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1. Introduction

Sir Isaac Newton is considered as the founder of modern science. His great perception gave

birth to what is regarded as Newtonian mechanics, the “physical laws” of nature. His mechan-

ics presents us the picture of deterministic universe provided all the physical laws and initial

conditions are given. French mathematician Laplace (1749-1827) fantasized the deterministic

world and wrote [1]:

“Let us imagine an Intelligence who would know at a given instant of time all forces acting

in nature and the position of all things of which the world consists; let us assume, further,

that this Intelligence would be capable of subjecting all these data to mathematical analysis.

Then it could derive a result that would embrace in one and the same formula the motion

of the largest bodies in the universe and of the lightest atoms. Nothing would be uncertain

for this Intelligence. The past and the future would be present to its eyes.”

Laplace’s view point stands by “cause and effect” of a system. The initial condition is the cause

and subsequent behaviour is the effect. The cause and effect are connected to each other by

the physical laws, expressed as differential equations. Towards the end of 19th century, French

mathematician Henri Poincaré realized that small error in initial condition can be catastrophic

and remarked [2]

“A very small cause which escapes our notice determines a considerable effect that we

cannot fail to see, and then we say that the effect is due to chance. If we knew exactly

the laws of nature and the situation of the universe at the initial moment, we could predict

exactly the situation of that same universe at a succeeding moment. But even if it were

the case that the natural laws had no longer any secret for us, we could still know the

situation approximately. If that enabled us to predict the succeeding situation with the

same approximation, that is all we require, and we should say that the phenomenon has

been predicted, that it is governed by the laws. But it is not always so; it may happen that

small difference in the initial condition produce very great ones in the final phenomena. A

small error in the former will produce an enormous error in the latter. Prediction becomes

impossible ...”

Systems which are sensitive to initial conditions exhibit chaos, even though they are determin-

istic by the physical laws. Studies on chaotic systems were not given much importance for quite

a long time since Poincaré had foreseen the possibility of chaos in physical systems.

Differential equations, by which physical systems are described, are generally not solvable.

Or in other words, solutions of the equations can not always be represented by known mathe-

matical functions. Even if the solutions exist in the form of infinite series of known functions,
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such solutions will not bring out any qualitative features of the system. Limitation to solve

the insurmountable differential equations is the prime reason in ignoring the studies on chaos

through out the first half of 20th century.

Emergence of chaos from deterministic systems has been much appreciated only after an

“accidental discovery” made by the meteorologist Lorenz who attempted weather predictions

in 1960’s. His model, derived on the basis of fluid dynamical flow, consisting of twelve differ-

ential equations were solved numerically by computers. His simulated results were found to be

aperiodic and highly sensitive to initial conditions. He observed such chaotic behaviour even in

his much simpler version [3], recognized latter on as Lorenz equations, that retained mainly the

nonlinear force terms. The bitter fact of this discovery is the impossibility of long-time weather

forecasting.

However, Lorenz’s discovery evoked enormous interest to study simplified models of many

real life systemsviz. biological, economic and social systems. In particular, the detailed inves-

tigations by the biologist Robert May in 1970’s on a one-dimensional difference equation are

of significance. He chose [4] to study the so called logistic difference equation:

xn+1 = αxn(1− xn) . (1.1)

This is a crude yet somewhat reasonable model developed by ecologists in 1950’s for the sea-

sonal population growth of a species. In this equation,α is a parameter andx is a variable which

can take any value between 0 and 1. The system behaviour was found to be highly sensitive to

parameter as well as to the initial conditions. A graph of his data had shown the coexistence

of regular and chaotic behaviour at all scales. The latter peculiarity had been supported with a

mathematical proof [5]. The underlying message is that even simplest models of the seething

real world possess variety of complex features.

In the past couple of decades, rapid developments in computers have fueled numerical explo-

rations of numerous simple physical models to unravel very many fascinating new phenomena

of chaotic dynamics.

1.1 Chaos in Hamiltonian systems

Deterministic dynamical systems are completely described by the equationẋ = F(x, t)

wherex is a finite dimensional vector in state space. This equation always hasuniquesolution

x = x(x0, t) wherex0 = x(0) is the initial condition of the system under consideration. A

trajectory formed byx(t) describes dynamics of the system in the state space. If two trajectories,

which differ in their initial conditions by an infinitesimal amount, exponentially diverge from

each other in the tangent space then the system is locally unstable. This local instability is
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characterized by positive Lyapunov exponent defined as

Λ = lim
t→∞

d(0)→0

(
1

t

)
ln

(
d(t)

d(0)

)
(1.2)

whered(t) is the Euclidean distance between the two trajectories. The exponent measures the

mean rate of divergence. Local instability is the characteristic feature of a chaotic system.

Reader may refer to [6] and the subsequent work [7] for more mathematical definition of chaos.

In classical physics, an important class of dynamical systems are the Hamiltonian systems.

They are defined by Hamiltonian equations of motion

q̇ =
∂H

∂p
; ṗ = −∂H

∂q
(1.3)

where the Hamiltonian functionH(q,p, t) describes the dynamical flow andq,p are theN -

component vectors:q = (q1, q2, . . . qN), p = (p1, p2, . . . pN) with N being the number of

degrees of freedom. In this description, state space (here it is called phase space) is spanned

by the2N components of position vectorq and momentum vectorp. A fundamental property

of the Hamiltonian flow is that it possessesPoincaŕe-Cartan integral invariant[8], and con-

sequently the flow in phase space is a canonical transformation. It implies that the flow has

hierarchy ofN quantities, preserved by the canonical transformation, calledPoincaŕe invari-

ants. Volume of the phase space that is preserved under Hamiltonian flow (Liouville’s theorem)

is in fact one of the family of invariants. For the simplest case of one degree of freedom system,

the flow in phase space(q, p) → (Q,P ) is area-preservingi.e.,∂(Q,P )/∂(q, p) = 1.

1.1.1 Integrable systems

Let us consider time independent Hamiltonian system in which case the energyH(q,p) =

E is a constant of motion. Constant energy confines the dynamics on2N − 1 dimensional

subspace of the2N dimensional phase space. Liouville proved that the system withN degrees

of freedom isintegrableby quadratures, ifN independent first integrals (constants of motion)

in involution are known. This implies that one degree of freedom systems are integrable (for

eg. harmonic oscillator, simple pendulum). Existence ofN independent constants restricts the

dynamics onN dimensionalinvariant tori each of them characterized byN frequencies. For

nonlinear systems, the frequencies vary from torus to torus. It is worth remarking that stable

confinement of motion on the torus leads the integrable system to be regular and predictable.

The dynamics onN dimensional tori embedded in2N − 1 dimensional energy shell is beyond

our ability to visualize. However, many features of the Hamiltonian systems can be understood

with just two degrees of freedom.
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For two degrees of freedom (N = 2) system, the energy shell is three dimensional. To

further simplify the visualization of the dynamics on this shell, Poincaré devised a powerful

technique of projecting the 3D-space onto a 2D plane. This plane (sayq1p1-plane, with fixedq2),

calledPoincaŕe section, transversally intersects the 2D tori that are embedded in the 3D energy

shell. The trajectory beginning in that plane returns to it after making a circuit around the tori.

Thus we have a mapping of the plane on to itself. Since the Hamiltonian flow is a canonical

transformation, mapping on the plane is area-preserving. On characterizing every torus with

frequenciesω1 andω2, the ratio of themα = ω1/ω2, calledwinding number, classifies the tori

into two types: resonant (rationalα) and non-resonant (irrationalα). The motion is periodic

on the resonant tori and quasiperiodic on the non-resonant tori. Sinceα is real and recollecting

that in real axis rationals form a set of measure zero as they are infinitely outnumbered by

the irrationals, for an integrable system ‘almost all’ the tori are non-resonant. In the Poincaré

section, a resonant torus appears as finite number of points and a non-resonant one as smooth

closed curve. This is equivalent to mapping on a circle, calledtwist map

θn+1 = θn + 2πα(rn)

rn+1 = rn

(1.4)

wherer identifies the torus. We note that the equivalence arises from the fact that the twist map

is also area-preserving.

1.1.2 Nonintegrable systems

The integrable systems are very rare and exceptional. In general, the Hamiltonian systems

are nonintegrablei.e., the system will not have as many constants of motion as degrees of

freedom, or in other words there will be some non-trivial perturbation to the integrable sys-

tem. In 19th and 20th century, it was considered to be a fundamental issue in mechanics to

understand the dynamics of nonintegrable systems. The issue was concerned with the fate of

unperturbed tori under perturbation. This problem was resolved in 1960’s by two celebrated

theorems namelyKolmogorov-Arnold-Moser(KAM) theoremandPoincaŕe-Birkhoff(PB) the-

orem. While the former concerned with the non-resonant tori, latter concerned with the resonant

tori. KAM theorem assures the presence of non-resonant tori with little deformation (KAM tori)

provided the perturbation is sufficiently small and smooth. We may note that the resonant tori

with α = m/n appears asn periodic points on the projected plane. According to PB theorem,

under perturbation these points become2n periodic points of whichn points are stable (elliptic)

andn points are unstable (hyperbolic). The chain of2n points are also arranged such that both

types are located alternatively. Thus successive applications of both the theorems provide self-

similar structure at all scales as the scenario ofnearly integrablesystems. However, the vicinity
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of emerging unstable points from the resonant tori is the beginning of new phenomenological

transition to complex behaviour of the nonintegrable systems.

For very small perturbation, the KAM tori are strong barriers for the development of chaos in

the phase space. On increasing the perturbation, the KAM tori are gradually destroyed resulting

to ‘smooth transition to chaos’. In the absence of KAM tori, a chaotic orbit wanders all possible

regions of the energy shell. This can be seen as scatter of points in the Poincaré section. The

rich range of transition to chaos in nonintegrable systems can be efficiently studied using the

perturbed twist map

θn+1 = θn + 2πα(rn) + εf(rn, θn)

rn+1 = rn + εg(rn, θn)
(1.5)

where the functionsf andg are chosen such that the area-preserving property still holds. This

map exhibits all generic features of the chaotic Hamiltonian systems. The iterative map of this

kind is very easy to compute and also convenient for analytical treatments, unlike the Hamilto-

nian equations of motion.

1.1.3 Few examples

Investigations on chaotic dynamics of two degrees of freedom systems, using the Poincaré

section construction, became possible only after the use of computers in physics. It is worth

briefing few systems in the development of Hamiltonian chaos.

• The first and most enduring effort is the exploration by Hénon and Heiles. They chose

a simple Hamiltonian system to model the motion of a star in cylindrically symmetric

gravitational potential of a galaxy [9]. Their model potential is bounded only upto a

critical energy and hence the energy is crucial in dictating the dynamical features. For

very small energy, with respect to the critical energy, they observed that the Poincaré

section is predominantly regular where there were many smooth close loops. As the

energy is increased the system displays a transition to chaos, with reduction in number

of smooth loops. Above the critical energy, the Poincaré section is filled with scatter of

points and thus showing that the dynamics is highly chaotic. The motion in this case is

ergodic: almost all the orbits eventually explore all parts of the available phase space.

The ergodicity implied that the star can eventually escape to infinity.

• Another instructive system is the Toda lattice [10], which models the propagation of

waves in nonlinear lattice. In 1970’s this system enjoyed much attention due to its spe-

cial kind of solutions calledsolitons, which are waves propagate through the medium

without any change of shape. The physical significance of the solitons is very wide in
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nature [11]. Ford and co-workers modelled the Toda lattice using equal point masses

on a ring with exponential interactions and studied the dynamical aspects [12]. Their

exhausting observations suggested that the system is integrable, albeit the nonlinear in-

teractions. However, the subsequent study [13] had shown that the system can become

chaotic provided the point particles have unequal masses.

• Nonlinear coupled oscillators are the ideal representatives of nonintegrable systems [14].

An important member of this family is the harmonic oscillators with nonlinear interaction

which models, in appropriate co-ordinates, the dynamics of Hydrogen atom in an external

uniform magnetic field. It was found in [15] that, in highly chaotic regimes the atom-field

quantum interaction is highly influenced by the unstable periodic orbits. A compilation

of literature in [16] provides a complete account on this topic.

• In addition to the Hamiltonian with smooth potential, there is an important class of dis-

continuous systems calledplanar billiards. Their Hamiltonian is of the form

H =





(p2
x + p2

y)/2 inside a boundaryA in xy-plane

∞ outsideA .
(1.6)

Here the particle motion consists of straight segments joined by specular reflections atA

and dynamics is very sensitive to the form ofA [17]. In this class of system, two well

known models are Sinai billiard [18] and stadium billiard of Bunimovich [19]. Sinai’s

model consists of a particle moving in a square with identified edges containing a circular

reflecting obstacle of radiusR at the centre of square. The stadium billiard consists of

a particle confined in two semi circles of radiusR joined by parallel straight lines with

lengthL. In the asymptotic limit, typical orbits of these billiards passes through almost

every region withinA. Equivalently, the 3D energy shell is fully explored by the orbits.

In addition, there are also very few special short periodic unstable orbits which do not fill

the regionA. They play an important role in the corresponding quantum spectra.

1.2 Quantum chaos

Dual (matter-wave) nature of atomic systems demanded new law of nature i.e., quantum

mechanics, subject to Bohr’s correspondence principle. Quantum mechanics is a probabilistic

theory and fundamental ingredient of it is the Heisenberg’s uncertainty principle that prohibits

precise determination of canonical variables like position and momentum of a particle simulta-

neously. As a consequence, the concept of trajectory does not exist in the new theory. However,
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classical mechanics emerges as the limiting case of quantum mechanics as follows. Consider-

ing an ansatz that the quantum wave function isΨ(q, t) = eiS(q,t)/h̄ whereS is the classical

action and̄h is the Planck constant, in semiclassical limit (h̄ → 0) time dependent Schrödinger

equation is nothing but the time dependent Hamilton-Jacobi equation. We may notice that the

limit h̄ → 0 is highly singular.

Basic formulation of quantum mechanics for integrable systems in semiclassical limit is

the Einstein-Brillouin-Keller (EBK) quantization [20]. In this formulation, quantized classical

objects forN degrees of freedom system are theN dimensional invariant tori. To be precise,

classical action alongN independent circuits of the tori are expressed as integral multiples of

h̄. Since the phase space of integrable systems are completely filled with tori, they are quanti-

zable using EBK method. On the other hand, in the nonintegrable case the tori are destroyed

by the perturbation and hence the EBK quantization is no longer applicable. Although this dif-

ficulty was realized long back by Einstein himself [20], the package of challenges in dealing

nonintegrable quantum systems were fully appreciated only after our improved understanding

of classical physics. In this context, many novel approaches supported by numerical techniques

paved way to what is now conventionally accepted as ‘quantum chaos’ - studies on noninte-

grable quantum systems in semiclassical limit. Such studies are mainly focussed on quantum

manifestations of chaotic dynamics in the semiclassical limit.

1.2.1 Eigenvalues

The lack of a quantization procedure for nonintegrable quantum systems was overcome

by an alternative general semiclassical method, pioneered by Gutzwiller [21], and further de-

veloped by Balian and Bloch [22]. This method is based on associating density fluctuations

of quantum energy levels to classical periodic orbits. For a given quantum system with the

eigenvalue equationH|ψn〉 = En|ψn〉, the spectral density is represented as

d(E) ≡ ∑
n

δ(E − En) = d(E) + dosc(E) . (1.7)

Hered(E) is the average density given by the Thomas-Fermi formula

d(E) =
1

(2πh̄)N

∫ ∫
δ(E −H(q,p))dqdp (1.8)

such that a quantum state occupies the phase space cell of volume(2πh̄)N . This provides the

density after smoothening over the coarsest scale. The termdosc(E) is the oscillatory correction

represented in terms ofall non-zero length periodic orbits of the corresponding classical system.

Considering the level spacing∆E = En+1 − En, the average spacing is∆E ∼ 1/d(E) ∼
h̄N . Only at this scale, all delta spikes of the density positioned at the energyEn are resolved.
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Influence of periodic orbit of periodT on the spectrum can be realized through the relation

∆E ∼ h̄/T [23]. This relation means that a single orbit of periodT provides collective property

(oscillatory clustering) of levels in the scale∆E. That is shorter orbit gives spectral details

on coarser scale while the longer ones on finer scale. Thus the complete spectral details are

represented in terms of all the orbits upto the periodT ∼ h̄/∆E ∼ 1/h̄N−1. This period

is extremely long for the non-trivial classical case withN > 1. But approaching the finest

scale∆E to get the complete spectrum is not practical for a chaotic system since the orbits are

isolated and unstable and their number grows exponentially with the period asehT /T whereh is

the topological entropy [24]. Hence instead of acquiring complete knowledge of the spectrum,

the level densitysmoothedover energy range∆E À ∆E can be obtained by including all the

necessary shorter orbits. With beautiful illustration Berry has shown in [23] that contribution of

more and more orbits with longer period leads to the emergence ofδ spikes in the spectrum.

The association of periodic orbits and the quantum spectra are well supported by spectral

behaviour of many chaotic quantum systems. One of the encouraging observations is the quan-

tum spectra of hydrogen atom in a strong external magnetic field. Both theoretical [15, 25]

and experimental [26] studies on diamagnetic excited atom of hydrogen have confirmed that

the spectral features are highly influenced by the periodic orbits. In addition, the spectra of mi-

crowave billiard [27] and tunnelling current through double barrier of quantum well in presence

of magnetic field [28] have upheld the periodic orbit theory of spectra.

1.2.2 Eigenstates

It is then natural to ask whether it is possible to understand the quantum states also, in the

semiclassical limit, through the knowledge of periodic orbits. Before answering this question,

it is instructive to recapitulate some of the early attempts to distinguish the quantum states of

nonintegrable systems from those of the integrable systems. A first and noted attempt in this

direction was made by Percival [29]. He suggested that, in semiclassical limit there are regular

and irregular states corresponding to two extreme sorts of classical motion. Since then it was of

great concern to distinguish the quantum states of integrable and nonintegrable systems. Berry

has first made use of Wigner function as a convenient tool to reveal some of the salient features

of the above mentioned quantum states. The Wigner function of a state is defined as [30]

W (q,p) ≡ 1

(2πh̄)N

∫
e−ip.y/h̄〈q + y/2|ψ〉〈ψ|q− y/2〉 dy . (1.9)

This function, which is not positive definite, roughly approximates to phase space density over

the manifold explored by the classical orbit corresponding to the state|ψ〉. Starting from EBK

quantization for integrable case, Berry [31] has shown that the Wigner function collapses on

to the classicalN dimensional invariant torus. This is in full correspondence with the classical
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orbit confined on the torus. Although there is no known form for the semiclassical state of the

nonintegrable system, in ergodic regime Voros suggested the microcanonical distribution as an

approximation for the corresponding Wigner function [32]

W (q,p) =
{∫ ∫

δ(E −H(q,p)) dq dp
}−1

δ(E −H(q,p)) . (1.10)

Using this Berry argued that the quantum state is a Gaussian random function [33]. This is in

some sense a reflection of the unpredictable nature of classical orbit that fills the energy surface

ergodically. These results are in accordance with the Shnirelman’s theorem [34] that the phase

space invariants are the guiding factors for the morphology of quantum states, like theN -tori

for the regular states and2N − 1 dimensional energy surface for the irregular states. In contrast

to the periodic orbit theory approach, it was also believed that individual unstable orbits with

measure zero are unlikely to support irregular quantum states.

One of the most striking results concerned with eigenfunctions are brought to light from

Heller’s numerical explorations on chaotic stadium billiard [35]. His analysis revealed that, in

addition to typical eigenstates which appear to have more complex structures, there are also

states that appear to be more regular such that their intensities are prominent in the vicinity of

some of the unstable short periodic orbits. He refers this quantum imprints of periodic orbits

on the states as ‘scars’. This observation leads to the speculation that, besides the invariant set

like the energy surface, set of periodic orbits could also influence morphological features of

eigenstates. A first attempt to explain scarring phenomena within the frame work of periodic

orbit theory was made by Bogomolny [36]. He shows that, analogous to spectral density, the

intensity of eigenstates averaged over small range of spectra can be associated to periodic or-

bits. Berry also arrived a similar results using Wigner function representation of quantum states

[37]. Theoretical investigations on systems like the nonlinearly coupled quartic oscillator [38],

hydrogen atom in magnetic field [39] and experiments with microwave cavities [40] provide

ample support for the scarring phenomena of chaotic quantum systems. Recently, semiconduc-

tor quantum well in presence of a uniform magnetic field [41] has emerged as a promising new

experimental set up for the studies on quantum chaos. In this system, states of electron in the

well that are scarred along some of the unstable periodic orbits are found to be responsible for

tunnelling current through the barrier of the well.

1.2.3 Statistics

We have already seen that spectral density of quantum system is of the orderh̄−N . Hence

in the limit h̄ → 0, the density is very large and it would be appropriate to study statistical

behaviour of the spectrum. In the semiclassical limit, intuitively one may then expect that

the degree of complexity of underlying classical dynamics could be reflected in the spectral
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statistics in some way or the other. One of the first steps in this direction is made in [42] where

the distributionP (s) of nearest neighbour spacings = En+1 − En is derived for integrable

systems withN > 1. It is shown that spacings follow Poisson distribution i.e.,P (s) = exp(−s).

It is worth noting that this is also the spacing distribution of random numbers. An important

feature of this distribution lies in the limiting case:s → 0, P (s) → 1. Thus the energy

eigenvalues of regular system are uncorrelated and exhibitlevel clustering. Although deriving

such a distribution is an impossible task for nonintegrable system, a first systematic numerical

analysis was made in [43] for the chaotic billiard systems with random matrix theory (RMT) as

a tool.

RMT is a well established theory, initiated by Wigner and further developed mainly by

Dyson and Mehta [44], which describes spectral fluctuations of nuclear energy spectra. We

may recollect that nucleus comprises numerous nucleons and their interactions among them-

selves are highly complex, and complete knowledge of nuclear interactions are contentious

even today. Nevertheless, the RMT was conceived as a model for nuclear spectral fluctuations

which does not require any complicated details of the nuclear interactions except few symme-

try informations. To be more precise, the theory was built for eigenvalues of Hermitian matrix

whose elements are random numbers chosen from Gaussian distributions. The symmetry re-

quirements classify the comprising ensemble of Hermitian matrices into three classes. Among

them Gaussian orthogonal ensemble (GOE) is relevant for our discussion. GOE is an ensemble

of real matrices such that probability distribution of the matrix elements are invariant under

orthogonal transformation. This ensemble represents Hamiltonian with time-reversal symme-

try and no spin-1/2 interactions. A celebrated result of RMT is the Wigner distribution which

predicts spacing distribution of the eigenvalues for the GOE class as

P (s) =
πs

2
exp(−πs2/4) . (1.11)

For the first time Bohigas et. al. [43] found that energy levels of a quantum particle confined

in planar billiards, whose underlying classical motion is fully chaotic, also follow the above dis-

tribution. Noticing the limitP (s) → 0 ass → 0, it was conjectured that the spectrum of chaotic

system exhibits RMT predictedlevel repulsion. The conjecture has been well supported by the

spectra of various systems like magnetized Hydrogen atom [45], billiard shaped microwave

cavity [46] etc. As an implication, RMT prediction of the spacing distribution emerges as

touchstone to classify highly chaotic systems from the regular ones in the quantum domain.
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1.3 Kicked rotor: a paradigm

We have already emphasized that area-preserving mappings are simple to study two degrees

of freedom time independent Hamiltonian systems. It is then certainly of interest to find out

an appropriate Hamiltonian system which corresponds to such mappings. It turns out that the

Hamiltonian of the form

H(q, p, t) =





V (q)/γ 0 < t < γT

p2/2(1− γ) γT < t < T
(1.12)

where0 < γ < 1 generates such a mapping. The above Hamiltonian represents a particle which

experiences an impulsive force due to the potentialV (q) during the time0 < t < γT and then it

moves freely till the timeT . This process is repeated periodically with periodT . The dynamics

of such externally driven systems can be chaotic as there are no constants of motion. Integrating

the equations of motion for the above Hamiltonian over a period fromt = nT to t = (n + 1)T ,

n being an integer, yields the area-preserving mapping

qn+1 = qn + Tpn+1

pn+1 = pn − T (∂V/∂q)qn
.

(1.13)

An instructive model of this kind is a rotor which is periodically kicked by a standing wave.

This system is represented by the Hamiltonian

H =
p2

2
+

K

4π2
cos(2πq)

∑
n

δ(n− t) (1.14)

which was first introduced by Casati et. al. [47]. The associated mapping is the well known

standard map

pn+1 = pn + (K/2π) sin(2πqn)

qn+1 = qn + pn+1 (mod1) .
(1.15)

which is one form of the perturbed twist map that describes kick-to-kick dynamics of the rotor.

Albeit its simple form, the standard map exhibits variety of dynamics ranging from regular to

chaotic as strength of the kickK increases [48, 49]. It is worth remarking that the standard map

approximates motion of Hydrogen atom in external electric field [50].

1.3.1 Dynamical localization

Quantum mechanically also the delta kick facilitates to write analytical form of kick-to-kick

propagator by partial integration of the Schrödinger equation. Thus quantum dynamics of the
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rotor can be conveniently studied using quantum analogue of the classical map. The quantum

kicked rotor has been recognized as a paradigm of quantum chaos [51]. The kick provides pe-

riodic input of energy to the system, and classically very large kicking strength results to chaos

assisted unbounded diffusion in kinetic energy of the rotor. An important result of quantization

is that in generic case the energy is initially diffusive and then attains a quasiperiodic saturation

[52]. To understand this striking phenomena of ‘quantum suppression of classical diffusion’ it

will be appropriate to delineate a problem in solid state physics.

Conduction of electronic current through atomic lattice is one of the fundamental problems

in solid state physics. The electronic eigenstate is represented in tight-binding approximation

as

Hmmψm +
∑

n6=m

Hmnψn = Eψm . (1.16)

Hereψn, Hnn are the components of electronic eigenstate and energy associated tonth lattice

site respectively.E is the eigenvalue of the state andHmn is the hopping element. We may

note that behaviour ofψn crucially depends onHnn. For crystal lattice,Hnn is constant and

ψn corresponds to Bloch states. These are extended states which are responsible for transport

through the lattice. On the other hand, if the crystal is doped such that the set{Hnn} is a random

sequence then the transport is significantly suppressed. Anderson showed that the randomness

in the on-site potential begets destructive quantum interference such that the electronic states are

exponentially localized in the lattice site [53]. This well knownAnderson localizationprovides

a plausible mechanism for the suppression of electronic transport through the random lattice.

It has been shown in [54] that the Eqn. (1.16) also represents the rotor model with{Hnn}
being a ‘pseudorandom’ sequence in the generic case andψn being component of rotor eigen-

state (here it is called quasienergy state) in momentum representation. This one-to-one mapping

of rotor model to Anderson model show that generic rotor states areexponentially localized in

momentum space. It is remarkable to notice that unlike the Anderson model, kicked rotor is

a deterministic system. Nevertheless the rotor states are localized and the randomness which

is responsible for the localization is of dynamical origin. Localization of this kind is termed

asdynamical localization. This phenomenon is reflected in the kicked rotor as suppression of

chaos assisted diffusion upon quantization.

An important experiment to validate dynamical localization is an atom-optics realization of

the delta kicked rotor [55]. In this experiment nearly105 sodium atoms are trapped and laser

cooled in a magneto-optic trap (MOT) [56]. Within the trap the atoms are Gaussian distributed

both in the position and momentum. The sample of atoms then interact with a pulsed standing

wave of a laser light. As a consequence, the momenta of excited atoms are redistributed. In

order to evaluate the resultant momentum distribution, atoms are allowed for a timetdrift to
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settle in their new widened spatial distribution. They are then frozen in their positions with

the trapping lasers to form ‘optical molasses’. The fluorescent image of the molasses, recorded

in a charged-coupled-device (CCD) camera, gives the new spatial distribution of the atoms.

From this distribution and the timetdrift, the resultant momentum distribution of the atoms is

evaluated. This process is repeated forN number of kicks. Shown in Fig. 1.1 is the average

kinetic energy of the atomic sample as a function of number of kicks. It is observed that for

initial few kicks the atomic energy follows the classical diffusion. As the number of kicks

increases, the energy deviates from the classical behaviour and saturates at the value predicted

by the localization theory. The measured distribution in momentum also supports the expected

exponential localization. These results confirm the dynamical localization and the subsequent

quantum suppression of the classical diffusion.

Figure 1.1:Straight line represents the classical diffusion in kinetic energy of the rotor in highly

chaotic regime. Solid dots are the experimentally measured average kinetic energy of the atoms.

Inset shows the exponential fall of momentum distribution of the excited atoms [55].

Dynamical localization is not a unique phenomenon of the delta kicked rotor and it can

observed in other systems as well. Experimental developments on microwave ionization of

Hydrogen atom [57] has evoked enormous interest in 1980’s to study the ionization mechanism
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for simple one-dimensional system

H =
p2

2
− 1

|z| + εz cos(ωt) (1.17)

which represents a 1D Hydrogen atom interacting with an external microwave field. In chaotic

regime, it has been experimentally verified that the threshold field for ionization increases unlike

the classical predictions [58]. This is due to localization that occurs in the quantum excitations.

Thus Hydrogen atom in external field also serves as an ideal testing ground for the dynamical

localization. The interaction of a beam of atoms with modulated standing light wave represented

by the Hamiltonian of the form [59]

H =
p2

2
− ε cos[2k(x−∆L sin ωt)] (1.18)

is also another system which displays localization. An experimental realization of this system

using beams of ultra-cold atoms has shown that [60], when the system is classically chaotic,

light induced momentum transfer to the atoms is limited due to the localization. Thus the

dynamical localization is an important phenomenon by which the quantum systems significantly

differ from the corresponding classical systems in the chaotic regime.

1.4 Motivation for the thesis

As we have seen that until now much work has been done on chaotic systems and on their

quantum counterpart with the object of revealing quantum mechanical manifestations of clas-

sical chaos. Most of the work has used smooth Hamiltonian systems which are in general

integrable systems with smooth perturbation. For these systems KAM theorem is valid, on

increasing the perturbation the systems change from regular to chaotic and the underlying tran-

sition is gradual. This scenario has been widely studied in two degree of freedom systems or

equivalently area preserving maps. However, there are conditions upon which the KAM theo-

rem rests that may not always be satisfied by certain systems of physical interest. In particular if

the perturbation isnotsufficiently smooth or even discontinuous, the KAM scenario may break

down. Large scale chaos may instantaneously develop in the system. One other way is that the

KAM scenario fails when the unperturbed system is fully resonant, as in the Kepler problem.

Let us focus only on non-KAM behaviour of the former kind.

To begin with we shall discuss the prevalence of systems where the non-KAM scenario may

be seen. The simplest systems where Hamiltonian chaos can develop is the so called1.5 degree

of freedom system, which are time dependent one-degree of freedom systems. Thus consider

the driven rotor Hamiltonian

14



H =
p2

2
+ f(t)V (θ) (1.19)

whereV (θ) is an external potential that is periodic with period2π, andf(t) is a periodic func-

tion of time with periodT . If V (θ) is sufficiently smooth, the KAM theorem scenario combined

with the Poincaŕe-Birkhoff theorem provides the generic behaviour. The smoothness or at least

continuity ofV (θ) is provided by the periodic boundary conditions in angular position of the

rotor. Introducing discontinuous potentials will lead to delta function forces equivalent to walls

of certain heights. This brings us to a natural class of systems where non-KAM behaviour will

be the rule rather than exception:externally forced particles in wells. This forms a broad class

of systems which have evoked considerable interest in recent years since the development of

quantum wells. Quantum wells are semiconductor fabricated structures that are potential wells

for the electrons. One of the recent experiments [41] has demonstrated that system comprising

electron inside the quantum well in presence of external electromagnetic field is a new testing

ground for our understanding on quantum chaos.

1.4.1 An illustration

In fact the simplest of such systems involve a particle in one-dimensional infinite square

wells (1D billiards) with time dependent external fields. Consider as an example the Hamilto-

nian

H = H0 + ε cos
(

2πx

λ

)
cos(ωt) (1.20)

whereH0 = p2/2+Vsq(x; a), describing such a particle. The potentialVsq(x; a) is the confining

infinite square well potential of width2a, centered at the origin (see Fig. 1.2). Hereε andλ

are field strength and wavelength of the external field which is being modulated in time with

frequencyω.

sq
V  (x)

-p

x
-a a0

8 8

+p

Figure 1.2:Particle in 1D infinite square well potential.
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The equations of motion of the particle within the square well are

ẋ = p ; ṗ =
2π

λ
ε sin

(
2πx

λ

)
cos(ωt) . (1.21)

It is easy to verify that Eqn. (1.21) is invariant under the transformation

t → ω0t, ε → ε/(2aω0)
2

x → x/2a, λ → λ/2a

p → p/2aω0, ω → ω/ω0 .

(1.22)

Here the frequencyω0, which sets the new time scale, is arbitrary. Note that the new scaled

variables and parameters are referred by the old symbols and they are dimensionless. Setting

ω0 = ω in the above transformation, the system has effectively two parametersviz. ε and

R = 2a/λ. HereR is the ratio of two length scales of the system i.e., well width and field

wavelength.

Figure 1.3: Typical phase space of the system governed by the Hamiltonian in (1.20) with

dimensionless parametersε = 0.001 andω = 1. The lower momentum region is increasingly

chaotic when the length scales do not match.
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The presence of two competing length scales, provides a rich range of non-KAM be-

haviours. In particular if the dimensionless ratioR is a non-integer there is a possibility of

observing non-KAM phenomena. Under the perturbation we can roughly expect that states

whose absolute value of the initial momentum is less than
√

2|ε| will be most affected. Thus

low energy states will be most affected by the time-dependent forces. Fig. 1.3 shows the effect

of the parameterR. While for R = 1 the system is essentially KAM type and has KAM tori

interspersed with resonances, any small deviation ofR away from unity destroys low energy

KAM curves and leads to increased chaos. Fig. 1.4 shows the fate of an individual KAM torus

for whichR = 1 is a ‘bifurcation’ point in parameter space and changes stability on either side.

We expect such behaviour to be generic to a large class of similar systems.

Figure 1.4:Shown are orbits of Fig. 1.3 having identical initial conditions. The initial condition

corresponds to a KAM torus in the lower momentum region forR = 1 (the negative momentum

region is not shown here). Note the abrupt change in the stability and the non-generic features

of the resultant phase space structures.

We shall note that some aspects of the classical motion of a particle in an infinite square

well potential in presence of an uniform monochromatic external field are already studied [61].

Quantum mechanically also similar systems have been introduced as a model of quantum chaos

[62, 63]. However, in all these earlier works there were no issues of competing length scales.
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Consequently, understanding on the above mentioned length scale induced non-KAM scenarios

and their quantum mechanical manifestations are completely missing. One of the main moti-

vation of this thesis is to fill this void. In this thesis we explore in great detail the classical and

quantum mechanical implications of naturally emerging competing length scales.

1.4.2 Outline of the thesis

The thesis is organized as follows. InChapter 2, we introduce one simplest possible system

which is appropriate for our investigation. Using one generalization of the standard map, we

study the classical dynamics with main focus on non-KAM transition to chaos. InChapter 3,

the corresponding quantum system is analyzed using quantum map. Here, influences of the

length scales on the quantum system are studied in detail. InChapter 4, attention is given on

special orbits of the system called ‘accelerator modes’ which are responsible for anomalous

classical transport in chaotic regimes. Possibility of such modes and their consequences in the

quantum system have been explored. InChapter 5, torus quantization of the classical map is

studied in detail as a model of bounded Hamiltonian system. At the end of each chapters we

summarize the results. Finally, we conclude the thesis with a brief outlook.
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2. Classical map

2.1 Introduction

One dimensional time periodic kicked systems have their own privileged place in the study

of Hamiltonian chaos. In this family of systems, a natural choice to understand the issue of

competing length scales and subsequent non-KAM scenario is given by the Hamiltonian

H =
p2

2M
+ Vsq(x) + ε cos

(
2πx

λ

) ∞∑

j=−∞
δ

(
j − t

T

)
. (2.1)

This Hamiltonian corresponds to a particle of massM , trapped inside the infinite square well

Vsq(x), in presence of time periodic impulsive external field. The square well of width2a is

centred at the origin. The external field is characterized with the strengthε and the wavelength

λ. The impulse is accomplished using train of delta functions with periodT . Recollecting the

Poisson summation formula
∞∑

j=−∞
δ

(
j − t

T

)
=

∞∑

n=−∞
cos(nωt)

whereω = 2π/T is the pulse frequency, we have

ε cos
(

2πx

λ

) ∞∑

j=−∞
δ

(
j − t

T

)
= ε

∞∑

n=−∞
cos

(
2πx

λ
− nωt

)
. (2.2)

That is, the effect of impulsive field is the same as that of an infinite number of travelling waves

with identical amplitudes and frequencies being multiples of pulse frequency.

The stroboscopic map, relating the dynamical variables immediately after successive kicks,

can be derived in a standard manner and results in the following:

xn+1 = (−1)bn (xn + pnT/M) + (−1)bn+1sgn(pn)2abn

pn+1 = (−1)bnpn + (2πεT/λ) sin(2πxn+1/λ)
(2.3)

wherebn ≡
[

1
2a
{sgn(pn)(xn + pnT/M) + a}

]
is the number of bounces of the particle at the

walls during the interval between thenth and the(n + 1)th kick. Here sgn(· · ·) and[· · ·] stand

for sign and integer part of the argument respectively. The dynamical variablesxn, pn are the

position and momentum of the particle just after thenth kick; sgn(pn) = ±1, depending on

whetherpn > 0 or pn < 0. Although sgn(pn) is discontinuous and undefined forpn = 0, one

can see easily from the map that either of the values (±1) can be taken for sgn(pn) as this does
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not alter the dynamics. Note that whenever the particle hits any of the two walls, it bounces

back with instantaneous sign change in its momentum.

With the following scaling

Xn =
xn

2a
, Pn =

pnT

2aM
, K =

2επ2T 2

aMλ
, R =

2a

λ
(2.4)

the above map be written in dimensionless form as

Xn+1 = (−1)bn(Xn + Pn) + (−1)bn+1sgn(Pn)bn

Pn+1 = (−1)bnPn + (K/2π) sin(2πRXn+1)
(2.5)

wherebn =
[
sgn(Pn)(Xn + Pn) + 1

2

]
. We refer to this map as thewell map. Note thatK andR

are the only two effective parameters of the well map. HereK is proportional to the strength of

the external field;R is the ratio of the width of the well to the wavelength of the external field.

We do not impose any constraints onR, for example, those imposed while considering standing

waves in a cavity, but allow all values. Evidently,|Xn| ≤ 1/2 or |xn| ≤ a as the particle motion

is confined between two rigid walls.

2.2 Generalized standard map

The phase space of the well map is a two dimensional plane with reflective boundary in

scaled positionX and unbounded in scaled momentumP . Moreover, the map is complex in its

form. However, our analysis of the well map may be simplified to great extent on realizing the

close relation between dynamics of the unperturbed particle in the well and that of the free rotor

(i.e, particle moving on a circle). The difference between the free particle inside the well and

the free rotor is in the boundary conditions. Both the free motions are same unless the particle

hits the walls. The correspondence between them is made explicit in the following way.

Let us consider the dynamics of a free rotor in discrete unit time steps, which is the map

relating successive anglesθn and angular momentaJn:

θn+1 = θn + Jn (mod 1)

Jn+1 = Jn .
(2.6)

Here the motion is confined on a cylinder[−1/2, 1/2)× (−∞,∞), and this is the unperturbed

twist map. Similarly the discretized free motion in a well of unit width is

Xn+1 = (−1)bn(Xn + Pn) + (−1)bn+1sgn(Pn)bn

Pn+1 = (−1)bnPn .
(2.7)
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DenotingSn ≡ (θn, Jn), andWn ≡ (Xn, Pn) if both the maps are iterated with the same initial

conditions i.e.,W0 = S0, then we find a relation between thenth iterate as

Wn = (−1)b Sn ; b =
n−1∑

i=0

bi (2.8)

whereb is the total number of bounces of the particle after(n − 1) iterates. That is, thenth

iterates of both the mapsat most differ by sign. Since the maps (2.6) and (2.7) have reflection

symmetry about the origin, the particle dynamics is quantitatively same as the rotor dynamics.

Now if we introduce nonlinear perturbation to the twist map such that the resultant map is

θn+1 = θn + Jn (mod 1)

Jn+1 = Jn + (K/2π) sin(2πRθn+1) .
(2.9)

It is easy to see that the relation (2.8) still exists between the well map and the perturbed twist

map. The time reversal of the perturbed twist map is

Jn+1 = Jn + (K/2π) sin(2πRθn)

θn+1 = θn + Jn+1 (mod 1)
(2.10)

and we call this map as thegeneralized standard map(GSM).

From the above description it is clear that quantitative dynamical features aresame for the

well map and the GSM. Thus in attempting to analyze the dynamics of the well map, it is

sufficient to understand the dynamics of the GSM. Also the map (2.10) is easier to handle than

the well map, as it is only a slightly generalized version of the well known standard map (R = 1)

of kicked rotor [47, 48, 49]. When it is stated that the standard map is a one parameter system

the implicit assumption is that there is only one length scale. Here there are naturallytwo length

scales whose ratio is the cause of many interesting effects as we shall see. In what follows we

discuss dynamical behaviour of the GSM in detail. Throughout the present study we consider

K andR to assumereal positivevalues only.

2.3 Transition to chaos

For the standard map (GSM withR = 1), whenK < 1, the dynamics is nearly regular. The

phase space is filled with large number of KAM tori which arerotationally invariant circles[64]

extending across the phase plane. These closed loopsC encircle the cylinder and are invariant,

meaning thatT C = C, whereT is an area preservingcontinuoustransformation on the cylinder

(for instance Eq.(2.10) withR = 1). KAM tori are the principal barriers for the unstable orbits

to diffuse in phase space. AsK increases there is asmoothtransition from regular to chaotic
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behaviour with a reduction in the number of KAM tori [65]. Dynamical changes of KAM tori

with increase ofK are discussed in [66]. AtK ≈ 1 all the KAM tori disappear from the phase

space [67]. For very largeK (À 1) the dynamics is chaotic and diffusive. In general, for integer

values ofR, the map is continuous and takes the form of standard map withK → KR. Hence

the dynamical transitions are identical with that of the standard map.

Figure 2.1:Phase space portrait of the GSM withK = 0.3. We have shown the phase space

of unit square since GSM is periodic inJ and θ with unit period. ForR = 1, the dynamics

is nearly regular wherein many smooth KAM tori are seen. WhenR departs from unity the

dynamics is increasingly complex and no KAM tori are seen. This may be compared to the

lower momentum region in Fig. 1.3.

WhenR assumes non-integer values the situation is entirely different from the earlier case,

particularly whenK is small. A typical phase space portrait in Fig. 2.1 depicts an interesting

abrupt transition to chaos. While the phase space is nearly regular forR = 1, it is more complex
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with the coexistence of both regular and chaotic orbits even for small departure ofR from unity.

Moreover, in the “non-standard map” case no KAM tori exist in the phase space. It is to be

noted that all these features are very similar to the length scale induced chaos and non-KAM

scenario which we discussed previously in the Chapter 1. Thus the GSM, albeit simple in form,

qualifies as the “standard map” for non-KAM systems like externally forced particle in potential

well.
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Figure 2.2:Phase space portrait forK = 0.3 to illustrate more effects of non-integerR values.

A careful observation of Fig. 2.1 reveals that stability nature of different regions of the

phase space are different with respect toR. The regions of KAM tori (R = 1) are replaced

by unstable chaotic orbits forR < 1. On the other hand, those regions are filled with chains

of stable islands forR > 1. In contrast, the regions around the stable fixed point (0, 1/2),

i.e, principle resonance zones, have hierarchical stable structures for both the cases ofR 6= 1.

Similarly, the regions near the separatrix are unstable and chaotic forR 6= 1. Thus the entire
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standard map may be regarded as being poised at a point of bifurcation when considered as a

function of the parameterR. In general, no KAM tori appear in the phase space ifR 6= j (j is a

positive integer) for however smallK may be. The dynamics is either mixed or chaotic for non-

integerR. This is of course due to the discontinuity in the map whenR assumes non-integer

values. In other words, there are no closed loopsC encircling the cylinder such thatT ′C = C,

whereT ′ is the transformation defined by GSM with non-integer values ofR. The point of

discontinuity inT ′ arises atθ = −1/2 (or 1/2).

In Fig. 2.2 more phase space portraits are shown to illustrate the influence of non-integerR.

The absence of KAM tori in the phase space is evident in all the cases, however, the dynamics

for the casesR < 1 andR > 1 are clearly distinguishable. The former is more chaotic and the

phase space is almost filled with unstable orbits. On the other hand, both regular and chaotic

regions are seen in the latter. But for largeK (À 1), there is no such apparent difference in

dynamics between the above two cases asK is the leading chaos parameter. This discontinuous

dynamics implies the failure of both KAM and Poincaré-Birkhoff scenarios. The modifications

that may occur are little understood, and Chirikov in [68] points out that the piecewise linear

sawtooth map

pn+1 = pn + αxn

xn+1 = xn + pn+1 (mod 1)
(2.11)

whenK is a non-integer such that−4 < α < 0 is one such system where extremely complicated

locally stable motions occur and “it is not at all clear what could be a meaningful description,

if any, of this apparently trivial model”. The particle in a well naturally gives rise to a nonlinear

generalization of the sawtooth map and below we show how a simple method may give us

significant local stability information that elucidates the observed dramatic transition to chaos.

2.4 Stability analysis: new approach

In the absence of KAM theorem for irrational tori and the Poincaré-Birkhoff theorem for

rational tori, we apply a kind of local analysis to understand the change in stability of the orbits

with respect toR. Assuming thatK is small (< 1), let us denote an orbit of GSM (withR = j,

positive integer) as{θ̃n, J̃n}. This satisfies the following mapping:

J̃n+1 = J̃n + (K/2π) sin(2πjθ̃n)

θ̃n+1 = θ̃n + J̃n+1 (mod 1) .
(2.12)

Also consider an orbit{θn, Jn} of the GSM withR = j + µ and|µ| ¿ 1, with the same initial

conditions as the above orbit. On introducing the differences∆θn = θn − θ̃n; ∆Jn = Jn − J̃n,
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it is possible to write an exact mapping equation for∆θ, ∆J as

∆Jn+1 = ∆Jn + (K/2π)
{
sin

(
2πR(θ̃n + ∆θn)

)
− sin(2πjθ̃n)

}

∆θn+1 = ∆θn + ∆Jn+1 .
(2.13)

Expanding in terms of∆θn and retaining first order terms leads to a time dependent force and

the non-autonomous linear set of equations

∆Jn+1 = ∆Jn + KR cos(2πRθ̃n)∆θn + An

∆θn+1 = ∆θn + ∆Jn+1

(2.14)

where

An ≡ K

2π

{
sin(2πRθ̃n)− sin(2πjθ̃n)

}
.

The behaviour of such linear non-autonomous equations can be quite complex (compare for

instance the Mathieu differential equation which also arises in linear stability analysis). For the

analysis on stability of the orbits, we wish be intuitive and derive rough but useful estimates.

Although we never expandR about an integer, here we assume that this excursion is small,

so that the non-autonomous stability equations can be treated perturbatively. Appealing to the

method of averaging we simply replace the time dependent force by its time average. The

limitation of this is pointed out further ahead.

Considering the orbit{θ̃n, J̃n} to be the KAM torus orbit which correspond toR = j. Since

the motion is ergodic iñθ, we replace the time average by an equivalent space average with

uniform measure. Thus

cos(2πRθ̃n) ≈ g(R) =
∫ 1/2

−1/2
cos(2πRx) dx (2.15)

This procedure leads us to simple linear map:

∆Jn+1 = ∆Jn + (K/π) sin(πR)∆θn + An

∆θn+1 = ∆θn + ∆Jn+1

(2.16)

and its stability can be seen from the corresponding Jacobian matrix which gives the stability

condition: |2 + (K/π) sin(πR)| < 2. SubstitutingR = j + µ, the stability condition becomes

−4π

K
< (−1)j sin(πµ) < 0 . (2.17)

This implies that ifj is odd KAM tori which exist atR = j are stable forµ > 0 and unstable

for µ < 0; converse is the case ifj is even. Shown in Fig. 2.3 are the typical stability changes
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of KAM orbit as R varies. Thus the above stability condition satisfactorily explains the ob-

servation. Althoughµ is small in the above analysis, our numerical observation show that the

stability condition (2.17) is satisfied even for large values ofµ. Here we can think of the integer

R values as bifurcation points for entire set of KAM tori orbits. This explains majority of the

phase space features seen earlier.
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Figure 2.3: Fate of an orbit with initial conditionS0 = (0.25, 0.33) as R varies. The orbit

corresponds to KAM torus for integerR. Right column (j = 1): the orbit becomes unstable and

chaotic forµ < 0 while it becomes chain of stable islands forµ > 0; Left column (j = 2): the

stability is reversed and can be compared with the right column.

To quantify the degree of complexity of the orbit shown in Fig. 2.3, we calculate the Lya-

punov exponents which measure the rate at which the neighbourhood orbit diverge from the

given orbit in the tangent space. The GSM in tangent space is given by
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
 δJn+1

δθn+1


 = Mn


 δJn

δθn


 ; Mn =


 1 KR cos(2πRθn)

1 1 + KR cos(2πRθn)


 (2.18)

whereMn is the Jacobian matrix evaluated atnth iterate. Consequently


 δJn

δθn


 = M̃


 δJ0

δθ0


 ; M̃ =

n−1∏

i=0

Mi (2.19)

and the exponents are given by

Λ± = lim
n→∞

1

n
ln |λ±(n)| (2.20)

whereλ±(n) are the eigenvalues of the matrix̃M. Since we are considering the area-preserving

mapping the two exponents are such thatΛ+ + Λ− = 0. The maximum exponentΛ+ = 0 for

the regular orbit andΛ+ > 0 for the chaotic case.

R 0.8 0.98 1.0 1.02 1.2 1.8 1.98 2.0 2.02 2.2

Λ+ 0.24 0.083 0.004 0.0 0.003 0.003 0.005 0.005 0.04 0.21

From the table we see that the exponent is positive forR < 1 and forR > 2 showing that

the orbit is chaotic in these cases. For1 ≤ R ≤ 2 the exponent is nearly zero as the orbit

corresponds to regular case (see Fig. 2.3).

Now we dwell on other regions of phase space, for instance the chaotic regions around the

origin in Fig. 2.1, where the above procedure fails. In the interior of the original0/1 resonance

(at R = 1) even a reversal of the stability criteria is observed. Origin of the phase space,

hyperbolic fixed point, is not affected byR and this is the genesis of chaos. Smooth stable

and unstable manifolds of the hyperbolic fixed point that exist forR = 1 can not exist for

R 6= 1 as they would then represent rotationally invariant curves. Therefore the presence of the

hyperbolic point necessarily implies chaos.

Within the framework of the stability analysis done earlier what has failed around the hyper-

bolic fixed points is the assumption of uniform measure. If we think of the simple pendulum we

are moving from energetic rotational motions (KAM tori) to slow oscillations of large amplitude

and clearly the time is spent preferentially around the turning points. Also the replacement with

time averages will fail as the time scales involving fastθ motions and slow∆J motions become

comparable. The latter effect becomes important as we move into the0/1 resonance region.

Note that the existence of two different time scales is initial value dependent and is present

in the standard map as well,i.e., it does not arise as a result of the presence of the additional

parameterR.
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Figure 2.4:The function g(R, θc) is plotted with the turning pointθc of the pendulum. Positive-

ness of g corresponds to the instability of some GSM orbits. The points at which g changes its

sign are shown with the open circle.

The modified measure can be approximated by considering the simple pendulum. We now

takej = 1 for simplicity and consider only excursions ofR from unity. The termcos(2πRθ̃n)

in Eq. (2.14) is replaced with the ergodic average:

cos(2πRθ̃n) ≈ g(R, θc) =





∫ 1/2

θc

dx√
E − cos(2πx)





−1 ∫ 1/2

θc

cos(2πRx) dx√
E − cos(2πx)

. (2.21)

Here−1 ≤ E ≤ 1 is the scaled energy andθc is the turning point given bycos(2πθc) = E.

This is shown in Fig. 2.4 and the point where g crosses zero from above ought to be a point

where stability is recovered. This then explains the uniform chaos around the hyperbolic fixed

point for R 6= 1. This also explains the stability around the pointS = (1/2, 0). However the

interior of the resonance is not accessible to the simple theory. Remarkably Fig. 2.4 predicts a

recovery of stability atθc ≈ 0.15 which is seen forR = 0.95 while stability is recovered at a

much higher value ofθc for R = 1.05 and is not seen in Fig. 2.4. This fact may be attributed

to the failure of the averaging procedure in analyzing non-autonomous equations and have no

other recourse than Eq. (2.14) itself.
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Figure 2.5: Orbits with initial conditions on the lineJ = 1/3 (top) andJ = (
√

5 − 1)/2

(bottom) forK = 0.1 andR = 1.05.

As we have noted, hyperbolic fixed point generates chaos forR 6= 1. Let us further move

on to the region of phase space forR >∼ 1 where there are lack of chaos with total absence

of hyperbolic points. The Poincaré-Birkhoff theorem concerning the breakup of rational tori

into an equal number of hyperbolic and elliptic periodic points is clearly violated. In fact the

modified scenario seems to be the creation ofonly elliptic fixed points forR >∼ 1 and only

hyperbolic points forR <∼ 1. To illustrate this we have shown in Fig. 2.5 the fate of points on

the linesJ = 1/3 andJ = (
√

5− 1)/2. While in the former case three elliptic islands emerge

prominently, in the latter one can see chains of elliptic islands with the clear hierarchy of the

number of islands5, 8, 13, 21, 34 . . . deriving from the Fibonacci sequences generating closer

approximations to the golden mean. These island chains alternate as the ratios approach the

golden mean. As a limiting case we may think of a golden mean chain, but we have, of course,
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not rigorously proved its existence. There appear to be two types of orbits in the stable regions:

those that form an island chain and those that meander in the interstitial spaces between island

chains on presumably a fractal set. These would then be examples of strange non-chaotic sets

in Hamiltonian mechanics.

Thus simple methods provide detailed understanding of very complicated dynamics and dra-

matic stability changes that emerge from the natural length scales or the discontinuity. We may

also speculate that tuning the length scales would lead a good way of controlling or enhancing

chaos. While our study has been for Hamiltonian systems, dissipative systems may also display

such a behaviour.

2.5 Hyperbolic regime

In this section we discuss another peculiar property of the GSM. The trace of the Jacobian

matrix (2.18) is given by

|Tr Mn| = |2 + KR cos(2πRθn)| . (2.22)

Since|θn| ≤ 1/2, for R ≤ 1/2 the trace is such that|Tr Mn| > 2 (for R = 1/2, |Tr Mn| = 2

only at |θn| = 1/2). We remind that this range ofθn is the entire configuration space and

θn = ±1/2 represent the wall boundaries. Since the Jacobian is only a function of the angle

and not a function of action at a given phase space point, we conclude that the Jacobian has real

eigenvaluesthroughoutthe phase space. In other words, the system is completely chaotic or

hyperbolic forR ≤ 1/2. This implies that there are contracting and expanding real directions or

alternatively stable and unstable manifolds throughout phase space [69]. It is worth remarking

that very few dynamical models are exactly known to be hyperbolic systems. These include the

sawtooth map [70, 71], the baker map and flows on surfaces of constant negative curvature [72].

The standard map even for large values of the parameterK is not proven to be hyperbolic. Thus

in this context, we place the fact that GSM has a parameter range for which it is hyperbolic for

all positive values of the parameterK. The phase space of one such case is shown in Fig. 2.2.

The similarity of the GSM, whenR ≤ 1/2, with the piecewise linear sawtooth map (2.11)

is made clear by the following linear approximation. In this regime, the forcesin(2πRθn) in the

GSM is monotonic and we have the linear approximation assin(2πRθn) ≈ 2 sin(πR)θn. This

leads to|Tr Mn| ≈ |2 + (K/π) sin(πR)|. The Lyapunov exponents in this approximation are

given by

Λ± ≈ ln(y ±
√

y2 − 1) ; y = 1 + (K/2π) sin(πR) . (2.23)

30



It is clear from Fig. 2.6 that the approximated exponent fits fairly well with the actual one.

Similar agreement was seen for a wide range of initial conditions and different values ofK as

well. This shows the validity of the above linear approximation for the force whenR ≤ 1/2,

which enables us to understand the gross behaviour of the Lyapunov exponents in this regime.

We note that the usual linear approximationsin(2πRθn) ≈ 2πRθn near the origin was found

not to be as good as the above approximation.

Figure 2.6:Positive Lyapunov exponent (circles) of an orbit of the GSM for twoK values. It is

calculated from the procedure which is described earlier. The solid curve is the approximated

exponent given by Eq. (2.23).

2.6 Diffusion

One of the striking results in the study of nonlinear phenomena has been the similarity to

many body thermodynamic property such as diffusion. The fact that deterministic dynamical

systems can give rise to diffusive behaviour reminiscent of stochastic processes like random

walks, has led to the speculation that indeed a lot of macroscopic stochastic behaviour can be

pinned onto microscopic deterministic chaos [73, 74]. Diffusion in a dynamical variableun can

be characterized by long time behaviour of its varianceσ2. Considering that the variance has
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time dependence

σ2(n) = 〈u2
n〉 − 〈un〉2 ∼ nγ (2.24)

where〈..〉 stands for ensemble average,γ is a characteristic exponent andn being the discrete

time. The rate of change of variance in long time limit is defined as the diffusion coefficient:

D = lim
n→∞

σ2(n)

n
. (2.25)

In general0 < γ ≤ 2 and the diffusion processes are classified accordingly.

The central limit theorem (CLT) implies thatγ = 1 and such is the case for most diffusion

processes and is hence callednormal. Generalized simple one dimensional random walk prob-

lem [75], withun as the total displacement of the random walker at thenth step, substantiates

the CLT and the probability distribution functionρ(u) in the long time limit converges to the

Gaussian form

ρ(u) =
1√

2πσ2
exp

{−(u− 〈u〉)2

2σ2

}
(2.26)

with σ2 ∼ n. If there is long time correlation, which is dominated by rare events such as sticking

and flights, diffusion becomesanomalous(γ 6= 1) in which case the limit in Eq. (2.25) does not

exist and the CLT fails to explain these processes. Flights are the events in which the random

walker can travel for long distances in spurts and the mean square of the flight length diverges.

They are calledLévy flights[76, 77], characterized bysuperdiffusion(γ > 1). The Ĺevy flights

are common in many applications of physics [78]. On the other hand, sticking [76] is a strange

phenomenon occurring in deterministic kinetics, when chaotic orbits get trapped for long time

by cantori (broken KAM tori) around stable islands in the mixed phase space. Such stickiness

leads tosubdiffusion(γ < 1), where the average time duration at each step diverges. The case

γ = 2, which we will encounter in Chapter 4, corresponds to the ballistic motion.

From the earlier discussion we have seen that the phase space of the GSM, even for small

K, does not have any KAM tori ifR 6= 1 (in general for non-integer). This could cause the

dynamics to be chaotic and there is a possibility of diffusion in momentumJ . More over, for

R < 1 the dynamics is mostly chaotic while forR > 1 it is mixed with the coexistence of regular

and chaotic orbits in the phase space. This implies that the diffusion must be strongly affected

by the parameterR. Takingun = Jn − J0, jump in the momentumJ at thenth iteration, we

observe from Fig. 2.7 that the diffusion is normal forR < 1. However, the diffusion coefficient

is small sinceK is small. The coefficient is maximum atR = 1/2, where the discontinuity

of the GSM is maximum in the shown range; then it falls to zero whenR approaches zero or

unity. The force termsin(2πRθ) approaches to zero withR and the diffusion is highly limited,
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presumably due the cantori, and hence fall in diffusion coefficient. AtR = 1, the exponentγ

sharply falls down to zero, where there is no diffusion as the KAM tori are present in the phase

space.

Figure 2.7:The characteristic exponentγ and the diffusion coefficientD for R ≤ 1 with K =

0.1π. We have taken an ensemble of104 initial conditions distributed uniformly in a small

square, centred at (0.3,0.3) with side 0.1, and evolved each of them for 5000 time steps. The

ensemble is chosen such that it does not contain any regular orbits. Notice that there are some

small regular regions seen for1/2 < R < 1 in Fig. 2.1 and Fig. 2.2. However, the diffusive

nature of the chaotic orbits are not influenced by those regular regions.

For 1 < R < 2 we have seen that the phase space is mixed with regular and chaotic orbits.

The phase space has no KAM tori and instead there are many chains of stable islands. However,

we expect that any diffusion of the chaotic orbits will be limited by the sticky regions around the

stable islands. In fact the stickiness is so overwhelming that our numerical results that indicate

subdiffusion (γ < 1) in this parametric regime do not converge even after long time iterations of

large ensembles. In these kinds of situation, characterization by a simple diffusion process may

be inappropriate. More interesting and meaningful measures may be quantities like Poincaré

return time distribution [79] and exit time [80] of the chaotic orbits. Alternatively, we may

characterize the dynamics by the two-time correlation functionf(τ), which is defined as

f(τ) = lim
n→∞

1

n

n∑

i=0

θiθi+τ . (2.27)
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In Fig. 2.8 typical time correlations of an orbit which is chaotic forR 6= 1 are shown. The

oscillations inf(τ) for R = 1 implies the existence of non-vanishing long time correlation as

a characteristic of regular case. ForR = 0.9, the orbit is chaotic and diffusive inJ without

any constraint. In this casef(τ) falls to zero after a small initial oscillation indicating rapidly

uncorrelating motion. On the other hand, forR = 1.1 though the orbit is chaotic, there are

long time correlations. The persistence of these correlations may be associated to the fact that

the diffusion of the orbit is highly suppressed by the presence of chains of regular islands. The

non-diffusive chaotic orbit occupies the boundaries of regular islands (sticky regions) which can

retain the long time correlation. Thus we indicate another way in which the presence of island

chains affect the dynamical behaviour even in the absence of rotationally invariant circles: it

could for all practical purposes suppress diffusion while retaining long time correlations.

Figure 2.8:Left column: an orbit withS0 = (0.01, 0.01) for K = 0.1π and R = 0.9, 1, 1.1

from top to bottom. The orbit corresponds to a KAM torus near to the separatrix forR = 1 and

it is chaotic forR 6= 1 (for R = 0.9, Λ+ = 0.2 and forR = 1.1, Λ+ = 0.1). Right column:

corresponding two-time correlation of the orbit.
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Further we investigate the diffusion whenK is large (i.e.,K À 1). In this regime the phase

space is highly chaotic andD is predominantly governed byK since this is the leading chaos

parameter. However, here we are interested inR dependence ofD to contrast from the known

results forR = 1. We have

un = Jn − J0 =
K

2π

n−1∑

i=0

sin(2πRθi) (2.28)

and

u2
n =

(
K

2π

)2
(

n−1∑

i=0

sin(2πRθi)

)2

=
(

K

2π

)2




n−1∑

i=0

sin2(2πRθi) + 2
n−2∑

i=0

n−1∑

j=i+1

sin(2πRθi) sin(2πθj)



 . (2.29)

With the definition of ensemble average

〈g〉 ≡
∫ ∫

g(θ, J) dθ dJ (2.30)

integrated averaged over all possible points (θ, J) in the fundamental domain of the phase space

i.e., from−1/2 to 1/2 for both the variables, we introduceC(τ) = 〈sin(2πRθi) sin(2πRθi+τ )〉
as the force-force correlation. Note thatC(τ) is invariant under time translation. Assuming that

C(τ) falls off rapidly with τ , which is the case of chaotic systems, the diffusion coefficient is

given by

D =
(

K

2π

)2
{

C(0) + 2
∞∑

τ=1

C(τ)

}
. (2.31)

In general first few terms may be sufficient for the chaotic systems due to the absence of

higher order correlation. The zeroth order correlation is

C(0) =
1

2

{
1− sin(2πR)

2πR

}
(2.32)

and the first order correlation is

C(1) = 〈sin(2πRθi) sin(2πRθi+1)〉

= 〈sin(2πRθi−1) sin(2πRθi)〉

=
∫ ∫

sin(2πR(θ (mod 1)− J)) sin(2πRθ) dθ dJ
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=
∫ ∫

sin(2πR(θ − J + l)) sin(2πRθ) dθ dJ (2.33)

wherel ≡ l(θ, J ; K,R) is an integer. ForR = j, sin(2πR(θ − J + l)) = sin(2πR(θ − J))

and in this caseC(1) = 0. Similarly we can show thatC(2) = −J2(jK) whereJ2(x) is the

Bessel function of first kind. Although higher order correlations are more complicated, for the

standard mapD is calculated upto fourth order correlation [49]. In [81]D is calculated using

different methods and since then the Bessel function oscillation of the diffusion coefficient for

the standard map is well known.

Figure 2.9:Diffusion coefficient for three large values ofK are shown. Solid lines correspond

to the actual coefficient, the dashed lines correspond toC(0) and the dotted lines correspond to

C(0) + 2C(2). For this calculation, an ensemble of 2500 points evolved each of them for 300

time steps. Results are independent of the ensemble.

For non-integerR, sin(2πR(θ−J + l)) 6= sin(2πR(θ−J)). In this case, for a givenK and

R the above integration becomes the sum of integration over the cellsΩl:
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C(1) =
∑

l

∫ ∫

Ωl

sin(2πR(θ − J + l)) sin(2πRθ) dθ dJ . (2.34)

HenceC(1) itself is not calculable in straight forward manner. However, we have found nu-

merically thatC(1) ≈ 0, whenK is large. SinceC(2) is even more difficult here we calculate

it numerically. Fig. 2.9 shows typical behaviour of diffusion coefficient asR varies. We may

notice that these oscillations significantly differ from the Bessel function oscillations of the

standard map. We also find thatD is well approximated uptoC(2), implying that higher order

correlations are negligible. However, the large deviations aroundR = 0.7 for K = 5 may be

due to the presence of small regular regions (not shown) embedded in the chaotic phase space.

In the hyperbolic regime, i.e.,R ≤ 1/2, C(0) itself is sufficient to reflect the behaviour ofD. It

is worth remarking that for the saw-tooth map all the higher order correlations are shown to be

zero andD depends only onC(0) in the hyperbolic regime [70]. In this context, we speculate

that for hyperbolic systems all higher order correlations are insignificant.

2.7 Summary

In this Chapter we have introduced a particle confined in one-dimensional infinite square

well potential in presence of time periodic impulsive external field as a simple and instructive

model for externally forced particle in well. Kick-to-kick classical dynamics of the particle is

investigated in detail with the help of one generalization of the standard map. The virtue of

generalization lies in the natural introduction of two competing length scalesviz. well width

and the field wavelength.

The ratio of the length scalesR is found to be decisive for the dynamics particularly when

the external field strength is small. WhenR is integer the dynamics is nearly regular while

it can be chaotic ifR is non-integer. This is because the map is continuous for integerR

and discontinuous otherwise. The resulting non-KAM scenario and the transition to chaos

for non-integerR has been studied. In particular, the absence and fate of irrational tori under

perturbation is fairly understood using a simple stability theory. We have observed an alternative

to Poincaŕe-Birkhoff scenario wherein the rational tori under perturbation becomes either stable

or unstable points. WhenR ≤ 1/2, the map is found to be hyperbolic - a rare class of dynamical

system.

We have studied the transport property in different chaotic regimes. In the mixed phase

space, although the KAM tori are absent, diffusive nature of the chaotic orbits is highly sup-

pressed by the presence of some regular islands. In highly chaotic regimes, the diffusion coef-

ficient is essentially governed by the first few force-force correlation.
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3. Quantum map

3.1 Introduction

We now consider the quantum dynamics of the particle inside the infinite square well po-

tential well in presence of time periodic (periodT ) impulsive field, and it can be easily studied

using iterative quantum map:

|Ψ(t + T )〉 = U |Ψ(t)〉 ; |Ψ(t + nT )〉 = Un|Ψ(t)〉 (3.1)

whereU is the one time period quantum propagator andn represents thenth kick. The quantum

map, analogous to the classical map discussed in Chapter 2, describes kick-to-kick quantum

dynamics. Although the Hilbert space of the quantum system is infinite dimensional, for all

practical purposes, it is large but finiteN -dimensional space. However, care must be given in

making sure that this artificial truncation does not influence the system.

Since the Schr̈odinger equation is a first order linear differential equation, in the truncated

space there existN linearly independent solutions. For time periodic Hamiltonian with period

T , according to Floquet theorem for linear system [82] the solutions of the Schrödinger equation

are of the form|ψj(t + T )〉 = e−iαj |ψj(t)〉 wherej = 1, 2, . . . , N ; αj are real and distinct i.e.,

between 0 and2π. In other words the solutions satisfy the eigenvalue equation

U |ψj(t)〉 = e−iαj |ψj(t)〉 ; αj =
EjT

h̄
. (3.2)

The states|ψj(t)〉 are calledquasienergy statesandEj are thequasienergies[83]. Then the

quasienergy states can be written as

|ψj(t)〉 = e−iEjt/h̄|φj(t)〉 ; |φj(t + T )〉 = |φj(t)〉 . (3.3)

The states|φj(t)〉, calledsteady states, and the quasienergiesEj are analogous to the stationary

states and energies of the conservative system [84]. It is to be noted that the inner product of

two arbitrary solutions of the Schrödinger equation for arbitrary time dependent Hamiltonian is

independent of time due to hermiticity of the Hamiltonian. As a consequence〈ψj(t)|ψj′(t)〉 =

δjj′, i.e., the quasienergy states are orthogonal. At any give timet, they form a complete set in

theN -dimensional space. By the superposition principle, general solution of the Schrödinger

equation with time periodic Hamiltonian with periodT is then given by|Ψ(t)〉 =
∑

j cj|ψj(t)〉
wherecj are constants. With this the quantum map is
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|Ψ(t + nT )〉 =
∑

j

cje
−iαjn|ψj(t)〉 . (3.4)

It is to be noted thatt is arbitrary. Thus the quasienergies and quasienergy states play central

role in the time periodic Hamiltonian system. They can be obtained by diagonalizing the matrix

form of U in some suitable basis states.

3.2 Matrix form of quantum propagator

For the Hamiltonian (2.1), by integrating the Schrödinger equation from just after one kick

to the next kick, we can write the quantum propagator can be written as

U = exp
{
−ik cos

(
2πx

λ

)}
exp

{
−i

H0T

h̄

}
(3.5)

wherek = εT/h̄. Note that the propagator is the quantum counter counter part of the well

map and not that of the GSM. In Chapter 5, we will be discussing quantum propagator of the

GSM in detail. Natural choice of basis for theU -matrix is the eigenstates of the unperturbed

HamiltonianH0:

H0|n〉 = En|n〉 (3.6)

wheren = 1, 2, 3, . . . The energy eigenfunctions and eigenvalues are

〈x|n〉 =





1√
a
cos(nπx

2a
), for n odd

1√
a
sin(nπx

2a
), for n even

; En =
n2π2h̄2

8Ma2
. (3.7)

TheU -matrix is then given by

Umn = 〈m|U |n〉 = 〈m| exp{−ik cos(2πx/λ)}|n〉e−in2τ ≡ Fmne
−in2τ (3.8)

where we have defined an effective Planck constant as

τ ≡ π2h̄T

8Ma2
. (3.9)

As the external field preserves parity we have

Fmn =





0, if m + n is odd
1
2π

{
Qm−n

2
− (−1)nQm+n

2

}
, if m + n is even

(3.10)

where
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Ql =
∫ π

−π
cos(lθ) e−ik cos(Rθ) dθ (3.11)

andθ = πx/a. We note thatQl is a Bessel function integral for integerR, while for non-integer

R the integral constitutes a kind of “incomplete” Bessel function. Invoking the Bessel function

Js(k) through the following identity

e−ik cos θ =
∞∑

s=−∞
(−i)sJs(k) e−isθ

the above integral can be evaluated as a series:

Ql = 2πJ0(k) δl,0 + 2
∞∑

s=1

(−i)sJs(k) Cs (3.12)

where

Cs =
∫ π

−π
cos(lθ) cos(sRθ) dθ =





(−1)l2sR sin(sRπ)

(sR)2−l2
, for sR 6= |l|

π, for sR = |l| .
The relationJ−s(k) = (−1)sJs(k) has been used in Eq.(3.12). Note that ifR is an integer,

Eq.(3.12) simplifies to

Ql = 2π
∞∑

s=0

(−i)sJs(k) δ|l|,sR (3.13)

i.e., the integral becomes a single Bessel function.

The forms ofQl allow us to assess the fall of the matrix elements of the unitary matrixUmn.

For integerR the matrix can be essentially banded as the matrix elements fall off exponentially

after a certain cutoff. ForR = 1, as is well known and also can be seen from above that forl > k

the matrix elements fall off exponentially, wherel measures the distance from the diagonal. On

the other hand whenR is not an integer, apart from the Bessel function terms, there are terms

that are falling only algebrically inl. For instance whenR = 1/2 we have

Ql = 2π(−1)lJ2l(k) + (−1)l8
∞∑

s=1,3,5,...

(−i)ss sin(sπ/2)

s2 − 4l2
Js(k) . (3.14)

The infinite series gets effectively cut-off fors > k. The finite sum has terms that only decay as

l−2. Fig. 3.1 shows thatQl falls asl−2 even for other non-integerR values. Thus non-integerR

values imply an important characteristic of the unitary quantum map: the algebric fall of matrix

elements, as opposed to the exponential fall characterizing integerR. In fact we may speculate

whether non-KAM systems arealwayscharacterized by algebric decaying matrix elements in

the unperturbed basis. It is generally believed that localization properties of the eigenfunctions

crucially depend on the way in which matrix elements fall.
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Figure 3.1:Shown are the behaviour ofQl with 10 ≤ k ≤ 50 for different non-integer values of

R. The thick linel−2 is drawn to guide the eye.

The perturbing potentialcos(2πx/λ) preserves the parity ofH0, and henceU has the sym-

metry of parity. In addition, the system has a spatial translational symmetry whenR is an

integer. Let us define a transformation for integerR as

T f(X) = f((X + 1/R) mod1) (3.15)

such thatT Rf(X) = f(X). T has the eigenvaluesβl = exp(i2πl/R) where l =

0, 1, 2, . . . , (R − 1). The commutation relation[U, T ] = 0 leading toT |ψ〉 = βl|ψ〉. For

R = 2, βl = ±1; in this case we consider only the states that correspond toβl = 1. It is to be

noted that the dimensionless quantum parametersk andτ are related to the classical parameters

through the relation

K

R
= 8kτ . (3.16)

The semiclassical limit isk → ∞ andτ → 0, such thatkτ is fixed. Any arbitrary state of the

system at a given time in the unperturbed basis is|Ψ(t)〉 =
∑

n Ψn(t)|n〉 and its time evolution

is given asΨm(t + T ) =
∑

n UmnΨn(t). It is to be noted that for a givenk the infinite series in

Eq. (3.12) can be approximated to a finite series up to says = s′ such thats′ > k where the
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Bessel functionJs(k) decays exponentially. Since the quantum dynamics is implemented with

finite number,N , of basis states, we need to ensure that this artificial truncation does not affect

the calculations. The limit

lim
n→∞

N∑

n=1

|Ψn(t)|2 → 1 (3.17)

has been used for this purpose.

3.3 Special case: kicked rotor

It was shown in the previous Chapter that standard map of the kicked rotor is the special

case (R = 1) of the well system. It is natural to expect such connection in the quantum systems

also. In fact, in this section we show that whenR = 1 the quantum well system is nothing but

the quantum kicked rotor. For that let us consider the Hamiltonian of the kicked rotor moving

in a circle of radiusr as

H̄ =
p2

θ

2r2
+ ε cos(θ)δT (3.18)

wherepθ, θ are the angular momentum and angle of the rotor. HereδT stands for the train

of periodic delta function with periodT . The kick to kick quantum propagator in angular

momentum basis〈θ|n〉 = einθ/
√

2π is given by

Ūmn = 〈m|Ū |n〉 = (−i)m−nJm−n(k)e−in2τ̄ /2 (3.19)

wherek = εT/h̄ andτ̄ = h̄T/r2 with m,n = 0,±1,±2 . . . SinceH̄ preserves parity symmetry,

the quasienergy states are either even or odd i.e.,〈θ|ψ̄j〉 = ±〈−θ|ψ̄j〉 or 〈n|ψ̄j〉 = ±〈−n|ψ̄j〉.
Then the eigensystem of the propagator

∞∑

n=−∞
Ūmn〈n|ψ̄j〉 = e−iᾱj〈m|ψ̄j〉 (3.20)

is reduced to

∞∑

n=0

Ũmn〈n|ψ̄j〉 = e−iᾱj〈m|ψ̄j〉 ; Ũmn = Ūmn − Ūm,−n (3.21)

by considering only the odd states. Notice that the above equation remains the same if we

replacem by−m sinceŪmn = Ū−m,−n. Thus it is sufficient to consider onlym with positive

integers. Invoking the integral form of the Bessel function through the relation [85]

(−i)nJn(k) =
1

π

∫ π

0
e−ik cos θ cos(nθ) dθ
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the parity reduced propagator matrix is

Ũmn =
2

π
e−in2τ̄/2

∫ π

0
sin(mθ) sin(nθ) e−ik cos θdθ (3.22)

wherem,n = 1, 2, . . .

On the other hand, the well system also has the parity symmetry. Considering only the odd

states of the well system, the quantum propagator is

Umn =
1

a
e−in2τ

∫ a

−a
sin

(
mπx

2a

)
sin

(
nπx

2a

)
e−ik cos(2πx/λ) dx (3.23)

wherem = 2l, n = 2l′ with l, l′ = 1, 2, . . . With the substitutionθ = πx/a and settingR = 1,

the above matrix element becomes

Ull′ =
2

π
e−i4l2τ

∫ π

0
sin(lθ) sin(l′θ) e−ik cos θ dθ . (3.24)

Now the matrix elements̃Umn andUll′ are identical provided̄τ = 8τ or πr = a. Combining

this condition withR = 1 (2a = λ) we have2πr = λ. That is, the intrinsic assumption made

in the kicked rotor system is that the wavelength of the impulsive field is equal to the perimeter

of the circle on which the rotor moves. In other words,kicked rotor has a single length scale.

Since the parity symmetry reducedU -matrix of the rotor is identical to that of the well system

for R = 1, in this case odd states of the rotor correspond to the odd states of well system, while

the even states have a similar relationship. Thus all that is known for the quantum kicked rotor,

including exponential localization of eigenstates, may be carried over to the well system with

R = 1. This allows us to address interesting questions of deviations from the kicked rotor in a

single model arising from the two competing length scales.

3.4 Quantum resonance

Here we investigate whether the parameterR has any effect on the important phenomenon

of “quantum resonance”. We notice that the unperturbed motion of the particle, given by the

HamiltonianH0, between the kicks simply adds phase to the wave function components (when

expressed in the unperturbed basis, as in Eq. (3.8)). At full resonance (τ = 2π), the unperturbed

motion between the kicks is absent. In this case, without loss of generality, the time evolution

of an arbitrary state of the system is

|Ψ(t)〉 = e−ik cos(2πx/λ)t|Ψ(0)〉 (3.25)

and thus|Ψ(t)|2 = |Ψ(0)|2. Note that heret is the number of kicks. In the position representa-

tion the above equation is written as
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Ψ(x, t) = e−ik cos(2πx/λ)tΨ(x, 0) (3.26)

and then the kinetic energy of the particle aftert kicks is

E(t) = 〈Ψ(t)|p̂2|Ψ(t)〉

=
−h̄2

2M

∫ a

−a
Ψ∗(x, t)

∂2

∂x2
Ψ(x, t) dx . (3.27)

Using the relation

i

(
f ∗

∂f

∂x
− f

∂f ∗

∂x

)
= 2 Re

(
if ∗

∂f

∂x

)

where Re(· · ·) is the real part of the argument, and the boundary conditionΨ(a, t) = 0, the

kinetic energy becomes

E(t) = E(0) +
−h̄2

2M

{(
4πkt

λ

) ∫ a

−a
sin

(
2πx

λ

)
Re

{
iΨ∗(x, 0)

∂Ψ(x, 0)

∂x

}
dx

−
(

2πkt

λ

)2 ∫ a

−a
|Ψ(x, 0)|2 sin2

(
2πx

λ

)
dx



 . (3.28)

In the limit t → ∞ the energy grows quadratically with the number of kicks. If|Ψ(0)〉 = |n〉,
i.e., the initial state is one of the unperturbed states itself, then Re(· · ·) = 0 and hence the

energy is purely quadratic. In this case the energy can be found exactly as

E(t) = E(0)



1 +

(
ktR

n

)2

(2− A)



 (3.29)

where

A =





sin(2πR)
πR

(
n2

n2−4R2

)
if n 6= 2R

(−1)n+1 if n = 2R .

SinceA 6= 2, we observe that the quadratic energy growth is unaffected by the length scale

ratioR. Numerically we have found that this behaviour is also seen whenτ is rational multiples

of 2π. Thus the quantum resonance phenomena of the well system is very similar to that of the

kicked rotor [86]. In the resonance condition, i.e.,τ is rational multiples of2π, the quasienergy

states are extended in the Hilbert space and they are unnormalized. They are very similar to

Block waves of electronic eigenstates in crystal lattice. Thus the diffusion in energy at the

resonance can be compared with the electronic transport due to the extended Block waves in
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the lattice problem. Recent experiments on atoms in presence of pulsed standing light wave,

the atom-optics realization of delta-kicked rotor, have achieved enhancement in momentum

diffusion of the atoms under resonance condition [87].

It is to be noted that resonance is a non-generic pure quantum phenomena and no correspon-

dence to it can be seen in the classical system. In the context of a particle in a well, quantum

diffusion at the resonance may provide a mechanism to enhance ionization from sufficiently

deep finite well systems.

3.5 Results

Having given a sufficient description of the system under investigation, here we analyze the

quasienergy states and quasienergies of the generic quantum system (τ is an irrational multiples

of 2π) in the relevant classical regimes. On taking a truncatedN -dimensional Hilbert space

spanned by the firstN unperturbed basis states that belong to odd parity, diagonalization of

the matrixUmn gives the eigenstates of odd states{|ψ〉}. In the unperturbed basis they can

be represented as|ψ〉 =
∑

n ψn|n〉. Eigenvalues and eigenstates are obtained from numerical

diagonalization of theU -matrix. In what follows we consider only states that are “converged” in

the sense that they are independent of the truncation sizeN . Thus the states we are interested in

belong to the infinite Hilbert space; they are states of the infinite cylinder andnotof a truncated

cylinder, or torus. The last distinction becomes important as quantum states that belong to the

cylinder can have completely different localization features from those that belong to a truncated

cylinder.

3.5.1 Localization and length scales

We have shown in the previous Chapter that the dynamical features of the classical system is

very much sensitive to the parameterR. In particular, for small classical field strengthK (≤ 1)

the kick to kick dynamics can be chaotic and as a consequence there is a possibility of classical

transport whenR is non-integer. The natural and important question to be answered is that how

the localization of the generic quantum states is influenced byR in different classical regimes.

Localization can be measured using a unified quantity, the Renyi participation ratioξq [88]

ξq =

(∑
n

|ψn|2q

)1/(q−1)

(3.30)

of which the entropy and participation ratio (PR) are special cases. In our analysis we first use

a normalized information entropy as a measure of the localization of states, and this is defined

as
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S =
−1

ln (N/2)

N∑

n=1

|ψn|2 ln |ψn|2 . (3.31)

It is easy to see thatS = ln ξ1/ ln(N/2). This measure compares the entropy of the eigenfunc-

tions to that ofN ×N matrices belonging to Gaussian orthogonal ensemble (GOE) of random

matrix theory (RMT) which is approximatelyln(N/2). The GOE is relevant to time reversal

symmetric systems such as the one we are considering.

Figure 3.2:Average entropy of 1000 eigenstates for:K = 0.1, τ = 0.001 (◦); K = 1, τ = 0.01

(2); K = 10, τ = 0.1 (•). N = 1200 in all the cases.

First we calculate a gross measure of localization in a given spectrum by averaging over all

converged states. We set criteria for the states to be converged so that the states belong to the

cylinder, or are at least very close to states that belong to the cylinder. In all the following cases,

the eigenvalues are converged in modulus to unity to within 0.0001 or better. Fig. 3.2 shows

the average entropy as a function ofR. For smallK (≤ 1), the oscillations are qualitatively

similar with distinct entropy minima at integerR and maxima at around half-integerR. This
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may provide a simple mechanism for experimental control of the extent of localization. The

information entropy is, of course, basis dependent; the unperturbed basis we use is a useful one

as it has information about localization in the momentum.

The minima in entropy are expected to have strong associations with the presence of stable

regions in the classical phase space. Of special significance are KAM tori in phase space, as

these structures are complete barriers to classical diffusion in momentum. In spite of the fact

that in the classical system all the KAM tori break up in the standard map (R = 1) at K = 1,

we observe a minimum entropy. This is due to the presence of cantori which are partial barriers

for chaotic orbits and suppress global diffusion. Maximum entropy around half-integerR is the

classical parametric regime where the discontinuity is maximum, corresponding to maximum

chaos assisted diffusion.

Figure 3.3:Shown is the scaled kinetic energy〈P 2〉 of a state, which is initially the ground state

of the unperturbed system, as a function of time. Here the parameters areK = 1, τ = 0.01;

R = 1 (solid line), R = 1.5 (dots) andR = 2 (dotted line). The effect of non-integerR is

clearly seen in the evolution as the kinetic energy of the quantum particle saturates at a much

higher value compared to the integerR cases.
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The time evolution of non-stationary states must reflect the properties of the stationary states

and is also of importance in the context of experiments. Here we have studied the diffusion in

kinetic energy of a state|Ψ〉 that is initially the ground state of the unperturbed system. We

illustrate with one example that for a fixed classical parameterK the effects of non-integerR

are seen clearly for a givenτ value. Thus tuningR essentially tunesλ sincea is fixed through

the relation (3.9). In Fig. 3.3 scaled kinetic energy〈P 2〉 = 〈Ψ(t)|P̂ 2|Ψ(t)〉 is shown as a

function of time (number of kicks) for a small value ofK corresponding to a small classical

field strengthε. We note that while the quantum diffusion saturates at a much higher value for

R = 1.5, than that compared toR = 1, the actual classical field strengthε (from Eq. (2.4)) is

smallerby a factor of1.5. For comparison we show another integer case,R = 2, where the

classical diffusion is smaller than forR = 1.

3.5.2 Localization and classical diffusion

In Fig. 3.2 oscillations in entropy are still present for largeK (= 10), while there is appar-

ently complete chaos for all relevantR values. We can understand these oscillations as due to

the strong correlation between the localization of eigenstates and classical diffusion coefficient.

SinceK andτ are fixed in our numerical experiments, from the relation (3.16) we see that for

R < 1/2 the semiclassical parameterk is large. For largek the effective field strength of the

quantum particle is large. However, there is increased localization of states asR decreases from

1/2. This is the quantum reflection of the limited classical diffusion. In this case the diffusion is

highly limited presumably due to the presence of cantori. For the kicked rotor the exponential

localization length was found to be proportional to the classical diffusion coefficient [52]. This

was found by numerical experiments and is supported by certain qualitative arguments. We

are now in a position to examine the relationship between quantum localization and classical

diffusion in the context of the particle in a well, wherein we have the freedom of another control

parameter, namelyR, with which to vary the classical diffusion.

Instead of studying localization lengths we study here the measures of localization such

as the entropy or the PR. We study the PR more closely rather than the entropy. In chaotic

regimes we have numerically ascertained that exponential of the entropy is proportional to the

PR, as shown in Fig. 3.4. The relationship between the localization length hitherto calculated

for the kicked rotor and the PR calculations we present will need more detailed study, but we

expect them to be roughly proportional to each other. In fact, if we assume a fully exponentially

localized state with|ψn| ∼ exp(−|n− n0|/l∞), then the PR is

ξ−1
2 =

(∑
n

|ψn|4
)−1

= 2l∞ . (3.32)
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Figure 3.4: Average entropy and the log of the average PR corresponding to the caseK =

10, τ = 0.1 of Fig. 3.2. The slope of the fitted straight line is0.9± 0.01.

We recapitulate the argument connecting classical diffusion and the localization length for

the specific system we are considering, as there are difference in factors. Considering time evo-

lution of an initial state, kinetic energy diffuses for a certain timetc and then attains quasiperi-

odic saturation. In other words, the number of unperturbed states that are excited during the

evolution increases initially and attains a saturationnc. This implies thatnc is related to the

critical timetc by the diffusion equation

π2h̄2n2
c = Dcltc ;

〈
(pt − p0)

2
〉

= Dclt (3.33)

whereDcl is the classical diffusion coefficient in momentum and〈· · ·〉 represents the ensemble

average. Here the momenta and the diffusion coefficient have dimensions and we have taken

a = 1/2. Since the critical time is the Heisenberg time relevant fornc equally spaced eigenstates

(or quasienergies) such that

∆E = ∆α
h̄

T
=

(
2π

nc

)
h̄

T
(3.34)

then
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tc ∼ h̄

∆E
∼ ncT

2π
. (3.35)

With the dimensionless diffusion coefficientD = Dcl/T
3, if the average localization length

〈l∞〉 is alsonc, we obtain the relation:

〈ξ−1
2 〉 = 2〈l∞〉 =

βπ

4τ 2
D(K, R) (3.36)

whereτ is the dimensionless effective Planck constant defined in Eq. (3.9) andβ is a constant

whose value has been numerically determined as1/2 for the standard map [89]. The diffusion

coefficientD(K, R) may be obtained using the dimensionless maps Eq. (2.5) or Eq. (2.10).

Here the dependence ofD onbothK andR is emphasized.

Figure 3.5:The average PR (•) and the scaled classical diffusion coefficient (◦) are plotted as a

function ofR for the caseK = 10, τ = 0.1. The dotted line is the scaled coefficient calculated

using up to the second order time correlation. Higher order time correlations are insignificant

since the classical system is highly chaotic.
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In Fig. 3.5 we show the average PR and the scaled diffusion coefficient according to the

relation Eq. (3.36). We see that the relation derived above holds in some parameter regions

while it picks up only qualitative features of the oscillations in others. In particular, the relation

seems to hold forR < 1/2 when the classical system is hyperbolic as well as aroundR = 1. It

is worth reiterating that the above relation assumes that the quasienergy states are exponentially

localized. The deviations from the relation (3.36) might be due to fluctuations of the state com-

ponents in the unperturbed basis (one such case is shown below in Fig. 3.9). These fluctuations

may lead to different scaling behaviour between the average PR and the classical diffusion co-

efficient. More over where there are deviations we notice that the PR is mostly lower than that

expected from the diffusion coefficient relationship derived above. Larger the classical diffu-

sion larger is the average PR and consequently the number of states that are averaged over can

have significantly lower PR than the average. This happens because on the average energeti-

cally lower states below the critical energy determined by the spectrum averaged PR have low

PRs. Thus not averaging over sufficient number of states can also lead to different scaling laws.

The sharp deviation forR = 2 can be accounted for as due to the presence of an extra quantum

symmetry discussed above.

3.5.3 Measure of quantum chaos

Following our study on average PR and its scaling with the classical diffusion coefficient,

we may then enquire about how the PR itself is distributed in a given spectrum if the average

reflects the general behaviour. We find that when the classical system is chaotic, the distribution

of the normalized quantityy = ln ξ−1
2 /〈ln ξ−1

2 〉 (this is similar to the distribution of the entropy

due to the linear relationship exhibited above) is nearly normal as seen in Fig. 3.6. This may be

attributed to a realization of the Central Limit Theorem. However the PRs and Inverse Partic-

ipation Ratios (IPRs) themselves are not normal. Their distributions may be got by assuming

that the distribution ofy is normal. Thus the PRs are distributed according to the lognormal

distribution [90]:

Λ(ξ−1
2 ) =

1√
2π σ 〈ln ξ−1

2 〉 ξ−1
2

exp



−

1

2σ2

(
ln ξ−1

2

〈ln ξ−1
2 〉 − 1

)2


 (3.37)

whereσ2 is the variance ofy. As an immediate consequence, distribution of IPRs is also

lognormal. Distribution of such localization measures is of great significance. Recently the

distribution of IPRs has been exploited to show that the distribution of resonance widths in

wave-chaotic dielectric cavities is lognormal [91].

WhenK is small (≤ 1), the classical motion is nearly regular forR = 1, while chaotic for

R ≤ 0.5. However the time scales for classical diffusion is large making the observation of
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R effects on quantum dynamics hard to discern. For instance, the nearest neighbour spacing

distribution may remain very close to the Poisson distribution. In such a situation we find that

the distribution of the PRs provides a useful measure. In Fig. 3.7 such an example is shown,

wherein even for small field strengths the effect ofR is clearly visible as a tendency fory to

be normally distributed. This is an indication of the “delocalization” that is taking place in

the eigenfunctions. This delocalization is limited in the sense that while the eigenfunctions

remain square integrable there is more spreading out in the bulk part of the states. Thus we

may conclude that the distribution of the localization measures is a sensitive quantity in chaotic

quantum systems.

Figure 3.6:Probability distribution ofy, the normalized log of the PR, for the kicked rotor case

(R = 1) in the chaotic regime. Here we have takenK = 10 andτ = 0.025 (×), τ = 0.05 (◦).
Smooth curves are corresponding Gaussian distributions.
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Figure 3.7:Probability distribution ofy, the normalized log of the PR, for the caseK = 0.1, τ =

0.001 (first row) and forK = 1, τ = 0.01 (second row). Smooth curves are corresponding

Gaussian distributions. Note the sensitivity of these distributions to the classical dynamics.

3.5.4 Eigenvalues and eigenstates

It is clear from our earlier observations that the states are more localized in the regular

or mixed regimes of the classical system while less localized (or delocalized) in the chaotic

regimes. The degree of localization is also controlled by the ratio of the length scales and

complexity of the classical phase space is reflected in the localization measures. Here we look

at the quasienergies and the corresponding states more closely.

In Fig. 3.8 we have shown the nearest neighbour spacing distribution of the quasienergies for

various parameters. The first row and the last column of the catalogue correspond to classically

chaotic regimes and the rest belong to regular/mixed phase space regimes. In regular/mixed

regimes where the states are highly localized, the spacing shows excellent agreement with the

Poisson distribution. On the other hand, in chaotic regimes the spacing agrees well with the
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Poisson distribution except at small spacings. This is due to the fact that the bulk part of the

eigenstates is delocalized and they overlap each other. However, the tail part of the states are

exponentially localized and the degree of overlap is not significant enough. We also notice

that the spacing distribution is only slightly sensitive to the nature of the classical dynamics in

the case of the unbounded kicked rotor or the well, at least in the parameter regimes we have

investigated. In such situations, as we have demonstrated earlier, the distribution of PRs is a

good measure to distinguish the chaotic quantum systems from the regular systems.

Figure 3.8:Nearest neighbour spacing distributions of 1000 quasienergies for (a)K = 0.1, τ =

0.001; (b) K = 1, τ = 0.01; (c) K = 10, τ = 0.1 with R = 0.5, 1, 1.5 (top to bottom) and

N = 1200. Smooth curves are Poisson distributions. Note the relative insensitivity of these

distributions to the classical dynamics.

Our extensive calculations of the eigenstates in chaotic regimes show that, in general, it is

hard to qualitatively differentiate the states corresponding to non-integerR values from the rotor

(R = 1) states as far as their localization behaviour is concerned. In particular, it is not easy

to distinguish the emergence of non-exponential tails unequivocally. In spite of the fact that the
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quantityQl falls polynomially, our observations have not revealed any polynomial fall in the

eigenfunction components. However, we found that eigenstates corresponding to non-integer

R values generally have more fluctuations compared to the rotor states; this is illustrated with

some examples in Fig. 3.9. The fluctuations are closer to the RMT predictions in the case of

non-integerR values and is shown further below. Although an earlier study [92] shows that the

states of one discontinuous version of the standard map are algebraically localized we have not

seen any such behaviour throughout our study.
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Figure 3.9:Typical eigenstates for the caseK = 10, τ = 0.1. States corresponding toR = 0.5

have more fluctuations compared to the rotor (R = 1) states.

Recently there have been studies of the special case (R = 1/2) of the system (2.1), with

the motivation of revealing quantal behaviour of non-KAM systems [63]. It was observed

that the quasienergy states are “extended” in the unperturbed basis and as a result the spacing

was shown to be Wigner distributed. At this juncture we would like to compare our results

with certain aspects of this work. In [63], the eigenstate shown in the highly chaotic regime

(K = 50, N = 1024; we have been unable to ascertain the value ofτ used in this work) does
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not appear to belong to the unbounded phase space as it spreads all over the basis. Thus while

states such as these may belong to some truncated dynamical system, they do not belong to the

infinite Hilbert space of the well system. Increasing the dimensionality of the matrix used will

modify such states; in short, they are not converged. As we demonstrate below, unconverged or

poorly converged states may mislead us in understanding the spectrum.
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Figure 3.10:The nearest neighbour spacing distributions for the caseK = 50, τ = 0.1. Smooth

curves are the Poisson and Wigner distributions. The convergence criterion is relaxed as we

move from top to bottom. A “spectral transition” is observed.

Large K implies largek for given R and τ , and hence our calculation demands bigger

dimensionalityN of the truncated Hilbert space, since the PR is roughly increasing ask2. Al-

though we takeN = 2000, getting a good number of converged states is problematic. However,

we pursue the spacing distribution with a different convergence criterion for the numerically
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obtained states. The convergence criterion uses the partial sum of the state components:

{Sum}M =
M∑

n=1

|ψn|2 ; M < N. (3.38)

For a well converged state we expect that{Sum}M ≈ 1, even forM ¿ N . We denote byNM

the number of converged eigenstates whose{Sum}M is greater thanSM (an arbitrary number

close to, but less than, unity) for a fixed value ofM . Thus the convergence criteria is character-

ized byM andSM .
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Figure 3.11:Typical well converged eigenstates for the highly chaotic case:K = 50, τ = 0.1

andN = 2000.

In Fig. 3.10, we show the spacing distributions with different criterion for two cases. In both

the cases transition to Wigner distribution is evident as the convergence criterion is relaxed. The

unconverged or poorly converged states do not belong to the physical system of our interest

and the corresponding quasienergies follow the RMT prediction. Obviously, reliability of the

result is more in the top plots where the spacing shows neither Poisson nor Wigner distributions.
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Though the tail part shows the Poisson behaviour there are significant discrepancies in the small

spacing. A more correct picture may be closer to the scenario of the chaotic regimes presented

in Fig. 3.8.

Shown in Fig. 3.11 are a few “well converged” states, with a more stringent convergence

criterion (M = 1600, SM = 0.9999). With this criteria we have onlyNM = 12 and4 for R = 1

and1/2 respectively. The state components exhibit strong fluctuations in the basis. Here again

it is hard to differentiate the two cases qualitatively. The states corresponding toR = 1/2 also

appear to have exponential tails. To see the distribution of the state components, we introduce a

variableηn = |ψn|2/|ψn|2 where the over bar stands for the average over the state components

such thatη = 1. As seen from Fig. 3.12, the cumulative distributions ofη for both the cases have

very similar behaviour. Considerable deviations from the RMT predicted cumulative Porter-

Thomas distribution,I(η) = erf
(√

η/2
)
, may be attributed to the localization of the states.

However, the distribution corresponds toR = 1/2 tends to be closer to the RMT predicted

behaviour.

Figure 3.12:Collective cumulative distribution of the components of the states shown in Fig.

3.11. Dotted curve corresponds toR = 1 while dashed curve corresponds toR = 0.5. Solid

curve is the cumulative Porter-Thomas distribution.
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3.6 Summary

This Chapter dealt with the quantum mechanical features of a particle inside the infinite

square well in presence of time periodic impulsive field. Our study was motivated to reveal the

role of competing length scales of the systemviz. well width and wavelength of the field. If

their ratioR = 1 this system, like the classical version, is the quantum delta kicked rotor. Thus

the kicked particle in the well can be thought of as one generalization of the kicked rotor.

In the previous Chapter we showed that when the length scales do not match, even in per-

turbative regimes the dynamics can be increasingly complex wherein all the KAM tori in phase

space break up. As a result the transition to chaos is abrupt, a typical scenario of non-KAM

behaviour. Quantum mechanically the imprints of such a transition is seen in the localization

properties of the quasienergy states. In particular, the states are more localized for integerR

and there is a spread in the bulk part (delocalization) of the states whenR assumes half-integer.

Thus we realize the length scale ratioR as a control parameter for the localization in the weak

field regime. This indeed enhances the quantum diffusion in the generic case ifR is half-integer.

On increasing the field strength, chaos assisted diffusion takes place in momentum. From

earlier studies on the kicked rotor it is known that the average localization length of the eigen-

states is directly proportional to the classical diffusion coefficient. We have shown that in our

generalization of the kicked rotor also, this result “grossly” explains the localization behaviour

of the eigenstates through the classical transport properties. Thus the kicked rotor continues

to serve as a useful model in understanding physical phenomena exhibited by a larger class of

systems.

We have observed, as expected, that in the regular case the nearest neighbour spacing dis-

tribution of the quasienergies show good agreement with Poisson distribution. Evidences are

presented to support that, in highly chaotic regimes the spacings show some deviations from the

Poisson distribution though the corresponding eigenstates belong to an unbounded phase space.

Limited overlap of the eigenstates results in such deviations. However, spacing does not show

the RMT predicted Wigner distribution as was claimed in an earlier study [63]. The earlier

result is attributed to lack of converged states in the statistics.

While the spacing is not much sensitive to the classical chaos, the distribution of partici-

pation ratios of the eigenstates is shown to be a good measure to distinguish chaotic quantum

systems from regular ones. Quantum mechanically, chaotic regimes are characterized by a

lognormal distribution of the participation ratios. In addition to the above generic quantum fea-

tures, we have also studied non-generic phenomena like “quantum resonance”. In the resonance

condition, the kinetic energy of the particle grows quadratically with the number of kicks. This

unbounded energy growth is not affected by the length scale ratio. The resonance condition

may then provide a mechanism to enhance the ionization in the deep finite well system.
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As far as experimental realizations of the presented results are concerned, the quantum wells

[41] are the possible candidate. We have demonstrated that the length scales effects may be best

observed in these experiments forR > 1 at small field strengths.
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4. Accelerator modes

4.1 Introduction

The phase space of dynamical system is broadly divided into two regions namely regular and

chaotic. If there are no regular regions, the deterministic dynamics is more like the Brownian

motion. In this case even a single chaotic orbit visits almost all the allowed regions and even-

tually fills the entire phase space, the dynamics is ergodic and the consequent diffusion process

is normal. It is worth remarking that ergodicity is a very restrictive condition, and in general

dynamical systems are non-ergodic and the phase space is mixed i.e., regular and chaotic re-

gions coexist. In such situations, a natural concern is the influence of regular regions on chaotic

orbits and also on global transport properties of the system in the long time limit. While the

long time correlation decays exponentially for fully chaotic systems, in the mixed case regular

regions are responsible in slowing the decay and as a result the evolution is no longer governed

by diffusion equation [93]. We may recollect from Chapter 2 that, some of the dominant regular

regions suppress diffusive nature of chaotic orbits. In contrast, here we will encounter another

sort of situation that the regular regions influence in enhancing global diffusion process.

The area-preserving maps which are periodic in both of their conjugate variables have spe-

cial kind of orbits calledaccelerator modes(AM). They are called so as the particle in the state

of these modes is uniformly accelerated in each time step. Among themstableAM, which

are seen as small regular islands embedded in the chaotic sea (see Fig. 4.1), deserve attention

as they alter transport properties quite significantly in the chaotic regimes. Such modes were

first identified in standard map of the kicked rotor [48]. They are particular states of the ro-

tor such that the rotor acquires maximum acceleration in each kick (time step). To be precise,

momentum of the rotor increases linearly with discrete timen. Or in other words, variance

of the momentum isσ2(n) ∼ nγ with γ = 2. As a consequence the diffusion coefficientD

diverges (see Eq. 2.25). In phase space the stable AM are separated from the chaotic region by

cantori which are partial barriers. The vicinity of the cantori are very sticky in the sense that it

retains long time correlations during the evolution. However, the dynamics in region between

the cantori and the boundary of the modes are highly complex in nature. If a chaotic orbit enters

through the cantori, it sticks to that region for very long time and thus accelerated along the

modes. Such long excursions of the chaotic orbits exhibit the Lévy flight type dynamics with

γ > 1. The anomalous diffusion due to the AM have been already studied for the standard map

with various motivations [94] and also for the Harper map [95].
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In the study of quantum chaos, naturally it is important to know the dynamics and effects

of these modes in the corresponding quantum system. A study on quantum kicked rotor has

shown that, in the semiclassical regime, momentum distribution of the propagated plane wave

has sharp peaks at large momentum as signatures of the AM [96]. Also in the quantum regime,

probability of the wave function in an AM decays exponentially with time and the decay rate

is β ∼ exp(−1/h̄). It is argued that the loss of probability, interpreted as barrier-penetration,

tends to reduce the effects of the modes in the quantum dynamics. Yet another study on the same

system illustrates that the AM induced anomalous transport enhances the fluctuations in local-

ization length of the quasienergy states [97]. The fluctuations are due to the non-exponential

localization of the states. Recent experimental realization of the quantum kicked rotor has

measured the time evolved momentum distribution [98]. It is found that the distribution is no

longer exponentially localized, indicating the influence of AM in the quantum system as well.

A similar experiment has demonstrated the AM in the quantum kicked rotor through enhanced

diffraction of matter waves in the classical path [99]. In this Chapter, we will explore the stable

AM and their quantum counterpart in the context of quantum well system.

4.2 Classical modes

We again invoke the GSM (2.10) to understand the dynamical features of AM in phase

space of the well map. Since GSM is periodic inJ andθ with unit period, the orbit with initial

conditions

J ′ = m ;
K

2π
sin(2πRθ′) = l (4.1)

with m andl being integers will evolve such that the positionθn will remain the same and the

momentumJn will increase byl at each step. The orbit will have uniform acceleration at each

iteration and hence called the Accelerator Modes. They are also sometime termed as step-|l|
AM as the acceleration is|l| at each iteration. Fixed points belong to the family of AM with

l = 0 (orbits with zero acceleration). The stability condition for the AM is

−4 < KR cos(2πRθ′) < 0 . (4.2)

Using (4.1) the stability condition becomes

|l| < K

2π
<

√
l2 +

(
2

πR

)2

(4.3)

or
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0 < R < R1 (4.4)

whereR1 = (2/π)
{
(K/2π)2 − l2

}−1/2
. Stable AM exist in the phase space if the parameters

K andR satisfy the above condition. However, the restriction of the dynamics to between

the walls of the well or the GSM position co-ordinate to between−1/2 and1/2 leads to the

following considerations.

For stable AM,θ′ is such that

1

R

(
j +

1

4

)
< |θ′| < 1

R

(
j +

1

2

)
(4.5)

wherej is a positive integer. The precise positions of these modes are given by

|θ′| = 1

2R

{
2j + 1− 1

π
sin−1

(
2π|l|
K

)}
(4.6)

where arcsin function assumes its minimum value. For a given value ofK, asR →∞, |θ′| → 0

and asR → 0, |θ′| → ∞. Since the GSM is defined on a cylinder such that|θ′| ≤ 1/2, zero in

the inequality (4.4) can not be the lower limit ofR for the stable modes to exist. AsR increases

|θ′| decreases resulting the emergence of new stable modes in the phase space with higher values

of j; asR decreases|θ′| increases and hence stable AM with higher values ofj disappear from

the phase space when|θ′| > 1/2. The last stable AM that disappear from the phase space are the

ones which correspond toj = 0. Whenj = 0, R0 ≤ R with R0 = 1 − (1/π)sin−1(2π|l|/K),

as|θ′| ≤ 1/2. Hence the inequality (4.4) is replaced by

R0 ≤ R < R1 . (4.7)

Both the inequalities (4.3) and (4.7) are simultaneously required for the stable AM to be present

in the dynamics unlike in the case of the standard map where the inequality (4.3) withR = 1 is

sufficient. Thus the GSM has additional parameterR which also needs to be tuned for a given

K for the existence of stable AM. Note that atK = 2π|l|, lower bound of the inequality (4.3),

R0 = 1/2 and this is the minimum possible value ofR0. Hence as long asR < 1/2, for any

value ofK, stable AM are absent. We may recollect that GSM is hyperbolic forR < 1/2. In

this regime, there are no stable orbits including the stable AM.

Since the well map and GSM are quantitatively same, the location of the AM are same for

both the maps i.e.,(X ′, P ′) = (θ′, J ′). All the above arguments hold for the AM of the well

map also. Shown in Fig. 4.1 is the phase space of the well map with stable AM. For a given

K, the position of the stable mode is such that|X ′| ∼ 1/R. It is also noticeable that the size

of the AM islands increases asR decreases. For the well system, when the particle is at the

AM modes,nth kick causes the particle to undergon bounces between the walls. Ifn is odd,
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momentum of the particle changes its sign which in turn flips position of the particle. This can

be easily seen by time evolving the well map with the initial condition (X ′, P ′). In phase space,

regular regions at the location of AM are separated from the remaining chaotic region by cantori

(partial-barriers). If a chaotic orbit happens to pass through the cantori, it can be dragged along

the modes ballistically. This mechanism indeed enhances the transport in momentum, leading

to anomalous diffusion. This anomalous effect due to the AM can be seen by evolving an

ensemble of points for long time.

Figure 4.1: Phase space of the well map forK/2π = 1.05. Islands of regular regions in

the chaotic sea are the stable AM. Shown are the step-1 type (j = 0) modes. ForR = 0.7,

|X ′| = 0.43 and forR = 0.9, |X ′| = 0.33. Region marked by the square is enlarged in Fig. 4.2.
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Figure 4.2:A stable mode embedded in the chaotic sea.

Considering〈(Pn − P0)
2〉 ∼ nγ, Fig. 4.3 (i) shows the window (4.7) where the second mo-

ment of the momentum increases quadratically in time. Notice that the ensemble contains only

few points that correspond to the AM. However, in long time limit the evolution is dominated

by these points. This is understandable as the rest of the points in the ensemble are chaotic

and their diffusion is random walk type (normal,γ = 1), until they are dragged along the AM

islands. Of course, outside the window (4.7), diffusion is quite normal where the AM do not

exist in the phase space. On taking the ensemble which does not contain the AM orbits, which

is the case of Fig. 4.3 (ii), we observe thatγ > 1 for many values ofR within the window (4.7).

This could be due to intermittent acceleration of the chaotic orbits when they approach neigh-

bourhood of the stable modes. Thus the ballistic motion of the stable modes and the consequent

enhancement in the diffusion are evident from our numerical experiments. Further we will be

simulating the quantum dynamics of these modes from the point of view of quantum-classical

correspondence.
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Figure 4.3:Exponentγ is shown forK/2π = 1.05. For these calculations, classical ensemble

contains 5000 phase space points (initial conditions) and each of them is evolved for 10000

time steps. The ensemble has fixedP0, andX0 distributed uniformly between−1/2 and1/2.

For (i) P0 = 0 and for (ii) P0 = 0.25. The window (4.7) withR0 = 0.598 andR1 = 1.988,

where stable AM exist, is seen in (i) asγ ≈ 2 due to ballistic evolution of the stable AM orbits

contained in the ensemble. In (ii), the anomalous transport (γ > 1) due to AM is seen.

4.3 Quantum modes

The natural choice to simulate the AM in quantum system is the time evolved Gaussian wave

packet which is initially placed on one of the AM. Since the quantum dynamics is represented

in unperturbed basis let us recollect the basis, but now in scaled variables as:H0|n〉 = En|n〉
with
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〈X|n〉 =





√
2 cos(nπX), for n odd√
2 sin(nπX), for n even

; En =
n2π2h̄2

2M
. (4.8)

The kick to kick time evolution of the quantum state|Ψ(t)〉 =
∑

n Ψn(t)|n〉 ; Ψn(t) = 〈n|Ψ(t)〉,
is then given by the quantum map

Ψm(t + T ) =
∑
n

UmnΨn(t) ; Umn = e−iτn2〈m|e−ik cos(2πRX)|n〉 (4.9)

where

τ =
EnT

h̄n2
=

π2h̄T

2M
.

As usual with the relationK/R = 8kτ the semiclassical limit isk → ∞, τ → 0 andN is the

number of basis states for the calculation.

4.3.1 Gaussian wave packet

As the quantum dynamics is described in|n〉 basis, and here we need to represent the initial

Gaussian wave packet (confined within the well) in this basis. Standard Gaussian wave packet

reads

〈X|Ψ(0)〉 = C exp

{
−(X − 〈X〉)2

2σ2
g

+
i〈P 〉X

h̄e

}
(4.10)

whereσg measures the width of the wave packet, which is centred at〈X〉 with momentum〈P 〉.
Hereh̄e = 2τ/π2 is the effective Planck constant andC is the normalization constant which is

obtained from the condition
∫ 1/2

−1/2
|〈X|Ψ(0)〉|2 dX = 1

as

C =

(
2/σg

√
π

erf(y+)− erf(y−)

) 1
2

; y± =
±1/2− 〈X〉

σg

. (4.11)

To calculateΨn(0) we consider the following integral

Gn =
√

2
∫ 1/2

−1/2
einπX 〈X|Ψ(0)〉 dX . (4.12)

With the change of variableu = (X − 〈X〉)/√2σg the integral becomes

Gn = 2σgC eiB〈X〉
∫ u+

u−
e−(u2−i

√
2Bσgu) du (4.13)
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whereB = nπ + 〈P 〉/h̄e andu± = y±/
√

2. Arriving the form of following standard integral

[100]

∫
e−(ax2+2bx+c) dx =

1

2

√
π

a
exp

(
b2 − ac

a

)
erf

(
ax + b√

a

)

Gn can be represented as complex error function. Defining the complex error function [101] as

w(z) = e−z2{1− erf(−iz)} = e−z2

(
1 +

2i√
π

∫ z

0
ex2

dx

)

wherez is a complex number,w(z) is computed using the algorithm [102] and henceGn as

well. Now the components of the Gaussian wave packet can easily be represented as

Ψn(0) =





1
2
(Gn + G−n), for n odd

1
2i

(Gn −G−n), for n even.
(4.14)

With this construction the wave packet dynamics can be studied using the quantum map.

4.3.2 Quantum effects and correspondence

In the context of quantum-classical correspondence, it is necessary to suppress the quantum

resonance phenomena which is discussed in Chapter 3. This is possible by takingτ as irrational

multiple of 2π. This can be best achieved withτ = 2πgh′ whereg = (
√

5 − 1)/2 is the most

irrational number (golden mean) andh′ is the scaled Planck constant (h̄e = 0.787h′). Since our

interest is to explore quantum version of the classical modes, the following quantum dynamics

corresponds to the classical system withK/2π = 1.05, R = 0.9. The wave packet (4.10) obeys

the minimum uncertainty relation∆X∆P = h̄e/2 and we take∆X = 0.02 throughout. The

dimensionless kinetic energy of the time evolved state is given by

〈E〉t = 〈Ψ(t)|P̂ 2|Ψ(t)〉 =
(

2τ

π

)2 N∑

n=1

|Ψn(t)|2n2 (4.15)

which is equivalent to the classical energy〈P 2
t 〉. The number of basis taken are as high as

N = 7500. The time evolution is performed for two casesviz. the initial wave packet is placed

(a) on one of the AM with(〈X〉, 〈P 〉) = (X ′, P ′) = (0.33, 0) and (b)not on the AM with

(〈X〉, 〈P 〉) = (0, 0.5). The initial conditions of the wave packet are chosen such that influence

of the stable AM can be compared and contrasted with rest of the chaotic motion.

In Fig. 4.4 we have shown the energy with time (kick) forh′ = 0.02 (∆P = 0.39). For the

case (a), the initial wave packet is confined to the AM inX axis and elongated inP axis. Thus

the initial wave packet has both regular and chaotic components as the spread inP direction is

more. On the other hand, for the case (b) it has only chaotic components. In both the cases,
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energy increases linearly witht for short time, then slows down and finally diffusion is absent

as t → ∞. This is very similar to the suppression of the chaos assisted classical diffusion

in the quantum kicked rotor. One does not expect case (a) to show the classical behaviour of

the AM even in the short time scale as the initial wave packet has more spread in momentum.

More over, no qualitative difference is seen between the two evolutions. This implies that large

fraction of chaotic components which make up the initial wave packet dominate the dynamics

over the small fraction of regular components.

Figure 4.4:Energy for the cases (a) and (b) withh′ = 0.02.

Here we proceed further for the case (a) ash′ → 0. In this semiclassical limitk becomes

larger, causing fast spread of the wave packet in unperturbed basis states which in turn demands

practically infinite basis states for the long time quantum behaviour. Finite number of basis

states thus becomes the numerical constraints to uncover long time quantum features. Keeping

the limitations in mind, we focus the attention on short time quantum evolution. Considering

the power law behaviour as〈E〉t ∼ tγ, Fig. 4.5 shows the exponentγ as a function of scaled

Planck constant. Ash′ decreases from 0.02 to 0.001,∆P decreases from 0.39 to 0.02. Thus

the fraction of chaotic components of the initial wave packet reduces withh′, and consequently

the fraction of regular components increases as the wave packet is normalized. We observe that

the exponent increases and there is a clear evidence of enhancement in quantum diffusion with

γ > 1 as a signature of the AM. Forh′ = 0.001 or ∆P = 0.02 (= ∆X), the initial Gaussian
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wave packet (now circular inX −P space) is confined only within the stable region of the AM

(see Fig. 4.2). In other words, the wave packet has only regular components. In this case the

energy of the wave packet grows quadratically in time (γ ≈ 2). Thus the quantum dynamics of

Gaussian wave packet reproduces ballistic motion of the stable AM in the semiclassical limit.

Figure 4.5:Exponentγ of the energy uptot = 18 is plotted withh′. Open circle is the exponent

of the classical evolution (uptot = 18) with the corresponding Gaussian ensemble containing

10000 points.

For comparison we have also shown the classical exponent in Fig. 4.5 which is calcu-

lated by time evolving an ensemble of initial conditions whose distribution is the corresponding

Gaussian. The deviation of quantum exponent from the classical exponent decreases withh′.

That is the quantum-classical deviation is proportional to the fraction of chaotic components

of the initial wave packet. If the wave packet has any chaotic components it loses its shape

exponentially faster in time and hence it fails to show the classical behaviour. In the case of

h′ = 0.001, due to the absence of chaotic components, the time evolved wave packet shows

good quantum-classical correspondence without losing its shape (see below).
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Figure 4.6:Energy for the cases (a) and (b) withh′ = 0.001.

Shown in Fig. 4.6 is the short time behaviour of the cases (a) and (b) in semiclassical limit.

While the energy growth is quadratic in the former, it is linear in the latter. Corresponding

wave packet dynamics is shown in Fig. 4.7. We may recollect that the time evolved position

of the particle with the initial condition (X ′, P ′) flips its position i.e.,X ′ becomes−X ′ after

odd kicks. In (a) the time evolved wave packet, without losing its initial shape, exhibits all the

classical behaviour satisfactorily. On the other hand, wave packet of case (b) loses its shape

and spreads over the square well very quickly. This is indeed a typical behaviour of initially

localized wave function which corresponds to chaotic region of phase space. Suppose if we

associate two localized wave function to each of two neighbourhood orbits in a chaotic region,

general quantum solution (superposition of the two wave functions) delocalizes very quickly in

course of time. Once the wave packet delocalizes, in the long time limit chaotic and diffusive

nature may not be seen. Instead, phenomena like quantum interferences govern the dynamics.
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Figure 4.7:Evolution of the wave packet for the cases (a) and (b) withh′ = 0.001.

4.4 Summary

We have analyzed stable accelerator modes, which are small regular regions embedded in

chaotic phase space, for the kicked particle inside an infinite square well potential. Parametric

regimes for the existence of these modes are obtained. Ballistic behaviour of the modes are

shown to enhance the global transport in the chaotic regime. Quantum dynamics of these modes

are studied by time evolving Gaussian wave packet. It is shown that the chaotic components of

the wave packet are dominant in the time evolution and are also responsible for the quantum-

classical deviations. In appropriate semiclassical limit, the wave packet reproduces classical

behaviour of the accelerator modes in full correspondence.
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5. Quantized torus

5.1 Introduction

Area-preserving maps that are periodic in their conjugate variables can be restricted to unit

square with identified edges or equivalently to 2-torus. The periodic boundary conditions also

facilitate the quantization procedure wherein quantum dynamics is described in a finiteN di-

mensional Hilbert space. Resultant quantized maps on the torus are the simplest semiclassical

models that reflect generic features of chaotic quantum systems. The maps which are studied

in this line of approach are the baker map [103, 104], the saw-tooth map [105] and the standard

map [106]. Since the GSM is periodic in its conjugate variables with unit period (see Eqn.

(2.10)), it is sufficient to confine the mapping onto the torus. In this Chapter, we explore quan-

tized version of the GSM on torus as a model of quantum chaos. Before quantizing the GSM, a

brief account on certain basic ingredients will be in order.

The compact toral phase space can be quantized by introducing boundary conditions inq

andp [107] such that

q̂|n〉 =

(
n + β

N

)
|n〉 ; p̂|m〉 =

(
m + α

N

)
|m〉 (5.1)

wheren,m = −N/2,−N/2 + 1, . . . , N/2 − 1 andN is an integer. Heren andm are the

discrete eigenvalues of position and momentum operators respectively;|n〉 and |m〉 are the

corresponding eigenstates;α, β are the real numbers between 0 and 1. Note thatN = (2πh̄)−1 is

the dimensionality of the Hilbert space. The semiclassical limit isN →∞. In this quantization,

the eigenstates satisfy the relation

〈n + N | = 〈n|ei2πα ; |m + N〉 = ei2πβ|m〉 . (5.2)

The discretized eigenstates are periodic with periodN except the quantum phasesα andβ.

Then the corresponding transformation function is

〈n|m〉 =
1√
N

exp
[
i2π

N
(m + α)(n + β)

]
. (5.3)

It would be useful to define unitary operatorsA andB which shift the eigenstates as

〈n|A = 〈n + 1| ; AN = ei2πα

B|m〉 = |m + 1〉 ; BN = ei2πβ .
(5.4)
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These operators satisfy the relation

〈m|A|m′〉 = δmm′ ei2π(m′+α)/N

〈n|B|n′〉 = δnn′ e
i2π(n+β)/N .

(5.5)

That is the momentum states|m〉 are the eigenvectors ofA and similarly the position states|n〉
are the eigenvectors ofB. Thus we may realize that the operatorsA andB are analogous to the

translation operatorsexp(iqp̂/h̄) andexp(ipq̂/h̄) in the continuous case. An analogue of the

uncertainly relation is then given by the commutation relation

AB = BA exp
[
i
2π

N
(1 + α− β)

]
. (5.6)

It is to be noted that the momentum and position eigenstates are orthonormal sets and individu-

ally they form basis for theN -dimensional space. An arbitrary quantum state can be represented

either in|n〉 basis or in|m〉 basis i.e.,

|ψ〉 =
∑
n

|n〉〈n|ψ〉 =
∑
m

|m〉〈m|ψ〉 . (5.7)

Both the basis are complimentary to each other and the state components in one representation

is related to that of the other through the discrete Fourier transformation

〈n|ψ〉 =
∑
m

〈n|m〉〈m|ψ〉 . (5.8)

Thus both the representations together form “quantum” phase space.

5.2 Quantized GSM

Considering a particle which trapped in a one dimensional infinite square well potential

V0(q) of unit width (hard walls atq = ±1/2) and experiences periodic kicks from the external

pulse. The Hamiltonian is

H̃ =
p2

2
+ V0(q) +

kλ

4π2
cos

(
2πq

λ

) ∑

j

δ(j − t) (5.9)

As shown in Chapter 2, the underlying kick to kick dynamics isessentiallygoverned by a

dimensionless area-preserving mapping:

pj+1 = pj + (k/2π) sin(2πrqj)

qj+1 = qj + pj+1

(5.10)
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which is defined on 2-torus i.e., a unit square[−1/2, 1/2) × [−1/2, 1/2) with periodic bound-

aries. Herer = 1/λ is the ratio of the two length scales of the system namely, the well width

and wavelength of the pulse field;k is the effective strength of the kick. The above map arises

from the equations of motion of free particle in presence of a fieldV (q) which is applied as

time periodic impulse. The field is defined as:V (q) = k cos(2πrq)/(4π2r); V (q) = V (q + 1)

and the corresponding Hamiltonian is

H =
p2

2
+ V (q)

∑

j

δ(j − t) . (5.11)

As in the case of classical map, it is easy to describe the kick to kick quantum dynamics

using the propagator

Û = e−ip̂2/2h̄ e−iV (q̂)/h̄ (5.12)

which is obtained by integrating the Shrödinger equation−ih̄∂|ψ(t)〉/∂t = Ĥ|ψ(t)〉 over unit

time. Thus, we have|ψ(t+1)〉 = Û |ψ(t)〉 as the quantum map. The Schrödinger equation with

the Hamiltonian (5.11) inN -dimensional space hasN solutions which satisfy the eigenvalue

equationÛ |φj〉 = e−iφj |φj〉 wherej = 1, 2, . . . , N . Hereφj and|φj〉 are the quasienergies and

quasienergy states and they may be obtained by diagonalizing the propagator matrix.

We note from the Eqn. (5.1) that forα 6= 0 the time reversal symmetry of the system is

broken. On the other hand, the phaseβ can be used to avoid any spatial symmetry. In what

follows we do not break the time reversal symmetry (i.e.,α = 0). Choosing the position

representation we may write down the propagator matrix as

Unn′ = 〈n|Û |n′〉 = 〈n|e−ip̂2/2h̄ e−iV (q̂)/h̄|n′〉

= exp

[
− i

h̄
V

(
n′ + β

N

)]
〈n|e−ip̂2/2h̄|n′〉

= exp

[
− i

h̄
V

(
n′ + β

N

)] ∑
m

〈n|e−ip̂2/2h̄|m〉〈m|n′〉

=
1

N
exp

[
− i

h̄
V

(
n′ + β

N

)] ∑
m

exp
[
iπ

N

{
−m2 + 2m(n− n′)

}]
.(5.13)

We may notice that ifN is even the term which is inside the sum is periodic with periodN .

Recognizing the summation as Gauss sum [108, 109], withN as even, the matrix becomes

Unn′ =
1√
N

exp

[
−iπ

{
1

4
− (n− n′)2

N
+ 2NV

(
n′ + β

N

)}]
. (5.14)
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The resultant propagator matrix for the Hamiltonian (5.11) is then

Unn′ =
e−iπ/4

√
N

eiπ(n−n′)2/N exp

{−ikN

2πr
cos

[
2πr

N
(n′ + β)

]}
. (5.15)

The parity symmetry of the Hamiltonian is reflected in the quantum propagator as the com-

mutation relation[Û , R̂] = 0 where the hermitian operator̂R is defined as

R̂|n〉 = | − n〉 for β = 0

= | − n− 1〉 for β = 0.5 .
(5.16)

SinceR̂2 = 1 we may label the eigenstates ofÛ with the eigenvalues±1 of R̂ i.e., the states

are|φ±〉. Takingβ = 0.5 the symmetry matrix of orderN is

RN = 〈n|R̂|n′〉 = δ(n + n′ + 1) (modN) (5.17)

which has ones along secondary diagonal and zeros elsewhere. The components of quasienergy

states are such that〈−n− 1|φ〉 = ±〈n|φ〉, i.e., the states are of the form

|φ±〉 =


 |z〉
±RN/2|z〉


 . (5.18)

The eigenstates are obtained by diagonalizing the matrixUnn′ of orderN . SinceN is even

integer, due to theR-symmetry we haveN/2 even parity states{|φ+〉} andN/2 odd parity states

{|φ−〉}. On exploitingR-symmetry in the quantum system, we can reduce the diagonalization

to matrix of orderN/2 by standard procedure [104]. The reduced matrix is

Unn′ =
e−iπ/4

√
N

exp

{−ikN

2πr
cos

[
2πr

N

(
n +

1

2
− N

2

)]}

×
{
eiπ(n−n′)2/N ± eiπ(n+n′+1)2/N

}
(5.19)

wheren, n′ = 0, 1, 2, . . . , N/2− 1. Now the separation of the parity states is obvious.

5.3 Quasienergies

We may recollect that the GSM exhibits abrupt non-KAM transition to chaos for non-integer

r even small perturbation strength (k ≤ 1). On the other hand, for integerr the transition is

smooth with the gradual increase of perturbation strengthk. In semiclassical limit, it is natural

to expect that complexity of the classical dynamics arises due the parameterr would be reflected
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in the quasienergy spectrum. Here we study the nearest neighbour spacing distribution of the

quasienergies.

In Fig. 5.1 we show typical behaviour of the spacing distribution for the standard map

(r = 1). For smallk the spacings follow Poisson distribution. This is a generic spectral be-

haviour of an integrable system. For integrable/nearly integrable system the quantum states

are localized along the classical local invariants in phase space subject to the uncertainty con-

dition. The localized states avoid overlapping among themselves such that the quasienergies

are independent and uncorrelated. This results in Poisson distribution of the quasienergy level

spacings.

Figure 5.1:Nearest neighbour spacing distributions of 1000 quasienergies that correspond to

even parity states i.e.,N = 2000, for the standard map (r = 1). Smooth curve drawn for

k = 0.3, 1 is the Poisson distribution. The smooth curve drawn for other cases is the Wigner

distribution.

On increasingk beyond unity, transition to chaos is smooth and fork = 5 the classical

system becomes highly chaotic. We observe that the spacings agree with the RMT predicted
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Wigner distribution as a signature of quantum chaos. In the chaotic regime, classical dynamics

lacks invariants and the phase space is filled with unstable orbits. Correspondingly, generic

quantum states are delocalized (ergodic) in the phase space. Strong overlapping of the states

causing the quasienergies to be correlated such that the spacings follow Wigner distribution. For

further increase ofk, classically the degree of complexity increases. That is, the time scale in

attaining ergodic nature reduces. However, the spacing measure of quantum spectrum remains

unchanged and follows the RMT prediction.

Figure 5.2:Spacing distributions forr = 0.5. Other parameters are same as Fig. 5.1. Smooth

curve is the Wigner distribution.

On the other hand, forr = 0.5 the spacings follow Wigner distribution irrespective ofk val-

ues (see Fig. 5.2). We recollect that forr = 0.5 the underlying classical system is completely

chaotic. This shows that the spacings are sensitive to the classical dynamics. It is instructive to

compare these results with those that are obtained for the unbounded chaotic case discussed in

Chapter 3. In the latter, states generally deviate from the RMT prediction due to their localiza-

tion in momentum space and as a consequence the spacing distribution is close to Poisson. In
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other words, spacings are insensitive to the classical dynamics.

Figure 5.3: Spacing distributions of quasienergies that correspond to even parity states for

k = 0.3. (Top to bottom:N = 2000, 1400, 1000, 600). Smooth curve drawn in left column is

the Wigner distribution and in right column the curve is Poisson distribution.

In Fig. 5.3 we show the spacing distribution with differentN for regular and chaotic cases.

In the regular case (r = 1), the Poisson behaviour of spacings is independent ofN . On contrary,

the spacings forr = 0.5 are significantly deviated from Wigner distribution for smallN . Such

deviations of chaotic spectrum from the RMT predicted universality need detailed investigations

in future.

5.4 Quasienergy states and phase space

5.4.1 Information entropy

In this section we study the behaviour of the quasienergy states in different parametric

regimes. We quantify the states using information entropies both in position and momentum
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basis. Entropies in both the basis together are appropriate measures to understand how the

eigenstates are influenced by the phase space transitions. Let us define entropies of the eigen-

state

Sj
q = −∑

n

|〈n|φj〉|2 ln |〈n|φj〉|2 ; Sj
p = −∑

m

|〈m|φj〉|2 ln |〈m|φj〉|2 (5.20)

and the normalized average entropy

〈S〉q =
1

N ln(N/2)

∑

j

Sj
q ; 〈S〉p =

1

N ln(N/2)

∑

j

Sj
p . (5.21)

Notice that the average is normalized with the RMT value, which is approximatelyln(N/2) for

GOE. Shown in Fig. 5.4 are typical behaviour of the entropies for two cases:r = 0.5, 1. For

r = 1, the momentum entropy initially increases withk until it reaches the maximum which

is slightly above the RMT predicted value atk ≈ 5. For any further increase ofk the entropy

remains almost constant. On the other hand, entropy in position basis is larger than the RMT

value for smallk and it decreases with the increase ofk. Interestingly, it attains the RMT value

atk ≈ 1. The entropy is minimum atk ≈ 2 and it settles to the RMT value fork > 5.

Figure 5.4:Normalized average entropies of the eigenstates for two cases. For this calculation

N = 100 andβ is chosen to be 0.35 to avoid parity symmetry.
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As we will see below, quantum spectrum for the regular case is such that many states are

associated to the phase space region where there are KAM tori, while only very few states are

associated to the resonance region. In this case, average entropy is dominated by the KAM

tori states. For smallk, lower momentum entropy is due to the KAM states which are highly

localized in momentum. However, these states are maximally spread in position resulting the

〈S〉x to be higher than the RMT prediction. Ask increases, KAM tori are slowly destroyed

and the diffusion in momentum begins. Parallelly, more nonlinear resonances emerge in the

phase space. This transition causes the increase in〈S〉p and decrease in〈S〉x ask increases. For

k > 5, the phase space is almost completely chaotic and in this regime both the entropies do

not show any variations with the parameter. Presence of accelerator modes for6.28 < k < 7.45

is not prominently reflected in the average entropies because of the fact that the modes are very

small regular regions embedded in the chaotic phase space and also the states corresponding to

the modes are very few.

Entropies of the other shown case (r = 0.5) also reflect all the complexities of the phase

space. In this case the phase space is completely chaotic. For smallk the diffusion in momentum

is highly limited, presumable due to the cantori; increasingk increases the diffusion. Here we

observe that the momentum entropy increases much faster withk and the saturation is reached

much earlier than the previous case. On the other hand, for smallk, position entropy is higher

than the RMT value for which cantori are the responsible classical structures. The position

entropy falls to RMT value very rapidly and remains unchanged for any increase ofk value.

5.4.2 Coherent-state representation

We now have a close look at some of the eigenstates for different parameters. It is conve-

nient to adopt coherent-state representation for the eigenstates. This gives useful semiclassical

description of the quantum states in phase space [110, 111]. The coherent state|q, p〉 can be

constructed using shift operatorsA andB as

|q, p〉 = A−qBp|0, 0〉 (5.22)

whereq, p are integers and|0, 0〉 is the minimum uncertainty wave packet located at the origin

of the phase space. The above unitary translation provides a coherent-state that is placed at

the desired location in the quantized phase space. We follow the method devised in [104] to

construct|0, 0〉 as the ground state of Harper operator:

[
2− 1

2
(A + A†)− 1

2
(B + B†)

]
|0, 0〉 = E0|0, 0〉 . (5.23)

Thus any quantum state can be represented in the phase space using the normalized positive

definite quantity
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Hφ =
1

N
|〈q, p|φ〉|2 (5.24)

which is a discrete equivalence of the Husimi distribution [112].

In the near integrable regime, the spectrum has many doublet states with nearly degenerate

eigenvalues. In a given pair, each state corresponds to different parity. All the doublet states

belong to the region of phase space where there are KAM tori. Two such states for the standard

map are shown in Fig. 5.5. Notice that the quantum states have non-zero intensities both on

positiveandnegativep-axis. This is forbidden in the classical system since the standard map

has periodic boundary condition in position unlike the well map where the boundary condition

is reflective (see Chapter 2). Fig. 5.5 also shows the superpositions of the nearly degenerate

states

|ψ±〉 = |φ1〉 ± i|φ2〉 (5.25)
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Figure 5.5:Husimi distribution of the quantum states. Intensity of the state is maximum in black

shaded region and zero in white background. (1) and (2) correspond to the nearly degenerate

states|φ1〉 and |φ2〉 with difference in their quasienergies∆φ ∼ 10−12. (3) and (4) correspond

to the states|ψ+〉 and|ψ−〉. Hereβ = 0.5 andN = 50.
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that correspond to symmetry related classical KAM tori. This pure quantum behaviour is anal-

ogous to the text book problem of barrier tunnelling in symmetric double well system [113].

The analogy is that the states|φ1,2〉 are the nearly degenerate energy eigenstates of the double

well and the states|ψ±〉 are the non-stationary states localized in one of the wells. With this, the

separatrix which demarcates the pair of KAM tori can be thought of as the classical potential

barrier. The observed quantum tunnelling between two distinct regular regions of the phase

space is called the “dynamical tunnelling” [114]. The tunnelling event in our case is presum-

ably due to coupling of nearly degenerate states which is correlated to the classical resonances

[115, 116]. This demonstration emphasizes that the nontrivial tunnelling phenomena can be ex-

plored with a simple quantum model like the one we have considered. Very recently, quantized

kicked Harper model has been used to studyh̄ dependence of the tunnelling splitting in near

integrable regimes [117].

Figure 5.6:Quasienergy states in different classical regimes. First column:k = 0.3, r = 1;

second column:k = 25, r = 1 and third column:k = 0.3, r = 0.5. In all the cases we have

takenβ = 0.5 andN = 50.

In Fig. 5.6 we show few of the eigenstates that correspond to different classical regimes.

In the nearly integrable regime (first column), one state is localized on the primary resonance;

the other on the secondary resonance; the third one is highly localized at the origin which

is the unstable fixed point. In the highly chaotic regime (second column), the states have more

complicated structures. In the hyperbolic regime (third column), one of the state is very complex

while the two other are more localized. This may be due to small values ofk.
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Figure 5.7:Contours off(q, p) for two cases: (i)r = 1 and (ii) r = 0.5 with k = 0.3. Here

β = 0.5 andN = 100.

Further we illustrate the influence ofr in the quantized phase space for smallk using inverse

participation ratio (IPR) which is defined as

f(q, p) =
∑

j

|〈q, p|φj〉|4 . (5.26)

The functionf(q, p) is the inverse of number of eigenstates associated with a given phase space

region. In Fig. 5.7, number of contours is proportional to the intensity of IPR in a given region.

We observe that IPR has very different behaviour for the two classically distinct cases. For

nearly regular case (i), very few eigenstates are associated to the primary resonance region and

many states are associated to the region where there are KAM tori. In (ii) IPR exhibits more

complicated structures as the quantum signature of underlying chaotic dynamics.

5.5 Level dynamics

In the studies on chaotic quantum systems, dynamics of quantum levels in parameter space

reflects many of the classical complexities. In particular, the levels do cross each other if the

system is regular while they avoid such crossings if the system is chaotic in the classical limit.

The level dynamics is mainly characterized by level velocity wherein the system parameter

plays the role of pseudo-time. The notion of curvature i.e., second derivative of the levels

with respect to the parameter, is introduced in [118] to quantify the avoided crossing. It is

shown that the curvature distribution of the chaotic system exhibits universal behaviour [119].
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This universality has been tested for various complex quantum systems [120]. Recently it is

shown that the variance of the level velocity is equivalent to diffusion coefficient of the action

velocity that corresponds to long periodic orbits [121]. In the same work it is also observed that,

even in highly chaotic regime RMT fails to capture detail behaviour of the velocity variance in

parametric space. These details are found to be important for semiclassical analysis. In this

section some statistical properties of the level velocities are exploited to characterize chaotic

quantum system.

5.5.1 Level velocities and RMT predictions

In what follows we takeβ = 0.35 so thatR-symmetry is broken in the quantum system.

For convenience we ignore the factorβ in the following expressions. The quasienergiesφj ≡
φj(k, r) have the scaled velocities:

xj =

(
2π2r2

N

)
∂φj

∂k

=

(
2π2r2

N

) [
1

h̄
〈φj|∂V/∂k|φj〉

]

= πr
∑
n

cos(2πrn/N)|〈n|φj〉|2 (5.27)

and

yj =

(
2πr2

Nk

)
∂φj

∂r

=

(
2πr2

Nk

) [
1

h̄
〈φj|∂V/∂r|φj〉

]

= −2πr
∑
n

(n/N) sin(2πrn/N)|〈n|φj〉|2 −
∑
n

cos(2πrn/N)|〈n|φj〉|2 . (5.28)

The average velocities in the semiclassical limit are

〈x〉 =
1

N

∑

j

xj = sin(πr)

〈y〉 =
1

N

∑

j

yj = cos(πr)− 2 sin(πr)

πr
. (5.29)

The second moment ofx is given by

85



〈x2〉 =
1

N

∑

j

x2
j

= (πr)2

{∑
n

cos2(2πrn/N)
〈
|〈n|φj〉|4

〉

+
∑

n6=n′
cos(2πrn/N) cos(2πrn′/N)

〈
|〈n|φj〉|2|〈n′|φj〉|2

〉


 (5.30)

where the relation

∑
n

fn

∑
n

gn =
∑
n

fngn +
∑

n 6=n′
fngn′ (5.31)

has been used in the derivation. Assuming that the average behaviour of the eigenfunction

components are independent of the specific position eigenvalues, the term within the angle

bracket can be taken out of the sum. The application of the relation (5.31) to the cross terms

gives

〈x2〉 = (πr)2

{[〈
|〈n|φj〉|4

〉
−

〈
|〈n|φj〉|2|〈n′|φj〉|2

〉] ∑
n

cos2(2πrn/N)

+
〈
|〈n|φj〉|2|〈n′|φj〉|2

〉 [∑
n

cos(2πrn/N)

]2


 . (5.32)

Note that, in chaotic regimes the standard RMT results [122]

〈
|〈n|φj〉|4

〉
= 3[N(N + 2)]−1 ' 3N−2

〈
|〈n|φj〉|2|〈n′|φj〉|2

〉
= [N(N + 2)]−1 ' N−2

(5.33)

which correspond to Gaussian orthogonal ensemble are applicable here as well. We may notice

that applying these RMT results essentially adopt the assumption made above. On replacing the

sum by integration in semiclassical limit we arrive to

〈x2〉
RMT

=
(πr)2

N

[
1 +

sin(2πr)

2πr

]
+ 〈x〉2 . (5.34)
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Similarly the second moment ofy is

〈y2〉 =
1

N

∑

j

y2
j

=
∑
n

{[2πr(n/N) sin(2πrn/N)]2 + cos2(2πrn/N)

+ 4πr(n/N) sin(2πrn/N) cos(2πrn/N)}
〈
|〈n|φj〉|4

〉

+
∑

n 6=n′
{(2πr/N)2nn′ sin(2πrn/N) sin(2πrn′/N) + cos(2πrn/N) cos(2πrn′/N)

+ 4πr(n/N) sin(2πrn/N) cos(2πrn′/N)}
〈
|〈n|φj〉|2|〈n′|φj〉|2

〉
. (5.35)

As before we can write down the RMT approximated second moment ofy as

〈y2〉
RMT

=
1

N

{
1 +

(πr)2

3
+

sin(2πr)

2πr

[
5

2
− (πr)2

]
− 3

2
cos(2πr)

}
+ 〈y〉2 . (5.36)

We also have

〈xy〉 =
1

N

∑

j

xjyj

= −∑
n

f(n) cos(2πrn/N)
〈
|〈n|φj〉|4

〉

− ∑

n 6=n′
f(n) cos(2πrn′/N)

〈
|〈n|φj〉|2|〈n′|φj〉|2

〉
(5.37)

where

f(n) = πr{(2πrn/N) sin(2πrn/N) + cos(2πrn/N)} .

Repeating the above procedure we get

〈xy〉
RMT

=
πr

2N

[
cos(2πr)− 3 sin(2πr)

2πr
− 2

]
+ 〈x〉〈y〉 . (5.38)

In general, quantum eigenfunctions in the chaotic regimes are such that the quantities in

(5.33) fluctuate about the respective RMT values. It is worth noting that the RMT values ignore

basis dependent fluctuations. These fluctuations are in fact crucial for the quantities like second
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moments of the level velocities. Here we may enquire whether the fluctuations that are ignored

by the RMT are significant or not. To answer this, let us first write down the equations:

〈x2〉
RMT

= 〈x2〉+ δx ; 〈y2〉
RMT

= 〈y2〉+ δy ; 〈xy〉
RMT

= 〈xy〉+ δxy (5.39)

whereδi are deviations of the RMT approximated quantities from the corresponding actual

values. Defining absolute normalized deviations as

∆x =

∣∣∣∣∣
δx

〈x2〉

∣∣∣∣∣ ; ∆y =

∣∣∣∣∣
δy

〈y2〉

∣∣∣∣∣ ; ∆xy =

∣∣∣∣∣
δxy

〈xy〉

∣∣∣∣∣ (5.40)

we average all the three positive quantities as

∆ =
∆x + ∆y + ∆xy

3
. (5.41)

Here the single quantity∆ would validate the RMT approximations (5.33). One would expect

the above quantity be large for regular/mixed regimes, where the RMT is not applicable, and

nearly zero for highly chaotic regimes. The above quantity is calculated for various parameters

and plotted in Fig. 5.8. We observe that∆ is nearly zeroonly for r ≤ 1/2 in all the cases. On

the other hand,∆ is large even for some parametric values that correspond to non-hyperbolic

chaotic regimes.

Figure 5.8:Deviation∆ for different parameters withN = 200.
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In Fig. 5.9, the deviations are plotted for two distinct cases. Forr = 1, the deviation exhibits

many oscillations withk. It is noticeable that the first two prominent peaks appear around

r = 2π, 4π respectively and for which there are accelerator modes in the phase space. These

deviations are even larger than those which occur in the mixed regime (k < 5). On contrary,

for r = 0.5, where the classically system is hyperbolic, the deviation is almost independent of

k and remains close to zero.

Figure 5.9:Deviation in the RMT approximated second moments of the level velocities for two

cases withN = 200.

These results indicate that even in highly chaotic regimes, basis dependent fluctuations of

the spectrum averaged eigenfunction properties are significant. These fluctuations may reflect

many finer details of the chaotic quantum states. On the other hand, in the hyperbolic regime

(r ≤ 1/2), the approximations in (5.33) are quite satisfactory. However, we have not observed

any qualitative difference between fluctuations that correspond to hyperbolic regimes and those

of other highly chaotic regimes. These observations collectively support that, basis dependent

fluctuations of some of the spectrum averaged eigenstate properties about their RMT predictions

are significant for non-hyperbolic chaotic regimes butnot for the hyperbolic regimes.
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5.5.2 Correlation of level velocities

Now we enquire the correlation between two level velocitiesx and y. The correlation

coefficient between them is

γ =
σxy

σxσy

(5.42)

where

σ2
x = 〈x2〉 − 〈x〉2 ; σ2

y = 〈y2〉 − 〈y〉2 ; σxy = 〈xy〉 − 〈x〉〈y〉 .

Figure 5.10: Correlation coefficient between the two level velocities withN = 200. Thick

smooth curve is the RMT predicted correlation.

The level velocity correlation has been calculated for various parameters and the results are

shown in Fig. 5.10. We find that only in the hyperbolic regime (r ≤ 1/2), the two level veloci-

ties are perfectly correlated, i.e.,γ = 1. We have already shown that the RMT approximations
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are valid in this regime, and the RMT predicted velocity correlation can be calculated by ap-

plying the equations (5.34), (5.36) and (5.38) in (5.42). As we see from Fig. 5.10, the RMT

predicted correlation completely fails to agree with the observed correlation. At first sight this

disagreement may look strange. However, the following analysis reveals the reason for this

discrepancy. Let us now define three quantities

∆′
x =

∣∣∣∣∣
δx

σ2
x

∣∣∣∣∣ ; ∆′
y =

∣∣∣∣∣
δy

σ2
y

∣∣∣∣∣ ; ∆′
xy =

∣∣∣∣∣
δxy

σxy

∣∣∣∣∣ (5.43)

and the average of them is

∆′ =
∆′

x + ∆′
y + ∆′

xy

3
. (5.44)

Figure 5.11:The quantity∆′ is plotted forr ≤ 1/2 with N = 200. Notice that two sets of data

are beyond the range shown here.

Fig. 5.11 shows that∆′ diverges. That is, the quantities in Eqn. (5.43) diverge forr ≤ 1/2

while the quantities in Eqn. (5.40) are close to zero. This implies that the denominators in

Eqn. (5.43) are very small. In other words,〈x2〉 ≈ 〈x〉2, 〈y2〉 ≈ 〈y〉2 and〈xy〉 ≈ 〈x〉〈y〉 for

r ≤ 1/2. This can also be seen from the RMT approximations (5.34), (5.36) and (5.38) in the

limit N → ∞. In fact, convergence of the approximations to the actual values of the second
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moments in the limitN → ∞ is not fast enough to resolve very small variances. Here the

finiteness ofN plays crucial role. Thus, although the RMT predictions for the second moments

are valid forr ≤ 1/2, this approximation is not applicable for the variance and hence for the

correlation of level velocities.

Figure 5.12:Correlation coefficient, withN = 200, between the two velocitiesx andy for two

cases.

Shown in Fig. 5.12 are the correlation coefficient for two cases. Forr = 0.5 the coefficient

remains unity ask varies and thus showing that perfect correlation is independent of strength

of the nonlinear perturbation. On the other hand, forr = 1 the coefficient oscillates withk

but never becomes unity. These results confirm that,only in hyperbolic regime (r ≤ 1/2) the

velocities arefully correlated.
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5.6 Summary

In this Chapter we have quantized GSM on 2-torus as a model system of a chaotic quantum

system and presented detailed numerical analysis on the quantum spectrum. Unlike the diffusive

system, nearest neighbour spacing distribution of quantum levels are sensitive to the underlying

classical dynamics. In semiclassical limit, RMT predicted spacing distribution is found to be an

unequivocal signature of quantum chaos. We have also studied quantum phase space transitions

as the classical system undergo transition to chaos in different regimes.

The GSM is a rare class of dynamical systems which has both hyperbolic and non-

hyperbolic chaotic regimes. This provided an opportunity to investigate these two regimes

in the corresponding quantum system. It is found that basis dependent fluctuations in some of

the spectral averaged properties of the quantum states are significant in non-hyperbolic chaotic

regimes. On contrary, the fluctuations are insignificant in hyperbolic regimes. This new charac-

terization of the chaotic quantum system is achieved using level dynamics statistics. More over,

the level velocities are found to be perfectly correlatedonly in the hyperbolic regimes.
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Epilogue

This thesis is an attempt to uncover transition to chaos and the corresponding quantum sig-

natures for externally driven particle in square well potential. The external driving force could

be an electromagnetic field. It is worth remarking that presence of reflective boundary walls of

the well causes the particle to experience discontinuous or at least non-smooth force. Hence

classical dynamics of the particle and the underlying transition to chaos could be beyond the

purview of the celebrated theorems on dynamical systemsviz. KAM theorem and Poincaré-

Birkhoff (PB) theorem. Naturally the emerging scenario is important from dynamical point of

view. Implications of this scenario in the quantum system are also of great significance as semi-

conductor quantum wells have opened up new avenues for the experimental study of quantum

chaos. As our results have been summarized at the end of each chapter, here we delineate some

of the salient aspects of the problems addressed in the thesis with future prospects indicated.

In this thesis we have introduced a simple model which consists of a particle within an

one-dimensional infinite square well potential in presence of time periodic impulsive external

field. This system is exhaustively studied with the corresponding kick-to-kick dynamics. Albeit

simple, the model emerges as an instructive one as it shares variety of dynamical features with

the above mentioned class of systems. Classically and quantum mechanically this model is

one generalization of the delta kicked rotor. To be specific, it is equivalent to the kicked rotor

when the length scales of the systemviz. width of the well and wavelength of the external field,

match. If the length scales donot match, the classical system displays non-KAM scenario of

transition to chaos. A simple stability theory is found to be sufficient to have fair understanding

of ostensibly non-trivial scenario. With an illustration we have also shown an alternative to

the PB scenario. This deserves a qualitative study in future. We would like to emphasize that

the classical system is a rare family of dynamical systems as it possesses both hyperbolicand

non-hyperbolic chaotic regimes.

When the length scales donot match, even for weak field strength there are possibilities

of chaos assisted diffusion in momentum of the particle. Quantum mechanically this is man-

ifested as delocalization of eigenstates in momentum space. Thus we realize the competing

length scales as control parameters for the localization in the weak field regime. We have also

demonstrated the possibility of observing such effects in the quantum system. We believe that

theseneweffects can also be observed in finite quantum well system, and it is highly desirable

if they are experimentally tested. One of the promising extensions of the present work is to un-

fold the role of length scales in tunnelling and ionization phenomena of the finite well system.

We have shown that the distribution of localization measure of the eigenstates is sensitive to
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the underlying classical dynamics. To be specific, in chaotic regime participation ratios of the

eigenstates in unperturbed basis are lognormally distributed - anewmeasure of quantum chaos.

This empirical observation requires an appropriate theoretical support.

In this thesis we have also introduced a new quantum map as a simple model of quantum

chaos. Although the field of quantum chaos is populated with many models, one of the main ad-

vantages of this model over other models is that it provides anuniqueopportunity to distinguish

hyperbolic and non-hyperbolic chaotic regimes in the quantum domain. Some of our results

indicate that spectral averaged behaviour of quantum states are different in both the regimes.

In particular, basis dependent fluctuations of the states are insignificantonly in the hyperbolic

chaotic regimes but not in the non-hyperbolic chaotic regimes. This new characterization of

chaotic quantum system demands detailed study using semiclassical theory.
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