). The correlated identical

nucleon pair states |Bj) are then constructed from these orbits following eqs. (2.27)
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Figure 3.1: Spectrum of *4T%. The plots labelled ‘SM’ and ‘Model-2’ are the Shell
Model and (sdg)IBM-1 spectra of Skouras et al.(1990). The plot labelled ‘IBM-2’ is

the spectrum generated by our scheme with s,d, g bosons.
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and eq. (2.29). The collectivity built into these states through our procedure is
~certainly better than that of the generalised seniority (g.s.) pairs |BJ)g.. (Pittel
et al. 1982), ie. the lowest J=0, 2 and 4 eigenstates of the two-particle (*°0)
Hamiltonian., For the sake of illustration of this point, we plot in fig. (3.2) (a)-(c) the
occupation probabilities of the components ‘C(‘k])‘]‘z for the two particle configurations
(kl)J (notation of eqs. (2.27) and (2.28) given by |B%) and |Bj)g,.). The participation
of the higher s.p. orbits (s; and d3) in the | B}) states (denoted ‘dynamic’) compared

to the g.s. states as seen in the plots is clearly more significant.

The identical nucleon pair energy is evaluated using the procedure outlined
in sec. 2.2.3. The neutron proton pair interaction matrix elements are calculated
from the Universal-sd m.e. as outlined in the case of *T% above. The parameters of
Hipm—e in eq. (3.1), namely €} and Wfl JoJsJ, 8T€, by the Marumori mapping, equal
to the identical nucleon pair energy and the v-7 pair interaction m.e. respectively
(egs. (2.32) and (2.33)). The spectrum generated by this Hamiltonian is presented
in fig. 3.3 (labelled IBM-2) alongwith the experimental (Halbert et al. 1971; Lederer
and Shirley 1978) and the SM results.

It may be noted here that the dimensionalities of the SM matrices for angular
momentum states J = 0, 2, 4, 6, 8 and T' = 0 are 21, 56, 44, 17 and 3 (Sebe and
Harvey 1968) respectively. In comparison the dimensionalities of the IBM Hamilto-
" nian with the s, d and g bosons are 3, 6, 6, 3 and 1 respectively. Yet the Yrast levels
 match quite well with experimental and SM levels. These levels also match well with
the phenomenological results of Devi et al. (1989). However, the non-Yrast levels (of
which we have plotted only a few of the lower ones) are all pushed high up with the
lowest of them, with J = 2 coming at 12.68 MeV. We shall examine these levels more

closely in the next section.

Just as we generated the above spectrum by mapping |Bj) states onto the
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boso‘ns., we can generate the spéctrur‘n with the g.s. pairs |B])g,.. The Yg'rast levels and
a few higher levels of the spectrum generated in this calculation are plotted in fig. 3.3
and are labelled ‘IBM-2(g.s.)’. The grouﬁd state of ‘IBM-2(g.s.)’ is pushed up by 3.5
MeV compared to that of SM whereas that of IBM-2 matches well. The collectivity of
the | Bf) pairs plays the role in pushing the ground state down. The relative positions
of the J=6 and 8 levels of the IBM-2 and IBM-2(g.s.) differ substantially. This is
clearly because of the enhanced participation of the d% shell in the D, and G, pairs of
IBM-2, as is clear from fig. 3.2 (b)-(c). This shell occurs at a high energy (5.7 MeV)
above the d% shell and stronger participation of this shell in the states generating the
higher J lavels pushes those levels higher up in energy. Overall, the IBM-2 spectrum,
4 generated with the |Bf) states constructed by our procedure is very close to that of

the SM calculations.

3.2.3 607n

The %°Zn calculations, are done in {p% fs pr} SM space with * Ni as the core.
Following Koops and Glaudemans (1977), the s.p.e. of the model orbits are chosen to
be (in MeV) —10.24, —9.46 and —9.14 and the ASDI as t.b.m.e. for the calculations.

The occupied time-like HF orbits for the neutrons and protons are calculated to be
| oy k=3)=0733]p; §3)—0504]|p; §3)—0457|p; 7 3) (3.4)

The construction of the correlated nucleon pairs, calculation of their energies and the
interaction matrix elements amongst the neutron and the proton pairs, construction
of IBM-2 Hamiltonian follow according to the procedure outlined in the previous

subsection.

The occupation probabilities |Cfy;,;|* of the | B}) pairs calculated through our
procedure and the | B}),,. pair states (the lowest J= 0, 2 and 4 eigenstates of 2-particle
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(8 Ni) Hamiltonian) are plotted in fig. 3.4. The collectivity of the model orbits in
- both the cases is similar. 'In fact, the |Bf_o)gs seems to be more collective than
|Bj=0). The spectrum generated by the IBM-2 Hamiltonian is plotted in Fig. 3.5
alongwith the available experimental data (Lederer and Shirley 1978) and the SM
results. These SM results have also been produced by Van Hienen et al (1976). Once
again, the Yrast levels match well with the corresponding experimental and SM levels,

whereas our non-Yrast levels are pushed up.

The spectrum generated by the | Bf) .. pairs are also plotted in fig. 3.5 (labelled
‘IBM-2(g.s.)’). Whereas the absolute energies of the ground states match more or less,
the J=2 level generated through our procedure is clearly closer to that of SM than
its g.s. counterpart. The higher J levels match well and much better than they do
in the case of 2 Ne. This is because of the closer resemblance of the D and G pairs
in our procedure and g.s. which in turn is rooted in the closer proximity of the s.p.
levels ps and f% The overall agreement of the ‘IBM-2’ and the ‘IBM-Q(g..s.)’ spectra
may be ascribed to the approximately vibrational character of the ®Zn spectrum for

which the g.s. states are expected to work well.

3.2.4 %Mo

The calculations for ®*Mo, with ®°Zr core, are carried out in inequivalent model
spaces for protons and neutrons. The two valence protons, outside the (semi-)closed
shell at Z = 40, are in {gg} orbit with s.p.e. 0.0 MeV. The two valence neutrons,
outside the closed shell at N = 50, are in {d% 81 dg_ 91 h;ix_} space with s.p.e. of the
orbits (in MeV) 0.0, 1.0, 2.5, 3.0 and 3.6 respectively (following Khosa et al. (1982)
in their studies of shape transitio.ns in Mo and Zr isotopes). But the HF procedure
which conserves parity excludes the odd parity h12_1 orbit from the lowest occupied

HF orbit. The Surface Delta Interaction (SDI) with the v — 7 interaction strength
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A, = 0.6 MeV and identical particle interation strength A,, = A,, = 0.35MeV
- chosen by Federman and Pittel (1978) as-the residual two-body interaction produces
a rather stretched spectrum. For better reproduction of the spectrum, a different
choice of A, is found necessary and it is chosen to be 0.4MeV. With this choice of

the strength parameters, the occupied time-like HF orbit for the neutrons is

|v; k=3)=0891v; $1)4+0.343 | v; £ 1)-0.228 | v; 2 1)~0.191 |v; I 1) (3.5)
The construction of the correlated neutron pairs from the HF solutions, the
calculation of their matrix elements, and the construction of IBM-2 Hamiltonian are

accomplished following the same lines as given in Sec. 2.2.3.

The valence protons being in a single-j shell, the |B}) and the |BJ),,. are
identical and are given by |[(3)2J = 0, 2,4). The |BY) and |BY)gs pairs exhibit

similar structure (fig. 3.6).

The spectrum given by the IBM-2 Hamiltonian is plotted in Fig. 3.7 along
with the experimentally observed energy levels (Lederer and Shirley 1978). For com-
parison we have also plotted the spectrum obtained by Chen et al. (1986) in their
IBM-1 calculation with boson SDI(BSDI). The Yrast levels agree fairly well with the
corfesponding experimental levels. However, the distinguishing feature in this case is
that the non-Yrast levels like 27, 45 and 47 levels, in contrast with the other sam-
ple nuclei, also are reproduced by our calculation to fairly good accuracy. The 37
level also comes close to the experimental value. Because of the unavailability of the
fermion SM results, it is hard to interprete the gross disagreement of our 0 level.
However, as we shall see in the next subsection, the overall good agreement of the
non- Yrast levels is because isospin here is a good quantum number, unlike the case

of the other sample nuclei.

The spectrum given by the |BY) and the |B})zs. pairs denoted ‘IBM-2’ and
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Figure 3.6: A comparison of the correlated neutron pairs |BY) determined by our
procedure from HF solutions of Mo (‘dynamic’) and the eigenstates | BY)g.s of two-
‘neutron Hamiltonian of ®2Zr (‘g.s.’). Fig. (a)-(c) show this comparison between the

S, D and G correlated pairs respectively.
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‘IBM-2(g.s.)’ are very similar, akin to the case of ©Zn. This is only to be expected
~as the neutron pairs generated in both these methods are very similar (fig. 3.6) and
the proton pairs are identical. This may be ascribed to the vibrational character of

94Mo .

In the next section, we discuss the loss of isospin symmetry in the Hamiltonian

which affects the non-Yrast levels of the lighter nuclei substantially.

3.3 Loss of Isospin symmetry in IBM-2 states

As explained in Chap. 2, Sec. 2.2.1, we construct identical nﬁcleon pairs | B%) having
(T,T5) = (1,£1) and associate them with the IBM-2 boson states | b%), p = v, (7) -
for Ts = +1(~1) respectively. In the IBM-2 formalism, the concept of § boson(Elliott .
. et al. 1987) corresponding to a v pair is not included. Correspondingly, we do not
have these pairs in our construction. As explained by Elliott (1985) and Elliott et
al. (1987), in heavy nuclei, where the valence neutrons and protons are in different
oscillator shells, absence of a v pair may not be of a serious consequence. All SM
configurations in such cases will have definite isospin T' = 3(N—Z) and T3 = HN-2).
Amongst our sample nuclei, the model spaces for the valence protons and neutrons of
%[0 are inequivalent and hence the IBM-2 states of ** Mo c.orrespond to good isospin
SM states giving better agreement of the calculated spectrum with the experimental
data. However, for the lighter nuclei, with valence neutrons and protons in the same
oscillator shells, inclusion of the v pair alongwith the vv and 7 pair is essential to
preserve the T' = 1 (triplet) symmetry. Absence of this pair, and correspondingly the
8 boson causes loss of isospin symmetfy in the IBM-2 Hamiltonian and affects the

spectrum adversely.

This loss of isospin symmetry is the reason why our non-Yrast levels of 2°Ne,

62



4477 and ®Zn are pushed up in energy. As for the Yrast levels, it is known that in
- the even-even nuclei, the higher T'(= 1,2) states are well separated from the 7' = 0
states which form the Yrast levels. This fact qualitatively explains the relatively good

agreement of the Yrast levels of our calculations with the experimental and SM levels.

Calculations involving the § bosons are out of the scope of the present work.
In the following, we construct the 72 operator (where 7 stands for the total isospin
operator) in the model spaces considered for our sample nuclei and calculate their
expectation values in the energy eigenstates of the IBM-2 Hamiltonian. These expec-
tation values enable us to identify the energy eigenstates with good or Vnearly good T

and the extent of T-mixing in others as well.

3.3.1 7T? operator

The 72 operator (T being the total isospin oprator) for a nucleus having n, valence
neutrons and n, valence protons is derived by French (1966) (See Appendix-B). In

" multipole form, it is given as
1
T2 = Z((nl - n2)2 + 2(711 + ng))

_ E .7 J +J' J']z ((a;[., X &j,y)J’ X (a}m X aj”)J,)o (36)

Jit
The first term on the right hand side is the direct term which is clearly diagonal. The
second (exchange) term which annihilates a proton in j orbit and creates a neutron
in its place, will give a non-zero contribution only when the orbits j and j’ occur
simultaneously in both the model spaces for neutrons and protons. In other words,
the orbits j and j’ which are model orbits for protons, if already filled for neutrons,
cannot accomodate any more néutrons in them according to Pauli principle thus
causing the exchange term to vanish. For this reason, the summation variables and

the phase factor in the second term of the equation (3.6)do not carry any superscripts.

63



The creation and annihilation operators, however, carry the superscipts to denote that

they are neutron and proton operators.

Derivation of the matrix elements of the opefator follows the same procedure
as in Sec. 2.2.3. The matrix element of T2 in | (BY Bj,)J) space is given by the
equation (2.55) with the operator V,. nom; replaced by 72. The expression for the
basic matrix element is derived using the equation (3.6). The nondiagonal (second)

term, P, say, in the expression for 72 in eqn. (3.6) gets simplified by factorisation
P, = (_1)J2+13+J Z (_l)j—j’ hioh T
JihJ! J4 J3 J'
A
(v ki) o |] (al x &50)7 || (v kala) Ja)
~ ! .
(w5 kala) T2 || (al x @) 1] (5 kala) Ja) (3.7)
The calculation of the'm.e. on the r.h.s. of the eq. (3.7) follows the same procedure
~ as described in (Appendix-A) and can be written down from the eq. (2.58). Summing

over the s.p. orbits in the resulting expression, we write the final expression for the

b.m.e. of T2

(((vs koly)Jhy (5 kola) J2)J | T | ((v; kals)Ja, (3 kals) J4)J)

= 2 bkyks Oty 1560, 75 Oka kO3 1,010,

4 1 Ly am Law J Jo J
__((__1)J2+J4+J H Ck;l.- [Ji]i Skikla‘ Z(_I)J,I +Jk3+1k2+1,2 [J'] 1 2
i=1 J! Jy J3 J’

, , 5 1 Siyn, i Sigar Sigr,) (38)
it Js J it Ja J

With these m.e. the 72 matrices for different angular momenta J are set up and
the expectation values (72) of these matrices in the eigenstates of the Hamiltonian

(eq. (3.1) are then calculated for “T%, * Ne and 80 7n. These values for the Jowest
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Table 3.2: (1) values and eigenenergies of the relevant eigenstates of the 447"t Hamil-
tonian. For comparison, we have also tabulated the SM (T=0) eigen energies pub-

lished by Skouras et al. (1990).

J | E(SM) (T = 0) | E(IBM-2) (T?)
in(MeV) in (MeV)

0 0.0 0.0 0.03
0 5.61 6.09 0.7

2 1.16 - 1.13 0.02
2 4.98 5.21 0.17
2" - 5.2 2.0

3 5.85 5.8 0.00
4 2.8 2.9 0.07
4 5.02 5.74 0.58
5 5.9 7.44 1.27
5 - 7.07 2.0

6 4.09 5.3 0.19
6 5.22 8.12 1.25

few eigenstates alongwith the corresponding eigenenergies are tabulated in tables 3.2 -
3.4. For comparison, we have also tabulated the SM eigenenergies of the T' = 0 state.

The (T?) for J = even Yrast states (high-lighted in the tables) are quite close
to zero which explains the good agreement of the corresponding energy eigenvalues
+ with experiment. The J = 8 level has _(Tz) identically equal to zero. The non-Yrast
J = even levels have strong mixtures of T = 0 and T = 2 states and these levels
are pushed up in the spectrund. Note that the T = even(0,2) and T = odd(1)

eigenstates dissociate and the former mix amongst themselves. This is also evident
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Table 3.3: (T?) values and the eigenenergy values of some low-lying eigen states of

2 Ne IBM-2 Hamiltonian with the corresponding SM (T = 0) energies.

7 | B(SM)(T = 0) | EUBM-2) (T?)
in(MeV) | in (MeV)
0 0.0 00 0.1
0 6.76 1531 2.37
2 1.78 1.36  0.002
2" 7.32 12.68 2.0
3 10.23 143 2.0
4 4.25 415  0.005
4 9.97 1437 2.0
5 11.59 1733 2.0
6 8.78 8.28  0.000
6 12.94 1737 2.0
8 11.59 11.7 0.0
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Table 3.4: Eigenenergies and (T?) values of some low-lying eigenstates of ®Zn

sdgIBM-2 Hamiltonian with the SM energies for 7' = 0.

J | E(SM)(T = 0) | E(sdgIBM-2) (T?)
in (MeV) in (MeV)
0 0.0 0.0 - 0.04
0 3.24 5.53 2.47
2 0.96 . 0.85 0.007
2 3.29 4.89 2.0
3 4.29 5.67 2.0
4 2.18 2.12 0.02
4 4.31 5.37 2.0
5 5.25 6.75 2.0
6 4.33 4.09 0.003
6 6.23 6.9 2.0
8 5.84 5.65 0.0
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from the fact that all (T?) values corresponding to the T' = 1 states are exactly equal
to 2, (i.e. = T(T +1)). The J = even(odd) states are symmetric (antisymmetric)
linear combinations of configurations | (b;’}l %,)J) when T = even and vice versa for
T = odd. The J = 2 levels with (T?) = 2 marked asterisk correspond to the ground
" state energies of 4 Sc (3.2), °F (3.3) and ®Cu (3.4) with respect to those of T4,

W Ne and 0 Zn respectively.

In the next chapter, we apply our formulation to nuclei with many bosons of

each type and present the results of these calculations.
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Chapter 4

Shape Transition in Even — A Mo

and Sm Isotopes

4.1 Introduction

The onset of transition from spherical to axially deformed shape in the even-even
neutron rich Sr — Zr — Mo — Ru nuclei at mass A ~ 100 has been well established by
. several experimental investigations (Cheifetz et al. 1970, Wohn et al. 1990, Liang et
al. 1991). The lighter Mo isotopes, *6~% Mo exhibit low lying level energies typical of
a spherical nucleus,i.e., Bz = 2Et. The level energies of heavier 12419 Mo isotopes,
on the other hand, show a trend E% ~ 3, characteristic of rotational nuclei. Recent
compilation of E2 transition proball)ilities from 07 to 27 levels (B(E2)7) (Raman et
al. 1987,1989) demonstrate the enhancement of these values across the A ~ 100,102

range. As Scholten et al. (1978) point 6ut, for ideal cases of spherical and axial rotor

shapes B(F2)1 increases as N and N? (N is the total number of valence pairs or
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bosons) respectively, thus exhibiting the sudden enhancement for the latter. Feder-
" man and Pittel (1977,1978) and later Khosa et al.(1982) carried out investigations
on Zr and Mo isotopes in the fermion space by performing Hartree-Fock-Bogoliubov
(HFB) calculatiéns and attempted to theoretically explain this onset of deformation.
In the IBM domain, Sambataro and Molndr (1982) carried out phenomenological
sdIBM-2 calculations on *6-1% Mo isotopes which have been recently extended upto
%Mo (Liang et al. 1991). Casten et al.(1985) carried out phenomenological sdIBM
calculations for globdl fitting of the IBM parameters for nuclei in A ~ 100 and 150 re-
gions including Mo isotopes. All these calculations have reproduced the experimental
results of the onset of deformation in neutron rich Mo isotopes at mass A ~ 100— 102.
We have carried out the first microscopic sdgIBM calculations on %-1%8)f, isotopes

and our results match with the experimental and theoretical results very well.

Similar onset of shape transition in rare-earth nuclei like Nd, Sm,. Gd at mass
A = 150 region is experimentally well established (Lederer and Shirley 1978, Raman
et al. 1987). There have been numerous theoretical investigations (Kumar 1974)
to explore and understand it in the fermion picture. There have also been several
phenomenological sdIBM (-1 and -2) studies of these nuclei (Scholten et al. 1978,
Scholten 1980, Casten et al. 1985). Otsuka and Sugita (1988) have applied self-
consistent angular momentum projgction method in sdgIBM framework to study the
shape transition in #6~1%8Sm isotopes. Recently Devi and Kota (1992) have carried
out full sdgIBM-1 shell model calculations for 1*6-1%Sm; isotopes to study the shape

transition as well as the F4-strength distributions in these nuclei.

There have also been several microscopic IBM calculations to this end. In
fact, as Navratil and Dobes (1991) put it, “the Sm isotopic chain is .... used as a
testing ground for various theoretical (phenomenological and microscopic) approaches

(of IBM) quite frequently.” Pittel and Dukelsky (1983) first applied their nucleon
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~ pair éoﬁstruction-procedure (discuss‘ed in Chapter 2 earlier) from HFB solutions to
construct the S, and D, pairs for Sm isotopes and then derived the structure of boson
quadrupole operator for the isotopes usiné these pairs. Pannert et al. (1985) applied
the same procedure to construct the S,, D, and G, pairs for 8714 Sm and studied
their structﬁre, the importance of G, pairs and the effects of the angular momentum
projection from HFB solutions in the transition region from spherical to deformed

nuclel.

- Scholten (1983) developed a method to determine self-consistently the corre-
lated pairs from the generalized seniority pairs to produce the spectra of 146-1845m
isotopes that exhibited the shape transition characteristics. Recently Navratil and
Dobes (1991) have applied the similafity transformed Dyson-boson mapping tech-
nique to derive the sdgIBM-2 Hamiltonian and have reproduced the shape transition
by carrying out calculations in sdgIBM-1 formalism through the IBM-2 — IBM-1 pro-
jection. The calculation using our prescription to construct the correlafed pair and
the sdgIBM-2 Hamiltonian reproduces very siﬁlilar patterns as have been obtained

by Scholten and by Navratil and Dobes.

Thes;a results of our calculations and their analyses are presented in the follow-
ing sections of the chapter. In Sec. (4.2), the procedﬁre of our calculation is described.
As mentioned earlier, (Sec. 2.2.4) due to the lack of a suitable boson shell model code,
all our calculations have been carried out in the sdgIBM-1 space by projecting the
operators from the sdgIBM-2 space. In Sec. 4.3, we present a comparison of the re-
sults of the IBM-2 and IBM-1 calculations for °Ne and ®*Mo. The IBM-2 results for
these nuclei are presented in the previous chapter. In Sec. 4.4, we present the results
of calculations for the Mo and Sm isotopic chains, compare them with experimental:

and/or theoretical results, study and analyse the shape transitions. We have also .
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* carried out detailed spectroscopic calculations on a few individual spherical and ro-
tational nuclei. We discuss these results alongwith other available experimental and

theoretical results in Sec. 4.5. The chapter ends with concluding remarks in Sec. 4.6.

4.2 Calculational Procedure

The sdgIBM-2 Hamiltonian Hypy_, is constructed for each nucleus in the *6-1%® Mo and
146-154 Gy isotopic chains following our procedure formulated in Chapter 2 Sec. (2.2)
and explained in Chapter 3. The model orbits {j#} for the valence neutrons (p=v)
and protons (p = = ), the spherical s.p. energies associated {eje} for each isotopic
chain are given alongwith the results in the next section. The Surface Delta Interac-
tion (SDI) (Brussaard and Glaudemans 1977) with strength parameters A,, and Azr
is used as the effective residual two-body interaction among the valence neutrons and
protons. In microscopic IBM calculations, A,, and Ay, are chosen to be different (Pit-
tel and Dukelsky 1983, Druce et al. 1987). However, we choose A,, = Arr throughout
our calculations with a wish to minimize the number free parameters. Navratil and
.Débeé (1991) use the same strength parameter in SDI with the quadrupole term en-
hanced by a multiplication factor. However, we obtain almost identical results for Sm
isotopes as theirs, with the simple choice A,, = Arr. As for the residual two-body
interaction amongst the neutrons and protons, it is customary in IBM microscopic
calculations to use the quadrupole-quadrupole (Q(2)_Q(2)) interaction. We, hoWever,
choose the SDI m.e. V,, with a single strength parameter A, for the same. It has
been advocated by Scholten (1983), Druce et al. (1987), Navrétil and Dobes (1991)
that the hexadecapole-hexadecapole component of the v7- interaction should also be
included in the unlike-boson interaction terms. In this vein, the choice of the SDI
with strength A,, (which means both isospin T'=0 and 1 part) is most general as

it contains multipole components of all orders. This choice yields results as good as
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" theirs. The numerical values of A,,, A,, and A,, for the two isotopic chains are

' tabulated in the next section alongwith the results.

In case of all the isotopes considered, the HF solutions with the lowest energy
eqr were found to be prolate solutions. These results vindicate similar findings of
Federman and Pittel (1978) for the Mo isotopes and of Pittel and Dukelsky (1983)
for the Sm isotopes. As discussed in Sec.(2.2), the prolate HF solution is a prerequisite

for the applicability of our scheme. These results demonstrate that this necessity is

not all that restrictive as it may a prior: appear.

Alongwith Hpy_., we also construct the E2-transition operator ’Tn(;ﬁz_)z(eq. 2.37)

as described in Sec. (2.2.2) of Chapter 2. Its parameters e’ (eq. 2.38) are determined
for each nucleus following the procedure described in Sec. (2.2.3), egs. (2.64) and

(2.66).

As discussed in Chapter 2, we finally carry out the spectroscopic calculations
in IBM-1 regime using the SDGIBM-1 boson shell model code of Devi and Kota
‘ (1990). To this end, we first project our IBM-2 operators Hipy-, and 7}1(;5,2_)2 onto the
corresponding IBM-1 operators. This mapping procedure (Frank and Lipas 1990) is
discussed in Sec. (2.2.4) and the formulae used té carryout the projection are summed
up in egs. (2.75)-(2.76). The single boson energies ¢,, the boson two-body matrix
elements (t.b.m.e.) Vi 1., and effective boson E2-charges e, fed as parameters

of the Hipn-; and ’]}gﬁ@l of the code are related to our microscopically calculated

parameters through eqs. (2.77)-(2.79).

Before proceding to discuss the results of our calculation, a brief account of

the SDGIBMI1 code of Devi and Kota is in order.
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1

4.2.1 The SDGIBM1 Code

The SDGIBM1 code treats the s, d and g bosons on equal footing. Given the total

number of bosons N for a nucleus, it generates all allowed basis states
[{B}) = |Ny; NavgaaLa; NyvgoLg 2 J) (4.1)
with the boson number conservation constraint
N,+Ng+N,=N (4.2)

where N, Ny and N, are the number of s, d and g bosons in a given configuration. The
above states are constructed with quantum numbers provided by the group reduction

given by Kota et al. (1987) of the completely symmetric U(15) representation {/NV}.

( 3

Us(1)

{N,}

@
U(15) > | Us) > 0us) O 043) | D Ou® s
{N} {Na} [va] (caLa) J

® ® @

U,9) D 0,(9) D> 0,(3)

N Bl (eeks) |

The quantum numbers (labels) corresponding to each group in the reduction chart
(4.3) are given below the group notations. Given the Uy(5) and Uy(9) representations
{N,;} and {N,}, the reduction to the corresponding orthogonal groups Oq(5) and

0,(9) with representations [vg] and [v,] is straightforward:
vy = Ny, Np — 2,..10r0 (b=dorg) (4.4)

Here vy represents the boson seniority quantum number. The reduction O4(5) D 04(3)

and 0,(9) D 0,4(3), i.e. generating all possible angular momenta Ly and Ly with the
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' respectivé multiplicities ag and .ag from vy and v, is done by a procedure given by
Kota et al. (1987). Finally, the total éngular momentum J are generated by coupling
Ly and L,. The code then calculates the mx1 — m + 1 1-particle coefficients of
fractional parentage (CFP’s) by the procedure of Bayman and Lande (1966). A
symmetric state vector |m + 1,vs,ay, L) of m + 1 identical bosons each carrying
an angular momentum [ can be expressed as a linear combination of product states
|m, vi, aq, Ly 1111 Ly) of the symmetric state of first m bosons and the last boson.

Im + 1,vf,04,Lf) = Z(m,v,-,a,-,L;;llll[}m+l,vf,af,Lf)

viaiLi

|m,v,~,a,-,L,-; 11“; Lf) (4.5)

The coefficients of expansion (...|}...) in eq. (4.5) are the m x 1 — m + 1 1-particle
CFP’s. Recognising that the states [mvaL) correspond to the group chain U(2/+1) D
SU(20+1) D 0(21+1) D O(3), the CFP’s are calculated by diagonalizing the linear
superposition aCo(SU(20 + 1)) + bC2(0(21 4 1)) of the quadratic Casirﬁir operators
Cy(SU(21 4 1)) and Co(O(21 4+ 1)) in the basis space |m, v;, a;y Liy 1110 Ly). The
coefficients a and b are chosen to be 1 and 0.055 respectively in order to distinguish
between eigenvalues corresponding to the symmetric representation {m+1} and mixed
symmetric {m, 1} . Using the boson single particle energies €,, t.b.m.e. Vi gaas5, and
the CFP’s, the code then calculates the matrix elements of Hipm_s in the basis space
{B}) and diagonalises t‘he matrices. Following the nota,tioﬁ of Devi and Kota, we
have the eigenstates |3) with total angular momentum J and energy E

Wz) = 3 Clral{Bi)) (4.6)
{Bi}

The E2 transition probability from the initial state %) to the final state
[¥34), B(E2;J; — J;), are then calculted by using the relation

B(E2; J; — Jy) = (| TED, | 2 (4.7)

2J; +1
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Although the SDGIBMI code.is capable of treating the g-bosons at par with
other bosons, in actual calculations we restrict the number of g-bosons N, < 2. This
choice, as discussed by Devi and Kota (1990), appears to be adequate for a large
number of nuclei. In the calculations for Sm isotopes, we further restrict the basis
space by imposing N, > 2. The calculations of expectation value for the number
operator NV, suggest that for nuclei with boson number N > 6, it can be taken as a
valid approximation (Kota 1991). However, it should also be stated here that with
availability of better and faster computational facilities than available to us, these

restrictions on the boson states could be removed.

4.3 IBM-1 and IBM-2 Spectra—Comparison for

Simple Nuclei ;

The IBM-2 spectra of a few simple nuclei are presented in Chapter 3. As all the
calculations presented in this Chapter are carried out in IBM-1 regime, it is in order
to compare the IBM-1 and IBM-2 spectra for these nuclei where it is possible for
us to carry out both the calculations. In this section, we present these results for
PNe and *Mo. In Figs. 4.1(a)-(b), respectively, we present the comparison of their
spectra. The model spaées and the residual two body interactions are chosen to be
exactly the same as in the corresponding cases in Chapter 3 (Sec. 3.2.2 and Sec. 3.2.4
respectively). The case of 2 Ne with the two neutrons and two protons in the same
major shell, is an ideal case of F-spin symmetry which explains the exact agreement
_ of the IBM-2 and IBM-1 levels and their close agreement with the experimental and
SM levels. This symmetry can also be s;een in the eigenstates tabulated in Tables 4.1

and 4.2.

78



16 : ' 16

- T 20 : .
14 |- (a,) Ne ' . - 14
- 2 -
10 - 10
r - B . B A
~~ o 6 - 8
> - i
[ 8 8
S| 1
m Sr - 6
4 L 4 4 4 - a 1 .
2 - 2 2 5 5 I )
0k 0 — 0 0 0o 4 o
i %0'71) ‘ (40.49) (39.66) (39.686)
xpt. SM IBM—2 IBM— 1 1
4 4
94
LI(b) Mo I
———— .,
3L o — ¢t ] 3
[ | e—— 8
——— 4 —_— *
[ 8 s ) 2 .
4 PR |
% 2+ - : ____.—————_.___.; 4 soond 2
= -0 — 0
S = —_— 4 e 4 ___..——-=% e 4 i
<
1+ ., —_—— 2 o - g — 1
0+ o] 0 0 0 -] 0
Expt. BSDI IBM—2 IBM—1

Figure 4.1: Comparison between IBM-1 and IBM-2 spectra of (a)*Ne and **Mo.
The Experimental (Expt.) results for both, the Shell-Model (SM) spectrum for WNe
and BSDI (Chen et al. 1986) spectrum for % Mo are also plotted.



The symmetry (antisymmetry) with respect to interchange of v and = labels
- in the first (second) J = 2 and 4 eigenstates of ® Ne is clearly seen. The F-spin
antisymmetric J = 2, 4 levels do not occour in the IBM-1 spectrum. The J = 27
level marked asterisk in the IBM-2 spectrum of Fig. 4.1(a) is an F = 0 level and
hence drops out in the IBM-1 spectrum. As discussed in Chapter 3, the non-Yrast
levels of ° Ne have substantial isospin mixing in the fermion space. Hence we do not

discuss them here.

In the case of Mo, however, the symmetry is not exact and our assumption
stands on test. The spectrum Fig.(4.1(b)) shows that the Yrast levels (J = 07,
2f, 4F, 67) in IBM-1 spectrum are very close to those of IBM-2 indicating that
the assumption of F-symmetry is good. They also agree well with the experimental
(Lederer and Shirley 1978) and calculated levels with Boson Surface Delta Interaction
(BSDI) of Chen et al. (1986). The other higher levels of IBM-1 are however shifted up
because of mixing of F-spin symmetric and antisymmetric states. As se;en in tables
(4.1) and (4.2), the J = 2§, 4F(Yrast) levels (with energies Eyy = 0.95MeV and
E41+ = 1.89MeV), though not completely symmetric with respect to interchange of
v-m labels, are close to it. The relevant components of (s,dr, d, sy, and d,g~, g.d-
etc.) are quite comparable to each other and their phases are the same. In J = 27

and 47 states, the relative phases between such components are opposite. In J = 43

Table 4.1: J=2 IBM-2 Eigenstates.

Nucleus | E(MeV) | s,dr  dys, dudr  dugr  gudr  9u9x

20 Ve 1.36 | -0.54 -0.54 045 -0.31 -0.31 0.16
12.68 0.53 -0.53 0.0 047 -047 0.0
Mo 0.95 -0.51 -0.73 0.18 -0.28 -0.27 0.12

172 |-0.62 029 -064 -0.17 0.02 -0.29
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level, the absolute values of these components are quite comparable which means
that. this state is more closely F-spin antisymmetric. As no other phenomenological
or microscopic IBM-2 results for Mo are available in the literature, it is hard-to

make a better comparative study of these states here.

However, it can be ascertained that for the Yrast levels which are of prime
interest to us here, the assumption of corhplete F-symmetry is a very good approx-
imation. This point will be demonstrated in the following subsections where the
spectra of IBM-1 operators with this approximation are seen to match very well with

experimental and other theoretical results.

4.4 The Shape Transitions

4.4.1 Mo isotopes

The calculations for the even-A #6-19 Mo isotopes are carried out in the model space of
{g%} for the two valence protons and {d%s%dg_g%h;%} for the neutrons. The s.p. ener-
gles of these orbits are (in MeV) {0.0} and
{0.0,1.0,2.5,3.0, 3.6} respectively following the choice of Khosa et al. (1982). The set

Table 4.2: J = 4 IBM-2 Eigenstates.

Nucleus | E(MeV) | 8,9r v+ dudx dygr  Guds  Gu9nx
ONe 4.15 0.40 0.40 0.67 -0.32 -0.32 0.17

14.37 |-0.64 0.64 0.00 029 -0.29 0.00

“Mo 1.89 ~-0.64 ~0.55 -0.51 0.16 0.05 -0.05
2.61 -0.57 0.52 -0.02 -0.37 047 021
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Table 4.3: Adopted SDI strength Parameters for ®6-1% Mo isotopes.

Isotope | Au(= Anr) | Ave

(in MeV) | (in MeV)
®Mo | 037 0.60
%io| 037 | 0.60
1w | 033 0.60
w270 | 0.10 0.40
i | 0.05 0.40
00| 0.05 0.40
18070 | 0.05 0.40

of SDI strength parameters A,, = A.r = 0.35 MeV and A,,,; = 0.6 MeV used by Fed-
erman and Pittel (1978) were taken. However, it was observed that while this choice
produced fairly good agreement with experimental spectra for the lighter isotopes
ie. 6-190 10, for heavier isotopes, 1%4~1% Mo, it yielded scaled up spectra indicating
too small moments of inertia. In order to reproduce spectra close to observed ones,
we varied these parameters while generally observing economy on such variations.

The adopted set of strength parameters for each isotope is tabulated in Table 4.3 .

Note that we have to vary the parameters at A = 100 —102 precisely where the
shape transition is known to occur. The necessity of similar variation of the strength
parameters of model interactions in order to produce agreeable results with observed
ones has also been seen by Scholten (1983), Navratil and Dobes (1991) and by us in

the calculations for the Sm isotopes.

The HF calculations were carried out in each case to obtain the lowest energy
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axially-deformed prolate solutions with good parity. In none of the isotopes we ob-
served occupation of the intruder h;ix_ orbit by the valence neutrons. The normalised
occupancies |Cjx|? (eq. (2.24)) calculated from the |v;k = 1)er orbit (eq. (2.23)) for
every valence orbit j¥ are plotted for all the isotopes in Fig. 4.2(a). In case of ®* Mo the
d% orbit gets almost filled with very littl!e participation of the rest of the model orbits
and we observe a shell effect here. With addition of more neutrons, more collectivity
sets in and for A = 106, 108 the d% and 91 orbits also take part substantially. The
subshell effect (as seen in ®Mo) at Z = 38, 40, and N = 56, 58 have been observed
and discussed by Mach et al.(1991) for Sr and Zr isotopes and are, according to

them, responsible for the delay in the onset of shape transition in Mo isotopes.

The IBM-1 d- and g-boson energies €4, €, with respect to the s-boson energies
are calculated from the corresponding IBM-2 quantities by eq. (2.77). Barring the
case of ®Mo, these quantities vary smoothly (fig. 4.2(b)). It is to be noted that for
104-108 A7 with the SDI strength parameters kept constant (Table (4.3)), there is
gradual decrease in the €4-¢; gap. This decrease facilitates a stronger mixing of the

d- and g- bosons and probably helps the onset and sustenance of the deformation.

" The effective (IBM-1) boson E2-charges e, (J £J'=0,2and 4 for s-, d- and
g-bosons) of Tn(;%)l in units of eb (e= electron charge and b = lbarn = 10~%cm?) are
calculated from the IBM-2 charges e’ , by eq. (2.79) with fermionic charges e; = 0.9¢
and ef = (1 +¢]) = L9e. Barrmg the initial cases of %=1 Mo, for the heavier
isotopes, these parameters remain constant and are of the same order (Fig. 4.2(c)). It
is gratifying to note that these microscopically calculated e, have the same relative

phases as the SU(3) E2-transition operator (Wu 1981)
2
27

(g + '} - 2 (48)

and with the choice of the free parameter e? = 0.04eb the two sets of parameters

TEN(SU(3)) = e"(‘l-(l—?g)*(s*cﬁd*é)édl( )3 (d'd)s

-+
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become comparable for cases like 196=108 Mo,

The J = 2},4F and 6} calculated and experimental (Lederer and Shirley
1978, Liang et al. 1991) levels are plotted in Fig. 4.3(a). The lowering of these
levels indicating higher moments of inertia for the heavier isotopes and the apparent
I KJ(J-HE) relation with K constaht for 1°4-1% Mo indicate the shape transition.
The ratio R = Eg‘ (Fig. 4.3(b)) clearly changes from 2 2 (vibrational limit) to o~ 3.3
(rotational limit)l. The B(E2;0f — 2f) (= (B(£2)1)) in units of €?b? calculated
with ﬁéﬁ% operator also show (Fig. 4.3(c)) the characteristic enhancement at A =~
100, 102. However, the observed saturation of this B(E2)t value for 1%-1% Mo is not
reproduced. It should be noted that these calculations have been carried out bésically

with only one parameter ef = 0.9¢ and el has been fixed at 1 + €.

4.4.2 The Sm Isotopes

The s.p. model spaces and the s.p. energies of the levels for the valence neutrons
(w.r.t. N = 82 ) and the valence protons (w.r.t. Z = 50) chosen in the calculations
for 146-184 Gy isotopes are given in Table 4.4. The s.p.e. are chosen to be the BSSP
(beginning-shell single-particle) energies for both neutrons and protons given by Pittel
et al. (1982). The SDI with interaction strength A,, = Arr = 0.3MeV and A, =
0.12MeV is chosen throughout the calculation. As mentioned earlier, for isotopes like
152-154 Gy the A, and A,, at 0.3 MeV do yield scaled up spectra although the E+
levels exhibit rotational character. Again, like the case of Mo isotopes, one ought
to vary these parameters in order to produce the spectra closer to experiment. We
have carried out the calculations in both ways ~ with constant parameters and with a
suitable variation. While studying the shape transitions in the isotopic chain, we keep
these parameters fixed at the values quoted above in order to draw a closer comparison

with the results of Scholten (1983). Scholten has carried out these calculations with
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Table 4.4: The neutron and proton model spaces for *¢~1%4Sm and the s.p.e.

Neutrons : Protons

orbits energies(MeV) | orbits energies(MeV)

*py 2.25 S5y 2.99
*ps 1.50 2ds 2.69
*fs 2.60 2ds 0.96
*f1 0.00 'g1 0.00
1he 245 thu 2.76

oy
b

131 2.80 - -

2

1

constant strength parameters and has obtained scaled up spectra just like ours. In
the detailed calculations for individual nuclei like 48Sm and '*2Sm, we vary the

parameters suitably so that the observed spectra are approximately reproduced.

In these calculations, we again do not find any occupation of the intruder
orbit— either of w—(lh%) or 1/—-(11'%). The normalised occupancies |Cjx|* and 1Cy|?
of the |v,m;k = +3)u orbit are plotted for all j7 and j orbits as functions of A in
Fig. 4.4(a) and (b). As the proton number Z = 62 does not vary, the |Cjr|* remain
almost constant throughout. The |Cjv[* vary with A and indicate a subshell closure
at A = 150 with 2f% orbit almost filled. For A = 152, higher orbits like Zf% and 1h%
play an important role in building collectivity while for A = 146, 148, 3p% orbit is

more active.

The IBM-2 single boson energies €}, e with respect to the s-boson energy e,
(p = v and ) are plotted in Fig. 4.5(a) and (b). While the e] — €] separation remains
essentially constant, that between the v-boson energies increases. This enhances the

€4 — €, separation in IBM-1 regime, unlike the Mo isotopes. Such effects are also

87



T I T T T
3
1.0 +~ -
OF (a) 525N ® Sz
B , | ) ]
0.8 |- v o dyspl ]
L 2 ]
] 0— ——0 0 o _n M d5/2
_ 0.6 \ -
\:“\' a
| O - €7/21
T 04+ _
N v V- v v v N
0.2 + -
00 ¥ — ! .
I I | | |
1.0 .
(b) ® Py
0.8 |- vV P32
“— osl " oz |
o™ - o Ty | A
- 0.4 o
I " Pose| ]
0.2 —
- - - '\ u
D s
i B S _
0.0 1 | R | [
146 148 150 152 154
A

156

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

Figure 4.4: Effective occupancies |Ce|? of s.p. (a) proton(p = 7) and (b) neutron

(p = v) orbits from |p; k = +1).¢ orbits.

88



E2-Boson Charges (eb)

E(MeV)

E(MeV)

Figure 4.5: IBM-2 d- and g-boson energies €5 and € for (a) neutrons (v) and (b)

0.2
0.1
0.0
~0.1

2.25
2.00
1.75
1.50

1.25

2.0
1.5
1.0

0.5

T ] T T ]
-(c) e | 0.2
L VMV\VM/'\' S 1
W‘ -
I~ o - e edd - 0.t
e
L V\v/v dg - 0.0
i \v/v
egq 1
— G\‘”"*~G””’”’&\\\‘\\\ﬁ,.——~"ﬂ — < ~0.1
| | | ]
- I | | I ! . 2‘25 :
L (b) ]
c
— /v\r/v\v Trd— 00
L v € .
= __Bll1.75
' "/\0/‘\. 1
L . —~ 1.25
- | -
u I } % i
(a) - v
i € 4420
v
- E ~
g
| V_/v - 1.5
i /\/\ 41.0
| | ! ! l 0.5
148 150 162 154 158

protons (7), and (c) the IBM-1 effective boson charges for E2-transitions.

89



noted by Scholten (1983).

The parameters 7{;(35231 opefator calculated with effective fermion charges e =
0.5, eg = 1.3¢ are given in Fig. 4.5(c). All the parameters essentially remain constant
through the chain. The relative phases also match with those of TED(SU(3)) in
eq. (4.8). However, the values of eyg seem to be comparatively small. These values of
our parameters compare well with the T(E2)(SU(3)) operator used by Devi and Kota
(1991) in their study of 16~1388m isotopes, with the choice e? = 0.113eb. The IBM-2
e,q and egy calculated to be 0.06eb and 0.14eb marginally differ from those of Otsuka
(1984) (0.1 and 0.12 respectively). |

The J = 2f,4{,0f and 27 levels of the spectra generated in our calculations
are plotted in Fig. 4.6(a) alongwith the observed levels (Lederer and Shirley 1978). For
comparison, we also present the results of Scholten (1983) alongwith the experimental
levels in Fig. 4.6(b). The J = 2, 47 levels produced in our calculation are scaled up
compared to the observed ones just likeY those of Scholten’s IBM-2 calcqlations. The
evidence of shape transition at A = 150 is clearly seen from the Yrast levels J = 2f
and 47 plotted w.r.t. the ground state. As discussed by Scholten et al. (1978), the
behavior of the 0] levels in the shape transition is the most interesting. It first drops
linearly as a member of the 2-phonon multiplet of the spherical nucleus. But then as
the transiﬁion to deformed shape occurs, it moves up again, to become the head of
the #-band. This behavior is clearly seen in the 0F levels produced in our calculation.
The 27 levels also go up as seen in the experimental curve of Fig. 4.6(a). However,
in magnitude, our 0§ and 2;* levels for 1521549 are muc'h higher even compared
to those of Scholten. As already mentioned earlier, the excess of pairing correlation
supplied by a higher than realistic value of 4,, and A,, may be playing a role in
this scale-up. In addition, for our levels the mixing of F-spin mixed-symmetric states

with those of F-spin symmetric ones may also be partly responsible. As Scholten’s
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calculations are carried out in IBM-2 with a Majoréna force which pushes the F-
spin mixed symmetric levels up in energy, the 05,25 levels produced thereby should
correspond closer to pure F-spin symmetric levels. Navratil and Dobes (1991) carried
out their calculations by smoothly varying all the input fermion parameters (s.p.e.’s
and the strength of the effective interactions) by an empirical function to reproduce
the observed spectra. We have also carried out calculations for individual nuclei by
varying only the strength parameters A,,, Arr and A,, and we find that with a
judicious choice of only these parameters one can reproduce the observed results to

a very good extent. These results are discussed in the next section.

The ratios R = Ej+/E;4 for each nucleus are plotted in Fig. 4.6(c). The
transition at A = 150 is clearly observed. The B(E2)1 calculated in units of e2b? are
presented in Fig. 4.6(d) alongwith the experimentally (Raman et al. 1987) adopted
values and those calculated by Navratil and Dobes (1990). With the fermion effective
charges e = 0.5¢ and ef = 1.3e chosen to reproduce the experimental value for
150Gm, we observe a clear enhancement of the transition probability at A=150-152.
However, it is also clear that the same set of ef and ef is not able to produce enough
enhancement as observed experimentally. A slightly different choice of these charges,
i.e., 0.7e and 1.6e respectively, yields the B(E2)71 value 3.28¢%b? for %25m, closer
to the experimental value 3.44e2b?, Navratil and Dobes also observed similar effects
and chose two sets of charge ﬁarameter; el and ef, viz, (0.7¢, 1.3¢) and (1.0e, 1.7¢)
in order to produce values closer to the observed ones (see Fig. 4.6(d)). The B(E2)

value for 1% Sm seems to saturate very drastically for some reason in our calculation.

4.4.3 Discussion

It has long been known that while the short range pairing force produces sphericity,

the long-range fields producing quadrupole force favors deformation. The interplay of
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these two produces the spherical or deformed nuclei. Federman and Pittel (1977) first
attempted to provide a unified mic.roscopic descriptién of the nuclear deformation.
Analysing the shell model matrix elements of Ne, they showed that it is the stro_ng |
.1sosp1n -scalar ®S; nuclear force between the netrons and protons occupying the da mda
spm orbit partner (SOP) orbits which is mainly responsible for the deformation in
®Ne. They proposed a general thumb rule that the onset of nuclear deformation
occurs in the region where valence neutrons and protons occupy spherical s.p. orbitals
having a good overlap. Such a configuration enhances the neutron-proton interaction
which is responsible for the deformation. It was shown by deShalit and Goldhaber
(1953) that the overlap between the two orbitals (n,l,g,) and (n,rl,,j,)i (n,l,j are the
s.p. SM quantum numbers) is maximum if n, = n, and I, = [,. It is also very good
forn, = n, and I, = [, + 1 for large vgdues of [, and ;. With the thumb rule and
the above observation of deShalit and Goldhaber, Federman and Pittel ascribed the
onset of deformation in the Mo isotopes to the filling of m—(gg) and v—(gz) orbitals.
Extending the same argument they also described the onset of deformation in the rare
earth nuclei like Sm as a consequence of the occupation of intruder orbits W_(lh%l)
and x/—(lhg,). They also explicitly demonstrated (1978) this effect for Mo isotopes
by carrying out HFB calculations. Khosa et al. (1982) reported that the deformation |
in the neutron-rich Mo and Zr isotopes is due to thé occupation of intruder (lhxz_x)

orbit by the neutrons and not because of enhanced interaction by the occupied SOP

(7 — (92—) V—(g%)) orbits.

In our HF calculations, as mentioned earlier, we find that neither in case of
the Mo isotopes nor the Sm isotopes, the intruder s.p. orbits, (i.e. lh%l or li%q) are
occupied. And yet, we clearly observe the onset of deformation in both the cases.
This effect can still be explained by the thumb rule of Federman and Pittel. In case
of Mo isotopes, the protons are in {g%} orbit. As seen in Fig. 4.2(a) and in Table 4.5,

the occupation of u~(g%) orbital increases at A = 100, 102 and is substantial at
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. . i
Table 4.5: Occupancies of the neutron s.p. orbits in Mo isotopes.

A 351~ 2-61:1 :edé lgz

2 2 2
96 | 0.3 0.17 3.39 0.13 -
98 | 0.24 0.13 552 0.11
100 | 1.04 0.54 5.95 0.47
102 [1.99 1.20 5.99 0.81
104 [ 2.00 2.85 6.00 1.15
106 | 2.00 3.64 6.00 2.36

108 | 2.00 4.00 6.00 4.00

A = 108. The neutron-proton interaction enhanced by this occupation is probably

o

responsible for the onset of deformation.

In case of the Sm isotopes, as seen in Fig. 4.4(a) and (b) the most influential
s.p. orbits are (2d% 1g;) for protons and (Sp:% Qf% Qf; 1hg) for neutrons. In Table (4.6),
we have tabulated the occupancies of these orbits. Amongst the neutron orbits the
zfg, orbit is getting filled upto A = 150. For A = 152, however, the occupancy of "’f%
drops a little, and those of 2f% and 1h% increase drastically. All these neutron orbitals
caﬁ be said to have good overlap with the influential proton orbitals by the n, = n,
and I/, = l; + 1 rule. The combined effect of the neutron-proton interaction of all
these orbitals may be responsible for the onset of deformation at A = 152. These
observations are in variance with the predictions of Féderman and Pittel (1977) who
suggest that the deformation in the Sm isotopes should result from the interaction

between the protons in 1h12_1 and the neutrons in lh% SOP orbits,

94



Table 4.6: Occupancies of the proton and neutron s.p. orbits in Sm isotopes.

A | Protons ’ Neutrons

2d§ lg 31’3— Zf% 2f% 1,
146 | 3.87 7.86|0.24 0.04 1.66 0.02
148 1 3.80 7.76 | 0.48 0.10 3.31 0.05
150 | 3.86 7.79 1 0.38 0.04 5.56 0.02
152 13.71 7.66 | 0.68 0.99 5.21 0.76
154 | 3.76 7.750.60 0.88 7.44 0.73

(ST

4.5 Detailed Calculations

In this section, the results of the detailed calculations of energy levels and the F2-
transition probability for *8Sm, 1N d and '52Sm are presented. The gross features
of the observed vibrational collectivity of 1*Sm and rotational collectivity of *25m
were obtained in our calculation with one set of interaction parameters for the SDI
and one set effective fermion charges. However, the spectrum of 1%25m was scaled
up (Fig. 4.6(a)). In this section, we show that by suitably choosing two interaction
parameters, namely, A,,(= A.,) and A,, we can reproduce the spectrum of The
ground band and Aa few levels of the higher bands to very good accuracy. Further,
with a judicious choice of the fermion effective charges ef and e, we are able to
reproduce the experimentally observed B(E2) values quite well. Besides these two
Sm isotopes, we also calculate with remarkable success the spectrum and the B(£2)

values for 1 Nd known to be a rotational nucleus.

The single particle energies of the model spaces are chosen to be the same as

in the previous calculations (table 4.4). The rest of the fermion input parameters are
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Table 4.7: Choice of the free fermion input parameters

parameter(unit) | 13Sm | 159N ¢ | 152G,
A (MeV) 0.33 | 0.5 0.10
Arr(MeV) 0.33| 0.15| 0.10
Avr(MeV) 012 | 0.12] 0.17
ef(e) 0.2 1.0 1.1
er(e) 12| 19| 21

chosen as presented in table 4.7.

4.5.1 48g9m,

In Fig. 4.7 we present the spectrum of .5m (labelled “Calc.”) alongwith the exper-
imental (“Ex”) levels. The theoretical levels produced by the microscopic sdgIBM
calculations of Navratil and Dobes (1991) (“ND”) and phenomenological calculations
of Devi and Kota (1992) (“DK”) are also plotted for comparison. The exerimental
levels are read off from Devi and Kota (1992). Apart from the good agreement of the
ground state band (“Quasi-GS”), we also find fair agreement of the “Quasi-#” band.
The “Quasi-y” levels are however‘very,[poorly reproduced in our calculations. The

same seems to be the case also with the microscopically calculated levels of ND.

‘ As noted before, our assumption of complete F-spin symmetry of all IBM-2
states of the Hamiltonian is an approximation. This approximation may be badly
broken for levels of higher bands farther from the ground state 0}. In fact, Otsuka
and Ginocchio (1985) have shown that the 23 level of “8Sm is an F-spin vector state.
Such factors may be responsible for the poor reproduction of the Quasi-y band in our
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Figure 4.7: Spectrum of *¥Sm. Our calculated levels (Calc.) are plotted with the

experimental levels (Ex.), the results of (sdg-) microscopic calculations of Navratil

and Dobes (ND) (1991) and phenomenological calculations of Devi and Kota (DK)

(1992).
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Table 4.8: B(FE2) values in units of €?b? for *8Sm. The “Ex” and “ND” values are
taken from Navrdtil and Dobes (1991). The static quadrupole moment sz in barns

(b) of the 2{ level is also tabulated.

Ji —= Jy Ex. | Calc. ND
2f — 0f | 0.151(10) | 0.143 | 0.151
4F — of 0.25(7) | 0.239 | 0.222
2} — 0f | 0.0069(11) | 0.010 | 0.042

25 — ot - | 0114 -
0f — 2f ~ | 0.146 -
0f — 2} - 0am -

@+ (b) | -0.97(27) | -0.631 | -0.519

calculation.

The E2-transition probabilities from initial states J; to final states Jy,
B(E2;J; — J;) of a few of the low-lying levels are presented (“calc.”) in table 4.8.
The experimental values and those of ND (sdg- calculation) match well with ours for

the Yrast levels. The static quadrupolé moment @+ (in units of b) of the first 2%

level produced in our calculation also matches fairly with the observed value.

4.5.2 10Ng ‘

The spectra of 1°Nd are plotted in Fig. 4.8. The experimental levels are taken from
de Mateosian (1986). The calculated (sdg)-spectrum of Navratil and Dobes (ND)
are also plotted for comparison. The levels of the ground state (GS) band in our

calculation (“Calc”) match with the experimental levels remarkably well. The levels
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of the y-band though clearly reproduced in our calculation are slighﬂy pushed down.
The reproduction of the 8-band is p‘oor. Besides being pushed up in our calculation,
the 4% level of this band is' pushed below the 2t level. As remarked earlier, such
discrepancies in the higher levels may be because of substantial mixing of states with

F < F o with F, .. states.

In table 4.9, the B(E2) values are listed. The values for the transition in the
GS band are in close agreement with the experimental and ND values. Barring the
case of B(E2;2% — 27), the cross-band values produced in our calculation are small,
as they are expected to be. The intraband transitions, especially in the y-band are

as prominent as they are in the GS band.

4.5.3 1%29m

The calculated spectrum (Calc.) of ¥2Sm is plotted alongwith the experimental
(Ex.) and phenomenologically calculated (Devi and Kota (DK) 1992) spectra in
Fig.4.9. The “Ex.” and “DK” numbers are read off from Devi and Kota (1992). The
agreement of our calculated levels in the G.S. band even upto J™ = 12% is quite good.
The J = 2% to 67 levels of y-band are also produced to very good accuracy with the
band head tallying with the experiment. Our §-band is, however, pushed high up

and is poorly reproduced.

In Table 4.10, we present the B(E2) values alongwith the experimental and
calculated values from Kumar (1974). The E2- matrix elements M;;(£2) listed by

Kumar are related to the B(E2;J; — J;) by the relation

B(E% Ji — J}) = m_lmM,@(E:z) (4.9)

With the fermion effective charges e = 1.2e and ef = 1.7e the B(£2;0f — 2f)
is calculated to be 3.44 (e2b?), comparable with 3.37 (Expt.) and 3.25 (Kumar).
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Table 4.9: B(E2) values in units of e2b? for ! Nd. The experimental (Ex.) and ND
(sdg)-values are from Navratil and Dobes (1991).

Ji—= Jy Ex. | Calc. ND
2f - 0f | 0.563(2) | 0.557 | 0.560
4f — 2+ | 0.819(28) | 0.848 | 0.810
6F — 4f | 0.980(90) | 0.859 | 0.883
8 — 67 | 1.207(118) | 0.893 | 0.904
2+ — 3+ -1 0.686 -
2f — 4 -1 0.592 =
3+ — 4F -10.370 -
2} — 0f -10.312 -
2+ —2f | 0.034(7) | 0.155 | 0.037
2+ — 0f | 0.0151(9) | 0.017 | 0.012
2+ — 4 - 0.006 ~
0f —2f | 0.208(9) | 0.039 | 0.0705
2} — 4f | -0.095(28) | 0.023 | 0.0326
25 —2f | 0.036(17) | 0.002 | 0.004
25 — 0F | 0.0024(5) | 0.001 | 0.0117
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However, with this choice the other B(£2)’s are found to be consistently less than
the experimental or calculated values of Kumar. A slightly different choice e) = l.le,
el = 2.le optimises the values. The B(E2) values calculated with this choice are
tabulated in Table 4.10. The enhanced intraband and suppressed cross-band E2
transition probabilities are clearly seen from this tabulation. However, it is not clear
why large discrepancies occur between our values, the “Ex.” and calculated values of

Kumar.

4.6 Conclusion | | .

We have applied our formulation developed and discussed in Chapter 2 to study the
collective properties of vibrational and rotational nuclei. The observed transition from
spherical to axially deformed shape in even-even *6-1% Mo and 6-154Gm isotopes is
clearly reproduced by the IBM Hamiltonian and E2-operators derived microscopically
by our scheme. The detailed calculations performed on the spherical *8Sm and
deformed '*°Nd and '*2Sm reproduced the observed spectra and B(E2) values in
the (quasi-) G.S. bands very well. This verifies our claim (see Sec. 4.3)) that the

assumption of complete F-symmetry in these levels is a good approximation.

However, there are a few unsavoury observations. First, we found it necessary
to vary the fermion input parameters in order to be able to closely reproduce the
observed spectra and E2-transition probabilities. To be specific, for satisfactory re-
production of the spectra we had to vary the two interaction strength parameters, i.e.
A (= Azr) and A,,. We also had to vary, less often though, the fermion effective
charges e; and e to reproduce closely the observed B(E2) values. In case of Sm

isotopes, we demonstrated explicitly that if we keep these strength parameters fixed,

103



Table 4.10: B(E2) values in e?? for 1%25m. For comparison we have also tabulated

the experimental (Ex.) and calculated values of Kumar (1974).

Ji—J; | Ex. | Calc. | Kumar
0f —2f | 337 441 3.25
of 4t | 181 179 1.7
4f —6F | 171 1.27 1.71 |

2f — 3% - 126| 126
2f — 47 -1 070 | 0.5
37 — 4F -| 082 092
3 — 5% -| 090 | 094
4F — 53 ~| 050 0.64
4f — 63 -] 081} 112
57 — 63 -] 033] 049
0F — 24 - 274 372

2t —0f | 0.02] 002 0.02
ot —»2f | 005| 011 0.05

st —2f | -] 002] 003
4 -9 0004 00| 0.008
5b—d4f | -1 001 0.03
65 —4f | ~| 00| 0.005 -

Og—-;Zf 0.181 | 0.02 0.21
2§—+0f 0.005 | 0.001"} 0.003

2+ — 25 0.001 | 0.08| 0.001
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then we get scaled up spectra for the heavier (1¥2-1545m) isotopes (Fig. 4.6(2)). Be-
sides the similar scaled up spectra produced in Scholten’s work (Fig. 4.6(b)), Druce et
al. (1987) have also reported similar effects in their microscopically calculated spec-
tra of =22 g isotopes with the choice of parameters kept constant throughout the
isotopic chain. By choosing them suitably, we could reproduce the observed spectra;
to very good accuracy (Figs. 4.7 to 4.9). Similar observations have also been made
by Navratil and Dobes in their calculations for the Sm isofopic chain employing the

similarity transformed Dyson mapping procedure.

In our calculations, we have kept the ﬁumber of free parameters minimal —
at 2. These are the effective interaction strength parameters. The s.p.e. of the model
orbits are kept fixed. Navratil and Dobes vary all the input parameters including the
s.p.e. by an empirical function with one empirically chosen parameter. It should be
noted that tile choice of s.p.e. in our calculation coincides exactly with the initial
choice of Navratil and Dobe§ which they then vary smoothly in the above mentioned
manner. And yet, our results and theirs are however very similar as seen in Figs.
(4.7, 4.8). However, such a necessity to vary the fermion input parameters for the
same isotopic chains shows that a complete understanding as well as capability to

carry out fully microscopic IBM calculations is yet to be achieved.

Secondly, reproducibility of higher bands in our calculations is poor. The
band next to the (quasi-)G.S. band (quasi-A for *8Sm and 4 for ***Nd and 525m) is
comparatively much beter reproduced. The third band is very poorly produced in all
the three detailed calculations. As pointed out earlier, a more than permissible mixing
of F-mixed-symmetric states with the assumed completely F-symmetric IBM-2 states
may be a strong factor. The other possible factor may be inherent to our approach in
that our construct is based on only the lowest energy HF solution. There may occur,

in many a case, close local minima on the energy hyper-surface. The higher bands
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of the spectrum will naturaﬂy get affected if the sblutioné corresponding to these
nearby minima are not takgn into account. One may, in the spirit of HF band-mixing
calculations, construct distinct correlated pairs S, 5".., D, D'.. etc., a set from each of
the solutions and construct the expanded IBM scenario with the corresponding s, s'..,
d,d'.. bosons. Such calculations are out of the scope of our present calculations.
Thirdly, the approximations involved, namely, the absence of identical boson two-
body interaction in H,5y_, and the restrictions put on N, and N,, the s and ¢ boson
numbers, because of computational limitations may also be playing a non-negligible

role in these higher bands.
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Chapter 5

Summary and Conclusion

5.1 Summary

In this chapter, the objective of this work, its extent of success and the limitations

are summarised. Further calculations to investigate the limitations are also proposed.

The objective was to construct the IBM operators in microscopic (fermion)
basis in a dynamic way so that the same scheme is applicable to any even-even
nucleus with valence neutrons and protons. Secondly, we aimed at applying this
scheme to reproduce and study the collective spectroscopié i)r_operties of vibrational

and rotational nuclei.

The IBM-2 Hamiltonian HM;py,_, and the E2-transition. operator ’2;1(3‘32_)2 were
constructed microscopically and dynamically by (a) constructing the correlated iden-
tical nucleon pairs from the deformed HF solutions for every nucleus considered and
(b) evaluating the parameters of these operators through calculations of appropriate

matrix elements of the fermion operators in the space of the correlated pairs. This
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was achieved by establishing a Marumori mapping from t'he correlated pair space
onto the boson space. In all calculations, the g-bosons (G-pairs) were explicitly taken
into account. The approximation involved was that identical boson two-body inter-
action terms were ignored. Secondly, for constructing the correlated pairs, it was
necessary to have prolate-deformed axially symmetric HF solutions. For the Mo and
Sm isotopes to which we applied the scheme, these solutions were in fact found to
be prolate solutions. Hence this requirement did not prove to be as restrictive as it

might appear.

Applying this scheme, we carried out IBM-2 studies of a few simple nuclei, viz.
MO Ne, T4, 507y and % Mo, chosen with fhe criterion that they have only one boson of
each kind (N, = N, = 1) outside the core. The Yrast levels of these nuclei obtajned by
diagonalising the H,py_, showed good agreement with those of the experimental and
shell model results. Non-Yrast levels of % Mo were also reproduced well whereas those
of the three lighter nuclei were pushed up because of isospin mixing. It is to be noted
that °Ne is a well known rotational nucleus. The other nuclei exhibit vibrational
spectra in low-energy regions. It has been previously shown (Elliott et al. 1987) that
for nuclei with valence neutrons and protons occupying the same single particle SM
space, one ought to carry out IBM-3 studies in order to preserve the isospin symmetry.
From our calculations for the three lighter nuclei, it seems, however, that in case of

the Yrast levels, the IBM-2 calculations may still be suﬁiéient.

The principal application of the scheme was to the study of shape transitions in
even-A *~1% Mo and 46-1%4 S isotopes. Due to the lack of an IBM-2 code incorpo-
rating g-bosons explicitly, we carried out these studies in IBM-1 regime by projecting
from the IBM-2 operators. The shape,}transition from spherical to axial rotor with
increasing neutron number whfch is chacterised by a transition from vibrational to

rotational spectrum as well as the characteristic enhancement of B(E2;0f — 27)

111



for the rotational nuclei was clearly reproduced by our calculations. While similar
calculations following other proposed schemes have been previously carried out for
the Sm isotopes, we have reported here the first microscopic IBM calculations for the

Mo isotopes.

Detailed calculations of spectra and E2-transition probabilities for the vibra-
tional 1*8.Sm and rotational 1°Nd and 1525m nuclei were also carried out. The levels
in the ground and first excited band wefe very well reproduced as were the intra- and
inter-band B(E2) values. The second excited band was however poorly produced in

all three cases.

5.2 Further Investigations

In the study of shape transitions in both the isotopic chains, it was observed that the
same set of fermion input parameters do not reproduce thcle experimental spectra of
all the isotopes in the chain to the same degree of accuracy. It was necessary to vary
the strength parameters of the fermion two-body interaction (SDI) and the fermion
effective charges to reproduce the spectra and B(E2) values close to the observations.
The variation of the interaction strength parameters was more crucial. It could how-
ever be broadly said that the parameters remained essentially the same in the range
of vibrational and, separately, in the range of rotational nuclei (Table (4.3)) and
changed from one set of values to the other through the transitional region. It was
also observed that the interaction strength parameter amongst the identical nucle-
ons, namely, A,, and A, which represent the pairing strength reduced drastically

across the transitional region for the heavier (deformed) isotopes. It can be argued

that such transitions in the strength parameters is a manifestation of the transition.
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However, it remains a dissatisfactory fact that the whole scenario of shape transi-
tion could not be derived completely microscopically, with the same set of fermion
parameters throughout the isotopic chain. ‘This aspect calls for further investigation
especially to explore if a systematic and analytical behavior of such a transition of
fermion input parameters exists. At this juncture, this variation remains phenomeno-
logical. Navratil and Dobeg (1991) also observed a similar necessity to vary the input
parameters and carried out the variation using a smoothly varying function having
one empirically chosen constant for every set of parameters, viz., the single particle
energies and the interaction strength. Such investigations could be carried out in
our formulation too. The plausibility and origin of the empirical parameter and the

function may also be investigated.

In carrying out these calculations, it should, however, be borne in mind that
the two-body identical boson interaction terms in Hipm—» are always ignored as an

approximation.

The reason behind the poor reproduction of the higher excited bands, as dis-
cussed in Chapter 4, mdy be two-fold. For one, it may be due to the occurence of
multiple local minima of the energy hyper-surface which was minimized in the HF
procedure. By incorporating the effects of these minima in terms of a set of bosons
of each type (s, s/, ..,d,d', ..) corresponding to each local minimum it may be possible
to generate the higher bands to a better accuracy. This necessitates a generalisation

of the SDGIBMI1 code. )

The other possibility is that the eigenstates of Hipm_, corresponding to the
levels in the higher bands do not correspond to maximum F-spin. Contrary to our
assumption in carrying out the IBM-2 — ‘IBM—I projection procedure, these states
may be actually having substantial mixture of lower F-spin states, In order to ascer-

tain the validity of this conjecture, it is desirable to carry out an F-spin analysis of
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the Hygu_, prior to the IBM-2 — IBM-1 projection. Following Pittel et al. (1982) one
can decompose the Hpyu_, into a sum of the F-spin symmetric, antisymmetric and
non-conserving pieces and then carry out the projection only on the F-spin symmetric

part assuming that it is the most dominant piece in the full Hamiltonian.,

Apart from the absence of the identical two-body boson terms in the IBM-2
Hamiltonian, we have one more approxiamtion. Due to limitations of available com-
putational facilities, restrictions have been put on the number of s and g bosons, N,
and N, respectively, in the boson configuration space in which the IBM-1 Hamiltonian
matrix is finally constructed and diagonalised. These factors may also be playing a

substantial role in the reproduction of the higher bands.

Besides, to further explore and establish the validity of the scheme presented
here, it is desirable to carry out similar studies in actinide regions for example in
Os—Pt—Hyg isotopes. The isotopes in this region are known to undergo v-unstable
to axial rotor shape transitions. These properties could be studied by the application

of our procedure.
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Appendix-A

Here we present the calculation of the matrix element (m.e.)

"11(p; kL) ). (A1)

(o3 ko)l x 510

We reduce this m.e. into two s.p. matrix elements by intermediate state expansion
t . J
((p; krlr)’]rll(ajp X @jie) ||

(_1)J,+J,—J[J]%Z{ VA j/m}

jie J'/P J,, J

(p; kol ) =

(03 koL ) adel 1572 (5" @s0e | (3 Kol ) ) (A2)

The two matrix elements on the r.h.s. of equation (A2) are in a general sense, the 1 to
2 particle c.f.p.’s. They are evaluated with the help of angular momentum recoupling

rules and the fermion anticommutation relations.

For example, we take ((p; k.l;)J;||als||777). We recall the notation we intro-
duced in equation (2.28), and write this m.e. in terms of the spherical tensors as a
vacuum expectation value(v.e.v.) (following French et al. (1969), eqn(2.30) of the
ref.) i

r

(o3 kel ) T lladoll") = (=)™ 3"~ G (@, x Gz )™ % alo)’” x aln)) (A3)

The quantity ((...)°), on the r.his. of the above equation is the v.e.v. We, now,

suppress the subscript p until needed, and proceed by first recoupling the operators
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in the v.e.v. (French 1966) -

Y

((((ajk,- x ajt,)‘]'r X a;)j, X a;”)0>0 =
22U (ki d"3 Je M ((@5, % (@5, % a)*)" x alu)®), (Ad)
A
The standard fermion anticommutation relation, transcribed to coupled tensor form
is given by
.. w - '
la}, a5, = (ab x )" + (=1)' (@5 x al)" = []26j;6r0 (A5)

Substituting for (@;_ x a; ) from this relation in eq. (A4) we proceed

(@5, x @, )" x a})" x al)°),
= Z Uk, di, 3”35 T A)( = (=1)7H =2 (((&;,. % (al x &j:,)A)j“ X a}/f)o)o
+(=1)He =M 18655, 6a0((aj,, X alu)°),)
= - %;(—1)1'“”_AU(J'k,J'er'"J'; JeA)U Gk, 35" 31,3 AA)
(@5, x ah)® x (@, x ah)®)%),
U (G, 10353 J,0) (1Y [, ] ((@,, % alu)), (A6)
In the first term of the above expression we have recoupled the operators and in the

second we have carried out the summation over A. We, now, again apply the anti-

commutation relation (A5), recalling that annihilation operator acts on the vacuum

to give zero, i.e., ((a} x d;)°), = 0. In the first term anticommutation demands that

A = 0. Hence, we have after summation over A,

" . 7] ~
(@3, x &5,)7 x )" x au)”),

== Z 1)t (1) (G, 50,3" 35 T A)U(jk,jj”j,,;OA)

. e, 1
( 1)Jkr+1[]k] Jer( l)ﬁrﬂ [Jlr]fé'jtrj"
1

+U(jkrjlrj/,j§Jr0)(“ )H-]l’ [Jl ]25mr( )Jkrﬂ {Jkr] 5J;<,j" (A7)
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Recé,ll.ing that in the lbng last, we will be summing over the j’s and j”s, we replace
them whereever encountered, on the r.h.s. of equation (AT) as prompted by the |
Kronecker delta’s in the respective terms. This allows us to apply the following
relations of U-coefficients compiled by French (1966) (equation (2.9) and (2.12) of the
ref.) .

D (=12 Gt gty Gk oAU G, G i, 31,5 OA) = (=1)7r=2ke 20U ik, J1, Gk 1,3 J70)
A
(A8)

and

1
o e J. |7
U(keJirJiedie; Jr0) = (=1)fkrHitn=Jr [EJ (A9)

We use these relations in equation (A7), remember that 2j = odd for all small 7’s,

recall the subscript p and write the final expression for equation (A3)
. T
((p, k,.lr).],.||a}p||]”") = [JT]%-Ckrlr(6jfrj”"6j{;j" —— (—1)Jkr+~7lr J,-ij 6 ﬂJup)
= "(“1)jf'+jﬁ_J'lJr]%Ck,uSkrlrJ,@: 3203 e (A10)

where £y is the exchange operator introduced by French (1966)(see equation A-1 of

the ref.)
Ex f(k, 1, J) = f(k,d,J) = (=1)%*3=7 £(1 k, ) (AI1)

Proceeding along identical lines we evaluate
(5" |l(p3 kals) To) = [J3)7 Cht, Exaty s 8jinjp,imeje (A12)

We now put the expressions derived in equations (A10) and (A12) in equation (A2)

and sum over the intermediate states ;¢ to write the expression

(s kel ) To (@l X E30)” 105 kall) )

= — (=) AT T T3 Gt G,

g g? ]l"r
{ e gl Ehrtr e big jobyeiy i i (A13)
J s
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Appendix-B

Derivation of the 72 operator

For a nucleus with n, valence neutrons and n, valence protons, the isospin operator
T is defined as |
T=S0+30 (BY)
t=1 =1
where £V (t—?) is the single particle isospin operator with quantum numbers (&}, t},) =

(1, 1) and (t7,13;) = (L, —1) respectively. Squaring it we get

22 20 T 2
T NP ) X o R
’J'Z:Zti2+25?2+22ti-tk+2-z Ay 42y ) 1t (B2)
=1 j=1 1<k=1 i<i=1 t=1 j=1

The operators &% and i} - f;’ act on the 2-particle coupled isospin states

11

(teegit) = (S 1) (B3)

follm&ing usual angular momentum algt;bra
Pl)us) = 3 (B4)
B BI) = 5 (P - 2 -8 (s} = (85)

— —

The term 2t¥ - t7 is related to the the neutron-proton exchange operator P, as

3 1
N7y ) :
2t - ¢ ) v (B6)
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As.the indices 7 and j go -alongwith the v a;ndjr respectively, we drop them on the
r.hs. of eq. (B6). Substituting from egs. (B4-B6) in eq. (B2) and carrying out the

summations, we have

—

7%= ! (n1(ny — 1) + ng(ny — 1)) — —nmz ZPW (B7)

3
—(n1 4+ ng) + = 1

4

We now examine the action of P,,, on coupled 2-particle (fermion) states

Purl(G75)T) = (575") ) = (=1)7+9=7|(j" ™)) (B8)
The phase factor in the above equality results by rearrangement of arguments in the
Clebsch-Gordan coefficient of the coupled state |(75)J). 1t is to be carefully noted
here, that the action of P,, on |(;¥5/7)J) will yield a vanishing result if the orbit 7',
which is a valence orbit for protons, is filled for the neutrons and the Pauli principle
prohibits creation of a neutron in it. In other words, if there is an overlap between
the model spaces of neutrons and protons, then and only then we get a non-zero
contribution from the laét term in eq. (B7). In the phase factor of eq. (BS8), the
superécipts v and 7 on j and ;' are omitted for the reason that in case of a non-zero ‘

result j and j’ are common to both the model spaces.

Using the relationship given in eq. (B8), we can turn the particle summation
over v and 7 in the last term of eq. (B7) into a summation over the states j and j'.

In second quantized representation, we have

1 T . . 0

> Por = D=1 (0l x ale)? x (@0 x 350)) (B9)
v ii'J

By spherical tensor recoupling rules, eq. (B9) can be rewritten in multipole expansion

form. With this and by rearrangiﬁg the terms in eq. (B7), we get the final expression

for the 72 operator

— 1
7% = “((nl = n2)" +2(n1 + n2))
= 3 (=1 T ((ah x @) x (abe x )7) (BLO)
]JI JI
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