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Synopsis

In recent times, the predictions of the Standard model (SM) of particle physics have been probed
to finer level of detail by precession measurements at LEP, by higher luminosity runs at Tevatron.
So far no discrepancies emerged between experiments and the predictions of the SM. Despite
this spectacular success of the SM in explaining all the low-energy phenomena there is a hurdle
of theoretical short comings of the model which strongly suggest that SM is only an important
intermediate step toward the knowledge of fundamental interactions and that, at best, it is
an effective theory, valid upto the scale My. The SM falls short of a complete theory in an
aesthetic sense that the number of parameters required to describe it is nineteen, six quark and
three lepton masses, three quark mixing angles and a phase parametrising CP violation, three -
gauge couplings and two boson mass scales My and My and 6gcp parameter that describes

potential strong violation of CP.

Understanding the fermion mass hierarchy and the origin of the quark mixing is one of the
outstanding problems of present day particle physics. This thesis is based on the studies related
to fermion masses and mixing within the SM and beyond. The motivation for this study is to
understand the possible extensions of the SM that are allowed phenomenologically and to study

their predictions.

[n the first part, we study the quark masses within the framework of the SM given the CKM
quark mixing matrix [5] to be symmetric [21, 23, 34]. Present experimental limits [17] on the
various elements of the CKM matrix indicate that it is symmetricv or approximately symmetric.
The elements |Vi2| and |Vy;].are quoted to be same modulo the errors and both of them lie
between 0.217 and 0.223. Although only very weak bounds for |V}3| element is known through
the bound .05 < ¢(= J]‘—Jl .13 at present, the decay constant fg, =~ 220 MeV could lead
to |Viz] = [Var], in the case of m; > 100GeV. Harris and Rosner[36] showed the possibility of
fBy &= 220 MeV by analyzing the B — Eg mixing and the ¢ parameter of K meson system,
and this was also suggested in the framework of lattice calculation [37]. It should be noted that
for three generations, the assumption that ¥ has symmetric moduli implies a single constraint
on the matrix 1V because the unitarity requirement alone yields

Az Vil = Val* = Ve = [Visl? = [Vas|® = [Vaa/?

for three generations and experimentally the asymmetry parameter A is, in general, small i.e. A <

4
10 Thus all the presently available data is consistent with having symmetric moduli for CKM
“matrix. It has been shown [21] that if 1V has symmetric modulus, then it is always possible to

choose the phases of the quark fields so that I is also symmetric.



We have shown [22] that if the CKM matrix is symmetric then the top quark mass has to

" be heavier than 180 GeV, to be consistent with the experimental results of €y, the parameter
describing the indirect CP violation in the interactions changing strangness by two units (AS =
2), and the measurement on By~By mixing parameter x4 (which gives the time-integrated
probability of a By appearing in a By beam) for the Bag constant By = 1,2/3 ; if the Bag
constant By = 1/3 then m, > 275 GeV. The parameters ¢ and §(CP violating phase) are

constrained to be in the range
113<¢<.130 8.0°<6<311°

for the symmetric CKM matrix over the allowed range of the top quark mass 80GeV < my <
' 970GeV. To get a comparative idea it should be noted that accurate measurements, especially
at LEP of the properties of Z°, together with the collider and v data yield an indirect value for

my [8] :
my = l()llfig fé?GeV.

Given the fact that CKM matrix is symmetric, one is urged to ask the important question of
how to derive the symmetric quark mixing starting from the Yukawa couplings in a natural way.
In this regard we tried to find the constraints [29]on the quark mass matrices for the symmetric
CKM matrix. Since mass ratios of the up-quark sector and that of the down-quark one are quite
different from each other, it is very difficult to get the symmetric CKM matrix being consistent
with experiments in the framework of the ‘calculable’ quark mass matrix, where ‘calculable’
means that the CKM matrix is given in terms of the quark mass ratios, namely, the number of
mass matrix parameters is less than ten observable quantities i.e. quark masses and CKM matrix
elements. The symmetry constraint was written as an equation involving the parameters of the
mass matrices using flavour projection operators in a basis where M, is diagonal. The numerical
ranges for the mod elements of M, were given in this basis. This procedure was repeated in the
basis where My is diagonal. Then, the necessary condition for having a symmetric V' in terms of
the matrices U and D was derived. A particularly interesting basis was chosen where U = D* P;
P being a phase matrix and the ranges for the mod elements of M, My in that basis was found
out using a convenient parametrisation for V. It was noticed that none of the off-diagonal
elements of Af, and Afy is consistent with zero for a symmetric V, which means such forms
for mass matrices cannot be obtained from any symmetry. But, in principle there exists infinite
number of other bases related to each other by similarity transformations. So it is apparent that
the numbers provided for the allowed ranges of the mod elements of mass matrices are not basis
independent. Finally the symmetry constraint was presented in a basis-independent form.

Recently, there was an attempt made by Tanimoto[35] to obtain an approximately symmetric
CKM matrix starting from mass matrices of the type My p = ku,pMo + Xu,p where Ky, p are
numerical constants; M, is a real 3X3, rank-one matrix and the matrices Xy and Xp are
correction terms that have to be added to My to obtain the non-zero masses of the light two
gfneratior1 quarks since the rank-one mass matrix My has only one non-vanishing eigenvalue.

Jhe phenomenological validity of this scheme was checked and we have shown[31] that out
of the three interesting solutions of the symmetric CKM matrix discussed in this scheme one
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is inconsistent with experiments, whereas another one requires a very heavy top quark mass

(my ~ 255GeV) to be consistent.

The second part of the thesis deals with the physics of massive neutrinos. The question of
whether or not the neutrinos have non-zero masses concerns one of the most important issues
in both particle physics and astrophysics. In the minimal SM the neutrinos are predicted to be
massless due to the absence of right-handed neutrinos as well as the lepton number violating
processes. However, they can acquire mass in extensions of SM involving either new SU(2)
singlet neutral fermions (to generate Dirac mass) or new Higgs representations (to generate
Majorana mass). There exists an attractive scheme called ‘see-saw mechanism’' that explains
naturally the smallness of the neutrino mass compared to the charged leptons. This mechanism
can be embedded[54] naturally in the left-right symmetric extension of the SM. We have made
an analysis[53] of the spontaneous symmetry breaking for the Higgs sector taking various Higgs
representations in the context of generalised (9 # gr) left-right symmetric model, including
the Higgs choice that predicts the correct low energy ratio of wb. The minimisation of these
potentials was carried out explicitly and its phenomenological consequences regarding neutrino
masses had been studied. A modification in the see-saw relationship between the vacuum
expectation values vy, and vg was found out when left-right parity is broken spontaneously.
The mass spectrum for different Higgs chioces consistent with potential minimisation had been
used to study the evolution of the couplings gz, and gr according to the Renormalistion Group

~ equation.

Although none of the observational claims[45] of a 17 keV neutrino (with 1 % mixing with
the electron neutrino), which was first observed by Simpson[44] in 1985, seems definitive at
this time, the renewed possibility that a heavy mass eigenstate is mixed with the electron
neutrino is sufficiently surprising to warrant an examination of its consequences. We studied
the constraints[43] put by the existence of a 17 keV mass eigenstate on the neutrino mixing
matrix from the various oscillation data, neutrinoless double beta decay and the limit on the
Ve,V and v, masses. In the limit when all the three eigenvalues are nondegenerate and the
mass differences are larger than 100eV'?, we identify v, with the 17 keV neutrino and vary the
mixing probability between 3% and 0.3%. We find a very narrow allowed region for the various
mixing angles. The allowed values of m,,, lie between 145 keV and 205 keV for 1% mixing and
between 135 keV and 240 keV for 3% mixing (our result differs from the earlier similar works
with 3% mixing, where some approximations were made). The v, — v, oscillation probability
is found to lie between .001 and .002 for consistency. We then considered the allowed amount
" of the symmetry breaking when v, and v, form a pseudo-Dirac particle. We found the mass
difference to be less than 9 x 1078¢V/, which puts stringent limits on the 'symmetry breaking

effect on the neutrino mass matrix.

To summarise, the phenomenological bounds on top quark mass and the elements of the
mass matrices were studied given the ansatz for quark mixing is symmetric. We found that
none of the moduli of the off-diagonal elements of the possible forms of quark mass matrices
?/I‘f and My that lead to the symmetric CKM matrix, are consistent with zero for these ansatze,
which means that such forms for mass matrices are difficult to obtain from any symmetry.
The phenomenological consistency of a particular scheme for mass matrices that claims to

vii



be obtaining a symmetric quark mixing-was checked. The potential minimisation of the most
general Higgs representations in the context of generalised (9L # gr) left-right symmetric model
was done explicitly and its phenomenological consequences regarding neutrino masses and the
see-saw relationship was explored. We studied the limits on the elements of the neutrino mixing
matrix consistent with neutrinoless double beta decay and the neutrino oscillation experiments
as a function of the mixing probability (2) of v, with the 17keV neutrino. Stringent limits on

my, (when m,, > my, ) and on the mixing matrix were found.
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Chapter 1

Introduction

Understanding the microscopic structure of the physical universe, in general, can be thought
of consisting of three steps; first, an identification of the basic particles that constitute matter;
second, gaining a knowledge of what forces the particles experience; third, finding a quanti-
tative description of the particles behaviour under the influence of the forces given the initial
boundary conditions. According to the present understanding, the basic particles can be put
into two catagories, namely, matter particles and gauge particles. The basic matter particles
are fundamental spin 1/2 fermions called the leptons and quarks whereas the gauge particles
are bosons that are exchanged between matter particles during their interactions. These fun- -
damental particles undergo four known types of gauge interactions—gravitation (too weak to be
of interest to particle physics phenomenology), electromagnetism, the strong and weak nuclear

forces—and also interact with higgs boson.

Historically, the study of weak interactions began with the discovery of radioactivity by
Becquerel (1896) and subsequent observation that the decaying nucleus emits electrons (i.e.
nuclear 3 decay). Chadwick’s observation (1914) that the electrons in 3 decay are emitted with
a continuous spectrum of energies and subsequent calorimetric measurements of # decay (1920)
seemed to suggest the violation of energy and momentum conservation laws in /7 decay if one
assumes a two-body final state. In order to save the fundamental conservation laws, W. Pauli
proposed[1] a three-body final state for 3 decay with an extra neutral particle of near-vanishing or
zero rest mass and half-interger spin (later named neutrino by Fermi) being emitted along with
the electron and it escapes observation because of its feeble interaction with the surrounding

matter.

Soon thereafter, Fermi proposed|2] his theory of 3-decay in close analogy to quantum elec-
trodynamics by writing a current-current effective interaction Lagrangian density :

Cp= =) G (D Doy ) (1.1)

The above Lagrangian density describes a 4-fermion zero-range (pointlike) interaction with a
universal coupling, (i}, between the fermion pairs (e,r.), (p,n). Ly, being a density, has
dimension of (length)™", or, in energy units, dimension 4, while a fermion field has dimension

3/2 because a fermion mass term occurs in the Lagrangian in the form mup. Thus, the 4-



fermion current-current interaction is a dimension-6 operator and so G, the Fermi coupling

constant, has units (energy)™2. Empirically
G = 1.16639(2) x 107°GeV =% = 10™°m,™? (1.2)

where m,, is the proton mass. After the discovery of parity violation in weak interactions (1956),
it was realised that the structure of the weak Noether current is vector-axial vector (V-A) type.
That culminated in the changé of 7y, into 7,(1 —s5). Subsequent discovery of many other weak
interaction processes and the recognition of the universality of weak interaction led to the (V-A)

form[3] of the weak interaction Lagrangian given by Marshak & Sudarshan and Gell-Mann &

Feynman : .
Ly = —(2)“/""'—"21'-(#'“.]:' + 7T, (1.3)

where the charge-raising and charge-lowering currents are given respectively by

I
J,T ._H'Vu(»l ¥s)d + ’/7/1( ~75)€ + oy

1l

(17;, — ¥s)u + 07“(1 — s )V + .. (1.4)

Jy
Since weak interactions distinguish the handedness, we will deal with Weyl two-component

spinors 1y, and 1/'p ( chiral decomposed states of 4-component Dirac spinors),

1
Yrr = (l F 7s5)0,

each of which represents two physical degrees of freedom. The field ¥, annihilates a LH particle
or creates a RH antiparticle, while 1/)1 creates an LH particle or annihilates a RH antiparticle.
For a ©p field the role of LH and RH are reversed. Weyl fermions having no distinct partners of
opposite chirality correspond to particles that are either massless or carry no conserved quantum
numbers. The charged-currents can be rewritten in terms of the 2-component fields as

‘];T = TITE’)//tdL + vLTr)’;LeL + ..
Joo= duyaug +evevn 4. (1.5)

At the lowest order (tree level), L gives a very successful description of low-energy weak
interaction processes. But, there are quite a few problems associated with £ .

At low energy, the total cross-section for neutrino-electron scattering comes out to be pro-
portional to (/%.s, where s is the Mandelstam variable defined by s = (p,, + pe)? in terms of
the momenta of the incoming v and e. With increasing energy this cross-section grows without
limit. On the otherhand, since v ¢ scattering occurs in the s-wave, the amplitudes for this

process should obey the s-wave unitarity bound, viz.,

16
Ty < —. (1.6)

$

This leads to a contradiction, implying that the 4-fermion description must breakdown above a
certain energy called the weak interaction cut-off Ay, which was found to vary between 4 GeV
to 300 GeV depending upon the weak interaction process under consideration.



Secondly, as one calculates higher order corrections (loops) to any lowest order weak process
described by L, one finds an infinite sequence of interactions of higher and higher dimension,
with increasingly divergent integrals, which would require more and more arbitrary constants to
render them finite. The divergence at the L-th loop goes as A?L, A being the cut-off for the
theory. Therefore, in a strict sense, the lowest order calculations are not reliable.

The introduction of massive vector bosons W which play a role analogous to that of
photon in QED, improved the situation. The basic interaction is then of the form

Ly = = (2) g Wl 4 grtwr), (1.7)

where the coupling constant, g, is now dimensionless. The square of Ly involves the propagator

of the massive W boson and yields

g py Guv — (Iu(/u/]v[a/ )JUf_ : (1.8)

=—J
2 ( q* — M},

In order to reproduce the successful low-energy (¢> << M3, ) results of the effective Lagrangian
L, the coupling g must be related to Gy as

9> 4GF

QME T V2

Although there is no dimension-6 operator in Ly, the theory is still non-renormalizable. This -

is due to the fact that the longitudinally polarized W bosons are described by the polarisation

vectors (efj) behaving as

(1.9)

as ¢ — 00, (1.10)

2T My

Consequently, the W propagator approaches a constant as ¢ — oo rather than decreasing
as ¢~ %, and so the “canonical” dimension of the field is 2 instead of 1. Similar problem does
not arise from the longitudinally polarised virtual photons in QED because the amplitudes are
unchanged under the transformation

€ — €, + aq, (1.11)

due to gauge invariance and so the components of the photon’s polarization ¢, that are pro-
portional to ¢, does not contribute to physical processes. Hence, it is quite natural to think
whether or not a gauge theory can provide the remedy for non-renormalisability of Lyy.

In fact, the only renormalisable theory that accomodates the vector bosons in a fundamental
way is the local gauge theory. But, then the assumption that there exists a local gauge theory
associated with the weak interactions led to problems; because, in contrast to the photon, the
Wy.'s had to be charged, parity-violating and massive, and it was not known how to construct
a self-consistent renormalisable theory for such fields. This problem was solved in three stages
: first, the Yang-Mills gauge theory provided a natural method of introducing charges for the
vector mesons; second, the discovery of spontaneous symmetry breaking (5SB) provided a

mechanism for introducing mass without violating the gauge symmetry explicitly; finally, the



techniéal problem of proving the Eenormalisability was solved by using dimensional regularisation
and functional integration. Thus was the birth of the electroweak[4] theory which has been
successfully explaining all the physical processes involving energies upto at least ~ O(100 GeV).

Despite the immense success of the SM in explaining all the low-energy phenomena, there
is a hurdle of theoretical short comings of the model which strongly suggest that SM is only an
important intermediate step toward the knowledge of fundamental interactions and that, at best,
it is an effective theory, valid upto the scale A7y. The SM falls short of a complete theory in an
aesthetic sense that the number of parameters required to describe it is nineteen i.e. six quark
and three lepton masses, three mixing angles and a phase parametrising CP violation, three
gauge couplings and two boson mass scales My and My and 8gop parameter that describes
potential strong violation of CP. Of course, the predictions of the SM have been probed to finer
fevel of detail by precision measurements at LEP, by higher luminosity runs at the Tevatron and

no discrepancies emerged between experiments and the predictions of the SM.

This thesis is based on the studies related to fermion masses and mixing within SM and
beyond. As it is well-known, all the masses in the SM arise out of the spontaneous symmetry
breaking of the SU(2), @ U(1)y — U(1)em. Hence they are necessarily proportional to the
order parameter v of the symmetry breakdown. However, in the SM, only the masses of the
gauge bosons are predicted since the constant of proportionality between their masses and v
is the electric charge ( and sin?#6y). On the other hand, both the higgs mass and those of
the fermions do not have predictable values since the higgs self interaction constant \ and
the Yukawa couplings hy for each fermion are unknown parameters. In general, the process of
generating mass for the fermions is non-diagonal in flavour. Consequently, some off-diagonal
mass terms will ensue. This, in turn, forces a mixing between the physical states and the flavour
states since the physical basis for the weak charged current interactions of quarks is not flavour
diagonal. Then one wonders what fixes the observed weak mixing angles and how these angles
are related to the spectrum of masses and the quark mixings and its consequences regarding the
top quark mass and the quark mass matrices. '

In the first half of this thesis, we study the quark masses within the framework of the SM
given the CKM quark mixing matrix [5] to be symmetric. The phenomenological bounds on
top quark mass and the elements of the mass matrices were studied in this ansatz for quark
mixing. We found out that none of the moduli of the off-diagonal elements of the possible forms
of quark mass matrices A, and M, that lead to the symmetric CKM matrix, are consistent
with zero for these ansitze, which means that such forms for mass matrices are difficult to
obtain from any symmetry. The phenomenological consistency of a particular scheme for mass
matrices (based on rank one matrices) that claims to be obtaining a symmetric quark mixing
was checked. And it was shown[31] that out of the three interesting solutions of the symmetric
CKM matrix discussed in this scheme one is inconsistent with experiments, whereas another one
requires a very heavy top quark mass (m, = 255G'eV) to be consistent.

In the second half, we deal with the physics of massive neutrinos and its consequences. In
the SM, neutrinos are massless because one excludes RH neutrinos and lepton number violating
processes. Although, they can acquire mass in extensions of SM, the smallness of the neutrino

4



massbccA)mpared to that of the charged leptons challenges our understanding. There exists
an attractive scheme called ‘see-saw mechanism’ that explains naturally the smallness of the
neutrino mass compared to the charged leptons. This mechanism can be embedded naturally in
the left-right symmetric extension of the SM. The potential minimization of the most general
higgs representations in the context of generalised (g1, # gr) left-right symmetric model was
done explicitly and its phenomenological consequences regarding neutrino masses and the see-

saw relationship was explored.

We studied the limits on the elements of the neutrino mixing matrix consistent with neutri-
noless double beta decay and the neutrino oscillation experiments as a function of the mixing
probability () of v, with the 17 kel neutrino. Stringent limits on m,, (when m,, > my, )

and on the mixing matrix were found.

The plan of the thesis is as follows : chapter 2 consists of a review of some relevant topics in
SM model and CP violation that provides the necessary background for chapter 3 in which the
symmetric quark mixings and its consequences are discussed. In first half of chapter 4, we review
the formalism for having massive neutrinos and their mixing and then, discuss how to accomodate
the 17 KeV massive neutrino in the SM. The second half of chapter 4 consists of a brief review
of the relevant part of the Left-Right symmetric extensions of SM followed by the potential
minimization of the most general higgs representations in the context of generalised (g1, # gr)
left-right symmetric model and subsequent discussions of its phenomenological consequences
regarding neutrino masses and the see-saw relationship. We state our conclusions in chapter 5.
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Chapter 2

Review of Electroweak Model

The relevant topics of the Standard Model are briefly reviewed in this chapter along with the
discussions of CP violation in the neutral ' and B meson systems. This review provides the

background for our work that will be reported in the next chapter.

2.1 The SU(2)®@U(1) gauge theory ‘

" The electroweak model, also known as Glashow-Salam-Weinberg (GSW) model, is based on the -
gauge group SU(2) @ U(1). The observation of weak neutral currents (1973), followed by the
discovery of the gauge bosons themselves (IW* and Z) (1983) constitute the major experimental
support for the model, which has proved over the years to be very successful phenomenologically

and is in detailed agreement with all observed electroweak phenomena so far.

The gauge sector of this model consists of 4 vector bosons, three denoted by I/V;;,i =1,2,3
are associated with the adjoint representation of SU(2) and one with U(1) is denoted by B,..
The fermion sector of the model is such that the charged weak interactions couple the
left-handed component of the charged lepton to the associated (left-handed) neutrino. Parity
violation is incorporated by assigning all the left handed fermions to transform as doublets under
SU(2), while the right-handed fermions are singlets.

The Lagrangian is made gauge-invariant by replacing 0, in the fermion kinetic energy terms
by the gauge covariant derivative D, i.e.

7

. o
O — Dy =0, +ighiW,, +ig ’Q—Bw (2.1)

where ¢, ¢' and T,-,;;—)" are the S{/(2),U(1) couplings and group generators respectively. The
T7's satisfy the SU/(2) algebra
(15, 15]) = ieiji T (2.2)

and act on the fermion fields as follows:

oy 1 48
Iy, = QTH/’/,, lipp = 0 (2.3)



where the 7; are the 2 x 2 Pauli matrices. The assignments.for the other two generations are
just replica of this.

Since the weak interaction involves electrically charged W bosons it must be related to
electromagnetism, and to incorporate QED in the model, some linear combination of the weak
generators has to be identified with the electric charge operator ) corresponding to the group
U(1)em. The clue comes from the fact that the adjacent members of an isospin multiplet are
eigenstates of T3 with eigenvalues that differ by one unit of electric charge (in units of e).

Therefore, we may write
)/‘
Q=Ts+5 (2.4)
where T, and Y are referred to as the weak isospin and weak hypercharge generators respectively.

The above relation (called Gell-Mann—Nishijima relation) can be used to specify the eigenvalues
of the U(1) generator, £} where the factor —12; is purely a matter of convention. Thus the

fermions transform under the full symmetry group SU(3)c © SU(2)r ® U(1)y of the standard

model as follows:

leptons : l;p, = <Ui> (1,2,=1);
@[ L
€iR (1,1,-2);
quarks : ¢, = <u,~> (3,2,1/3);
UiR (3, 1,4/3), .
din (3, 1, —2/3) (2.5)

where i denotes the fermion generation. The group structure permits an arbitrary hypercharge
assignment for each left-handed doublet and each right-handed singlet, and so we have chosen
Y to give the correct electric charges. Apparently, charge quantization must be put by hand in
SU(2)L ® U(1)y theory.

Now, the SU(2) ® U(1) invariant Lagrangian that consists of the kinetic energy terms for
massless fermions and gauge bosons and the fermion-fermion-gauge boson couplings takes the

form
. TN Ly T . Y
L= 2 U0~ g5 Wy =g 5 B)f1+
s
Trr(idh, = g B) fa) = SWi, W = LB, 5 2.6
ny U g 2 [.L) R]— Z LA 21" uuB N (26)

where the sum is over all left- and right-handed fermion fields and the field strength tensors of
the SU(2) and U(1) gauge fields are given by

Wi, = 0,W) —0,Wi - geinWiwk,

But/ = 0;11))1/ - (r)t/b)u- (27)

Fhe term bilinear in 1V, generates the trilinear and quadrilinear self-couplings of the W, fields
that are a characteristic of non-Abelian gauge theory.



2.2 Giving mass to the particles

Since the gauge fields transform under the gauge group SU(2) ® U(1) as

W, Wi = UTTWLU U 9,0,
' . 1 _
B,L g Bll = Bu + ‘(]U la;LU; (28)

it is evident that an explicit gauge-boson mass term is not gauge-invariant. To see the possible
mass terms for fermions, consider two left-handed spinors 1y, and x, that transform as (1/2,0)
under Lorentz transformation (LT). The quantity x7 o2y, is invariant under LT. With xp =
a2y, this invariant is

(o%pr) oy, = —yrley : (2.9)
and in 4 component notation, is the Dirac mass term

mpp = m(prvr + PriL) (2.10)

which is excluded because 1, ¥p transform under SU(2) as doublet and singlet respectively,

so that this term too manifestly breaks the gauge invariance.

The other possibility for a mass term is given by the chioce x7, = ¥r. Then we have

S ko™ + ylotvi). (2.11)

This mass term is called Majorana mass term and it is not invariant under U(1). Consequently,
any additive quantum number carried by 1, such as charge, lepton number, etc. is not
conserved if 4y, has a Majorana mass. Since the gauge structure of the SM conserves the lepton
number such a mass term for the fermions is not allowed.

Now we discuss how to generate gauge-boson and fermion masses without destroying the
renormalizability of the theory, which depends so critically on the gauge symmetry of the in-
teractions. As the low energy symmetry observed in nature is SU(3)c ® U(1)em, the gauge
symmetry SU(2), @ U(1)y must break down to U(1)ey. This is achieved through the spon-
taneous symmetry breaking of the gauge symmetry SU(2);, ® U(1)y by introducing a complex
scalar field (higgs sector) ¢, which couples gauge invariantly to the gauge bosons through the
covariant derivative -

- ) ., ; . /)/
0,001 = 10,01 — (0, ig TV} + g’ B)al, (2.12)
and to the fermions through so-called “Yukawa" couplings of the form

= hy[(brd)dr + Pr(d L)) (2.13)

Evidently, the field ¢ should transform as (1,2, 1) under SUB)c®@S5U(2),®U(1)y to preserve
the gauge invariance. Hence, we write

- ot Sliere ¢t = (¢1 +ig2)/ V2 .
P = <¢()> here <(/)OE ((/):34_77(/5“)/\/5) (2.14)



with ¢; real, while the Hermitian conjugate doublet ¢! describes the antiparticles ¢~ and ¢,

Besides the above interactions, there can be a self-interaction between the higgs fields.
The most general SU(2) invariant and renormalizable form (with dimension < 4) for such a

self-interaction term in the Lagrangian is

V(g) = —p*(¢'¢)+ A1), (2.15)
where A must be positive to keep the potential bounded below. For u? > 0, V(¢) is at its
minimum when |(¢f®)| = y2/2)\. The minima that has the vacuum expectation values (vevs)

<M@w>:mi=L2A;<M%W>E§%E H2/ ) (2.16)

" is chosen and then the field ¢ is expanded about this minimum such that the particle quanta
of the theory (i.e. the physical higgs) correspond to quantum fluctuations of ¢3(z) about the

value ¢3 = v rather than to ¢s(2) itself, that is, to
h{x) = ¢a(a) ~ v. ' (2.17)

The choice of the non-zero vev for the neutral field ¢3 ensures that the vacuum is invariant
under U(1)en, of QED, and the photon remains massless.
. o . . " 0
When the relevant term in the Lagrangian is rewritten[6] in terms of ¢ = —= , the
V2 \v+h
mass term for gauge bosons read '

Vs

o ) 1.
(0 + WgTiW, + ig 5 Bu) < ¢ > > = (§vg)2I/V:I/V“"‘ +
1 : ,
‘8"L’2(g”/§ — 9 B,)" +0(y I/V,? — gBu)*(2.18)

where

Wt = (W +awh/ V2. (2.19)

The mass matrix of the neutral fields is off-diagonal in the (W3, B) basis. As expected, one of
the mass eigenvalues is zero and, thus the normalised neutral mass eigenstates are

(gW2 - ¢'B,)

Zy = —-—-—2——2— = W2cos by — By sin by,
g°+y
GW3tgB,) L
A/_L = (——‘——L*-——# = I"VS sin 0W + B,_L Cos 0W; (2.20)
9 +9

where 8y is the Weinberg angle defined by

I

fy = arctan g (2.21)
g

Comparision of eqn.(2.18) with the mass terms in the Lagrangian of the physical I//‘jt, Z, and

photon A, fields, namely,

: AN SN S :
Ar/fvwlj W wag Zh+ 5/\:[5 A2 (2.22)
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yields ) ' _ :
v 1 -
My = év!/, My = 5”\/ (92 +g 2)7 My =0, (2.23)

and so My

cos by = E (2.24)
It is easy to see that the higgs mass comes out to be
M} = 2 % = 217 (2.25)

which cannot be predicted since neither u? nor A is determined, only their ratio v? is.
The p — parameter that specifies the relative strength of the neutral and charged current

weak interactions is defined as

/\"[&/
=W 2.26
P= MZcos?Oyy (2:26)

The GSW model with a single higgs doublet has p = 1, which is in excellent agreement with

experiment. If the higgs sector is such that there are several representations (i=1,...,N) of higgs
scalars whose neutral members acquire vevs v;, then

y = ST+ 1) — ¥

SRRT

where T; and Y; are, respectively, the weak isospin and hypercharge of representation i.

(2.27)

To see how the charged leptons acquire mass consider the Yukawa coupling term for the

electron doublet :

¢ = —h (7, e)r (f; ) en +ea(¢~,4%") (ZE)L]. (2.28)

After the symmetry breaking
e le .
Ly = — \/3(1) + h)(Crer + €Ler) (2.29)

from which we read out the electrons mass and couplings to be

Le¥ gme
/3 g(hee) = Sy
Although the electron’s coupling to higgs is well specified, the actual mass of the electron is not
predicted as K. is arbitrary. Similarly the most general SU(2) ® U(1) invariant Yukawa terms

(2.30)

M =

for the quark doublet (u,d) are

g = (ot o ¢
LYy = =hy(w,d)y, 40 dp + ho (T, d) s > upr + h.c. (2.31)
e (BTN
ere e ) Is 173" that has a neutral upper member. Due to special proporties of SU(2) it
has Y = 1. After the symmetry breaking
) _ / »
L8 = —(mgdd + myau)(1 + 2) (2.32)
v

where mass of the quarks are given by

(2.33)

m, =

hgv
ok
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2.3 Current mass and Physical mass .

Unlike the electroweak part of the SM, the renormalised masses in QCD cannot be naturally
defined by on-shell renormalisation due to the confinement of quarks. The quark mass param-
eters of the Lagrangian can be simply considered as additional coupling constants. Hence, like
the running coupling constants, their measurement first requires a careful mention of the con-
ventions needed for the unique definition of a renormalized running quark mass of the theory.
We discuss within the domain of the A/.§ scheme which has the advantage that renormalization
group equations are flavour diagonal. The evolution of the quark masses and the strong coupling

constant with the renormalisation scale u is governed by the RG equations

dyg
/ﬂl;g; = pB(9)
dmy; '
J o = —ym,(g)mi. (2.34)

In the modified minimal subtraction (M S) scheme, the beta function and the anomalous di-

mension are respectively given[7] by

3 N 14
Plo) =~ (flfyro)'zgd - (45:)29'0 +0(g"), (2.35)
and
Y 9 4 .
A/m(f/) = (4;)2‘(]2 - (4’)7:)2.(/‘ + O(QG)a ‘ (236)
with

Bo = (L1Cq—4TrN;)/3,

Bi = [(34CE - 45Ce + 3CR)TrN/]/3,
7 = 6Cp,
Y= C[?[QC[? + 97C'G bl 20TRA’]]/3, (2.37)

where Ny= number of quark flavours, T is given by the normalization of the generators
[T?'(T"Tb) = N;Tg] and Cq,Cr are the values of the quadratic Casimir operator on the
gluons and quarks respectively. Following the convention for SU(3) ie. Thr = 1/2,Cq = 3,
and Cp = 4/3 we have

] 2
fo = (Jl—--3—Nf),
38

g = 102 - ?Nj,
Yo = 8,
4 10
Y = 5(101 - ——3—]\’,). (238)

The solution to the differential equations are

2
g-(p) _dw _ Puinl nlL ‘
oo T g ol )h (2:39)
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and ‘
1 +In. InL
B ﬂ170 + InL 71 + O( n )2)]7 (240)

202 L 2p2L TN L
where L = In(p?/A%). Here A and m; are the RG invariant scale parameter and masses,

respectively defined through

L
mi(p) = 7(Z) TN

o2 (¢ A2 A2 2
e~ Pog”(0) F(ZTI'XE)ﬁl/ﬂé’ (2.41)
and \2 '
m;(0) = Tu(ln—p)"“/m", (2.42)

A being the momentum cut-off.

The physical mass of a quark is its value calculated at the same scale. Thus to one loop
order, the physical mass of the ith quark is given by
" 4
?n}l:f’w = mi(m;)[1 + 3—7rcrs(77zi)]. (2.43)
Although the determination of the light quark masses involves larger errors, still they are best es-
timated by the use of Chiral QCD perturbation theory as well as meson and baryon spectroscopy

[7]:

m, = 5.1+15 MeV
myg = 8.9+1.56 MeV
m, = 175455 MeV ’ (2.44)

Similarly the physical masses of the charm and bottom-quarks are obtained from e*e™ data by
using QCD sum rules for the vacuum polarisation amplitude. The running masses at 1GeV and

Agecp = 100M eV [7] are

me(1lGeV) = 135x0.5 GeV
my(1GeV) = 53+£0.1 GeV - (2.45)

While non-observation of the top-quark puts a lower limit to its mass
mP™ > 103 GeV, (2.46)
experimental consistency with the radiative corrections[9] in the SM requires

my < 180 GeV. (2.47)

2.4 The quark mixing matrix

In the early sixties, the LH quark states that take part in weak interactions were LH doublets,

and a lonely strange singlet; and all the RH quarks were singlets :

u
(([/ )1/’ sLiun,dn, sp, (2.48)
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where d_is a mixed state of d and s states (Cabibbo's hypothesis){10],
d' = Viad + Viss, (2.49)

when expressed in terms of the Cabibbo angle 0¢, Vi = cos b, Vys = sinfg. Cabibbo's
hypothesis acccounted for relative coupling strength of stangness-conserving and strangness-
violating baryon semi-leptonic decays, for the ratio of leptonic decay rates of pions and kaons,
and for many other important features of the charged weak interactions. However, there is the
strangness changing neutral current (ds +3d) term arising from d'd = cos? §cdd +sin? 653s +
cos ¢ sin B¢ (ds + 3d). The too large rate of K, — ptp_ given by such a neutral strangeness

changing current compared to the measured value of the branching ratio
Br(Kp — ptp™) = (9.14£1.8) x 1077, _ (2.50) -

leads to the introduction of the ‘charm’ quark to form another left-handed doublet (GIM

scheme[11]) (1970)
<u/> ) < Cl> sUuRy AR, CR, SR, (2.51)
d L 8 L

where (d',s") = (d,s)VT, and VT is the transposed matrix of

‘/ud ‘/us
/ = .
‘ < Vea  Ves ) ’ (2 52)

which represents a rotation by an angle ¢ in the two dimensional abstract space and all RH
quarks are still singlets. The orthogonality of the mixing matrix guarrantees the absence of
strangness-flavour changing neutral current terms. Kobayashi and Maskawa (1973) extended[5]

the quark sector to
U C L
¢ )\ )0\ 1;; UR,dR,cR, SR+ tR, R, (2.53)

by introducing two more quarks, namely the top (t) and the bottom (b) on the basis of the
theoretical observation that the ‘reality’ of the matrix V would not allow CP violation via the
intermediate bosons W* coupling in the SM. The matrix V that express (d s ,b') in terms of
(d,s,b)is

Vu.d Vus Vul)

V=l Va Ve Vo |, (2.54)

Vi Vis Va
and is called the Cabibbo-Kobayashi-Maskawa (CKM) matrix. The V;;'s characterize the mod-
ification of the charged current vertices for the physical quark fields induced by quark mixing.
The unitarity of the V matrix i.e. V V1 = I ensures the absence of FCNC.

Ever since it was noted that the quark flavour states (states that take part in the weak inter-
actions) are mixed states of the physical states (states that have well-defined mass), attempts
have been made to comprehend the dynamical origins of the mixing angles. The observation
Fhat the Cabibbo angle ¢ is very close to the mass ratios,

O~ mig fmge ~ mg/ny, (2.55)
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initiated many studies around expressing the elements of CKM matrix in terms of the quark
masses,

To see how the CKM matrix is related to the procedure of quark mass matrix diagonalisation,
consider the part of the Lagrangian containing the most general quark mass terms e,

Ly = bWl i + h Tipdipg® + hec. (2.56)

After symmetry breaking it reduces to

\/_[u ,L/L V! iR+ mi};/lgl;'i)d;‘]{] + h.c. (2.57)
with the generation index 4,5 = 1,..,N and u{,;p = 3(1 F ys)uf. The complex Yukawa
couplings hi; constitute N X N matrices which are generally neither Hermitian nor diagonal and
v(246 GeV) is the vev of the neutral higgs field. Thus the quark mass matrices are given in
the.flavour basis as

MY = —(o/ VDR, M = —(v/ V)R, (2.58)
where the matrices M (¥ and Af{?) denote the quark mass matrices for charge 2/3 (up-type)
and —1/3 (down-type) quarks respectively. In order to find the physical fields, the quark mass
matrices M) and M) must be diagonalised. As it is well-known from the theory of matri-
ces, any square matrix (hermitian or not) can be diagonalised by a bi-unitary transformation.
~ Since the mutually exclusive left and right-handed fields in the standard model can be rotated.

differently i.e.

upp = Uppup g
dor = Drrdy p; : (2.59)

we can find four matrices such that for three generations

U M@Uupt = m) = diag(my, me, My, ..0),
DM@ ppt M) = diag(md,ms,7‘)1;,, ) (2.60)

This defines the basis of the physical quarks, and we have
Ly = —(ﬁ}’[jﬂ/lg ) UjR -+ (llL/\/i( )(ZJR) + h.c. (2.61)

It should be noted that the matrix §(*) = (M('“)A/[(“)f) and S = (Al(d)ﬂ/[(d)f) are hermitian
and can thus be diagonalised by a single unitary transformation i.e.

ULM(“)/\'[(“)TU}J = (/\/l(”))'2 = (my 2, met,me?, )

DM OO DL = (D)2 = (g?, 2 g2, ), (2.62)

On the other hand, the transformations that relate the flavour basis to the physical basis intro-

duces non-diagonal coupling into the charged currents, when they are expressed in terms of the
physical quark basis,

Jul = WL Vijdie, : (2.63)
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where V is the unitary N x N flavour mixing matrix (CKM matrix) and is given by
V =U,'Dy. (2.64)

The unitarity of the N x N complex matrix V reduces the number of real parameters from 2N?
to N2. An orthogonal matrix in N dimensions can be parametrized by N(N — 1)/2 rotation
angles. Thus, out of N? real parameters of V, N(N —1)/2 are rotation angles and N(N +1)/2
are phase angles. Since under rephasing of the up and down quark fields the non-physical

individual phases v; and /J; of V; transform as:
— (Vi) = Vigewp(a; = 1), (2.65)

(2N — 1) of these phase angles can be absorbed into the definition of the quark field phases
without loss of generality. So an N x N flavour mixing matrix V' can be parametrised by
N(IN — 1)/2 rotation angles and (N — 1)(N ~ 2)/2 phase angles. Since there are many ways
to absorb the phases as relative phases between quark fields and to introduce the rotation
angles in a particular way, there exists no unique parametrization of V. Physical quantities do
not depend upon the particular choice of the parametrization. However, some non-measurable
parameters (like the phase of a transition amplitude) are sensitive to the phase convention
accepted for the quark fields. The chioce of a particular parametrization for the CKM matrix
always implies the adoption of a definite phase choice. Now we consider three frequently used
parametrization of V for three generations. For three generations, V can be parametrised in
terms of 3 Euler angles and one phase (since five phases of the quark fields can be rotated

away).

Kobayashi and Maskawa were the first to point out the matrix V for three generations cannot
be transformed into a real form. Then, they suggested a parametrization where quark phases
are so choosen that the first row and column of V are real,

Cy ~81C3 — 8183
Vo= §1C9  C1CoC3 — 5283(3“5 €983 -+ 8263616 (266)

5182 C189¢3 + CQC:}C’“S €18283 — coc3e’ i6

where ¢; = cos 0;; s; = sin8; with i = 1,2,3. Without loss of generality §; can be chosen to lie
in the first quadrant i.e.0 < 6; < /2 provided we allow the phase angle § to take values in its
full period, t.e. —m < § < 7.

An alternative parametrization proposed by Maiani[12] and advocated by PDG to be the

standard one is given as:

€12€13 $12€13 s1ze”"e
ro_ . iS5 R, e e @ ] .
Vo= | —sieas — craseasiae’®  cracos — s12893813€™  saacq3 (2.67)
s <
812893 — CigC93813€" ~ 19893 — $12€23813€"° 23013
where the standard notation c¢;; = cosf;; sij = sin 0;; with 4,7 = 1,2,3 is used. It has the

advantage that it makes it easy to incorporate the experimental results on B - meson deacy.

A third parametrization was introduced by Wolfenstein[14] in which he expanded the ele-
ments of the matrix V' in terms of a small parameter A = sinf¢, exploiting the experimental



information about the smallness of the ‘mixing angles. The remaining structure is then deter-

mined by the unitarity constraint, This parametrization reads

L 32 A AN3(p —in + '111]%)3)
V = R I =A% - gv;,fif,\" AN(1 4 in)?) (2.68)
AN(L = p = in) —AN? 1

This matrix is approximately unitary, the imaginary part of the unitarity relation is satisfied to
order \® and the real part to order A3. The coefficients A, p and 7 are of order one or even

smaller.
Now we discuss the measured values of these mixing angles. While 812 is very accurately
determined from K'.3 and hyperon decays[15]

s12 = .221 4 0.002, : (2.69)

0,5 and 0,3 are rather poorly determined. The value of s33 may be extracted from a determi-
nation of V., (since sq3 & |Vi| to a very good approximation) from the semileptonic B-meson
partial width, under the assumption that it is given by the 1¥-mediated process to be

G (;’? m,f

053 ) F (e [mi) Vel (2.70)

D(b—clD)) =(
where F(z) = 1 — 82 4 82% — a* — [22%In(x) is a phase space factor. Thus

19273 Br(b — cl¥))

$2 = ( G% Tmymy F(m?/m}) (2.71)
Using the experimental results for the branching ratio and the B-meson lifetime[16]
Br(b — ¢l7) =121 £0.008 7 = (1.16 £ 0.16)107 %sec (2.72)
and the estimation for the quark masses :
me = 1.5+ 0.2 GeV my = 5.0% 0.3 GeV (2.73)
we get
s93 = 0.044 4 .009 (2.74)
The charmless B-meson decay width imposes the limit[17]
0.05 < $13/893 < 0.13 (2.75)

The CP-violating phase & is allowed to adopt any value in the range [0, 7] by these current
experimental results.
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2.5 (P violation and quark mixing

Apart from the continuous symmetries that leads to conservation laws through the Noether
currents the interactions that the particles undergo also respect certain discrete symmetries.
Each discrete symmetry corresponds to a definite inversion and can be described in terms of a

single operator.

Parity (P) : Space-inversion. Invariance under P means that the LH frame obtained
from RH frame by changing the signs of all spatial coordinates is an equally valid frame for
expressing the laws of physics. In otherwords, the mirror image of an experiment would yield
the same result in the reflected frame of reference as the original would do in the initial frame.
Under P operation the 3-momenta are reversed. Interactions can be classified according to their
transformations under the P operation. Since particles can be created or absorbed, intrinsic
parity can also be assigned to particles. The over-all parity of a state is its parity under space

inversion times the intrinsic parities of the particles in the state.

Charge-Conjugation (C) : It transforms particles into anti-particles ( i.e. reverses all
additive quantum numbers) while spins and momenta are preserved. Invariance under C means
that by turning all particles in a process into their anti-particles, we would get another process
that would happen with equal probability. Under this operation, a spinor field transforms as :

Ciop— o =CPL (2.76)
where (' is a matrix in the Dirac space satisfying
Cylct = -y, Ctc=1, CT=-cC. (2.77)

A look at the Dirac equation tells the way the chiral components transform under C:

4] ¢ T c

C:o Y~ (Yr) =Cy¥r = Py

7 [ T c (2'78)

C: yp— (Pr)° = Cpy = Pryp©,
where Pp, p are the left— and right—projection operators respectively.

Time-Reversal (7) : It refers to the reversal of the flow of time. Under this anti-unitary
transformation, the initial and the final states are interchanged and spins and momenta are

reversed.

Luders and Pauli had proved[18] that any Lorentz-invariant unitary local field theory is
invariant under the combined transformation C’P7 (in any order). But, the invariance under
any individual discrete symmetry is not assured by any deep-rooted theoretical motivations.
Three out of four basic interactions i.e. gravitation, electromagnetism, and the strong nuclear
interactions respect each of these discrete symmetries to quite a great extent whereas weak

Interactions violate both C and P invariance maximally.

Since the two terms (having same strength) present in the V-A structure of the Noether
currents for the weak interactions can completely interfere, a system of quarks or leptons can
change its parity and it is said that P is violated maximally. Similarly, SM also violates C
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invariance maximally since (for example) processes occur involving LH neutrinos, but never LH

“anti-neutrinos. However, under the combined operation CP, the LH neutrino is transformed
into a RH anti-neutrino and in SM, we do have electroweak interactions of LH neutrinos as
well as the RH anti-neutrinos. Thus it was believed that (mid 1950's) that even though SM
violates C and P separately it conserves CP in the sense that if a process occurs, so does the CP
transformed process. But in the mid-1960's, it was found[19] out that although processes and
their CP conjugate processes occur in SM, their probabilities to occur are not identical but differ
by a small amount, about a one part in a thousand (see next section for detailed discussion).
This small difference in the probabilities is called the CP violation.

CP violation was incorporated into SM by noticing that CP violation implies. a violation
- of T or vice versa since CPT is a good symmetry for all quantum field theories. It is well
known that if T is a good symmetry, then the quantum mechanical transformation gives <
WIH|$ >=< TY|THTHTYP' >. Since the anti-unitary time-reversal operation T involves
complex conjugation, the T (and CP) is violated if the Hamiltonian H is not real, as the complex
conjugation will, then, mean that THT ! # I, From the structure of charged-current in SM,
it is evident that £ (hence H) is complex if the phase angle in the CKM matrix is non-zero.
Thus the CP violation in SM is attributed to the non-zero CKM phase.

It should be noted that for less than three generations of quark flavours, there is no CP
violation in SM as CKM matrix could, with full generality, be made real in such a case. However,
for the CP violating character of V not only the phase & is important. If any of the mixing angles
is zero, the theory can be made C'P invariant by reabsorbing the CP violation phase é into a
redefinition of the quark field phases. As for the leptonic sector, C'P violation is identically zero
in the minimal SM, but could arise if neutrinos are made massive.:

Another concept that has been advocated is whether CP symmetry might be violated in
a ‘maximal’ way as P and C are separately. But, it is not easy to find a resonable definition
of “maximal CP violation” because the definition should be invariant under a change of phase
convention or a parametriztion. The condition that the CP phase angle is equal to 7/2 for max-
imal CP violation in some parametrization does not meet this standard. In fact, the rephasing
invariant quantitative measure of CP violation was given in terms of elements of flavour mixing

matrix elements as
Jio = Im(V;pVi V], ) (2.79)

where i, j,k and «, /3,7 are cyclic. There are nine of these invariants for three generations case
and they all are the same. this invariant Ji, is a small quantity bounded from above as

Jioe < Vsl Vao||Ves|| Ves| < 1.8 x 1074, (2.80)

and is given explicitly in various parametrizations as follows

KM Jie = clcgcgs'ff,'gss sin &
Matani : Jio = clcgc;;sfswgsin o
, . - 1
Wol fenstein : Jio = A A%q(1 - 5/\2) - (2.81)



Then the “minimal CP violation” can be defined in terms of Jiy. Ji is maximal if
cos ) = 1/V/3, sinfy = sinfg = 1//2, |sin 6] = 1. (2.82)

Obviously, CP in nature is not violated maximally according to this definition.

Jarlskog[20] has defined a convention independent measure of CP violation in terms of quark
mass matrices as
(A AT @ pr@hy — e (2.83)
where C'is a traceless hermitian matrix whose determinant is a convention independent measure
of C'P violation,
detC = 2P F"Jyy, (2.84)
with

Fo= (mf = md)(mi — m2)(m? — m?)

I (m§ — m2)(mi — m2)(m? — m?) (2.85)

and it vanishes if two of the quark masses with charge (2/3)e or any two masses with charges

(—1/3)e are degenerate.

2.6 (P violation in neutral meson systems

As we have seen how SM incorporates CP violation, the next thing we would discuss is the
extent to which SM can account for observed CP violating effects through the phase in CKM
quark mixing matrix. The system of neutral Kaons is still the only experimentally established
system having CP violation since its discovery by Cronin and Fitch (1964). In this section we
introduce a general formalism that describes the CP properties of neutral mesons like K0 —
K0, D% D0 BY [0 etc, Although the I'® — [0 system is taken as the prototype , the results

hold for other mesons as well.

2.6.1 The Neutral Kaons system

Since both the strong and electromagnetic interactions conserve strangness, the neutral Kaons
K9 and K0 (characterised by definite strangeness) form the basis for the Hamiltonian Hs+ He,,.
But they do not possess well defined masses or life-times as a mixing between K© and KO is
caused by strangeness violating weak interactions. Instead there exist two independent linear
combinations of these states, namely ' and Kg ( having no definite strangeness but having
definite mass and decay rates) that are characterized by the differences in the mass and life-
times. The short-lived state K5 decays primarily through the 2 channel (with CP eigenvalue
+1), the long-lived state K, has many decay channels mostly going to final states with CP
eigenvalue -1 ie. 37 or 7F5 mode. If CP is respected in the above decays then it would
follow that Kg and@[\'L are eigenstates of (P with eigenvalues +1 and -1 respectively.

19



Witﬁ a convenient phase choice
CPIK® >= —[K% > and CP|K® >= —|K% > (2.86)

we define two C'P eigenstates as follows :

1

|7, >= —= K0 > £[K0 5], CP = F1 (2.87)

S

2

Then CP invariance would imply that
[Ny, >= |Ix"? > and |[Kg >= |I\"g > . (2.88)

But it was observed by Cronin et. al that |, > does decay into the 77~ mode ( CP = +1)

with a small branching ratio 2 x 1073, Hence, the states | K, > and |Ks > should be a more

general superposition of A% and KO as
|Kp,s >= Np s[|[K° > de®ts|K0 >, (2.89)
where £1,s are complex numbers and Ny, s the wavefunction normalization constants.

The mixing and decay of |K% > and ]Fﬁ > are governed by an effective Hamiltonian (
non-hermitian) # = Hg 4+ Hepm + Hyr = M — iI' where M and I' are 2 X 2 hermitian matrices
called the mass and decay matrices respectively. In order to study the time evolution of the
states we write them as a two-component vector which satisfies the Schrodinger’s equation,

0 (L K0 K° ‘
;"—" e = I PR = g ey ¢ o
ihs (A"O) H <KO> = (M —il/2) <K0> . (2.90)

The eigeﬁvalues of H are

] ) 1 -
Ers=mys = iv.s/2 = 5+ Ha /(i = Ho)? + 4Hiz Ha ) (2.91)

and the difference is given by

By — FEs=Am~iAy/2 = \/(Hu — Ha2)? + 4 H1g Hon). (2.92)

For I, s to be the eigenstate of [/ we must have

-

= 2L T and eits = -—I—————— (2.93)

Riy3
¢ 17 o

Now we use both CP7T and CP invariances to relate the elements of H as follows :

CPT: Hyy = < KK >=< K°|CPT) "H(CPT)|K° >
= < KOH[KY >= Hyy

= My = May, I'ty =T

CP: My = < KUH|KY >=< K°|(CP)"H(CP)|KO >
= < KOH|EY >= Hy,
= 1\112 = /\{[21, Flz = ]7‘2‘1 (294)
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Using the above relations, we get

_ ‘ i H
CPT : €& = £S:£:~5h(ﬁ%)

CP:e® = 1. (2.95)

 However the relation €' = 1 depends on the phase convention. To see this let us define the

phase rotation on Kaon wavefunctions as
K0 >— |K°>" = K>,
KO > |[K0>" = ¢ K0 > . (2.96)

Under this rephasing of the Kaon fields the diagonal elements of any operator O remain un-

changed whereas the off-diagonal elements pick up phases
(912 7 C)’w = €~2icyo-lg and 021 —— Olgl = €2ia021, V (297)
and, hence
£ — & =£42a (2.98)

thus the basis independent condition for CP invariance is that £ be real. There exists a phase
convention dependant parameter ¢ that is often used as a measure of CP violation as follows :

1 — e'¢

Next we consider the decay of neutral Kaons to 27 mode. Bose-Einstein statistics demands
that the 27 state be in either I=0 or I=2 where | denotes the total isospin. Parametrising the

K° — 27 amplitudes as
4 < | Hop | K0 >= e n=0,2, (2.100)

where |n >=|2m; 1 = n > and §,, is the 27 s-wave phase shift in the |=n channel, we found out
that CP7 invariance implies @;; = —aj, whereas CP invariance demands that the ratio az/ag

be real. Under the phase rotation
a, — a!) = aye'® (2.101)
and hence the following combinations are independent of phase choice convention :

<Ok |Kp > ag — aje't

¢ = : = —
0 <Okl Ks > ag+ ajet
o = Ml_< 2| K, > _ 71_:&2 - a-’z“e’:ﬁ: 4i(62=50)
V2 < Ol H | Ks > V2 ag + age't
20H i | K s — et
w o= SAHwdls > an —~ dge (2.102)

< OH | Ks > ao+ ajet



For ‘the neutral Kaons system the CP violating quantities, which are directly related to

physical observables, are

!

e = S wta T | Hop| K > eo+e o + €
! T o<rtr | HulKs > 14w/V2 0 1+ w/V2
w00 | K > 9 — 2¢€ 2¢
0 = STTMwllL > -2 0 2 (2.103)

- o =¢ .
< w070 Hyn| Ks > 1 - Vow °T - Vow

where
€ = ¢y — 20 2.104
2= (2.104)
In terms of the matrix elements of A and ' then
. ; I'm(Mqad) — ilm(Ty2ad)
o = 1 . ; a2 .
Re(adMiz) ~ § Re(adl'12) + LQQ-E(Am - 54A7)
oo _i_ [nz(a.ga'g)(A?Tz - —;—Ary‘zflt(ér&)) | . (2.105)
V2 Re(a}Myz) — 5 Re(all1a) + = (Am — A7)

Now we will simplify these general expessions to the special case of neutral Kaons and use
some experimental results to obtain the approximate but easy to handle expressions. Experi-

mentally we have

my = 0.498 GeV
Amp = 35x 1071 GeV
Ay = —yre=—T73x 1071 GeV
It~ = (2.275+0.021) x 1073
%] = (2.299 £ 0.036) x 107>, (2.106)
The dominant contribution to I';3 comes from the 27 states and more specifically the |=0 state.

Thus
Py ~< KO HAS=Y0 > < 0| HAZ=Y KO >, (2.107)

wk

and hence
Imlyy  Im(af)?

Relig — Re(ay)? (2.108)

The AT = % rule for neutral Kaon decays manifests itself through a small suppression factor
w 2 0.045 (2.109)
Using the value of w along with the experimental numbers for 5+~ and 7% we get
leo| = 2.3 x 1073, (2.110)
and the phase of ¢y is approximately 7 /2. this small value of |¢o| gives the inequalities
Iy ReM gy < 1,

[mliz/Rel'yy < 1. (2.111)
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Figure 2.1: “Box"-diagram generating Ko — K mixing and €y in the S/

W+

Yi

T : Jpo

d d
Figure 2.2: “Penguin”-diagram responsible for €} in the SM
Consequently, the mass and width differences in the above approximations are given as
Amp = 2ReMyz, Ay =~ 2Rel'y,, (2.112)
and

1_71_‘_1_[77‘1,/\/112 L ImMy,
OB TAMy T 92 Reyy

(2.113)

In the 3—generation S'Al, which, for a complex C' [ M matrix, is a milliweak theory, Iy ~ K0
mixing and K';, — 27 come about because of the 1-loop Feynman diagrams in Figures (2.1)

and (2.2) respectively, giving rise to

G ; 9w 2 . .
Imply, = 1—1-2—71?,31‘,‘"\—111./\"”1.5“, B {/\fmé(yc) + A8 5 (y) + ,\c/\¢7735(yc,y¢)] , (2.114)

and

150M eV r _

S13823 Lo
tan by = siné [ —
S19 mg(l GeV)

(2.115)
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where

/\,‘ = IX"&R’{S i = 777’?/771?4’ (2 116)
frr = 0.16GeV mw = 8L8GeV. .

Whereas [ is the pion decay constant, the bag parameter By reflects our ignorance of the
hadronic matrix elements. If vacuum saturation approximation were correct then one would
have By = 1, but theoretical estimates only put the rather loose bound of 1/3 < B < 1. The

functions S(x) and S(x,y) arise from the loop integral and are given by

i

Sa)

t [ls + 4(19—9:) - 2(133;)?] +3 [1-31]31“”’
S(z,y) Lz

1 3 3 Inx 3 1 1 . o
©y {z + T T } i 5‘1“:5?:5} + (2 < y)

fl

The quantities 1; represent QC' D corrections [25]. While 7, does not depend on m; and is
evaluated to be 0.85, 1 is essentially independent of m, for 40 GeV < m?hys < 130 GeV and
2 = 0.61. 5z and I are slowly varying functions of m, and are approximately 0.25 and 0.37
respectively [26]. However we shall allow for their full variation in our calculations.

2.6.2 The Neutral Beauty meson system

Although CP violation has been observed so far only in neutral Kaon decays, one would expect
to have non-zero effects in other processes onvolving heavy neutral mesons like B — BO and
D° — DU if one believes the KM mechanism for CP violation is correct. The phenomenology of

the BY — B9 systems is quite similar to that of KC — 0. The physical situation, however, is
very different since B involves the bound states of a heavy quark a light quark and there are
many intermediate states and the multi-particle final states dominate the decay as the case in

deep inelastic scattering.

A new property which makes the B system very interesting is the recent observation of
By — By mixing by the ARGUS collaboration. Their result fully justifies the expectation that
the studies regarding neutral beauty mesons can reveal new phenomena and motivates the
serious consideration of C'P assymetries in this system. To study this particle-antiparticle mixing
consider the time-integrated mixing parameters proposed by Pais and Treiman [6.4 p]

(Amp)? + (Al'g)?/4
21’}3 + (Amp)? + (ATp)?/4
(Am—B;)? + (AFE)Q/ZI

IS < Ba|By > |*dt

I = = - = iﬁBd 2
¢ fOWI < By|Bg > |*dt le |

_ Pl < Ba|Bg > [Pt e
Tl = (’OOI __fl-...i I,2 = le E”dlz‘ 3 5 s (2.117)
Joo | < Ba|Ba > |*dt 25+ (Amp;)? + (Al'g;)? /4
If CP is violated we expect r to differ from ¥ by a quantity proportional to
| Ta |2 e0a|? x5 8 Ree, o] < 1, (2.118)

otherwise 7 = 7. The above considerations are relevant for reactions where only one B® or By
meson is produced., However, often in the actual experimental situation a pair of BY and By is
produced instead of a single BY or ;. As the beam evolves in time, both of them oscillate in
their B9 and By content and one cannot directly measure either ry4 or 7y,
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Okun, Zakharov and Pontecorvo proposed the observations of following two parameters in

dilepton decay mode, characterising particle-antiparticle mixing

Ntt 4 N—- .
Rd = m‘? (2119)
and the CP violating leptonic charge assymetry
' N
N v (2.120)

Ay =
L= Nt Nt-F N-F+ N—-

where N's denote the number of dilepton pairs with the associated charges. For example, in

the process

ete”™ — T(45) — BIBy (2.121) -
these relations reduce to
L rd — Td
ftg = (7 Tq)y Ad= g .
fg = 5(ra +7a), Au R (2.122)

Neglecting the possibility of large CP violation and introducing the approximation AI'/Am =~

0 we have .
(Amy/Ty)?

g = -

CT Y (Ama/Ty)?
If one assumes that for 3 generations SM with a relatively heavy top quark, the dominant
contribution to 7y comes from the corresponding box-diagram with the top flowing in it then

(2.123)

R f )
xg = (Amg/Tq) = Tbg;’g"lMB (BBfé> My f2(9) | Vi Vial? (2.124)

where 7g is the BY lifetime, fp the decay constant, Bp the bag factor and 17 a QCD correction
factor.

The ARGUS result permits the range

Amp = (4.240.9)x 107%GeV

or vy = 0.73+0.18
and mp = 5.28GeV, Bgff = (0.154 0.05GeV)?
n = 085 5 =(1.16 £ 0.16) x 107'%s (2.125)




Chapter 3

Symmetric Quark Mixing & Some
Consequences

3.1 Symmetric Ansatz for quark mixing

3.1.1 CKM matrix with symmetric moduli

Apart from the masses, the other existing free parameters in the standard model are the three
mixing angles and a CP-violating phase, which are incorporated into the quark sector of the stan-
dard model via the Cabibbo-Kobayashi-Maskawa (CKM) matrix V. All the presently available
data [21] is consistent with having symmetric moduli for CKM matrix i.e.

IVij] = Vil (3.1)

It should be noted that for three generations, the assumption that V has symmetric moduli
implies a single constraint on the matrix V because the unitarity requirement alone yields

A= Vol = [V [* = [Vay [ = [Via]? = [Vag|? — |Vag|? (3.2)

for three generations. The fact that experimentally the asymmetry parameter A is, in general,
small i.e. A < 107" and in particular |Vi3| and |V4;] are quoted to be same modulo the errors
and both of them lie between 0.217 and 0.223 prompted us to believe that V has symmetric

moduli.

It is well known that the individual phases of V; ;; is devoid of any physical meanlng, since
under rephasing of the up and down quark fields the non-physical individual phases v; and f3;

of ¥ transform as:
Vij — (Vij = Vijeap(y; — B:). (3.3)

Now, we consider the questlon whether starting with symmetric moduli one may use the rephas-
ing freedom of the CKM matrix to obtain also symmetric phases. In other words, whether
starting from an arbitrary V, it is possible to achieve ar g(V')i; = arg(V')j; by an appropriate
choice of 4;, A It was shown by Branco and Parada that in general this is not possible for
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arbitrary V, but it is possible for a three-generation CKM matrix with symmetric moduli. In
fact, to achieve arg(V’);; = arg(V');i, the following relations has to be satisfied

arg(V")ij — arg(V')ji = vi — v + Bi = B + 2nr. (3.4)

In order for the above equation to yield a solution for 7, f;, the imaginary part of a rephasing
invariant sextet consisting of the off-diagonal matrix elements of V, namely

Imi(ViaVaaVa Vo1 " Via™Vag™) = 0. (3.5)

The above equation is a necessary condition to have symmetric phase of V' for any number of
generations (N > 3). Obviously, for N > 3 there are other conditions, analogous to the above
equation, which need also be satisfied in order to obtain symmetric phases. For three generations,
symmetric moduli of the CKM matrix lead, through unitarity, to the above condition. To see
this, consider the orthogonality conditions for the first two rows and first two columns of the
CKM martix :

Vil Vo + ViV, + VisVys = 0,
Vi V{‘Q + VmV{z + V31 ‘/3*2 = 0. (36)
if one multiplies the first equation by V5; and the second by V51, and assumes [V;;| = .|V,

then one obtains, by subtracting the resulting equations,

ViaViyVar — Va1V Vaz = 0, | 3.7)

‘

which in turn implies the vanishing of the imaginary part of a rephasing invariant sextet consisting
of the off-diagonal matrix elements of V. It can be readily verified that for more than three
generations, symmetric moduli of V' do not imply symmetric phases through unitarity. For
example, for four generations, even if one has exact knowledge of the moduli of V, with |V;;| =

Vii|, this would not imply a symmetric V.
3 Y

3.1.2 Generalised two-angle parametrization

In general, four independent parameters are required to characterize the CKM matrix for three
generations. But, assuming V' to be symmetric implies a single constraint and, as a result,
one needs three parameters to characterize the most general symmetric CKM matrix for three
generations. A symmetric form for the CKM matrix, with two parameters was first proposed by
Kielanowski and was generalised later by Blundell, Mann and Sarkar. It was also pointed out by
Blundell et. al and Branco and Parada that Kielanowski had implicitly assumed a restriction on
the free parameters of a symmetric CKM matrix.

Now we consider the generalised two-angle parametrization of the CKM matrix. The rephas-
ing freedom of the quark fields implies that two CKM matrices V and V" are physically equivalent

provided
V=U,UV"} Uy, (3.8)
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where U = diag(e'®",e'??,¢'*) and Uy = diag(1,e'¥,e'¥?). Let \; and w; denote the eigen-
values and the eigenvectors of KM matrix V. The eigenvectors of V may be constructed in
terms of three angles (1, 82, f3) and one phase a. The eigenvalues of V satisfy its characteristic

equation .
P k1/\2 + kol — ks =10 (39)
where ky = 12V, ky = 1[(trV)? — tr(V?)], and ks = detV. The unitarity of V gives ky = kiks.
Let trV = wxe'?/3, a general complex number with real parameters and detV = e'®, a phase.

Then the characteristic equation becomes

A e\ g e2B) it = (3.10)

whose solutions are

AN = %ei""’/a(:v —1=1V/3+ 2z — a?)
Ay = %e“'f’/S(:L- — 14 iV3 + 22 — 2?)

Ag = €3 (3.11)

for —1 <@ < 3. Unitarity of VV implies that the only relevant range of 2 is —1 < 2 < 3. Note
that the factor ¢'*/3 will vanish in the magnitudes of KM matrix elements, and in the rephasing
invariant plaquette J, so the observables are independent of detV. Since J = 0 for z < —1
and & > 3'we will examine the range —1 < 2 < 3.

The CKM matrix has three orthonormal complex eigenvectors. The normalised eigenvectors
are determined upto a phase. Thus we can choose one nonvanishing component of each vector
to be real. The two remaining arbitrary phases can be chosen in such a way that one eigenvector
is real. We use the following parametrization of the three eigenvectors of KM matrix with the

above properties:

C —81C3 $183
wyp = | S1c2. |, wy = | crepeg — 883" |, wz = | —crco83 — sac3et (3.12)
8189 c189c3 + CQS;}G)IG —C18283 + CQC3€'G

where ¢; = cos(f;) and s; = sin(f;) and the KM matrix V is written as

3
V=3 \iw @] (3.13)
=1
In the case where /33 = 0 and a drops out, we write the magnitudes of the elements of symmetric
KM matrix in terms of three parameters i.c. = and two angles 31, as:

I
Vul = \/1 - T‘sil’"’z(‘z/jl)(3 + 22 — 22)
1 -
Wizl = Ssin(2h)eos(B2)\/(3 + 20 — 2?)
1 . o 7 {
l\qaf = E5'171,(2/31)5'171.(/}2) (3 + 22 — 22)
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[Vaz| = \/1 - 35'1771'9(2/32)‘[3 ~ ] - é&in'z(?ﬂl)cos“(ﬂg)[?) + 22 — a?]

Vo] = %3171,('2/32)\/[3 -] - 35i7z2(2ﬂ1)[3 + 22 — a?]
|Vag| = \/1 - %sinQ(‘Zﬂg)[S — ] - %sivﬂ(?ﬂl )sind(B2)[3 + 22 — 2?]
(3.14)
3.1.3 Restrictions on the eigenstates and eigenvalues
Since the CKM matrix is unitary, it can be diagonalised by a unitary transformation
V=WEW™ K = diag(e'!,e'?, %) (3.15)

where caplio;) are the eigenvalues of the CKM matrix, corresponding to the eigenstates with
components w;;(j = 1,2,3). The asymmetry parameter A can be expressed in terms of the
eigenvalues of V and the combinations of the elements of the matrix W as follows:

A = —dI[sin (o) = 09) +sin (3 — o1) + sin (o2 — 03)], (3.16)

where [ = I'm(W Wy W[, IWV5 ). From the above expression for V it is obvious that the reality
of W is sufficient in order to have a symmetric V. It was shown[21] that the CKM matrix is
symmetric if and only if the matrix IV is real, apart from irrelevant overall phases for each one .
of its columns. We have also reached the same conclusion (see the subsection 3.2.2). One can
easily verify that if two of the eigenvalues are degenerate, then |V is necessarily symmetric and
the eigenvectors can be chosen to be real. Note that the asymmetry parameter A vanishes when
two of the eigenvalues are degenerate and / or when the matrix ¥ is effectively real (i.e. I = 0).
The fact that experimentally A is small provides an indication that two of the eigenvalues of V
are close to beiing degenerate and / or W is close to be ‘effectively’ real i.e. I << 1.

3.2 Consequences of Symmetric quark mixing
3.2.1 Top Quark Mass and a Symmetric CKM matrix

We pursued' the investigation of symmetric quark mixing (ie a symmetric CKM matrix ) in
conjunction with CP-violation in the neutral kaon-system and the extent of the B3~—1§gmixings
to find out what constraints it put on parameters like m, etc. of SM. We used the standard
parametrization[12, 13] for CKM matrix described in the introduction.

The relation [Viz| = [Vai1] obviously restricts one to a three dimensional hypersurface in the
Parameter space spanned by s12, s93, ¢ = |Via|/|Vas| and 6. While J = I'm(Vi3 Voo V5 V34), the
rephasing invariant measure of CP-violation, does vary with s53, ¢ and § do not show any such
variations, as their dependence on 33 is very weak. Taking s12 and sg3 as phenomenological

1 . . N . g
This section is based on the work reported in ref.[22
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inputs from (2.69) and (2.74) leaves us with a a curve in the ¢—6 plane for fixed values of sio
and sga. For the situation described in ref. [23] the curve shrinks to a point. By determining
whether this curve lies within the region in the ¢—¢é plane allowed by the ‘¢jc and B~B mixing
data we are therefore able to obtain limits on the mass my; of the t-quark as a consequence of

the symmetric CKM ansatz since these latter quantities depend upon my.

The KO- system indirect CP-violating measure ¢ in the CKM picture is expressed as
(24]

il = €+ B - skyqsin(6) [ falv) = 1) vesra + myefa(ue)shs (s12 = geos(8))]  (3.17)

where

C = (G]?‘f]\" Af“’ )2]".[]\

612v2(AM)
, 3yl + Yt) [ 2y, ]
Jalye) 1) L+ = " In(y:)
Yt 3w T, Ye } .
y) = (=) - L |14+ ——1 1
Jotn) ll(;m:) 41—y,[ t oy (3:18)

and y; = m?/M3, (i = c,t). The parameters 7; are QCD corrections [25]

m = 0.7, 72 = 0.6, 73 = 0.4 . (3.19)

The experimental result |e;c] = 2.3 x 1073 gives a parabola in the ¢-§ plane for given B,
93 and m,. The Bag factor By is very poorly determined and various theoretical estimates only
find the bounds 1/3 < By < 1. The expression for the B};—’Ef’, mixing parameters z4 = AM /T

is on the other hand,
(—’,1'2? . «
va = mssuMp (Bah) Miu oyl VaVial? (3.20)

where Mp = 5.28GeV, Bpff = (0.15 £ 0.05GeV)? and the QCD correction n = 0.85.
Experimentally |Vjy] ~ 1 to a high degree of accuracy and

[Vigl? = $24(57, + ¢* — 2s12qcosé) . (3.21)

The ARGUS result[27]
xy = 0.73 4+ 0.18 (3.22)

thus gives another curve in the ¢—é plane for given sy3 and m,.

It is straightforward to see that the symmetric ansatz implies a strong lower bound on m,.
Eq. (3.20) shows that a4 ~ m?|V3;|? which by the symmetric ansatz is m?|V13]?. However egs.
(2.74,2.75) impose a severe upper limit on |Vi3], in turn yielding a strong lower bound on m,.

In our numerical analysis we hold By and m, fixed and consider the total variation of all
other parameters, taken in quadrature. Thus we get two interesting bands in the ¢~§ plane

30



w
—

g vs. delta

0.30
028"
026
024-
022-

q 020-
018-
016-

014+

ol24

0.10
10°

S delta

I ! I T I T I ! ]

20° 30" 40° 50" 60"

Figure 3.1: The symmetry curve for ¢ vs. §. Note that the existing data implies that
8.0° < 6 £32.0°



coming from € and zq4. If this zone does contain the curve obtained from the symmetrical
ansatz, then the assumptions are obviously valid for the given choice of m; and Bg.

A plot of the curve in the g6 plane for the symmetric ansatz (henceforth called the symmetric
curve) is given in fig.(3.1)

We find a very narrow curve considering all the variations of s;2 and sp3. We next superim-
pose on the symmetric curve in the ¢=§ plane curves parametrizing the regions allowed by the
experiments with B—B mixing and the measurement of ¢y [28].

We find that when the top quark mass is lighter than 180 GeV, the symmetric curve does
not intersect with the ARGUS measurement of 4, implying that the top quark must be at least
this heavy if the symmetric ansatz is correct. Imposing the K-K mixing result we find that for
B = 1/3, the symmetric ansatz implies m; > 275 GeV (although for Bx = 2/3 and 1 the
lower limit of 180 GeV is unaltered). Alternatively, for given values of m;, when the symmetric
curve overlaps with the measurements of 24 and ex we find that the symmetric ansatz allows
only a restricted range of values for ¢ and §, i.e., the CP-violating phase is not completely
‘arbitrary. The value of & lies between 8° and 31°, while ¢ is restricted to lie between .113 and
.13. We have shown the allowed regions of ¢ and § for different m; values in figs.(3.2, and 3.3)
for two different values of B, namely, By = 2/3 and 1.

The experimental constraints imply that 2 must lie between —0.882 and .02. We also show
the allowed regions of the parameter z for different values of m; in fig.(3.4). From the allowed
region of z for different m;, we can immediately conclude that 2 = 0 is allowed for m; about
185 GeV, in accord with an earlier result of Rosner [30]. '

We find that if the CKM matrix is symmetric then the top quark mass has to be heavier
than 180 GeV, to be consistent with the experiments on B~B mixing and the measurement of
ex; if the bag constant By = 1/3 then m; > 275 GeV. The parameters ¢ and ¢ are constrained
to be in the range

130> ¢ > 113 8.0° < § < 31.1° (3.23)

for the symmetric CKM matrix over the allowed range of the top quark mass.

3.2.2 Symmetric CKM matrix and Quark Mass matrices

The importance of studying the mass matrices lies in the fact that the structure of the quark
and lepton mass matrices determines the flavour dynamics of the standard electroweak theory.
However, the elements of these matrices cannot be predicted within the standard model as
quark and lepton masses are the free parameters within the model. Furthermore, there exits an
infinite nur_nber of mass matrices, related to each other by unitarity transformations, which yield
the same physics. We have tried? to find out the constraints imposed on the form of the mass
matrices due to the symmetric CKM matrix. In the basis, where the up-quark fields are mass

*This section is based on the work reported in ref.[29]
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eigenstates, M (%) is diagonal i.e.
M, = (liag(mu,mc,mt) (3.24)

In general the matrix M@ is not hermitian, but we assume M(4) to be hermitian and write the
most general hermitian M(4) is given by

M@ = b, + A, (3.25)
where . .
0 R1 e*Pt Rzeim
A= Rie™1 f Rae'f? . (3.26)

Rze“"’2 R3e_£93 d

Thus the mass matrices are a ten parameter family determined by m,,m.,
me, h, f,d, R1,23 and the invariant phase (p; + p3 — p2) [32]. Taking the trace of both the sides
of equation, we obtain the constant h in terms of parameters of mass matrices as

b= (mg+ ms +mp)— f—d
(my + me+my)

(3.27)

Since the identity of the quarks is defined in the basis where the mass matrix is diagonal, the
flavour projection operators[20], denoted by P, and P’; (a,j = 1,2,...,n) are introduced to
keep track of the identity of quarks in any arbitrary basis, where the mass matrices are arbitrary,
by projecting out the appropriate flavour. They are given by

Pa(S) = va(5)/v,
Pi(8) = (8, (3.28)

where the hermitian matrices §(= Al(“)M(“)T) and S'(= M(d)M(d)T) has non-negative eigen-
values

(21,22, .., Tn) = (my%,m,..0),

(@'1,2'2, 0 2'n) = (ma?,m,?,.0), (3.29)
respectively and v is a Vandermonde-type determinant given by
v =021, 22,0 20) = g oz — 24); B> c (3.30)

The quantity v’ is the primed version of v, whereas the quantity v, is obtained from the v by
replacing z, by the matrix S and all other xg, # a by 3l where I is the unit matrix, Thus
Vo is @ m X n matrix. For example, for n = 3 we have

V= U(wl,m2,$3) = (11:3 - 11,‘1)(11,‘3 b :l!g)((l,‘Q - (171), (331)

and

v1(5) = (23 — w2)(z3 — 9) (22 — ). (3.32)
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These projection operators are hermitian and have unit traces. They can be used to express the
measurable combinations of the CKM ‘matrix elements in terms of invariant functions. of the

mass matrices.

To incorporate the constraint due to the symmetry of CKM,we use Jarlskog's flavour pro-
jection [20] operators to express the mod square elements of V in terms of the matrices S and
S as .
lvaj|2 = tT[Pa(S)PJ{(S’)]a (3'33)
where the first and second indices denote the up and down quark sectors respectively, and the
flavour projection operator in S is given as
(5 = 21)(S = 22)...(§ = 2a)]

(2o — 21)(za — 22)..(Ta — )"

Po(S) = (3.34)

with [..]" to mean that the factor (S — 24) in the numerator and the factor (z4 — z4) in the
denominator must be left out. The expression for P,(S') is obtained by replacing «, S, z, by
J,§" and 2], respectively. Then, the symmetry condition

|Vaj‘2 = leGIZ ‘ (3.35)
is translated into a relation involving the matrices S and §' as
tr[Pa(S)PY(S") = r[ Py(5) PL(5")]. (3.36)

Since the matrices M) and M (@) of our choice are hermitian, we have done all the calculations
in terms of invariant functions of the matrices A/ () and M@ instead of S and §'. Considering,
in particular

2 2
Via[* = V[, _ (3.37)
we obtain the constraint condition due to symmetry of CKM matrix involving the parameters
of the mass matrices as

[R? + R2 + (hme + f — my)(hm + f=mp)]+
1 3
T4 [RY + R+ (hmy — mg)(hmy, —my)] =0,

mMmp~—~1my

(3.38)

In general, it was not possible to find out the form of M(? based on the general consraint
involving all the parameters. But, an interesting point was noticed when we calculated the CP
violation mesuring plaqutte J in terms of .S and S using [33]

T (8)(8" us(S 4 (5")

v’

tJ=1I (3.39)

It was found that if any of the Ri1, Ry, R3 is chosen to be zero along with M@ being diagonal,
then J is zero impling such a choice is not allowed for three generations. Thus, we note that
in the basis in which M) is diagonal, no off-diagonal elements of M(4) can be made zero
consistent with the CP violation in the quark sector for three generations,

The numerical calculation was done to find out whether any of the off-diagonal elements of
the mass matrix M%) is consistent with zero. To find out numerically the allowed ranges for
the elements of the mass matrix M (%) we note that M can be written as

M@ = DYMyD = V MV, (3.40)
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because a diagonal form for M%) implies U = I and D = V!, For a symmetric V it reduces to
M@ = v MV, (3.41)

Since any unitary matrix that diagonalises a hermitian matrix can be written as the product of
an orthogonal matrix and a phase matrix, we write , in this basis, as

V= OvPv; (342)

where the phase matrix P, carries all the informations regarding the CP violation in quark sector
for three generations. Then, the ranges for the elements of the M (@) were calculated using the
eigenvalues of M (%) and the mod of the elements of V. The allowed ranges for the elements of
M) in GeV are found out to be

0.0117 - 0.0052 0.0549 — 0.0207 0.0409 — 0.0059
M@ =] 0.0549 — 0.0207 0.2374 — 0.1186 0.3261 — 0.1591 | . (3.43)
' 0.0409 — 0.0059 0.3261 — 0.1591 5.3962 — 5.1824

Similarly the allowed ranges for the elements of M (%) are found to be

0.1137 - 0.0657 0.4209 — 0.2818 1.9774 — 0.1881
M®™ = | 04209 - 02818 2.2736 — 1.3885 16.312 — 5.4287 , (3.44)
1.9774 — 0.1881 16.312 — 5.4287 ' 279.78 — 179.38

in the basis where M (9 s diagonal.

Since the CKM matrix V = UD?, where U and D are unitary matrices that diagonalise the
mass matrices M (%) and Af(d) respectively, then the symmetry condition for V je. V = VT
will be fulfilled by the necessary and sufficient condition involving the matrices U and D

U=DUTD. - (3.45)
Consider the product of the matrix P(= UTD) with its complex conjugate P*:
P*P = (UTD)(WTD) = Utp*yTp. (3.46)
Now, the use of symmetry condition and the unitarity of U yields
PP*=UU = 1. (3.47)

Thus, we have seen that Pis a unitary matrix which is also symmetric. Hence, the most general
condition for V' to be symmetric is

D=U*P, (3.48)
which helps us to write the symmetric V as

V=UD'=upuT, (3.49)

Since the unitary matrix U can be written as the product of a phase matrix P, and an orthogonal
matrix O, i.e.

U = OuPua
ut = proT (3.50)

w
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we reduce the symmetric V to
V = U(U*P)! = 0,P,P*P,OT. (3.51)

The choice of P to be a phase matnx is a special but interesting case because for such a choice

of P we can write either
MW = f(M@"y or M® = g(M@7), (3.52)
For such a chioce of P, we write the CKM matrix as
V =0,POT, (3.53)

where P is a phase matrix. Then one of the choices for the mass matrix M4 is a function of
M as follows: ,
MWD = p(M@™N2 4 qp ™" 4y, (3.54)

where the parameters p, q, r are introduced to retain the mass hierarchy for the down quark
sector. Upon diagonalisation of both sides of the above equation,we obtain three equations
involving six quark masses and three unknown' parameters P,¢,v which can be determined
uniquely. These three parameters are given in terms of the quark masses as

M
p = )

MMy

mg
g = —

me

mg

TO= Mg — My (3.55)

[+

To get the ranges of the mod elements of the mass matrices for the case when P is a phase
matrix we proceed with the numerical calculation using a convenient parametrization [34].

Comeparing this general form with the form of symmetric V, we see that if A is recognised as
P then the general form is reducible to symmetric form only if W is.real. Thus we conclude that
the reality of W is a necessary and sufficient condition for having a symmetric CKM matrix. Then
it is evident that the choice o = 0 will make V symmetric within the above parametrization.
In this parametrization all the mod elements of V were written in terms of z as well as the
angles. Consider the case when 83 = 0 and a drops out. Then the mod elements of CKM
matrix relevant to our discussion are:

Vil = /1= (1/4)sin2(26)(3 + 2 — 22),
Vial = (1/2)sin®(261)cos(262)1/(3 + 2z ~ z2),
Vil = (1/2)sin®(2B1)sin(2B2)\/(3 + 2z — 22). (3.56)

The experimental constraints i.e.the values of the magnitudes, p = |Via/Vas| and J imply[22]
that @ must lie between ~0.882 and 0.02. We then solve for P and 35 by inverting the above
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equation and using the the magnitudes of the first row of V and found out the allowed ranges
to be
B
B2

Consider.the case of @ = 0. Then the elements of the matrix W are functions of 3 mixing
angles f1, 02 and (3 out of which two are independent and we recognise O, = W. Then, the

0.1265- to 0.3605,
0.0040 to 0.0320. (3.57)

I

it

unitary matrix U is given as

U = O0uP,=WPy
P, = diag(e'®,e'??, '), (3.58)
Using the matrix U and assuming the matrix M(*) to be hermitian, we can write the mass

matrix M (%) as

M = UtMU = PWITM WP, (3.59)

and the mass matrix M(4) as

MY = D*MyD = P*P,WT MyW P P. (3.60)

In our numerical calculation, we use above mentioned ranges of the angles 8, and 3, to
calculate the ranges for the mod elements of the mass matrices using the above equations in this
two-angle parametrization of CKM matrix. The allowed ranges in GeV for the mod elements of

M) in GeV are:

0.1799 — 0.0242 0.4609 — 0.1617 0.0147 — 0.0006 '
M®™ = | 0.4609 - 0.1617 1.6636 — 1.1413  8.9172 — 0.7141 | . (3.61)
0.0147 — 0.0006 8.9172 — 0.7141 279.93 — 179.87

and for the matrix M (9 are:

0.0386 — 0.0081  0.0738 — 0.0135 0.0023 — 0.00005
M@ =1 0.0738-0.0135 0.2318 — 0.1059 0.1692 — 0.0198 | . (3.62)
0.0023 — 0.00005 0.1692 —0.0198 5.3995 — 5.1947

Basis independent symmetry constraint

In the previous sectioné, we have given the ranges of the elements of the mass matrices M, and
Mg allowed by the symmetric CKM in two different bases. In this section we give the symmetry
constraint written in a basis independent form. As we have seen in the previous section, the
condition |V}3| = [Va1] implies

tr[ Py (M) Py(My)] = tr[Py( M) Py (My)] (3.63)

which can be rewritten as
tr{es VIPU(M)V Py(My) — eV By(M,)V Py(My)] = 0 (3.64)

40



where the constants ¢; and ¢y are functions of the mass eigenvalues and

Pio(M,) = UPy o(M,)UT:
Pia(My) = DP]J(Afd)DT (3.65)

Consider going from a unprimed basis to a primed basis by the following transformfations:
U'= AU, D'=BD (3.66)
where A and B are unitary matrices. Then the CKM matrix in the primed basis is
V' = AV B? (3.67)
Requiring V' = V relates A and B through the matrix V as follows:
A=VvBvt | (3.68)
Then use of symmetry of CKM matrix in the primed basis yields
A =VBV~, (3.69)
The mass matrices transform under this basis transformation as followes:
M, = AM, A" | M, = BM, B! (3.70)

But the difficulty in using these expressions to find out how the mod elements of the mass
matrices transform under this basis transformation is that it is not possible to seperate out the
phase from the the mass matrices in the primed basis for any general unitary matrix A and B
after the transformation, '

Firstly, we write [31] the symmetry constraint as an equation involving the parameters of
the mass matrices using flavour projection operators of Jarlskog[20] in a basis where M) s
diagonal. In general, it was not possible to find out the form of (%) based on the general
consraint involving all the parameters. Also we give the numerical ranges for the mod elements
of M(4) in this basis. Then, we wrote the necessary condition for having a symmetric V in
terms of the matrices U/ and D as

U=DUTD (3.71)

We chose a particularly interesting basis where U = D*P P being a phase matrix and gave
the ranges for the mod elements of M@ M@ s that basis using a convenient parametrization
for V. We noticed that non of the off-diagonal elements of M(*) and M (@) is consistent with
zero for a symmetric V, which means such forms for mass matrices cannot be obtained from
any symmetry. But, in principle there exists infinite number of other bases related to each other
by similarity transformations. So it js apparent that the numbers we provided for the allowed
ranges of the mod elements of mass matrices are not basis independent. Finally the symmetry
constraint is written in a basis-independent form.



3.2.3 Rank One quark mass matrices and Phenomenological constraints

Recently in an interesting letter[35], the results of the studies on the approximately symmetric
KM matrix based on eigenvalues of the KM matrix and the rank-one quark mass matrices were

reported. In this new scheme, the up and down quark mass matrices are given as
MW = kyMo + Xy; M@ =kpMy+ Xp (3.72)
where ky and kp are numerical constants; My is a 3X'3 rank-one matrix defined as
(Mo)ij = hihj;  h = (g1,92,93) (3.73)

with gi(i = 1,2,3) being real and the matrices Xy and Xp are correction terms that have to
be added to Mo to obtain the non-zero masses of the light two generation quarks since the
rank-one mass matrix Mo has only one non-vanishing eigenvalue. These quark mass matrices
are diagonalised by unitary matrices as follows

M) (diag) = UyUo(kyMo + Xu)(UyUo)™?,
M9 (diag) = UpUs(kpMo+ Xp)(UpUs)™L. (3.74)

where Uy diagonalises the rank-one matrix My and is given as

g2 ol 38
Ny Ny O 2

Ny =\/g? + g3, N3 = /gt + g2 +g%, Na= Ny xNs. (3.76)

Then the KM matrix V is written in terms of its eigenvalues and unitary matrices Up, Uy, and

with

Up as follows
V = (UyUo)K(UpUp)™Y; K = diag(e'?, €2, '), (3.77)

In this scheme KM matrix is symmetric if Uy and Up are the unit matrix because then matrix
Up is real. In this work®, we mainly comment on the results given in this scheme related to
perfectly symmetric KM matrix. We started with the most general parametrization of KM
matrix for three generations in terms of three angles and a phase[12]

It is easy to see that the symmetry condition for KM matrix reduces the number of inde-
pendent parameters from four to three. For example, taking

Via|? = |Vay|? (3.78)

puts the constraint
siy = sha(sty + 1% — 2812R cos §) (3.79)

where I = |Vi3/V33|. Hence the four parameters 01 = 03,02 — 03,01/93,92/ 93 used in Tani-
mato’s paper[35] to express the matrix elements of the perfectly symmetric KM matrix cannot

*This section is based on the work reported in ref.[31]
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be indebendenf of each other as the above constraint can be translated into an equation relating
them. To demonstrate this in a simpler way, consider the generalised two-angle parametrization
of KM matrix[34]

To establish the link between this parametrization and the new scheme[35] consider

Ai = exp(iog); 1=1,2,3. (3.80)
Then we can write
eilor—o3) A /A3
ei(ggua‘“) = )\2//\3 (381)
Denoting o1 — 03, 09 — 03 by 61,05 respectively and using the expressions for the eigenvalues
we obtain .
ellrté) = (3.82)
which implies

Thus we see that the parameters 07 — 03 and 03 — o3 are not independent in general and we
have to be careful while choosing their values.

Now we relate the angles (1,2 to the parameters g1/g3, g2/g3. Since the eigenvectors of
KM matrix are given by eqn.(3.12), we compare the elements of the matrix that diagonalises V'
for the case 33 = 0 with that of the matrix Up and get

g1/9s = —s182/c2
92/95 = -—cisafca. (3.84)

Using the expressions for the KM matrix elements given in ref[35], it is easy to see that the CP
violation measuring plaquette J can be written in terms of the parameters G1(= g1/¢3), Ga(=
92/93), 61,62 as follows

_ 2[1 — cos(& — 62))(G3sinéy + GEsindy)GEGE

J
(G +G(1+ G + G)?

(3.85)

The ranges for the parameters oy — 03,09 — 03,91/93,92/93 can be found out using the allowed
ranges of z, 31, 3. It has been shown[34] that the experimental constraints i.e. the values of the
magnitudes of the KM matrix elements, R = |V;3/Va3| and CP violation measuring plaquette
J imply that = must lie between —0.882 and 0.02. Hence the allowed ranges for 81 and §; was
found to be[31]

Il

i 0.1265 to 0.3605,
B, = 0.0040 to 0.0320; (3.86)

which in turn decide the allowed ranges for parameters g;/gs, g2/g3 to be

g1/gs = 0.0005 to 0.0112,
g2/gs = 0.003 to 0.031. (3.87)
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We also found out that[31] the experimental constraint
' /
0.05 < (= |l’—a—'l) <0.13 (3.88)
Va3
restricts the allowed range in § to be
8% < § < 32°. (3.89)

Cosequently, considering the CP violation measuring rephasing invariant plaquette J to be given
as

2 .
J = s1y823813C12¢23C1351n8,

4sin(82)°GIGR(G? - G2)

, 3.90
(GT+ GE(1 + G + G (590
and using the experimental numbers
s12 = 0.221 £ 0.002,
s23 = 0.044 £ 0.009,
813/823 = 0.09 :i: 0.05, (3.91)

the allowed region for the parameter (og — 03) can be found out. Now consider the R ver-
sus 6 curve for symmetric KM matrix which is plotted using eqn.(3.79). Then recognising
—ArgV{™ (ub) = §, it seems from the numbers provided in ref[35] that the solutions A and B
correspond to two different points whereas the solution C corresponds to a spread in the allowed
ranges of I versus § curve. In the generalised two angle parametrization, § is a function of
z and consequently the solutions A, B, C seem to correspond to suitable choices of z in the
generalised parametrization. For example, the Kielanowski's solution i.e. § = 300 corresponds
toz = 0.

Now let us analyse the solutions provided in ref[35] from the viewpoint of the generalised
two angle parametrization. The conclusions regarding the observables should be the same in
both the schemes.

Case A:g1 << ga<<gs, o1=o03

This case corresponds to symmetric KM matrix by construction, since two of the eigenvalues
are taken to be degenerate[21] The numerical values

91/93 = 0.0024 and gq/g3 = 0.021

lie well within the allowed ranges for the parameters g1 /g3 and g,/g3. The choices o—05 ~ 180°
and 01 = o3 are also consistent with each other as the constraint (614 62) = 0is not applicable
to this case. To see the allowed value of top quark mass (my¢) in this case, we consider the §
versus m; curve 3 which is consistent with the expérimentai constraints from By — By mixing and
€ parameter in the neutral & meson system. We found out that this case requires m; = 255 GeV
provided the Bag factor B = 1; otherwise this solution is ruled out experimentally.

Case B : g1 << g9 << 93, 01—03=—(07— 03) = 120°
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This is Kielanowski's solution[23] which has been discussed extensively in the literature. In terms
of the parameters of the generalised two angle parametrization this case corresponds to

B1=0.1285, [, =0.0300, 2=0 . (3.92)

Case C:g1 =gy << g3

The condition g1 = g, requires sinf; = cosfy implying B; = 459 Then the CP violation
measuring rephasing invariant plaquette J vanishes for this case as we have

1
J = ﬁcos(‘Zﬂl )sin*(2p1)sin?(26)[3 + 22 — 2?32 (3.93)
Secondly, the given numerical value of the parameter g1 /g3 does not lie within its allowed region,
Hence it is difficult to see the consistency as well as the physical significance of the solution C.

To summarize, we found out that the solutions A and B are special cases of the allowed
solutions for symmetric KM matrix corresponding to different values of the parameter z in the
generalised two angle parametrization. The solution A predicts my =~ 255GeV only if By = 1:
otherwise it is ruled out experimentally. The solution C was found to be inconsistent with the
experimental constraints.



Chapter 4

Studies related to massive
neutrinos

The question of whether the neutrino has a non-zero mass is one of the important questions of
particle physics today. Neutrino mass has also great significance for astrophysics and cosmology.
In this chapter, we present a brief review of neutrino masses and mixing followed by a study
related to the 17 keV neutrino mass eigenstate. At the end, we present an analysis of neutrino:
masses in left-right symmetric extensions of the SM with various choices of the higgs scalars.
We minimise the scalar potentials in all these cases.

4.1 Review of neutrino masses and mixing

4.1.1 Neutrino Mass

In the minimal SM the neutrinos are strictly massless due to the absence of right handed neutri-
nos and lepton-number violating processes. This choice is made not by any deeper theoretical
motivations (like gauge invariance, which keeps the photon and gluons massless or the sponta-
neous symmetry breaking of global gauge that renders Goldstone bosons massless) but rather
by our limitations regarding the apparatus to conclusively detect any non-zero mass for the
neutrinos. Current experiments provide only the upper limits for the neutrino masses which
is consistent with any or all of the neutrinos having zero mass and these limits are not very
restrictive, -

Any discussion of massive neutrinos takes us beyond the minimal SM. Extensions of the
SM that allows non-zero neutrino mass can be models involving new SU(2) singlet (such that
the anomaly cancellation is not affected) neutral fermions or extension of the higgs sector, or
both. In this subsection, first, we will be discussing the types of neutrino masses and then some
models for neutrino masses.
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Types of neutrino mass

Since each LH (RH) particle is necessarily associated with a RH (LH) antiparticle, the RH
antiparticle field 9% is not independent of ¥r, but is closely related to z,bz as ¥ = C’WT.
Similarly, for a RH Weyl spinor, 9§ = %T. In the special case that Y, is the chiral projection
Pri of a Dirac field 1, Yk is just the RH projection Pry*° of the antiparticle field P = CET.
Since the quarks and charged leptons carry conserved quantum numbers (like colour and electric
charge etc.), they must be Dirac fields i.e. ¥ and w% are distinct and have the opposite values
for all additive quantum numbers. But, the charge neutrality of the neutrinos (which take
part only in weak interactions) leaves only one quantum number, namely lepton number to be
associated with the neutrino. This allows the neutrino to have both lepton number conserving
as well as lepton number violating mass terms.

In general a mass term for a fermion field consists of fields with opposite chirality. Keeping
this in mind, we consider all such combinations of the fields 1, Npg, vg, Ni(= C—NET), and
their Hermitian conjugates as follows:

(1) VENR + Npyy,
(2) NV + VRN
(3) VR°vp + Npv + N + UL NE. (4.1)

The first two combinations are invariant under the global gauge transformations, and conse-
quently can be rewritten as a generalised lepton number conserving Dirac mass term

~Lp = mpVLNg + H.c., (4.2)

which connects Ny and v, The fields vr, Nr,v§ and v§ form a 4-component Dirac particle
i.e. we can define v = vy + Np,v® = N§ + vh = C'17T, so that —Lp = mpow, Usually, the
Npisan SU(2)® U(1) singlet, with mp generated by the SM doublet, and I, = Le+L,+ L,

is conserved in the three family generalisation. For N generations

~Lp =vimpNh+ he., : (4.3)

where mp is an arbitrary N x N matrix, and v} Np, are N component vectors; thus v} =

(10 Vops s Vinp )T, where v{j, are the weak eigenstate neutrinos.

The third combination violates lepton number by AL = 2 and is generally known as the
Majorana mass term
LmD = Lm; + ng = _772A’1ED'¢’D (44)
In fact a Majorana mass term can be written without introducing any new fermion field Nrg.
This is done by coupling the vy, to its CP conjugate v

. 1 ' 1
- L = i'mﬁu}} + h.oe = imﬁCﬁT + h.c. (4.5)
For N generations, the Majorana term is
B
- Lp = YLV + h.c., (4.6)
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where mps is a N x N Majorana mass matrix and vy, and vg are N-component vectors i.e.
LONT —_ ) ! ! T .. : : /

v = (V{L”’éLvl--"VNL) yVier = (7,17, - V)" with weak eigenstate neutrinos v/, and

antineutrinos v, , related by

vif = CvT, (4.7)
from which it follows that ”1{[,”;/72 = -IZZI/:‘R This identity in turn implies that the Majorana

mass matrix M must be symmetric i.e. my; = miy.

The most general mass term for any field having no Abelian charge consists of both Dirac
and Majorana mass terms. For example, in a model having one doublet neutrino v} (with
/e T . . . ' T
vi§ = Cv/l) and one singlet neutrino Nt (with N = CNp ™). One could have the general
L,'_l(_,_/ Nlc)<mT mD)<UE>+‘hc (4.8)
m = 9\ L mg ms Np o '

where mp = m%, is a Dirac mass generated by a higgs doublet, mr is a Majorana mass for vy

mass term

generated by a higgs triplet and mg is a Majorana mass for N%, generated by a higgs singlet.
The mass eigenstates are the mixed states

i, = cosfup —sinfuf
vor, = sinfvy + cosfvf, (4.9)
with the mixing angle
1 2m
0 = j(L?‘Ci(L?Z—‘*M—-, (4.10)
mr — mg
with eigenvalues
1
myg = 5{777@ + mgs + [(mp — mg)? + 4mD2]%} (4.11)

. / ! .
Interpreting vi, Np, v, N as N-component vectors, and my, mp,mg as N X N matrices
(with mp = 771;,7715 = mTS we can generalise the above Lagrangian for N generations as

1— /
— Ly = 57121\47113 + h.c., (4.12)

where 2} = (v N, )T and ng = (vg Ni)T are 2N component vectors and M is the
symmetric 2N x 2N Majorana mass matrix.
To see how the Dirac case (my = mg = 0) emerges as a limiting case of the general mass
1 . : "
). Since M is Hermitian (for -

0
mp real) it can be diagonalised by a unitary transformation U as

term we consider only a single family such that M = mp <(1)

UtMU = mp (é\ ?) , (4.13)

. 1 1 .
with U = 715 <1 l)' and then the mass eigenstates are

1, . 1

g, = —(vi + N} , 19¢ = — (S 4+ Nt :

1 \/5( L+ N, ik \/‘3( r+ Np)
1 1

vy, = ——=(vh — N} , W = (o — NL); 4.14
\/E L L) 2R \/‘2( R R) ( )
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. . ‘ s . . . . » . i _ 0
The negative mass eigenvalue can be removed by redefining the RH fields Vip = V1% and
vin = —-ugf?. Since the two Majorana: states vi = v+ vip and vy = vy, 4 V5, and
degenerate, we can rewrite the Lagrangian £,, in the new basis

, ] \
v o= —\7_5(1/1 +va) =vp + Np,

1 / /
Ve = —=(ry —vy) = NF+ s 4.15)
\/5( 1~ v2) - Np 4 v (
yielding :
Ly = —2-772,D(111L1/1CR + VaLvar) + h.c. = mpoy, (4.16)

which is just the standard Dirac mass term, with a conserved lepton number. Therefore, a
Dirac neutrino is nothing but a pair of degenerate 2-component Majorana neutrinos (v and
v2), combined to form a 4-component neutrino with a conserved lepton number.

A pseudo-Dirac neutrino is just a Dirac neutrino to which a small lepton number-violating
perturbative term has been added. This can be seen by modifying the Dirac mass to

M:( ¢ mD), (4.17)
mp 0 ,

with € € mp. Then we have two Majorana mass eigenstates vy, with

€ €
Vip = ingp + g v-L = L + var, (4.18)

with masses
mi = mg+ g (4.19)

Models of neutrino mass

There are many models for neutrino mass, all of which have good and bad features. But we will
be discussing few models that involve either an enlarged fermion sector or an extended higgs
sector.

As we have discussed earlier, an enlargement of the fermion sector through the inclusion of a
RH neutrino field Ny that transforms as (1,1, 0) under SU(3)c®S5U(2)L®U(1) leads to Dirac
mass for neutrinos. This model treats neutrino mass exactly on the same footing as the masses
of the other fermions since the mass is generated by the vev of the neutral component of a
doublet higgs through the Yukawa couplings. However, the model has some drawbacks. First, it
cannot predict the neutrino mass as it turns out to be proportional to arbitrary Yukawa coupling
constants. Secondly, it fails to explain the smallness of neutrino mass, Since v = 246GeV, a
Ve mass in the 10 eV range would require an anomalously small Yukawa coupling h,, < 10710,
Of course, if the coupling constants are fine-tuned such that A,s are very small compared to
the corresponding coupling constants which generates masses for charged leptons or quarks, the
neutrinos can have lighter mass in commensurate with experimental bounds. But there is no
good reson why /s must be small in this model.
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If we donot enlarge the fermion sector of the minimal SM, we have, in each generation,
only two degrees of freedom corresponding to neutrinos i.e. v and TF. Then the mass of
the heutrino must be of the Majorana type i.e. violate B-L symmetry irrespective of the mass-
generating mechanism. Thus, we are motivated to extend the higgs sector through the inclusion
of new higgs which can violate B-L symmetry. Also, the neutrino masses must somehow be
induced by the Yukawa coupling. Majorana mass terms for the ordinary SU(2) doublet neutrino
involve a transition from vj(T5 = —3) into v, (T3 = 7), and therefore must be generated by an
operator transforming as a triplet under weak SU(2). The simplest possibility is the Gelmini-
Roncadelli[38] model, in which one introduces a triplet of higgs fields A = (A%, A=, A" ) into
the theory. The Yukawa coupling

L,=3 (7 ‘5)(\/52__~ ﬁA_O) (5}’:)  (4.20)

then generates a Majorana mass my = hava for the v, when the higgs triplet field Az, acquires
av.en. va =vV2 < A > is the vev of the higgs triplet. Since both hp and va are unknown,
the neutrino mass is unrelated to that of the other fermions and can in principle be arbitrarily
small, at least in the tree level. There will be massless Goldstone boson called Majoron in this
model if the Lagrangian £ conserves lepton number since the vev < A° ># 0 violates lepton
number conservation by two units.

There is a popular scheme called the see-saw mechanism to explain the smallness of
the neutrino mass. The see-saw mechanism[40] for one generation is a special case of the
general mass matrix, in which mp is a typical Dirac mass (comparable to m, or m. for the first
generation) connecting v} to a new SU(2)y singlet Np and ms > mp is a Majorana mass for
Np, presumably comparable to some new physics scale. It is usually assumed in this model that
mr = 0 i.e. there exists no higgs triplet. Then eqn.4.8 yields two Majorana mass eigenstates
v1 and vo with

1/2 = (vipcosf + vypsinb), vE = ~(¥{pcos @ + vipsin ),
N§ ~(v1Lsinb + 1y cos ), Np = ~(vigsin b + v5p cos h). (4.21)

il

Then the physical masses (i.e. the eigenvalues) are

mb
my R —= L mp, my X mg, (4.22)
ms
and the mixing angle is
1
myz om
tanf = —7 x 2 &1, (4.23)

ma ms
Since ms » mp, it follows that m; < M, which means that there is one very light neutrino
compared to the charged fermions, which is mainly the SU(2) doublet (1/2,1/}%, and there exists
one heavy neutrino, that is mainly the singlet (N]'f,N,’;e).

This mechanism of making one particle light at the expense of making another one heavy is
called the see-saw mechanism. But, it should be noted that cosmological constraints restricts
ms > 108GeV which is much larger that the weak scale. In the case when mr # 0 (but



<& mg) there exist two Majorana neutrinos with masses Imr — m% /mg| and mg respectively,
while § ~ mp/ms < 1 still holds. However, in such a case one does not have the natural
explanation of why m; is so small, unless mr is itself induced by the underlying physics and is
of the order as m% /mg.

4.1.2 Lepton Mixing and Neutrino Oscillations

One immediate consequence of neutrinos being massive is the possibility of lepton mixing and
neutrino oscillations. Thus if the neutrino oscillations are observed that will be an indication of
non-zero mass for neutrinos and of physics beyond the Standard Model.

Lepton Mixing

In the previous section we have seen how neutrinos.can be either Dirac or Majorana parti-
cles. Consequently, unlike the quarks there exists more than one mixing scheme for neutrinos.
The mixing scheme for neutrinos are classified according to the types of mass terms, whose
diagonalisation leads to the corresponding mixing. Defining the charged lepton mass basis by

I = Lily, g = Lgly, (4.24)
where L r diagonalize the lepton mass matrix A1/ through the biunitary transformation

LiMLy = 7, (4.25)
and assuming that all the LH neutrinos are part of SU(2)y, doublets with hypercharge Y = —%,

whereas all RH neutrinos are gauge singlets, we obtain the relevant charged current
n n+m
TE= 20 2 imuxea(L1)i(U")ja. (4.26)
1,j=1 a=1 .

This leads to an effective neutrino mixing matrix (analogous to the C'Ji M matrix)

n

(K)ia = Y (L1)ii (U™)ja (4.27)

i=1

which is, unlike in the hadronic case, a non-unitary and rectangular [n x (n 4+ m)] matrix that
satisfies:

(KYE“Nig = 6 but (KK )0 = Y UarUp-
. k:l’

The non-orthogonality also manifests itself in the neutral current interactions, the relevant
isotriplet part of which is given by

5 n n4m
o =D T = > (KT EY)0sNaTxar.
=1 a,G=1



Parameter counting in this case s slightly different from that in the hadronic sector. K¥ is best
recognized as being a rectangular part of a (n 4+ m) x (n + m) unitary matrix and hence, in
the most general case is given by ™™y angles and MLy phases. However, we can't
proceed as for the quarks and eliminate 2(n 4+ m) — 1 phases by redefinition of wavefunctions,
for the Majorana neutrinos obviously cannot absorb phase transformations. At most n phases
can be eliminated by redefining only the charged lepton wavefunctions and thus we are left with
"Co+ lnﬂ"%?ﬂ C'P violating phases. Unlike the case of quarks, even for two generations we
can have CP violation. It seems natural then that this difference can be exploited to distinguish
a Majorana neutrino from a Dirac one, but Schechter and Valle [41] have shown that these extra
C P violating effects are always suppressed by an additional factor of (m,/E,)%, where m, and
B, respectively are the mass and energy of the Majorana neutrino taking part in the process.
The suppression is easily understood by appreciating that a process dependent on the Majorana
mass must have an amplitude proportional to the latter and hence for dimensional reasons there
has to be a suppression factor given by the relevant energy scale in the problem.

As in the case of the Ky — KO system, we have, in the general case, a number of neutrinos
with possibly all different masses mixing with each other. While the interaction terms in the
Lagrangian conserve the individual lepton numbers, the mass terms do not, and in the case of
Majorana neutrinos even the total lepton number is not preserved. As a neutrino with definite
interaction properties evolves in time, each of its massive modes propagates differently resulting
in a periodic variation in their relative proportions in the generic neutrino ‘beam’. Analogous
to strangeness oscillations for the neutral kaons, we have then the possibility of lepton number
oscillations [42].

Neutrino Oscillations

To explore the consequences of the mixing hypothesis for neutrinos consider first the mixing of
only two species of neutrino, v, and Vu. In analogy to the quark sector, we express the weak
eigenstates as linear combination of mass eigenstates 1 and v at time t = 0 as

[ve(0) >
[v,(0) > = ~{w1(0) > sina + [£2(0) > cosa (4.28)

11

[£1(0) > cosa + [v2(0) > sin a

masses are non-zero and that the mass eigenstates are non-degenerate. Then in a production
process, like 7t — ety for example, we start with the weak eigenstate i, >. But it is the
mass eigenstates [1; > that have a definite time evolution of the form

vi(t) >= |1i(0) > e=iBit; = 1 9, (4.29)
where their energies are _
2
L = (p* + 777.?)1/2 x4+ % (4.30)

if p >> my, since our concern is with spatially coherent states in which the neutrinos have
essentially identical momenta p. After a time ¢ has elapsed, the pure v, state therefore becomes

(1) >= |11(0) > cos ae~iE1t + [112(0) > sin ae~E2t, (4.31)



Substitufing for 11(0) and v3(0) in terms of ve(0) and v,(0), we have
[(t) >= [1e(0) > [e™*F1t cos? o e~ iE2t iy 2 a]+[v,(0) > sin a cos a[e“{E"—e"“Elt]. (4.32)

The probability that an initial beam of Ve later contains some v, is given by

Plve = vit) = | <wulu(t) > |?
= % sin? 2a[1 — cos(fq — Ey)t], (4.33)
while that of 1, is
P = vet) = [ <ufut) > P
= 1- %sin2 201 - cos( By ~ By)i). (4.34)

Since the difference in energy
B E? - (m2 — m?)
B E] + Eg = 2])

for £ ~ Ey ~ E >> my, and since the distance travelled r ~ ¢t is essentially the same for

By — By

both vy and vy if the state is to remain coherent spatially, we rewrite the oscillation probalities

as
Pve — v,,t) = sin?2asin? %,
Pve = ve,t) = 1—sin?2asin? —7%, (4.35)
where the so-called “oscillation length” L is defined as
~ i’;ﬁ (4.36)

and it is an effective length that determines the distance over which one might expect to detect
the neutrino oscillations effect. Note that the detectability depends on (m32 — m2), not on my or
my themselves. Thus the oscillation effect of the species of neutrino that is observed will change
as a function of the distance r from the source, provided that (a) the mixing angle a # 0, and

(b) my # ms.
For the general case of more number of neutrino flavours vi(i = e,p,T, ...), we have

II/,'> = ZU{{‘U,‘>,
i

Py — vr) = by — ZélUuUﬁiUf;U[/j sin? (ﬂ), (4-.37)
i>; ‘ Lij
where the U;; are the lepton mixing matrix elements and
T B 248E/(MeV)
Lij~o —— = eter 1.
J ,,miz _ ???»12, Am?j/(eV)? meters (¢ 38)

For a direct observation of such oscillations, we need to perform experiments such that
L 1
——~ L~ 4.39
E E  Am2 (4:39)
though the effect of mixing will be significant for » > L. The null results obtained so far indicate
either that Am? < E/r or that the relevant mixing matrix elements Uij are very small.
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4.1.3 Experimental Evidences

Accurate measurements of the charged particle momenta in the processes

SHe —3 fret te +iE, 1T — BT, TT — 7r+7r"7r+7r*7r_1/7
yields the upper bounds on the masses (in GeV) of the neutrinos:
my, < 1.8x 1078
my, < 2.5 x 1071,
my, < 3.5x 1072, (4.40)

There exists no heavy neutrinos, that might be detected in processes such as 7t —, ptvy
or vy — ete~u,, in the mass range 10 MeV- 10 GeV unless their coupling to e and x are
extraordinarily small (< 1075GF). Besides these above mentioned kinematics, the process of
neutrinoless double B-decays of the nuclei might provide us with a clue for finiteness of neutrino
masses. Normally, the double B-decay of a nucleus of mass number A and charge Z is

(A,2) — (A Z+2)+e +e” + Ve + 7,
but with a massive Majorana neutrino the decay
(A, Z) — (A, Z4+2) 4 e 4 e
is possible through the AL = 2 transition VR — vr,. Searches for such decays in
®Ge —76 ge +e" +e”

give the lifetime bounds r > 10% years, from which a rather model-dependent limit to the
Majorana mass m,, < 1 — 2eV can be deduced[39] But such experiments say nothing about
the masses of Dirac neutrinos for which these decays are forbidden .

Another possible source of evidence for finite masses for neutrinos would be the observation of
neutrino oscillations. The oscillation length L;; and the difference of squares of neutrino masses
Am? disscussed earlier decide the way in which such oscillations can be detected. Although
various experiments in the context of solar neutrinos, cosmic rays, nuclear reactors and particle
accelerators have been performed, there is as yet no convincing evidence that the neutrinos mix
under the weak interaction like the quarks.

4.2 17 keV Nondegenerate Majorana Neutrino and ney-
trino mixing |

In 1985, it was observed by Simpson[44] that there exists an anomalous kink in the Curie plot
of the f-spectrum in Tritium decay. This was interpreted as a mixture (with a 3% mixing) of
a 17keV neutrino with the Ve i.e. |Usze|* = 0.03. This was reobserved by others[46] in 1991,
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As cvorﬁpared to the original claim, the mixing ([U17¢]* = 2) of the 17 kev neutrino with v,
had changed, the later value being close to 1% i.e.z = 0.01 [45, 46]. We have studied! the
limits on the elements of the neutrino mixing matrix consistent with neutrinoless double beta
decay and the neutrino oscillation experiments as a function of the mixing probability (z) of -
Ve with the 17keV neutrino assuming only three generations of left-handed neutrinos and no

sterile neutrinos.

We considered all 2 between 0.003 and 0.03, and found that = > 0.015 is not allowed.
Stringent limits on my, (when m,, > m, ) and the mass difference (M, — My, ) (when v,
and v; form a pseudo-Dirac particle) are found. Allowed values of the various mixing angles are
obtained as function of z, when Ve,Vy and v: are nondegenerate Majorana neutrinos,

In our analysis we take z as a parameter and quote limits on other quantities as function
of z. Since the present limit on the number of light neutrino species (as obtained from the Z
width) is very close to 3, we shall study the constraints on the mixing matrix for three Majorana
neutrinos. When the masses are non-degenerate at the tree level i.e.the mass differences are
large,we parametrize the mixing matrix by three angles (assuming no CP violation in the leptonic
sector). Then the limits on (Ve — v,) oscillaton, the neutrinoless double beta decay and the
value of 2 can set limits on the three angles and hence on all the elements of the mixing matrix.
For consistency we then calculate the (vu = vr) and (v — 1) oscillation probabilities, and
compare them with the experimental limits.We find extremely narrow allowed regions for the
three mixing angles and hence the elements of the mixing matrix.

Next we analyse the situation when the 17keV neutrino is a pseudo-Dirac particle,that is,
at tree level v, and v, combine together to form a Dirac particle,but a small mass difference
is generated radiatively.In this case the strongest bound on the mass difference comes from
the v, disappearance experiment. If one starts with a (Le + L, — L,) type of symmetry [47],
which is broken at low energy,then at the tree level v, is massless and 17 kev neutrino is a
Dirac neutrino. The symmetry breaking will induce new contributions to the zero elements of
the mass matrix.From the limit on the allowed mass difference,we find that the limits on these
non-zero elements and found them to be unnaturally small. |

We shall first consider that three neutrinos (vi) have nondegenerate Majorana masses m;
[48]. The weak eigenstates of the neutrino Va(a = e, i, T) are related to the mass eigenstates
vi(i = 1,2,3) through the relation

3
Vo = Z Uaiv (4.41)
=1

where U,; is the mixing matrix.If we assume that there is no CP violation in the leptonic sector,
then U,; is real and is an orthogonal matrix. We start with the most general 3x3 orthogonal
matrix which has three independent parameters:

C1¢3 5163 83
U = —381€y — €18953 C1C2 — 818983 89C3 (4.42)
8189 — C1C283 —C182 — $1€283 CoC3
"This section is based on the work reported in ref.[43]
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where ¢; = cos@; and s; = sin ;. In the mass eigen-state basis, the charged-lepton-neutrino-

W coupling is of the form
Ly =IW~"Uv+h.c. (4.43)

The most general neutrino mass Lagrangian L,, has the form

Ly, = ——5('1/0()'3]\/[1/0, + h.c. (4.44)

Using v = Z?=1 Uaivi, in the expression for L,,, we obtain the mass matrix M in terms of the
mixing matrix U and M %9 where M diag — diag(my,mq, m3); and my,m, and m3 being the
mass eigenvalues, as

M = UMdiesyT (4.45)

Recognising s1, s,, s3 as the mixing angles we shall try to find out the allowed regions for each
of them satisfying the following constraints:

a)The mixing of the 17keV neutrino with the Ve should be commensurate with the latest
experimental result. But for completeness we take it as a parameter in our analysis i.e.

IU176|2 =T (446)
and vary z between 0.003 to 0.030, which includes the present experimental value,

b)The 17 keV neutrino cannot be Vu, since (ve — v, oscillation will be too fast in that
case. So, the third eigenvalue mg is dominantly the v, mass. We shall thus use the present
experimental limit [49] on v, for mj i.e., ~

ma < 250keV" (4.47)

and mq = 17keV is mostly v, mass. The limits for my comes from the limit [17] on v, mass
ie.
my < 17eV » (4.48)

The non-observation of neutrinoless double beta decay implies limit [17] on,

3
2 0
Z Usim

i=1

< 1.8V (4.49)

c)In addition to these, we have, further constraints coming from neutrino oscillation. When
[m? — m?| > 100ev? (4.50)
the best limits [50] for various neutrino oscillations are

Promy <2%107°%, P, < 3x 1078, P, ., <021 (4.51)

The probability for a neutrino of flavour @ to oscillate into a neutrino of flavour b is given by

3 2
Z Uu ; Ub*_e(imf L/2E)
" 7

i=1

Po_y =

(4.52)
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Figure 4.1: The allowed region for s; versus z. Note that the curves corresponding to Symay
and sy, coincide.

Using the above mentioned parametrization for U [eqn(4.42)], we can express P,y as a function
of the mixing angles s;, s, and s3. The v, — v, oscillation probabillity is expressed as

P, = 2[35{3%@3(1 - c;“'sf) — (8161C3)2} + SZCQSIClsgcg(Cf - sf) + (51(3103)2], (4.53)

since m; are nondegenerate [they satisfy eqn(4.50)] and the interference terms average out to

zero.

In our numerical analysis, we vary s, and 83 between 0 and 1 and the parameter 2 in the
range of 0.003 to 0.03 and calculate 81 using

s1 = (2/cd)7. (4.54)
Taking m, = 17keV, ma was calculated using the constraint from the neutrinoless double beta
decay as
'Uenlz T
13 = Mg——— = 1y — . 4,
ms 29 Ul 77728§ (4.55)

Corresponding values of the Ve=1y, Vyy— vy, and vy — 1, oscillation probabilities were calculated.
It was found out that the upper limit of Py, rules out most of the allowed regions of the
various angles. The allowed region for each of the angles s1,52,83 and mg, are plotted versus
the mixing parameter 2 (ﬁgs.(4.1,4.2,4.3,4,4).

The allowed region of the parameter space is extremely narrow. The fig.(4.1) shows the
allowed region of s; as a function of @, in which both the curves coresponding to upper and
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Figure 4.2: The lower limit for s2 as a function of 2. The upper limit is 1.
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Figure 4.3: Allowed region of s3 as a function of z.
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Figure 4.4: Allowed region of mg as a function of z. The lower limit is given by the curve,
and the upper limit is the experimental upper limit of 250 keV.

lower limits merge. As it is shown in fig.(4.2), where we plot the lower limit for s, as a function
of z, we find the allowed region to be extremely narrow. The upper limit of s is always 1 and
as a result, the upper limit of s3 can be obtained from the expression

PVe"'Vu = 23%C§(l - S%C%), (4‘56)

where s; and ¢; are also given in terms of s3 [eq. 4.54]. The allowed region of s3 and mgy as
a function of z are shown in figs.(4.3,4.4) and respectively. For z > 0.015 there is no allowed
region in the parameter space. To get an idea of how much restriction is imposed on the various
elements of the mixing matrix, we give the allowed ranges of the elements of the mixing matrix

U for z =0.1,

0.9945 — 0.9946 0.0999 — 0.0999  0.0261 — 0.0318
U= (-0.0259) — (-0.0356) (—0.0026) — (+0.0365) 0.9988 — 0.9995 (4.57)
0.0988 — 0.0999  (—0.9942) — (—=0.9951) 0.0000 — 0.0398

We shall now consider the case, when v, and v, combine to form a pseudo-Dirac neutrino
with the tree level mass of 17 keV and about 1 % mixing with v,. This scenario can be
incorporated in a model with just three conventional neutrinoes in the low energy theory, which
has (L. + L. — L,) as a good approximate symmetry. If the lepton mass matrices have a good
approximate global symmetry (L, 4 I,, — Ly) then in the basis in which the first (second, third)
row and column refers to the e(y,7) weak eigenstates and in which the charged lepton mass



matrix is diagonal, the most general mass matrix [47] is given by

, 0 sinf 0
M| sinf 0 cosf (4.58)
0 cosf 0

where M = 17keV to reproduce the massive neutrino states and sin?(6) = 0.03 to reproduce
3% mixing. But the symmetry breaking will induce new contributions to the the zero elements of
the mass matrix. Thus the limit on the mass difference € will fix the bounds of the contributions
to the zero elements of the mass matrix M after the symmetry breaking.

To consider the constraints on the lepton weak mixing matrix U for the case of
|ms — ma| < 3 x 10793V (4.59)
we write, in the flavour basis, the neutrino mass matrix as |
M' = U*M'dteayt | (4.60)

where
M'dieg diag(6,17keV + €, 17keV — ¢) (4.61)

Using the parametrization [48], which is ideal for the limit ¢ — 0
| cye'’ sy B* : sy A*

Up = Sad4€7  ePcy A — SaCyB* —e'c,B — SoCy A” : (4.62)
~8yCo€'’  €Psa A+ cqeyBY  —€Pso B + cqey A*

A -B\ cg isg cy —8)
< B* A4 ) - < ng cg ) < S\ C)\ (4'63)

and my < 13eV, we have, for the mixing parameter z,

where

13eV 1
szj < .———_—17/\761/; (4.64)
The v, — v, oscillation gives
2x 1073
2 (4.65)

Sa < (1l - a)
The v, — v, oscillations and v, disappearance experiments fix the limit on the v, and v, mass
difference as 4 x 1075eV [51] and 9 x 107 8¢V [52] respectively.

We found out that to satisfy such a strong limit the bounds on ee, er, Te, pu and 77 elements
after the symmetry breaking is unnaturally small compared to the bounds suggested in Dugan
et.al’s paper. It was noted in their paper that for the lightest neutrino to be less than 40eV/,
the bound on er and 7e entries is about 250V and limits from neutrinoless double beta decay
require the ee element to be less than leV. It was also noted that rapid oscillations Vy — Uy
caused by small non-degeneracy restrict the pu and 77 elements to be less than leV . But,
we notice that ¢ < 9 x 107%¢V fixes the bounds for all the zero elements at 10~19%keV. This
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conclusion is based on a numerical calculation in which ee,er,Te, i, TT elements were varied

slowly so far as [ms — ma| < 107%¢V,

To summarize, we studied constraints on the neutrino mixing matrix from the various oscil-
lation data, neutrinoless double beta decay and the limit on the Ve, Vy and v, masses assuming
only three generations of left-handed neutrinos and no sterile neutrinos. In the limit when all
the three eigenvalues are nondegenerate and the mass differences are larger than 100eV2, we
identify v, with the 17 keV neutrino and vary the mixing probability between 3% and 0.3%. We
find a very narrow allowed region for the various mixing angles. The allowed values of my, lie
between 145 keV and 205 keV for 1% mixing and between 135 keV and 240 keV for 3% mixing
(our result differs from the earlier similar works with 3% mixing [48], where some approxima-
tions were made). The v, — vy oscillation probability is found to lie between .001 and .002 for
consistency. We then considered the allowed amount of the symmetry breaking when v, and
vy form a pseudo-Dirac particle. We found the mass difference to be less than 9 x 10~98¢y,
which puts stringent limits on the symmetry breaking effect.

4.3 Potential Minimisation in Left-Right symmetric models
and neutrino masses

4.3.1 Introduction

Although neutrinos are massless in the SM, they can be given masses in extensions of the SM
based on either an extended fermion sector or an extended higgs sector. In the previous section
we have seen how to accomodate the 17 keV massive neutrino without extending the fermion
sector of the SM. The models incorporating an extension of the higgs sector have the advantage
of explaining the smallness of neutrino mass through the see-saw mechanism. The see-saw
mechanism can be very easily incorporated into the left-right symmetric extension[54] of the
SM. In this section we present an analysis® of the minimization of the scalar potentials in left-
right symmetric extensions of the SM with various choices of the higgs scalars and subsequently
study their phenomenological implications regarding the neutrino masses.

4.3.2 Rudiments of Left-Right symmetric model

Left-Right symmetric models[55] are considered to be the most natural extensions of the standard
model. Popularly one chooses the gauge group Giagyy = SU(3). x SU(2),, x SU@2)rRxU(1)p_y,
or Gaaq = SU(2) x SU(2)r x SU(4). to describe the invariance properties of the model.
When G3291 or Gpy admits spontaneous symmetry breaking one recovers the standard model.
Spontaneous symmetry breakdown takes place when the higgs fields transforming nontrivially
under the higher symmetry group but not transforming under the lower symmetry group acquires
a vacuum expectation value (vev). If one embeds the group Gigggr or Glggy in a grand unified
theory or a partially unified theory then LEP constraints on sin20,,[56] can put strong bounds

*This scction is based on the work reported in ref.[53)
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on the breaking scale of the right handed SU(2)p group. On the other hand if one considers the
left-right symmetric model with g;, # gp the right handed breaking scale can be lowered[57].
In this case the model becomes interesting as a rich set of phenomenological consequences can
be directly tested in the next géneration colliders. To achieve the inequality of the couplings
a D-odd singlet higgs field 7 is introduced which on acquiring vev breaks the left-right parity

(D-parity).

We are interested in the following symmetry breaking pattern:

SU(2)L x SU(2)r x SU(4). ]E; SU(3). x SU(2)p x SU(?)R X U(1)p-p
vy SUR)LxSU3)e x U(1)y
My SUB)ex U(l)g (4.66)

If Gpo4 is embedded in any higher symmetry group, then also most of the analysis will not
change. In this sense our analysis is quite general. The advantage of starting with the group
G924 instead of the group Gagg; is that, we can discriminate between the fields which do and
donot distinguish between quarks and leptons. This is important to understand the mass ratios
of quarks and leptons.

We will also assume that My = Mg which will imply that the scale of breaking of SU(4) color
is the same as that of the breaking of the left right symmetry. This will not cause any loss of
generality of our analysis. To specify the model further let us state the transformation properties
of the fermions.

Y = (e’iLL):(z,m) : wR:(eliRR):(l,&cl)
% = ()@ en= () a2 (467)

The scalar fields which may acquire vev are stated below.

b1
Ap

il

(2,2,1) 5 ¢p =1ty ; §1=(2,2,15) 3 & = mblry
(3,1,10) ; Ap=(1,3,10) , 5=(1,1,0)

i

It has been shown in recent past that the LEP constraints on 5in20,,[56] can put strong lower
bound on the scale Mp. From renormalization group equations one can show that the right
handed breaking scale has to be greater than 109 GeV. However one can show that when the
D-Parity is broken the right handed breaking scale can be lowered. In that case a rich set of
phenomenological predictions can be experimentally tested in high energy colliders. Here we
consider the singlet field 7 which is odd under D-Parity. It breaks D-Parity when it acquires
vev[57]. | '

If we consider an underlying GUT, and start with the masses of the quarks and leptons to be the
same at the unification scale, then, in the absence of £ the low energy mass relations of fermions
are not correct. This is because the field (2,2,1) contributes equally to the masses of the quarks
and leptons. The situation can be corrected by the introduction of the field (2,2,15)[58]. This
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is the initial motivation to introduce the field £. Once it is there it allows new interesting baryon
number violating decay modes which we discuss below.

Recently a lot of interest has been generated in the three lepton decay of the proton in SU(4)
color gauge theory[59]. It can be shown that if the SU(3) triplet component of £ remains
sufficiently light it can mediate the three lepton decay mode of proton with a lifetime of 4 x 1031
years. In that case sufficient number of extra electron type neutrinos can be produced in the
detector which can explain atmospheric neutrino anomaly. To keep the SU(3) triplet component
of £ sufficiently light, the following mechanism was proposed by Pati, Salam and Sarkar. If an
extra (2,2,15) or (2,2,6) higgs field (henceforth called £ and x) is introduced, its SU(3) triplet
component will mix with the triplet component of £ and hence there will be a light triplet in the
model. These extra fields do not acquire vev. However the terms in the scalar potential which
are linear in these extra fields can strongly constrain the other parameters of the model. In this
paper we introduce such extra fields which do not acquire vev and study the terms in the scalar
potential which are linear in these extra fields. The extra fields we consider here are,

€=(2,2,15); y = (2,2,6) ; 6 = (3,3,0). (4.68)

We shall see below that the linear term in the extra field § will constrain the ratio of the D-parity
breaking scale and the right handed symmetry breaking scale. We emphasise that in different
models with extra scalars such study is necessary as it points out the extra scalar which is not
favourable by the existing phenomenology.

4.3.3  Minimization of potential
Minimal choice of higgs scalars

The general procedure we adopt here is the following. First we write down the most general
scalar potential which is allowed by renormalizability and gauge invariance. Next we substitute
the vacuum expectation values in the potential and find out the minimization conditions. Here
let us first write down the scalar potential with the scalar fields ¢, A and n[60],

V(81,62, AL, AR, n) = Vy + Va + Vot Vaoa + Vaa + Vi, (4.69)

where the different terms in this expression are given by,

Vo= =2 uh @0+ Y Ny tr(dles) (sl
(2]

1,k
+ D7 Aiju tr(pl ;0L )
i!j)kll
Va = =i (ALAp + ALAR) + 9, [tr(ALAL)? +ir(ALaR)Y

o2 tr(ALALALAL) + (Al ARALAR) £ o tr(ALALALAR)
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V, = ——,u,z) n* + By 7!

Vao = +3 ai; (ALAL + Ahag) tr(sle)) + 2 Bis tr(ALALgig!)
iJ ij
+ir(AhARelg))]
+ 2% t?‘(AZ@ARcb})

i,J
Yoa = M (ALAL - ALAR) 48, P (ALAL + abag)
Vis = 360" tr(le)
iJ

The vacuum expectation values of the fields have the following form:

k0 0 o
<op> = ( ) ; <AL>=< ) po<n>=ng;

0 & vr, 0
~ k0 0 o0
<¢> = <0 k) i <Ap>= (vn 0)

The phenomenological consistency requires the hierarchy < Ap > >> <« > >> <Ap >
and also that &' << k. Now the minimization conditions of the potential V are found out by
differentiating it with respect to the parameters k,k' vp,vp and Mo and separately equating
them to zero. This will give us five equations for five parameters present. Solving the equations
involving the derivatives with respect to v, and vR we get the relation between vy, and vg :

Bi?
(o= )+ 2,
where we have defined B = 2712. The details of the derivation are presented in a subsequent
section. We get in the M=( limit,

vLvp =

/\22

VLUR ~ ~ vk (4.70)

[p - ']
Here v is a function of the couplings. However when the field 7 is present, vy, becomes differently
related to vg in the limit of large 79.

Bk? Bk*
or o~ o (PR 4.71
UL (4M 1o Jor = ( ne )R (4.71)

Here we see the important difference between the D-conserving and D-breaking scenarios.

This result was discussed in details in ref. [61]. In the D-parity conserving case, when the n
field is absent one has to fine tune parameters to make 7 arbitrarily snall so that the see-saw
neutrino mass can be comparable to the Majorana mass of the left-handed neutrinos given by
vr,. This fine tuning becomes redundant when the field 7 acquires vev,
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In the presence £=(2,2,15)

When  is present, the most general scalar potential takes the following form:
V(¢1,¢2, A1, AR, 61, 60,m) = Vo + Va + Vo + Vi 4 Vi + Vs + Vig + Voe + Vag + Ve (4.72)

The explicit forms of the terms involving ¢ are listed below:

Ve = =Y m} ur(ele;) + Do niw tr(gleelen) + > pijk tr(gle) tr(ele)
1,7

ikl Lkl

Voe = D win tr(dlesele) + > visu tr(dle;) tr(efe)

ikl ik

Vag = 4 aiy [ (AL AL) + tr(ALAR)] tr(ele;)
i

+ Dby [ (AL ALEED) + (AT ARele))
iJ

+ 2 eij tr(AL&ARe])
1,7 : .

Vae = D dy n? tr(€le;)

iJ

The vacuum expectation value of ¢ has the following form,
koo :
<€ >= (0 ll-’) x(1,1,1,-3). (4.73)

Here we may briefly mention the need to introduce the field £. The vacuum expectation value

of the field ¢ is given by,
k
<p>= (O f) X (1L,1,1,1). - (4.74)

Note that in the SU(4) color space the fourth entry is 1 for the vev of ¢ whereas it is -3 for the
vev of . Hence the vev of ¢ treats the quarks and the leptons on the same footing, whereas
the vev of £ differentiates between the quarks and the leptons. For example in the absence
of § one gets m¢ = mY, m8 = m? and m0 = my. Now including the QCD and electroweak
renormalization effects in the symmetric limit it leads to the relation %h: = %n;‘: However when

the field £ is included in the masses in the symmetric limit they take the form mS =m¢ — 3m¢

0 __ ¢ 4
and my = my — mj.

The minimization conditions are again found by taking the derivatives of V with respect to the

p -2 . . ,
parameters k, &', vr, vg, k? and &’° and separately equating them to zero. Solving the equations
involving the derivatives of v, and vR yields in the limit &' << k-

(0 + 62) (42 — v3)
(P = p") (v} — vE) + dMap).

VLUR (4.75)
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Here we have defined w = 2¢19. Let us again check the special cases. Firstly the case without
{ can be recovered in the limit w=0, on the other hand the case with unbroken D-parity can be
restored in the limit M=0; which is, .

wk? 4 pi?

VLVR m (4.76)

When D-parity is broken the vL can be suppressed by 7,

wk? 4 Bi?

VR. 4.77
ne (4.77)

v, =

We infer that the field ¢ is allowed by the potential minimization and its introduction does not
alter the general features of the see-saw condition between vy and UR.

4.3.4 Introduction of extra fields
Introduction of §'=(2,2,15)

We have already mentioned that there exist interesting models in the literature where the field
¢' is introduced to induce a sufficiantly large amplitude of the three lepton decay width of the
proton. In these models the field § does not acquire vev. Hence after the minimization all terms
other than the ones which are linear in ¢’ drops out whereas the ones which are linear in &
puts constraints on the parameters of the model. Usually when any new fields are introduced
in any model, which do not acquire veus, it is assumed that it will not change the minimization
conditions. As a result potential minimization with such fields were not done so far.

In this section we will first write down the linear couplings of the field ¢/ i.e.

o= S mb e+ S g i(eleelel
Ivj

1,7,k,0 .
+ 2 pigw tr(€]g) tr(ele])

Lkl

3 i @) + Y v tr(8le) tr(el el

1,5,k 1k,
T2 a (ALAL+ Ahag) w(ele))
i'j

+> by [ M‘(AEAL&}) + ”.(A}BAR&T{;)]
i '
D& in(ALEARe)

1]

2 dy i uelel
i,J
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When this potential is minimised with respect to £ we get a relation between the couplings and -
the vev s. Obviously in this case due to large number of couplings of the field &' (which are
independent parameters) this condition can be easily satisfied. A more stringent and interesting
situation is the case where an extra field X is introduced instead of &

Introduction of x=(2,2,6)

It has been pointed out by Pati[62] that the field y is a very economical choice for the mechanism
that leads to appreciable three lepton decay of proton. The field X is contained in the field 54-
plet of SO(10) which has to be present for the breaking of SO(10). The terms linear in X can
be written as:

Ve = P nEx(Ar~ AL) + M xE(Ap + Ap). ' (4.78)
These terms upon minimization give the condition
- P - M (4.79)

iy ey v

This means that to get vp >> vL one has to fine tune Pyg — M << Pno + M. This is
interesting in the context of the three lepton decay of proton which will be discussed elsewhere

[63].

- Introduction of 6=(3,3,0)

In this case we first write down the linear couplings of the field §:
Vs = Mi6(ALAL + ApAl) + Mysgot + Cind(ALAL + ARAL) + Cansgle  (4.80)

These terms upon minimization gives the following conditions,

My + Cong

VLUR = — 4.81
YT M T i (481
In the limit of very large 19 we can write,
vLuR =~ k? (4.82)
If we compare this relation with the see-saw relation of eqn(4.77) we get,
2 2
v k A
= = =~ O(1). 4.83
i~ wizypre =00 (4.83)

Thus due to the introduction of & the left-right parity and the left right symmetry gets broken
almost at the same scale.
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4.3.5 Details of potential minimization

When the spontaneous symmetry breakdown (SSB) occurs the scalar fiields acquire vev. Let
us first consider the case when we include only the fields qb Ay and AR. After the SSB, the
potential looks like :

!
Vio= —p? (o +oR) + £ (ol +ok) + G (vloR) + 2000ml(m
+y22) bk + via(kK® + K2 4 (v} + vR) [(e11 + a2 + Bu1) k2
+(an + gz + B2) k7 + (dayy + 2B12) kK]
+terms containing k and k’ only ' (4.84)

We have defined the new parameters as p = 4(p1 +p2) and p’ = 2p3. Minimisation with respect

to vy, and vpg yields,
2 (711 + Y2 )bk + y12(k2 + &)

VLUR = : (4.85)
p—p
This expression simplifies in the limit &' << & to
.
R VLUR = 712//;2 (4.86)
p—p

Here let us introduce the new scalar i which has a vev 1g. After the SSB, the scalar potential
will be,

Vo= Vi— b ng + Bm g + M no (v} = vR) + B2 15 (vF + vR) + v ng (K2 + &%) (4.87)

Now the minimization with respect to vy, and vp gives the following relation in the limit k' << k,

2 y12k? k2
vLVR = Tk A (4.88)
[p—p'+ _“17?1%—] [p—p+ ‘:,z:%%:]

We have defined the new parameter 3 = 2v15. At this stage let us introduce the scalar field .
This will again introduce new terms in the scalar potential. The scalar potential after SSB now
becomes, ‘

Vi = Vot (v +vh) (a1 + @z 4+ b11) k% + (@in + agz + bao) i

+H(darz + bia) k&) + 2vpvp((crn + ez )bA' + era(B? + k:’?)]
+terms containing k and k’ only , (4.89)

Now we minimise V3 with respect to v;, and vp. The see-saw relation becomes,

ﬂ/\,2 + 2612 (1:2 + ;:’2)

VLUR = AT (4.90)
[p—p'+ j’{:’ﬁ—]
This relation in the limit & << k becomes,
k2 4w k2
VLVR = ﬂ e (4.91)

p—pr + ";,’r:;'r]
( %)

Here we have defined w = 2¢y2. This is the see-saw condition in the presence of £ .
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4.3.6 ° Neutrino mass matrix

The fermions acquire masses through the Yukawa terms in the lagrangian when the higgs fields
acquire vev. The Yukawa part in the Lagrangian written in terms of fermionic and higgs fields

is given by,

Lyuwkawa = n1(fpfrd1) + y2(f1fr2) + ys(fEfLAL + [ fRAR)
+ya(fL fréED) + ys(fLfrE2) (4.92)

where y; (i=1,5) are Yukawa couplings. With this notation neutrino mass matrix written in the
basis ( vp,vf) is
M = (mML mp ) (4.93)
mp My :
where mar, (magg) is the left (right) handed Majorana mass term whereas mp is the Dirac
mass term. These terms can be related to the Yukawa couplings and vevs through the following

relation,

mpyr, = ysvg
mp = (y1+y2)(k+ k) + (ya + vs)(k + k)
MM = Y3UR : (4.94)

Upon diagonalization of the mass matrix we obtain the mass eigenvalues. Now let us consider
the simplifying assumption that all the Yukawa couplings are of order & and the vev s &’ and J/
are much smaller than the vevs k and k respectively. Under this assumption the eigenvalues

become,
my = Y3UR _
]\/[123 : 112(132 +- k2)
my = mpay — = y3v - ————o~=
MAp Y3VR

We substitute for vy, from the see-saw condition to get in the D-parity conserving g1, = gg case,

k2+ 2 h2 k2+/:.‘2
2 —_ y3(ﬁ : w ) . i ( ) (4.95)

VR Y3vr
We notice that the second term in the right hand side is suppressed by the square of the
Yukawa coupling. Due to this the first term dominates. If we want to make the first term small
compared to the second we need to fine tune the parameters. Hence one has to fine tune such

that Sk? + wk? ~ 0 to get acceptable value of the the light neutrino mass. However in the
presence of the vev of 7 we get,

wk? 4 ,6/»'210 - /zg(/c2 + 11'2)
né & YR

my = ya3 . (4.96)

In the limit of very large 7o the first term drops out of the expression and one gets rid of the
fine tuning problem. However, if the field & (which does not acquire any vev) is present, we

cannot get away with the fine tuning problem, since it is difficult to maintain vp << 70.
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4.3.7 C‘o.nclusion

We have incorporated the scalar field £=(2,2,15) in the scalar potential of the SU(4)color left-
right symmetric extension of the standard model. This field is necessary to predict correct mass
relationships of the quarks and the leptons. After including the field £ in the scalar potential we
have carried out the minimization of potential, and worked out the relationship between the veuvs
of the left-handed and the right-handed triplets (see-saw relationship). We have shown that
the field ¢ is allowed by potential minimization and its inclusion does not change the qualitative
nature of the see-saw relationship existing in literature. Once the see-saw relationship between
the vy, and vR is known we have gone ahead to construct the neutrino mass matrix. We have
shown that even after the inclusion of the field £ one needs to fine tune the parameters in the
gL = gr case to predict small mass for the left handed neutrino, while in the g1, # gr case one
naturally gets a large suppression for the left handed neitrino mass. This happens because even
after the inclusion of the field ¢ the light neutrino mass gets suppressed by the vev of the D-odd
singlet 7 rather than the vev of Apg.

If there are new scalar fields which donot acquire any vewv, then to check the consistency one
has to write down their linear couplings with other fields and after minimizing the potential use
the appropriate vevs of the various fields. In some cases the presence of such fields can give
new interesting phenomenology. We studied some such cases for demonstration.

In recent past it has been shown that the three lepton decay of the proton can successfully
explain the atmospheric neutrino anomaly by producing excess of electron type neutrino in the
detector. To produce phenomenologically acceptable decay rate in the three lepton decay mode
a mechanism was suggested by Pati, Salam and Sarkar, and later by Pati. In this mechanism
one has to include extra scalars £'=(2,2,15) or x=(2,2,6) which do not acquire veus. We have
calculated the linear couplings of such terms in the scalar potential and shown that these terms
give relations that constrain the values of parameters and veuvs of the model. In this work, we
have given these constraints. We have also included, as a special case, the extra scalar §=(3,3,0)
and shown that its inclusion forces the right handed breaking scale and the D-parity breaking
scale to become almost equal. ‘
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Chapter 5

Summary and Conclusions

In this concluding chapter, we summarize the work presented in this thesis. The objective of
this study was to understand fermion mass hierarchy and the origin of quark mixing within the
domain of the SM and the possible extensions of SM that are allowed phenomenologically. This
thesis consists of two distinct but connected parts. The first part deals with quarks whereas the
second part is devoted to neutrinos. The results are summarized below.

5.1 Studies related to quarks

We study the quark masses within the framework of the SM given the CKM quark mixing matrix
to be symmetric. First it was shown that if the CKM matrix is symmetric then the top quark
mass has to be heavier than 180 GeV, to be consistent with the experimental results of ey,
the parameter describing the indirect CP violation in the interactions changing strangness by
two units (AS = 2), and the measurement on By~By mixing parameter z (which gives the
time-integrated probability of a By appearing in a By beam) for the Bag constant By = 1,2/3
; if the Bag constant By = 1/3 then m; > 275 GeV. The parameters ¢ and §(CP violating
phase) are constrained to be in the range

113 < ¢ <130 8.0° <8 <31.1°

for the symmetric CKM matrix over the allowed range of the top quark mass 80GeV < m; <
270GeV. To get a comparative idea it should be noted that accurate measurements, especially
at LEP of the properties of Z°, together with the collider and v data yield an indirect value for
my ' :

my = 164ﬂ(75 f%?G’eV.

Secondly, we address the important question of how to derive the symmetric quark mixing
starting from the Yukawa couplings in a natural way. In this regard we tried to find the constraints
on the quark mass matrices for the symmetric CKM matrix. The symmetry constraint was
written as an equation involving the parameters of the mass matrices using flavour projection
operators in a basis where M, is diagonal. The numerical ranges for the mod elements of
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My werevgivven in this basis. This procedure was repeated in the basis where M is diagonal.
Then, the necessary condition for having a symmetric V' in terms of the matrices U and D was
derived. A particularly interesting basis was chosen where U = D*P; P being a phase matrix
and the ranges for the mod elements of M., Mg in that basis was found out using a convenient
parametrization for V. It was noticed that none of the off-diagonal elements of M, and My
is consistent with zero for a symmetric V, which means such forms for mass matrices cannot
be obtained from any symmetry. But, in principle there exists infinite number of other bases
related to each other by similarity transformations. So it is apparent that the numbers provided
for the allowed ranges of the mod elements of mass matrices are not basis independent. Finally

the symmetry constraint was presented in a basis-independent form.

Then, we cheked the phenomenological validity of a new scheme, in which there was an
attempt to obtain an approximately symmetric CKM matrix starting from mass matrices of the
type My,p = ku,pMo + Xy,p where Ky p are numerical constants; M is a real 3X 3, rank-one
matrix and the matrices X7 and Xp are correction terms that have to be added to My to obtain
the non-zero masses of the light two generation quarks since the rank-one mass matrix Mg has
only one non-vanishing eigenvalue. We have shown that out of the three interesting solutions
of the symmetric CKM matrix discussed in this scheme one is inconsistent with experiments,
whereas another one requires a very heavy top quark mass (m; = 255GeV) to be consistent.

5.2 Studies related to neutrinos

We studied the phenomenological consequences of massive neutrinoes. First, we have made
an analysis of the spontaneous symmetry breaking for the Higgs sector taking various Higgs
representations in the context of generalised (g1, # gn) left-right symmetric model, including
the higgs field £ = (2,2,15) that predicts the correct low energy ratio of —gﬁ‘_‘ and a singlet
field 7 which breaks the left-right parity. As special cases we also include ¢ = (2,2,15) and
X = (2,2,6) (which are interesting in the context of the three lepton decay mode of the proton)
and field § = (3,3,0) none of which acquire vev. We show that the linear couplings of these
fields upon minimization put fine tuning conditions on the parameters of the model. We carry
out the minimization of these potentials explicitly. In all the cases the relationship between
the vev s of the left and right handed triplets v, and vp are given. The phenomenological
consequences of this minimization regarding the neutrino masses are also studied.

Secondly, we studied constraints on the neutrino mixing matrix from the various oscillation
data, neutrinoless double beta decay and the limit on the ve,v, and v, masses assuming only
three generations of left-handed neutrinos and no sterile neutrinos to accomodate a 17 keV
neutrino without extending the fermion sector. In the limit when all the three eigenvalues are
nondegenerate and the mass differences are larger than 100eV?, we identify v, with the 17
keV neutrino and vary the mixing probability between 3% and 0.3%. We found a very narrow
allowed region for the various mixing angles. The allowed values of m,,, lie between 145 keV
and 205 keV for 1% mixing and between 135 keV and 240 keV for 3% mixing (our result differs
from the earlier similar works with 3% mixing, where some approximations were made). The
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ve — v, oscillation probability is found to lie between .001 and .002 for consistency. We then
considered the allowed amount of the symmetry breaking when v, and v, form a pseudo-Dirac
particle. We found the mass difference to be less than 9 x 107%eV, which puts stringent limits

on the symmetry breaking effect on the neutrino mass matrix.
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