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Abstract

Availability of nitrogen (N) and phosphorus (P) determine the strength of the ocean’s

carbon (C) uptake, and variation in the N:P ratio in inorganic nutrients is key to phy-

toplankton growth. A similarity between C:N:P ratios in the plankton and deep water

inorganic nutrients was observed by Alfred C. Redfield around 85 years ago, who suggested

that biological processes in the surface ocean are controlled by deep ocean chemistry. This

notion of similarity in the ratios has been a tenet in ocean biogeochemistry until a phy-

toplankton physiology model and an empirical data set suggested that the Redfield Ratio

is not a universally optimal value rather it merely reflects the average stoichiometry of

phytoplankton. Recent studies revealed that the C:N:P ratios in organic matter and inor-

ganic nutrients deviate from the Redfield Ratio. At present, however, understanding of the

(environmental) factors governing the C:N:P stoichiometry remains poor. The northern

Indian Ocean due to its geographic setting and monsoonal wind forcing offers a natural

biogeochemical laboratory to explore the effect of environmental and physical factors on

C:N:P stoichiometry.

A handful of studies on the C:N:P ratios in phytoplankton, particulate organic matter

(POM), dissolved organic matter (DOM), and nutrients have been reported from the

Atlantic Ocean, and to a lesser extent from the Pacific Ocean with a few studies in the

Indian Ocean. Despite the fact that the northern Indian Ocean is distinct from other

oceans in terms of the biogeochemical and physical phenomena, particularly due to the

reversal in monsoonal wind forcing, not much emphasis has been given to the region to

understand the mechanisms regulating the elemental proportions.

This thesis reports the results on C:N:P ratios in nutrients, POM and DOM in three

depth layers (top: surface to the depth of chlorophyll maximum, subsurface: depth of

chlorophyll maximum to ∼300 m, and deep layers: 300 m to a maximum of 3000 m)

in the northern Indian Ocean, i.e., the Bay of Bengal and the Arabian Sea. The role
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of physical processes – eddies, convective mixing, riverine discharge, and biogeochemical

processes – N2 fixation and denitrification, in changing the elemental ratios is discussed

in this thesis.

We observed that the elemental ratios deviated greatly from the Redfield Ratio in

both the northern Indian Ocean basins. Our observations of low N:P ratio (< 16:1) in the

top layer nutrients indicate the N stressed productivity in these tropical basins. C:N:P

ratios in particulate organic matter (POM) in the Bay of Bengal were 232:25:1 during

summer and 249:39:1 during spring. Although the Bay of Bengal receives large riverine

influx, but its influence in changing the C:N:P ratios was small during spring. In the

Arabian Sea, the C:N:P ratios were 245:32:1 in the top layer POM during winter. The el-

emental ratios in nutrient and POM in the top layer were affected by the winter convective

mixing in the northern Arabian Sea. Comparatively high nutrient concentrations and low

POM elemental ratios were observed in the northern Arabian Sea. Overall the high C:N:P

ratios in POM in the northern Indian Ocean might be attributed to the prevalence of pi-

coplankton which typically possess higher elemental ratios than the microplankton. The

variation of ratios in the subsurface and deep layers was mostly driven by the preferential

remineralisation of organic P over N and C.

The Bay of Bengal is often prevailed by mesoscale eddies. Anticyclonic eddies, mode

water eddy and non-eddy regions were identified in this basin during summer. The eddy

and non-eddy stations exhibited a mixed effect on C:N:P ratios of nutrients and POM

in the top layer. However, comparatively low N and P nutrients were observed at the

anticyclonic eddy regions during spring. A similar effect of anticyclonic eddy on the

nutrient concentrations and their ratios was observed in the southeastern Arabian Sea

during winter.

In the Bay of Bengal, the elemental ratios (357:30:1) of DOM in the top layer were

higher than the Redfield Ratio during summer but less than the global average of elemental

ratios (640:44:1) for the surface bulk DOM. The ratios (2338:146:1) were higher than the

global average during spring in the Bay of Bengal. However, the top layer DOM elemental

ratios (635:47:1) in the Arabian Sea were similar to the global average values during winter.

Contrary to our hypothesis, N2 fixation does not seem to have a role in changing the

N:P ratios in the top layer POM pool and subsurface nutrients in the Bay of Bengal. But

the role of N2 fixation should be interpreted with caution as our N2 fixation rates were

ii



low during the observational period. Denitrification in hypoxic waters of the Arabian Sea

leads to lowering of the N:P ratio of nutrients in its subsurface and deep layers. The data

generated for this thesis might be useful for ocean biogeochemistry modellers who have

begun to represent a variable elemental stoichiometry of phytoplankton and nutrients.

Keywords: Redfield Ratio, Bay of Bengal, Arabian Sea, Particulate organic matter, Dis-

solved organic matter, Nutrients, Biological nitrogen fixation, Denitrification, Mesoscale

eddy, Picoplankton.
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Chapter 1

Introduction

1.1 Background

Carbon (C), nitrogen (N) and phosphorus (P) are the key elements to life and their cy-

cling affects the Earth’s climate. These elemental cycles are interlinked through various

metabolic pathways. Therefore, any change in one elemental cycle will introduce the

change in other elemental cycles (Falkowski et al., 2008; Finzi et al., 2011). For example,

photosynthesis is a fundamental process responsible for sustaining life on the Earth. Dur-

ing this process, autotrophs (primary producers) utilise light energy and nutrients such

as N and P to fix inorganic C to organic matter:

106 CO2 +16 HNO3 +H3PO4 +78 H2O
Sunlight−−−−−−−→

Chlorophyll
C106H175O42N16P+150 O2 (1.1)

Marine primary producers fix atmospheric carbon dioxide (CO2) into organic forms

that account for nearly 50% of the global primary production (111–117 Pg C y−1) (Behren-

feld et al., 2001). A part of this fixed C is sequestered to the deep ocean through biological

pump. The efficiency of the biological pump is driven by the availability of nutrients in

the euphotic zone. The concentrations of bioavailable N, P, silicon (Si), zinc (Zn) and

iron (Fe) are low relative to phytoplankton demand in the sunlit ocean. Elements such

as Zn and Fe are present in trace amounts (nM levels), thereby known as the micronu-

trients, while N, P, and Si are considered as the macronutrients as they are present in

1
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higher amounts (µM levels). Furthermore, N and P are classified as the proximate and

ultimate limiting nutrients for ocean productivity, respectively (Tyrrell , 1999). The prox-

imate limiting nutrient represents the localized limitation. An increase in the proximate

limiting nutrient’s concentration may enhance productivity within hours or days. But

the ultimate limiting nutrient represents the nutrient whose supply triggers productivity

at the ecosystem level over a long time scale, somewhat over thousands of years for the

global ocean.

C, N, and P are present in a certain proportion in the phytoplankton structural

molecules as illustrated in equation (1.1). Therefore, the elemental composition of marine

phytoplankton is central to ocean biogeochemistry as it links the global C cycle with

the cycling of other elements, such as nitrogen (N) and phosphorus (P) (Galbraith and

Martiny , 2015).

These elements are present in inorganic and organic forms in seawater. The inorganic

form of these elements include aqueous CO2 (CO2(aq)), carbonic acid (H2CO3), carbonate

(CO2−
3 ), bicarbonate (HCO−3 ), nitrate (NO−3 ), nitrite (NO−2 ), ammonium (NH+

4 ) and

phosphate (PO3−
4 ). These inorganic forms of elements serve as nutrients to the primary

producers and we recognize these forms as dissolved inorganic matter (DIM) pool. Organic

matter such as carbohydrate, protein, lipid, nucleic acid, phospholipid and many more

forms produced during the photosynthesis are considered as the total organic matter

pool. This pool is further divided into two pools: particulate organic matter (POM) and

dissolved organic matter (DOM). By definition, the organic matter of size < 0.45 µm

is considered DOM and > 0.45 µm is considered POM. For practical purposes, we have

considered the organic matter that does not pass through a 0.7 µm pore size filter as POM

during our experiments. The functional difference between these two pools is that the

DOM is too small to sink through the water column on its own, and mainly transported

with ocean currents, while POM is large enough to sink.

C constitutes ∼24–80% of dry weight in organic molecules, hence it is a major com-

ponent in all classes of organic macromolecules particularly in lipids and carbohydrates

where N and P are notably absent (Figure 1.1). The major organic N rich molecules are

protein, nucleic acids, chlorophyll a, b, c and amino acids, while RNA is the major P rich

biomolecule, followed by phospholipid, DNA and ATP.



1.2. Marine biogeochemical cycling of elements 3

Figure 1.1: Major inorganic (dark colors) and organic (light colors) molecules of carbon,

nitrogen and phosphorus in the ocean.

1.2 Marine biogeochemical cycling of elements

1.2.1 Marine carbon cycle

The marine C cycle is mainly mediated by the solubility and biological pumps. C cycling

by the solubility pump is governed by the global differences in seawater temperature. CO2

is more soluble in cold water. The sinking of cold and dense water at high latitude regions

leads to transport of CO2 to deep ocean, that is transported through the thermohaline

circulation to the low latitude regions where warming of the upwelled water leads to the

release of CO2.

When CO2 dissolves in seawater, it reacts with water and form H2CO3, which sub-

sequently dissociates to HCO3
− and CO2−

3 ions (equation (1.2)). CO2(aq), HCO−3 and

CO2−
3 are the inorganic forms of C and hence categorised as dissolved inorganic C (DIC).

The most abundant inorganic C species under current oceanic pH conditions are HCO−3

(91%), followed by CO3
2− (8%) with a very low fraction of CO2(aq) (1%) (Marchitto,
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2013).

CO2 +H2O → H2CO3 → HCO3
−+H+ → CO2−

3 +2 H+ (1.2)

Biological pump, by which plankton sequester C from the surface to the deeper ocean in-

cludes the soft-tissue pump and carbonate pump. In the soft-tissue pump, phytoplankton

convert DIC into particulate organic C (POC) during photosynthesis and release dissolved

organic C (DOC). A major fraction of organic matter (∼90%) is remineralised to CO2

in the surface ocean, while a small fraction (∼10%) is exported from the photic zone to

the deeper ocean (known as export production) and further around 1% into the deep sea

sediments where it can be stored for centuries (Broecker , 1974). This fraction of organic

C is effectively sequestered from the active C cycle in the ocean (Figure 1.2). In the car-

bonate pump, some of the calcifying phytoplankton, such as coccolithophores, drive the

carbonate pump by precipitating C in the form of calcium carbonate (CaCO3). Upwelling

of the deep water and re-equilibration of seawater with atmosphere drives the CO2 uptake.

1.2.2 Marine nitrogen cycle

Bioavailable forms of N in seawater are NO−3 , NO−2 , and NH+
4 . These inorganic species

of N are grouped into dissolved inorganic N (DIN), which is directly accessible to phy-

toplankton. Molecular N (N2) is present in ∼1 mM concentration in the surface water

but can only be directly utilised only by a specific group of organisms called diazotrophs

(Tyrrell , 1999). The organic components of N include particulate organic N (PON) and

dissolved organic N (DON).

Coastal ocean receives N through riverine inputs, upwelling and atmospheric depo-

sition. In the open ocean, biological N2 fixation is a major source of bioavailable N. It is

a microbially mediated process, by which N2 gets converted to NH+
4 . In the absence of

reactive N and at sufficient availability of PO3−
4 and Fe, diazotrophs utilize N2 by breaking

the triple bond between the N atoms. Diazotrophs subsequently convert N2 into NH+
4

by nitrogenase enzyme. The new N produced by N2 fixation fuels primary productiv-

ity, which ultimately plays an important role in driving net CO2 sequestration from the
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atmosphere.

During the nitrification process, NH+
4 converts to NO−2 and finally to NO−3 by the

Nitrosomonas and Nitrobacter organisms, respectively. Phytoplankton utilise DIN to

photosynthesize organic matter. A major fraction of the organic matter gets decomposed

to regenerate nutrients in the photic zone, while a small fraction sinks below the photic

zone. In subsurface oxygen depleted waters, NO−3 serves as oxidant for the organic matter

decomposition. Thereby NO−3 is reduced to N2O and further to N2 in a multistep process:

NO−3 → NO−2 → NO → N2O → N2. This heterotrophic reduction of NO−3 is known

as denitrification, which is a major remineralisation process in oxygen minimum zones

responsible for the removal of bioavailable N from the ocean.

More recently, the anaerobic ammonium oxidation (anammox) and dissimilatory ni-

trate reduction to ammonia (DNRA) were discovered as important processes responsible

for bioavailable N removal in the oxygen depleted regions. Anammox is a chemolithoau-

totrophic process that involves the fixation of DIC and simultaneous generation of N2 from

the reaction between NH+
4 and NO−2 . DNRA is an anaerobic process by which NO−3 / NO−2

reduces to NH+
4 (Figure 1.2).

1.2.3 Marine phosphorus cycle

Riverine influx is a significant source of P to the ocean. Atmospheric deposition through

aerosols and mineral dust is also an important source of P particularly in the open ocean.

PO4
3− is the inorganic form of P which is also referred to as dissolved inorganic P (DIP).

Particulate organic P (POP) and dissolved organic P (DOP) constitute the organic form

of P. P is one of the fundamental elements constituting structural biomolecules such as

DNA, RNA, ATP and phospholipids. In fact, DIP is considered as the proximate limiting

nutrient that limits marine primary productivity and its availability can influence the

phytoplankton species distribution. Therefore, P plays a key role in photosynthesis, where

phytoplankton consume DIP to produce organic matter. A major fraction of the organic

matter undergoes decomposition and releases DIP within the photic zone, while only a

small fraction of organic P reaches to the deep ocean and buried in marine sediments

(Figure 1.2). Upwelling of seawater is a major source of P to the photic zone. The annual
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upward flux of P from subsurface waters accounts for ∼90% of total P influx to the photic

zone (Hashihama et al., 2021).

Figure 1.2: A brief schematic representing the marine biogeochemical cycling of C, N, and

P. Blue, green, and pink colors represent C, N, and P cycling, respectively. Black color

refers to the integrated cycling of C, N, and P.

1.3 Linking the three elemental cycles - The Redfield Ratio

In 1934, Alfred C. Redfield noticed that the C:N:P ratio of surface plankton was similar to

that of the major nutrients in deep water in the Sargasso Sea (Redfield , 1934). Thereafter

Redfield started analysing R. H. Fleming’s 1940 data set and estimated a C:N:P ratio

of 106:16:1 for surface plankton. For deep ocean nutrients, Redfield analysed L. H. N.

Cooper’s 1937 and F. A. Richards’s 1956 and 1957 data set, which yielded a C:N:P ratio

of 105:15:1. Based on these observations, Redfield concluded that the average elemental

composition of marine plankton and that in the deep water nutrients is statistically con-

sistent at 106C:16N:1P in the global ocean (Redfield , 1958). This ratio is widely known

as the Redfield Ratio in marine biogeochemistry. Equation (1.1) is based on Redfield’s

observations.

Redfield provided three explanations for the fixed C:N:P ratios: (1) it is a mere geo-

chemical coincidence, (2) microorganisms adapt to oceanic nutrient stoichiometry, which
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means phytoplankton have the ability to change their elemental composition and (3) bio-

geochemical processes regulate the elemental ratios (Redfield , 1958).

The Redfield Ratio defines the C:N:P ratios of photosynthesis and remineralisation

reactions; later Anderson (1995) extended it to oxygen (O2). During photosynthesis,

phytoplankton acquire nutrients from seawater at approximately 106C:16N:1P and simul-

taneously liberate 150 moles of O2 molecules to seawater for every mole of P consumption.

This leads the –O2:C:N:P ratio to –150:106:16:1.

1.4 Evolution of the Redfield Ratio concept

The Redfield Ratio has been a tenet in ocean biogeochemistry until a phytoplankton

physiology model and an empirical data set suggested that the Redfield Ratio is not a

universally optimal value rather it merely reflects the average stoichiometry of marine

phytoplankton. From the empirical and theoretical results, Klausmeier et al. (2004a)

concluded that the N:P ratio in POM can vary over time in response to changes in the

ecological balance between exponential growth and equilibrium phases or in N and P

availability. Competitive equilibrium growth results in high N:P ratio, while exponential

growth leads to low N:P ratio in the phytoplankton. The phytoplankton physiology and

resource competition model studies predicted that the optimal N:P ratio typically varies

from 8.2 to 45.0, depending on the ecological conditions (Klausmeier et al., 2004a).

Deviations of the N:P ratio from 16:1 in nutrients are used to infer the N or P

limitation to phytoplankton growth, because the ratio can be easily compared with the

cellular N:P ratio of phytoplankton. Furthermore, the excess NO−3 relative to PO3−
4 ,

i.e., N∗ = [NO−3 ] – 16 [PO3−
4 ], is used to study the net effect of various biogeochemical

processes such as N2 fixation (increase in N∗) and denitrification (decrease in N∗) in the

water column (Tyrrell , 1999; Deutsch and Weber , 2012).

Studying the variation of elemental ratios unravels biogeochemical processes. Most

of the marine biogeochemical concepts are often based on the assumption of temporally

and seasonally static elemental ratios of phytoplankton. Nutrient demand of phytoplank-

ton, nutrient limitation of productivity and the link between nutrient supply, primary



8 Chapter 1. Introduction

productivity and C export are generally studied using the elemental composition of phy-

toplankton. The organic matter that is exported from the photic zone further contributes

to the subsurface nutrients and their elemental ratios. Therefore, the inclusion of varying

elemental ratios in biogeochemical models could be beneficial in assessing the accurate

shifting of primary productivity, C export and changes on subsurface nutrient pool in

changing environmental conditions.

Nearly all climate models predict that the ongoing warming and elevating nutrient

deficient conditions may lead to decrease in primary productivity and C export in open

ocean regions (Bopp et al., 2013). Considering a fixed C:P ratio of POM pool, one would

interpret that the reduced primary productivity in more stratified and nutrient limited

regions will lead to a low C export from the photic zone. On the contrary, the flexible

stoichiometric concept suggests that the C:P ratio in POM pool will increase and so the

C export. Therefore, the C export will not decrease as that inferred from the static stoi-

chiometric concept in nutrient deficient oceans in future (Tanioka and Matsumoto, 2017).

This could be because of the increasing abundance of picoplankton such as Prochlorococ-

cus, Synechococcus and picoeukaryotes in nutrient deficient regions which possess high

cellular elemental ratios (Martiny et al., 2013a). The regions such as the subtropical

North Atlantic Ocean, where > 60% of POC is contributed by the picoplankton alone,

the increased C:P ratio of photic zone POM supports a large increase in C export (Casey

et al., 2013; Matsumoto et al., 2020). Thus the incorporation of flexible elemental ra-

tios in global biogeochemical models will enable us to improve the predictive ability and

more importantly the estimation of accurate future levels of primary and export produc-

tion. The interdependence of marine plankton composition on the environmental factors

particularly temperature and nutrients is an integral part to our understanding of the

interlinking of physical, biological and chemical components of the ocean ecosystem.

1.5 Variation of elemental ratios in global ocean

Recent findings highlighted a global latitudinal variation of C:N:P ratios from the canon-

ical Redfield Ratio (Martiny et al., 2013a,b). The variation in environmental parameters,
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such as temperature and nutrient concentrations, and biological parameters, such as cell

physiology and community structure, could explain the variation in elemental ratios in

POM (Martiny et al., 2013a). Ocean exhibits a strong latitudinal gradient of environ-

mental parameters, e.g., the high latitude regions experience low temperature and high

nutrient concentrations; however, the low latitude regions experience high temperature

and low nutrient concentrations. Equatorial regions experience an intermediate set of

environmental parameters due to upwelling. The variation in N:P and C:P in POM ratios

seems to mimic the pattern of environmental parameters over the latitudinal intervals.

High latitude nutrient rich basins exhibit low elemental ratios (less than the Redfield

Ratio) and the low latitude nutrient deficient region exhibit high elemental ratios (above

the Redfield Ratio), however, the elemental ratios in equatorial basins are close to the

Redfield Ratio.

The elemental ratios in POM particularly N:P and C:P also exhibit seasonal variation

with elevated ratios in summer and fall and decreased ratios in the winter and spring

seasons (Martiny et al., 2016). The ratios vary between 5 to 40 for N:P, 50 to 500 for

C:P and 5 to 10 for C:N. N:P and C:P ratios generally exhibit large variation from the

Redfield Ratio than the C:N ratio.

1.5.1 Hypotheses responsible for the variation of elemental ratios

Several modelling, observational and laboratory studies have suggested different mecha-

nisms to explain the non-Redfieldian behaviour of C:N:P ratios among marine plankton

communities. Three mechanisms that are most important in explaining the varying ele-

mental ratios are the growth rate hypothesis, nutrient supply hypothesis and allometric

diversity hypothesis.

1.5.1.1 Growth rate hypothesis

The growth rate hypothesis states that the differences in C:N:P ratios in organic matter

are governed by the allocation changes of resource acquisition and growth machinery in

the cellular structure (Arrigo, 2005). Resource acquisition machinery includes protein,

ribosomes and chlorophyll which are N rich and possess high C:P and N:P ratios. Growth
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machinery includes P rich RNA having low C:P and N:P ratios. As these constituents

make up a large portion of cellular material, changes in their relative proportions have a

marked effect on the bulk cellular elemental composition.

In a nutrient scarce environment, the slow growing small phytoplankton dominate the

phytoplankton community by synthesizing additional resource acquisition machinery such

as proteins (high N:P and C:P ratios) and are called the“survivalist”. On the contrary, the

large phytoplankton prevail in the nutrient rich environment by synthesizing more growth

machinery such as RNAs (low N:P and C:P ratios) in order to maintain a high growth rate.

These fast growing large phytoplankton are called as the “bloomer”. Picoplankton such

as Prochlorococcus, Synechococcus and picoeukaryotes possess high C:P and N:P ratios,

while eukaryotes such as diatoms have low elemental ratios. Thereby, the oligotrophic

regions such as subtropical ecosystems where picoplankton constitute a major fraction

of phytoplankton community exhibit a higher elemental ratios than the Redfield Ratio,

while lower elemental ratios are observed in the polar region.

Furthermore, the hypothesis explains the higher N:P ratio in diazotrophs. Dia-

zotrophs often have a higher N:P ratio than non-N2 fixers, for e.g., the Trichodesmium

blooms possess high N:P ratio ranging from 42 to 125 (Karl et al., 1992; Letelier and

Karl , 1996). Trichodesmium reportedly grows slowly with a maximum growth rate of

∼0.14 d−1, favouring the growth rate hypothesis (LaRoche and Breitbarth, 2005). High

cellular N content in diazotrophs is attributed to their exclusive and inexhaustible N

supply. Since the process is energetically costly, diazotrophs allocate more P-poor light-

harvesting machinery in the cellular structure to power N2 fixation (Klausmeier et al.,

2004a). Therefore, the basins where diazotrophs account for a significant percent of phy-

toplankton population may lead to an overall increase in the N:P ratio in the POM.

1.5.1.2 Nutrient supply hypothesis

This hypothesis is based on the classic “resource competition theory”. It is proposed that

the resource competition among algal species is the central mechanism for controlling the

elemental composition of the phytoplankton community (Tilman et al., 1982). The ele-

ment, which is present in low concentration in seawater, the phytoplankton community

will be dominated by the organisms that can adapt to a low cellular content of that ele-
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ment (Klausmeier et al., 2004a). When the concentration is high, fast growing organisms

dominate the phytoplankton community having high uptake rate of that element.

Based on this concept, the nutrient supply hypothesis states that the absolute con-

centration of nutrients, such as DIN and DIP, determines the POM elemental ratios.

Therefore, the expected C:N:P ratios in oligotrophic basins are higher than the Redfield

Ratio, and the reverse holds for nutrient rich basins (Galbraith and Martiny , 2015). This

happens because slow growing cyanobacteria such as Prochlorococcus and Synechococcus,

with a high N:P and C:P ratios in their biomass/nutrient uptake requirements, prevails in

oligotrophic waters whereas fast growing microorganisms such as diatoms (with a low N:P

and C:P ratios) flourish in nutrient rich waters (Singh et al., 2017; Sharoni and Halevy ,

2020).

1.5.1.3 Allometric diversity hypothesis

This hypothesis states that the taxonomic composition of a community influences its ele-

mental stoichiometry. Small phytoplankton such as cyanobacteria possess high elemental

ratios, while the large eukaryotic phytoplankton possess low elemental ratios (Klausmeier

et al., 2004a; Arrigo, 2005). Even in the same phylum, the elemental compositions vary

with different genus. For example, in cyanobacteria, the genus Prochlorococcus (0.5–0.7

µm) has comparatively high C:N:P ratios (234:33:1) than the genus Synechococcus (0.8–1.5

µm) (181:33:1) (Martiny et al., 2013a; Singh et al., 2015a).

1.5.2 Variation in elemental ratios in different pools

The three elemental pools: DIM, POM and DOM — are interlinked through processes

such as POM export, upward flux of nutrients, and exchange of DOM between the depth

layers (Pujo-Pay et al., 2011). In the photic zone, DIM and DOM are diffused to POM

through biological consumption (Pujo-Pay et al., 2011). A part of POM gets recycled to

DOM by excretion or lyses of organic matter; subsequently, DOM (and POM) reminer-

alises to DIM, completing the cycle. In the subsurface and deep waters, POM and DOM

are largely recycled to DIM (Krom et al., 2010).
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1.5.2.1 Dissolved inorganic matter (nutrient) pool

Multiple studies have proposed that the deep water DIN:DIP ratio is maintained near the

Redfield Ratio by physical ocean mixing despite the non-Redfieldian ratios in the surface

plankton communities (e.g., Mills and Arrigo (2010)). However, the DIN:DIP ratio in the

photic zone remains much less than the Redfield Ratio in most of the subtropical oceans.

The severe N deficiency in the photic zone is attributed to the uptake of nutrients by the

phytoplankton. Typically, in subtropical oligotrophic ecosystems such as the Indian Ocean

and subtropical North Pacific Ocean, the phytoplankton community is mainly populated

by the slow growing small phytoplankton that have high biomass N:P requirement, leaving

the low residual DIN:DIP ratio in surface waters. On the contrary, the depressed uptake

ratio of N:P of the Southern Ocean surface plankton leads to the elevated residual DIN:DIP

in surface water (Lee et al., 2021). Although the most pervasive processes such as physical

mixing and remineralisation of organic matter contribute to the surface water nutrients,

the phytoplankton uptake also plays a key role in regulating the surface water DIN:DIP

ratio.

In the Pacific Ocean, the DIN:DIP ratio decreases from 13:1 in the subsurface to near

zero in the surface water. Therefore, the N∗ is negative throughout the water column

and decreases more in the deep waters (Deutsch and Weber , 2012). Unlike the other

subtropical oceans, the photic zone DIN:DIP ratio in the North Atlantic Ocean is ∼30:1,

almost twice the Redfield Ratio (Wu et al., 2000). Although the non-Redfieldian uptake of

phytoplankton affects the surface water DIN:DIP ratio, the variations are also attributed

to the N budget processes such as N2 fixation and denitrification (Deutsch and Weber ,

2012). High N2 fixation rates in the subtropical North Atlantic Ocean cause elevated DIN

concentration thereby increasing the DIN:DIP ratio in the surface water.

Global N∗ minima in subsurface waters are mainly observed in the Arabian Sea and

the central and the eastern tropical Pacific (Hupe and Karstensen, 2000; Deutsch and We-

ber , 2012; Hamasaki et al., 2018). Denitrification and anammox processes in these basins

are responsible for a substantial loss of DIN from the subsurface water under hypoxic

conditions. The denitrifying heterotrophic bacteria utilise NO−3 as an oxidant during the

organic matter remineralisation and the autotrophic anammox bacteria produce N2 from

NO−2 and NH+
4 in the anoxic subsurface waters. These processes result in depletion of
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DIN and thereby lowering the DIN:DIP ratio in the subsurface waters.

N∗ maxima in the tropical and subtropical North Atlantic infers the N inputs to the

basin. Theoretically, sinking of biomass having high N:P ratio may produce N∗ maxima

upon its remineralisation. But several studies have attributed the maxima to the reminer-

alisation of diazotrophs. In addition, some studies emphasized the decomposition of DON

and DOP and atmospheric N deposition in increasing N∗ values (Gruber and Sarmiento,

1997; Deutsch and Weber , 2012).

1.5.2.2 Particulate organic matter pool

C:P and N:P ratios are usually more variable than the C:N ratio in POM, as P has

more plasticity than N. Marine phytoplankton can reduce their cellular P requirement

by substituting non-P membrane lipids such as sulfur and N containing membrane lipids

(devoid of P) for phospholipids during P scarcity in the ocean, which leads to the C:P

ratio more variable than the other ratios (Van Mooy et al., 2009).

The elemental ratios of POM vary spatially with changing phytoplankton commu-

nities in response to the changing environmental conditions. Subtropical regions exhibit

high elemental ratios while the polar regions exhibit low elemental ratios. In fact, the

variation follows a clear latitudinal pattern in the global ocean. The average C:N:P ra-

tios are 195:28:1 in nutrient depleted, warmer low latitude regions, 137:18:1 in equatorial

regions and 78:13:1 in the high latitude cold and nutrient rich regions (Martiny et al.,

2013a). The average C:N:P ratios of 210:36:1 and 172:25:1 are observed in subtropical

North Atlantic Ocean and subtropical North Pacific Ocean, respectively (Martiny et al.,

2013a; Singh et al., 2015a).

Variation of POM elemental ratios in the water column is driven by the production

and differential remineralisation of organic matter. In the photic zone, the abundance

of phytoplankton community decides the overall C:N:P ratio in POM. However, in the

subsurface and deep waters, remineralisation of organic matter alters the elemental ratios.

POP undergoes preferential remineralisation, followed by PON and POC (Loh and Bauer ,

2000). Thereby the C:N, N:P and C:P ratios in POM attain their highest in the photic

zone, and further decreases in the subsurface and deep waters. C:P ratio varies the most,
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while C:N ratio varies the least from the Redfield Ratio in the water column.

1.5.2.3 Dissolved organic matter pool

DOM in the ocean is one of the largest reservoirs of organic matter holding approximately

as much C (∼662 Pg C) as in the atmospheric CO2 reservoir (∼750 Pg C) (Siegenthaler

and Sarmiento, 1993; Hansell et al., 2009). DOC represents the second largest reservoir of

the bioreactive C after DIC (∼38,000 Pg C) (Hansell and Carlson, 1998), while DON and

DOP exceed by an order of magnitude from the concentration of inorganic nutrients in the

ocean (Church et al., 2002). They can be substrate to the autotrophic and heterotrophic

plankton, and particularly DOC act as a sink to the fixed atmospheric C.

DOM is produced by several mechanisms such as extracellular release by phytoplank-

ton during grazing, via cell lysis, solubilisation of particles, and bacterial degradation (Col-

los et al., 1992; Smith et al., 1992). Heterotrophic bacterial uptake, direct phytoplankton

assimilation, photochemical decomposition, and sorption onto sinking particles decrease

the DOM elemental concentrations (Palenik and Morel , 1990; Keil and Kirchman, 1994;

Chari et al., 2016).

The bulk DOM pool consists of compounds of varying biological lability, from refrac-

tory compounds, turning over of century to millennia time scales to very labile compounds

turning over on time scales of minutes to days (Bauer et al., 1992). The refractory DOM

pool is uniformly distributed throughout the water column and represents approximately

70% of surface DOC in stratified basins (Druffel et al., 1992; Cherrier, J. et al., 1996).

In deep water (> 1000 m), DOC is mostly refractory with an average age of 4000 to 6000

years in the North Atlantic and the North Pacific Oceans, respectively (Williams and

Druffel , 1987; Bauer et al., 1992).

Considerable knowledge has been gained on the C:N:P stoichiometry of the POM and

DIM pool in the ocean, but little is known about the DOM pool elemental stoichiometry.

The vertical gradient of elemental ratios in DOM is mainly driven by the heterotrophic

consumption and the preferential remineralisation of labile fraction of DOM. Variations

in DON:DOP and DOC:DOP ratios in the water column are attributed to the preferen-

tial remineralisation of labile DOP relative to semi-labile and refractory DON and DOC
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(Letscher and Moore, 2015). In the water column, labile fractions readily remineralise and

the semi-labile fractions with a relatively long turnover time (than labile components) de-

grades slowly during their export from the upper ocean towards the deep water, and thus,

responsible for the observed gradient in the elemental ratios.

The C:N:P ratios in the refractory DOM pool deviate substantially from the Redfield

Ratio and even higher than that of the labile, semi-labile, and bulk DOM in surface water

(Pan, 2007). The global average C:N:P ratio of the surface water bulk DOM pool is

640:44:1, however, the individual ratios exhibit a large range of variation, which could

be attributed to the components of DOM with different turnover time and due to the

assimilation of results from biogeochemically distinct basins.

1.6 The northern Indian Ocean

Several studies on the C:N:P ratios in phytoplankton and nutrients have been reported

from the Atlantic Ocean, and to an extent from the Pacific Ocean with a few studies in

the Indian Ocean (Copin-Montegut and Copin-Montegut , 1983; Karl et al., 2001; Martiny

et al., 2013a,b, 2014; Singh et al., 2015a). In the Indian Ocean, these studies are mostly

confined to the eastern (Garcia et al., 2018; Baer et al., 2019), northwestern (Martiny

et al., 2013a,b) and southwestern tropical regions (Copin-Montegut and Copin-Montegut ,

1983). Furthermore, the bulk DOM pool elemental ratios were studied only in the western

Arabian Sea (Letscher and Moore, 2015).

Despite the fact that the northern Indian Ocean is distinct from other oceans in terms

of the extent and intensity of biogeochemical processes, particularly due to the reversal

in monsoonal wind forcings, less is known about the mechanisms regulating the elemental

stoichiometry. Due to its unique biogeochemical possessing of intense diazotrophic and

denitrification activity, the region provides a natural laboratory to understand the effect

of the biogeochemical processes on the C:N:P ratios in various oceanic pools.

The northern Indian Ocean consists of the Arabian Sea and the Bay of Bengal at

its western and eastern sides, respectively. Being landlocked by the Asian landmass in its

north, it is influenced by the seasonally reversing monsoon system. Winds are stronger
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during summer than that during the winter monsoon (November–February), and weak

winds prevail during the transition months: March–May and October in both the basins.

These monsoonal winds over the northern Indian Ocean force seasonal reversing of upper

ocean circulation in these basins during the summer and winter monsoons (Schott and

McCreary , 2001).

Surface ocean boundary currents change their direction from clockwise during the

summer monsoon and anticlockwise during the winter monsoon. During the summer

monsoon, the major current along the west coast of India called the West India Coastal

Current (WICC) moves from the north to equatorward in the Arabian Sea and joins the

current along the east coast of India i.e., the East India Coastal Current (EICC), that

travels equator to northward in the Bay of Bengal and reverses during the winter monsoon

(Schott and McCreary , 2001). Apart from these coastal currents, the large scale open

ocean monsoonal currents: the Summer Monsoon Current (SMC) and Winter Monsoon

Current (WMC) also undergo seasonal reversal in the northern Indian Ocean (Shankar

et al., 2002). These monsoon currents flow across the Laccadive high (winter monsoon)

and low (summer monsoon) in the south-eastern Arabian Sea, link the surface water

circulation in the Bay of Bengal and the Arabian Sea (Bruce et al., 1994; Shankar and

Shetye, 1997). During the summer monsoon, the SMC flows eastward from the western

Arabian Sea to the Bay of Bengal, while WMC flows from the eastern boundary of the

Bay of Bengal to the western Arabian Sea during the winter monsoon.

Even though the Arabian Sea and Bay of Bengal are situated at the same latitudinal

regions, the basins are biogeochemically distinct and influenced by several physical pro-

cesses. The Bay of Bengal receives high freshwater influx via high rainfall and riverine

influx exceeding evaporation. On the contrary, the high saline waters in the Arabian Sea

witness high evaporation over rainfall and riverine influx into the basin. The low saline

water is transported by EICC from the Bay of Bengal to the south-eastern Arabian Sea

and further carried northward by the WICC during winter (Wyrtki , 1973; Schott and Mc-

Creary , 2001). The high saline water (Arabian Sea High Salinity Water) from the Arabian

Sea transports to the eastern Bay of Bengal by WICC during the summer monsoon (Han

et al., 2001).

High rates of N2 fixation and denitrification have been reported from the Arabian
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Sea, while these processes are comparatively less intense in the Bay of Bengal (Ward

et al., 2009; Gandhi et al., 2011b; Saxena et al., 2020). Additionally, physical processes

such as mesoscale eddies are prominent particularly in the Bay of Bengal in almost all the

seasons, and convective mixing during winter and deep water upwelling during summer

in the Arabian Sea may play a significant role in altering the elemental chemistry of the

basins.

1.6.1 The Bay of Bengal

The eastern part of the northern Indian Ocean is influenced by the precipitation and

freshwater influx from several river channels fed by the monsoonal and Himalayan glacier

rivers (Subramanian, 1993). Riverine discharge is at its peak during the summer monsoon

in the Bay of Bengal (Unger et al., 2003). A large freshwater influx (1.6 × 1012 m3 yr−1) is

received from the Ganges-Brahmaputra river system into the Bay of Bengal (Subramanian,

1993). High riverine discharge in the northern Bay of Bengal makes the water relatively

less saline than the southern Bay of Bengal (Vinayachandran and Kurian, 2007).

The large flux of freshwater in the basin generates vertical density and tempera-

ture gradient leading to surface water stratification. The surface water stratification and

weak winds have a capping effect on the nutrient rich deep water upwelling to the photic

zone (Gauns et al., 2005). This makes the Bay of Bengal less productive as compared

to the Arabian Sea (Prasanna Kumar et al., 2010). Although riverine discharge trans-

ports terrestrial sediments, organic matter and nutrients to the Bay of Bengal, but most

of them get consumed within the estuarine ecosystem (Singh and Ramesh, 2011; Dutta

et al., 2019). Therefore, the open ocean region remains nutrient limited, particularly in

N for primary productivity. The suspended sediment discharge into the basin is ∼1.4 ×

109 tonnes, imposes a ballast effect on the organic matter export to the deeper ocean

(Madhupratap et al., 2003).

The mesoscale eddies are frequent in this basin, emerging from the baroclinic and

barotropic instabilities related to the shearing of horizontal currents. These mesoscale

features affect the vertical transport of water by upwelling and downwelling associated

with the cyclonic and anticyclonic eddies, respectively and lateral transport by advection
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of the eddy core.

1.6.2 The Arabian Sea

The Arabian Sea is located in the western part of the northern Indian Ocean, and en-

compasses an area around 6.2 × 106 km2 (Burkill et al., 1993). The basin exhibits high

salinity due to excess evaporation over precipitation and continental runoff (Rao et al.,

1981). Most importantly, the basin is biologically one of the most productive regions due

to the monsoon driven strong seasonal supply of nutrients to the surface (Madhupratap

et al., 1996; Smith, 2001; Prakash et al., 2008). The average primary productivity in the

Arabian Sea is more than a factor of two higher than that in the Bay of Bengal (Mad-

hupratap et al., 2003). During the summer monsoon, the strong south-westerly winds

(∼18 m s−1) induce deep water upwelling along the Somalia coast due to Ekman trans-

port of surface water (Bauer et al., 1991). The enhanced supply of deep water nutrients

roots for high productivity in this region during the summer season. Likewise, during

the winter monsoon, north-easterly winds induce convective mixing in the northern and

to some extent in the north-eastern Arabian Sea (Kumar and Prasad , 1996). Cold and

dry winds from the Himalaya region enhance evaporative cooling and increase the density

of surface water, which further subsides and leads to vertical mixing, called convective

mixing. Convective mixing enhances the nutrient supply to the sunlit layer by uplifting

the nutricline to shallower depths and thereby enhances the primary productivity during

winter (Madhupratap et al., 1996; Kumar et al., 2001).

High seasonality in biological production and its subsequent export lead to oxygen

depletion in subsurface waters which constitute one of the most intense open ocean oxygen

minimum zones in the global ocean (Codispoti , 2007). Intense oxygen minimum zone (<

6 µM dissolved oxygen concentration) is normally observed in the intermediate depths

(150–1200 m) north of 12◦N and east of 56◦E in the Arabian Sea (Naqvi , 1987). Sub-

surface hypoxic conditions lead to the occurrence of several N removal processes such as

denitrification and anammox (Ward et al., 2009; Bandekar et al., 2018)
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1.6.3 Previous studies on the C:N:P proportions

Only in recent years, a few studies have been reported in the northern Indian Ocean but

were confined to the Bay of Bengal. There is no study on the elemental ratios in the

Arabian Sea, which experiences a myriad of physical and biological processes that might

affect the elemental dynamics and their ratios. A paucity of concurrent observations of

biogeochemical processes and elemental concentrations have barred us to understand the

veracity of elemental ratios and the exact role of biogeochemical and physical parameters

on the C:N:P ratios in the global ocean in general, and in the northern Indian Ocean in

particular.

Garcia et al. (2018) reported the first study on the dynamics of the elemental ratios

in the eastern Indian Ocean during spring. Their study highlighted the variation of C:N:P

ratios in surface POM along the southern Indian Ocean gyre (31◦S to 12◦S), equatorial

Indian Ocean (10◦S to 5◦N) and the Bay of Bengal (5◦N to 19◦N). Baer et al. (2019)

reported the concurrent nutrients (DIN and DIP) concentration and ratios in the upper

200 m during spring. A significant regional variation in the nutrient and POM elemental

concentrations and ratios were found in the eastern Indian Ocean region. Nutrients and

POM concentrations were low in the southern Indian Ocean gyre and high northwards. In

the Bay of Bengal, the elemental concentrations decreased from 9◦N to 15◦N due to the

increasing surface water stratification that causes restricted deep water nutrient supply

to the sunlit layer. POM elemental ratios followed a similar pattern with high ratios in

the southern Indian Ocean gyre and decreased ratios in the north; however, the ratios at

the equatorial Indian Ocean were slightly above the Redfield Ratio. On the contrary, N:P

ratio in nutrients showed an opposite trend with low (9 to 11.5) values in the southern

Indian Ocean gyre and higher (13 to 15) values in the equatorial Indian Ocean and the

Bay of Bengal region. Higher nutrient (N, P, and Fe) supply and warm temperature (29.1

to 32.6 ◦C) were observed in the Bay of Bengal region. Nutrient supply was a driving

factor for the variation of POM elemental ratios in the eastern Indian Ocean particularly

in the Bay of Bengal. Overall the average C:N:P ratios for the eastern Indian Ocean region

are 135:19:1, and the ratios are 151:20:1 in the Southern Indian Ocean Gyre, 131:19:1 in

the equatorial Indian Ocean and 127:18:1 in the Bay of Bengal.
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Although DOM forms one of the largest reservoirs of C and N in the ocean (Ogawa

and Tanoue, 2003) and contributes 20–25% in global export production, the elemental

ratios in DOM are not well studied. Only a few studies such as Letscher and Moore (2015)

reported that the C:N ratio of the non-refractory DOM pool varied from 8.3 to 10.0 in

the western Arabian Sea.

1.7 Scope of the present work

The main objective of the present study is to understand the variation of C:N:P ratios in

POM, DOM and nutrient pools in the ocean in general and in the northern Indian Ocean

in particular. We studied the variation of elemental ratios in three different layers (top,

subsurface and deep layers) in the water column. The top layer extends from the surface

to the depth of chlorophyll maximum (DCM) where maximum photosynthetic activity

prevails. The successive subsurface layer is considered from the depth of chlorophyll

maximum up to 300 m (at ACE2), which is characterised by lowest dissolved oxygen

concentration due to respiration of sinking organic matter from the top layer. The layer

below the subsurface layer to the deepest sampling depth (maximum up to 3000 m) is

classified as the deep layer, which is affected by the mixing of various water masses and

remains rich in nutrients. Additionally, various physical (eddies) and biogeochemical

(N2 fixation) processes are studied to understand their role in varying elemental ratios.

Specifically, focus of the present study is to:

i. Estimate the C:N:P proportions in POM, DOM and DIM pools and their variation

from the Redfield Ratio in the Bay of Bengal. The elemental ratios in the top,

subsurface and deep layers are studied during summer (July 2018) and spring (April

2019).

ii. Investigate the effect of mesoscale eddies on elemental ratios in the Bay of Bengal.

The variation of elemental ratios of POM, DOM and nutrients in anticyclonic eddy

(ACE), mode water eddy and non-eddy regions are studied during summer and

spring.
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iii. Investigate the influence of riverine influx on the elemental concentrations and ratios

during spring in the Bay of Bengal. For this, conservative mixing calculations are

carried out for DIC and δ 13C of DIC during spring. Furthermore, the top layer

POC:Chlorophyll a and POC:PON ratio at the coastal stations are compared with

those from the previous studies in typical coastal regions receiving high riverine

discharge.

iv. Understand the role of N2 fixation in regulating the N:P ratio in export flux and

subsurface layer nutrients in the Bay of Bengal. The contribution of N2 fixation in

varying N:P ratio of export flux is estimated by applying a simple two-component

N source model by (Karl et al., 1997).

v. To test the nutrient supply and growth rate hypotheses for the varying elemental

ratios in POM in the Bay of Bengal. For this, the contribution of picoplankton

(Prochlorococcus and Synechococcus) to the total POC biomass in the top layer are

estimated during spring.

vi. Investigate the role of convective mixing in regulating the elemental ratios of POM,

DOM and DIM and their variation from the Redfield Ratio in the Arabian Sea.

The elemental ratios and their distribution are studied during the winter monsoon

(December 2019 to January 2020) in the Arabian Sea. The findings of this study

will help biogeochemical modelling in the Indian Ocean region.

vii. Investigate the effect of denitrification on N:P ratio in the subsurface water nutrients

in the Arabian Sea. For this, the N:P ratio in subsurface layer nutrients is calculated

and its deviation from the Redfield Ratio is investigated in the hypoxic waters

(dissolved O2 < 6 µM).

1.8 Outline of the thesis

The thesis is divided into six chapters.

Chapter 1
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This chapter gives a brief introduction to the fundamental elements of organic compounds:

C, N and P and their biogeochemical cycling in the ocean. The canonical Redfield Ratio is

discussed. The evolution of the Redfield concept with varying C:N:P ratios in organic and

inorganic pools and the possible mechanisms that drive their variation are highlighted.

Additionally, this chapter gives a summary of the previous studies on elemental ratios in

the northern Indian Ocean region and the scope of the present work.

Chapter 2

This chapter contains all the details of our sampling in the northern Indian Ocean. De-

tails and precautionary measures taken during seawater sampling and measurement are

presented. The measurement procedures of nutrients, POM and isotopic (δ 15N of PON

and δ 13C of POC and DIC) values are provided. The procedure adopted for the analysis

of TP and POP is explained in detail.

Chapter 3

This chapter presents the results of C:N:P ratios in organic and inorganic pool in the Bay

of Bengal during the summer monsoon. The variation of elemental ratios in the water

column is explained and a global comparison of our results is presented.

Chapter 4

The role of mesoscale ACEs and N2 fixation in varying elemental ratios in the Bay of Ben-

gal during spring is presented in this chapter. Additionally, the influence of the riverine

influx on C:N:P ratios is included in this chapter.

Chapter 5

This chapter discusses the pattern of variation of elemental ratios in organic and inorganic

pools in the Arabian Sea. The role of convective mixing on the variation of C:N:P ratios

is studied in this chapter.

Chapter 6

This chapter highlights the significant findings of the present thesis work and suggests the

scope for future potential research works.
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Materials and Methods

2.1 Background

This thesis presents the results from three different research expeditions conducted in the

Bay of Bengal and the Arabian Sea. We sampled the Bay of Bengal during the summer

(12 July to 2 August 2018) and spring (5 April to 15 April 2019) onboard oceanographic

Figure 2.1: Sampling stations in the Bay of Bengal and the Arabian Sea during three

different research cruises: Sagar Nidhi (SN#132), Sindhu Sankalp (SSK#127), and Sagar

Kanya (SK#364)

.

23
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research vessel (ORV) Sagar Nidhi (SN#132), and ORV Sindhu Sankalp (SSK#127), re-

spectively (Figure 2.1). The northeastern and central Arabian Sea was sampled during

winter (17 December 2019 to 5 January 2020) onboard ORV Sagar Kanya (SK#364). The

results include elemental concentrations and ratios in POM, DOM, and DIM (nutrients)

at different depths (up to 14) from the surface to about 3000 m water depth (varied from

station to station) (Table 2.1). δ 13C values of POC, δ 15N values of PON and δ 13C values

of DIC were also measured. Concurrent stable isotope tracer based C and N2 fixation rates

data were obtained from the literature and unpublished studies. This chapter contains

different methods used for data collection and experiments during this study.

2.2 Environmental parameters

The data for temperature, salinity, density, dissolved oxygen (DO) and fluorescence during

the expeditions were collected using a Sea-Bird conductivity-temperature-depth (CTD)

rosette sampler fitted with Niskin bottles (Figure 2.2). Samples for nutrients (nitrate

(NO−3 ), nitrite (NO−2 ), and phosphate (PO3−
4 )) analyses were collected in 60 mL high

density polyethylene bottles in duplicates and frozen at –20 ◦C until analysis in the onshore

laboratory.

Nutrients were measured using an autoanalyzer (SKALAR, The Netherlands) at

PRL, Ahmedabad. Samples were taken out from the freezer in ambient temperature till

they melted completely and then shaken gently before the measurement. Reliability of

the nutrients data was obtained daily by measuring certified reference materials, such as

MOOS-3 (NOx (NO−3 + NO−2 ): 26.6 ± 0.3 µM, NO−2 : 3.54 ± 0.05 µM, and PO3−
4 : 1.60 ±

0.15 µM) from National Research Council, Canada (Clancy et al., 2014). The detection

limits for NO−2 , NOx, and PO3−
4 were 0.06 µM, 0.16 µM, and 0.02 µM, respectively. The

instrument and analytical procedures used during the analysis are discussed in section

2.2.1.
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Figure 2.2: CTD sensors and Niskin bottles mounted on a rosette sampler during the

Sindhu Sankalp (SSK#127) cruise in the Bay of Bengal. (Photo Credit: Anima Tirkey)

2.2.1 Autoanalyzer

Autoanalyzer works on the principle of segmented flow analysis. This is a continuous flow

method of wet chemistry, which involves a stream of samples and reagents, segmented with

bubbles, pumped through a manifold for reactions to take place before entering a flow

cell for detection. The autoanalyzer consists of an autosampler, chemistry unit, detectors
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Table 2.1: Sampling locations with date and maximum depth of sampling.

Station no Date of sampling (dd.mm.yyyy) Latitude (◦N) Longitude (◦E) Maximum sampling depth (m)

Cruise No SN#132

SN1 12.07.2018 07◦29.99′ 88◦14.23′ 2000

SN2 16.07.2018 08◦47.66′ 88◦13.44′ 2000

SN3 18.07.2018 12◦29.60′ 88◦06.52′ 2000

SN4 19.07.2018 14◦13.64′ 88◦03.63′ 2000

SN5 24.07.2018 16◦30.49′ 88◦00.42′ 2000

SN6 29.07.2018 16◦28.19′ 87◦05.02′ 2000

SN7 31.07.2018 15◦42.30′ 85◦28.94′ 2000

SN8 02.08.2018 14◦10.33′ 85◦05.32′ 2000

Cruise No SSK#127

SSK1 05.04.2019 13◦05.58′ 80◦73.21′ 200

SSK2 07.04.2019 16◦30.09′ 83◦50.88′ 2000

SSK3 08.04.2019 18◦32.61′ 85◦46.12′ 530

SSK4 09.04.2019 19◦49.84′ 87◦00.13′ 1000

SSK5 10.04.2019 19◦49.91′ 88◦59.11′ 1000

SSK6 12.04.2019 14◦26.69′ 87◦23.85′ 1500

SSK7 13.04.2019 13◦05.47′ 87◦00.08′ 2000

SSK8 14.04.2019 13◦04.49′ 84◦13.42′ 1000

Cruise No SK#364

SK1 17.12.2019 15◦56.81′ 73◦09.22′ 50

SK2 19.12.2019 19◦59.16′ 69◦30.61′ 140

SK3 21.12.2019 19◦59.99′ 64◦59.98′ 3000

SK4 22.12.2019 17◦59.57′ 64◦59.77′ 2000

SK5 23.12.2019 15◦59.99′ 64◦59.96′ 2000

SK6 24.12.2019 14◦00.14′ 64◦59.87′ 3000

SK7 26.12.2019 11◦59.65′ 64◦59.96′ 2000

SK8 27.12.2019 09◦59.65′ 65◦00.22′ 2000

SK9 29.12.2019 07◦59.91′ 65◦00.03′ 2000

SK10 30.12.2019 06◦00.19′ 65◦00.32′ 2000

SK11 31.12.2019 03◦59.96′ 64◦59.79′ 2000

SK12 02.01.2020 07◦59.79′ 68◦25.00′ 2000

SK13 04.01.2020 11◦01.99′ 71◦02.50′ 2000

SK14 05.01.2020 13◦30.47′ 72◦19.92′ 1000

and data handling unit (Figure 2.3). The chemistry unit consists of individual channels

for the measurement of NO−2 , NOX and PO3−
4 .

Measurement of NO−2 , NOx, and PO3−
4 in seawater samples were carried out by

automated procedures. The procedure for NO−2 measurement is based on the reaction of

diazonium compounds (formed by diazotizing of sulphanilamide by NO−2 in water under

acid conditions) with N-(1-naphthyl) ethylene diamine dihydrochloride. The reaction

produces a reddish-purple colour complex which is measured at 540 nm.
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NOx measurement is based on the cadmium reduction method. In this method,

the sample is buffered at pH 8.2 and is passed through a column containing granulated

copper-cadmium to reduce NO−3 to NO−2 . The total NO−2 , i.e., originally present plus

reduced from NO−3 , is measured as in NO−2 determination at 540 nm.

The determination of PO3−
4 is based on the reaction of a mixed reagent of ammo-

nium heptamolybdate and potassium antimony (III) oxide tartrate in an acidic medium

with diluted solutions of PO3−
4 to form an antimony-phospho-molybdate complex. This

complex is reduced to an intensely blue coloured complex by ascorbic acid and measured

at 880 nm.

Figure 2.3: SKALAR autoanalyzer at PRL, Ahmedabad. (Photo Credit: Deepika Sahoo)

2.3 Dissolved inorganic carbon concentration and its iso-

topic composition analysis

Seawater samples for DIC and its isotopic composition (δ 13C) were collected in exetainers

(Labco, UK) in duplicates and preserved with saturated mercuric chloride (100% HgCl2)

solution to cease microbial activity. We filled the exetainers completely to avoid air

bubbles inside.

DIC was measured using a Coulometer (UIC’s Model 5012, USA) with an analytical

precision of ±2%. Isotopic compositions are denoted by δ notation and expressed in %�
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unit:

δ (%�) =
(

Rsample

Rstandard
−1
)
× 1000 (2.1)

where, R is the ratio of the heavier isotope to the lighter isotope. Final values are reported

with respect to the international standards, i.e., Vienna-Pee Dee Belemnite (V-PDB) for

δ 13C.

For δ 13C values of DIC, septum vials containing 0.1 mL of 100% orthophosphoric

acid were flushed with He gas in GasBench II attached to a continuous flow isotope ratio

mass spectrometer (IRMS, Thermo Scientific MAT253) (discussed in section 2.3.2). After

flushing, ∼1 mL of the seawater samples was injected into the septum vials using a gas

tight syringe and kept at 28 ◦C for 18 hours to allow complete reaction of samples with

orthophosphoric acid in order to release CO2. The CO2 gas measured for its isotopic

composition in the IRMS connected to GasBench II. Sodium bicarbonate (NaHCO3) of

known C isotopic composition (δ 13C = –11.4 ± 0.1%�) was used as the lab standard.

The precision of δ 13C measurement was better than 0.10%�. The instruments used in the

analysis and their working principles are discussed below.

2.3.1 Coulometer

The instrument consists of two units: an acidification unit and a coulometer. After

acidification of samples in the acidification unit, the released CO2 gets measured in the

coulometer (Figure 2.4). The coulometer measures the absolute mass of CO2 evolved from

sample acidification following Faraday’s law of electrolysis. Sodium carbonate (Na2CO3)

is used as standard to verify the absolute values of DIC.

Atmospheric air is used as the carrier gas during the analysis. However, atmospheric

air may contaminate DIC measurements. Therefore, the atmospheric air is made to pass

through a pre air scrubber. The scrubber consists of a potassium hydroxide (KOH)

solution, prepared by dissolving 45 g of KOH in 100 mL of deionised water.

First, the seawater sample (∼20 mL volume) gets acidified with orthophosphoric

acid to convert DIC into CO2 in the acidification unit. After acidification, the CO2 gas
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carries through the air (devoid of CO2) via a silica gel scrubber to the coulometeric cell.

The coulometeric cell has cathode and anode solutions. The cathode solution consists

of monoethanolamine and a colour indicator. Inside the coulometeric cell, CO2 first

purge into the cell cathode compartment, where CO2 gets absorbed, then reacts with

monoethanolamine to form a titratable acid i.e., hydroxyethylcarbamic acid.

This acid causes the cathode solution to fade and the percent of transmittance of the

solution increases. A photodetector monitors the change in the percent of transmittance.

As transmittance increases, the titration current gets activated. At anode, silver (Ag)

electrolyses to produce electrons (Ag0→ Ag+ + e−). These electrons move to the cathode,

where water in the cathode solution electrolyses to H2 and OH− as: 2H2O + 2e−→ H2 (g)

+ 2OH−. The OH− ions neutralizes the hydroxyethylcarbamic acid solution at cathode.

When the solution returns back to its original colour, cell current stops. The coulometer

then measures the exact amount of electric current that was needed to generate OH−

ions to neutralize the acid formed by C in the sample. This amount of current is directly

proportional to the amount of CO2 in the cell. By using Faraday’s law, the coulometer

calculates the exact weight of C.

Figure 2.4: Flow diagram of UIC CO2 Coulometer.

.
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2.3.2 GasBench

GasBench is a peripheral connected to the IRMS to inject the CO2 gas released from the

sample for measuring δ 13C of DIC in water samples (Figure 2.5). The CO2 gas released

from the septum vials after a complete reaction of samples with orthophosphoric acid

is transferred to the Gasbench. However, the released gas might also contain the water

vapour along with the sample gas. This water vapour is removed by passing the sample

stream through a hygroscopic gastight Nafion tubing. A resulting dry gas (such as CO2

+ He) is transferred to the Gas Chromatograph (GC) column. The GC column separates

different gas compounds released from the sample. The compounds released from the GC

are transferred to IRMS for isotopic measurement.

Figure 2.5: GasBench connected with MAT253–IRMS. (Photo Credit: Deepak Kumar

Rai)

.
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2.4 Particulate organic carbon and nitrogen: Concentra-

tions and compositions

Samples for POC and PON were collected by filtering seawater on precombusted (at

400 ◦C for 4 hours) Whatman glass microfiber filters (GF/F, 47 mm (SN#132), and 25

mm diameter (SSK#127 and SK#364), 0.7 µm pore size) using a manifold filtration unit

connected to vacuum pump. During the SN#132 expedition, ∼3.7 to 4.7 L seawater for

depths up to 500 m and 5 to 8 L of seawater for depths from 1000 to 2000 m were filtered

for POC and PON combined. In SSK#127, 2 to 4.7 L seawater for depths up to 200

m and 2.35 to 5.7 L for depths from 300 to 2000 m were filtered for POC and PON.

During SK#364, 2.35 L seawater for depth up to 300 m and 4.7 to 6 L for depths from

500 to 2000 m were filtered for POC and PON. The filters, secured in sterile petri dishes,

were dried overnight at 50 ◦C in an oven onboard and stored for further analysis in mass

spectrometer.

POC and PON amount and their isotopic compositions (δ 13C and δ 15N) were mea-

sured using an Elemental Analyzer (EA) (FLASH 2000) coupled with IRMS (Thermo

Delta V Plus, Bremen, Germany) connected via Conflo IV interface following Bhavya

et al. (2016a) and Bhavya et al. (2016b) (Figure 2.6). For POC and δ 13C measurements,

samples were decarbonated by exposing the GF/F filters containing POM to acid fumes

(HCl, 37%) prior to the measurement. Samples for PON and δ 15N were not treated with

the acid fumes. The analytical precision for both POC and PON for duplicate measure-

ments were < 10%, while δ 13C and δ 15N had analytical precision of < 0.1%� and 0.3%�,

respectively. IAEA-N-2 ((NH4)2SO4, 21.21%, 20.3%�) for N and IAEA-CH-3 (Cellulose,

44.40%, −24.7%�) for C were used as standards in addition to the internal laboratory

standards. The δ 13C values are reported with respect to the international standards, i.e.,

V-PDB for δ 13C and Air-N2 for δ 15N. Some examples of calibration plots, which were

constructed to estimate the amount of C and N in the sample filters are shown in Fig-

ure 2.7. The instruments used during the measurements and their working principles are

discussed below.
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Figure 2.6: FLASH 2000 EA connected to Thermo Delta V Plus-IRMS at PRL, Ahmed-

abad. (Photo Credit: Deepak Kumar Rai)

.

Figure 2.7: Examples of calibration plots for the estimation of POC (a and b) and PON

(c and d) concentration on different dates.

.
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2.4.1 Elemental Analyzer

EA is a peripheral connected to the IRMS. POC and PON in the samples get converted

to CO2 and N2 for the measurement of their amounts and isotopic compositions (δ 13C

and δ 15N) (Figure 2.6).

EA uses a high temperature flash combustion method, which involves the complete

conversion of all organic and inorganic compounds by instantaneous and complete oxida-

tion of the sample. It consists of an oxidation and a reduction reactor, a water trap and

a GC. The reactors are made up of quartz tubes. The oxidation column was prepared by

filling silver cobaltous oxide (3 cm) and chromium oxide (12 cm), separated (1 cm) and

bracketed (5 cm) by quartz wool layers. The reduction column was prepared by filling

copper granules (20 cm) and bracketed by quartz wool layers (5 cm) on both sides of the

copper granule layer. The water trap tube has a length of 12 cm and an outer diameter

of 1.5 cm was filled with magnesium perchlorate granules in between quartz wool layers

(1 to 2 cm).

Samples filtered on GF/F filters packed in tin capsules were dropped through an

autosampler into the oxidation chamber at 1020 ◦C furnace temperature for combustion

in presence of oxidising agents such as chromium oxide and silver cobaltous oxide. Upon

combustion, carbon dioxide (CO2), oxides of N (NOx), and water (H2O) are carried by

Helium to the reduction column maintained at 680 ◦C. NOx reduced to N2 in the reduction

chamber and a combination of gases including N2, CO2, and H2O come out as the final

output. H2O was trapped in the magnesium perchlorate column. A mixture of gases (N2

and CO2) is then passed through the GC column, where each gas is separated based on

its retention time inside the column. The separated gases are introduced in the Delta-V

plus IRMS through Conflo IV (Figure 2.6).

2.4.2 Isotope Ratio Mass Spectrometer

IRMS consists of the three main components: source, analyzer, and detector (Figure 2.8).

Sample gets singly ionised in the source by the thorium coated tungsten filament. The

filament emits electrons upon heating at 1.5 A current. The emitted electrons collide with
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sample gas (CO2 and N2) and ionise them. In the analyzer, a magnetic field is applied

to increase the ionisation efficiency which makes the path of ionized molecules spiral. A

high voltage (∼2.5 kV) potential difference is applied to accelerate the positively ionized

gas molecules, which enters the magnetic sector. Gas molecules with charge (q) accelerate

under voltage (V) as:

qV =
1
2

mv2 (2.2)

where m is the mass of the molecule and v is the velocity with which it escapes the

ion source. In the analyzer, the charged molecules are separated based on their mass

to charge ratio. For CO2 ions, the beams with masses 44, 45, and 46 atomic mass unit

(corresponding to 12C16O2, 12C16O17O, 13C16O2, 12C17O17O, 13C16O17O and 12C16O18O)

are produced. For N2, beams with 28, 29, and 30 atomic mass units (corresponding to

14N2, 14N15N, and 15N2, respectively) are produced. These ions follow curvilinear paths

owing to the Lorentz force, which is balanced by the centripetal force on the ion beam

Figure 2.8: A schematic showing components of IRMS and its principle.

.
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entering perpendicular to the magnetic field (B) direction (equation (2.3)):

q(v×B) =
mv2

r
(2.3)

Combining equations (2.2) and (2.3),

r2 =
2mV
qB2 (2.4)

Lighter molecules deflect more than heavier molecules with a small radius of curva-

ture (r) (equation (2.4)). The detector consists of Faraday cups connected to resistors

(∼109 Ω). Faraday cups where ions neutralize by colliding inside the metal cups and giv-

ing up their positive charges and kinetic energies. This produces currents that are passed

through the external high resistance resistors. Finally, the voltage across the resistance

produced by ions is measured in IRMS, proportional to the number of ions entering into

the Faraday cup per unit time.

2.5 Particulate organic phosphorus and total phosphorus

analysis

For POP, samples were collected by filtering seawater on pre-combusted (at 400 ◦C for 4

hours) Whatman glass microfiber filters (GF/F, 47 mm (SN#132 and SK#364) and 25 mm

(SSK#127) diameter, 0.7 µm pore size). During the SN#132 expedition, 2.35 L seawater

for depths up to 500 m, and 3 to 4 L for depths from 1000 to 2000 m were filtered. In

SSK#127, 2 to 4.7 L seawater for depths up to 200 m and 2.35 to 5.7 L for depths from

300 to 2000 m were filtered. During, SK#364, 2.35 L seawater up to 300 m and for depths

from 500 to 2000 m, 4.7 to 10 L seawater were filtered. Filtration was followed by rinsing

of the GF/F filters with 5 mL of 0.17 M sodium sulphate (Na2SO4) solution to drain

out the adsorbed particles with POP. The filters, secured in sterile petri dishes, were

dried overnight at 50 ◦C in an oven onboard and stored for further analysis in the PRL

laboratory. Seawater samples for TP were collected in 60 mL high density polyethylene
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bottles and frozen at –20 ◦C until analysis.

A high temperature oxidation method was adopted to estimate POP and TP con-

centrations (Murphy and Riley , 1962). Potassium persulfate (K2S2O8) was used as an

oxidising agent for digestion of the organic matter. Potassium di-hydrogen phosphate

(KH2PO4) standard was used for the calibration and adenosine-5’-triphosphate disodium

(ATP-Na2) standard was used as laboratory standard to estimate the recovery percentage

(80-85%). All the working standards for calibration and the laboratory standards were

prepared in artificial seawater (ASW, prepared at laboratory with salinity ∼33) in order

to avoid any possible matrix effect. Two reagents such as ascorbic acid and mixed reagent

were prepared fresh on the day of measurement:

i. For acidic ascorbic acid solution, 10 g ascorbic acid was dissolved in 50 mL of

deionised water, and then added with 50 mL sulphuric acid (4.5 M).

ii. For mixed reagent, 12.5 g of ammonium heptamolybdate tetrahydrate dissolved

in 125 mL deionized water. 0.5 g of potassium antimony tartrate was dissolved

separately in 20 mL deionized water. Then the molybdate solution was added

to 350 mL sulphuric acid (4.5 M), while stirring continuously. Then the tartrate

solution was added, mixed well and stored in the refrigerator.

For TP, 25 mL of seawater sample in narrow mouth borosil glass vials was added

with 2 mL of 5% of acidic K2S2O8 solution and then digested in an Equitron autoclave at

121 ◦C, 1.055 kg cm−2 (5 psi) for 80 minutes. The digested samples were allowed to cool

down up to room temperature. Subsequently, 1 mL of ascorbic acid and 0.5 mL of mixed

reagents were added to each sample and shaken properly. After 30 min, the samples were

analysed in a spectrophotometer (Shimadzu Spectrophotometer UV-1800) using a 50 mm

cuvette at a wavelength of 880 nm.

For POP, the sample containing GF/F filter kept in narrow mouth borosil glass vial

was added with 20 mL of 3% K2S2O8 solution and then autoclaved at 121 ◦C for 80 min-

utes. After cooling down to room temperature, the digested solution was filtered using

a 0.45 µm syringe filter in order to avoid unnecessary scattering due to the suspended

particles during measurement. The filtered solution then diluted to 1.5% K2S2O8 with

deionised water, because > 2% K2S2O8 inhibits colour development during reaction. Di-

lution was followed by the addition of 2 mL of ascorbic acid and 1 mL of mixed reagent
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prior to the measurement. The analysis of POP was performed in a 100 mm cuvette in

the spectrophotometer.

The detection limit of the measurements was 0.1 nM. This procedure is based on

the spectrophotometric detection of phosphomolybdenum blue (PMB) complex, which

is formed by a sequence of reactions (Murphy and Riley , 1962). First, PO3−
4 in the

sample reacts with acidified molybdate to produce 12- molybdophosphoric acid (12-MPA)

(equation (2.5)), which is subsequently reduced to PMB by ascorbic acid (equation (2.6)).

PO3−
4 + 12MoO2−

4 + 27H+ → H3PO4(MoO3)12 + 12H2O (2.5)

H3PMo(VI)12O40 + Ascorbic acid → [H4PMo(VI)8Mo(V)4O40]
3− (2.6)

2.5.1 Calibration and correction

The concentrations of P in seawater samples were calculated using the equations obtained

from the calibration curve (Figure 2.9). The recovery percent of laboratory standards

were between 80 to 85% during the measurements. Therefore, 15 to 20% of correction

was incorporated on each sample value.

Figure 2.9: Examples of calibration plots for the estimation of TP (a and b) and POP (c

and d) concentration on different dates.

.
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2.5.2 Spectrophotometer

The spectrophotometer measures the amount of light that a sample absorbs. It works

by passing a light beam through a sample to measure the light intensity of a sample.

Spectrophotometer measures near-ultraviolet (200–400 nm), visible (400–700 nm), and

near-infrared (700 nm–3 µm) rays of electromagnetic radiation.

It consists of two instruments: a spectrometer and a photometer. The spectrometer

produces light, while the photometer measures the intensity of light. The spectrophotome-

ter is designed in a way that a sample is placed between spectrometer and photometer,

the amount of light that passes through the sample is measured in the photometer and

delivers a voltage signal to the display.

The spectrophotometer has a light source, a monochromator, a sample compart-

ment, a photoelectric detector, an amplifier, and a digital display (Figure 2.10). We

used a double beam configured spectrophotometer. This optical configuration divides the

monochromatic light into two beams, the reference beam and sample beam using a rotat-

ing, semi-transparent mirror. When the reference cell with solvent in it is placed for the

reference beam and the sample cell with sample in it is placed for the sample beam in the

sample compartment, each transmitted light enters the detector. The transmittance and

absorbance are measured from sample sign I and the reference sign Io.

Spectrophotometer follows Bouguer-Beer’s law for quantitative analysis, which is also

known as Lambert-Beer’s law. This law states that the transmittance (T) is:

T = I/Io = 10−kcl (2.7)

A = log(1/T ) = log (Io/I) = kcl (2.8)

where Io is the light intensity passed through a sample and I is the intensity of the

transmitted light, where k stands for proportional constant, c for concentration and l is

the path length of light. (I/Io) × 100 is the percent transmittance (%T) and A denotes

the absorbance. The absorbance of light is proportional to the concentration of the sample

(Beer’s law) and the path length of light (Bouguer’s law) (equation (2.7) and (2.8)).
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Figure 2.10: Double beam configured spectrophotometer.

2.6 Total organic carbon and total nitrogen analysis

For TOC and TN measurements, seawater samples were collected in 50 mL sterile cen-

trifuge tubes (Tarsons, India) in duplicates. The centrifuge tubes were rinsed three times

with deionized water and later rinsed twice with the sample aliquot to avoid any possi-

ble contamination. The samples were frozen immediately at –20 ◦C until analysis in the

onshore laboratory at PRL, Ahmedabad.

The TOC measurements were performed using a high temperature catalytic oxidation

method in the TOC analyzer (TOC-L-CPH, Shimadzu Corporation, Japan) (Knap et al.,

1993; Suratman et al., 2009; Pujo-Pay et al., 2011). Inorganic carbon was removed by

acidifying the sample with 2N HCL through purging of carrier gas prior to the TOC

measurement. Ultrapure zero gas with 99.9995% purity was used as the carrier gas. The

zero gas contains 0.5 ppm carbon monoxide (CO), 2 ppm CO2, 1 ppm nitrogen dioxide

(NO2) and 0.2 ppm total hydrocarbon (THC) and was manufactured and supplied by

Vinay Air Products, Ahmedabad, India.

System blank was checked and maintained at zero before analysis. The TOC analyzer

was rinsed with deionized water before and after every sample measurement to remove

the salt accumulation and clean the system. The non-purgeable organic carbon was

oxidised to CO2 and measured using Non Dispersive Infra-Red (NDIR) detector (discussed

in section 2.6.1). Sucrose was used for calibration and laboratory standard for TOC

measurement. 237 mg of sucrose was dissolved in 100 mL of deionized water to prepare

a standard solution of 1000 ppm C concentration. An intermediate solution of 10 ppm C

concentration was prepared from the standard solution. Using the autodilution feature,
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the instrument performed multiple point calibration with working standards of 0.4, 0.8,

1.2, 1.6 and 2.0 ppm C concentrations.

TN concentrations were measured simultaneously in a TN analyzer (TNM-L-CPH,

Shimadzu Corporation, Japan) by oxidising dissolved N to nitric oxide (NO) into the

combustion tube at 720 ◦C. The resultant NO was detected in the chemiluminescence

detector (discussed in section 2.6.1).

Potassium nitrate (KNO3) was used for calibration and laboratory standard in the

TN measurement. 7.22 g of KNO3 was dissolved in 1 L deionized water to prepare a

standard solution of 1000 ppm N concentration. An intermediate solution of 10 ppm N

concentration was prepared from the standard solution. Using the autodilution feature,

the instrument performed multiple point calibration with working standards of 0.25, 0.5,

0.75, 1.0 and 1.25 ppm N concentrations.

The accuracy of the results was ensured by routinely measuring a certified reference

material (Batch 18, Lot#08-18 for deep seawater) provided by the University of Miami,

USA (Hansell , 2005). The analysis was performed at the absolute deviation within 5% of

the standard value. The coefficient of variation was 2% for TON and TN measurements.

2.6.1 Total organic carbon and total nitrogen analyzer

The instrument consists of three units including autosampler (ASI-L), TOC (TOC-L) and

TN (TNM-L) units and a data handling unit (Figure 2.11). The TOC-L unit consists of a

combustion chamber and NDIR detector. The combustion tube was prepared by inserting

two sheets of platinum mesh in the bottom of the tube, and a layer (5 mm) of quartz

wool on it, which was followed by the filling of TOC standard catalyst (platinum coated

Al-Si oxide) in the combustion tube to a height of 140 mm from the top end of the tube.

A layer (10 mm) of ∼0.2 g ceramic fiber was placed uniformly over the catalyst. The

furnace temperature of the combustion chamber was maintained at 720 ◦C during the

simultaneous measurement of TOC and TN concentration in seawater samples.

NPOC (Non-Purgeable Organic Carbon) method was used for TOC analysis, which

removes inorganic C from the sample and the remaining C is measured as TOC. The
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Figure 2.11: Shimadzu TOC-TN analyzer at PRL, Ahmedabad. (Photo Credit: Deepika

Sahoo)

autosampler takes the samples from the vials to the TOC unit through Hamilton syringe,

where the sample is acidified with 5% of 2N HCL for ∼10 mins. After acidifying the

seawater sample to pH 2 to 3, sparge gas was bubbled through the sample to eliminate the

inorganic C component. The sample was then introduced into the combustion tube, which

was filled with Al-Si oxide as oxidation catalyst and heated to 720 ◦C. During combustion,

the remaining TOC in the sample is converted to CO2. The carrier gas, which flows at

a rate of 150 mL min−1 to the combustion tube, carries the sample combustion products

to an electronic humidifier, where the gas is cooled and dehydrated. The gas then carries

the sample combustion products through a halogen scrubber to remove chlorine and other

halogens. Finally, the carrier gas delivers the combustion products to the cell of NDIR

gas analyzer, where CO2 is detected. The NDIR outputs an analog detection signal that

forms a peak and the peak area is measured by the TOC-Control L software.

The NDIR detector consists of a light source, cell and detection portion. The de-

tector uses a diaphragm type of detection system called Luft detectors. The diaphragm

connected to an opposing electrode in a parallel circuit, which further connected to a

high-value resistor and an amplifier. Light passes through the cell compartment and the

detector. Depending on the concentration of CO2 generated from the sample, an amount
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of light passes through the quartz window into the detection portion. The movement of

the trapped CO2 within the detector compartment causes the diaphragm to flex. Upon

flexing, the distance between the diaphragm and electrode changes and creates an elec-

trical signal corresponding to the concentration of TOC in the sample.

For TN measurement, the sample was introduced into the combustion tube at 720

◦C furnace temperature. Zero gas was used as the carrier gas that provides oxygen to

support combustion and to the ozone generator inside the TN detector. During combus-

tion, N containing compounds in the sample thermally decomposes to NO. The zero gas

containing NO was cooled in a thermoelectric cooler and dehumidified by the electronic

dehumidifier immediately after exiting the combustion tube. The cooled gas then enters

the chemiluminescence gas analyser, where the NO reacts with ozone (O3) and converts

into a combination of NO2 and excited NO2 (NO∗2). As NO∗2 returns to the ground state,

it emits radiation, which was measured photo-electrically. The detector signal generates

a peak that is proportional to the N concentration in the sample. The peak area and the

TN concentrations were measured by the TOC-Control L software.

2.7 Elemental concentrations in dissolved organic matter

TON and TOP were estimated by subtracting inorganic matter from its total elemental

pool as [TN] – [DIN] and [TP] – [DIP], respectively. The DOC, DON, and DOP concentra-

tions were estimated as the difference between TOC and POC, TON and PON, and TOP

and POP, respectively. This method has limitations for DOP measurements in samples

having < 10% of total dissolved P.

2.8 Statistical analyses

Linear regression analyses (significance level, p < 0.05) were performed among C, N, and

P concentrations in different pools. One-way ANOVA was done to test the significant

(p < 0.05) difference in ratios in the different pools using the SigmaPlot 14.0 software.
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Shapiro-Wilk test was performed to check the normality in data for ANOVA analysis.

Linear regression and ANOVA analyses were performed for analysing the results from the

SN#132 study in the Bay of Bengal during the summer monsoon 2018 (Chapter 3).

The influence of environmental variables on the concentration of elements and their

elemental ratios in three different pools was investigated using Principal Component Anal-

ysis (PCA) in R programming language. Pearson’s correlation coefficient at p < 0.05 was

used to estimate the strength of the relationships. The PCA analysis showed that the first

two principal axes (PC1 and PC2) explained the highest percent of the variability. The

PCA is used to highlight the relationships between variables projected in a multidimen-

sional space. Each arrow represents a variable as mentioned near their heads. Arrows’

distance from the origin and their closeness to each other is proportional to correlation,

i.e., when arrows are far from the center and close to each other, they are positively cor-

related. When arrows are symmetrically opposite, they are anticorrelated. If the arrows

are orthogonal, there is no correlation. If the variables are close to the origin, the rela-

tionship among these variables is inconclusive. PCA analysis was used in the SN#132 and

SSK#127 study in the Bay of Bengal during the summer 2018 (Chapter 3) and spring

2019 (Chapter 4), respectively.

Spearman’s correlation coefficient at α < 0.05 was used to estimate the strength

of the relationships between parameters in the top, subsurface, and deep layers. The

statistical significance of the differences between the mean values of a parameter (elemental

concentrations and ratios in nutrients and organic matter) measured at coastal and open

ocean stations were tested following Chao (1974). Two mean values (say µ1 and µ2)

are considered to be significantly different from each other at α < 0.05, if µ1 − µ2 ≥

1.645
√

σ2
1

n1
+

σ2
2

n2
, where σ1 and σ2 are the standard deviations around the mean values

µ1 and µ2 calculated from data points n1 and n2, respectively. Spearman’s correlation

test and the significance testing following Chao (1974) were performed in SSK#127 and

SK#364 studies in the Bay of Bengal and the Arabian Sea during spring 2019 (Chapter

4) and winter 2019–2020 (Chapter 5), respectively.





Chapter 3

C:N:P proportions in the Bay of Bengal

during the summer monsoon

3.1 Introduction

The Bay of Bengal is an economically, ecologically, and culturally important basin as

it forms a long coastline with the Indian subcontinent. It is surrounded by the Indian

subcontinent in the north and north-west, and the Andaman and Nicobar Islands in the

east. The prevalence of eddies are typical characteristics of this basin (Mukherjee et al.,

2019). Frequently occurring mesoscale eddies in this basin are associated with advective

transfer of riverine water offshore. The Bay of Bengal experiences semi-annual seasonality

of the Asian monsoon system (Gadgil , 2003). Strong southwesterly winds lead to high

rainfall over the Indian subcontinent from June to September, whereas between December

to February, northeasterly winds lead to heavy rainfall in the southern states of India.

Large freshwater influx (1.625 × 1012 m3 year−1) from the Ganges-Brahmaputra river

system drives strong vertical density gradient leading to higher sea surface temperature

than usual in the Bay of Bengal (Subramanian, 1993; Shetye et al., 1991). The influx of

nutrients through riverine discharge, surrounding mangroves, and wetlands enhance the

productivity in the coastal regions (Choudhury and Pal , 2010; Dutta et al., 2019) and

leads to a considerable C export in the deeper Bay of Bengal (Ittekkot et al., 1991; Singh

and Ramesh, 2015; Kumar et al., 2004a).

45
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The Bay of Bengal witnesses high concentration of DOC ∼75–100 µM in the surface

waters due to high riverine flux (Shah et al., 2018). In addition, DON and DOP constitute

about 70–99% of the total dissolved nutrients in the waters above the thermocline (Sarma

et al., 2019b). At the same time, the water column remains stratified restricting the

upward nutrient flux due to strong halocline (Prasanna Kumar et al., 2010). In such

cases, recycling processes and frequent eddies observed over the Bay of Bengal could be of

considerable importance for primary production (Gomes et al., 2000; Kumar et al., 2004b;

Singh et al., 2015b). In fact eddies are known to enhance the primary production in the

Bay of Bengal (Prasanna Kumar et al., 2010; Singh et al., 2015b).

These physical (e.g., stratification and eddy driven mixing), and biogeochemical

phenomena such as (e.g., N2 fixation) might have a control on C:N:P ratios in the Bay of

Bengal. However, paucity of data lacks our knowledge of the elemental ratios in the basin.

To enhance our understanding on the C:N:P ratios in the Bay of Bengal, we sampled the

water column at eight stations in the basin during the summer monsoon. The purpose of

this study was to:

(i) Estimate the C:N:P ratios in POM, DOM and DIM pools in the water column

(surface to 2000 m depth)

(ii) Understand the impact of mesoscale eddies and N2 fixation on the elemental ratios.

3.2 Methods

Sampling was performed in the Bay of Bengal during the peak of summer monsoon (12

July to 2 August 2018) on-board ORV Sagar Nidhi (SN#132) (Figure 3.1, Table 3.1).

Water samples were collected using a Sea-Bird CTD rosette sampler from 12 different

depths (10 m, 25 m, 50 m, 75 m, 100 m, 150 m, 200 m, 300 m, 500 m, 1000 m, 1500 m,

and 2000 m) at each station. At times, one of the two subsurface sampling depths (i.e.,

50 m or 75 m) was changed to match the DCM. To analyse the variability in elemental

concentrations and ratios in the water column, we have categorized our observations into

three depth segments on the basis of biogeochemical processes as explained in Chapter

1: (1) top layer (surface to DCM), (2) subsurface layer (DCM to 300 m), and (3) deep
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layer (300 m to 2000 m). The DCM varied between 25 m and 78 m. For calculation

purposes, we have considered the DCM depth in both the top and subsurface layers, and

similarly 300 m depth in both the subsurface and deep layers. MLD was calculated by 0.2

◦C decrease in temperature from that at the 10 m reference depth (de Boyer Montégut

et al., 2004; Holte and Talley , 2009).

Figure 3.1: Daily sea surface height anomaly overlaid by geostrophic currents on 12 July

2018. The eddies remained in the same position throughout the sampling period. Circles:

sampling locations.

The measurement of elemental concentrations of DIM, POM, and DOM, and δ 13C

and δ 15N of POM were discussed in Chapter 2. The nutricline was estimated as the depth

where NO−3 increased to 1 µM. The N2 fixation and C uptake rates were taken from a

concurrent study performed on the same cruise (Saxena et al., 2020) to assess the role of

these two biogeochemical processes on C:N:P ratios.
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Table 3.1: Details of environmental parameters at the eight sampling locations during summer 2018.

Station Date of sampling (dd.mm.yyyy) Latitude (◦N) Longitude (◦E) SST (◦C) SSS Chl a (mg m−3)† DCM (m) MLD (m) Nutricline (m) N2 fixation (µmol N m−2 d−1)∗ Primary production (mmol C m−2 d−1)∗

ACE1 12.7.2018 07◦ 29.99′ 88◦ 14.23′ 28.8 34.19 0.29 ± 0.04 75 64 58 11 ± 5 30 ± 8

MWE 16.7.2018 08°47.66’ 88°13.44’ 28.1 34.39 0.89 ± 0.59 25 49 10 6 ± 6 87 ± 11

NE1 18.7.2018 12°29.60’ 88°06.52’ 28.8 33.11 0.38 ± 0.41 57 52 58 27 ± 16 39 ± 4

NE2 19.7.2018 14°13.64’ 88°03.63’ 28.5 32.78 0.23 ± 0.16 55 48 45 20 ± 4 24 ± 2

ACE2 24.7.2018 16°30.49’ 88°00.42’ 28.2 33.48 0.42 ± 0.21 47 43 51 4 ± 4 69 ± 5

ACE3 29.7.2018 16°28.19’ 87°05.02’ 28.7 33.44 0.20 ± 0.18 76 77 33 12 ± 8 58 ± 13

BWE 31.7.2018 15°42.30’ 85°28.94’ 28.7 33.62 0.23 ± 0.09 55 41 32 75 ± 98 81 ± 12

ACE4 02.8.2018 14°10.33’ 85°05.32’ 29.1 33.04 0.25 ± 0.28 78 66 66 41 ± 6 45 ± 4

†Chlorophyll a (Chl a) values are averaged over the top layer, ∗Column integrated (up to 75 m) N2 fixation rates and primary production data are taken from Saxena et al. (2020).
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Processed Automatic Weather Station (AWS) data for wind speed was provided

by Indian National Centre for Ocean Information Services (INCOIS), India (Harikumar

et al., 2013). To categorize the sample locations based on the sea surface height anomaly

(SSHA), geostrophic current data were obtained from the Copernicus Marine Environ-

mental Monitoring Service (https://resources.marine.copernicus.eu/; data retrieved on 17

August 2019). Cyclonic eddies were identified by the anticlockwise geostrophic currents

with < –0.2 m SSHA. Anticyclonic eddies (ACEs) were identified by the clockwise circu-

lation with > 0.2 m SSHA. Features having increased SSHA accompanied by lens shaped

isopycnals were characterized as mode water eddy (MWE) (Sweeney et al., 2003). Sta-

tion located along the boundary area of cyclonic and ACE was categorised as boundary

water eddy (BWE). Stations with no significant SSHA were considered as non-eddy(NE)

stations. We sampled four ACE (1–4), two NE (1–2) and one each MWE and BWE.

3.3 Role of environmental factors on C, N, and P concen-

trations and their ratios

Variations in elemental ratios are driven by environmental factors such as temperature,

salinity, and nutrient concentrations (Körtzinger et al., 2001; Frigstad et al., 2011). Sea

surface temperature ranged from 28 to 29 ◦C while sea surface salinity varied from 32 to

34 (Figure 3.2).

Figure 3.2: Vertical section of (a) temperature, (b) salinity, (c) density, and (d) chlorophyll

a. Section distance starts from station ACE1 (50 km) and ends at ACE4 (1500 km).

.
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Nutrients (DIN, DIP, and DIC) concentration showed anticorrelation with tempera-

ture in PCA analysis (Figure 3.3). This suggests that temperature might not play a direct

role on nutrient concentration. Rather this indicate that the nutrient concentrations are

high in deep (cold) waters, but influx of cold waters during physical processes (such as

eddies) might enhance the nutrient concentration in the surface waters in the Bay of Ben-

gal. Additionally, positive correlation between nutrients and salinity indicate that the

nutrients are of marine origin (Figure 3.3). This is not surprising as terrestrial nutrients

are largely consumed within the estuarine ecosystem in the basin (Singh and Ramesh,

2011; Dutta et al., 2019). Correlations between elemental ratios with temperature and

salinity should be interpreted with caution as both of these parameters are not known

to directly affect the elemental ratios. However, change in temperature affects nutrient

uptake and other biogeochemical processes (such as respiration/decomposition), in turn

influencing the elemental stoichiometry (Lomas et al., 2002; Spackeen et al., 2018). In

addition, salinity gradient has been shown to change N uptake rates in mesocosm experi-

ments (Kumar et al., 2018). In theory, temperature and salinity related influences could

be both physiological and taxonomic (Barton and Yvon-Durocher , 2019; Hernando et al.,

2020). The N uptake potential is a part of physiological change of phytoplankton driven

by salinity and temperature (Kaur-Kahlon et al., 2016; Kumar et al., 2018; Barton and

Yvon-Durocher , 2019; Hernando et al., 2020). Since our data are spatially distributed,

these influences are likely to be taxonomical. Anticorrelation of salinity with POM con-

centrations could be attributed to the increase of elemental uptake potential due to the

freshening of water at elevated temperature (Hernando et al., 2020) or relatively higher

consumption (mineralisation) of POM at higher salinity condition. However, these need

to be experimentally verified in the Bay of Bengal.

Overlapping of the PON:POP and POC:POP vectors suggest that the ratios are

driven by variation in POP through similar processes, such as the POP remineralisation.

Additionally, no significant correlations of PON:POP and POC:POP with PON and POC,

respectively, confirms the variation of these ratios to be due to oscillations in POP (Figure

3.3).
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Figure 3.3: PCA analysis of depth, temperature, salinity, fluorescence, dissolved inorganic

nutrients, POM, DOM, elemental ratios, δ 13C, and δ 15N of POM.

.

3.4 The C:N:P ratios in DIM, POM and DOM

3.4.1 Dissolved inorganic matter

The low N:P ratio in nutrients (varied from 3 to 12 < 16:1, Figure 3.4) in the top layer

indicates N stressed primary production in the Bay of Bengal. This is confirmed from

the negative intercept between DIN and DIP (Figure 3.5), which suggests that DIN gets

exhausted before DIP. Unlike N:P ratio, C:N and C:P ratios in DIM of the top layer

were thousand and hundred times higher than the Redfield Ratio, respectively. HCO−3

and CO2−
3 are the alkalinity species accounts for 99% of DIC pool (∼2000 µM) in ocean.

These species reside thousands of years in the ocean, higher than the average mixing



52 Chapter 3. C:N:P proportions in the Bay of Bengal during the summer monsoon

time of ocean. Additionally, only a small fraction of HCO−3 and CO2−
3 is utilized by

phytoplankton for photosynthesis and calcifying organisms for carbonate precipitation.

Therefore the DIC pool is so large it cannot be easily exhausted and is considered here as

unutilised. It present almost 2–3 orders of magnitude higher that the other macronutrients

such as NO−3 and PO3−
4 . Therefore, when one looks at the change in DIC:DIN or DIC:DIP

over time (i.e., consumption rate ratios), these ratios are likely to be close to Redfield.

However, ratios in the static set of concentrations at a given time, as presented here, are

roughly order of magnitudes higher.

A large spatial variation in DIC:DIN and DIC:DIP ratios in the top and subsurface

layers was observed across the stations with higher values at ACE and NE stations (Table

3.2). However, DIC:DIN and DIC:DIP ratios were similar in the deeper layers across

stations. The DIN:DIP ratios increased with depth with no significant spatial variability.

Figure 3.4: Box-whiskers plots showing C:N, N:P and C:P ratios in top layer, subsurface

water, and deep water. Pink dotted lines represent mean, whereas blue (POM, DOM)

and green (DIM) solid lines represent median. Black solid brackets represent significantly

different groups (p < 0.05) obtained from One way ANOVA test. Whiskers account for

10 and 90% of distribution, whereas box accounts for 25 and 75%.
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Table 3.2: C, N and P and their ratios in different reservoirs at three depth layers at ACE, MWE, NE, and BWE stations.

Parameter ACE MWE NE BWE

Top Subsurface Deep Top Subsurface Deep Top Subsurface Deep Top Subsurface Deep

POC (µM) 4.91 ± 1.59 2.52 ± 0.42 2.14 ± 0.73 8.24 ± 3.65 2.94 ± 1.76 2.67 ± 0.82 3.52 ± 0.53 2.08 ± 0.32 1.85 ± 0.02 4.03 ± 1.16 1.80 ± 0.63 1.88 ± 0.88

PON (µM) 0.58 ± 0.32 0.30 ± 0.16 0.16 ± 0.05 0.86 ± 0.06 0.43 ± 0.35 0.17 ± 0.03 0.37 ± 0.02 0.19 ± 0.05 0.15 ± 0.01 0.40 ± 0.11 0.14 ± 0.08 0.11 ± 0.05

POP (µM) 0.021 ± 0.010 0.009 ± 0.003 0.004 ± 0.002 0.044 ± 0.004 0.011 ± 0.014 0.003 ± 0.0004 0.016 ± 0.003 0.006 ± 0.002 0.002 ± 0.0004 0.02 ± 0.01 0.005 ± 0.003 0.003 ± 0.002

DOC (µM) 76.86 ± 5.77 65.69 ± 6.01 49.86 ± 7.17 75.96 ± 1.15 63.31 ± 7.57 49.79 ± 5.62 93.44 ± 5.10 71.23 ± 7.32 62.90 ± 18.49 63.94 ± 2.95 49.71 ± 9.92 42.11 ± 8.11

DON (µM) 5.34 ± 1.00 7.09 ± 3.41 7.33 ± 7.70 8.42 ± 0.80 12.24 ± 5.09 19.54 ± 0.22 8.18 ± 0.30 15.35 ± 1.91 19.49 ± 2.34 5.09 ± 0.94 3.71 ± 1.74 7.73 ± 7.48

DOP (µM) 0.36 ± 0.13 0.43 ± 0.19 0.40 ± 0.23 0.36 ± 0.48 0.52 ± 0.44 0.25 ± 0.31 0.29 ± 0.03 0.29 ± 0.003 0.29 ± 0.08 0.28 ± 0.13 0.33 ± 0.16 0.53 ± 0.22

DIC (µM) 1910.25 ± 77.33 2108.35 ± 58.89 2246.50 ± 37.06 1973.13 ± 6.37 2103.31 ± 105.42 2242.36 ± 17.48 1969.65 ± 102.24 2217.15 ± 118.29 2360.83 ± 106.01 1916.56 ± 29.39 2074.37 ± 79.82 2317.87 ± 109.66

DIN (µM) 0.29 ± 0.13 15.84 ± 2.36 33.87 ± 1.49 1.96 ± 0.49 14.86 ± 11.29 34.98 ± 2.79 0.56 ± 0.35 20.79 ± 0.74 36.10 ± 0.37 1.68 ± 2.47 20.77 ± 9.44 30.69 ± 6.98

DIP (µM) 0.15 ± 0.04 1.45 ± 0.20 2.75 ± 0.12 0.38 ± 0.04 1.36 ± 0.82 2.75 ± 0.23 0.18 ± 0.02 1.76 ± 0.09 2.80 ± 0.01 0.29 ± 0.27 1.75 ± 0.67 2.56 ± 0.44

POC:PON 9.98 ± 2.04 12.49 ± 3.89 16.21 ± 6.29 9.76 ± 5.04 9.34 ± 2.59 15.64 ± 3.59 9.80 ± 1.34 12.98 ± 0.56 12.81 ± 1.18 9.96 ± 0.89 14.05 ± 2.59 17.15 ± 1.75

POC:POP 238.91 ± 37.84 408.73 ± 31.18 828.40 ± 156.45 187.94 ± 77.85 407.82 ± 183.11 951.26 ± 293.39 241.71 ± 62.03 584.50 ± 32.16 1294.49 ± 179.35 226.75 ± 20.50 447.57 ± 108.04 877.16 ± 645.84

PON:POP 26.98 ± 11.35 30.28 ± 9.68 63.11 ± 35.50 19.89 ± 2.71 37.83 ± 13.95 61.41 ± 16.94 24.57 ± 3.12 43.04 ± 0.68 105.73 ± 3.51 22.81 ± 1.76 31.64 ± 4.84 52.08 ± 37.28

DOC:DON 15.08 ± 1.64 12.55 ± 5.50 12.32 ± 8.26 9.09 ± 0.95 6.05 ± 2.44 2.55 ± 0.26 11.71 ± 0.72 5.71 ± 0.99 3.35 ± 0.33 12.88 ± 2.73 20.62 ± 18.01 10.46 ± 6.90

DOC:DOP 274.73 ± 105.10 231.49 ± 102.16 172.84 ± 50.54 784.38 ± 764.19 441.08 ± 649.98 698.43 ± 819.98 349.55 ± 38.42 288.64 ± 29.52 242.37 ± 131.72 275.50 ± 170.51 202.71 ± 153.48 88.38 ± 34.42

DON:DOP 18.62 ± 9.26 17.79 ± 2.04 19.30 ± 13.35 82.40 ± 73.95 96.17 ± 123.08 291.84 ± 353.74 30.61 ± 6.03 57.08 ± 2.81 73.04 ± 27.22 20.29 ± 8.09 15.26 ± 9.46 11.40 ± 7.57

DIC:DIN 7289.80 ± 3043.03 1054.31 ± 1225.65 65.04 ± 1.07 1058.79 ± 305.94 368.88 ± 516.97 64.30 ± 5.24 9905.74 ± 2954.69 435.02 ± 260.08 65.47 ± 2.30 5134.73 ± 4215.76 148.19 ± 139.24 78.48 ± 16.48

DIC:DIP 14546.90 ± 5520.35 4225.68 ± 2306.26 822.10 ± 31.60 5304.01 ± 659.89 2360.36 ± 1932.53 817.20 ± 71.45 13984.41 ± 391.88 2145.07 ± 241.45 842.85 ± 36.25 10273.59 ± 6132.11 1450.87 ± 885.53 925.58 ± 136.69

DIN:DIP 2.62 ± 2.06 9.20 ± 1.32 12.28 ± 0.13 5.15 ± 0.75 9.62 ± 2.99 12.71 ± 0.08 2.34 ± 1.10 10.57 ± 0.32 12.87 ± 0.10 3.74 ± 3.24 11.30 ± 1.94 11.94 ± 1.08
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Figure 3.5: Correlation between (a) POC and PON, (b) PON and POP, (c) POC and

POP, (d) DIC and DIN (e) DIN and DIP, (f) DIC and DIP, (g) DOC and DON, (h) DON

and DOP, and (i) DOC and DOP. Straight lines are drawn for the correlations significant

at p < 0.05.

On average, the C:N:P ratios in dissolved inorganic nutrients were 12717:3:1, 3126:10:1,

and 840:12:1 in the top, subsurface, and deep layers, respectively.

3.4.2 Particulate organic matter

The N:P, and C:P ratios in POM were invariably higher than the Redfield Ratio in the

top layer and increased further with depth (Figure 3.4). Average POC:PON ratio in the

top layer showed little variability (∼9) and remained largely fixed in the water column.

The increase in the POC:POP and PON:POP ratios from the top to the subsurface layer

suggests the preferential remineralisation of POP in sinking organic matter (Loh and

Bauer , 2000; Letscher and Moore, 2015). In addition, strong correlation (r = 0.5 and 0.7

and p < 0.05) of PON:POP and POC:POP ratios with nutrients confirms the recycling

of POP. Overall, the C:N:P ratios in POM were 232:25:1, 457:35:1, and 966:72:1 in the
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top, subsurface, and deep layers, respectively.

During remineralisation, preferential removal of 13C enriched molecules such as pro-

tein and nucleic acids and retention of 13C depleted lipid rich residual organic matter

results in decrease in δ 13C (∼1.6%�) of POM from the top layer to the subsurface and

deep layers (Post et al., 2007) (Figure 3.6). On the other hand, removal of 14N rich

biomolecules during degradation might have resulted in the increase in δ 15N (6%� in the

subsurface, and 7.5%� in the deep water) of POM (Macko et al., 1994). Usually δ 13C in

POC varies from –24%� to –18%� (Fry and Sherr , 1989; Middelburg and Nieuwenhuize,

1998) and δ 15N in PON from 5 to 8%� in marine phytoplankton (Minagawa et al., 2001).

Although the Bay of Bengal receives enormous terrestrial influx (33 to 51.2 g m−2 y−1)

(Ittekkot et al., 1991; Unger et al., 2003), mean C:N ratio (∼10), δ 13C (–21.5 to –26.2%�,

average –24.6 ± 1.2%�), and δ 15N (0.9 to 8.3%�, average 4.4 ± 1.9%�) of POM in the

top 100 m in our study indicate that the POM in the sunlit layer of the Bay of Bengal is

largely derived from in situ production rather than external supply.

Figure 3.6: Depth profile of δ 13C (green dashed line) and δ 15N (blue solid line) of POM

at (a) ACE1, (b) MWE, (c) NE1, (d) NE2, (e) ACE2, (f) ACE3, (g) BWE, and (h) ACE4

stations.
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3.4.3 Dissolved organic matter

The POM and DIM elemental ratios are primarily controlled by nutrient uptake and

remineralisation processes. The remineralisation process of POM to dissolved nutrients

involves cycling through the DOM pool (Johnson et al., 2013; Singh et al., 2015a). There-

fore, the DOM serves as an important intermediary link between POM and nutrients

during remineralisation. In the NOx deficient top layer of the Bay of Bengal, DON is an

order of magnitude higher than DIN (Figure 3.7), suggests DON might be an alternative

source of bioavailable N for phytoplankton in these waters (Church et al., 2002; Zubkov

et al., 2003; Aldunate et al., 2020). A previous study in the Bay of Bengal suggested a

link between primary productivity and high DON and DOP concentrations during the

spring inter-monsoon 2018 (Sarma et al., 2019b), but no such correlation was observed in

our study. The absence of correlation between primary production and DON in our study

can be explained by the coupling between DON production and uptake, leading to lack

of DON accumulation. The seasonal change in phytoplankton community composition

is possibly another cause for no-correlation. DON-consuming phytoplankton (cyanobac-

teria) are most abundant during summer in oligotrophic oceans (Huisman et al., 2018).

Given that urea is one of the important sources of N for autotrophs in the surface water

of the Bay of Bengal (Baer et al., 2019), a study focused on DON uptake in different

seasons is desirable to quantify the importance of DON as an alternative N source for

phytoplankton in the Bay of Bengal.

During this study, the DOC concentrations were higher in the top layer with lower

concentrations measured in the subsurface and deep layers (Figure 3.7). The opposite

vertical trend was observed for DON and DOP concentrations with highest concentra-

tions found in the subsurface and deep layers. DOC is freshly produced in the sunlit

surface ocean via phytoplankton degradation and food web processes (grazing by micro-

zooplankton) and the labile components are generally rapidly consumed by heterotrophic

prokaryotes (Calleja et al., 2019). The semi labile portion of DOC escapes rapid microbial

consumption and accumulates in surface waters during strong stratification (Calleja et al.,

2019). On the contrary, the low concentrations of DON and DOP in the top layer may

be attributed to the photochemical breakdown of organic matter (Chari et al., 2016) and
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Figure 3.7: Depth distribution of elemental concentration in (a) POC, (b) PON, (c) POP,

(d) DOC, (e) DON, (f) DOP, (g) DIC, (h) DIN, and (i) DIP. Please note the y axis is

stretched up to upper 300 m for better visualization.

faster remineralisation of DOP and DON over DOC (Church et al., 2002; Letscher and

Moore, 2015). Therefore, the accumulation of DOC and low concentrations of DON and

DOP in the top layer might have resulted in high C:P ∼357, and C:N ratio ∼13 in DOM

(Ogawa and Tanoue, 2003) (Figure 3.4).

In the subsurface and deep layers, the C:N and C:P ratios in DOM were lower than

that in the top layer (Figure 3.4). This could be attributed to the remineralisation of DOC

by heterotrophic communities in subsurface waters. Typically, DON is more resistant to

remineralisation than DOP. The downward transport of refractory DON (> 50% of DON;

(Roussenov et al., 2006; Vidal et al., 2018)) results in an enhanced accumulation below the
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top layer of the ocean. Overall, this might have resulted in decreased C:N and C:P ratios

along with increased N:P ratio in DOM in the subsurface and deep layers. On average,

C:N:P ratios in DOM were 357:30:1, 268:37:1, and 245:66:1 in the top, subsurface, and

deep layers, respectively.

3.5 The role of strong winds and eddies on the C:N:P ratios

Strong southwesterly winds (up to 24.5 m s−1) and eddies were identified in our sampling

area during the study period. Relatively deep mixed layer (41–77 m) and shallow nutricline

(10–66 m) were observed, which might be due to the strong winds and eddy induced

mixing of the water column. At ACE stations, the nutricline was relatively deep, while

shallow nutricline with relatively high POM concentrations was observed at MWE station.

Average δ 15N of POM varied between 5%� and 6%� at ACE1, ACE2, MWE, and BWE

stations in the upper 100 m (Figure 3.6), mimicking the isotopic composition (5.5%�) of

the deep water NO−3 in the same region (Bristow et al., 2017). This suggests the supply of

new N from the subsurface waters to the sunlit layer, in turn leading to increased primary

production at these stations.

In this study the DIM and POM elemental concentrations were different at the eddy

and NE stations. Mean DIC, DIN and DIP concentrations were 1910.3 ± 77.3 µM, 0.3

± 0.1 µM and 0.1 ± 0.04 µM, respectively, in the top layer at ACE stations (Table 3.2).

However, high DIN and DIP concentrations were observed in the top layer at MWE and

BWE stations (Table 3.2, Figure 3.7). The mean DIC, DIN and DIP concentrations were

1973.1 ± 6.4 µM, 2.0 ± 0.5 µM and 0.4 ± 0.04 µM, respectively, at MWE station and

1916.6 ± 29.4 µM, 1.7 ± 2.5 µM and 0.3 ± 0.3 µM, respectively, at BWE in the top

layer. At NE stations, mean DIC, DIN, and DIP concentrations in the top layer were

higher than those observed at ACE stations but lower than that at MWE station. The

MWE stations also exhibited high POM elemental concentrations in the top layer than

the other stations (Table 3.2). The mean concentrations for POC, PON, and POP were

8.2 ± 3.7, 0.9 ± 0.1, and 0.04 ± 0.004 µM, respectively, in the top layer at the MWE

station. Overall, eddies showed a mixed effect on C:N:P ratios in the top layer. Although
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there were differences in DIM and POM concentrations, little variability in C:N:P ratios

of POM between eddy and NE stations was observed.

Comparatively low DOC and DON concentrations and slightly high DOP concentra-

tion at ACEs lead to the low DOC:DOP and DON:DOP ratios in ACE stations compared

to the NE stations (Table 3.2). A study by Sarma et al. (2019a) during spring 2018

reported higher POC and PON concentrations than our study but the C:N ratio in POM

remained the same. Similarly, primary production estimates reported in a concurrent

study (288–1044 mg C m−2 d−1; Saxena et al. (2020)) are consistent with that (758 ± 220

mg C m−2 d−1) reported by Sarma et al. (2019a). These primary productivity estimates

are much higher than an earlier estimate of primary productivity conducted during N

stressed conditions during April 2016 (primary productivity: 3–7 nmol C L−1 h−1; N:P

flux ratio < 14; Baer et al. (2019)). Overall, these studies suggest the role of eddies in

supplying nutrients to the photic layer and consequently increased primary production

leading to elevated elemental ratios in POM (Sarma et al., 2019a,b).

3.6 Impact of biogeochemical processes on C:N:P ratios

Marine biogeochemical processes have the potential to change the plankton and nutrient

elemental ratios and vice versa (Klausmeier et al., 2004b; Mills and Arrigo, 2010; Jabir

et al., 2020). Despite PO3−
4 excess (N:P ∼3) in the top layer with adequate dry deposition

flux of Fe (0.02-1.2 µmol m−2 d−1 (Srinivas and Sarin, 2013), low N2 fixation rates (4-75

µmol N m−2 d−1) were observed in the Bay of Bengal (Saxena et al., 2020). Assuming

photoautotrophs require 1 mole N to fix 6.6 mole C (Redfield , 1958), the contribution of

N2 fixation to autotrophic C fixation remains below 1% (Saxena et al., 2020). Apart from

the low N2 fixation in surface waters during our study, heterotrophic N2 fixation rates are

also low in the oxygen minimum zone of the Bay of Bengal (Löscher et al., 2020). Such

low contribution is unlikely to change the elemental ratios. No correlation between N2

fixation rates and different elemental ratios confirms the same (Figure 3.8).

The N:P ratios in nutrients act as a proxy for biogeochemical processes leading to

N loss (such as denitrification and anammox) in the subsurface low oxygenated waters.
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The inorganic nutrients N:P ratio (< 16:1) in the water column suggest the occurrence of

N loss processes in the Bay of Bengal. Low but detectable rates of anammox (5.5 nM N

d−1) and denitrification (0.9 nM N d−1) are measured in the oxygen minimum zone by

Bristow et al. (2017). However, an extensive study is required to understand the effect of

N loss processes of this magnitude on nutrient stoichiometry of the Bay of Bengal.

Figure 3.8: Correlation between (a) DON and primary productivity, (b) DOP and pri-

mary productivity, (c) N2 fixation and DIP, (d) N2 fixation and DOP, (e) DIN:DIP and

N2 fixation, and (f) PON:POP and N2 fixation. Lines are not drawn as none of the

correlations are significant at p < 0.05.
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3.7 Testing nutrient supply hypothesis in the Bay of Bengal

Considering the observed deviations in C:N:P ratio from the Redfield Ratio in the dissolved

and particulate matter pools, we examined whether the Bay of Bengal supports nutrient

supply hypothesis for tropical ecosystems proposed by Rhee (1978). This hypothesis states

that the absolute concentration of nutrients such as DIN and DIP, rather than their ratio,

determine the POM stoichiometry. Based on this hypothesis, expected C:N:P ratios in

oligotrophic basins are higher than the Redfield Ratio and reverse holds for the nutrient-

rich basins (Galbraith and Martiny , 2015; Klausmeier et al., 2004a). This happens as slow

growing cyanobacteria with high N:P ratio in their biomass/nutrient uptake requirements

grow in oligotrophic waters, whereas fast growing microorganisms (with low N:P ratio)

flourish in nutrient-rich waters (Arrigo, 2005; Singh et al., 2017; Sharoni and Halevy ,

2020). Poor supply of nutrients due to stratification makes the Bay of Bengal oligotrophic

during most of the seasons (Prasanna Kumar et al., 2010; McCreary et al., 2013). We

observed that the C:N, C:P, and N:P ratios in the POM at surface waters are higher than

the Redfield Ratio and seems to be favouring the nutrient supply hypothesis for tropical

systems.

3.8 Putting the Bay of Bengal elemental ratios in the global

ocean perspective

The average C:N:P ratio (232:25:1) of POM in the top layers of the Bay of Bengal is in

a similar range to observations in other tropical oceans, such as the subtropical North

Atlantic Ocean (210:36:1) (Singh et al., 2015a) and subtropical North Pacific Ocean

(172:25:1) (Martiny et al., 2013a). The subtropical North Atlantic is considered as P

limited (DIN:DIP ∼30) basin and witnesses high C:N:P ratio in the POM (Wu et al.,

2000). However, the Bay of Bengal and the subtropical North Pacific Ocean (Karl et al.,

2001) are N limited, and both possess high N:P ratio (25) in POM and low N:P (< 16)

in subsurface nutrients. Our overall analysis suggests that the nutrient availability in the
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Bay of Bengal and the subtropical North Pacific Ocean is likely governed by the N loss

processes (such as denitrification), whereas N gain processes (such as N2 fixation) exert

control in the subtropical North Atlantic Ocean (Deutsch and Weber , 2012). The average

C:N:P ratio in the DOM in the top layer is 357:30:1 in the Bay, lower than the global

average 640:44:1 for bulk DOM in the surface ocean (Letscher and Moore, 2015).

3.9 Conclusion

We presented a comprehensive study of C:N:P ratio in the inorganic and organic pools

of the Bay of Bengal water column covering depths from the surface to 2000 m. Overall,

C:N:P ratios deviated greatly from the Redfield Ratio (C:N:P = 106:16:1) in all the

biogeochemical pools and at all depths. In the POM, C:N:P ratios were 232:25:1, 457:35:1

and 966:72:1 in the top, subsurface and deep water layer, respectively. Our estimated

C:N:P ratios in POM are comparable to that observed in other tropical basins such as the

North Pacific Ocean and North Atlantic Ocean. On the other hand, C:N:P ratio in the

DOM in the top layer (357:30:1) is relatively lower than the global average of 640:44:1 for

bulk DOM in surface water.

Despite being a peak summer monsoon period, relatively low concentration of nutri-

ents with low N:P ratio suggests that primary production was limited by bioavailable N.

Concurrently estimated low N2 fixation rates suggest that diazotrophic organisms had a

minimal impact on nutrient or POM stoichiometry. Instead, non-diazotrophic cyanobac-

teria along with low supply of nutrients governed higher N:P ratio in the POM. Overall,

higher C:N:P ratio than the Redfield Ratio in POM in surface waters support the nutri-

ent supply hypothesis for tropical oceans with low inorganic nutrient concentrations. Low

N:P ratio in nutrients in the subsurface waters suggest a potential role of nitrogen loss

processes in regulating the nutrient stoichiometry.

Eddies have mixed effects on C:N:P ratios in the top layer. DIM concentrations

are lower in ACE stations compared to that in the NE stations. On the contrary, POM

concentrations are higher in ACE stations compared to that in the NE stations. However,

there is not much change in C:N:P ratios of DIM and POM at eddy and NE stations.



Chapter 4

C:N:P ratios in the Bay of Bengal during

spring: Role of eddies and N2 fixation

4.1 Introduction

Recent observations and numerical simulations have profoundly established that the C:N:P

ratios in the ocean deviate from the canonical Redfield Ratio (106:16:1). Physical and

biogeochemical processes have been hypothesized to be responsible for this deviation.

However, a paucity of concurrent observations on biogeochemical and physical parameters

have barred us to understand their exact role on the C:N:P ratios. The Bay of Bengal

remains highly understudied in this regard, but the basin can provide an ideal realm to

explore the integrated effect of eddies, N2 fixation and many more processes on its marine

chemistry.

Cyclonic and anticyclonic mesoscale (10–500 km diameter) eddies are a major part

of the water circulation in the Bay of Bengal. Cyclonic eddies are the areas of divergence

which are associated with upwelling of nutrient-rich subsurface water, and ACEs are the

convergence areas where downwelling dominates. In the Bay of Bengal, cyclonic eddies

increase primary productivity, while low nutrient concentrations result in low primary

productivity at ACE regions (Singh et al., 2015b; Sarma et al., 2019a). Phytoplankton

community composition is different in different type of eddies, e.g., microplankton flourish

in nutrient rich cyclonic eddies while picoplankton dominate in the nutrient depleted ACEs

63
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(Sarma et al., 2020b). Apparently, 50–60% of phytoplankton abundance in the Bay of

Bengal is of the picoplankton alone, while nanoplankton are the second most abundant

species (Sarma et al., 2020b). At ACE regions, picoplankton constitute a major fraction

of phytoplankton owing to their hypothesized potential to consume dissolved organic

nutrients in depleted inorganic nutrient regimes (Sarma et al., 2020b).

In our study during summer, monsoonal winds and mesoscale eddies were suggested

to have a mixed effect on the elemental proportions of organic and nutrient pools in the top

layer (Sahoo et al., 2020). Nutrients were lower in ACEs compared to those in the NE sta-

tions. On the contrary, POM concentrations were higher in ACEs compared to that in the

NE stations. However, there was not much difference in the elemental ratios in nutrients

and POM at eddy and NE stations. During spring, the surface Bay of Bengal experiences

high temperature and salinity owing to heat gain by the sea and excess evaporation, re-

spectively (Narvekar and Kumar , 2006). Weaker winds and prolonged ACEs hinder the

supply of subsurface nutrients to the euphotic zone, which leads to ultra-oligotrophy in

the Bay of Bengal (Jyothibabu et al., 2021). These changing environmental conditions

can affect the phytoplankton growth and thereby their elemental stoichiometry during

spring. For example, increased temperature and the reduced availability of nutrients lead

to increase in C:N and C:P ratios in POM (Matsumoto et al., 2020).

Three reasons spurred us to revisit the Bay of Bengal to study the elemental dynamics

during spring. First, in a previous study during summer, we sampled only open ocean

stations where the influence of river water was negligible (Sahoo et al., 2020). In this

study, we have sampled coastal as well as open ocean regions in the Bay of Bengal. We

hypothesize that the elemental proportions, particularly in the coastal Bay of Bengal,

might have been influenced by a combination of processes including river water intrusion

in addition to in situ primary production and remineralisation. Second, during spring

the Bay of Bengal experiences severe N limitation than during summer (Narvekar and

Kumar , 2014). The changing environmental conditions and associated biogeochemical

processes such as N2 fixation might affect the elemental stoichiometry. Third, ACEs

prevail dominantly during spring (Jyothibabu et al., 2021). Furthermore, the age of an

eddy is another aspect to look at in biological context as a time lag always exists between

ocean physical process and its manifestation on productivity. Prolonged ACEs might
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affect the organic and nutrient pools in the Bay of Bengal. For this purpose, we conducted

this study in the basin during April 2019.

4.2 Methods

We participated in ORV Sindhu Sankalp expedition (SSK#127) that cruised from Chennai

(13◦N, 80.3◦E) along the eastern coast of India, turned to the open ocean at ∼19.9◦N and

moved southwards in the Bay of Bengal from 5 April to 15 April 2019 (Figure 4.1a and

b). We sampled eight stations during this expedition: five stations including NE1, ACE1,

NE2, NE3, and NE4 were situated along the east coast of India, were considered as the

coastal stations, and the rest including NE5, NE6, and ACE2 were considered as the open

ocean stations. Water samples were collected using a Sea-Bird CTD rosette sampler at

a maximum of 10 different depths (5, 25, 50, 85, 200, 300, 500, 1000, 1500, and 2000

m). Based on the biogeochemical processes, we divide our analysis into three different

depth segments: top, subsurface, and deep layer as explained in Chapter 1. The top layer

extends from the surface to the DCM. The successive subsurface layer is considered from

the DCM up to < 360 m. The layer below the subsurface layer to the deepest sampling

depth is classified as deep layer.

Apparent oxygen utilisation (AOU) was calculated as the difference between the

measured DO concentration and its temperature and salinity dependent saturation con-

centration (Murray and Riley , 1969).

Following the methods described in Chapter 2, the elemental concentrations of DIM,

POM, and DOM, and δ 13C value of DIC were measured. For Chl a concentrations,

samples were collected by filtering 1 L seawater onto Whatman glass microfiber filters

(GF/F, 25 mm diameter, 0.7 µm pore size) followed by extraction in 90% acetone and

kept for 24 h in a refrigerator. The Chl a concentrations were measured in HPLC (Agilent,

USA) at Space Applications Centre, Ahmedabad. Nutricline depth was considered as

the depth where DIN concentration increased to 1 µM (Richardson and Bendtsen, 2017;

Garcia et al., 2018). The vertical diffusive fluxes of DIN from subsurface waters were

calculated following King and Devol (1979) and the vertical diffusion coefficient used in
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this calculation was taken from Nozaki and Alibo (2003).

Figure 4.1: Geostrophic currents overlaid on the sea surface height anomaly (m) during

(a) 5–10 April, and (b) 10–14 April 2019. The surface water (c) DIN and (d) DIP concen-

trations. The coastal (NE1, ACE1, NE2, NE3, and NE4) and open ocean (NE5, NE6, and

ACE2) stations are shown with filled and open circles, respectively. BDL: below detection

limit.

Several eddy features were identified based on the SSHA and geostrophic current

during the sampling period. Cyclonic eddies were identified by anticlockwise geostrophic

currents with < –0.2 m SSHA. ACEs were identified by the clockwise circulation with >

0.2 m SSHA. We sampled two ACE stations and categorised them as ACE1 and ACE2,

while no significant SSHA values at the rest six stations led to categorize them as NE

stations (NE1–NE6; Figure 4.1, Table 4.1).

The N2 fixation rates and abundance data of picoplankton such as Prochlorococcus

and Synechococcus obtained from Saxena et al. (2021) (under preparation). The C amount

of Prochlorococcus and Synechococcus was calculated by multiplying their abundances (cell

counts L−1) with their C content per cell values. The C content per cell values of the

photic zone Prochlorococcus and Synechococcus were taken from Casey et al. (2013).
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Table 4.1: Environmental parameters at the eight sampling locations during spring 2019.

Station Date of sampling (dd.mm.yyyy) Latitude (◦N) Longitude (◦E) SST (◦C) SSS MLD (m) DCM (m) Nutricline (m) Chl a (µg L−1)∗ δ 13C of DIC (%�)† POC:Chl a†

NE1 05.04.2019 13◦ 05.58′ 80◦ 73.21′ 29.1 34.3 12 22 8 0.27 - 80 – 508

ACE1 07.04.2019 16◦ 30.09′ 83◦ 50.88′ 29.0 33.2 30 83 84 0.10 0.2 – 0.4 67 – 458

NE2 08.04.2019 18◦ 32.61′ 85◦ 46.12′ 27.6 33.1 20 55 41 0.21 -0.6 – 0.2 82 – 376

NE3 09.04.2019 19◦ 49.84′ 87◦ 00.13′ 28.4 33.0 24 69 39 0.16 -0.5 – 0.3 82 – 249

NE4 10.04.2019 19◦ 49.91′ 88◦ 59.11′ 28.0 32.8 34 71 56 0.19 -0.3 – 0.4 81 – 269

NE5 12.04.2019 14◦ 26.69′ 87◦ 23.85′ 30.0 32.1 12 61 53 0.24 -0.2 – -0.001 132 – 667

NE6 13.04.2019 13◦ 05.47′ 87◦ 00.08′ 30.3 32.3 20 87 54 0.10 -0.4 – 0.3 332

ACE2 14.04.2019 13◦ 04.49′ 84◦ 13.42′ 30.2 33.3 27 86 87 0.08 0.1 – 0.2 85 – 457

∗Surface (5 m) Chl a values are presented, †δ 13C of DIC and POC:Chl a values in the top layer. Due to logistic issues, samples for δ 13C of DIC could not be collected at NE1.



68
Chapter 4. C:N:P ratios in the Bay of Bengal during spring: Role of eddies and N2

fixation

Further, the contribution of Prochlorococcus and Synechococcus biomass to the total

POC pool was calculated.

4.3 Estimation of riverine flux contribution at the coastal

stations

In order to estimate the riverine contribution into the Bay of Bengal, we assumed the

salinity remains conserved during the mixing of river (r) and seawater (s). Therefore,

the measured salinity of samples (Salinitysample) can be expressed using a mass balance

concept:

Salinitysample = Salinityr fr + Salinitys (1− fr) (4.1)

The subscripts r and s stand for river water and seawater, respectively. fr and (1 – fr)

represent the river and seawater fraction in conservative mixing. fr is calculated as:

fr =
Salinitys − Salinitysample

Salinitys − Salinityr
(4.2)

We considered mean values of the parameters from the open ocean stations in our study

locations to be representative of seawater end members. Seawater end member values

of salinity (Salinitys), DIC (DICs), and δ 13C (δ 13Cs) are 33.79, 1.83 mM, and 0.13%�,

respectively. River water end member values of salinity (Salinityr), DIC (DICr), and δ 13C

(δ 13Cr) are 0.19, 2.35 mM, and –4%�, respectively (taken from Samanta et al. (2015) for

pre-monsoon period).

Similar to equation (4.1), we write mass balance equation for DIC and δ 13C for conser-

vatively mixed sample having DICCM and δ 13CCM as:

DICCM = DICr fr + DICs (1− fr) (4.3)

δ
13CCM gCM = δ

13Cr gr + δ
13Cs gs (4.4)
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gCM = gr + gs (4.5)

where gr is the fraction of DIC of river water (DICrfr), and gs is the fraction of DIC in

seawater (DICs (1–fr)). The total fraction of DIC in mixture (gCM) = DICCM.

Deviations (∆DIC and ∆δ 13C) of measured DIC concentrations and δ 13C from the re-

spective conservative mixing values were estimated by following Alling et al. (2012).

Equation (4.4) can be written as

δ
13CCM =

δ 13Cr DICr fr + δ 13Cs DICs (1− fr)

DICCM
(4.6)

Equation (4.6) can be written by combining equations (4.2) and (4.6) as:

δ
13CCM =

Salinitysample (DICr δ 13Cr − DICs δ 13Cs) + Salinityr DICs δ 13Cs − Salinitys DICr δ 13Cr

Salinitysample (DICr − DICs) + Salinityr DICs − Salinitys DICr
(4.7)

Deviations of measured DIC concentrations (∆ DIC) and δ 13C (∆δ 13C) from the respective

conservative mixing values (DICCM and δ 13CCM) were estimated as:

∆ DIC =
DICsample − DICCM

DICCM
(4.8)

∆δ
13C = δ

13Csample − δ
13CCM (4.9)

The trend of conservative mixing lines are linear for salinity-DIC and salinity-δ 13C (Figure

4.2a and b). However, according to equation (4.7), the conservative mixing line trend for

salinity-δ 13C should be hyperbolic in nature. But the variation in salinity at the coastal

stations was minimal, therefore the trend for salinity-δ 13C looks linear in Figure 4.2b. In

the Figure 4.2c, origin represents the conservative mixing of river and seawater. All the

DIC and δ 13C values have deviated from the conservative mixing line in Figure 4.2a and b,

which suggests that the variation of DIC is least accounted by the mixing of seawater and

river water. Furthermore, the ∆DIC and ∆δ 13C values were scattered into quadrants away

from the origin (Figure 4.2c), reconfirms that the coastal stations were influenced by the

marine processes. Additional processes such as in situ primary production, degradation

of organic matter, and calcite dissolution might have impacted the DIC pool.
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Figure 4.2: Variation of (a) DIC, (b) δ 13C of DIC with salinity in top layer, and (c) ∆DIC

vs. ∆δ 13C of DIC in the Bay of Bengal, where ∆δ 13C and ∆DIC are deviations from the

values expected from conservative mixing calculations. Black solid lines in (a) and (b)

represent conservative mixing of freshwater and seawater.

4.4 Processes affecting elemental concentrations and pro-

portions

The river water fraction was negligible (< 0.05) at our stations. Sea surface temperature

varied from 27.6 to 30.3 ◦C with warmer (≥ 30 ◦C) waters at the open ocean stations

(Table 4.1). But the sea surface salinity at the coastal stations was not much different

from those at the open ocean stations (Table 4.1). It varied from 32.1 to 34.3 with the

highest value at NE1. The δ 13C values of DIC at the Hooghly river system ranged from

–11.4 to –1.6%� (Samanta et al., 2015). During our sampling, the δ 13C values in the

top layer at the coastal stations (–0.6 to 0.4%�) also showed typical marine range and
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were higher than the reported riverine values by Samanta et al. (2015). It ranged from

–0.6 to 0.4%� and –0.4 to 0.3%� in the top layer at the coastal and open ocean stations,

respectively. In fact, the DIC and δ 13C values at the coastal stations showed significant

deviation from the conservative mixing line of river and seawater (Figure 4.2). The non-

zero values of ∆DIC and ∆δ 13C such as negative ∆DIC and positive ∆δ 13C values indicate

that the in situ primary production certainly accounts for a significant variation in DIC.

Positive ∆DIC and negative ∆δ 13C values reinforce the idea that DIC primarily inherited

from the degradation of organic matter. Moreover, positive ∆ DIC and ∆δ 13C values

indicate that carbonate dissolution is also an important process prevalent in the coastal

regions and responsible for the generation of DIC.

DIC values and the lack of significant difference in nutrients at the coastal and open

ocean stations altogether confirmed that the elemental chemistry at the coastal stations

was not substantially influenced by the riverine influx. But we caution that our coastal

sampling sites may not possess typical characteristics (e.g., strong upwelling, high nutrient

concentration) of coastal areas in other oceanographic regions and it is likely that the river

influence is limited to within a short distance from the river mouths.

Although the elemental concentrations in POM at the coastal stations were signifi-

cantly different from that at the open ocean stations, no significant difference was reflected

in their elemental ratios. As expected from the mixing calculation, POC:PON ratio in

the top layer was 7.6 ± 2.5 at the coastal and 6.6 ± 1.0 at open ocean stations, suggesting

that in situ primary production contributed significantly to the POM pool in the top

layer, as terrestrially derived POM possess high C:N ratio (> 10) (Hedges et al., 1986).

POC:Chl a ratio, a proxy to identify the source of organic matter in aquatic systems

(Bentaleb et al., 1998), is typically low in the freshly produced organic matter than in

terrestrial organic matter. POC:Chl a ratio normally ranges from ∼40 (Montagnes et al.,

1994) to 200 (Cifuentes et al., 1988; Bentaleb et al., 1998) for in situ produced organic

matter (Geider et al., 1998). Sarma et al. (2019a) estimated the mean POC:Chl a ratio

of 1123 ± 389 at the sampling stations along the east coast in the Bay of Bengal. They

attributed the POC:Chl a ratio to the faster degradation of Chl a, and a possible contri-

bution of heterotrophs (bacteria and zooplankton) and terrestrial organic matter (Sarma

et al., 2019a). On the contrary, the POC:Chl a ratio at our sampling stations (ranged
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from 67 to 667, mean 245 ± 177) was lower than that observed by Sarma et al. (2019a),

reconfirming no influence of riverine influx at our sampling stations.

The δ 13C of POC values varied from –25.5 to –22.9%� (mean = –24.2%�) at the

coastal stations in the top layer, close to that of the marine isotope signature of carbon

(mean = –23.9%�) (Sahoo et al., 2021). One of our coastal stations i.e., NE3 was close

to the Mahanadi River. We have calculated the contribution of riverine influx of organic

matter at NE3 using the mass balance concept as in equation (4.10).

δ
13Csample = δ

13Cr fr + δ
13Cs (1− fr) (4.10)

In this equation δ 13C referes to the δ 13C values of POC. The δ 13C values of POC are

–24.3%� at NE3, –26.8%� at the Mahanadi River, and –23.9%� at our open ocean sta-

tion (Sarma et al., 2014; Sahoo et al., 2021). The Mahanadi River contributes 13.8%

organic matter at NE3, which suggests that the organic matter at our coastal stations

were profoundly affected by the marine processes.

DIC, DIN, and DIP concentrations ranged from 1591 to 2155 µM, BDL to 12.5 µM,

and 0.2 to 1.2 µM, respectively in the top layer (Figure 4.3). The average DIC:DIN,

DIC:DIP, and DIN:DIP ratios were 3458 ± 4251 (3362 ± 4643 at coastal and 1133 at

open ocean), 8437 ± 3339 (8288 ± 3284 at coastal and 9934 ± 2205 at open ocean), and

8.9 ± 2.5 (7.1 ± 4.1 at coastal and 7.9 ± 4.3 at open ocean), respectively in the top layer

(Figure 4.4). High DIC concentration at the coastal stations led to a higher DIC:DIN

ratio in the top layer. Likewise, the low concentration of DOP in open ocean stations led

to high DON:DOP and DOC:DOP ratios in the top layer. The average DOC:DON (22.3

± 19.1 at coastal and 10.2 ± 5.3 at open ocean), DOC:DOP (1194 ± 1113 at coastal and

7603 ± 8077 at open ocean), and DON:DOP (61.5 ± 73.0 at coastal and 482 at open

ocean) ratios were 21.2 ± 17.9, 2337.8 ± 4060.1, and 146.0 ± 201.6, respectively in the

top layer (Figure 4.4).

POC, PON, and POP concentrations ranged from 2.1 to 12.3 µM, 0.3 to 2.0 µM,

and 0.01 to 0.1 µM, respectively, in the top layer with the highest at NE1. The mean

POC:PON, POC:POP, and PON:POP ratios were 7.1 ± 2.2 (7.6 ± 2.5 at coastal and 6.6

± 1.0 at open ocean), 249.4 ± 58.0 (245 ± 62 at coastal and 247 ± 48 at open ocean),
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Figure 4.3: Vertical section of (a) DIC, (b) DIN, (c) DIP, (d) POC, (e) PON, (f) POP,

(g) DOC, (h) DON, and (i) DOP concentration. Section distance starts from NE1 (50

km) and ends at ACE2 (2370 km).

and 38.6 ± 17.6 (35.1 ± 14.0 at coastal and 37.5 ± 4.7 at open ocean), respectively in the

top layer (Figure 4.4).

The POC:PON, and PON:POP ratios ranged higher in the top layer at the coastal

stations, where high POM concentrations were also observed. Below the top layer, degra-

dation of organic matter profoundly contributed to the nutrient dynamics in the coastal

and open ocean stations. Labile POP and PON degrade faster than POC, resulting in

an increased POC:POP and POC:PON ratios in the subsurface and deep layer (Loh and

Bauer , 2000) (Figure 4.4). The mean ratios increased to 8.0 ± 4.0 (7.8 ± 3.9 at coastal

and 8.2 ± 4.2 at open ocean), 327.6 ± 111.7 (327 ± 91 at coastal and 318 ± 141 at open

ocean), and 47.5 ± 21.8 (50.6 ± 26.6 at coastal and 41.3 ± 10.0 at the open ocean) for

POC:PON, POC:POP, and PON:POP, respectively in the subsurface layer. However, the

variation in the mean elemental ratios in the deep layer was less than that in the subsur-

face layer. The mean POC:PON, POC:POP, and PON:POP ratios were 10.3 ± 3.4 (9.7

± 3.0 at coastal 10.9 ± 3.9 at open ocean), 369.3 ± 106.5 (342 ± 79 at coastal and 400

± 128 at open ocean), and 39.3 ± 16.5 (40.8 ± 21.0 at coastal and 37.6 ± 9.4 at open

ocean), respectively in the deep layer.

Large variability in the elemental concentrations and ratios was evident in this study.

However, there was no significant difference in the elemental concentrations (except in
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POM) at the coastal and open ocean stations in the top layer. Likewise, all the elemental

ratios were also similar at both the regions in the top layer. The coastal stations had

larger range of elemental concentrations and ratios than the open ocean stations, which

led to the overall large variability in elemental ratios in the top layer.

Figure 4.4: Box-whiskers plots showing C:N, N:P and C:P ratios in DIM, POM, and

DOM pools in the top, subsurface, and deep layers. Pink dotted lines represent the mean.

Whiskers account for 5% and 95% of distribution, whereas boxes account for 25% and

75%. Dots within the boxes represent 50% of the distribution. Blue boxes represent

the coastal and black represent the open ocean stations. Boxes are not shown when the

number of data points is less than 2.
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4.5 Impact of eddies on elemental proportions

Mesoscale eddies influence ocean biogeochemistry by modulating the supply of nutrients

to the photic zone (Sarma et al., 2019a). The Nutricline was deeper (84 and 87 m) at

ACE1 and ACE2 compared to NE stations where it reached maximum up to 56 m. Deeper

nutricline at ACEs indicate that the downwelling of surface water resulted in decreasing

nutrients (DIN and DIP) in the top layer at ACE1 and ACE2 (Figure 4.1c and d). In

the top layer, concentrations of DIN and DIP were low, particularly DIN concentration

was below the detection limit in surface water at all stations but NE4 (Figure 4.1c and

d). Furthermore, the DIN concentration was still below the detection limit up to 85 m

at ACE1 and ACE2, and 51 m at NE1, NE2, NE3, NE5, and NE6 (Figure 4.3). At

ACE1 and ACE2, DIN (BDL at both the stations) and DIP (mean DIP: 0.2 ± 0.04 µM at

ACE1 and 0.2 ± 0.1 µM at ACE2) concentrations were lower than that at the NE stations

(mean DIN: 5.5 ± 4.9 µM and DIP: 0.4 ± 0.3 µM) in the top layer. Being situated at

the periphery of a cyclonic eddy, high vertical diffusive flux of DIN might have resulted

in relatively high primary productivity (19.5 ± 3.7 mmol C m−2 d−1, Saxena et al. 2021,

under preparation) at NE2 (Table 4.2). The elemental concentrations and ratios in POM

and DOM were not much distinct at ACE1, ACE2 and NE stations.

Table 4.2: Vertical diffusive flux of DIN, N2 fixation and its contribution in N:P ratios of

export flux from the top layer during spring 2019.

Station Vertical diffusive flux of DIN (mmol N m−2 d−1) N2 fixation (µmol N m−2 d−1)∗ Contribution of N2 fixation to N:P export flux (%)

NE1 1.7 - -

ACE1 4.3 16.5 0.4

NE2 8.6 6.8 0.1

NE3 4.1 6.7 0.2

NE4 2.1 5.5 0.3

NE5 1.1 BDL -

NE6 3.0 5.3 0.2

ACE2 4.1 - -

∗Column integrated N2 fixation rates are taken from Saxena et al. (2021) (under preparation).

N2 fixation experiment was not performed at NE1 and ACE2 due to logistic issues.



76
Chapter 4. C:N:P ratios in the Bay of Bengal during spring: Role of eddies and N2

fixation

4.6 Role of picoplankton in varying elemental ratios in POM

In the Bay of Bengal, nutrient availability plays a bigger role than the temperature in

driving the microbial community composition (Angelova et al., 2019). The temperature

did not vary much and also not correlated to the elemental ratios of POM in the top

layer during this study (Figure 4.5). The nutrient availability might influence the phyto-

plankton distribution. The eddies can entrain nutrient-rich shelf waters and advect them

offshore, thereby playing a key role in the phytoplankton community distribution (Gomes

et al., 2016). No coherent pattern of picoplankton (Prochlorococcus and Synechococcus)

distribution was observed in ACE and NE stations in our study (Saxena et al. 2021, under

preparation).

Recently Sarma et al. (2020a) have reported that the picoplankton contributed up

to 80% and the micro and nanoplankton contributed between 10 to 30% to the total

phytoplankton biomass in the Bay of Bengal during June 2019 (Sarma et al., 2020a).

The total phytoplankton biomass (autotrophic) reportedly constitutes up to 27% of the

total POC pool in the basin (Baer et al., 2019). The detrital matter and heterotrophs

also constitute a large fraction (∼50%) of plankton biomass (Garcia et al., 2018). In

this study, Prochlorococcus and Synechococcus together constituted a maximum up to

29% of the total POC pool in the top layer, which is a significant fraction of the total

phytoplankton biomass.

Prochlorococcus and Synechococcus are slow-growing and small-sized phytoplankton,

capable to adapt in nutrient-deficient conditions, and possess high C:P and N:P ratios

than the Redfield Ratio following the growth rate hypothesis (Klausmeier et al., 2004a;

Arrigo, 2005). The growth rate hypothesis suggests that the nutrient scarce environment

normally favours the growth of slow-growing phytoplankton that can synthesize more

resource acquisition machinery such as proteins that have high N:P ratio. The nutrient

replete environment supports the fast-growing large phytoplankton by synthesizing more

growth machinery such as RNAs that have low N:P ratio.

Overall, the C:P (coastal: 254 ± 38, open ocean: 244 ± 34) and N:P (coastal: 39

± 12, open ocean: 37 ± 3) ratios in POM were higher than the Redfield Ratio. Since
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Figure 4.5: Spearman correlation matrix of environmental parameters (temperature (T),

salinity (S), and nutrients), abundance of picoplankton (Prochlorococcus (Pro), and Syne-

chococcus (Syn)) and elemental ratios in inorganic and organic matter in the top layer at

α = 0.05.

Prochlorococcus and Synechococcus constituted only up to 29% of the total POC, a major

fraction of the POM pool is likely constituted by dead and detrital matter. But this dead

and detrital matter may also have its origin in the picoplankton in the oligotrophic waters.

Therefore, the higher elemental ratios in POM suggests that the Bay of Bengal support

the growth rate hypothesis (Figure 4.6).

The existence of prolonged (originated roughly two months before sampling) ACEs

throughout the sampling area associated with substantial downwelling of surface water

could have transformed the Bay of Bengal into an oligotrophic region. Deep nutricline

accompanied with shallow mixed layer during the study was indicative of the increased

oligotrophic conditions as compared to that in the previous study in the Bay of Bengal

during summer (Sahoo et al., 2020). Overall, the top layer was nutrient-depleted and
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Figure 4.6: Integrated picoplankton abundance (data obtained from Saxena et al. (2021),

under preparation) in log scale, POC:POP, and PON:POP ratios in POM in the top layer.

showed high elemental ratios in POM during spring than during summer (Sahoo et al.,

2020). The static oligotrophic environment reasonably supports the growth of picoplank-

ton (Agawin et al., 2000). Sarma et al. (2020a) observed high abundance of picoplankton

at ACE, while the low microplankton abundance at ACE was due to the unavailability of

DIN and DIP during June 2019 in the Bay of Bengal. In the present study, picoplankton

constituted up to 29% of the POC pool, due to their ability to thrive in the low nu-

trient concentrations. Particularly, Prochlorococcus can adapt to oligotrophic conditions

through gene gains and losses (Ustick et al., 2021). Prochlorococcus and Synechococcus

showed a significant correlation with DIP and DIN concentrations, respectively in this

study. Furthermore, Synechococcus was significantly correlated to the POM elemental

concentrations in the top layer (Figure 4.5). Therefore, the low nutrient availability and

thereby the distribution of picoplankton appeared to regulate the variation of elemental

ratios of POM in the top layer.

4.7 Role of N2 fixation on the elemental proportions

In oligotrophic basins where primary productivity is N limited, biological N2 fixation is

considered to be a major source of new N to the photic zone and may account for ∼50%
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of the organic carbon export (Karl et al., 1997). Favourable environmental conditions

including weaker winds, warm sea surface temperature (> 28 ◦C) and clear sky in addition

to an adequate supply of PO3−
4 and Fe suggest the possibility of diazotrophic activity in

the basin (Mills et al., 2004; Singh et al., 2017). Diazotrophs increase the DIN pool at

the cost of consuming DIP. Therefore, DIN:DIP ratio is expected to increase due to the

diazotrophic activity in the photic zone.

Previous studies reported low N2 fixation rates (4 to 75 µmol N m−2 d−1 during July

2018 and 53.3 to 194.1 µmol N m−2 d−1 during June 2019) in the Bay of Bengal (Sarma

et al., 2020c; Saxena et al., 2020). Yet, the upper bound of the measured N2 fixation

rates in the Bay of Bengal is comparatively higher than many of the other ocean regimes

(Saxena et al., 2020). In the present study, the concurrently measured N2 fixation rates

were even lower and varied from below detection limit to 17 µmol N m−2 d−1 (Saxena et

al. 2021, under preparation).

The mean DIN:DIP ratio in the top layer was lower (8.9 ± 2.5) than the Redfield

Ratio. The influence of N2 fixation on the top layer DIN:DIP ratio is elusive due to the

occurrence of concurrent biological processes such as nutrient uptake by phytoplankton.

The low DIN:DIP ratio might be attributed to the excessive competitive consumption of

N relative to P by the slow-growing, smaller phytoplankton (Klausmeier et al., 2004a).

In the subsurface layer, the low DIN:DIP ratio (10.9 ± 1.9) indicates the possible

occurrence of denitrification and anammox in the Bay of Bengal. However, low rates of

anammox (5.5 nM N d−1) and patchy distribution of denitrification (0.9 nM N d−1) in

this basin suggest that the processes were less likely to change the subsurface DIN:DIP

ratio (Bristow et al., 2017). Then what caused the mean subsurface DIN:DIP ratio to

decrease to 10.9?

In the subsurface layer, the DIN:DIP ratio reflects the integrated effect of reminerali-

sation of sinking organic matter and various N loss processes. Remineralisation of organic

matter significantly contributes to the subsurface nutrients, especially the regions where

diazotrophs dominate the phytoplankton community. Diazotrophs normally possess a

high cellular N:P ratio (42 to 125) (Karl et al., 1992; Letelier and Karl , 1996). The rem-

ineralisation of diazotrophs (sinking from the top layer) with a high biomass N:P ratio,

increases the subsurface DIN:DIP ratio (Michaels et al., 1996). But the contribution of
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diazotrophs to the subsurface nutrients in the Bay of Bengal is not known.

Therefore, we have estimated the contribution of N2 fixation in varying N:P ratio of

export flux by applying a simple two-component N source model by Karl et al. (1997):

N f ix

N f ix + Nup
=

(N : P)export − (N : P)up

(N : P)export
(4.11)

where Nfix and Nup denote the N2 fixation rate and vertical eddy diffusive flux of DIN,

respectively. (N:P)export and (N:P)up are the N:P ratio of the export flux from the top

layer and vertical eddy diffusive nutrient flux, respectively. The assumption is that the

vertical diffusion is the only source of new P as DIP and that this process and N2 fixation

are the two potential sources of new N as DIN in the top layer. We have considered the

DIN:DIP ratio of the subsurface water layer as (N:P)up in this study. The left-hand side

of equation (4.11) represents the contribution of N2 fixation in the N:P ratio of export

flux, which ranged from ∼0.1 to 0.4%. The exported organic matter further contributes

to the subsurface nutrient pool upon remineralisation. But this low contribution in the

export flux indicates no role of N2 fixation in changing the subsurface DIN:DIP ratio.

The mean (N:P)export calculated from equation (4.11) is 11.1, which corresponds to

the mean N:P ratio in subsurface nutrients (11.0). It infers that the remineralisation

of exported organic matter considerably contributed to the nutrients in the subsurface

layer. The elemental ratio in export flux generally corresponds to that in POM in the

euphotic zone. However, a discrepancy in the N:P ratio was observed between the POM

in the top layer and the export flux (Figure 4.7). In particular, the mean (N:P)export

was approximately four times lower than the mean N:P ratio in the top layer POM.

The dominance of picoplankton leads to a high N:P ratio in POM in the top layer, but

possesses a low export efficiency compared to microplankton (Fu et al., 2016). The organic

matter of small phytoplankton is likely to be recycled within the upper water column.

The microplankton, having low N:P ratio, are highly efficient in sinking and thereby

possibly contribute largely to the export flux (Aumont and Bopp, 2006). Although the

microplankton (such as diatoms) abundance is reportedly low in the Bay of Bengal during

spring (Sarma et al., 2020b), their accumulation in the export flux might have resulted
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in a low (N:P)export than the N:P ratio in POM in the top layer.

Figure 4.7: A schematic representing N:P ratio in the Bay of Bengal during spring 2019.

4.8 Putting the C:N:P ratios in the global ocean perspective

Overall, the mean C:N:P ratios of POM was 249:39:1 in the top layer. The POC:PON and

PON:POP ratios in the top layer are statistically different from those in the previous study

in the Bay of Bengal during the summer monsoon (232:25:1) (Sahoo et al., 2020). Likewise,

the POC:PON and POC:POP ratios are statistically different from the observations made

in the subtropical North Atlantic Ocean (210:36:1) (Singh et al., 2015a). Our mean C:P

and N:P ratios (2338 ± 4060 and 146 ± 201, respectively) in the DOM in the top layer.

Refractory DOM have elevated global average C:N:P ratios of 1370:60:1 and the non-

refractory DOM have 317:39:1 (Letscher and Moore, 2015). During this study the ratios

in DOM appeared to be more refractory in nature. Therefore, these values are higher

than the global average C:N:P ratios (640:44:1) for bulk DOM in surface water (Letscher

and Moore, 2015).
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4.9 Conclusion

This study enumerates the effect of physical and biogeochemical processes on the elemental

ratios in the top layer of the Bay of Bengal. The C:N:P ratios in the organic (except C:N

ratio in POM) and nutrient pools deviated greatly from the Redfield Ratio in the top

layer during spring. Mean C:N:P ratios were 249:39:1, 2338:146:1, and 8437:9:1 in POM,

DOM, and DIM, respectively in the top layer. The C:N and N:P ratios in POM in this

study are slightly different from those obtained during summer 2018 (232:25:1) in the Bay

of Bengal. The elemental ratios are statistically different from those in the subtropical

North Atlantic Ocean (210:36:1). Riverine influx appeared to have no influence on C:N:P

ratios in our coastal locations in the Bay of Bengal.

N2 fixation contributed negligibly (< 0.5%) to the N:P ratio of export flux, suggesting

no role of it in changing DIN:DIP ratio in the subsurface layer. Mesoscale eddies have

a significant effect on the nutrient concentrations in the top layer. Low concentration of

nutrients was measured in the top layer of ACE stations. On the contrary, no significant

influence was observed in the organic matter pool in ACE stations. So the ACEs do not

seem to influence the elemental ratios.

In this study, we have examined the role of eddies and N2 fixation in varying elemental

proportions in the Bay of Bengal, but other causes also need to be explored. An in-depth

understanding of these processes will help to improve the biogeochemical models based

on flexible elemental proportions.



Chapter 5

Role of winter convective mixing in chang-

ing C:N:P ratios in the Arabian Sea

5.1 Introduction

Several studies have reported variation in elemental ratios in POM and DOM, and nutri-

ents in the Atlantic Ocean, the Pacific Ocean, the Bay of Bengal and southern parts of

the Indian Ocean (Copin-Montegut and Copin-Montegut , 1983; Karl et al., 2001; Martiny

et al., 2013a,b, 2014; Singh et al., 2015a; Garcia et al., 2018; Sahoo et al., 2020). Despite

being biogeochemically important, the Arabian Sea has been overlooked, with no studies

on elemental ratios at present from the region.

The Arabian Sea is in the western part of the northern Indian Ocean and is char-

acterised by a unique seasonal monsoon reversal. Strong summer monsoonal winds cause

intense upwelling of cold and nutrient rich deep water along the coasts of Somalia and

Oman (Bauer et al., 1991). Consequently, this enhanced supply of upwelled nutrients sus-

tains high primary productivity (> 1.0 g C m−2 d−1) in the western Arabian Sea (Brock

et al., 1991; Brock and McClain, 1992; Veldhuis et al., 1997). In contrast, during the

winter monsoon, cold (< 23 ◦C) and dry northeasterly winds cause strong evaporative

cooling in the northern Arabian Sea and drive convective mixing.

Convective mixing is a characteristic process of the northern Arabian Sea during the

winter monsoon. This phenomenon causes deepening (100 m) of the mixed layer result-

83
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ing in the entrainment of nutrients from the subsurface water (Kumar and Prasad , 1996;

Prasad , 2004). Thereby nutrient concentrations in the euphotic zone increase in response

to the convective mixing. Change in optical and physicochemical properties of the eu-

photic zone further triggers high primary productivity, elevated elemental concentrations

in POM, and regulates the size distribution of phytoplankton in the northern Arabian

Sea (Madhupratap et al., 1996; Kumar et al., 2001).

Elemental ratios of POM reflect the elemental composition of the plankton type

that constitute the organic matter pool. The dominance of small-sized (0.2 to 2 µm)

phytoplankton lead to high elemental ratios (average 195:28:1) in the POM pool than

the larger phytoplankton (Klausmeier et al., 2004a; Arrigo, 2005). Regions influenced by

winter mixing having elevated nutrient supply favour the growth of larger phytoplankton

such as diatom, and certain picoplankton such as Synechococcus in the northern and

central Arabian Sea (Madhupratap et al., 1996; Bemal et al., 2017). Thereby, the POM

pool in the northern and central Arabian Sea might have relatively low elemental ratios

than the other part of the ocean during the winter monsoon.

The spatial distribution of seasonal blooms in the Arabian Sea is also modulated by

mesoscale structures such as eddies and filaments, which populate the basin throughout

the year (Resplandy et al., 2011). During winter, although convective mixing is identi-

fied as the primary trigger of winter blooms, it is observed that vertical and horizontal

advection by mesoscale eddies and filaments are responsible for 40 to 50% of nutrient

supply to the euphotic zone (Resplandy et al., 2011). Cyclonic eddies associated with

the subsurface water upwelling amplify the nutrient supply to the euphotic zone. On the

contrary, ACE deepen the nutricline due to surface water downwelling and decrease the

nutrient concentrations in the euphotic zone. Preponderance of prolonged eddies might

transform the N:P ratio of nutrients in the sunlit ocean.

High seasonality in biological production in the Arabian Sea and its subsequent

export leads to O2 depletion in subsurface waters, which constitute one of the most in-

tense open ocean oxygen minimum zones (Codispoti , 2007). O2 deficient conditions result

in depletion of bioavailable N (NO−3 and NO−2 ) through denitrification and anammox

and thereby lowering the N:P ratio in the nutrient pool in subsurface water (Hupe and

Karstensen, 2000).
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Convective mixing and eddies might influence the elemental ratios in the euphotic

layer, and N loss might considerably change the elemental ratios of nutrients in the sub-

surface water. Therefore, we sampled the water column at 14 stations in the Arabian Sea

during the winter monsoon to understand the

i. C:N:P ratios and their variation in organic and inorganic pools in the water column

ii. Influence of winter convective mixing, eddy, and N removal processes on elemental

ratios

iii. Role of the phytoplankton community in changing the C:N:P ratio.

5.2 Methods

Sampling was conducted aboard ORV Sagar Kanya (SK#364) in the Arabian Sea from 16

December 2019 to 6 January 2020. We sampled 14 stations (SK1 to SK14) using a Sea-

Bird CTD rosette sampler mostly at 14 different depths (5, 25, 50, 75, 100, 150, 200, 300,

500, 1000, 1500, 2000, 2500 and 3000 m) (Figure 5.1, Table 5.1). SK1, SK2, and SK12

to SK14 were categorised as the eastern stations, SK3 to SK7 as the northern stations,

and SK8 to SK11 as the southern stations. We present our analysis into three different

depth segments: top, subsurface, and deep layers as explained in Chapter 1. The top layer

extends from the surface to ∼75 m. The successive subsurface layer is considered from

∼75 m to 300 m. The layer below the subsurface layer to the deepest sampling depth up

to 3000 m is classified as deep layer.

The measurement of elemental concentrations of DIM, POM and DOM are discussed

in Chapter 2. The depth at which the NO−3 concentration increased to 1 µM was consid-

ered as the nutricline depth (Garcia et al., 2018). The vertical diffusive flux of DIN from

subsurface waters was calculated following King and Devol (1979). The vertical diffusion

coefficients used in the diffusive flux estimation at the coastal and open ocean stations

were taken from Gandhi et al. (2011a).

The MLD was calculated as 0.2 ◦C decrease from the temperature at 10 m depth

(de Boyer Montégut , 2004). Microbial hypoxia and denitrifying conditions were identified
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based on the DO concentration < 20 and 6 µM, respectively (Rixen et al., 2020). Surface

chl a concentrations were obtained from the Copernicus Marine Environmental Monitoring

Service (https://resources.marine.copernicus.eu/; data retrieved on 21 April 2021).

Figure 5.1: Surface Chl a concentrations and sampling locations in the Arabian Sea during

the winter 2019–20.

The abundance of Prochlorococcus and Synechococcus were obtained from Nazi-

rahmed et al. (2021) (under preparation). The biomass of Prochlorococcus and Syne-

chococcus was calculated by multiplying their abundances (cell counts L−1) with their

C content per cell value. The C content per cell of Prochlorococcus and Synechococcus

were taken from Casey et al. (2013). Based on this, we estimated the contribution of

Prochlorococcus and Synechococcus biomass to the total POC pool.

ACEs were identified based on the SSHA and geostrophic current. ACEs were iden-

tified at S9, S12, and S13 by the clockwise circulation of geostrophic current with > 0.2

m SSHA.
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5.3 Role of convective mixing on the elemental ratios

A combination of evaporation due to the dry northeasterly winds and reduction in solar

insolation leads to cooling and subsequent densification of surface water during the winter

monsoon in the northern Arabian Sea (north of 15◦N) (Kumar and Prasad , 1996; Mad-

hupratap et al., 1996). This further leads to convective mixing that propels nutrients to

the euphotic layer and fuels high primary production in the region.

Changes in the hydrological and surface meteorological parameters such as low atmo-

spheric (24.5–25.3 ◦C except S7) and sea surface temperature (25.9–27.4 ◦C) accompanied

with the deepening of mixed layer at the northern stations witnessed that the stations

were influenced by convective mixing (Figure 5.2). Furthermore, the evaporative cooling

of surface water led to comparatively high salinity particularly in the northern stations.

Salinity varied from 36.1 to 36.6 at the northern stations, S2, and S8.

Concurrently, the surface water convective mixing was accompanied by an increased

diffusive flux of DIN to the top layer from the thermocline region, as evident from the

shoaling of nutricline (< 10 m) at the northern stations except S7. The diffusive flux of

DIN across the mixed layer was higher at S3 (2.34 mmol N m−2 d−1) and S5 (2.12 mmol

Table 5.1: Details of environmental parameters at the fourteen (S1–S14) sampling loca-

tions during winter 2019–20.

Station Date of sampling (dd.mm.yyyy) Latitude (◦N) Longitude (◦E) SST (◦C) SSS SSHA (cm) MLD (m)

SK1 17.12.2019 15◦57′ 73◦09′ 28.6 34.7 15 51

SK2 19.12.2019 19◦59′ 69◦31′ 26.9 36.1 11 58

SK3 21.12.2019 19◦60′ 64◦60′ 26.3 36.3 3 57

SK4 22.12.2019 17◦60′ 64◦60′ 25.9 36.1 4 48

SK5 23.12.2019 15◦60′ 64◦60′ 26.8 36.2 4 66

SK6 24.12.2019 14◦00′ 64◦60′ 27.2 36.4 0 42

SK7 26.12.2019 11◦60′ 64◦60′ 27.5 36.2 0 48

SK8 27.12.2019 09◦60′ 65◦00′ 28.2 36.6 7 48

SK9 29.12.2019 07◦60′ 65◦00′ 29.1 35.4 15 44

SK10 30.12.2019 06◦00′ 65◦00′ 29.1 35.2 12 45

SK11 31.12.2019 03◦60′ 64◦60′ 29.4 35.3 9 26

SK12 02.01.2020 07◦60′ 68◦25′ 29.1 35.6 19 71

SK13 04.01.2020 11◦02′ 71◦03′ 29.1 36.1 11 48

SK14 05.01.2020 13◦31′ 72◦20′ 28.9 36.2 7 42
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N m−2 d−1) than that at the other stations and even higher than that during the spring

in the Arabian Sea (Gandhi et al., 2011a).

Figure 5.2: Hydrological characteristics along the cruise track: (a) Atmospheric temper-

ature, SST and SSS, and (b) Chl a concentration, MLD and SSHA.

Furthermore, the 2 µM DIN contour which was seen at or deeper than 50 m at S6, S7,

the southern and eastern stations, surfaced at some of the northern stations (S3 to S5).

Concurrently the 0.5 µM DIP contour was observed at or deeper than 50 m at the southern

and eastern stations (except S2), while shoaled at S2 and the northern stations (Figure

5.3). Concurrently high chl a (0.15–0.42 µg L−1) and the top layer POM concentrations

were observed at S1, S2, and the northern stations (Figure 5.3). Superposition of the chl a

distribution with DIN and DIP concentrations confirms that the convective mixing driven

increased nutrient supply led to high POM concentrations in the northern stations.

Increased supply of nutrients led to low DIC:DIP ratio in the northern stations

than other stations. DIC:DIP ratio was statistically low at the northern stations (3555

± 1274) than the southern and eastern stations (6330 ± 2156) in the top layer (Figure

5.4). However, no significant differences were observed for the top layer DIC:DIN and

DIN:DIP ratios between the northern, and the southern and eastern stations. The in-

creased supply of nutrients triggred high top layer POM concentrations but low elemental

ratios at the northern stations. The POC:PON (7 ± 2) and POC:POP (207 ± 43) ratios

were significantly low at the northern stations than that at the southern and eastern sta-

tions (POC:PON (8 ± 2) and POC:POP (266 ± 61)) in the top layer. Additionally, the

PON:POP ratio was comparatively higher at S7, the southern (except S11) and eastern

(except S1 and S2) stations in the top layer.

The increase in elemental ratios particularly POC:POP at the southern and eastern
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Figure 5.3: Vertical section up to 220 m of (a) DIC, (b) DIN, (c) DIP, (d) POC, (e) PON,

(f) POP, (g) DOC, (h) DON, and (i) DOP concentration.

Figure 5.4: Vertical section up to 220 m of (a) DIC:DIN, (b) DIN:DIP, (c) DIC:DIP,

(d) POC:PON, (e) PON:POP, (f) POC:POP, (g) DOC:DON, (h) DON:DOP, and (i)

DOC:DOP concentration.

stations could be due to the prevalence of small-sized phytoplankton. The small-sized

phytoplankton possess high C:P ratio as they allocate more C-rich carbohydrate and

N-rich protein-pigment complexes at a very low expense of P nutrient in their cellular

structure under nutrient deficient environment (Klausmeier et al., 2004a; Arrigo, 2005).

The role of picoplankton distribution in varying the POM elemental ratios is discussed

in section 5.4. Altogether, the variation of the elemental ratios in nutrients and POM

in the top layer at the northern, and the southern and eastern stations appeared to be

influenced by convective mixing. The mean POC:PON, PON:POP, and POC:POP ratios

were 8.0 ± 1.7, 31.7 ± 9.5, and 245.3 ± 62.0, respectively, in the top layer, higher than
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the Redfield Ratio (Figure 5.5).

Figure 5.5: Box-whiskers plots showing elemental ratios in DIM, POM, and DOM in

three depth layers. Pink dotted lines represent mean. Whiskers account for 5 and 95% of

distribution, whereas box accounts for 25 and 75%. Dots within the boxes represent 50%

of the distribution.

5.4 Role of picoplankton in elemental ratios in POM

A value of 5 µM for DIN and 0.5 µM for DIP is considered as the threshold concentra-

tions for N and P limitation for phytoplankton growth (Mousing et al., 2018). During

this study, DIN and DIP concentrations at all the stations (except in 5 and 50 m depth at

S3 and S4 for DIP) were below their threshold values in the upper 50 m. In the nutrient

limiting environment, the competitive acquisition of nutrients is an important mechanism

for controlling the community size structure of phytoplankton because the large surface

area to volume ratio and a small diffusive boundary layer lend smaller species a com-
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petitive advantage over larger species (Tilman et al., 1982). Therefore, the picoplankton

community favourably prevails in the oligotrophic systems, while diatoms and other large

eukaryotes associate with high nutrient environments such as in upwelling regions.

Previous studies in the Arabian Sea have reported that the basin is dominated mostly

by picoplankton such as Prochlorococcus, Synechococcus, picoeukaryotic algae and het-

erotrophic bacteria during the winter monsoon (Campbell et al., 1998; Roy and Anil ,

2015). A high abundance of Prochlorococcus was observed at stable oligotrophic warm

waters and low surface NO−3 concentration (< 1 µM) (Campbell et al., 1998).

During this study, the abundance of Prochlorococcus was slightly higher at the south-

ern stations and S12 and S13, while the abundance of Synechococcus was dropped at these

stations and S14 (Nazirahmed et al. 2021, under preparation) (Figure 5.6). Although the

concentrations of DIN and DIP in the surface water were below their threshold values (5

and 0.5 µM), the northern stations had relatively increased nutrient concentrations in the

top layer due to the convective mixing, which might favour the growth of Synechococcus.

Figure 5.6: Distribution of integrated picoplankton abundance (data obtained from Nazi-

rahmed et al. 2021, under preparation) in log scale, DIP concentration and C:P, and N:P

ratios in particulate organic matter (POC:POP and PON:POP) in the top layer.

Prochlorococcus showed a negative correlation with DIP, while Synechococcus exhib-

ited a positive correlation with DIP and POM elemental concentrations (Figure 5.7a). It

infers that Synechococcus constituted high biomass in the northern stations. However, the
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smaller phytoplankton, Prochlorococcus constituted comparatively high POM biomass in

the southern stations and at S12, S13, and S14 due to their more efficient nutrient dif-

fusion capacity at decreased ambient nutrient concentrations. Furthermore, a negative

relationship between Synechococcus and temperature suggests that temperature variation

could also be one of the reasons for the reduced Synechococcus abundance in the southern

and eastern (except S1 and S2) stations (Figure 5.7a).

A negative correlation of PON:POP and POC:POP ratio with Synechococcus and

positive correlation with Prochlorococcus abundance suggest that the competitive domi-

nance of Prochlorococcus over Synechococcus in the nutrient-deficient waters in the south-

ern and some of the eastern stations might have led to a comparatively higher elemental

ratios (Figure 5.6 and 5.7a). Prochlorococcus possess high elemental ratios followed by

Synechococcus, and picoeukaryotes (Martiny et al., 2013a; Singh et al., 2015a).

This study was performed during the beginning of the winter monsoon, when the

picoplankton biomass decreases owing to intense microzooplankton grazing (Bemal et al.,

2017). On average, Prochlorococcus and Synechococcus together constituted 16% (ranged

from 0.5 to 92%) of the total POC biomass in the top layer during this study. Therefore,

the variability in POM elemental ratios could not be explained only by the Prochlorococcus

and Synechococcus communities, the abundances of large phytoplankton and microzoo-

plankton also need to be studied. At present limited information on marine plankton

distribution left our speculation unresolved and demands a detailed study of the taxon-

specific elemental ratios in the Arabian Sea.
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Figure 5.7: Spearman’s correlation matrices of the concentrations and ratios in the (a) top (b) subsurface, and (c) deep layer. Values in

coloured boxes are different from 0 at α = 0.05.
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Figure 5.8: Sea surface height anomaly overlaid by geostrophic currents during (a) 17–21

December 2019, (b) 22–26 December 2019, (c) 27–31 December 2019, and (d) 1–5 January

2020. The sampling locations are shown with blue circles.

5.5 Impact of anticyclonic eddies on elemental ratios in the

top layer

A large ACE is normally observed in the southeast Arabian Sea during the winter monsoon

(Bruce et al., 1994; Shankar and Shetye, 1997). It grows rapidly from late November to

late December at about 10◦N over the Laccadive Islands, and hence named as Laccadive

High. In January, it can be seen moving westward where it dies in the mid basin. The

eddy expands ∼500–800 km spatially and 300–400 m vertically.

We observed a large ACE in the south-eastern Arabian Sea (Figure 5.8). S12, S9,

and S13 were situated at the periphery of the ACE. The concomitant lowering of nutri-

ents particularly DIN at these stations might be due to the surface water downwelling

associated with the ACE, which ultimately deepens the nutricline. The southern and

eastern stations were comparatively nutrient poor, as evident from the deepening of con-

tour representing DIN:DIP ratio: 2, than that in the northern stations (Figure 5.4). The
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occurrence of ACE further lowered the nutrient levels at S9, S12, and S13. The contour

representing DIN:DIP ratio: 2, deepened the most (∼100 m) at S12.

5.6 Variation of elemental ratios in the subsurface and deep

layers

The DIN:DIP ratio was less than the Redfield Ratio throughout the water column and the

lowest value was observed in the top layer (5.6 ± 3.8) (Figure 5.5). Low DIN:DIP ratio

in the subsurface and deep layer (10.7 ± 2.9 and 12.7 ± 1.2, respectively < 16) implies N

removal in the oxygen minimum zones (Deutsch and Weber , 2012). Upon upwelling of the

such N deficient subsurface water to the top layer, the DIN:DIP ratio further decreases

due to the preferential uptake of N nutrients by small-sized phytoplankton.

Intense oxygen minimum zone (< 6 µM dissolved oxygen concentration) is normally

observed in the intermediate depths (150–1200 m) north of 12◦N and east of 56◦E in

the Arabian Sea, which is one of the largest denitrification zones in the global ocean

(Naqvi , 1987; Fauzi et al., 1993). The Arabian Sea oxygen minimum zone harbours a less

diverse assemblage of anammox bacteria in addition to largely diverse denitrifying bacteria

(Ward et al., 2009). During this study, the oxygen minimum zone was intense within the

subsurface layer at the northern stations (Figure 5.9a). The low DIN:DIP ratio (9–10) at

most depths in this layer is indicative of the occurrence of denitrification. The denitrifying

heterotrophic bacteria utilise NO−3 as an oxidant during the remineralisation of organic

matter leads to N loss from the subsurface waters. Moreover, a notable departure in DIN

Figure 5.9: (a) DO concentration (y axis is stretched in the middle) (b) DIP versus DIN

concentrations in the water column. Solid line represents the Redfield Ratio (16:1).
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concentration from the traditional Redfield Ratio in the subsurface layer at the northern

stations confirms our theory on the effect of N loss processes on elemental concentrations

(Deutsch and Weber , 2012) (Figure 5.9b).

The elemental ratios of POM showed an increase below the top layer. In the sub-

surface layer, the mean POC:PON, PON:POP, and POC:POP ratios were 9.1 ± 3.1, 35.6

± 13.1, and 308.6 ± 104.4, respectively (Figure 5.5). The mean POC:PON, PON:POP,

and POC:POP ratios were 11.0 ± 3.5, 40.5 ± 14.8, and 424.6 ± 160.3, respectively, in the

deep layer. Differential remineralisation of organic matter generally leads to most of the

variation in elemental ratios in the subsurface and deep layers. In the POM pool, POP un-

dergoes preferential remineralisation followed by PON and POC (Loh and Bauer , 2000).

An increase in the POC:PON ratio in the subsurface and deep layers could be attributed

to the faster remineralisation of PON compared to POC (Figure 5.7b and c). The strong

anticorrelation between POC:PON ratio and PON concentration confirmed the differen-

tial remineralization theory. Likewise, the increasing PON:POP and POC:POP ratios in

the subsurface and deep layers were due to the preferential remineralisation of POP in

the sinking organic matter (Loh and Bauer , 2000), supported by a negative relationship

between the ratios and POP concentration (Figure 5.7b and c).

Unlike the POM pool, C:P ratio in the DOM pool decreased in the subsurface and

deep layers, while no such uniform increasing or decreasing behaviour was seen in C:N

and N:P ratios. The mean DOC:DON, DON:DOP, and DOC:DOP ratios were 12.2 ± 6.1,

47.4 ± 54.4, and 635.5 ± 690.5, respectively, in the top layer (Figure 5.5). In subsurface

water, the DOC:DON, DON:DOP, and DOC:DOP ratios were 14.4 ± 31.1, 36.2 ± 43.4,

and 309.1 ± 507.9, respectively. The mean ratios in the deep layer were 16.0 ± 37.5, 47.8

± 139.6, and 269.1 ± 786.4 for DOC:DON, DON:DOP, and DOC:DOP, respectively. This

variation of DOC:DOP ratio might be attributed to the increasing DOP concentration in

the subsurface and deep layers, further confirmed from the negative relationship between

the ratio and DOP concentration (Figure 5.7b and c).
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5.7 Role of N2 fixation on the elemental ratios

N2 fixation plays a vital role in supplying new N to the euphotic zone of oligotrophic

basins. It may account for ∼50% of the organic matter export to the deep ocean (Karl

et al., 1997). Like in the euphotic layer, N2 fixation also contributes to the subsurface

layer nutrient pool upon remineralisation of the N-rich biomass of N2 fixers. The N2

fixation rates during the study were below the detection limit at most of the depths in

the top layer at all stations but at S10 and the eastern stations (except S2) (Saxena et al.

2021, under preparation). Therefore, the low N2 fixation rates do not seem to affect the

elemental ratios of POM in the top layer and that of nutrients in subsurface layer during

the winter monsoon.

5.8 Putting the Arabian Sea elemental ratios in the global

ocean perspective

Overall, the mean C:N:P ratios in POM in the top layer: 245:32:1 is statistically differ-

ent from those estimated in the Bay of Bengal during summer (232:25:1) (Sahoo et al.,

2020) and spring (249:39:1) (Sahoo et al., 2021). Our C:N:P observations in the POM

are marginally different from the observations in the subtropical North Atlantic Ocean

(210:36:1) (Singh et al., 2015a). Our mean elemental ratio in DOM is 635:47:1 in the top

layer, which is close to the global mean C:N:P ratio (640:44:1) for DOM in surface water

(Letscher and Moore, 2015). Altogether, the elemental ratios have greatly deviated from

the traditional Redfield Ratio and witnessed the influence of winter convective mixing in

regulating their variation.
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5.9 Conclusion

We analysed C:N:P ratios in the inorganic and organic pools from the surface to 3000

m water depth in the Arabian Sea during the winter monsoon. The mean C:N:P ratios

in POM were 245:32:1 in the top layer, higher than the Redfield Ratio. This ratio is

significantly different from that in the subtropical North Atlantic Ocean (210:36:1). The

elemental ratios in DOM were 635:47:1 in the top layer, consistent with the global value

for bulk DOM (640:44:1).

Convective mixing resulted in decreased C:P ratio in the nutrients and C:P and

C:N ratios in POM in the top layer at the northern stations. However, higher C:N and

C:P ratios in POM were observed in the top layer at the southern and eastern stations.

The variation in POM elemental ratios is attributed to the distribution of picoplankton.

Prochlorococcus dominated the phytoplankton community at the southern and some of

the eastern stations that might have led to the high elemental ratios in POM. However,

an extensive study on taxon specific elemental stoichiometry is necessary to unravel the

role of phytoplankton community on elemental ratios in the basin.

Furthermore, the prevalence of ACE in the southeastern Arabian Sea during winter

might have caused DIN and DIP deficiency in the surface waters at the southern and

eastern stations. Lower DIN:DIP and higher DIC:DIP ratios were observed in the top

layer at these stations. Low N2 fixation rates do not seem to affect the elemental ratios

during the winter monsoon. Relatively decreased subsurface layer DIN:DIP ratio at the

northern stations indicates the influence of denitrification on the nutrient pool.



Chapter 6

Summary and scope for future works

6.1 Summary

Even though the northern Indian Ocean is characterized by a myriad of physical and

biogeochemical processes, the paucity of data precluded our understanding of the variation

of elemental ratios in organic and inorganic pools in this region. The present study

is attempted to understand the variation of C:N:P ratios from the canonical Redfield

Ratio in the northern Indian Ocean. The oceanic processes including mesoscale eddies,

convective mixing and N2 fixation were examined to understand their role in varying

elemental ratios. In addition, the coastal stations in the Bay of Bengal were studied to

analyse the influence of riverine influx on the elemental ratios. An in-depth understanding

of these processes will help to improve the biogeochemical models of this region based on

flexible elemental proportions. The major findings of this study are as follows:

6.2 C:N:P proportions in the the Bay of Bengal during the

summer monsoon

i. The elemental ratios greatly deviated from the Redfield Ratio. The average N:P

ratio ∼3:1 in the top layer nutrients coupled with reported low primary production

rates in the basin suggested that the production was N limited.

99



100 Chapter 6. Summary and scope for future works

ii. The average C:N:P ratio of POM in the top layers of the Bay of Bengal was 232:25:1,

similar to observations in other tropical oceans, such as the subtropical North At-

lantic Ocean (210:36:1) and subtropical North Pacific Ocean (172:25:1) (Martiny

et al., 2013a; Singh et al., 2015a). The average C:N:P ratio in the DOM in the top

layer was estimated as 357:30:1 in the basin, lower than the global average 640:44:1

for bulk DOM in the surface ocean (Letscher and Moore, 2015). The increase in

PON:POP and POC:POP ratios from the top layer to the deep layer are governed

by the preferential remineralisation of POP and PON than POC.

iii. Higher C:N:P ratios than the Redfield Ratio in POM in surface water suggests

that the basin supports the nutrient supply hypothesis for tropical oceans with low

inorganic nutrient concentrations.

iv. Relatively deep mixed layer (41–77 m) and shallow nutricline (10–66 m) were ob-

served during the sampling period, which might be due to the strong winds and

eddy-induced mixing of the water column. Eddies showed a mixed effect on the

C:N:P ratios in the top layer. Although there were differences in DIM and POM

concentrations, but only little variability in C:N:P ratios of POM was observed

between the eddy and non-eddy stations.

v. Low autotrophic N2 fixation rates in photic zone suggest that diazotrophs had a

minimal impact on nutrient or POM ratios in the basin. The low N:P ratio in

nutrients in the subsurface waters suggests a potential role of N loss processes in

regulating nutrient stoichiometry.

6.3 C:N:P ratios in the Bay of Bengal during spring: Role

of eddies and N2 fixation

i. The C:N:P ratios in the organic (except C:N ratio in POM) and nutrient pools

deviated greatly from the Redfield Ratio in the top layer during spring. Average

C:N:P ratios were 249:39:1, 2338:146:1, and 8437:9:1 in POM, DOM, and DIM,

respectively in the top layer. The C:N and N:P ratios in POM in this study are



6.3. C:N:P ratios in the Bay of Bengal during spring: Role of eddies and N2 fixation 101

slightly different from those obtained during summer 2018 (232:25:1) in the Bay of

Bengal (Sahoo et al., 2020).

ii. Conservative mixing of river and seawater calculation, C:N ratio (average 7.6 ± 2.5)

of POM, and POC:Chl a ratio in the top layer (average 225 ± 153) suggest that the

elemental ratios in our coastal locations were not influenced by the riverine influx

to the basin.

iii. No significant differences were observed in the parameters (except POM concentra-

tions) at the coastal and open ocean regions. This was due to the coastal region

had larger range of elemental concentrations and ratios than the open ocean region.

iv. Prolonged ACEs had a significant influence on the DIN and DIP concentrations

than the NE stations during spring. Deep nutriclines (84 m at ACE1 and 87 m

at ACE2) at ACE stations indicate that the surface water downwelling resulted

in the decreasing DIN and DIP concentrations in the top layer. On the contrary,

no significant influence was observed in the organic matter pool at ACE stations.

Hence the ACEs do not seem to influence the elemental ratios.

v. Prochlorococcus and Synechococcus together constituted only up to 29% of the total

POC pool in the top layer, a major fraction of the POM pool is likely constituted by

dead and detrital matter. But this dead and detrital matter may also have its origin

in the picoplankton in the oligotrophic waters. Therefore, the higher elemental

ratios in POM suggests that the Bay of Bengal support the growth rate hypothesis.

vi. N2 fixation contributed 0.1 to 0.4% to the N:P ratio of export flux, suggesting no

role of it in changing DIN:DIP ratio in the subsurface layer.

vii. The average (N:P)export corresponded to the average N:P ratio in subsurface nutri-

ents (11.0), inferring that the remineralisation of exported organic matter consider-

ably contributed to the nutrients in the subsurface layer.

viii. A discrepancy in the N:P ratio was observed between the POM in the top layer and

the export flux, which suggests that the accumulation of microplankton might lead

to low (N:P)export than that in the top layer POM.
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6.4 Role of winter convective mixing in changing C:N:P ra-

tios in the Arabian Sea

i. The elemental ratios have greatly deviated from the traditional Redfield Ratio and

witnessed the influence of winter convective mixing in regulating their variation.

Convective mixing of the surface water at the northern stations led to comparatively

higher DIN and DIP concentrations in the top layer. Concurrently, the top layer

DIC:DIP, POC:POP ratios were statistically lower in the northern stations.

ii. A large ACE was spotted in the southern and eastern stations, which normally

occurs during winter in the south-eastern Arabian Sea. Deeper nutricline associated

with the ACE resulted in the concomitant lowering of DIN, and DIP concentrations,

and DIN:DIP ratio in the top layer at these stations.

iii. Low DIN:DIP ratio in the subsurface and deep layer (10.7 ± 2.9 and 12.7 ± 1.2,

respectively < 16) implies the influence of N removal processes in the suboxic waters

in the basin.

iv. The increased POC:PON, POC:POP and PON:POP ratios from the top to deep

layers was due to the preferential remineralisation of POP and PON.

v. The varying elemental ratios were observed to be driven by both the nutrient avail-

ability and temperature in the Arabian Sea.

vi. The elemental ratios of POM in the top layer varied with the picoplankton species

that dominate the phytoplankton population. Higher C:P and N:P ratios of POM

were observed in the southern and some of the eastern stations where Prochlorococcus

dominated the POM pool, while low ratios were observed in the northern and some

of the eastern stations where Synechococcus dominated the POM pool.

vii. Overall, the mean C:N:P ratios in POM in the top layer: 245:32:1 is statistically

different from those estimated in the Bay of Bengal during summer (232:25:1) (Sahoo

et al., 2020) and spring (249:39:1) (Sahoo et al., 2021). Our C:N:P observations in
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the POM are marginally different from the observations in the subtropical North

Atlantic Ocean (210:36:1) (Singh et al., 2015a).

viii. The average elemental ratio in DOM was 635:47:1 in the top layer, which is close

to the global mean C:N:P ratios (640:44:1) for DOM in surface water (Letscher and

Moore, 2015).

6.5 Scope for future works

This thesis work presented significant findings but more work needs to be done on this

topic for improving our understanding of the non-Redfieldian elemental ratios. We suggest

to carry the following work in future studies:

i. The thesis work presented the C:N:P ratios in the organic and inorganic matter in

the northern Indian Ocean and the role of physical and biogeochemical processes

in controlling the ratios. However, the effect of deep water upwelling during the

summer monsoon on the elemental ratios in the Arabian Sea could not be explored

during this thesis work. We believe that the phenomenon must have a significant

effect on the elemental ratios which need to be studied.

ii. The riverine influence on the elemental ratios can be better examined at coastal

stations receiving high terrestrial input during the peak discharge period such as in

the summer monsoon.

iii. We suggested that the C:N:P ratios in POM were higher than the Redfield Ratio

with the supposition that the phytoplankton community is mostly populated by

picoplankton in the nutrient deficient tropical waters. But the taxon specific C:N:P

ratios were not established for this region, which needs to be studied to provide a

better understanding of varying elemental ratios of plankton.

iv. A major fraction of POM is contributed by heterotrophs and detrital matter. There-

fore, the elemental ratios in heterotrophs and detrital matter also need to be exam-

ined.
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v. The contribution of N2 fixation in controlling elemental ratios can be estimated for

the Arabian Sea in fall when Trichodesmium blooms appear in the basin. This esti-

mation will help to understand its effect on changing elemental ratios in subsurface

nutrients.

vi. The northern Indian Ocean is an emerging hub for tropical cyclones. Cyclonic

activities increase nutrient concentrations and primary productivity in the sunlit

layer. Therefore, the effect of cyclonic activities on the elemental ratios in the

northern Indian Ocean can be studied.

vii. Changing hydrographic conditions such as temperature, salinity and nutrient con-

centrations may indirectly affect the elemental ratios of phytoplankton by regulating

their growth and nutrient assimilation. Mesocosm experiments are suggested to test

this hypothesis.

=====================================

“No this is not the beginning of a new chapter in my life; this is the beginning of a new

book! That first book is already closed, ended and tossed into the seas; this new book is

newly opened, has just begun! Look, it is the first page! And it is a beutiful one!”

C. JoyBell C.
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1. INTRODUCTION

Until recently, it was believed that the molar car-
bon:nitrogen:phosphorus (C:N:P) ratio in phyto-
plankton (inferred from bulk organic matter) and
deep ocean nutrients remained statistically uniform
at 106:16:1 — a coincidence discovered by Alfred C.
Redfield and thereafter known as the Redfield Ratio
(Redfield 1934). Redfield provided 3 explanations for
a fixed C:N:P ratio: (1) it is a mere geochemical coin-
cidence, (2) microorganisms adapt to oceanic nutri-
ent stoichiometry, and (3) biogeochemical processes
regulate the ratio (Redfield 1958). However, a phyto-

plankton physiology model and an empirical data set
suggested that the Redfield Ratio is not a universally
optimal value; rather, it is the average stoichiometry
of phytoplankton in the ocean (Klausmeier et al.
2004a). In addition, recent findings highlighted a
global latitudinal variation in the C:N:P ratio from the
canonical Redfield Ratio (Martiny et al. 2013a,b).

Elemental ratios of phytoplankton and nutrients
are of paramount importance to our understanding of
their biogeochemical cycling in the oceans (Weber &
Deutsch 2012, Wang et al. 2019). Biologically, C is the
backbone of all biomolecules, while N and P are
proximate and ultimate limiting nutrients, respec-
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tively, for oceanic primary production (Tyrrell 1999).
The C:N:P stoichiometry in particulate and dis solved
pools of the ocean has been fundamental to our under-
standing of marine biogeochemistry, as it allows us to
estimate the approximate concentration of one nutri-
ent through the knowledge of the other, leading to
ease in calculations of various rate processes, such as
export production and nutrient-based flux rate calcu-
lations (Geider & La Roche 2002, Tyrrell 2019). Devi-
ations from the N:P ratio of 16:1 in nutrients are used
to infer the net effect of various biogeochemical pro-
cesses such as N2 fixation (>16:1) and denitrification
(<16:1) in the water column (Gruber & Sarmiento
1997, Tyrrell 1999, Lenton & Watson 2000, Deutsch &
Weber 2012, Zehr & Capone 2020).

Most marine elemental stoichiometry studies are
confined to particulate organic matter (POM) and
dissolved inorganic matter (DIM) (Copin-Montegut &
Copin-Montegut 1983, Martiny et al. 2013a, Singh
et al. 2015a, Baer et al. 2019). Although dissolved
organic matter (DOM) forms one of the largest reser-
voirs of C and N in the ocean (Ogawa & Tanoue
2003) and contributes 20−25% in global export pro-
duction, the elemental ratios in DOM are not well
studied. A globally compiled data set on marine
C:N:P ratio (810:48:1) in DOM, with little data from
the Indian Ocean, suggested that it deviates greatly
from the Redfield Ratio (Letscher & Moore 2015).

Several studies on the C:N:P ratio in phytoplankton
and in nutrients have been reported from the At -
lantic Ocean, and to an extent from the Pacific Ocean
with limited studies in the Indian Ocean (Copin-
Montegut & Copin-Montegut 1983, Karl et al. 2001,
Martiny et al. 2013a,b, 2014, Singh et al. 2015a). In
the Indian Ocean, these studies are mostly confined
to the northwestern (Martiny et al. 2013b) and south-
western tropical regions (Copin-Montegut & Copin-
Montegut 1983). Despite the fact that the northern
Indian Ocean is distinct from other oceans in terms of
the extent and magnitude of biogeochemical pro-
cesses, particularly due to monsoonal wind forcing,
less is known about mechanisms regulating elemen-
tal stoichiometry in this part of the Indian Ocean.

The Bay of Bengal (hereafter the Bay), the north-
eastern part of the Indian Ocean, is an economically1,
ecologically, and culturally important basin as it forms
a long coastline with the Indian subcontinent. It is sur-
rounded by the Indian subcontinent in the north and

northwest, and the Andaman Nicobar Islands in the
east. The prevalence of eddies are  typical characteris-
tics of this basin (Mukherjee et al. 2019); frequently
occurring mesoscale eddies are associated with ad-
vective transfer of riverine water offshore. The Bay
experiences semi-annual season ality of the Asian
monsoon system (Gadgil 2003). Strong southwesterly
winds lead to high  rainfall over the Indian subconti-
nent from June to September, whereas between De-
cember and February, northeasterly winds lead to
heavy rainfall in the southern states of India. Large
freshwater influx (1.625 × 1012 m3 yr−1) from the
Ganges-Brahmaputra river system drives a strong
vertical density gradient leading to higher sea surface
temperature than usual in the Bay (Subramanian
1993, Shetye et al. 1991). The influx of nutrients
through riverine discharge, surrounding mangroves
and wetlands enhances  productivity in the coastal re-
gions (Dutta et al. 2019) and leads to a considerable
organic C export to the deeper Bay (Ittekkot et al.
1991, Kumar et al. 2004, Singh & Ramesh 2015).

The Bay shows high concentrations of dissolved
organic C (DOC) ~75−100 μmol l−1 in the surface
waters due to high riverine flux (Shah et al. 2018). In
addition, dissolved organic N (DON) and dissolved
organic P (DOP) constitute about 70−99% of the total
dissolved nutrients in the waters above the thermo-
cline (Sarma et al. 2019a). At the same time, the
water column remains stratified, restricting the up -
ward nutrient flux due to a strong halocline (Pra -
sanna Kumar et al. 2010). In such cases, recycling
processes and frequent eddies observed over the Bay
could be of considerable importance for primary
 production (Prasanna Kumar et al. 2004, Singh et al.
2015b). In fact, eddies are known to enhance the pri-
mary production in the Bay (Prasanna Kumar et al.
2010, Singh et al. 2015b).

These hydrographic (e.g. riverine influx), physical
(e.g. stratification and eddy-driven mixing), and bio-
geochemical (e.g. N2 fixation) variables might have
an influence on the C:N:P ratio in the Bay. However,
there are only a few studies from the basin, and these
are limited only to POM stoichiometry. The C:N ratio
in POM was higher (8.0−17.2) in the coastal Bay
 during spring 2018 (Sarma et al. 2019b) than that
(7.1) in the offshore Bay during spring 2016 (Garcia
et al. 2018). In order to comprehensively explore the
interplay of biogeochemical and physical processes
on the C:N:P ratio, we sampled the water column at 8
locations in the Bay during the summer monsoon
(July 2018). Our major objectives during this study
were to (1) estimate the C:N:P ratio in organic and
inorganic pools in the water column (surface to

1The Bay of Bengal Initiative for Multi-Sectoral Technical and
Economic Cooperation (BIMSTEC) supports international
trade among India, Bangladesh, Bhutan, Myanmar, Thai-
land, Sri Lanka, and Nepal.
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2000 m depth), (2) understand the impact of bio -
geochemical processes, such as N2 fixation, on the
elemental ratio, and (3) understand the role of physi-
cal processes, such as eddies, on elemental ratios in
organic and inorganic pools.

2.  MATERIALS AND METHODS

Sampling was performed in the Bay during the peak
of the summer monsoon (12 July to 2 August 2018)
on-board ORV ‘Sagar Nidhi’ (SN#132) (see Table 1).
We sampled 8 different stations; 5 of which were
along an 88° E transect while the rest were located
from 85−87° E longitudinal range (Fig. 1). Water sam-
ples were collected using a Sea-Bird CTD rosette
sampler from 12 different depths (10, 25, 50, 75, 100,
150, 200, 300, 500, 1000, 1500, and 2000 m) at each
station. At times, one of the 2 subsurface sampling
depths (i.e. 50 or 75 m) was changed to match the
depth of the deep chlorophyll maximum (DCM). The
CTD sensors provided data on water temperature,
salinity, and density. Fluorescence data were ob -
tained from a well-calibrated sensor mounted on the

CTD rosette sampler. Mixed layer depth was calcu-
lated using a 0.2°C deviation in potential tempera-
ture from the surface water (de Boyer Montégut
2004, Holte & Talley 2009).

For total organic C (TOC) and total N (TN) meas-
urements, seawater samples were collected in 50 ml
sterile centrifuge tubes. The samples were frozen
immediately at −20°C until analysis in the onshore
laboratory. The TOC measurements were performed
using a high temperature catalytic oxidation method
in a TOC analyser (TOC-L-CPH, Shimadzu Corpora-
tion) (Suratman et al. 2009, Pujo-Pay et al. 2011).
Inorganic C was removed by acidifying the sample
with 2 N HCl through purging of a carrier gas (zero
gas, ultra-pure, 99.9995% purity) prior to the TOC
measurement. The non-purgeable organic C was
oxidised to CO2 and measured using a Non Disper-
sive Infra-Red detector. TN concentrations were
measured on a TN analyser (TNM-L-CPH,  Shimadzu
Corporation) by oxidising dissolved nitrogen to nitric
oxide (NO) into the combustion tube at 720°C. The
resultant NO was detected in a chemiluminescence
detector (Chaichana et al. 2019). The accuracy of the
results was ensured by routinely measuring a certi-

fied reference material (Batch 18, Lot#08-
18 for deep seawater) provided by the
University of Miami (Hansell 2005).
Analysis was performed after ensuring
that the absolute deviation of the meas-
ured value from the known value was
within 5%. The coefficient of variation
was 2% for total organic C (TOC) and
TN measurements.

Samples for nutrients (NO3
−, NO2

−,
and phosphate [PO4

3−]) analysis and
total phosphorous (TP) were collected in
60 ml high density polyethylene bottles
and frozen at −20°C. Nutrients were
measured using an autoanalyser (SKA -
LAR). The detection limits for NOx (NO3

−

+ NO2
−), NO2

−, and PO4
3− were 0.16,

0.06, and 0.02 μmol l−1, respectively.
NOx and PO4

3− are re ferred to as dis-
solved inorganic nitrogen (DIN) and dis-
solved inorganic phosphorus (DIP), re -
spectively. The depth at which the NO3

−

concentration reached 1 μmol l−1 was
considered the nutricline, which was
used to infer the nutrient supply rate to
the surface layer (Garcia et al. 2018).
Dissolved inorganic C (DIC) samples
were collected in 12 ml Exetainers
(Labco) followed by addition of 0.2 ml

43

Fig. 1. Daily sea surface height anomaly overlaid by geo strophic currents on 12
July 2018. The eddies remained in the same position throughout the sampling
period. Circles: sampling locations. Station abbreviations: ACE: anticyclonic
eddy; MWE: mode water eddy; NE: non-eddy; BWE:  boundary water eddy
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mercuric chloride (100% HgCl2). DIC was measured
using a coulo meter (UIC; Model 5012) with an ana-
lytical precision of ±2%.

Samples for particulate organic C (POC), N (PON),
and P (POP) were collected by filtering seawater on
precombusted (at 400°C for 4 h) Whatman glass
microfiber filters (GF/F, 47 mm diameter, 0.7 μm pore
size). Around 3.7−4.7 l of water for depths up to
500 m and 5−8 l of water for depths from 1000−
2000 m were filtered for POC and PON combined.
For POP, 2.35 l of seawater was filtered for depths up
to 500 m, whereas 3−4 l was filtered for depths from
1000−2000 m. Concentrations and isotopic composi-
tions (δ13C and δ15N) for POC and PON were meas-
ured using an elemental analyzer (FLASH 2000;
Thermo Scientific) coupled with an isotope ratio
mass spectrometer (Thermo Delta V Plus; Thermo
Scientific) connected via Conflo interface. The ana-
lytical precision for both POC and PON for duplicate
measurements was <10%, while δ13C and δ15N had
analytical precision of <0.1 and 0.3‰, respectively.
IAEA-N-2 ((NH4)2SO4; 20.3‰) for N and IAEA-CH-3
(cellulose, −24.7‰) for C were used as standards in
addition to the internal laboratory standards.

A high temperature oxidation method was adopted
to estimate POP (Murphy & Riley 1962). Potassium
persulfate (K2S2O8) was used as an oxidising agent
for digestion of the organic matter. Potassium di -
hydrogen phosphate (KH2PO4) standard was used
for the calibration and adenosine-5’-triphosphate
disodium (ATP-Na2) standard was used to estimate
the recovery percentage (80−85%). Samples were
digested in an autoclave at 1.055 kg cm–2 (15 psi) for
80 min in the presence of K2S2O8. Digested samples
were analysed spectrophotometrically (Shimadzu
Spectrophotometer UV-1800) at a wavelength of 880
nm. The detection limit of the measurements was 0.1
nmol l−1. TON and total organic P (TOP) were esti-
mated by subtracting inorganic matter from its total
elemental pool as [TN] − [DIN] and [TP] − [DIP],
respectively. DOC, DON, and DOP concentrations
were quantified as the difference between TOC and
POC, TON and PON, and TOP and POP, respec-
tively. This method has limitations for DOP measure-
ments in samples having <10% of total dissolved P.
Our samples, however, had slightly higher than 10%
DOP in the total dissolved P pool. Nonetheless, the
UV oxidation method is encouraged for the precise
measurement of DOP in such waters (Foreman et al.
2019). All ratios were estimated in units of mol mol−1.

We used published N2 fixation and C uptake rates
from a concurrent study performed on the same
cruise (Saxena et al. 2020) to assess the role of these

2 biogeochemical processes on C:N:P ratios. Pro-
cessed Automatic Weather Station data for wind
speed was provided by the Indian National Centre
for Ocean Information Services, India (Hari kumar et
al. 2013). To categorize the sample locations based
on sea surface height anomaly, daily meridional and
zonal geostrophic current (0.25° × 0.25°) along with
sea surface height anomaly (0.25° × 0.25°) data were
obtained from the Copernicus Marine Environmental
Monitoring Service (https://resources.marine.coper-
nicus.eu/; data retrieved on 17 August 2019). Cyclonic
eddies were identified by anticlockwise geostrophic
currents with <−0.2 m sea surface height anomaly.
Anticyclonic eddies (ACE) were identified by a
clockwise circulation with >0.2 m sea surface height
anomaly. Features having increased sea surface
height anomaly accompanied by lens shaped isopyc-
nals were characterized as a mode water eddy
(MWE) (Sweeney et al. 2003). Stations located along
the boundary area of cyclonic and ACEs were cate-
gorised as a boundary water eddy (BWE). Stations
with no significant sea surface height anomaly were
considered non-eddy (NE) stations. We sampled 4
ACE (1−4), 2 NE (1−2) and one each MWE and BWE
stations.

Linear regression analyses (significance level: α <
0.05) were performed among C, N, and P concentra-
tions in the different pools. One-way ANOVA was
used to test the significant (p < 0.05) difference in the
ratios of the different pools, using SigmaPlot 14.0
software. The Shapiro-Wilk test was performed to
check the normality of the data for ANOVA analysis.
Influence of environmental variables on the concen-
tration of elements and their elemental ratios in the 3
different pools was investigated using principal com-
ponent analysis (PCA) in R (R Core Team 2019). Ele-
mental ratios, δ13C, and δ15N of POM were consid-
ered as dependent variables while others, such as the
environmental parameters (temperature, salinity) and
individual elemental concentrations in DIM, DOM,
and POM were considered independent variables.
Pearson’s correlation coefficient at α < 0.05 was used
to estimate the strength of the relationships.

3.  RESULTS

3.1.  Hydrographic properties

Several eddy features were evident in the Bay dur-
ing the study period. We observed strong southwest-
erly winds (average wind speed ~11.5 m s−1 with a
maximum ~24.5 m s−1) throughout the sampling
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period. Sea surface temperature ranged from 28−
29°C, while sea surface salinity varied from 33−34
(Table 1, Fig. 2). Sea surface salinity was the highest
(34.39) at MWE and the lowest (32.78) at NE2. The
mixed layer was deep (77 m) at ACE3 and shallow
(41 m) at BWE. The nutricline varied between 10 m
(at MWE) and 66 m (at ACE4) (Table 1).

3.2.  Concentrations and ratios in the POM

To analyse the variability in elemental concentra-
tions and ratios in the water column, we categorised
our observations into 3 depth segments: (1) top layer
(surface to DCM) where primary production is high,
(2) subsurface layer (DCM to 300 m) where minerali-
sation is high, and (3) deep layer (300−2000 m). The

DCM varied between 25 m (MWE) and 78 m (ACE4).
For calculation purposes, we considered the DCM
depth in both the top and subsurface layers, and
 similarly 300 m depth in both the subsurface and
deep layers.

POC, PON, and POP concentrations decreased with
depth at all stations (Fig. S1 in the Supplement at
www.int-res.com/articles/suppl/m653p041_ supp. pdf).
The concentrations for POC, PON, and POP ranged
from 3.5−6.5, 0.3−0.9, and 0.01−0.03 μmol l−1, respec-
tively, in the top layer at the ACE stations. High POC
and POP concentrations were ob served at ACE2,
while POC and POP concentrations were low at
ACE4. Among the ACE locations, the highest PON
was at ACE1 and the lowest at ACE4. The MWE
showed high POC, PON, and POP concentrations in
the top layer compared to that at the other stations
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Serial Stn Lat Long Date of SST SSS Chl a Depth of Mixed Nutri- N2 fixation Primary
no. (°N) (°E) sampling (°C) (mg m−3) chl max layer cline (μmol N production

(dd-m-yyyy) (m) (m) (m) m−2 d−1) (mmol C
m−2 d−1)

1 ACE1 07°29.99’ 88°14.23’ 12-7-2018 28.8 34.19 0.29 ± 0.04 75 64 58 11 ± 5 30 ± 8
2 MWE 08°47.66’ 88°13.44’ 16-7-2018 28.1 34.39 0.89 ± 0.59 25 49 10 6 ± 6 87 ± 11
3 NE1 12°29.60’ 88°06.52’ 18-7-2018 28.8 33.11 0.38 ± 0.41 57 52 58 27 ± 16 39 ± 4
4 NE2 14°13.64’ 88°03.63’ 19-7-2018 28.5 32.78 0.23 ± 0.16 55 48 45 20 ± 4 24 ± 2
5 ACE2 16°30.49’ 88°00.42’ 24-7-2018 28.2 33.48 0.42 ± 0.21 47 43 51 4 ± 4 69 ± 5
6 ACE3 16°28.19’ 87°05.02’ 29-7-2018 28.7 33.44 0.20 ± 0.18 76 77 33 12 ± 8 58 ± 13
7 BWE 15°42.30’ 85°28.94’ 31-7-2018 28.7 33.62 0.23 ± 0.09 55 41 32 75 ± 98 81 ± 12
8 ACE4 14°10.33’ 85°05.32’ 02-8-2018 29.1 33.04 0.25 ± 0.28 78 66 66 41 ± 6 45 ± 4

Table 1. Details of environmental parameters at the 8 sampling locations during summer 2018 (error values: SD). See Fig. 1 for
station locations. SST: sea surface temperature; SSS: sea surface salinity. Chl a values are averaged over the top layer; column-

integrated (up to 75 m) N2 fixation rates and primary production data are taken from Saxena et al. (2020)

Fig. 2. Vertical section of (a) temperature, (b) salinity, (c) density, and (d) chl a. Section distance starts from Stn ACE1 (50 km) 
and ends at ACE4 (1500 km)
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(Table S1). Overall, POC, PON, and
POP constituted about 0.2, 7, and 4%
of their total elemental pools in the top
layer (Table 2).

The C:N, N:P, and C:P ratios in POM
were in every case higher than the
Redfield Ratio in the top layer and
increased further with depth (Figs. 3
& S2). Average POC:PON ratios in the
top layers (~9) showed little variability,
but showed deviations among stations
in the deeper layer (Table S1). In the
top layer, average POC:PON and
PON:POP ratios were higher at ACE
stations compared to most stations,
whereas the POC: POP ratio was
higher at NE stations in the subsurface
and deeper layers. Overall, the C:N:P
ratios in POM were 232:25:1, 457:35:1,
and 966:72:1 in the top, subsurface,
and deep layers, respectively (Fig. 4).

3.3.  Concentration and ratios 
in the DOM

The DOC concentrations were higher
in the top layer, with lower concentra-
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POC PON POP

Particulate organic pool
Top layer 4.87 ± 1.83 0.54 ± 0.26 0.022 ± 0.011

0.24 7.03 4.04
Subsurface water 2.37 ± 0.47 0.27 ± 0.14 0.008 ± 0.003

0.11 0.98 0.40
Deep water 2.10 ± 0.55 0.15 ± 0.04 0.003 ± 0.001

0.09 0.33 0.10

DOC DON DOP

Dissolved organic pool
Top layer 79.28 ± 10.67 6.40 ± 1.68 0.33 ± 0.09

3.93 83.35 59.69
Subsurface water 64.78 ± 8.26 9.38 ± 4.95 0.39 ± 0.15

2.95 34.45 20.11
Deep water 52.14 ± 11.05 11.95 ± 8.09 0.37 ± 0.18

2.23 25.82 11.99

DIC DIN DIP

Dissolved inorganic pool
Top layer 1933.75 ± 70.74 0.74 ± 0.70 0.20 ± 0.09

95.83 9.62 36.27
Subsurface water 2130.68 ± 80.41 17.57 ± 3.11 1.56 ± 0.22

96.94 64.57 79.49
Deep water 2283.48 ± 71.38 34.17 ± 1.98 2.74 ± 0.11

97.68 73.85 87.91

Table 2. Average concentration (μmol l−1, ±1 SD; 8 stations), and % contribu-
tion of particulate organic C, N, and P (POC, PON, POP, respectively) from 

each pool to their respective total pools

Fig. 3. Vertical section of (a) POC:PON, (b) PON:POP, (c) POC:POP, (d) DOC:DON, (e) DON:DOP, (f) DOC:DOP, (g) DIC:DIN,
(h) DIN:DIP, and (i) DIC:DIP ratios. Section distance starts from Stn ACE1 (50 km) and ends at ACE4 (1500 km). POC, PON,
POP: particulate organic C, N, P, respectively; DOC, DON, DOP: dissolved organic C, N, P, respectively; DIC, DIN, DIP: 

dissolved inorganic C, N, P, respectively
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tions measured in subsurface and deeper waters.
The opposite vertical trend was observed for DON
and DOP concentrations, with highest concentrations
found in subsurface and deep waters (Table 2). Aver-
age DOC, DON, and DOP concentrations were 76.9 ±
5.8, 5.3 ± 1.0, and 0.4 ± 0.1 μmol l−1, respectively, in
the top layer of the ACE stations (Table S1). At MWE,
the DOC, DON, and DOP concentrations were 76.0 ±
1.1, 8.4 ± 0.8, and 0.4 ± 0.5 μmol l−1, respectively, in
the top layer. The average concentrations of DOC,
DON, and DOP in the top layers were 93.4 ± 5.1, 8.2
± 0.3, and 0.3 ± 0.03 μmol l−1, respectively, at the NE
stations, while these values were 63.9 ± 2.9, 5.1 ± 0.9,
and 0.3 ± 0.1 μmol l−1, respectively, at the BWE. DOC,
DON, and DOP constituted about 4, 83, and 60%,
respectively, of their total elemental pools in the top
layers, while in the deeper waters their respective
contributions were 2, 26, and 12% (Table 2).

All the ratios in the DOM pool deviated greatly
from the Redfield Ratio. In the top layer, the average
DOC:DON ratio was higher at the ACE stations than
others (Table S1). In contrast, DOC:DOP and DON:
DOP ratios were the lowest in the top layer of the

ACE stations. The C:N and C:P ratios in DOM were
lower in the subsurface and deep waters than in the
top layer (Fig. 4). On average, C:N:P ratios in DOM
were 357:30:1, 268:37:1, and 245:66:1 in the top, sub-
surface, and deep waters, respectively (Fig. 4).

3.4.  Concentration and ratios in the 
dissolved inorganic pool

Average DIC, DIN, and DIP concentrations were
1910.3 ± 77.3, 0.3 ± 0.1, and 0.15 ± 0.04 μmol l−1,
respectively, in the top layer at the ACE stations
(Table S1). DIN and DIP concentrations were high in
the top layer at MWE and BWE (Table S1, Fig. S1).
The average DIC, DIN, and DIP concentrations were
1973.1 ± 6.4, 2.0 ± 0.5, and 0.38 ± 0.04 μmol l−1,
respectively, in the top layer at the MWE station. At
the NE stations, average DIC, DIN, and DIP concen-
trations in the top layer were higher than those
observed at the ACE stations but lower than that at
the MWE station. DIC, DIN, and DIP concentrations
were 1916.6 ± 29.4, 1.7 ± 2.5, and 0.3 ± 0.3 μmol l−1,
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Fig. 4. C:N, N:P, and C:P ratios in top layer, subsurface water, and deep water. Pink dotted lines: mean; blue (POM, DOM:
 particulate organic, dissolved organic matter, respectively) and green (DIM: dissolved inorganic matter) solid lines: median.
Black solid brackets: significantly different groups (p < 0.05) obtained from 1-way ANOVA; whiskers account for 10 and 90% 

of distribution; box accounts for 25 and 75%. Other abbreviations as in Fig. 3
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respectively, in the top layer of the BWE. DIC, DIN,
and DIP constituted about 96, 10 and 36%, respec-
tively, of their total elemental pools in the top layer
(Table 2). There was large spatial variation in DIC:
DIN and DIC:DIP ratios in the top and subsurface
layers across the stations, with higher values at the
ACE and NE stations (Table S1). However, DIC:DIN
and DIC:DIP ratios were similar in the deeper layers
across stations. The DIN:DIP ratios increased with
depth with no significant spatial variability (Fig. 3).
On average, the C:N:P ratios in dissolved inorganic
nutrients were 12717:3:1, 3126:10:1, and 840:12:1 in
the top, subsurface, and deep waters, respectively
(Fig. 4).

3.5.  Isotopic composition (δ15N and δ13C) of POM

The δ15N of POM was positive throughout and in -
creased with depth (Fig. 5). δ15N ranged from 0.9−
6.5‰ in the top, 1.2−9.4‰ in the subsurface, and
7−9.5‰ in the deep layers at the ACE stations. In the
top layer, average δ15N was 4.5 ± 0.7, 2.7 ± 0.4, and
3.6 ± 0.7‰ at the MWE, NE, and BWE stations,
respectively. The 15N enrichment in POM was higher
in the deep waters of ACE and NE than that at the

BWE station. Contrary to δ15N, δ13C decreased with
depth. It varied between −22.1 and −26.1‰ in the
ACE, and remained around −24.3 ± 0.1‰ in the top
layer of the NE and −24.1 ± 0.9‰ in the top layer of
the BWE stations. Comparatively less depleted 13C
signatures (−22.3 ± 0.8‰) in POM were observed at
the top waters of the MWE.

3.6.  Statistical analysis

The POC concentrations were positively correlated
with PON (r2 = 0.59, p < 0.05) and POP (r2 = 0.71, p <
0.05) (Fig. S3). In addition, PON concentrations were
positively correlated with POP concentrations (r2 =
0.66, p < 0.05). However, no significant correlations
were detected between DOC and DON, DON and
DOP, and DOC and DOP concentrations. The DIN
and DIP concentrations were strongly correlated (r2 =
0.99, p < 0.05) with a slope of 13.18 and negative
intercept — suggesting N nutrients were exhausted
before PO4

3−. Although the generation of DIP and
DIN through organic matter remineralisation is faster
than DIC in the ocean, DIC was strongly correlated
with DIN (r2 = 0.75, p < 0.05) and DIP (r2 = 0.78, p <
0.05).

Mar Ecol Prog Ser 653: 41–55, 202048

Fig. 5. Depth profile of δ13C (green dashed line) and δ15N (brown solid line) of POM at (a) ACE1, (b) MWE, (c) NE1, (d) NE2, 
(e) ACE2, (f) ACE3, (g) BWE, and (h) ACE4 stations. See Fig. 1 for abbreviations

A
ut

ho
r c

op
y



The PCA analysis showed that the first 2 principal
axes (PC) explained a total of ~60% of the variability,
with 49% accounted by PC1 (Fig. 6). PCA is used to
highlight the relationships between variables pro-
jected in a multidimensional space. We have shown
only PC1 and PC2, as they explain the most variabil-
ity among parameters. Each arrow in Fig. 6 repre-
sents a variable (as mentioned near the arrowheads);
the distance of the arrows from the origin and their
closeness to each other is proportional to correlation,
i.e. when arrows are far from the centre and close to
each other, they are positively correlated. When ar -
rows are symmetrically opposite, they are anti cor -
related. If the arrows are orthogonal, there is no cor-
relation. If the variables are close to the origin,
the relationship among these variables is inconclu-
sive. The vectors for POC:POP and PON:POP were
 identical, and anticorrelated with POP (r = −0.5).
DOC:DON was anticorrelated with DON (r = −0.7),
while DOC:DOP was anticorrelated with DOP (r =
−0.6). DIN:DIP was strongly correlated with both DIN
and DIP (r = 0.9). Likewise, DIC:DIN was anticorre-
lated with DIC and DIN (r = −0.7). DIC:DIP was anti-
correlated with DIC and DIP (r = −0.7). δ13C was pos-
itively correlated with POC (r = 0.7) and negatively
with DIC (r = −0.6), while δ15N was positively corre-
lated with DIN (r = 0.7). DOC:DOP and DON:DOP

were negatively correlated with DOP. DIC, DIN, and
DIP were negatively and positively correlated with in
situ temperature and salinity, respectively.

4.  DISCUSSION

This comprehensive study on the elemental stoi-
chiometry in the particulate and dissolved pools of
the poorly studied Bay revealed significant devia-
tions from the Redfield Ratio. This deviation is far
more pronounced in the deeper than the upper lay-
ers, with variable role of eddies and biogeochemical
processes such as N2 fixation. Below, we examine the
role of physical and biogeochemical influences in
shaping the ecological stoichiometry in the Bay.

4.1.  Role of environmental factors on C, N, 
and P concentrations and their ratios

Variations in elemental ratios are driven by envi-
ronmental factors such as temperature, salinity, and
nutrient concentrations (Körtzinger et al. 2001, Frig -
stad et al. 2011). Nutrients (DIN, DIP, and DIC) were
anticorrelated with temperature in our PCA analysis
(Fig. 6). This suggests that temperature might not
play a direct role in nutrient concentration. Rather, it
suggests that nutrient concentrations are high in
deep (cold) waters, and the influx of cold waters
through physical processes (such as eddies) might
enhance the nutrient concentration in the surface
Bay. Additionally, the positive correlation between
nutrients and salinity indicates that the nutrients are
of marine origin (Fig. 6). This is not surprising, as ter-
restrial nutrients are largely consumed within the
Bay’s estuarine ecosystem (Singh & Ramesh 2011,
Dutta et al. 2019). Corre lations between elemental
ratios and temperature and salinity should be inter-
preted with caution, as neither of these parameters
are known to directly affect the elemental ratios.
However, temperature changes affect nutrient up -
take and other biogeochemical processes (such as
respiration/decomposition), in turn  influencing ele-
mental stoichiometry (Lomas et al. 2002, Spackeen et
al. 2018). In addition, salinity gradients have been
shown to change N uptake rates in mesocosm exper-
iments (Kumar et al. 2018). In theory, temperature-
and salinity-related influences could be both physio-
logical and taxonomic (Barton & Yvon-Durocher
2019, Hernando et al. 2020). The N-uptake potential
is a part of physiological change of phytoplankton
driven by salinity and temperature (Kaur-Kahlon et
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Fig. 6. Principal component analysis of depth, temperature,
salinity, fluorescence, dissolved inorganic nutrients, particu-
late organic  matter (POM), dissolved organic matter, elemen-
tal ratios, δ13C, and δ15N of POM. Abbreviations as in Fig. 3
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al. 2016, Kumar et al. 2018, Barton & Yvon-Durocher
2019, Hernando et al. 2020). Since our data are spa-
tially distributed, these influences are likely to be
taxonomical. The anticorrelation of salinity with
POM concentrations could be attributed to the in -
crease in elemental uptake potential due to the
freshening of water at elevated temperatures (Her-
nando et al. 2020) or the relatively higher consump-
tion (mineralisation) of POM at higher salinities.
However, these mechanisms need to be experimen-
tally verified in the Bay.

The overlapping of the PON:POP and POC:POP
vectors suggest that these ratios are driven by varia-
tions in POP through similar processes, such as the
POP remineralisation. Additionally, that there was no
significant correlations of PON:POP and POC:POP
with PON and POC, respectively, confirms that the
variation of these ratios is due to oscillations in POP
(Fig. 6).

4.2.  Interlinking between the C:N:P ratios in 
POM, DOM, and DIM

The 3 elemental pools are interlinked among the
depth layers through processes such as POM export,
upward flux of nutrients, and exchange of DOM be -
tween the layers (Pujo-Pay et al. 2011). In the top
layer, DIM and DOM are diffused to POM through
biological consumption (Pujo-Pay et al. 2011). A part
of POM gets recycled to DOM by excretion or lyses of
organic matter; subsequently, DOM (and POM) re -
mineralises to DIM, completing the cycle. In the sub-
surface and deep layers, POM and DOM are largely
recycled to DIM (Krom et al. 2010).

The POC:PON ratio remains largely fixed in the
water column, while increase in the C:P and N:P
ratios in POM from the top to the subsurface layer
(Fig. 3) suggests the preferential remineralisation of
POP in sinking organic matter (Loh & Bauer 2000,
Letscher & Moore 2015). In addition, the strong cor-
relation (r = 0.5 and 0.7 and p < 0.05) of PON:POP
and POC:POP ratios with nutrients confirms the re -
cycling of POP (Fig. 6). During remineralisation,
preferential removal of 13C-enriched molecules such
as protein and nucleic acids, and retention of 13C-
depleted, lipid-rich residual organic matter results in
a de crease in δ13C (~1.6‰) of POM from the top layer
to the subsurface and deep waters (Fig. 5) (Post et al.
2007). On the other hand, removal of N-rich biomol-
ecules during degradation might have resulted in the
increase in δ15N (6‰ in the subsurface, and 7.5 ‰ in
the deep water) of POM (Macko et al. 1994).

The very low N:P ratio in nutrients (<<16:1) in the
top layer indicates N-stressed primary production in
the Bay. This is confirmed from the negative inter-
cept between DIN and DIP (Fig. S3e), which suggests
that DIN gets exhausted before DIP. Unlike the N:P
ratio, C:N and C:P ratios in DIM of the top layer were
a thousand and a hundred times higher than the Red-
field Ratio, respectively. The DIC pool is so large that
it cannot be easily exhausted, and is considered here
as unutilised. Therefore, when one looks at the
change in DIC:DIN or DIC:DIP over time (i.e. con-
sumption rate ratios), these ratios are likely to be
close to the Redfield Ratio. However, the ratios in a
static set of concentrations at a given time, as pre-
sented here, are roughly order of magnitudes higher.

The POM and DIM elemental proportions are pri-
marily controlled by nutrient uptake and reminerali-
sation processes. The remineralisation of POM to dis-
solved nutrients involves cycling through the DOM
pool (Johnson et al. 2013, Singh et al. 2015a). Thus,
DOM serves as an important intermediary link be -
tween POM and nutrients during remineralisation. In
the NOx-deficient top layer of the Bay, DON is an
order of magnitude higher than DIN (Fig. S1e,h),
suggesting that DON might be an alternative source
of bioavailable N for phytoplankton in these waters
(Church et al. 2002, Zubkov et al. 2003, Aldunate et
al. 2020). A previous study in the Bay suggested a
link between primary productivity and high DON
and DOP concentrations during the spring inter-
monsoon of 2018 (Sarma et al. 2019a), but no such
correlation was observed in our study (Fig. S4a,b).
The absence of a correlation between primary
 production and DON in our study might be explained
by the coupling between DON production and up -
take, leading to a lack of DON accumulation.
Another potential cause for no correlation may be the
seasonal change in phytoplankton community com-
position. DON-consuming phytoplankton (cyanobac-
teria) are most abundant during summer in oligo -
trophic oceans (Huisman et al. 2018). Given that urea
is one of the important sources of N for autotrophs in
the surface water of the Bay (Baer et al. 2019), a study
 focused on DON uptake in different seasons is desir-
able to quantify the importance of DON as an alter-
native N source for phytoplankton in the Bay.

Low concentrations of DON and DOP in the top
layer may be attributed to the photochemical break-
down of organic matter (Chari et al. 2016) and faster
remineralisation of DOP and DON over DOC (Church
et al. 2002, Letscher & Moore 2015, Chaichana et al.
2019). DOC is freshly produced in the sunlit surface
ocean via phytoplankton degradation and food web
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processes (grazing by microzooplankton), and the la-
bile components are generally rapidly consumed by
heterotrophic prokaryotes (Calleja et al. 2019). The
semi-labile portion of DOC escapes rapid microbial
consumption and accumulates in surface waters dur-
ing high stratification. The accumulation of DOC in
the top layer might have resulted in a high C:P ratio of
~357, and a C:N ratio ~13 in DOM (Ogawa & Tanoue
2003). Bacteria (mostly heterotrophs) use DOM as a
substrate (Granéli et al. 1999). They require more N
per unit biomass (C:N = 3−7; Nagata 1986) than
phytoplankton (C:N = 6−20). In the present study,
DOM had a high C:N ratio (13.2) in the top layer, thus
bacteria may retain the same DOM proportion. Bacte-
ria also consume more N than P compared to the Red-
field Ratio (Bertilsson et al. 2003), hence they might
also change DOM stoichiometry at the surface if
DOM concentrations are low.

Accumulated semi-labile DOM in the surface
water can be transported down by vertical mixing
and by ballasting of terrestrially derived lithogenic
matter in sinking particles, thereby increasing the
organic C export to the deep sea (Rixen et al. 2019).
This subducted fraction of DOC can be remineralised
by subsurface heterotrophic communities (Calleja et
al. 2019), thereby decreasing the DOC concentration
in the subsurface and deep waters. The depth profile
of DOC in this study is consistent with observations
elsewhere in tropical regions (Santinelli et al. 2006).
DON is more resistant to remineralisation than DOP.
The downward transport of refractory DON (>50%
of DON; Roussenov et al. 2006, Vidal et al. 2018)
results in an enhanced accumulation below the sur-
face layer of the ocean. Overall, this may have re -
sulted in decreased C:N and C:P, along with in -
creased N:P ratio in DOM in the subsurface and deep
waters. These observations are consistent with the
negative correlation of DON:DOP with DOP (Fig. 6).
The average C:N:P ratio in the DOM in the top layer
is 357:30:1 in the Bay, lower than the global average
640:44:1 for bulk DOM in the surface ocean (Letscher
& Moore 2015). However, the DON:DOP ratio in the
top 100 m ranged from 5−237 among stations, higher
than that (1.1−16.6) reported for the coastal Bay dur-
ing spring 2018 (Sarma et al. 2019a).

Usually δ13C in POC varies from −24 to −18‰ (Fry &
Sherr 1989, Middelburg & Nieuwenhuize 1998) and
δ15N in PON from 5−8‰ in marine phytoplankton
(Minagawa et al. 2001). Although the Bay receives
enormous terrestrial influx (33−51.2 g m−2 yr−1) (It-
tekkot et al. 1991, Unger et al. 2003), the mean C:N
ratio (~10), δ13C (−21.5 to −26.2‰, average −24.6 ±
1.2‰), and δ15N (0.9−8.3‰, average 4.4 ± 1.9‰) of

POM in the top 100 m in our study indicates that the
POM in the surface layer of the Bay is largely derived
from in situ production rather than external supply.

4.3.  The role of strong winds and eddies 
on the C:N:P ratios

Overall, eddies showed a mixed effect on the C:N:P
ratios in the top layer. Strong southwesterly winds
(up to 24.5 m s−1) and eddies were identified in our
sampling area during the study period. A relatively
deep mixed layer (41−77 m) and shallow nutricline
(10−66 m) (Table S2) were observed during the
 sampling period, which might be due to the strong
winds and eddy-induced mixing of the water col-
umn. Although there were differences in DIM and
POM concentrations, little variability in C:N:P ratios
of POM between eddy and non-eddy stations was
observed. DOC and DON concentrations were lower
at the ACE compared to that at the NE stations, while
DOP was slightly higher at the ACE stations in the
top layer. Due to this difference, the DOC:DOP and
DON:DOP ratios were lower in the ACE locations
compared to the NE locations. A study conducted to
understand the influence of eddies on nutrients and
POM during spring 2018 (Sarma et al. 2019b)
reported POC and PON concentrations higher than
our study, but the C:N ratio in POM remained the
same. Similarly, primary production estimates re -
ported in a concurrent study (288−1044 mg C m−2 d−1;
Saxena et al. 2020) are consistent with that (758 ±
220 mg C m−2 d−1) reported by Sarma et al. (2019a).
These primary productivity estimates are much
higher than an earlier estimate of primary productiv-
ity conducted during N-stressed conditions in April
2016 (primary productivity: 3−7 nmol C l−1 h−1; N:P
flux ratio <14; Baer et al. 2019). Overall, these studies
suggest a role of eddies in supplying nutrients to the
photic layer and consequently increasing primary
production leading to an elevated elemental ratio in
POM (Sarma et al. 2019a,b). On an average, the
C:N:P ratio in POM in the top layer is higher than
reported earlier in the Bay during spring inter-mon-
soon (Garcia et al. 2018) (Table S2).

4.4.  Impact of biogeochemical processes 
on the C:N:P ratio

Marine biogeochemical processes have the poten-
tial to change the plankton and nutrient elemental
ratios, and vice versa (Klausmeier et al. 2004b, Mills
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& Arrigo 2010, Jabir et al. 2020). Despite PO4
3− ex -

cess (N:P ~3) in the top layer with adequate dry dep-
osition flux of Fe (0.02−1.2 μmol m−2 d−1; Srinivas &
Sarin 2013), low N2 fixation rates were observed in
the Bay (Saxena et al. 2020). Assuming photoauto-
trophs require 1 mol N to fix 6.6 mol C (Redfield
1958, Orcutt et al. 2001), the contribution of N2

 fixation to phototrophic C fixation remains below 1%
(Saxena et al. 2020). Apart from the low N2 fixation in
surface waters during our study, heterotrophic N2

 fixation rates are below detection limits in the oxy-
gen minimum zone of the Bay (Löscher et al. 2020).
Such low rates of N2 fixation are unlikely to change
the C:N:P ratios. No correlation between N2 fixation
rates and different elemental ratios confirms the
same (Fig. S4e,f).

The observed PON:POP ratio (~25) could be attrib-
uted to the presence of smaller non-diazotrophic
cyanobacteria, such as Prochlorococcus and Syne-
chococcus, which are ubiquitous in the surface
waters (Bertilsson et al. 2003, Martiny et al. 2013a,
Baer et al. 2019). Prochlorococcus tend to be domi-
nant in high-temperature and low-nutrient waters.

The N:P ratios in nutrients act as a proxy for bio-
geochemical processes leading to N loss (such as
denitrification and anammox) in the subsurface low
oxygenated waters. The N:P ratio of dissolved inor-
ganic nutrients in the water column (<16:1) suggests
the occurrence of N loss processes in the Bay, with
low but detectable rates of anammox (5.5 nM N d−1)
and denitrification (0.9 nM N d−1) measured in the
oxygen minimum zone (Bristow et al. 2017). How-
ever, an extensive study is required to understand
the effect of N loss processes of this magnitude on
nutrient stoichiometry of the Bay.

Considering the observed deviations in the C:N:P
ratio from the Redfield Ratio in the dissolved and par-
ticulate matter pools, we examined whether the Bay
supports the nutrient supply hypothesis for tropical
ecosystems proposed by Rhee (1978). This hypothe-
sis states that the absolute concentration of nutrients
such as DIN and DIP, rather than their ratio, deter-
mines the POM stoichiometry. Based on this hypoth-
esis, expected C:N:P ratios in oligo trophic basins are
higher than the Redfield Ratio, and the reverse holds
for nutrient-rich basins (Galbraith & Martiny 2015).
This happens because slow growing cyanobacteria,
with a high N:P ratio in their biomass/nutrient
uptake requirements, grow in oligotrophic waters
whereas fast growing microorganisms (with a low
N:P ratio) flourish in nutrient-rich waters (Singh et al.
2017, Sharoni & Halevy 2020). Poor supply of nutri-
ents due to stratification makes the Bay oligotrophic

during most seasons (Prasanna Kumar et al. 2010, Mc
Creary et al. 2013). We observed that the C:N, C:P,
and N:P ratios in the POM at surface waters are
higher than the Redfield Ratio, and this seems to favour
the nutrient supply hypothesis for tropical systems.

The average C:N:P ratio (232:25:1) of POM in the
top layers of the Bay is similar to observations in
other tropical oceans, such as the subtropical North
Atlantic Ocean (210:36:1) (Singh et al. 2015a) and
subtropical North Pacific Ocean (172:25:1) (Martiny
et al. 2013a). The subtropical North Atlantic is con-
sidered a P-limited (DIN:DIP ~30) basin, and exhibits
a high C:N:P ratio in the POM (Wu et al. 2000). How-
ever, the Bay and the subtropical North Pacific
Ocean are N-limited, and both possess high N:P
ratios (25) in POM and low N:P ratios (<16) in subsur-
face nutrients. Our overall analysis suggests that the
nutrient availability in the Bay is likely governed by
N loss processes (such as denitrification), whereas N
gain processes (such as N2 fixation) exert control in
the subtropical North Atlantic Ocean (Deutsch &
Weber 2012).

5.  CONCLUSIONS

We presented a comprehensive study of C:N:P
ratios in the inorganic and organic pools of the Bay
water column covering depths from the surface to
2000 m. Overall, C:N:P ratios deviated greatly from
the Redfield Ratio (C:N:P = 106:16:1) in all the bio-
geochemical pools and at all depths. In the POM,
C:N:P ratios were 232:25:1, 457:35:1 and 966:72:1 in
the top, subsurface, and deep water layers, re -
spectively. Our estimated C:N:P ratios in POM are
comparable to that observed in other tropical basins
such as the North Pacific Ocean and North Atlantic
Ocean. On the other hand, the C:N:P ratio in the
DOM in the top layer (357:30:1) is lower than the
global average of 640:44:1 for bulk DOM in surface
water.

Despite being a peak summer monsoon period,
 re latively low concentrations of nutrients with a low
N:P ratio suggest that primary production was lim-
ited by bioavailable N. Concurrently estimated low
N2 fixation rates suggest that diazotrophic organisms
had a minimal impact on nutrient or POM stoichiom-
etry. Instead, a low supply of nutrients governed the
observed higher N:P ratio in the POM. The POC:
PON ratio and δ13C of POM in the top 100 m of the
Bay indicate that the POM was mostly derived from
in situ processes, and that there is a relatively small
influence of terrestrial influx in the open Bay. Over-
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all, the higher C:N:P ratio than the Redfield Ratio in
POM in surface waters supports the nutrient supply
hypothesis for tropical oceans with low inorganic
nutrient concentrations. The low N:P ratio in nutri-
ents in the subsurface waters suggests a potential
role of N loss processes in regulating nutrient stoi-
chiometry.

Eddies have mixed effects on C:N:P ratios in the
top layer. DIM concentrations are lower in ACE loca-
tions compared to that in the NE locations. Con-
versely, POM concentrations are higher in ACE loca-
tions compared to that in the NE locations. However,
there is not much difference in the C:N:P ratios of
DIM and POM at eddy and non-eddy stations. This
study provides a detailed insight of elemental dy -
namics in organic and inorganic pools during the
summer monsoon in the Bay, which can be used in
biogeochemical models for this region.
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Abstract Recent observations and numerical simu-

lations have profoundly established that the C:N:P

ratios in the ocean deviate from the canonical Redfield

Ratio (106:16:1). Physical and biogeochemical pro-

cesses have been hypothesized to be responsible for

this deviation. However, a paucity of concurrent

observations on biogeochemical and physical param-

eters have barred us to understand their exact role on

the C:N:P ratios. For this purpose, we have sampled

the Bay of Bengal for its C, N, and P contents in the

organic and inorganic pools from 5 to 2000 m depth at

eight stations (five coastal and three open ocean)

during boreal spring 2019. Mesoscale anticyclonic

eddies were identified at two of the sampling stations,

where nutrient concentrations were lower in the top

layer (5 m to the depth of chlorophyll maximum)

compared to those at the non-eddy stations. Mean

(NO3
-?NO2

-):PO4
3- ratio was lower at the anticy-

clonic eddy stations compared to that at the non-eddy

stations in the top layer. Yet C:N:P ratios in the

particulate and dissolved organic matter in the top

layer were the same at anticyclonic eddy and non-eddy

stations. Overall the mean C:N:P ratios were 249:39:1

in particulate organic matter and 2338:146:1 in

dissolved organic matter in the top layer. Biological

N2 fixation was not a driver in controlling the N:P ratio

of the export flux and the subsurface water nutrient

ratios during spring. Although the Bay of Bengal

receives large riverine influx, its influence in changing

the C:N:P ratios was small during this study.

Keywords Northern Indian Ocean � Elemental

proportion �Mesoscale eddy � Picoplankton � Redfield
Ratio � Dissolved organic matter

Introduction

Marine phytoplankton play a crucial role in regulating

the carbon dioxide concentration in the Earth’s

atmosphere (Farquhar et al. 2000). The growth and

community structure of phytoplankton are mainly

controlled by the ambient physicochemical factors
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such as temperature and nutrient ratios (Geider and La

Roche 2002). In fact, nutrient ratios are key to

phytoplankton growth (Klausmeier et al. 2004). A

similarity in the elemental proportion of carbon:nitro-

gen:phosphorus (C:N:P) of plankton and macronutri-

ents in the ocean was first discussed by Alfred C.

Redfield (Redfield 1934), who proposed that the

average elemental proportion of plankton and the

deep water nutrients remain statistically uniform at

106 C:16 N:1P. Thereafter this ratio became a corner-

stone of ocean biogeochemistry and referred as the

Redfield Ratio (Redfield 1934, 1958). However,

phytoplankton physiology model studies established

that the N:P ratio is not universally constant at 16

rather it merely reflects the average stoichiometry of

phytoplankton in ocean. The ratio can vary over time

in response to changes in the ecological balance

between exponential growth and equilibrium phases,

and with the availability N and P nutrients (Klaus-

meier et al. 2004). It is shown that the nutrient

availability in the sunlit ocean governs the phyto-

plankton distribution and latitudinal patterns of ele-

mental proportions of particulate organic matter

(POM) in the global ocean (Martiny et al. 2013a, b;

Tanioka et al. 2020).

Until now, several C:N:P stoichiometric studies

have been performed in the Atlantic Ocean, the Pacific

Ocean, and southern parts of the Indian Ocean

(Martiny et al. 2013a, b; Singh et al. 2015a; Garcia

et al. 2018). However, only a couple of such studies

have been reported from the Bay of Bengal (hereafter

the Bay) (Garcia et al. 2018; Sahoo et al. 2020). The

Bay, situated in the northeastern Indian Ocean,

receives a high freshwater influx (1.6 9 1012 m3

year- 1) (Subramanian 1993). The basin experiences

seasonal reversal of monsoonal winds, cyclones and

mesoscale eddies (Mukherjee et al. 2019). These

processes might affect the elemental proportions of the

Bay (Sahoo et al. 2020).

Cyclonic and anticyclonic mesoscale (10–500 km

diameter) eddies are a major part of the water

circulation in the Bay. Cyclonic eddies are the areas

of divergence which are associated with upwelling of

nutrient-rich subsurface water, and anticyclonic

eddies (ACE) are the convergence areas where

downwelling dominates. Cyclonic eddies increase

primary productivity, while low nutrient concentra-

tions result in low primary productivity at ACE

regions (Singh et al. 2015b; Sarma et al. 2019).

Phytoplankton community composition is different in

the different type of eddies, e.g., microplankton

flourish in nutrient rich cyclonic eddies while

picoplankton dominate in the nutrient depleted ACEs

(Sarma et al. 2020a). Apparently, 50–60% of phyto-

plankton abundance in the Bay is of the picoplankton

alone, while nanoplankton are the second most

abundant species (Sarma et al. 2020a). At ACE

regions, picoplankton constitute a major fraction of

phytoplankton owing to their hypothesized potential

to consume dissolved organic nutrients in depleted

inorganic nutrient regimes (Sarma et al. 2020a).

In a previous study in the Bay during summer,

monsoonal winds and mesoscale eddies were sug-

gested to have a mixed effect on the elemental

proportions of organic and nutrient pools in the top

layer (Sahoo et al. 2020). Nutrients were lower in

ACEs compared to those in the non-eddy (NE)

stations. On the contrary, POM concentrations were

higher in ACEs compared to that in the NE stations.

However, there was not much difference in the

elemental ratios in nutrients and POM at eddy and

NE stations. During spring, the surface Bay experi-

ences high temperature and salinity owing to heat gain

by the sea and excess evaporation, respectively

(Narvekar and Kumar 2006). Weaker winds and

prolonged ACEs hinder the supply of subsurface

nutrients to the euphotic zone, which leads to ultra-

oligotrophy in the Bay (Jyothibabu et al. 2021). These

changing environmental conditions can affect the

phytoplankton growth and thereby their elemental

stoichiometry during spring. For example, increased

temperature and the reduced availability of nutrients

lead to increase in C:N and C:P ratios in POM

(Matsumoto et al. 2020).

Three reasons spurred us to revisit the Bay to study

the elemental dynamics during spring. First, in a

previous study during summer, we sampled only open

ocean stations where the influence of river water was

negligible (Sahoo et al. 2020). In this study, we have

sampled coastal as well as open ocean regions in the

Bay. We hypothesize that the elemental proportions,

particularly in the coastal Bay, might have been

influenced by a combination of processes including

river water intrusion in addition to in situ primary

production and remineralisation. Second, during

spring the Bay experiences severe N limitation than

summer (Narvekar and Kumar 2014). The changing

environmental conditions and associated
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biogeochemical processes such as N2 fixation might

also affect the elemental stoichiometry. Third, ACEs

prevail dominantly during spring (Jyothibabu et al.

2021). Furthermore, the age of an eddy is another

aspect to look at in biological context as a time lag

always exists between ocean physical process and its

manifestation on productivity. Prolonged ACEs might

affect the organic and nutrient pools in the Bay. To test

the above hypotheses, we conducted this study in the

Bay during April 2019.

Methods

We participated in ORV Sindhu Sankalp expedition

(SSK 127) that cruised from Chennai (13� N, 80.3� E)
along the eastern coast of India, turned to the open

ocean at* 19.9� N and moved southwards in the Bay

from 5 April to 15 April 2019 (Fig. 1a and b). We

sampled eight stations during this expedition: five

stations - NE1, ACE1, NE2, NE3, and NE4 situated

along the east coast of India- were considered as the

coastal stations, and the rest including NE5, NE6, and

ACE2 were considered as the open ocean stations.

Water samples were collected using a Sea-Bird CTD

rosette sampler at a maximum of 10 different depths

(5, 25, 50, 85, 200, 300, 500, 1000, 1500, and 2000 m).

Water temperature, salinity and dissolved oxygen data

were obtained from calibrated sensors mounted on the

CTD rosette sampler. Mixed layer depth was calcu-

lated as 0.2 �C decrease from the water temperature at

10 m depth (de Boyer Montégut 2004). Apparent

oxygen utilisation was calculated as the difference

between the measured dissolved oxygen concentration

and its temperature and salinity dependent saturation

concentration (Murray and Riley 1969). For Chloro-

phyll a (Chl a) concentration, 1 L seawater samples

were filtered onto Whatman glass microfiber filters

(GF/F, 25 mm diameter, 0.7 lm pore size) followed

by extraction in 90% acetone and kept for 24 h in a

refrigerator. The Chl a concentrations were measured

in HPLC (Agilent, USA).

TOC measurements were performed using high

temperature catalytic oxidation method in Shimadzu

TOC analyser (TOC-L-CPH, Japan) and TN measure-

ments were performed in Shimadzu TN analyser

(TNM-L-CPH, Japan) as detailed in Sahoo et al.

(2020). The accuracy of TOC and TN results was

ensured by routinely measuring certified reference

material (Batch 18, Lot#08–18 for deep seawater)

provided by the University of Miami, USA (Hansell

2005). The absolute deviation of measured values was

maintained within 5% of the standard value of

reference material during the entire analysis. The

coefficient of variation was 2% for TOC and TN

measurements.

Nutrients (nitrate (NO3
-), nitrite (NO2

-), and

phosphate (PO4
3-)) were measured using autoana-

lyzer (SKALAR, The Netherlands). Reliability of the

nutrients data was obtained daily by measuring

certified reference material: MOOS-3 from National

Research Council, Canada (Clancy et al. 2014). The

detection limits for NOx (NO3
- ? NO2

-) and PO4
3-

were 0.16 and 0.02 lM, respectively. NOx and PO4
3-

are referred to as dissolved inorganic nitrogen (DIN)

and dissolved inorganic phosphorous (DIP), respec-

tively. Nutricline was considered as the depth where

DIN concentration increased to 1 lM (Richardson and

Bendtsen 2017). The vertical diffusive fluxes of DIN

from subsurface waters were calculated following

King and Devol (1979) and the vertical diffusion

coefficient used in this calculation was taken from

Nozaki and Alibo (2003). Dissolved inorganic carbon

(DIC) was measured using Coulometer (UIC’s Model

5012, USA) with an analytical precision of ± 2%.

d13C values of DIC were measured using GasBench II

attached to an Isotope Ratio Mass Spectrometer

(Thermo Scientific MAT 253) with a precision better

than 0.10 %.

Samples for particulate organic C (POC), N (PON)

and P (POP) were collected by filtering seawater on

pre-combusted (at 400 �C for 4 h) Whatman glass

microfiber filters (GF/F, 25 mm diameter, 0.7 lm pore

size). POC and PON concentrations were measured

using an Elemental Analyzer (FLASH 2000; Thermo

Scientific) coupled with an Isotope Ratio Mass

Spectrometer (Delta V Plus; Thermo Scientific) con-

nected via conflo interface. IAEA-N-2 ((NH4)2SO4)

for N and IAEA-CH-3 (Cellulose) for C were used as

standards in addition to the internal laboratory stan-

dards. The analytical precision for both POC and PON

measurements were\ 10%.

High temperature oxidation method was adopted to

estimate total P (TP) and POP (Murphy and Riley

1962). Potassium dihydrogen phosphate (KH2PO4)

standard was used for calibration and Adenosine-50-
Triphosphate Disodium (ATP-Na2) standard was used

to estimate recovery percentage. Samples were
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digested at 15 psi for 80 min, followed by their

analysis in Shimadzu Spectrophotometer (UV-1800,

Japan). The detection limit of the measurements was

0.1 nM. Total organic N (TON) and total organic P

(TOP) were estimated by subtracting inorganic matter

from its total elemental pool such as [TN]–[DIN] and

[TP]–[DIP], respectively. Dissolved organic C (DOC),

N (DON), and P (DOP) concentrations were quantified

as the difference between TOC and POC, TON and

PON and TOP and POP, respectively.

Abundances of picoplankton, such as Prochloro-

coccus and Synechococcus, were obtained from Sax-

ena et al. (2021) (under preparation). The biomass of

Prochlorococcus and Synechococcus was calculated

bymultiplying their abundances (cell counts L-1) with

their carbon content per cell values. The carbon

content per cell values of the euphotic zone

Prochlorococcus and Synechococcus were taken from

Casey et al. (2013). Further, the contribution of

Prochlorococcus and Synechococcus biomass to the

total POC pool was calculated.

Several eddy features were identified based on the

sea surface height anomaly and geostrophic current

during the sampling period. The sea surface height

anomaly along with geostrophic current (0.25� 9

0.25�) data was obtained from the Copernicus Marine

Environmental Monitoring Service (https://resources.

marine.copernicus.eu/; data retrieved on 24 February

2020). Cyclonic eddies were identified by anticlock-

wise geostrophic currents with\- 0.2 m sea surface

height anomaly. ACEs were identified by the clock-

wise circulation with [ 0.2 m sea surface height

anomaly. We sampled two ACE stations and cate-

gorised them as ACE1 and ACE2, while no significant

Fig. 1 Geostrophic currents overlaid on the sea surface height

anomaly (m) during a 5–10 April, and b 10–14 April 2019. The

surface water c DIN and d DIP concentrations. The coastal

(NE1, ACE1, NE2, NE3, and NE4) and open ocean (NE5, NE6,

and ACE2) stations are shown with filled and open circles,

respectively. BDL below detection limit
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sea surface height anomaly values at the rest six sta-

tions led to categorize them as NE stations (NE1–NE6;

Fig. 1; Table 1).

We performed Principal Component Analysis

(PCA) between elemental concentrations and envi-

ronmental variables. Pearson’s correlation coefficient

at a\ 0.05 was used to estimate the strength of the

relationships.

The statistical significance of the differences

between the mean values of a parameter (elemental

concentrations and ratios in nutrients and organic

matter) measured at coastal and open ocean stations

were tested following Chao (1974). Two mean values

(say l1 and l2) are considered to be significantly

different from each other at a\ 0.05, if

l1 � l2 � 1:645

ffiffiffiffiffiffiffiffiffiffiffiffiffi

r2
1

n1
þ r2

2

n2

q

, where r1 and r2 are the

standard deviations around the mean values l1 and l2
calculated from data points n1 and n2, respectively.

Results

Hydrological characteristics

Sea surface temperature varied from 27.6 to 30.3 �C
with warmer (C 30 �C) waters at southeastern stations
(NE5, NE6, and ACE2; Table 1). Sea surface salinity

varied from 32.1 to 34.3 with the highest value at NE1.

The mixed layer depth was shallow (12 m) at NE1 and

NE5 and deep (34 m) at NE4. Nutricline was deeper

([ 80 m) at ACE1 and ACE2 compared to NE stations

where it reached to 56 m. Surface Chl a concentration

varied from 0.08 to 0.27 lg L- 1 with the highest at

NE1 and the lowest at ACE2. The depth of chlorophyll

maximum varied from 22 to 87 m, deeper at ACE1,

NE6, and ACE2 and shallower at NE1. The POC:Chl

a (weight:weight) varied from 67 to 667 in the top

layer at the sampling stations (Table 1). The vertical

diffusive flux of DIN varied from 1.1 to 8.6 mmol N

m- 2 d- 1, the highest flux observed at NE2 and the

lowest at NE5 (Table 2).

Biogeochemical parameters

Based on the biogeochemical processes, we divide our

analysis into three different depth segments: top,

Table 1 Environmental parameters at the eight sampling locations during spring 2019

Station Latitude

(�N)
Longitude

(�E)
Date of

sampling

(dd.mm.yyyy)

SST

(�C)
SSS MLD

(m)

DCM

(m)

Nutricline

(m)

Chl

a (lg
L- 1)a

d13C of

DIC (%)b
POC:Chl

ab

NE1 13� 05.580 80� 73.210 05.04.2019 29.1 34.3 12 22 8 0.27 – 80–508

ACE1 16� 30.090 83� 50.880 07.04.2019 29.0 33.2 30 83 84 0.10 0.2 to 0.4 67–458

NE2 18� 32.610 85� 46.120 08.04.2019 27.6 33.1 20 55 41 0.21 - 0.6 to

0.2

82–376

NE3 19� 49.840 87� 00.130 09.04.2019 28.4 33.0 24 69 39 0.16 - 0.5 to

0.3

82–249

NE4 19� 49.910 88� 59.110 10.04.2019 28.0 32.8 34 71 56 0.19 - 0.3 to

0.4

81–269

NE5 14� 26.690 87� 23.850 12.04.2019 30.0 32.1 12 61 53 0.24 - 0.2 to

- 0.001

132–667

NE6 13� 05.470 87� 00.080 13.04.2019 30.3 32.3 20 87 54 0.10 - 0.4 to

0.3

332

ACE2 13� 04.490 84� 13.420 14.04.2019 30.2 33.3 27 86 87 0.08 0.1 to 0.2 85–457

SST-sea surface temperature, SSS-sea surface salinity, MLD-mixed layer depth, DCM-depth of chlorophyll maximum, DIC-

dissolved inorganic carbon, POC-particulate organic carbon, Chl-Chlorophyll
aSurface (5 m) Chl a values are presented, bd13C of DIC and POC:Chl a values in the top layer. Due to logistic issues, samples for

d13C of DIC could not be collected at NE1
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subsurface, and deep layer. The top layer extends from

the surface to the depth of chlorophyll maximum

where maximum photosynthetic activity prevails. The

successive subsurface layer is considered from the

depth of chlorophyll maximum to\ 360 m, which is

characterised by low dissolved oxygen concentration

due to respiration of sinking organic matter from the

top layer. The layer below the subsurface layer to the

deepest sampling depth is classified as deep layer,

which is affected by the mixing of various water

masses and remains rich in nutrients.

Dissolved inorganic pool

In the top layer, concentrations of DIN and DIP were

low; particularly DIN concentration was below the

detection limit in surface water at all the stations but

NE4 (Fig. 1c and d). The DIN concentration was

below the detection limit up to 51 m at NE1, NE2,

NE3, NE5, and NE6 and continued to be below the

detection limit up to 85 m at ACE1 and ACE2

(Fig. 2). Overall, the DIC, DIN, and DIP concentra-

tions ranged from 1591 to 2155 lM, below detection

limit to 12.5 lM, and 0.2 to 1.2 lM, respectively in the

top layer (Fig. 2). At ACE1 and ACE2, DIN (below

detection limit at both the stations) and DIP (mean

DIP: 0.2 ± 0.04 lM at ACE1 and 0.2 ± 0.1 lM at

ACE2; standard deviation values are ± 1r) concen-
trations were lower than that at the NE stations (mean

DIN: 5.5 ± 4.9 lM and DIP: 0.4 ± 0.3 lM) in the top

layer. Below this layer, we observed a steep increase in

DIN and DIP concentrations. In the subsurface layer,

DIC, DIN, and DIP concentrations ranged from 1840

to 2284 lM, below detection limit to 34.1 lM, and 0.2

to 2.7 lM, respectively. These concentrations ranged

from 2042 to 2499 lM, 33.5 to 38.7 lM, and 2.6 to 3.1

lM, respectively in the deep layer. The subsurface

layer DIC concentration was relatively low at NE4,

NE5, NE6 and ACE2. Low deep layer DIC concen-

tration was observed at NE4 and ACE2.

Mean DIC:DIN, DIC:DIP, and DIN:DIP ratios

were 3458 ± 4251 (3362 ± 4643 at coastal and 1133

at open ocean), 8437 ± 3339 (8288 ± 3284 at coastal

and 9934 ± 2205 at open ocean), and 8.9 ± 2.5

(7.1 ± 4.1 at coastal and 7.9 ± 4.3 at open ocean),

respectively in the top layer (Fig. 3). As the top layer

DIN concentration was below detection limit at all the

stations except at NE1 and NE4, the DIN:DIP ratios

were calculated only for NE1 (8.3 ± 1.8) and NE4

(3.7 ± 3.6). We observed a sharp increase in DIN:DIP

ratio in the subsurface water followed by a gradual

increase in the deep layer. In the subsurface layer, the

mean ratios were 173 ± 255 (144 ± 127 at coastal

and 222 ± 402 at open ocean), 2064 ± 2184

(2016 ± 2276 at coastal and 2223 ± 2570 at open

ocean), and 10.9 ± 1.9 (10.8 ± 1.6 at coastal and

11.1 ± 2.5 at open ocean) for DIC:DIN, DIC:DIP, and

DIN:DIP ratios, respectively. In the deep layer, the

mean DIC:DIN, DIC:DIP, and DIN:DIP ratios were

62.0 ± 3.3 (63.0 ± 2.9 at coastal and 61.5 ± 3.5 at

open ocean), 786 ± 53 (797 ± 41 at coastal and

786 ± 52 at open ocean), 13.0 ± 0.4 (12.6 ± 0.5 at

Table 2 Vertical diffusive flux of DIN, N2 fixation and its contribution in N:P ratios of export flux from the top layer during spring

2019

Station Vertical diffusive flux of DIN (mmol N m- 2 d- 1) N2 fixation

(lmol N m- 2 d- 1)a
Contribution of N2 fixation N:P export flux (%)

NE1 1.7 – –

ACE1 4.3 16.5 0.4

NE2 8.6 6.8 0.1

NE3 4.1 6.7 0.2

NE4 2.1 5.5 0.3

NE5 1.1 BDL –

NE6 3.0 5.3 0.2

ACE2 4.1 – –

DIN-dissolved inorganic nitrogen and BDL-below detection limit
aColumn integrated N2 fixation rates are taken from Saxena et al. (2021) (under preparation). N2 fixation experiment was not

performed at NE1 and ACE2 due to logistic issues
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coastal and 12.8 ± 0.3 at open ocean), respectively.

Overall, the DIN:DIP ratios were less than the

Redfield Ratio throughout the column.

Particulate organic matter

The elemental concentrations in POM decreased with

depth at all the stations (Fig. 2). POC, PON, and POP

concentrations ranged from 2.1 to 12.3 lM, 0.3 to 2.0

lM, and 0.01 to 0.1 lM, respectively, in the top layer.

The coastal stations exhibited higher concentrations

(highest at NE1) than the open ocean stations. In the

subsurface layer, POC, PON, and POP concentrations

ranged from 0.7 to 3.7 lM, 0.1 to 1.0 lM, and 0.002 to

0.02 lM, respectively. The concentrations decreased

further in the deep layer. The POC, PON, and POP

concentrations ranged from 0.6 to 2.1 lM, 0.1 to 0.3

lM, and 0.002 to 0.005 lM, respectively in the deep

layer.

All the elemental ratios in POM deviated from the

Redfield Ratio. Mean POC:PON ratio was 7.1 ± 2.2

(7.6 ± 2.5 at coastal and 6.6 ± 1.0 at open ocean) in

the top layer, close to the Redfield Ratio (6.6).

POC:POP, and PON:POP ratios were 249 ± 58

(245 ± 62 at coastal and 247 ± 48 at open ocean),

and 38.6 ± 17.6 (35.1 ± 14.0 at coastal and

37.5 ± 4.7 at open ocean), respectively in the top

layer (Fig. 3). Variability in the elemental ratios in the

top layer was more in the coastal Bay than in the open

ocean stations. In the subsurface layer, the mean ratios

increased to 8.0 ± 4.0 (7.8 ± 3.9 at coastal and

8.2 ± 4.2 at open ocean), 323 ± 112 (327 ± 91 at

coastal and 318 ± 141 at open ocean), and

47.5 ± 21.8 (50.6 ± 26.6 at coastal and 41.3 ± 10.0

at the open ocean) for POC:PON, POC:POP, and

PON:POP, respectively. However, the variation in the

mean elemental ratios in the deep layer was less than

that in the subsurface layer. The mean POC:PON,

POC:POP, and PON:POP ratios were 10.3 ± 3.4

(9.7 ± 3.0 at coastal and 10.9 ± 3.9 at open ocean),

369 ± 107 (342 ± 79 at coastal and 400 ± 128 at

open ocean), and 39.3 ± 16.5 (40.8 ± 21.0 at coastal

and 37.6 ± 9.4 at open ocean), respectively in the

deep layer.

The contribution of the Prochlorococcus and

Synechococcus biomass ranged from 2 to 29% to the

total POC pool in the top layer during this study.

Dissolved organic matter

DOC concentration was high in the top layer and

decreased in the subsurface and the deep layer

(Fig. 2). On the contrary, DON concentration was

low in the top layer and increased in the deep layer

(except at NE3 and NE4). DOP concentration was

relatively low in the open ocean stations. In the top

Fig. 2 Vertical section of aDIC, bDIN, cDIP, d POC, e PON, f POP, gDOC, hDON, and iDOP concentration. Section distance starts
from NE1 (50 km) and ends at ACE2 (2370 km)
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layer, DOC, DON, and DOP concentrations ranged

from 48.4 to 170.9 lM, 2.4 to 11.1 lM, and 0.5 to 0.01

lM, respectively. In the subsurface layer, DOC, DON,

and DOP concentrations ranged from 47.4 to 170.9

lM, 2.1 to 22.7 lM, and 0.02 to 0.5 lM, respectively.

The concentrations ranged from 39.1 to 85.5 lM, 0.4

to 16.7 lM, and 0.06 to 0.46 lM for DOC, DON, and

DOP, respectively in the deep layer. DON concentra-

tion was high in all the three depth layers at NE5, while

a similar pattern was observed at NE2 for DOP

concentration.

Fig. 3 Box-whiskers plots showing C:N, N:P and C:P ratios in

DIM, POM, and DOM pools in the top, subsurface, and deep

layers. Pink dotted lines represent the mean. Whiskers account

for 5 and 95% of distribution, whereas boxes account for 25 and

75%. Dots within the boxes represent 50% of the distribution.

Blue boxes represent the coastal and black represent the open

ocean stations. Boxes are not shown when the number of data

points is less than 2
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All the ratios in the DOM pool deviated greatly

from the Redfield Ratio. The DOC:DON ratio was

higher at the coastal stations than open ocean stations

in the top layer. Mean DOC:DON, DOC:DOP, and

DON:DOP ratios were 21.2 ± 17.9 (22.3 ± 19.1 at

coastal and 10.2 ± 5.3 at open ocean), 2338 ± 4060

(1194 ± 1113 at coastal and 7603 ± 8077 at open

ocean), and 146 ± 202 (61.5 ± 73.0 at coastal and

482 at open ocean), respectively in top layer (Fig. 3).

DOC:DON ratio was high in the top layer than in the

subsurface and deep layer at all the stations except at

NE2 and NE3. In the subsurface layer, the mean ratios

were 13.3 ± 12.5 (17.0 ± 15.2 at coastal and

8.2 ± 3.9 at open ocean), 861 ± 1302 (635 ± 1123

at coastal and 3119 at open ocean), and 78.5 ± 142.9

(33.7 ± 18.3 at coastal and 482 at open ocean) for

DOC:DON, DOC:DOP, and DON:DOP, respectively.

The mean ratios were 12.5 ± 22.6 (20.6 ± 31.4 at

coastal and 5.1 ± 0.9 at open ocean), 374 ± 301

(429 ± 332 at coastal and 209 ± 103 at open ocean),

58.0 ± 52.6 (67.0 ± 60.7 at coastal and 35.5 ± 20.7

at open ocean) for DOC:DON, DOC:DOP, and

DON:DOP, respectively in deep layer.

Isotopic composition (d13C) of DIC

The d13C values of DIC were positive in the surface

water at the coastal stations and ACE2, while the

values were negative at NE5 and NE6. ACE1 and NE4

showed the highest d13C values in the top layer

(Table 1). The values were more negative in the

subsurface and deep layers compared to that in the top

layer. d13C ranged from - 0.6 to 0.4 %, - 0.7 to

0.2 % and - 0.5 to - 0.2 % in the top, subsurface

and deep layer, respectively.

Statistical analysis

The interrelationships of environmental variables

(nutrients, apparent oxygen utilisation, temperature,

and salinity) and elemental concentrations in organic

matter pool with the elemental proportions are

performed using PCA. The two principal axes

accounted for * 64% of the total variability among

parameters (Fig. 4). The vectors represent individual

parameters and their direction of increase. Closely

placed vectors away from origin represent positive

correlation, while vectors directed in opposite direc-

tion represent anticorrelation among parameters.

Parameters with orthogonal vectors are not correlated.

The interrelationship among parameters and their

statistical significance are presented in Table S1.

POC:PON and POC:POP ratios were anticorrelated to

PON (r = - 0.5) and POP (r = - 0.5), respectively.

DON:DOP and DOC:DOP ratios were strongly anti-

correlated to DOP (r = - 0.6, and - 0.7). DOC:DON

ratio was anticorrelated to DON (r = - 0.8). No

significant difference observed between elemental

ratios at the coastal and open ocean stations.

River water contribution

Considering salinity as a conservative tracer and an

ideal indicator for river and seawater mixing mecha-

nism, river water fraction (fr) was calculated as:

fr ¼
Salinitys � Salinitysample

Salinitys � Salinityr
ð1Þ

The subscripts r and s stand for river water and

seawater, respectively. For open ocean observations in

this study, we considered the mean top layer salinity

(33.79) at ACE2 as the seawater end-member as this

was one of the open ocean stations that had the highest

salinity. The river water end-member value of salinity

(Salinityr = 0.19) was taken from Samanta et al. (2015)

for the pre-monsoon period. At coastal stations, fr
ranged from 0.001 to 0.03, suggesting the water to be

of completely marine origin (see supplementary file

for more details).

Discussion

Processes affecting elemental concentrations

and their proportions

The river water fraction was negligible (\ 0.05) at our

stations. The sea surface salinity at the coastal stations

was not much different from those at the open ocean

stations (Table 1). The d13C values of DIC at the

Hooghly river system ranged from- 11.4 to- 1.6 %
(Samanta et al. 2015). During our sampling, the d13C
values in the top layer at the coastal stations (– 0.6 to

0.4 %) also showed typical marine range and were

higher than the reported riverine values by Samanta

et al. (2015). It ranged from- 0.6 to 0.4 % and- 0.4

to 0.3 % in the top layer at the coastal and open ocean
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stations, respectively. In fact, the DIC and d13C values

at the coastal stations were deviated from the conser-

vative mixing line of river and seawater (Fig. S1). DIC

values and the lack of significant difference in

nutrients at the coastal and open ocean stations further

confirmed that the elemental chemistry at the coastal

stations was not substantially influenced by the

riverine influx. But we caution that our coastal

sampling sites may not possess typical characteristics

(e.g., strong upwelling, high nutrient concentration) of

coastal areas in other oceanographic regions and it is

likely that the river influence is limited to within a

short distance from the river mouths.

Although the elemental concentrations in POM at

the coastal stations were significantly different from

that at the open ocean stations, no significant differ-

ence was reflected in their elemental ratios. As

expected from the mixing calculation, POC:PON ratio

in the top layer was 7.6 ± 2.5 at the coastal and

6.6 ± 1.0 at open ocean stations, suggesting that

in situ primary production contributed significantly to

the POM pool in the top layer, as terrestrially derived

POM possess high C:N ratio ([ 10) (Hedges et al.

1986). POC:Chl a ratio, a proxy to identify the source

of organic matter in aquatic systems (Bentaleb et al.

1998), is typically low in the freshly produced organic

matter than in terrestrial organic matter. POC:Chl

a ratio normally ranges from * 40 (Montagnes et al.

1994) to 200 (Cifuentes et al. 1988; Bentaleb et al.

1998) for in situ produced organic matter (Geider et al.

1998) Sarma et al. (2019) estimated the mean

POC:Chl a ratio of 1123 ± 389 at the sampling

stations along the east coast in the Bay. They attributed

the POC:Chl a ratio to the faster degradation of Chl a,

and a possible contribution of heterotrophs (bacteria

and zooplankton) and terrestrial organic matter

(Sarma et al. 2019). On the contrary, the POC:Chl

a ratio at our sampling stations (ranged from 67 to 667,

Fig. 4 PCA analysis of temperature (T), salinity (S), apparent oxygen utilisation (AOU), nutrients, elemental concentrations and ratios

in particulate organic matter, dissolved organic matter, represented by vectors
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mean 245 ± 177) was lower than that observed by

Sarma et al. (2019), reconfirming no influence of

riverine influx at our sampling stations.

High DIC concentration at the coastal stations led

to a higher DIC:DIN ratio in the top layer. Likewise,

the low concentration of DOP in open ocean stations

led to high DON:DOP and DOC:DOP ratios in the top

layer. The POC:PON, PON:POP, and PON:POP ratios

ranged higher in the top layer at the coastal stations,

where high POM concentrations were also observed.

Below the top layer, degradation of organic matter

profoundly contributed to the nutrient dynamics in the

coastal and open ocean stations. Labile POP and PON

degrade faster than POC, resulting in an increased

POC:POP and POC:PON ratios in the subsurface and

deep layer (Loh and Bauer 2000) (Figs. 3 and 4).

Large variability in the elemental concentrations

and ratios was evident in this study. There were no

significant difference in the elemental concentrations

(except in POM) at the coastal and open ocean stations

in the top layer. Likewise, all the elemental ratios were

also similar at both the regions in the top layer. The

coastal stations had larger range of elemental concen-

trations and ratios than the open ocean stations, which

led to the overall large variability in elemental ratios in

the top layer.

Impact of eddies on elemental proportions

Mesoscale eddies influence ocean biogeochemistry by

modulating the supply of nutrients to the euphotic

zone (Sarma et al. 2019). At ACE1 and ACE2, the

deep nutriclines (84 and 87 m) indicate that the

downwelling resulted in decreasing nutrients (DIN

and DIP) in the top layer (Fig. 1c). Being situated at

the periphery of a cyclonic eddy, high vertical

diffusive flux of DIN might have resulted in relatively

high primary productivity (19.5 ± 3.7 mmol C m- 2

d- 1, Saxena et al. 2021, under preparation) at NE2.

The elemental concentrations and ratios in POM and

DOM were not much distinct at ACE1, ACE2 and NE

stations.

In the Bay, nutrient availability plays a bigger role

than the temperature in driving the microbial commu-

nity composition (Angelova et al. 2019). The temper-

ature did not vary much and also did not correlate to

the elemental ratios of POM in the top layer during this

study (Fig. S2). The nutrient availability might have

influenced the phytoplankton distribution. The eddies

can entrain nutrient-rich shelf waters and advect them

offshore, thereby playing a key role in the phyto-

plankton community distribution (Gomes et al. 2016).

No coherent pattern of picoplankton (Prochlorococ-

cus and Synechococcus) distribution was observed in

ACE and NE stations in our study (Saxena et al. 2021,

under preparation).

Recently Sarma et al. (2020a) have reported that the

picoplankton contributed up to 80% and the micro and

nanoplankton contributed between 10 to 30% to the

total phytoplankton biomass in the Bay during June

2019. The total phytoplankton biomass reportedly

constitutes up to 27% of the total POC pool in the Bay

(Baer et al. 2019). The detrital matter and heterotrophs

constitute a large fraction (* 50%) of plankton

biomass (Garcia et al. 2018). In this study, Prochloro-

coccus and Synechococcus together constituted a

maximum up to 29% of the total POC pool in the

top layer, which is a significant fraction of the total

phytoplankton biomass.

Prochlorococcus and Synechococcus are slow-

growing and small-sized phytoplankton that thrives

in nutrient-deficient conditions, and possess higher

C:P and N:P ratios than the Redfield Ratio following

the growth rate hypothesis (Klausmeier et al. 2004;

Arrigo 2005). The growth rate hypothesis suggests

that the nutrient scarce environment normally favours

the growth of slow-growing phytoplankton that can

synthesize more resource acquisition machinery such

as proteins that have high N:P ratio. The nutrient

replete environment supports the fast-growing large

phytoplankton by synthesizing more growth machin-

ery such as RNAs that have low N:P ratio.

Overall the C:P (coastal: 254 ± 38, open ocean:

244 ± 34) and N:P (coastal: 39 ± 12, open ocean:

37 ± 3) ratios in POM were higher than the Redfield

Ratio. Since Prochlorococcus and Synechococcus

constituted only up to 29% of the total POC, a major

fraction of the POM pool is likely constituted by dead

and detrital matter. But this dead and detrital matter

may also have its origin in the picoplankton in the

oligotrophic waters. Therefore, the higher elemental

ratios in POM suggests that the Bay support the

growth rate hypothesis (Fig. 5).

The existence of prolonged (originated roughly two

months before the sampling) ACEs throughout the

sampling area associated with substantial down-

welling of surface water could have transformed the

Bay into an oligotrophic region. Deep nutricline
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accompanied with shallow mixed layer during the

study was indicative of the increased oligotrophic

conditions as compared to that in the previous study in

the Bay during summer (Sahoo et al. 2020). Overall,

the top layer was nutrient-depleted and showed high

elemental ratios in POM during spring than during

summer (Sahoo et al. 2020).

The static oligotrophic environment reasonably

supports the growth of picoplankton (Agawin et al.

2000) Sarma et al. (2020a) observed high abundance

of picoplankton at ACE, while the low microplankton

abundance at ACE was due to the unavailability of

DIN and DIP during June 2019 in the Bay. In the

present study, picoplankton constituted up to 29% of

the POC pool. Particularly, Prochlorococcus can

adapt to oligotrophic conditions through gene gains

and losses (Ustick et al. 2021). Prochlorococcus and

Synechococcus showed a significant correlation with

DIP and DIN concentrations, respectively, in this

study. Synechococcus abundance was significantly

correlated to the POM elemental concentrations in the

top layer (Fig. S2). Therefore, the low nutrient

availability and thereby the distribution of picoplank-

ton seemed to regulate the variation of elemental ratios

of POM in the top layer.

Role of N2 fixation on the elemental proportions

In oligotrophic basins where primary productivity is N

limited, biological N2 fixation is considered to be a

major source of new N to the euphotic zone and may

account up to 50% of the organic carbon export (Karl

et al. 1997). Favourable environmental conditions

including weaker winds, warm sea surface tempera-

ture ([ 28 �C) and clear sky in addition to an adequate
supply of PO4

3- and Fe suggest the possibility of

diazotrophic activity in the Bay (Mills et al. 2004;

Singh et al. 2017). Diazotrophs increase the DIN pool

at the cost of consuming DIP. Therefore, DIN:DIP

ratio is expected to increase due to the diazotrophic

activity in the euphotic zone.

Previous studies reported low N2 fixation rates

(4–75 lmol N m- 2 d- 1 during July 2018 and

53.3–194.1 lmol N m- 2 d- 1 during June 2019) in

the Bay (Sarma et al. 2020b; Saxena et al. 2020). Yet,

the upper bound of the measured N2 fixation rates in

the Bay is comparatively higher than that in many of

the other ocean regimes (Saxena et al. 2020). In the

present study, the concurrently measured N2 fixation

rates were even lower than that during the summer and

varied from below detection limit to 17 lmol N m- 2

d- 1 (Saxena et al. 2021, under preparation).

The mean DIN:DIP ratio in the top layer was lower

(8.9 ± 2.5) than the Redfield Ratio. The influence of

N2 fixation on the top layer DIN:DIP ratio is subtle due

to the occurrence of concurrent biological processes

such as nutrient uptake by non-diazotrophic phyto-

plankton. The low DIN:DIP ratio might be attributed

to the excessive competitive consumption of N

Fig. 5 Integrated picoplankton abundance (data obtained from Saxena et al. (2021), under preparation) in log scale, POC:POP, and

PON:POP ratios in particulate organic matter in the top layer
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relative to P by the slow-growing, smaller phyto-

plankton (Klausmeier et al. 2004).

In the subsurface layer, the low DIN:DIP ratio

(10.9 ± 1.9) indicates the possible occurrence of

denitrification and anammox in the Bay. However,

low rates of anammox (5.5 nM N d- 1) and patchy

distribution of denitrification (0.9 nM N d- 1) in this

basin suggest that the processes were less likely to

influence the subsurface DIN:DIP ratio (Bristow et al.

2017). Then what caused the mean subsurface

DIN:DIP ratio to decrease to 10.9?

In the subsurface layer, the DIN:DIP ratio reflects

the integrated effect of remineralisation of sinking

organic matter and various N loss processes. Rem-

ineralisation of organic matter significantly con-

tributes to the subsurface nutrients, especially the

regions where diazotrophs dominate the phytoplank-

ton community. Diazotrophs normally possess a high

cellular N:P ratio (42 to 125) (Karl et al. 1992; Letelier

and Karl 1996). The remineralisation of diazotrophs

(sinking from the top layer) with a high biomass N:P

ratio, increases the subsurface DIN:DIP ratio

(Michaels et al. 1996). But the contribution of

diazotrophs to the subsurface nutrients in the Bay is

not known.

Therefore, we have estimated the contribution of N2

fixation in varying N:P ratio of export flux by applying

a simple two-component N source model by Karl et al.

(1997):

Nfix

ðNfix þ NupÞ
¼

ðN : PÞexport � ðN : PÞup
h i

ðN : PÞexport
ð2Þ

where Nfix and Nup denote the N2 fixation rate and

vertical eddy diffusive flux of DIN, respectively.

(N:P)export and (N:P)up are the N:P ratio of the export

flux from the top layer and vertical eddy diffusive

nutrient flux, respectively. The assumption is that the

vertical diffusion is the only source of new P as DIP

and that this process and N2 fixation are the two

potential sources of new N as DIN in the top layer. We

have considered the DIN:DIP ratio of the subsurface

water layer as (N:P)up in this study. The left-hand side

of Eq. (2) represents the contribution of N2 fixation in

the N:P ratio of export flux, which ranged from* 0.1

to 0.4%. The exported organic matter further con-

tributes to the subsurface nutrient pool upon

remineralisation. But this low contribution in the

export flux indicates no role of N2 fixation in changing

the subsurface DIN:DIP ratio.

The mean (N:P)export calculated from Eq. (2) is

11.1, which corresponds to the mean N:P ratio in

subsurface nutrients (11.0). It infers that the reminer-

alisation of exported organic matter considerably

contributed to the nutrients in the subsurface layer.

The elemental ratio in export flux generally corre-

sponds to that in POM in the euphotic zone. However,

a discrepancy in the N:P ratio was observed between

the POM in the top layer and the export flux (Fig. 6).

In particular, the mean (N:P)export was approximately

four times lower than the mean N:P ratio in the top

layer POM. The picoplankton and detrital matter lead

to a high N:P ratio in POM in the top layer, but possess

a low export efficiency compared to microplankton

(Fu et al. 2016). The organic matter of small phyto-

plankton is likely to be recycled within the upper water

column. The microplankton, having low N:P ratio, are

highly efficient in sinking and thereby possibly

contribute largely to the export flux (Aumont and

Bopp 2006). Although the microplankton (such as

diatoms) abundance is reportedly low in the Bay

during spring (Sarma et al. 2020a), their accumulation

in the export flux might have resulted in a low

(N:P)export than the N:P ratio in POM in the top layer.

Overall, the mean C:N:P ratios of POM was

249:39:1 in the top layer. The POC:PON and

PON:POP ratios in the top layer are statistically

different from those in the previous study in the Bay

during the summer monsoon (232:25:1) (Sahoo et al.

2020). Likewise, the POC:PON and POC:POP ratios

are statistically different from the observations made

in the subtropical North Atlantic Ocean (210:36:1)

(Singh et al. 2015a). Our mean C:P and N:P ratios of

DOM were 2338 ± 4060 and 146 ± 201, respec-

tively, in the top layer. Refractory DOM have elevated

global average C:N:P ratios of 1370:60:1 and the non-

refractory DOM have 317:39:1 (Letscher and Moore

2015). During this study the ratios in DOM appeared

to bemore refractory in nature. Therefore, these values

are higher than the global average C:N:P ratios

(640:44:1) for bulk DOM in surface water (Letscher

and Moore 2015).
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Conclusions

This study enumerates the effect of physical and

biogeochemical processes on the elemental ratios in

the top layer of the Bay of Bengal. The C:N:P ratios in

the organic (except C:N ratio in POM) and nutrient

pools deviated greatly from the Redfield Ratio in the

top layer during spring. Mean C:N:P ratios were

249:39:1, 2338:146:1, and 8437:9:1 in POM, DOM,

and DIM, respectively in the top layer. The C:N and

N:P ratios in POM in this study are slightly different

from those obtained during summer 2018 (232:25:1)

in the Bay of Bengal. The elemental ratios are

statistically different from those in the subtropical

North Atlantic Ocean (210:36:1). Riverine influx

appeared to have no influence on C:N:P ratios in our

coastal locations in the Bay of Bengal.

N2 fixation contributed negligibly (\ 0.5%) to the

N:P ratio of export flux, suggesting no role of it in

changing DIN:DIP ratio in the subsurface layer.

Mesoscale eddies have a significant effect on the

nutrient concentrations in the top layer. Low concen-

tration of nutrients measured in the top layer at ACE

stations. On the contrary, no significant influence was

observed in the organic matter pool at ACE stations.

So the ACEs do not seem to influence the elemental

ratios.

In this study, we have examined the role of eddies

and N2 fixation in varying elemental proportions in the

Bay of Bengal, but other causes also need to be

explored. An in-depth understanding of these pro-

cesses will help to improve the biogeochemical

models based on flexible elemental proportions.
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