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Abstract

The stationary state solutions and dynamics of Bose-Einstein condensates (BECs)

at T = 0 are well described by the Gross-Pitaevskii (GP) equation. BECs of dilute

atomic gases have been experimentally achieved at ultracold temperatures of the or-

ders of 10−9 K. To include the effects of finite temperature on these condensates one

needs to generalize the GP equation. We report here the development of the Hartree-

Fock-Bogoliubov theory with the Popov (HFB-Popov) approximation for trapped two-

component BECs (TBECs). It is a gapless theory and satisfies the Hugenholtz-Pines

theorem. The method is particularly well suited to examine the evolution of the low-

lying energy excitation spectra at T = 0 and T 6= 0. Apart from the two Gold-

stone modes corresponding to each of the species in quasi-1D TBEC, we show that

the third Goldstone mode, which emerges at phase-separation due to softening of the

Kohn mode, persists to higher interspecies interaction for density profiles where one

component is surrounded on both sides by the other component. These are termed

as sandwich type density profiles. This is not the case with symmetry-broken density

profiles where one species is entirely to the left and the other is entirely to the right

which we refer to as side-by-side density profiles. However, the third Goldstone mode

which appears at phase-separation gets hardened when the confining potentials have

separated trap centers. This hardening increases with the increase in the separation of

the trap centers in which the TBECs have been confined. Furthermore, we demonstrate

the existence of mode bifurcation near the critical temperature. We also examine the

role of thermal fluctuations in quasi-1D TBECs of dilute atomic gases. In particular,

we use this theory to probe the impact of non-condensate atoms to the phenomenon of

phase-separation in TBECs. We demonstrate that, in comparison to T = 0, there is a

suppression in the phase-separation of the binary condensates at T 6= 0. This arises

from the interaction of the condensate atoms with the thermal cloud. We also show

that, when T 6= 0 it is possible to distinguish the phase-separated case from miscible

from the trends in the correlation function. However, this is not the case at T = 0. In

a BEC, a soliton enhances the quantum depletion which is sufficient enough to induce

dynamical instability of the system. For phase-separated TBECs with a dark soliton in

one of the components, two additional Goldstone modes emerge in the excitation spec-
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trum. We demonstrate that when the anomalous mode collides with a higher energy

mode it renders the solitonic state oscillatory unstable. We also report soliton induced

change in the topology of the density profiles of the TBEC at phase-separation. For

quasi-2D BECs, at T = 0, we show that with the transformation of a harmonically

to toroidally trapped BECs, the energy of the Kohn modes gets damped. This is ex-

amined for the case when the radial angular frequencies of the trap are equal. The

other instance, when the condensate is asymmetric, the degeneracy of the modes gets

lifted. The variation in the anisotropy parameter is accompanied by the damping of

the modes, the quasiparticle modes form distinct family of curves; each member being

different from the other by the principal quantum number n. When T 6= 0, with the

production of a toroidally trapped BEC, the maxima of the thermal density tends to

coincide with the maxima of the condensate density profiles. This is different from the

case of a harmonically trapped BEC in which due to the presence of repulsive interac-

tion between the atoms, the thermal density gets depleted where the condensate atoms

are the highest.
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Chapter 1

Introduction

The year 1995 witnessed the first experimental observation of Bose-Einstein conden-

sation (BEC) in trapped dilute atomic gases of 87Rb [1], 23Na [2], 7Li atoms [3]. The

remarkable achievements were honored with the 2001 Nobel Prize in Physics, which

was awarded jointly to Eric A. Cornell, Wolfgang Ketterle, and Carl E. Wieman “for

the achievement of Bose-Einstein condensation in dilute gases of alkali atoms, and for

the early fundamental studies of the properties of the condensates ” [4]. After this

seminal achievement, there has been a series of experiments towards realization of

BEC in different atoms. Table 1.1 provides the list of atoms which have been cooled

and trapped to achieve BEC. These experiments suggest the immense growth in the

theoretical and experimental study of quantum gases. Experiments take place at very

low but finite temperatures. As a result, presence of thermal or non-condensate atoms

is inevitable, and the interactions between the condensate and thermal atoms play a

crucial role in thermalization. For instance, temperature plays a significant role during

condensate growth, or when the BEC is heated due to strong external perturbations. It

is then imperative to have a good knowledge about thermal or non-condensate atoms

density to give an appropriate theoretical description of the system. As an example, by

now quintessential, one of the first images of 87Rb BEC reported in Anderson et al. [1]

is shown in Fig. 1.1. The images in the figure represent atomic density distribution in

the velocity space as the atoms are cooled below the critical temperature with harmonic

confining potential. BECs of 87Rb atoms have also been achieved in toroidal or ring

traps shown in Fig. 1.2. As evident from the figures, the condensate fraction is large,

15
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Atom Year Groups References
87Rb 1995 Wieman & Cornell Anderson et al. [1]
23Na 1995 Ketterle Davis et al. [2]
7Li 1995 Hulet Bradley et al. [3]
23Na 1996 Ketterle Mewes et al. [5]
1H 1998 Kleppner & Greytak Fried et al. [6]
85Rb 2000 Wieman & Cornell Cornish et al. [7]

He∗ 2001 Aspect Robert et al. [8]
41K 2001 Inguscio Modugno et al. [9]
133Cs 2003 Grimm Weber et al. [10]
174Yb 2003 Takahashi Takasu et al. [11]
52Cr 2005 Pfau Griesmaier et al. [12]
40Ca 2009 Sterr Kraft et al. [13]
84Sr 2009 Killian Escobar et al. [14]
84Sr 2009 Schreck Stellmer et al. [15]
86Sr 2010 Schreck Stellmer et al. [16]
88Sr 2010 Killian Mickelson et al. [17]
164Dy 2011 Lev Lu et al. [18]
168Yb 2011 Takahashi Sugawa et al. [19]
168Er 2012 Ferlaino Aikawa et al. [20]

Table 1.1: Experimental observation of BEC in chronological order. Listed here are the

atoms which have been Bose condensed till date. The year of achievement and the groups

involved are also mentioned. Experiments on 87Rb and 23Na BEC, shown here as the first

two entries was awarded the 2001 Nobel Prize in Physics.



17

Figure 1.1: False color coded images of the velocity distribution of trapped 87Rb atoms

taken with the aid of time-of-flight expansion technique. The left frame corresponds to the

velocity distribution just before the appearance of BEC; the center frame, just after the appear-

ance of the condensate; the right frame, after further evaporation leaves a sample of nearly

pure condensate. The color corresponds to the number of atoms at each velocity, with red be-

ing the fewest and white being the most. Reprinted figure from [E. Cornell, J. Res. Natl. Inst.

Stand. Technol. 101, 419 (1996).] Reprinted courtesy of the National Institute of Standards

and Technology, U.S. Department of Commerce.

however, the non-condensate atom or thermal atom density is finite. So, studying the

effects of finite temperature is essential to develop “high-power” atom lasers [21] using

BEC, improve precision measurements based on matter-wave interferometry [22, 23],

and in quantum-information processing which relies on the bunch of qubits occupying

the same state at zero temperature [24]. In low-dimensional systems the large phase-

fluctuations destroy the global coherence of the condensate at finite temperatures even

when it is below the critical temperature.

This transforms the true condensate into a superfluid phase also known as quasi-

condensate. One needs a finite temperature theory to examine such a transition [25].

To corroborate the experimental results, modelling of BEC at finite temperatures are

of utmost importance and an accurate theoretical representation has been a challenging
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problem [26].

An important difference of dilute quantum gases, as the name suggests, compared

to ordinary gases, liquids and solids is the number density of atoms. The particle

density of a typical Bose-condensed atomic cloud is 1013 − 1015 cm−3, whereas it

is ≈ 1019 cm−3 for air at room temperature and atmospheric pressure. The atomic

density in case of liquids and solids is ≈ 1022 cm−3. On the contrary, density of

nucleons in atomic nuclei is≈ 1038 cm−3. Based on the condition that the energy level

spacing should be of the order of the thermal energy, in trapped dilute quantum gases,

to observe quantum effects the temperature must be 10−5 K or even less. In solids,

for electrons in metals it is around 104 − 105 K, and for phonons it is of the order

of 102 K. In atomic nuclei owing to its high particle density the temperature is about

1011 K. For the superfluid 4He (discovered in 1938) and 3He (discovered in 1972), the

temperatures required are of the order of 1 K and 10−3 K for the quantum-mechanical

effects to dominate [27].

1.1 Bose-Einstein Condensation

Bosons are quantum particles with integer spin and obey Bose-Einstein statistics. On

the other hand, fermions are quantum particles with half-integer spin and obey Fermi-

Dirac statistics. The many-body wavefunction for a system of identical bosons is sym-

metric under interchange of any two particles, and under Bose-Einstein statistics, more

than one particle may occupy a single-particle state. The idea of Bose statistics was

proposed by Satyendranath Bose in 1924 [28] to derive the black-body radiation spec-

trum. Albert Einstein extended this to the case of number conserving collection of non-

interacting atoms with integer spin [29], where the number of particles is conserved.

Photons addressed in Bose’s work, on the other hand, are not number conserving. The

melding of these two works gave rise to Bose-Einstein statistics. Einstein predicted a

very novel feature in the distribution of atomic bosons over the quantized energy lev-

els. At temperatures below the critical temperature Tc, a finite fraction of the bosons

occupy the ground state or the ground state is macroscopically occupied. This is re-

ferred to as BEC [30]. Another description of Tc is, it is the temperature at which the
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Figure 1.2: Experimental images of condensates of 87Rb atoms in a ring-shaped magnetic

trap. (a)-(f) Shown is the top view, and (g)-(i) side view of the absorption images taken 2 ms

after switching off the traps. The atoms were trapped either in a quadrupole (Q) ring which is

shown in images (a)-(c) or in a time-orbiting ring trap (TORT) shown in images (d)-(i). The

color corresponds to intensity of resonant absorption ranging from 0 (blue) to > 80% (red).

Reprinted figure from [Gupta et al., Phys. Rev. Lett. 95, 143201 (2005).] Copyright © 2005

by the American Physical Society.

thermal de Broglie wavelength λdB = (2π~2/mkBT )1/2 of the atoms, which increases

with decreasing temperature, are comparable to the interatomic separation. The atomic

wave packets, then, overlap and a macroscopic wavefunction is formed which leads to

the formation of BEC.

For an ideal and homogeneous Bose gas in 3-dimension, reaching the value of the

phase space density nλ3
dB ≈ 2.612 marks the onset of BEC. Here, n = N/V is the

number density of the bosons in volume V . The critical temperature for a noninteract-

ing gas of bosons is given by

Tc =
2π~2

mkB

( n

2.612

)2/3

. (1.1)

The condensate fraction at temperature T , below Tc, is

N0

N
= 1−

(
T

Tc

)3/2

. (1.2)

From Eq. 1.1 it is evident that Tc is higher for lower mass and higher density bosons.
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These were important considerations in choosing spin-polarized Hydrogen as the first

candidate atomic gas to obtain BEC.

1.1.1 Off-Diagonal Long-Range Order (ODLRO)

The most important aspect of BEC is the off-diagonal long-range order (ODLRO). A

noninteracting system is said to exhibit ODLRO if the single-particle density matrix

ρ1(r, r′) ≡ Tr{ρ̂ψ̂†(r)ψ̂(r′)} ≡ 〈ψ̂†(r)ψ̂(r′)〉 (1.3)

has a large eigenvalue, that is an eigenvalue proportional to the total number of particles

N . The density operator of the system is represented by ρ̂ and ψ̂†(r)(ψ̂(r′)) is the

field operator which corresponds to the creation (annihilation) of a particle at r(r′).

When the system undergoes BEC, the de Broglie wavelength of the bosonic atoms

overlap, and a particle at r′ becomes indistinguishable from another particle at r. As a

result, ρ1(r, r′) does not vanish over a long distance |r− r′| and the system has spatial

coherence. In the thermodynamic limit, for a noninteracting uniform BEC, it has been

shown that ρ1(r, r′) attains the order of N/V as |r− r′| → ∞. This confirms ODLRO

and implies the formation of BEC [25]. However, for interacting BECs, when single-

particle energy levels are not well defined, the reduced single-particle density operator

is used instead of single-particle density. It is defined as

ρ̂1 = Tr2,3,··· ,N ρ̂, (1.4)

where, Tr2,3,··· ,N denotes the trace over particles 2, 3, · · · , N . If nM is the maximum

eigenvalue of σ̂1 ≡ Nρ̂1, then BEC occurs when the particles satisfy the Penrose-

Onsager criterion [31]
nM

N
= eO(1), (1.5)

where, eO(1) is a positive number of the order of unity. Here, nM represents the number

of condensed bosons and the ratio nM/N is referred to as the condensate fraction.

When the system is inhomogeneous, the condition for ODLRO states that

ρ1(r, r′)→ ψ∗(r)ψ(r′), |r− r′| → ∞, (1.6)

where, ψ(r) is referred to as the condensate wave function, and ρ1(r, r′) = 〈r′|ρ̂1|r〉
is the single-particle density matrix. These definitions are valid for both interacting



1.1. Bose-Einstein Condensation 21

and noninteracting particles. In addition, the criterion is applicable when the system is

inhomogeneous. Hence, the Penrose-Onsager criterion is the most general condition

for the existence of BEC in a system.

The experiments with dilute atomic gases are carried out in traps, and the favored

trapping potential configurations are well approximated with a harmonic-oscillator po-

tential. If the number of particles is N , and ωx, ωy, ωz are the harmonic oscillator

frequencies along the x, y and z directions, the critical temperature

Tc =
~$
kB

(
N

1.202

)1/3

, (1.7)

where, $ = (ωxωyωz)
1/3 is the geometric mean of the harmonic oscillator frequen-

cies. At Tc an inhomogeneous BEC emerges both in momentum and coordinate space,

unlike superfluid helium. This allows development of novel methods to investigate

unique features of BEC like temperature dependence of condensate, interference phe-

nomena and so on. Furthermore, the effects of two-body interactions on important

measurable properties like density are enhanced in BECs confined in a trapping poten-

tial [32].

The concept of BEC plays a key role in the phenomenon of superconductivity,

where bosons are pairs of electrons with opposite spin. The other remarkable experi-

mental achievements, in recent times, are observation of BECs with: excitons, which

are bound states of an electron and a hole [33]; biexcitons [34]; polaritons, excitons

coupled to radiation field in a cavity [35,36]; exciton-polariton [37–39]; magnons [40];

and photon [41, 42].

1.1.2 Two-component Bose-Einstein condensates

BECs consisting of atoms of two different species, or two isotopes of the same el-

ement, or two different hyperfine states of the same atom are called two-component

Bose-Einstein condensates (TBECs). The remarkable feature of TBECs or binary

condensates is the phenomenon of phase-separation [43, 44]. This relates the system

to novel phenomena in nonlinear dynamics and pattern formation, non-equilibrium

statistical mechanics, optical systems and phase transitions in condensed matter sys-

tems. In TBECs, it is possible to steer the system from miscible to immiscible (phase-
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Figure 1.3: Experimental observation of sandwich type density profiles in a TBEC. The

images in the first and second panel show the column densities of |1〉 ≡ |F = 1,mF = 1〉
and |2〉 ≡ |F = 2,mF = −1〉 of 87Rb atoms obtained by varying the interspecies scattering

length. The images in the third and fourth panel show the density profiles obtained through

the numerical solution of GP equation at T = 0. Reprinted figure from [Tojo et al., Phys.

Rev. A 82, 033609 (2010).] Copyright © 2010 by the American Physical Society.

separated) or vice-versa by tuning the interatomic interactions through Feshbach reso-

nances [45,46]. Using improved experimental techniques, TBECs have been achieved

in several experiments over the last decade. Table 1.2 provides a list of TBECs, which

includes all the three types mentioned earlier, achieved till date. The remarkable fea-

ture of phase-separation in TBECs has been successfully observed in 85Rb-87Rb [53],

different hyperfine states of 87Rb [64] and 87Rb-133Cs [49] condensate mixtures. As

an example, Fig. 1.3 shows the experimental image of sandwich type TBEC density

profiles at phase-separation, the two species are different hyperfine states of 87Rb [64].

The other possible geometry of density distribution is side-by-side, Fig. 1.4 shows the

density profile of the first experimental realization of this geometry [53]. These have

motivated theoretical investigations on stationary states [43, 65], dynamical instabili-

ties [66–68] and collective excitations [69–75]of TBECs.

In the context of excited states in TBECs, it supports coupled dark-bright solitons

which makes it richer and more interesting than single-component BECs [76]. The

bright soliton, on the other hand, cannot survive in single component BECs with repul-

sive interaction. It may be mentioned here that, solitons in BECs and TBECs have been
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Atom Year Groups References

Two different species
41K - 87Rb 2002 Inguscio Modugno et al. [47]
87Rb- 133Cs 2011 Nägerl Lercher et al. [48]
87Rb- 133Cs 2011 Cornish McCarron et al. [49]
84Sr - 87Rb 2013 Schreck Pasquiou et al. [50]
23Na - 87Rb 2013 Wang Xiong et al. [51]
39K - 87Rb 2015 Arlt Wacker et al. [52]

Two different isotopes
85Rb - 87Rb 1998 Ketterle Inouye et al. [45]
85Rb - 87Rb 2008 Wieman Papp et al. [53]
85Rb - 87Rb 2011 Cornish Händel et al. [54]

Two different hyperfine states of the same atom
87Rb 1997 Wieman Myatt et al. [55]
87Rb 1998 Cornell Hall et al. [56]
23Na 1998 Ketterle S.-Kurn et al. [57]
23Na 1998 Ketterle Stenger et al. [58]
87Rb 2000 Inguscio Maddaloni et al. [59]
87Rb 2001 Aspect Delannoy et al. [60]
87Rb 2006 S.-Kurn Sadler et al. [61]
87Rb 2007 Hall Mertes et al. [62]
87Rb 2009 Hall Anderson et al. [63]
87Rb 2010 Hirano Tojo et al. [64]

Table 1.2: Experimental observation of TBEC. Listed here are the atoms used for achiev-

ing TBEC, the year of achievement and the groups involved.
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Figure 1.4: Absorption images of 85Rb - 87Rb TBEC showing the miscible and immisci-

ble phases on changing the intraspecies scattering length of 85Rb. (a), (b) show side-by-side,

and (c), (d) show miscible density profiles for a85 = 51a0, 780a0 respectively. (e), (f) show

optical density of 85Rb - 87Rb TBEC along radial direction. Reprinted figure from [Papp et

al., Phys. Rev. Lett. 101, 040402 (2008).] Copyright © 2008 by the American Physical

Society.

experimentally achieved either by phase-imprinting method [77] or in two counter-

flowing miscible TBECs above a critical velocity [78]. For miscible TBECs, creation

and interaction of dark solitons has been theoretically examined in Refs. [79,80]. Fami-

lies of stable solitonic solutions from coupled GP equations in quasi-1D TBECs at zero

temperature have been obtained [81, 82].
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1.2 Liquid He and BEC

Superfluidity in liquid He is well known since several decades, however, it is difficult

to isolate and examine the properties of condensates as there are strong interatomic

interactions. In general, BECs of alkali-metal atoms are weakly interacting and all

the atoms are considered to be in the same quantum state. So, mean field approaches

provide a good description of the static and dynamic properties of these systems. This

is not the case in liquid He, the interatomic interaction induce strong correlations, and

mean field approach is not applicable. BECs, used here after in reference to the Bose-

Einstein condensates of dilute atomic gases, is unique in the sense that it is a quantum-

statistical phase transition. These are excellent systems to probe the condensate state,

which was first predicted for ideal Bose gas or noninteracting Bose gas [29,30]. Inter-

actions are, however, necessary for 4He to exhibit superfluidity.

Although there is a difference between condensates and superfluids, the noticeable

features of superfluidity in 3He and 4He are linked and can be explained through the

phenomenon of condensation [83–85]. BECs on the other hand are far more dilute and

weakly interacting compared to liquid Helium. The low density suppresses three body

collisions and makes the atomic gas stable against solidification at very low tempera-

tures. The densities considered are, however, high enough so that the two-body binary

elastic collision rate is sufficient to thermalize the system and form a metastable BEC.

Another striking feature of BEC and 4He is that both are inviscid and support quantized

vortices. According to the two-fluid description of hydrodynamics, at critical tempera-

ture and below it, the superfluid and normal component coexist. At lower temperatures,

the density of normal component tends to zero, and the superfluid density approaches

the total density of the liquid. Near the lambda point or just above the critical temper-

ature, the reverse happens, that is the density of normal component tends to approach

the total density and the superfluid density approaches zero. The normal component

in a superfluid is identified by the presence of low momenta elementary excitations

called phonons which obey Bose statistics. BECs at finite temperatures consists of

condensate and non-condensate atomic clouds, the remarkable difference from liquid

helium is, in BECs the number of atoms in the non-condensate atomic cloud is smaller
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than the condensate by several orders of magnitude. This is due to weak interactions

between bosonic atoms in the BEC.

1.3 Spin-polarized Hydrogen

The strong interactions in superfluid liquid Helium enhances quantum fluctuations,

and the density of non-condensate atoms is significant at zero temperature. So, it

is difficult to probe condensate properties with superfluid Helium. In 1959, Hecht

showed that spin-polarized Hydrogen is in the gaseous state till zero temperature, and

proposed it as a suitable candidate to observe Bose-Einstein condensate in weakly in-

teracting bosonic gas [86]. The study was based on quantum theory of corresponding

states. The proposal, with better theoretical understanding and realizable experimental

parameters, appeared in the independent work of Stwalley and Nosanow [87]. This

was soon followed by an important step towards observation of atomic Hydrogen con-

densate with the experimental realization of spin-polarized Hydrogen gas in the high

field seeking spin polarization of the ground state by two groups: Silvera and collab-

orators [88]; and Kleppner and collaborators [89]. The next important step was the

proposition of Harald Hess to use the low-field seeking spin states and employ evapo-

rative cooling to achieve lower temperatures [90]. As discussed earlier, the latter was

instrumental in observing condensates of dilute alkali-atomic gases. However, there

is one basic technical difference in the evaporative cooling as implemented in alkali

atoms: a radio frequency flips the spins of the atoms and repels it from the trap [91,92].

The same technique was adopted in the evaporative cooling of spin-polarized Hydro-

gen atomic gas, and BEC of spin-polarized hydrogen was observed in 1998 [6]. A 2D

quasicondensate with atomic hydrogen has also been observed [93].

1.4 Finite Temperature Models

We continue here with the discussion about the different methodologies employed till

date to incorporate the effects of finite temperature on BECs of dilute atomic gases.

At T = 0, neglecting quantum fluctuations, all the atoms are in the condensate state

and the total density equals the condensate density. The GP equation is appropriate
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Figure 1.5: The figure on the left shows the equilibrium condensate (blue) and thermal

density (red) profile along the axial direction z for a system containing 104 23Na atoms at

T = 75 nK in a harmonic trap with (ω⊥, ωz) = 2π× (40.2, 4.55) Hz. The figure on the right

shows the variation in thermal density for the same system at T = 25, 50, 75 nK. In the plots
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osc.

to describe the statics and dynamics of Bose-Einstein condensates. However, in the

experimental realizations non-condensate atoms coexist with the condensate atoms as

these are at finite temperatures, and even at zero temperature, there are non-condensate

atoms due to quantum fluctuations. It is therefore, pertinent to generalize the GP equa-

tion to account for non-condensate atoms. At T 6= 0, as the condensate cloud coexists

with the thermal cloud, the interactions between the condensate and non-condensates

cloud cannot be ignored. This interaction modifies the equilibrium density profiles

of BECs at T 6= 0 and plays an important role in the damping of collective modes,

and also influences the dynamics of topological defects such as solitons and vortices

in BECs. On the theoretical front, it is essential to include the dynamics of both the

condensate and thermal densities to accurately reflect the experimental scenarios and

modelling such systems is an active area of research. Here we review some of the finite

temperature models and point out their essential features.

In the semi-ideal two-gas model proposed in Ref. [94], the condensate part is af-

fected only by the repulsive s-wave interactions between the condensed atoms. The

atoms in the thermal or the non-condensate part are considered to be noninteracting

and is under the influence of the effective potential constituted by the external trapping

potential and the mean-field interaction potential of the condensed atoms. For strong

interactions between the condensed atoms, Thomas-Fermi approximation is applicable
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and based on the self-consistent Hartree-Fock model, the analytic expressions for the

condensate and the thermal component are given by

n0(r) =
µ− r2/2− 2UnT(r)

U
θ(µ− r2/2− 2UnT(r)),

nT(r) =
1

λ3
T

g3/2(e−(−r2/2+2U [n0+nT]−µ)/kBT ). (1.8)

Here, U and λT are the strength of the interatomic interaction and the thermal de

Broglie wavelength, respectively, and gα(z) =
∞∑
j=1

zj/jα is the Bose function. The

coupled Eqns. (1.8) are to be solved self-consistently with the total number of atoms

N =

∫
dr[n0(r) +nT (r)] as a constraint. Here, n0 and nT are the condensate density

at T = 0 and the non-condensate density of bosons, respectively. The chemical poten-

tial µ is then determined through N . Furthermore on neglecting U from the thermal

atoms in Eqns. (1.8), the explicit expression for chemical potential is

µ =
1

2
(15Na)2/5

(
N0

N

)2/5

, (1.9)

with a as the scattering length and N0 as the total number of condensate atoms. The

expressions for the condensate fraction N0/N has also been explicitly calculated in

terms of incomplete gamma functions for the temperature ranges T < Tc and T ≈ Tc

[94].

The non-equilibrium properties during the condensate growth as the trapped atoms

are cooled to temperatures below the BEC transition has been studied by Bijlsma et

al. [95]. They consider the kinetics of both the thermal cloud, and the Hartree-Fock

mean-field effects in the condensed and the non-condensed parts. In this model, the

total number of atoms and total energy of the system are kept fixed. It is assumed that

the thermal component behaves ergodically and that the condensate which is treated

within the Thomas-Fermi approximation grows adiabatically [95]. This necessarily

implies that the dynamics of the condensate is neglected and the collective excitations

are ignored. However, for temperatures of interest, during the growth process these

excitations are damped and one can safely assume the condensate to remain in a state

that is well-approximated by the quasiequilibrium solution of the GP equation. The

non-condensate part, on the other hand, is the solution of a semiclassical Boltzmann

equation in the ergodic approximation. This is based on the assumption that the equi-

libration of atoms within one energy level occurs on a much shorter time scale than
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equilibration of atoms between different energy levels. The nonlinear Schrödinger

equation for the condensate and a kinetic equation for the thermal component have to

be solved self-consistently with the equilibrium density of the condensate determined

by the number of atoms in the condensate. However, there are discrepancies between

the theoretical estimates and the experimental results which are attributed to deviations

from the assumptions made in this model. A full solution of the quantum Boltzmann

equation may be a possible remedy to this disparity which is beyond the scope of this

theory [95].

As a step towards solving the quantum Boltzmann equation, a coarse-grained Marko-

vian approach based on the Chapman-Enskog-Bogoliubov procedure of nonequilib-

rium statistical mechanics, has been developed by Walser et al. [96]. The kinetic evo-

lution of a trapped condensed bosonic gas of atoms towards equilibrium is described

within this model. In particular, the self-consistent master equations for the mean-fields

corresponding to the condensate, and the quantum-Boltzmann equation for the normal

densities, and anomalous fluctuations have been obtained. These equations general-

ize the Gross-Pitaevskii equations, and are consistent with the quantum-Boltzmann-

equation approach.

Another class of theories to model finite temperature BECs are based on c-field

methods. These models consider c-field to represent the coherent condensate field and

are simulated using classical stochastic field equations. The incoherent region consists

of the high energy modes other than the Bose-degenerate modes. The distribution of

particles in this region obey Bose statistics and may contain significant fraction of the

total number of particles depending on temperature. The c-field techniques can be

classified into three broad categories, namely

1. Projected GPE (PGPE) : The time evolution of the system is described clas-

sically. It is applicable when thermal effects are large, which holds true when

T ≈ Tc, and quantum fluctuations can be neglected. The GPE is modified with

a projection operator which specifies the appropriate energy cut-off such that

the energy levels in the c-field region have large occupancies. This technique

is used to simulate the c-field region considered to be a microcanonical sys-

tem, in complete isolation from the external environment, with fixed energy and
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number of particles. The coupling between coherent and incoherent region is

neglected [26, 97].

2. Truncated Wigner PGPE (TWPGPE): When T � Tc, the quantum effects dom-

inate over the thermal densities. There exist modes with low occupation num-

ber in the c-field region. Noise terms which represent quantum fluctuations

are added to the initial conditions. The addition of terms is not exact, but is

well approximated by stochastic sampling of a Wigner quasiprobability distri-

bution function for the initial state. Evolution of the system towards equilibrium

with this method leads to damping, and deviates from the experimental results.

For short time scales or low temperature, this approach provides reliable re-

sults [26, 97].

3. Stochastic GPE (SGPE) : In this approach, dissipative and dynamical noise terms

are added to the GPE. Through these terms the coupling between the modes in

the c-field and the incoherent region is taken into account. So that the system

attains the correct thermal equilibrium. The high lying modes evolve according

to the quantum Boltzmann equation, and the system is described by a member

of a grand-canonical ensemble which includes exchange of particles and energy

between the coherent and incoherent regions [26, 97]. It should be mentioned

here that the solution of SGPE includes both thermal and quantum fluctuations.

Unlike TWPGPE, this method does not suffer from spurious damping as the

system relaxes to achieve equilibrium.

In addition to the aforementioned formalisms, the nonequilibrium properties of

BEC at finite temperatures has been studied within the Zaremba-Nikuni-Griffin (ZNG)

formalism [98]. It is based on Kadanoff-Baym formalism of nonequilibrium quantum

statistical mechanics using Green’s function techniques [99,100], and incorporates the

dynamics of the condensate atoms, collisions between the non-condensate atoms, and

the particle-exchange collisions between the condensate and the non-condensate atoms

which are essential to describe the state of the Bose system at finite temperatures.

The two components, namely the condensate and the non-condensate atoms satisfy

different equations of motion which are coupled to each other. In this method the
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governing equations of motion are the generalized Gross-Pitaevskii equation which

includes the coupling to the thermal cloud, and the quantum Boltzmann equation which

subsumes the effects of collisions between the atoms. For a single-species BEC these

two equations are

i~
∂φ

∂t
=

[
− ~2

2m
∇2 + Vext + g(|φ|2 + 2ñ)− iR

]
φ, (1.10a)

∂f

∂t
+

p

m
.∇rf − (∇rUeff).(∇pf) = C12[φ, f ] + C22[f ]. (1.10b)

Here, the first and second equations are the generalized GP and the quantum Boltz-

mann equation, respectively, with φ as the condensate wavefunction, and Vext as the

external trapping potential. The term iR describes the exchange of particles between

condensate and thermal cloud, f = f(p, r, t) is the Wigner distribution function, and

Ueff = 2g[nc + ñ]. Depending on the frequency, and the strength of collisions the

Boltzmann equation can be used to address two dynamical regimes namely the a) the

collisionless or mean-field dominated, and b) the hydrodynamic or the collision dom-

inated regime. The quantum Boltzmann or kinetic equation describes the evolution of

Wigner distribution function f(p, r, t) of the non-condensate atoms. The equation in-

cludes the collisions between condensate and non-condensate atoms through C12[φ, f ],

and collisions between the thermally excited atoms through Uehling-UhlenbeckC22[f ]

collision integral. In addition, the continuity equation for the local condensate density

embody a source term Γ12, which is connected toC12[φ, f ] through the dissipative term

iR [101]. One preeminent reason of using ZNG is, it predicts Kohn mode with reli-

able accuracy for a trapped Bose gas. The other finite temperature theories, described

earlier lead to damped Kohn mode at higher temperatures [102, 103].

The methods mentioned so far do not provide detailed and systematic informa-

tion about the quasiparticle spectrum. It is, however, possible to examine the equilib-

rium state solutions of trapped BEC at finite temperature and study the collective ex-

citations through the self-consistent Hartree-Fock-Bogoliubov theory with the Popov

(HFB-Popov) approximation. It is a gapless theory and hence, satisfies Hugenholtz-

Pines theorem. The method is in particular well suited to examine the evolution of

the low-lying modes. For the condensate part, a generalized GP equation which in-

cludes interactions between condensate and non-condensate clouds is employed, but
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the non-condensate atoms are excluded from the dynamics. If the fluctuations around

the condensate part (represented by c-field) are denoted by ψ̃, the three-field correlation

function 〈ψ̃†ψ̃ψ̃〉 is neglected. This theory has been used extensively in single-species

BEC to study finite temperature effects and mode energies [104–107], and the results

are in good agreement with experimental results [108] at low temperatures. For illus-

tration, Fig. 1.5 shows the equilibrium condensate and non-condensate density profiles

of a quasi-1D 23Na BEC obtained using HFB-Popov approximation.

1.5 Objectives of the Present Study

In TBECs, the HFB-Popov approximation has been used in the miscible domain [109]

and in this thesis, we use the method to examine equilibrium properties in the phase-

separated domain at T = 0 and T 6= 0. Other works which have examined the finite

temperature effects in TBECs use Hartree-Fock treatment with or without trapping

potential [110, 111] and semi-classical approach [112]. The list of highlights of the

research work done in this dissertation is as follows:

• Extension of the HFB-Popov theory and development of the coupled generalized

Gross-Pitaevskii equations to account for the finite temperature effects in binary

condensates.

• Prediction of fluctuation-induced instability of a quasi-1D single-species Bose-

Einstein condensate with dark soliton.

• Mode evolution of a quasi-1D TBEC at zero temperature in coincident and non

coincident trap centers. We have predicted three Goldstone modes at phase-

separation for sandwich type density profiles.

• Examination of the interaction induced instability of a quasi-1D TBEC with a

dark soliton at zero temperature. At phase-separation we have predicted four

Goldstone modes and change in the topology of condensate density profiles due

to the presence of soliton.

• Investigation of the evolution of quasiparticle modes, condensate and thermal



1.6. Overview of the Chapters 33

density profiles of a quasi-1D TBEC at finite temperature. We have demonstrated

the existence of mode bifurcation near the critical temperature.

• Thermal suppression of phase-separation in binary condensates when T 6= 0.

We also show that, when T 6= 0 it is possible to distinguish the phase-separated

case from miscible based on the trends in the correlation function.

• Mode evolution of a rotationally symmetric quasi-2D BEC at T = 0 as the ex-

ternal trapping potential undergoes transformation from a harmonic to a toroidal

geometry. This transition decreases the energy of the Kohn mode.

• Study of quasiparticle modes on steering a rotationally symmetric to an asym-

metric quasi-2D BEC at T = 0. The asymmetry lifts degeneracy of the modes.

For toroidal geometry, with the change in the anisotropy parameter, a new Gold-

stone mode appears in the quasiparticle excitation spectrum.

• Study of the condensate and non-condensate density profiles of a quasi-2D BEC

at T 6= 0 on transforming the trapping potential from harmonic to toroidal geom-

etry. For a toroidal trap, the maxima of the condensate and the thermal density

profiles tends to coincide.

1.6 Overview of the Chapters

In the next chapter, Chapter 2, we begin with discussion on the GP equation. We then

present the development of the Hartree-Fock-Bogoliubov theory with the Popov ap-

proximation (HFB-Popov) to address the finite temperature effects in the ground state

of a single-species BEC. We then highlight the importance of TBECs, and extend the

HFB-Popov theory for a single-species BEC to a binary condensate. Finally, we de-

rive the coupled generalized GP equations for a TBEC, and the Bogoliubov-de Gennes

equations to examine the excitation spectrum and the thermal cloud densities.

In Chapter 3, we provide a brief description of spontaneous symmetry breaking

(SSB) and the Goldstone modes in non-relativistic systems. Furthermore, based on

the HFB-Popov theory, we study mode evolution in a trapped TBEC at T = 0 with

coincident trap centers. For displaced trap centers, we demonstrate mode hardening.
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We then study the effect of a soliton in a TBEC on elementary excitation spectra and

predict interaction-induced instability in the system.

In Chapter 4, we examine the finite temperature effects on mode evolution in TBEC

and demonstrate the existence of mode bifurcations. We also compute the thermal

cloud densities for a binary BEC mixture, and show that thermal fluctuations suppress

phase-separation in a TBEC. In addition, we show that at finite temperatures it is pos-

sible to distinguish the phase-separated case from the miscible case from the trends in

the correlation function.

In Chapter 5, we study the fluctuations in quasi-2D condensates. At T = 0, with

the transformation of the trapping potential from harmonic to a toroidal geometry BEC

by introducing and changing the strength U0 of a Gaussian beam, we observe the soft-

ening of Kohn mode and investigate the behaviour of other low-lying modes. For

harmonic trapping potential, the changeover from a rotationally symmetric condensate

to an asymmetric one lifts the degeneracy of the modes. We point out that during this

change the quasiparticle modes form families of curves with similar slopes. Further-

more, at T 6= 0, on varying U0 the maxima of the condensate and non-condensate

density profiles tend to coincide. This is different from the case of BEC in a harmonic

trapping potential, in which the non-condensate density has a dip where the conden-

sate density is maximum. Finally, in Chapter 6 we present a possible outlook for future

studies.



Chapter 2

Finite Temperature Theory

At zero temperature, the Gross-Pitaevskii (GP) equation, also referred to as the non-

linear Schrödinger equation (NLSE), is an apt mean-field theory to describe the statics

and dynamics of weakly interacting dilute Bose gases. It was formulated indepen-

dently by Gross [113, 114], and Pitaevskii [115] to describe bosonic quantum fluids,

and in particular, superfluid liquid 4He. It is valid at low temperatures where there is

a macroscopic occupation of the lowest energy level, or when BEC is formed. The

theory, and it’s variations to accommodate multi-species condensates have been used

with remarkable success to explain various experimental observations.

In this Chapter we use the second quantization formalism, in which the symmetry

associated with the spin-statistics of identical and indistinguishable quantum particles

is ensured by the algebra of the quantum field operators. That is, in terms of wave-

functions, the operators ensure that the many-particle states of identical bosons and

fermions are symmetric and antisymmetric under permutations of particles, respec-

tively. To address the effects of quantum, and thermal fluctuations in the BECs of

dilute atomic gases we use a spontaneous symmetry breaking approach. We start with

the second quantized form of the Hamiltonian for a dilute, weakly interacting Bose gas,

and derive the generalized GP and the coupled Bogoliubov-de Gennes equations. The

former describes the condensate wave-function or the order parameter, and the latter is

an extension of the Bogoliubov theory at zero temperature to describe the excitations

or quasiparticles of the system.

35
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2.1 Single-component BEC

2.1.1 Gross-Pitaevskii equation

At T = 0, following Bose-Einstein statistics, all the bosons in an ideal/interacting

dilute Bose gas macroscopically occupy a single-particle quantum state. In the case

of BEC of dilute atomic gases, as the temperature is decreased, quantum degeneracy

sets in when the de Broglie wavelength of the atoms is equal to or larger than the inter-

atomic spacing. Neglecting the quantum fluctuations, the condensed state can then

be described by a macroscopic wavefunction Φ(r, t). By mean-field theory, the static

and dynamical properties of Φ(r, t), albeit at T = 0, can be examined through the

Gross-Pitaevskii (GP) equation [27, 116]. It is given by

i~
∂Φ(r, t)

∂t
=

[
−~2∇2

2m
+ Vtrap(r) + g|Φ(r, t)|2

]
Φ(r, t). (2.1)

The trapping potential Vtrap, unless otherwise mentioned, is in general harmonic in

nature which is of the form

Vtrap(r) =
1

2
m(ω2

xx
2 + ω2

yy
2 + ω2

zz
2), (2.2)

where m is the mass of the atom, and ωx, ωy, and ωz are the angular frequencies along

x, y, and z directions, respectively. In a spherical trap, the angular frequencies satisfy

the condition (ωx = ωy = ωz ≡ ω0), whereas for a symmetric pancake shaped or

quasi-2D trap it should be (ωx = ωy ≡ ω⊥ � ωz). For a cigar shaped or quasi-1D

trap, the trapping frequencies satisfy (ωx = ωy ≡ ω⊥ � ωz). In the latter case, the

radial excitation energies are large and the radial degrees of freedom are assumed to

be frozen for which ~ω⊥ � µ and ~ω⊥ � kBT where µ and T are the chemical

potential and temperature of the system, respectively. So, the dynamics and hence

the excitations occur only along the axial direction, z-axis, of the trap. The atoms

interact through binary collisions. The interaction strength, the third term of Eq. (2.1),

is proportional to the condensate density nc(r, t) = |Φ(r, t)|2 with g = 4π~2a/m as

the interaction strength, where a is the s-wave scattering length, and to satisfy stability

conditions we consider positive a for the present work. Although, we have neglected

quantum fluctuations in the GP equation innate to any quantum system, it is more so
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in macroscopic matter waves like BEC. However, BEC experiments are carried out at

T 6= 0 and thermal fluctuations are unavoidable. Thus Eq. (2.1) needs to be generalized

so as to incorporate the effects of the thermal cloud or the non-condensate atoms.

2.1.2 Many-body Hamiltonian

For simplicity, let us first consider quasi-1D system, where (ωx = ωy ≡ ω⊥ � ωz). In

this case, we can integrate out the condensate wave function along xy and the dynamics

of the BEC is reduced to a quasi-1D system. That is, along the transverse direction the

system is limited to the ground state and degrees of freedom are frozen. Excitations,

in form of quasiparticles, are present only in the axial direction z [117, 118]. For this

system the many-body grand-canonical Hamiltonian describing BEC of N interacting

bosons in the second quantized form is

Ĥ =

∫
dzΨ̂†(z, t)

[
− ~2

2m

∂2

∂z2
+ V (z)− µ+

U

2
Ψ̂†(z, t)Ψ̂(z, t)

]
Ψ̂(z, t). (2.3)

Here, Ψ̂ is the Bose field operator of the single-species BEC that annihilates a boson

at the position z and obeys the usual Bose commutation relations

[
Ψ̂(z, t), Ψ̂†(z′, t)

]
= δ(z−z′),

[
Ψ̂(z, t), Ψ̂(z′, t)

]
=
[
Ψ̂†(z, t), Ψ̂†(z′, t)

]
= 0. (2.4)

In Eq. (2.3), V (z) and µ represent the external trapping potential and chemical po-

tential, respectively. The intraspecies interactions is modified to U = 2gλ, and λ =

(ω⊥/ωz) � 1 is the anisotropy parameter. In other words, higher anisotropy implies

stronger effective inter-atomic interactions, and as a consequence enhances fluctua-

tions. Starting with this Hamiltonian, the Heisenberg equation of motion for the Bose

field operator is

i~
∂

∂t
Ψ̂ =

[
Ψ̂(z, t), Ĥ

]
= ĥΨ̂ + UΨ̂†Ψ̂Ψ̂, (2.5)

where ĥ = (−~2/2m)∂2/∂z2 + V (z)− µ. For compact notations and when appropri-

ate, we refrain from writing the explicit dependence of Ψ̂ on z and t. Since majority

of the atoms populate the ground state for the temperature domain pertinent to the

experiments, using Bogoliubov approximation [119, 120] the condensate part can be

separated out from the Bose field operator Ψ̂(z, t). For condensates in 3D the domain
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of validity of the approximation is T 6 0.65Tc [106]. However, for a system of quasi-

1D BECs, the anisotropy enhanced interaction should affect a change to the domain of

validity, and shall be addressed in the subsequent chapters. The non-condensed or the

thermal cloud of atoms are then the fluctuations of the condensate field. Here, Tc is the

critical temperature for an ideal Bose gas in a harmonic confining potential.

2.1.3 Bogoliubov approximation

The Bose field operator Ψ̂, in general, can be written as a linear combination of a

complete set of single-particle wavefunctions {ψi(z)} as

Ψ̂(z, t) =
∑
i=0

α̂i(t)ψi(z) = α̂0(t)ψ0(z) +
∑
i=1

α̂i(t)ψi(z), (2.6)

where α̂i is the annihilation operator of the ith state of the trapping potential of the

system considered and obeys equal time commutation relations[
α̂k, α̂

†
l

]
= δk,l,

[
α̂k, α̂l

]
=
[
α̂†k, α̂

†
l

]
= 0. (2.7)

In addition, the single-particle wave-functions ψi(z) satisfy the normalization condi-

tion ∑
k

ψk(z)ψ∗k(z
′) = δ(z − z′). (2.8)

In Fock space, the operation of α̂i and α̂†i on an occupation number state [121] are

defined through the equalities

α̂†i |n0 n1 · · · , ni, · · · 〉 =
√

(ni + 1)|n0 n1, · · · , ni + 1, · · · 〉, (2.9a)

α̂i|n0 n1, · · · , ni, · · · 〉 =
√
ni|n0 n1, · · · , ni − 1, · · · 〉, (2.9b)

where nis are the eigenvalues of the number operator α̂†i α̂i, which denotes the num-

ber of atoms in the ith single-particle state. BEC occurs when the number of atoms

n0 in the single-particle ground state becomes very large, such that n0 ≡ N0 � 1.

Here N0 is the number of condensate atoms and the ratio N0/N remains finite in the

thermodynamic limit; N is the total number of atoms. To a very good approximation

N0 ± 1 ≈ N0, that is, the two many-particle states with N0 and N0 + 1 atoms in the

condensate are equivalent. This implies that the operators α̂0 and α̂†0 are c-numbers, so
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that we can replace the operators as

α̂0 = α̂†0 =
√
N0. (2.10)

This is referred to as Bogoliubov approximation [32, 119]. From Eq. (2.6), and using

Eq. (2.10), one can write

Ψ̂(z, t) =
√
N0ψ0(z)e−iµt/~ + ψ̃(z, t), (2.11)

where the first term on the right hand side represents the condensate part and ψ̃(z, t) =∑
i=1

α̂i(t)ψi(z) is the fluctuation operator. Thus one can now write

Ψ̂ = φ+ ψ̃, (2.12)

where φ(z, t) =
√
N0ψ0(z)e−iµt/~ is the condensate wavefunction or the order pa-

rameter [104]. It is to be noted that, only the fluctuation operator ψ̃ embodies the

operator properties of Ψ̂. With this decomposition, the field operator does not possess

the same symmetries as the original Hamiltonian. The condensate wavefunction has

a well-defined phase, and consequently global U(1) gauge symmetry of the Hamilto-

nian is broken. Fixing the condensate phase leads to nonconservation of total num-

ber of particles, since these are canonically conjugate observables. This is, however

fixed, when we work with the grand-canonical Hamiltonian through the inclusion of

the chemical potential µ. This ensures that the total number of particles in the system

is conserved [122, 123].

2.1.4 Hartree-Fock-Bogoliubov approximation

The operator ψ̃, depending on the system, may represent fluctuations due to thermal

excitations, quantum nature of the system, or atoms excited to higher energy internal

states due to interactions. Then, using Eq. (2.12) in Eq. (2.3), we obtain the Hartree-

Fock-Bogoliubov Hamiltonian

Ĥ =

∫
dz
{
φ∗
(
ĥ− µ

)
φ+ ψ̃†

(
ĥ− µ

)
ψ̃ + φ∗

(
ĥ− µ

)
ψ̃ + ψ̃†

(
ĥ− µ

)
φ
}

+

∫
dz

U

2

{
|φ|4 +

(
φ∗|φ|2 + φ∗2φ

)
ψ̃ +

(
|φ|2φ+ φ∗φ2

)
ψ̃†

+φ∗2ψ̃ψ̃ + φ2ψ̃†ψ̃† + 4|φ|2ψ̃†ψ̃ + 2φ∗ψ̃†ψ̃ψ̃ + 2φψ̃†ψ̃†ψ̃

+ ψ̃†ψ̃†ψ̃ψ̃
}
. (2.13)
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We can split the Hamiltonian into terms of different order in fluctuation as Ĥ = Ĥ0 +

Ĥ1 + Ĥ2 + Ĥ3 + Ĥ4, here n in Ĥn denotes the order of the fluctuation operators. The

explicit form of the terms are

Ĥ0 =

∫
dz φ∗

(
ĥ− µ+

U

2
|φ|2
)
φ, (2.14a)

Ĥ1 =

∫
dz φ∗

(
ĥ− µ+ U |φ|2

)
ψ̃ + ψ̃†

(
ĥ− µ+ U |φ|2

)
φ, (2.14b)

Ĥ2 =

∫
dz ψ̃†

(
ĥ− µ+ 2U |φ|2

)
ψ̃ +

U

2

(
φ∗2ψ̃ψ̃ + φ2ψ̃†ψ̃†

)
, (2.14c)

Ĥ3 =

∫
dz U

(
φ∗ψ̃†ψ̃ψ̃ + φψ̃†ψ̃†ψ̃

)
, (2.14d)

Ĥ4 =

∫
dz

U

2
ψ̃†ψ̃†ψ̃ψ̃. (2.14e)

The equivalent Feynman diagrams of these terms are shown in Fig. 2.1. In the figure

the smooth solid and wiggly lines represent the non-condensate and condensate prop-

agator, respectively, and the dashed lines represent the interatomic interaction [123].

(e) (f) (g)

(a) (b) (c) (d)

Figure 2.1: Feynman diagrams of scattering processes associated with the term (a)

φ∗φ∗φφ, (b) φ∗φψ̃†ψ̃, (c) φ∗φ∗ψ̃ψ̃, (d) φφψ̃†ψ̃†, (e) φ∗ψ̃†ψ̃ψ̃, (f) φψ̃†ψ̃†ψ̃, (g) ψ̃†ψ̃†ψ̃ψ̃.

The fluctuations, both quantum and thermal, are white noise in character, and the

fluctuation operators have zero ensemble average 〈ψ̃(z, t)〉 = 〈ψ̃†(z, t)〉 = 0 [124].

The condensate wavefunction or the order parameter is normalized as
∫
|φ(z)|2 dz =

N0. Following the decomposition in Eq. (2.12), the second term of Eq. (2.5) can be

written as

Ψ̂†Ψ̂Ψ̂ = |φ|2φ+ 2|φ|2ψ̃ + φ2ψ̃† + φ∗ψ̃ψ̃ + 2φψ̃†ψ̃ + ψ̃†ψ̃ψ̃. (2.15)
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To reduce the interaction terms to quadratic form in fluctuation operators, the last term

on the right hand side is approximated, using mean-field approximation and Wick’s

theorem, as

ψ̃†ψ̃ψ̃ ' 2〈ψ̃†ψ̃〉ψ̃ + 〈ψ̃ψ̃〉ψ̃†. (2.16)

Using the above approximation in Eq. (2.15) we obtain [104]

Ψ̂†Ψ̂Ψ̂ = |φ|2φ+ 2
[
|φ|2 + 〈ψ̃†ψ̃〉

]
ψ̃ +

[
φ2 + 〈ψ̃ψ̃〉

]
ψ̃† + 2φψ̃†ψ̃ + φ∗ψ̃ψ̃. (2.17)

The stationary state solution of Eq. (2.5) is obtained by taking the average, and it is

given by

ĥφ+ U〈Ψ̂†Ψ̂Ψ̂〉 = 0. (2.18)

From the definitions of the fluctuation operators as 〈ψ̃〉 = 〈ψ̃†〉 = 0, we get

〈Ψ̂†Ψ̂Ψ̂〉 = |φ|2φ+ 2φ〈ψ̃†ψ̃〉+ φ∗〈ψ̃ψ̃〉. (2.19)

Thus, with this definition Eq. (2.18) is reduced to

ĥφ(z) + U [nc(z) + 2ñ(z)]φ(z) + Um̃(z)φ∗(z) = 0. (2.20)

This is referred to as the generalized Gross-Pitaevskii equation with nc = |φ|2, ñ ≡
〈ψ̃†ψ̃〉, and m̃ ≡ 〈ψ̃ψ̃〉 being the local condensate, non-condensate and anomalous

density respectively. It is to be emphasized here that Eq. (2.16) neglects particle-

exchanging collisions between condensed and thermal atoms. The anomalous average

term m̃ is the expectation value of an unequal number of creation and annihilation op-

erators, hence its name. In case of repulsively interacting BECs, m̃ plays a negligible

role. But it is crucial in the study of attractive or molecular BECs [26]. The equation

of motion of the fluctuation or non-condensate operator is given by

i~
∂ψ̃

∂t
= i~

∂

∂t
(Ψ̂− φ), (2.21)

using Eqs. (2.5), and (2.20) it is simplified to

i~
∂ψ̃

∂t
= ĥψ̃ + U

[
Ψ̂†Ψ̂Ψ̂− 〈Ψ̂†Ψ̂Ψ̂〉

]
. (2.22)

In the mean field approximation ψ̃†ψ̃ ' 〈ψ̃†ψ̃〉, and ψ̃ψ̃ ' 〈ψ̃ψ̃〉, then, the average of

the three field operator in the above equation is reduced to

Ψ̂†Ψ̂Ψ̂− 〈Ψ̂†Ψ̂Ψ̂〉 ' 2〈Ψ̂†Ψ̂〉ψ̃ + 〈Ψ̂Ψ̂〉ψ̃†. (2.23)
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From the above relation, the Eq. (2.22) assumes the form

i~
∂ψ̃

∂t
= ĥψ̃ + 2Unψ̃ + Umψ̃†, (2.24)

where n ≡ nc + ñ, and m ≡ φ2 + m̃. The fluctuations, through the Bogoliubov

transformation [119, 120] can be written as a linear combination of the quasiparticle

modes or excited states of the condensate as

ψ̃(z, t) =
∑
j

[
uj(z)α̂j(z)e−iEjt/~ − v∗j (z)α̂†j(z)eiEjt/~

]
, (2.25a)

ψ̃†(z, t) =
∑
j

[
u∗j(z)α̂†j(z)eiEjt/~ − vj(z)α̂j(z)e−iEjt/~

]
. (2.25b)

Here, α̂j (α̂†j) are the quasiparticle annihilation (creation) operators and satisfy the

usual Bose commutation relations, and the subscript j represents the energy eigen-

value index. The functions u and v are in general complex, and referred to as the

Bogoliubov quasiparticle amplitudes. An important assumption in the derivations is

that the quasiparticles are noninteracting, which is applicable when the condensate is

with few excitations. Applying the above transformation to Eq. (2.24), and collect-

ing prefactors of e−iEjt/~ and eiEjt/~, we obtain the following coupled Bogoliubov-de

Gennes equations

(ĥ+ 2Un)uj − Umvj = Ejuj, (2.26a)

−(ĥ+ 2Un)vj + Um∗uj = Ejvj. (2.26b)

The above equations along with Eq. (2.20), are the Hartree-Fock-Bogoliubov (HFB)

equations, and are to be solved self-consistently. They form the basis of our study

of effect of finite temperature on Bose condensates. Returning to the quasiparticle

amplitudes, they satisfy the following orthogonality and symmetry conditions∫
dz
[
upu

∗
q − vpv∗q

]
= δpq, (2.27a)∫

dz
[
u∗pv

∗
q − v∗pu∗q

]
= 0, (2.27b)∫

dz [upvq − vpuq] = 0. (2.27c)

The number density ñ of non-condensate particles is then

ñ ≡ 〈ψ̃†ψ̃〉 =
∑
j

{
[|uj|2 + |vj|2]N0(Ej) + |vj|2

}
, (2.28)
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where 〈α̂†jα̂j〉 = (eβEj − 1)−1 ≡ N0(Ej) with β = 1/kBT , is the Bose factor of the

quasiparticle state with energy Ej at temperature T . However, it should be emphasized

that, when T → 0,N0(Ej)’s in Eq. (2.28) vanishes. The non-condensate density is then

reduced to

ñ =
∑
j

|vj|2, (2.29)

which is independent of temperature and accounts for the quantum fluctuations. Fol-

lowing similar calculations, the anomalous density is given by

m̃ ≡ 〈ψ̃ψ̃〉 = −
∑
j

ujv
∗
j [2N0(Ej) + 1] (2.30)

The Eq. (2.26) is equivalent to solving a matrix eigenvalue problem of the form

E

u
v

 =

ĥ+ 2Un −Um
Um∗ −(ĥ+ 2Un)

u
v

 . (2.31)

In this thesis, the quasiparticle amplitudes uj , vj’s are defined in the basis of the

trapping potential, in particular, harmonic oscillator potential. Then,

u(z) =

Nb∑
i=0

ciϕi(z), and v(z) =

Nb∑
i=0

diϕi(z),

where, |ϕi〉’s are the harmonic-oscillator eigenstates, ci and dis are the expansion coef-

ficients of the mode functions u and v, respectively, and Nb is the number of harmonic

oscillator eigenstates chosen to represent the quasi-particle amplitudes. Thus, the ma-

trix form of Eq. (2.31) is

E



c0

...

cNb

d0

...

dNb


=



L00 · · · L0Nb
−B00 · · · −B0Nb

... . . . ...
... . . . ...

LNb0 · · · LNbNb
−BNb0 · · · −BNbNb

B00 · · · B0Nb
−L00 · · · −L0Nb

... . . . ...
... . . . ...

BNb0 · · · BNbNb
−LNb0 · · · −LNbNb





c0

...

cNb

d0

...

dNb


, (2.32)

where Lpq =

∫
ϕp(z)(ĥ + 2Un)ϕq(z) dz, and Bpq =

∫
ϕp(z)Umϕq(z) dz are the

matrix elements. The matrix is non-Hermitian and non-symmetric with a dimension of

2(Nb + 1)× 2(Nb + 1), so it can have both real and complex eigenvalues depending on
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the physical parameters of the system under study. The eigenvalue spectrum obtained

from the diagonalization of the matrix has an equal number of positive and negative

eigenvalues Ej’s.

2.1.5 Hartree-Fock-Bogoliubov-Popov approximation

The HFB theory is gapped, there is a finite energy gap in the excitation spectrum, and

violates Hugenholtz-Pines theorem [125]. According to the theorem, it is necessary

that the energy spectrum arising from a theory based on symmetry-breaking should be

gapless. To be precise, it should cost zero energy to excite the lowest mode, known

as the Goldstone mode and corresponds to a rotation of the condensate phase. The

energy gap in HFB theory arises from the approximate factorization of the operator

averages. In particular, the inclusion of the anomalous average m̃ makes HFB theory

ultraviolet divergent, which is an unavoidable outcome of the inconsistent treatment

of atom-atom collisions through contact potential. One way to resolve the divergence

is to regularize m̃ by subtracting the contributions from energy modes. Although the

contribution from m̃ and ñ are comparable, a consistent analysis of the condensate

and non-condensate requires going beyond the quadratic Hamiltonian approximation.

Details on the short comings of HFB method are discussed in Refs. [26, 126–130]. As

an immediate solution is, in a heuristic way, ignoring the m̃ term, which is also known

Popov approximation. It is a gapless finite temperature approximation which satisfies

Hugenholtz-Pines theorem. Thus the equations under HFB-Popov approximation are

ĥφ(z) + U [nc(z) + 2ñ(z)]φ(z) = 0, (2.33a)

(ĥ+ 2Un)uj − Uφ2vj = Ejuj, (2.33b)

−(ĥ+ 2Un)vj + Uφ∗2uj = Ejvj, (2.33c)

where, as mentioned earlier, ñ is the non-condensate density. The order parameter

φs and the non-condensate density ñs are then calculated self-consistently using the

above coupled equations [105, 106, 131, 132].
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2.1.6 Local-Density approximation

The HFB-Popov equations, Eq. (2.33), can also be solved using the semiclassical

WKB approximation, which in this context is referred to as local-density approxima-

tion (LDA) [133, 134]. For a quasi-1D system where z represents the axial direction,

this approximation is equivalent to setting

uj(z)→ u(p, z)eiχ(z) , vj(z)→ v(p, z)eiχ(z),∑
j

· · · →
∫

dp

2π
, (2.34)

where χ defines the local phase of the condensate and its gradient is the momentum p =

∂χ/∂z. The Bogoliubov quasiparticle amplitudes, as discussed earlier, are normalized

as |u(p, z)|2−|v(p, z)|2 = 1. In this limit, one assumes that u(z) and v(z) vary slowly,

so the first order derivatives of u and v, and second order derivatives of χ are neglected.

The Bogoliubov-de Gennes equations, then, assume the form[
p2

2m
+ V (z)− µ+ 2Un(z)

]
u(p, z)− Unc(z)v(p, z) = ε(p, z)u(p, z), (2.35a)

−
[
p2

2m
+ V (z)− µ+ 2Un(z)

]
v(p, z) + Unc(z)u(p, z) = ε(p, z)v(p, z). (2.35b)

For simplification define Hartree-Fock energy as εHF(p, z) = p2/2m+V −µ+2Un(z).

With this definition

εHF(p, z)u(p, z)− Unc(z)v(p, z) = ε(p, z)u(p, z), (2.36a)

−εHF(p, z)v(p, z) + Unc(z)u(p, z) = ε(p, z)v(p, z). (2.36b)

This can be written as a matrix eigenvalue equationεHF − ε −Unc
Unc −εHF − ε

u
v

 = 0. (2.37)

The characteristic or the secular equation gives the dispersion relation

ε2 = ε2HF − U2n2
c . (2.38)

From Eq. (2.36) and using the normalization condition, mentioned earlier, we get

u2 =
εHF + ε

2ε
; v2 =

εHF − ε
2ε

. (2.39)
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The non-condensate density in the LDA, similar to Eq. (2.28), is then given by

ñ =
1

2π

∫
dp
[
(|u|2 + |v|2)N0(ε) + |v|2

]
, (2.40)

where the momentum integral replaces the summation over the excited energy states

in Eq. (2.28). This is applicable when the level spacing of the high-lying momen-

tum states are small. Furthermore, the excitation energies considered must be much

larger than the level spacing of the external trapping potential, that is, kBT � ~ωHO.

Substituting u and v, we get

ñ =
1

2π

∫
dp

[
εHF

ε

(
1

eβε − 1
+

1

2

)
− 1

2

]
. (2.41)

Using Eq. (2.38) the density of non-condensate atoms with LDA is

ñ =
1

2π

∫
dp

[
εHF

ε

(
1

eβε − 1
+

1

2

)
− 1

2

]
Θ(ε2HF − U2n2

c). (2.42)

One may also use LDA for the entire energy excitation spectra and not just for the

high-lying modes. In which case, the condensate must also be treated semiclassi-

cally like Thomas-Fermi (TF) approximation. So that the entire theory, describing

the condensate and non-condensate atoms, is semiclassical at finite temperature and

consistent. This scheme is applicable only when Na � aHO (in the case of dilute ul-

tracold atoms this corresponds to N ≈ 106 with a density of 1012 − 1014 cm−3). Here

aHO = (~/mωHO)1/2 is the oscillator length scale associated with the geometric mean

ωHO of the angular trapping frequencies [32]. Under the TF approximation, the kinetic

energy term is neglected and the condensate density is

nc =

(
µ− V − 2Uñ

U

)
Θ(µ− V − 2Uñ). (2.43)

The properties of Heaviside step function give rise to two possible cases: first, when

µ < V +2Uñ, then nc = 0 and hence, ε(p, z) = p2/2m+V −µ+2Uñ(z); and second

when µ > V + 2Uñ, εHF = p2/2m + V − µ + 2Uñ(z) + 2Unc(z) = p2/2m + Unc.

Thus using Eq. (2.38) we get,

ε =

[(
p2

2m
+ Unc

)2

− U2n2
c

]1/2

. (2.44)

To use the above semiclassical expressions for BECs in which TF approximation is

not applicable, a threshold energy εth is to be defined. It is defined such that, below εth
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the quasiparticle excitations solve Eq. (2.33). For modes lying above εth, LDA can be

used to obtain ñ. The total non-condensate density ñ at finite temperature can thus be

written as [122, 135]

ñ(z) =
∑
j

ñj(z)Θ(εth − Ej) +

∫ ∞
εth

dε ñ(ε, z) (2.45)

Using Eq. (2.42) and transforming the integration in momentum space to integration

in terms of ε, we get

ñ(ε, r) =
m1/2

2
√

2π

∫ ∞
εth

dε
(√

ε2 + U2n2
c + µ− V − 2Un

)−1/2
(

1

eβε − 1
+

1

2

)
− m1/2

4
√

2π

∫ ∞
εth

dε ε
(√

ε2 + U2n2
c + µ− V − 2Un

)−1/2

/
√
ε2 + U2n2

c

=
m1/2

2
√

2π

∫ ∞
εth

dε
(√

ε2 + U2n2
c + µ− V − 2Un

)−1/2

×
{

1

eβε − 1
+

1

2
− ε

2
√
ε2 + U2n2

c

}
(2.46)

The value of εth depends on the problem of interest, and hence, must be chosen with

care. It is worth mentioning here that for high-lying modes > εth HFB-Popov theory

and LDA do not differ much, and the reason is, the Bose-Einstein distribution factors

for these states are small. However, the difference between these two approaches will

be much more pronounced for the low-lying modes when the energy level spacing

is larger, and cannot be approximated as a continuum. Thus for calculation of non-

condensate density, HFB-Popov approximation is far more reliable.

2.2 Two-component BEC

We here generalize the finite temperature theory employed for the one-component sys-

tem to an interacting two-component BEC. At T = 0, excluding quantum fluctuations,

the total wavefunction of the TBEC is given by

Φ(r1, · · · , rN1 ; r′1, · · · , r′N2
) =

N1∏
k=1

ψ1(rk)

N2∏
j=1

ψ2(r′j). (2.47)

Here rk and r′j denote the position of the particles of species 1 and species 2 respec-

tively, with N1 and N2 as the number of particles of the constituent species. The
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single-particle wave functions are given by ψ1 and ψ2. Furthermore, the single-particle

wavefunction are normalized to unity so that the condensate wavefunctions belonging

to each of the species are given by φ1 =
√
N1ψ1 and φ2 =

√
N2ψ2. Unlike in a single-

component BEC, atoms of species 1 interact with atoms of species 2 which makes the

system richer and allows the existence of different phases. For such a system, the

energy functional reads

E = E1 + E2 + E12, (2.48)

where, E1 and E2 are the usual single-species energy functionals for species 1 and

species 2, respectively. The term E12 arises due to the presence of the interspecies

interaction. Thus the energy of the TBEC is given by

E =

∫
dr

[ 2∑
k=1

(
~2

2mk

|∇φk|2 + Vk(r)|φk|2 +
1

2
Ukk|φk|4

)
+ U12|φ1|2|φ2|2

]
. (2.49)

Here mk is the mass of the bosonic atom of species k, and Vk is the usual external har-

monic trapping potential. The interaction strengths are given by Ukj = 2π~2akj/mkj ,

where m−1
kj = m−1

k + m−1
j is the reduced mass for an atom k and an atom j. Using

these definitions we obtain the coupled time-independent Gross-Pitaevskii equations

for a TBEC [
− ~2

2mk

∇2 + Vk(r) +
2∑
j=1

Ukj|φj|2
]
φk = µkφk, (2.50)

when the energy functional ε = E −
∑
k

µkNk is variationally minimized with φ∗k

as the parameters of variation. The above Eq. (2.50) forms the starting point of our

analysis of binary condensates at T 6= 0. Using the stability conditions, at equilibrium,

depending upon the strength of the interatomic interactions, the condensates may either

overlap spatially or phase-separate. The emergence of such different phases makes it

drastically different from the usual single-species BEC and motivates us to study binary

mixtures at T 6= 0. For these studies, as mentioned earlier we first solve Eqns. (2.50),

and then we use HFB-Popov approximation to calculate the thermal cloud densities. At

T 6= 0, along with the two coherent condensate clouds, there exist the incoherent non-

condensate clouds belonging to each of the species. Apart from the interaction between

the condensate and non-condensate cloud of the same species, interaction between
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the condensate atoms of one species and the non-condensate of the other species also

exists. The presence of an increased number of interaction terms in such a system

makes it complicated and poses difficulty to theoretically model it. In the present

work, we have assumed the thermal clouds of both the species are static, and consider

temperature less than the lower critical temperature among the two. We present here

a detailed description of the generalization of the coupled T = 0 Gross-Pitaevskii

equations to T 6= 0. For simplicity, we consider a quasi-1D trap in which the radial

degrees of freedom have been integrated out.

2.2.1 HFB approximation for the TBEC

Consider the grand-canonical Hamiltonian of a mixture of two interacting BECs, like

in Eq. (2.3), for a quasi-1D trap it can be written as

Ĥ =
∑
k=1,2

∫
dzΨ̂†k(z, t)

[
− ~2

2mk

∂2

∂z2
+ Vk(z)− µk +

Ukk
2

Ψ̂†k(z, t)Ψ̂k(z, t)

]
Ψ̂k(z, t)

+ U12

∫
dzΨ̂†1(z, t)Ψ̂†2(z, t)Ψ̂1(z, t)Ψ̂2(z, t), (2.51)

where k = 1, 2 is the species index, Ψ̂k’s are the Bose field operators of the two

different species, and µk’s are the chemical potentials. The strength of intra- and in-

terspecies interactions are U11 = 8π~2a11λ/m1, U22 = 8π~2a22λ/m2, and U12 =

(4π~2a12λ)/(2m12), respectively, where λ = (ω⊥/ωz) � 1 is the anisotropy param-

eter. In this thesis we consider all the interactions as repulsive, that is akk, a12 > 0.

The Heisenberg equation of motion for the Bose field operator Ψ̂k(z) in case of binary

condensates in two-component notation is

i~
∂

∂t

Ψ̂1

Ψ̂2

=

ĥ1 + U11Ψ̂†1Ψ̂1 U12Ψ̂†2Ψ̂1

U12Ψ̂†1Ψ̂2 ĥ2 + U22Ψ̂†2Ψ̂2

Ψ̂1

Ψ̂2

 , (2.52)

where ĥk = (−~2/2mk)∂
2/∂z2+Vk(z)−µk. Similar to a single-component BEC, em-

ploying Bogoliubov approximation in a TBEC system, field operators can be written

as Ψ̂k(z, t) = φk(z) + ψ̃k(z, t), where φk(z) is a c-field and represents the conden-

sate, and ψ̃k(z, t) is the fluctuation part of the kth species. We can write the total field
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operator as Ψ̂1

Ψ̂2

 =

φ1

φ2

+

ψ̃1

ψ̃2

 , (2.53)

⇒ Ψ̂ = Φ + Ψ̃,

where Φ and Ψ̃(z) are the condensate and fluctuation operator in two-component

notations. Using the expression of Ψ̂k, we can separate the Hamiltonian as Ĥ =∑
k=1,2

4∑
n=1

Ĥk
n , where 0 6 n 6 4 denotes the order of the fluctuation operators. There

are ten terms, and these are

Ĥ1
0 =

∫
dz φ∗1

(
ĥ1 − µ1 +

U11

2
|φ1|2 +

U12

2
|φ2|2

)
φ1,

Ĥ2
0 =

∫
dz φ∗2

(
ĥ2 − µ2 +

U22

2
|φ2|2 +

U12

2
|φ1|2

)
φ2,

Ĥ1
1 =

∫
dz φ∗1

(
ĥ1 − µ1 + U11|φ1|2 + U12|φ2|2

)
ψ̃1 + ψ̃†1

(
ĥ1 − µ1 + U11|φ1|2 + U12|φ2|2

)
φ1,

Ĥ2
1 =

∫
dz φ∗2

(
ĥ2 − µ2 + U22|φ2|2 + U12|φ1|2

)
ψ̃2 + ψ̃†2

(
ĥ2 − µ2 + U22|φ2|2 + U12|φ1|2

)
φ2,

Ĥ1
2 =

∫
dz ψ̃1

†
(
ĥ1 − µ1 + 2U11|φ1|2 + U12|φ2|2

)
ψ̃1 +

U11

2

(
φ∗21 ψ̃1ψ̃1 + φ2

1ψ̃
†
1ψ̃
†
1

)
+
U12

2

(
φ∗1φ

∗
2ψ̃1ψ̃2 + φ∗1φ2ψ̃

†
2ψ̃1 + φ1φ

∗
2ψ̃
†
1ψ̃2 + φ1φ2ψ̃

†
1ψ̃
†
2

)
,

Ĥ2
2 =

∫
dz ψ̃2

†
(
ĥ2 − µ2 + 2U22|φ2|2 + U12|φ1|2

)
ψ̃2 +

U22

2

(
φ∗22 ψ̃2ψ̃2 + φ2

2ψ̃
†
2ψ̃
†
2

)
+
U12

2

(
φ∗1φ

∗
2ψ̃1ψ̃2 + φ∗1φ2ψ̃

†
2ψ̃1 + φ1φ

∗
2ψ̃
†
1ψ̃2 + φ1φ2ψ̃

†
1ψ̃
†
2

)
,

Ĥ1
3 =

∫
dz U11

(
φ∗1ψ̃

†
1ψ̃1ψ̃1 + φ1ψ̃

†
1ψ̃
†
1ψ̃1

)
+
U12

2

(
φ∗1ψ̃

†
2ψ̃1ψ̃2 + φ∗2ψ̃

†
1ψ̃1ψ̃2

+φ1ψ̃
†
1ψ̃
†
2ψ̃2 + φ2ψ̃

†
1ψ̃
†
2ψ̃1

)
Ĥ2

3 =

∫
dz U22

(
φ∗2ψ̃

†
2ψ̃2ψ̃2 + φ2ψ̃

†
2ψ̃
†
2ψ̃2

)
+
U12

2

(
φ∗1ψ̃

†
2ψ̃1ψ̃2 + φ∗2ψ̃

†
1ψ̃1ψ̃2

+φ1ψ̃
†
1ψ̃
†
2ψ̃2 + φ2ψ̃

†
1ψ̃
†
2ψ̃1

)
Ĥ1

4 =

∫
dz

U11

2
ψ̃†1ψ̃

†
1ψ̃1ψ̃1 +

U12

2
ψ̃†1ψ̃

†
2ψ̃1ψ̃2

Ĥ2
4 =

∫
dz

U22

2
ψ̃†2ψ̃

†
2ψ̃2ψ̃2 +

U12

2
ψ̃†1ψ̃

†
2ψ̃1ψ̃2 (2.54)

The Feynman diagrams corresponding to the scattering processes due to intraspecies

interactions U11, U22 and interspecies interaction U12 are shown in Fig. 2.2 and Fig. 2.3,

respectively. Using the definition of field operator from Eq. (2.53) in Eq. (2.52), the
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(e)

1(2) 1̄(2̄)

1̄(2̄)1̄(2̄)

(f)
1(2) 1̄(2̄)

1(2) 1̄(2̄)

(g)
1̄(2̄) 1̄(2̄)

1̄(2̄)1̄(2̄)

(a)
1(2) 1(2)

1(2) 1(2)

(b)

1(2) 1̄(2̄)

1(2) 1̄(2̄)

(c)

1(2) 1(2)

1̄(2̄) 1̄(2̄)

(d)

1̄(2̄) 1̄(2̄)

1(2) 1(2)

Figure 2.2: Various scattering processes solely due to the intraspecies interactions U11

and U22. Here ‘1’, ‘2’, ‘1̄’, and ‘2̄’ represent φ1, φ2, ψ̃1, and ψ̃2, respectively. The smooth

solid lines denote the non-condensate propagator, the wiggly lines represent the condensate

propagator and the broken lines represent the interaction.

Heisenberg equation of motion for the first species ( k = 1) is

i~
∂(φ1 + ψ̃1)

∂t
=

[−~2

2m1

∇2φ1 −
~2

2m1

∇2ψ̃1 + V1φ1 + V1ψ̃1

+U11Ψ̂†1Ψ̂1Ψ̂1 + U12Ψ̂†2Ψ̂2Ψ̂1 − µ1φ1 − µ1ψ̃1

]
. (2.55)

The interaction terms in the equation can be written in terms of c-number and fluctua-

tion operators as

Ψ̂†1Ψ̂1Ψ̂1 = |φ1|2φ1 + 2|φ1|2ψ̃1 + 2φ1ψ̃
†
1ψ̃1 + φ∗1ψ̃1ψ̃1 + φ2

1ψ̃
†
1 + ψ̃†1ψ̃1ψ̃1, (2.56a)

Ψ̂†2Ψ̂2Ψ̂1 = |φ2|2φ1 + |φ2|2ψ̃1 + φ∗2ψ̃2φ1 + φ∗2ψ̃2ψ̃1 + ψ̃†2φ2φ1 + ψ̃†2φ2ψ̃1

+ ψ̃†2ψ̃2φ1 + ψ̃†2ψ̃2ψ̃1. (2.56b)

For the same reasons as in the single-component BEC 〈ψ̃k〉 = 〈ψ̃k†〉 = 0. Thus the

expectation value of the product of operators are

〈Ψ̂†1Ψ̂1Ψ̂1〉 = |φ1|2φ1 + φ∗1〈ψ̃1ψ̃1〉+ 2φ1〈ψ̃†1ψ̃1〉+ 〈ψ̃†1ψ̃1ψ̃1〉, (2.57a)

〈Ψ̂†2Ψ̂2Ψ̂1〉 = |φ1|2φ1 + φ∗2〈ψ̃2ψ̃1〉+ φ2〈ψ̃†2ψ̃1〉+ φ1〈ψ̃†2ψ̃2〉

+ 〈ψ̃†2ψ̃2ψ̃1〉. (2.57b)

Taking, 〈ψ̃2ψ̃1〉 = 〈ψ̃†2ψ̃1〉 = 0, the equation of motion of the condensate of the first
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(m)
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(e)
1̄ 2̄

1 2

(f)
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(g)

2 1̄
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(h)
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1̄ 2

1̄ 2̄

(k)

1̄ 2̄

1 2̄

(l)

1̄ 2̄
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Figure 2.3: Various scattering processes arising due to the interspecies interactions U12.

species is obtained by taking the average of Eq. (2.55) which is given by

i~
∂φ1

∂t
=

[
− ~2

2m1

∇2 + V1 − µ1

]
φ1 + U11 [n1c + 2ñ1]φ1 + U11m̃1φ

∗
1

+ U12 [n2c + ñ2]φ1 + 〈ψ̃†1ψ̃1ψ̃1〉+ 〈ψ̃†2ψ̃2ψ̃1〉. (2.58)

Similarly, the equation of motion for the condensate of the second species is given by,

i~
∂φ2

∂t
=

[
− ~2

2m2

∇2 + V2 − µ2

]
φ2 + U22 [n2c + 2ñ2]φ2 + U22m̃2φ

∗
2

+ U12 [n1c + ñ1]φ2 + 〈ψ̃†2ψ̃2ψ̃2〉+ 〈ψ̃†1ψ̃1ψ̃2〉, (2.59)

where we have introduced the local densities: nkc ≡ |φk|2, ñk ≡ 〈ψ̃†kψ̃k〉, m̃k ≡
〈ψ̃kψ̃k〉 as the condensate, non-condensate, and anomalous densities, respectively. Pro-

ceeding, like in single-species BEC, the equation of motion for the non-condensate

density of the first species is

i~
∂ψ̃1

∂t
= i~

∂

∂t
(ψ̂1 − φ1). (2.60)
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Using Eq. (2.55) and Eq. (2.58) the equation can be expanded as,

i~
∂ψ̃1

∂t
=

(
− ~2

2m1

∇2ψ̃1 + V1ψ̃1 + 2U11|φ1|2ψ̃1 + U12|φ2|2ψ̃1 + 2U11ñ1ψ̃1 − µ1ψ̃1

)
+ U11φ

2
1ψ̃
†
1 + U12

(
φ∗2ψ̃2ψ̃1 + φ1φ

∗
2ψ̃2 + φ1φ2ψ̃

†
2 + φ2ψ̃

†
2ψ̃1

)
+ 2U11φ1

(
ψ̃†1ψ̃1 − ñ1

)
+ U12φ1

(
ψ̃†2ψ̃2 − ñ2

)
+ U11φ

∗
1

(
ψ̃1ψ̃1 − m̃1

)
− 2U11ñ1ψ̃1 + U11

(
ψ̃†1ψ̃1ψ̃1 − 〈ψ̃†1ψ̃1ψ̃1〉

)
+ U12

(
ψ̃†2ψ̃2ψ̃1 − 〈ψ̃†2ψ̃2ψ̃1〉

)
. (2.61)

Applying mean-field approximation, ψ̃†kψ̃j ' 〈ψ̃†kψ̃j〉, ψ̃kψ̃j ' 〈ψ̃kψ̃j〉, ψ̃†1ψ̃1ψ̃1 '
2〈ψ̃†1ψ̃1〉ψ̃1 + 〈ψ̃1ψ̃1〉ψ̃†1, ψ̃†2ψ̃2ψ̃1 ' 〈 ψ̃†2ψ̃2〉ψ̃1. For fluctuation operators of the same

species k = j, like in single-species, 〈ψ̃†kψ̃k〉 = ñk, and 〈ψ̃kψ̃k〉 = m̃k. However,

when the fluctuation operators are of different species k 6= j, we use the approxima-

tion 〈ψ̃†kψ̃j〉 = 〈ψ̃kψ̃j〉 = 0. Using these definitions and neglecting the three-field

correlation term, the equation of motion of the fluctuation operator for the first species

is

i~
∂ψ̃1

∂t
=

(
− ~2

2m1

∇2 + V1 + 2U11(n1c + ñ1)− µ1 + U12|φ2|2 + U12ñ2

)
ψ̃1

+ U11

(
φ2

1 + m̃1

)
ψ̃†1 + U12φ1φ

∗
2ψ̃2 + U12φ1φ2ψ̃

†
2. (2.62)

Similarly, the equation of motion of the fluctuation operator of the second species is,

i~
∂ψ̃2

∂t
=

(
− ~2

2m2

∇2 + V2 + 2U22(n2c + ñ2)− µ2 + U21|φ1|2 + U21ñ1

)
ψ̃2

+ U22

(
φ2

2 + m̃2

)
ψ̃†2 + U21φ

∗
1φ2ψ̃1 + U21φ1φ2ψ̃

†
1. (2.63)

For compact notation, we have used the definitions nk = nkc + ñk, mk = φ2
k + m̃k.

The next step is to diagonalize the Hamiltonian matrix and obtain the quasiparticle

amplitude functions us and vs. After which, like in single-component BEC, under

Bogoliubov transformation the fluctuation operators are

ψ̃k =
∑
j

[
ukjα̂je

−iEjt/~ − v∗kjα̂†jeiEjt/~
]
, (2.64a)

ψ̃†k =
∑
j

[
u∗kjα̂

†
je
iEjt/~ − vkjα̂je−iEjt/~

]
. (2.64b)

To recall, here k represents the species index, and the remaining symbols are as defined

earlier. We take the operators α and α† as common to both the species, this is natural

and consistent representation as the dynamics of the species are coupled. Furthermore,
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this reproduces the standard coupled Bogoliubov-de Gennes equations at T = 0 and

in the limit a12 → 0, noninteracting TBEC, the quasiparticle spectra separates into

two distinct sets: one set for each of the condensates. On substituting Eq. (2.64) in

Eqns. (2.62) and (2.63) we obtain the following Bogoliubov-de Gennes equations for

binary condensate mixtures

(
− ~2

2m1

∇2 + V1 + 2U11n1 + U12n2c + U12ñ2 − µ1

)
u1j − U11m1v1j + U12φ1φ

∗
2u2j

− U12φ1φ2v2j = Eu1j, (2.65a)

−
(
− ~2

2m1

∇2 + V1 + 2U11n
∗
1 + U12n2c + U12ñ

∗
2 − µ1

)
v1j + U11m

∗
1u1j − U12φ

∗
1φ2v2j

+ U12φ
∗
1φ
∗
2u2j = Ejv1j, (2.65b)(

− ~2

2m2

∇2 + V2 + 2U22n2 + U12n1c + U12ñ1 − µ2

)
u2j − U22m2v2j + U12φ

∗
1φ2u1j

− U12φ1φ2v1j = Eju2j, (2.65c)

−
(
− ~2

2m2

∇2 + V2 + 2U22n
∗
2 + U12n1c + U12ñ

∗
1 − µ2

)
v2j + U22m

∗
2u2j − U12φ1φ

∗
2v1j

+ U12φ
∗
1φ
∗
2u1j = Ejv2. (2.65d)

The quasiparticle amplitudes are normalized as

∫
dz
(
|u1|2 − |v1|2 + |u2|2 − |v2|2

)
= 1. (2.66)

This normalization procedure for binary condensates follows from the fact that 〈Ψ̃|Ψ̃〉 =

1, where |Ψ̃〉 is the two component representation of the fluctuations or non-condensate

atoms. Such a representation is described earlier in Eq. (2.53) for the field operators, as

for the components 〈ψ̃k|ψ̃k〉 = 1. This gives consistent results in the limit a12 → 0, the

Bogoliubov-de Gennes equations of the two species are then decoupled and obtain two

sets of normalized quasiparticle amplitudes corresponding to two independent single-

species BEC.

Under time-independent HFB-Popov approximation, for a TBEC, φks are thus the

static solutions of the coupled generalized GP equations

ĥ1φ1 + U11 [nc1 + 2ñ1]φ1 + U12n2φ1 = 0, (2.67a)

ĥ2φ2 + U22 [nc2 + 2ñ2]φ2 + U12n1φ2 = 0. (2.67b)
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The scaled Bogoliubov-de Gennes equations are

L̂1u1j − U11φ
2
1v1j + U12φ1 (φ∗2u2j − φ2v2j) = Eju1j, (2.68a)

L̂1v1j + U11φ
∗2
1 u1j − U12φ

∗
1 (φ2v2j − φ∗2u2j) = Ejv1j, (2.68b)

L̂2u2j − U22φ
2
2v2j + U12φ2 (φ∗1u1j − φ1v1j) = Eju2j, (2.68c)

L̂2v2j + U22φ
∗2
2 u2j − U12φ

∗
2 (φ1v1j − φ∗1u1j) = Ejv2j, (2.68d)

where L̂1 =
(
ĥ1+2U11n1+U12n2), L̂2 =

(
ĥ2+2U22n2+U12n1

)
and L̂k = −L̂k [136,

137]. To solve Eq. (2.68) we define, similar to the single-species case discussed in

Section 2.1.4, uk and vk’s as linear combination of Nb harmonic oscillator eigenstates,

u1j =

Nb∑
i=0

pijϕi, v1j =

Nb∑
i=0

qijϕi,

u2j =

Nb∑
i=0

rijϕi, v2j =

Nb∑
i=0

sijϕi, (2.69)

where ϕi is the ith harmonic oscillator eigenstate and pij , qij , rij and sij are the coef-

ficients of linear combination. Using this expansion the Eq. (2.68) is then reduced to

a matrix eigenvalue equation and solved using standard matrix diagonalization algo-

rithms. The matrix has a dimension of 4(Nb + 1) × 4(Nb + 1) and is non-Hermitian,

non-symmetric and may have complex eigenvalues. The eigenvalue spectrum obtained

from the diagonalization of the matrix has an equal number of positive and negative

eigenvalues Ej’s. Using the quasiparticle amplitudes obtained, the number density ñk

of the non-condensate atoms is

ñk =
∑
j

{[|ukj|2 + |vkj|2]N0(Ej) + |vkj|2}, (2.70)

where 〈α̂†jα̂j〉 = (eβEj − 1)−1 ≡ N0(Ej) is the Bose factor of the quasiparticle state

with real and positive energy Ej . The coupled Eqns. (2.67) and (2.68) are solved itera-

tively till the solutions converge to desired accuracy. We use this theory to investigate

the evolution of Goldstone modes and mode energies as a function of the interaction

strengths and temperature. The results are discussed in the subsequent chapters. Al-

though, HFB-Popov does have the advantage vis-a-vis calculation of the modes, it is

nontrivial to get converged solutions.





Chapter 3

Evolution of Goldstone mode in

binary BECs

The phenomenon of spontaneous symmetry breaking (SSB) is ubiquitous in nature,

it appears at all energy scales ranging from the low-energy phase transition in fer-

romagnetism to unification of fundamental forces in high energy physics. It plays a

pivotal role in critical phenomena for example, the paramagnetic to ferromagnetic tran-

sition [138], the exotic behaviour of superfluids and superconductors, etc. The same

mechanism of SSB, explains the origin of mass in the elementary particles through the

scalar field of Higgs boson, which was observed using Large Hadron Collider located

at CERN in 2012 [139, 140]. A milestone experimental work which culminated in

honoring François Englert and Peter W. Higgs with 2013 Nobel Physics Prize for their

theoretical prediction of the Higgs boson [141–146].

To elucidate further, according to Goldstone’s theorem when continuum symme-

tries of a system are spontaneously broken, then there exist gapless modes known as

Nambu-Goldstone (NG) modes in the long-wavelength limit [147–149] for which the

2008 Nobel Physics Prize was awarded to Y. Nambu, M. Kobayashi, and T. Maskawa

[150]. In relativistic or Lorenz-invariant systems the number of NG (nNG) modes co-

incides with the number of broken symmetries (nSSB), and the energy ε is linear in

momentum p. That is, the dispersion relation in such systems is ε ∝ p [75]. However,

for systems lacking Lorentz invariance that is either non-relativistic systems or rela-

tivistic systems at nonzero density, this prescription of counting NG modes fails [151].

57
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NG theorem has limitations for systems with spontaneously broken space-time sym-

metry, and further assumptions are required to guarantee the validity of this theorem.

The intricacies, and right approach to count NG modes in non-relativistic systems, and

generalization of NG theorem has been reviewed in Refs. [152–157].

For the current work, we consider scalar BECs which is accompanied by the ap-

pearance of a complex order parameter. This is a result of SSB of the global U(1)

symmetry, and the accompanying NG mode is a phonon. In addition, if the spatial

symmetry of the system is also spontaneously broken the NG theorem for these sys-

tems becomes non-trivial and is a topic of active research in the current years. To cite

an example in which nNG 6= nSSB, let us consider a BEC with a vortex line along the

axial direction z. The translational symmetries in the radial directions x and y are ex-

plicitly broken, hence nSSB = 3. However, the system has nNG = 2; the Kelvin mode

with a quadratic and the varicose mode with a linear dispersion relation [158–161].

Another relevant but rather non-trivial example is a system consisting of two-

component Bose-Einstein condensates (TBECs). The system is characterized by two

complex order parameters belonging to the constituent species and the low-lying exci-

tation spectrum has two NG modes associated with two broken U(1) symmetries. The

TBECs may be miscible or immiscible (phase-separated) depending on the intra- and

the interspecies interaction strengths. Depending on the phase of TBEC, more Gold-

stone modes may appear in the excitation spectrum. In this chapter, we use HFB-Popov

approximation to investigate the evolution of Goldstone modes and mode energies as

a function of the interspecies interaction in TBECs, more specifically phase-separated

TBECs. Recent work [74] reported the existence of an additional Goldstone mode

at phase-separation in the symmetry-broken density profiles, which we refer to as the

side-by-side density profiles. In Ref. [75], it has been shown that in side-by-side den-

sity profiles where domain walls are formed at the interface, the translational symmetry

normal to the wall is broken and zero energy is required for transverse shift of the wall.

Thus, despite nSSB = 3 the system has nNG = 2 namely a ripplon and phonon. We,

however, demonstrate that in the other type of density profile where one of the species

is surrounded on both sides by the other, which we refer to as the sandwich type, the

mode evolves very differently.
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Figure 3.1: False color coded experimental images of 87Rb- 133Cs TBEC taken by the

method of absorption imaging. These images show three distinct structures of the TBEC

correlated with the number of atoms in each condensate. Reprinted figure from [McCarron

et al., Phys. Rev. A 84, 011603(R) (2011).] Copyright © 2011 by the American Physical

Society.

In the first part of the work, we consider the trapped TBEC of 87Rb-133Cs [48, 49],

with coincident trap centers at T = 0. The images of density distribution, and plots of

density profiles in one of the experimental realizations of 87Rb-133Cs TBEC [49] are

shown in Fig. 3.1. It is evident that the TBEC exhibit different structures for varied

combination of number of atoms from each species. This mixture has widely differing

s-wave scattering lengths and masses. This choice does add to the severity of the con-

vergence issues but this also makes it a good test for the methods we use. We choose

the parameter domain where the system is quasi-1D and a mean-field description like

HFB-Popov is applicable. The quasi-1D trapped bosons exhibit a rich phase struc-

ture as a function of density and interaction strengths [162]. For comparison with the

experimental results we also consider the parameters as in the experiment [49]. We

find that, like in Ref. [163], the quasi-1D descriptions are in good agreement with the

condensate density profiles of 3D calculations [164]. We also discuss the evolution

of Goldstone modes in trapped TBECs with separated trap centers. In the latter part

of the work, we further examine the softening of higher excited modes to Goldstone
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Figure 3.2: Transition to phase-separation and structure of the density profiles in TBEC.

(a-c) show the transition from miscible to sandwich type density profile with the change

in interspecies scattering length aCsRb for a Cs-Rb TBEC and correspond to aCsRb =

{200a0, 310a0, 420a0} respectively. The density profiles in (c) is referred to as the sandwich

type. (d-f) show the transition from miscible to side-by-side density profile with the change in

a85Rb87Rb for a 85Rb −87 Rb TBEC and correspond to a85Rb87Rb = {100a0, 290a0, 400a0}
respectively. The density profile in (f) is referred to as the side-by-side type. In the plots

density is measured in units of a−1
osc.

modes in TBECs with a dark soliton. We show that the presence of soliton induces

instability in single and binary condensates.

3.1 Mode evolution of trapped TBEC at T = 0

In TBECs, when the TF approximation is applicable phase-separation occurs when the

interactions satisfy the condition U12 >
√
U11U22 [43, 44, 165–167]. For the present

work, we consider Cs and Rb as the first and second species, respectively. With this

identification a11 = aCsCs = 280a0 and a22 = aRbRb = 100a0, where a0 is the Bohr

radius, and arrive at the condition for phase separation a12 = a
CsRb

> 261a0 using

TF approximation, which is smaller than the background value of a
CsRb
≈ 650a0 [48].

To examine the nature of modes in the neighbourhood of phase-separation, we com-
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pute the mode energies and functions at T = 0 and vary a
CsRb

, which is experimentally

possible with the Cs-Rb magnetic Feshbach resonance [168]. The evolution of the low-

lying modes in the domain 0 6 a
CsRb

6 450a0 with NCs = NRb = 104 are computed

with ωz(Rb) = 2π×3.89 Hz and ωz(Cs) = 2π×4.55 Hz as in Refs. [49,164]. However,

to satisfy the basic condition of ω⊥ � ωz for a quasi-1D system we take ω⊥ = 50ωz,

so that ~ω⊥ � µk. In addition, there are two relevant quasi-1D parameters, namely α

and γ. The former is the ratio between the interaction strength and the trap frequency

ωz, and latter is the ratio of interaction to kinetic energy is represented. Depending

on the values of α, γ and the total number of atoms, the quasi-1D system can either

be in TF, or Gaussian or Tonks-Girardeau regime. For the parameters considered here

α = 2a
CsCs

√
(ω⊥/ωz)(mω⊥/~) ≈ 0.36 and γ = 2(a

CsCs
/nCs)(mω⊥/~) ≈ 10−5, so

the system is in the weakly interacting TF regime [162] and mean field description

through GP equation is valid. For this set of parameters the ground state is of sand-

wich geometry, in which the species with the heavier mass is at the center and flanked

by the species with lighter mass at the edges. An example of the sandwich profile cor-

responding to the experimentally relevant [49,164] parameters is shown in Fig. 3.2(c).

On the other hand for TBEC with species of equal or near equal masses and low num-

ber of atoms, in general, the ground state geometry is side-by-side. As an example the

side-by-side ground state density profile of 85Rb-87Rb TBEC is shown in Fig. 3.2(f).

One important aspect which deserves due attention, considering we have chosen equal

and specific number of atoms in each species, is the precise control of atom numbers

in cold atom experiments. Achieving TBECs of equal atom numbers in experiments

is a challenging task, and in general, the observed number of atoms of each species

has 10 − 20% uncertainties. However, for this typical uncertainty range, the change

in the mode evolution in our present calculations is small when compared to the mix-

tures of equal atom numbers. But, the key point is, the overall the trend is remains

unchanged. For instance, with the transition from miscible to phase-separated domain,

there is ≈ 2% change in the value of U12 at phase-separation.

From here on we consider the same set of ωz (ωz(Rb) = 2π× 3.89 Hz and ωz(Cs) =

2π × 4.55 Hz), as mentioned earlier, for the results of calculations reported in this

chapter. In the computations we scale the spatial and temporal variables as z/aosc(Cs)



62 Chapter 3. Evolution of Goldstone mode in binary BECs

and ωz(Cs)t which render the equations dimensionless. Moreover all the T = 0 com-

putations are performed ignoring the quantum fluctuations. That is, we solve the usual

Bogoliubov-de-Gennes equations to examine the mode evolution at T = 0. We have

observed that the mode energies computed with the inclusion of quantum fluctuations,

using HFB-Popov approximation, are lower than what is predicted by the standard

Hartree-Fock-Bogoliubov approach. Ranging from the miscible to completely immis-

cible regimes, the contribution from the quantum fluctuations varies and amounts to

≈ 0.1% < ∆ω < 3%. So, in qualitative terms, the quantum fluctuations do not render

any significant changes to the trend in the mode evolution. When a
CsRb

= 0, the UCsRb

dependent terms in Eq. (2.68) are zero and the spectrum of the two species are inde-

pendent as the two condensates are decoupled. The system has two Goldstone modes,

one each for the two species. The two lowest modes with nonzero excitation energies

are the Kohn modes of the two species, and these occur at ~ωz(Cs) and 0.85~ωz(Cs) for

Cs and Rb species, respectively. The existence of these Kohn modes follow from the

Kohn’s theorem [169]. It states that, there is a mode in which the center of mass of

any trapped condensate oscillates with the frequency of the harmonic trapping poten-

tial [170]. This mode frequency is independent of the interaction strength or the type

of interaction. This is similar to the cyclotron resonance frequency of electrons in a 3D

electron gas in the presence of an uniform magnetic field, which remains unchanged

inspite of the electron-electron Coloumbic interactions [169]. However, in a magnetic

trap, in the vicinity of a Feshbach resonance Kohn’s theorem has been shown to break

down [171].

3.1.1 Third Goldstone mode

The neat separation between the modes of the two species is lost and mode mixing

occurs when a
CsRb

> 0. For example, the Kohn modes of the two species intermix

when a
CsRb

> 0, however, there is a difference in the evolution of the mode energies.

The energy of the Rb Kohn mode decreases, but the one corresponding to Cs remains

steady at ~ωz(Cs). At higher a
CsRb

the energy of the Rb Kohn mode decreases further

and goes soft, or its energy tends to zero at phase-separation (UCsRb >
√
UCsCsURbRb)

when a
CsRb
≈ 310a0. It is to be noted that the value of a

CsRb
at which phase-separation
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Figure 3.3: The evolution of the modes as a function of the interspecies scattering

length aCsRb in Cs-Rb TBEC. (a) shows the evolution of the low-lying modes in the do-

main 0 6 aCsRb 6 400a0 for N87Rb = N133Cs = 104. (b) is the enlarged view of the region

enclosed within the blue colored rectangular box in figure (a) to resolve the avoided cross-

ing and quasidegeneracy of modes (highlighted with dark-blue points). The points marked

with red arrows correspond to interspecies scattering length aCsRb = {309a0, 316a0, 321a0}
respectively.

occurs is higher with the numerical solution of GP equation than the value obtained

from the TF approximation. This introduces a new Goldstone mode of the Rb BEC to

the excitation spectrum. The reason is, for the parameters chosen, the density profiles at

phase-separation assume sandwich geometry with Cs BEC at the center and Rb BEC at

the edges. So, the Rb BEC clouds at the edges are effectively two topologically distinct

BECs, and two Goldstone modes with the same |uRb| and |vRb| but different phases

occur in the spectrum, and the global phase symmetry of the Rb condensate is broken.

A similar result of the Kohn mode going soft was observed for single-species BEC

confined in a double well potential [172]. Although, the two systems are very different,
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the genesis of Kohn mode going soft is common: partition of one condensate cloud into

two distinct ones. This could be, in our case by another condensate or by a potential

barrier as in Ref. [172]. However, the phenomenon of diminishing energy difference

between the Goldstone and the Kohn modes at phase-separation is unique, and different

from the case of energy level splitting due to tunneling in a double-well potential. To

start with, the two states are degenerate with zero barrier height in the conventional

double-well potential with an adjustable barrier, and is exponentially suppressed in the

asymptotic limit [173]. In the present case, the energy difference between the two

relevant modes, Kohn and Goldstone modes, is finite for TBECs with parameter set

analogous (aCsRb = 0) to the zero barrier height in the double-well potential. The

separation is reduced when aCsRb is increased, and the structure of the density profiles

gets modified. In the domain where aCsRb > 0, but prior to phase separation, TBEC

does not have an analogous counter part with the case of double-well potential. At

higher values of aCsRb, when phase-separation sets in, one of the Kohn mode goes

soft and the mode function has structural similarities to the exponentially suppressed

state in the double-well potential. However, the similarity between the systems is only

that, and it is not possible to extend beyond it. The interpretation of tunneling of Rb

atoms through Cs atoms would lead to instabilities across the interface separating the

two TBECs which, in the present case is not noticeable in the excitation spectra. It is

an example of phase-transition with the appearance of level-crossings in the excitation

spectrum [174].

To examine the mode evolution with the experimentally realized parameters [49],

we repeat the computations with ω⊥(Cs) = 2π × 40.2 Hz and ω⊥(Rb) = 2π × 32.2 Hz.

With these parameters the system is not strictly quasi-1D as ~ω⊥k ≈ µk for NCs =

NRb = 104, however, as ωzk � ω⊥k there are qualitative similarities to a quasi-1D

system [163]. Indeed, with the variation of a
CsRb

the modes evolve similar to the case

of ω⊥k = 50ωzk and low-energy modes are shown in Fig. 3.3(a). The evolution of the

Rb Kohn mode functions (uRb and vRb) with a
CsRb

are shown in Fig. 3.4. It is evident

from Fig. 3.4(a) that when a
CsRb

= 0, there is no admixture from the Cs Kohn mode (

uCs = vCs = 0). However, when 0 < a
CsRb

. 310a0 the admixture from the Cs Kohn

mode increases initially and then goes to zero as we approach UCsRb >
√
UCsCsURbRb
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Figure 3.4: Evolution of quasiparticle amplitude corresponding to the Rb Kohn mode as

a
CsRb

is increased from 0 to 400a0. For better visibility ucs and uRb are scaled by a factor

of 1.2. (a) When a
CsRb

= 0, it is a Kohn mode of the Rb condensate. (b-d) In the domain

0 < a
CsRb

. 310a0 the mode acquires admixtures from the Cs Kohn mode (nonzero uCs and

vCs). (e-f) At phase-separation 310a0 . a
CsRb

the mode transforms to a Goldstone mode:

uRb and vRb have same profile as the nRb = |φRb|2 but with a phase difference. In the plots

u’s and v’s are in units of a−1/2
osc .

(Fig. 3.4(b-f) ).

One striking result is, the Rb Kohn mode after going soft at a
CsRb

≈ 310a0, as

shown in Fig. 3.3(a), continues as the third Goldstone mode for 310a0 < a
CsRb

. This is

different from the evolution of the zero energy mode in TBEC with side-by-side density

profiles. In this case after phase separation, z-parity symmetry of the system is broken

and the zero energy mode regains energy. So, there are only two Goldstone modes in

the system. This is evident from Fig. 3.5, where we show the mode evolution of 85Rb-
87Rb mixture with side-by-side density profiles at phase-separation. The parameters of

the system considered are N85Rb = N87Rb = 102 with the same ωzk and ω⊥k as in the

Cs-Rb mixture. Here, we use intraspecies scattering lengths as 99a0 and 100a0 for 85Rb

and 87Rb, respectively and tune the interspecies interaction for better comparison with

the Cs-Rb results. This is, however, different from the experimental realization [53],

where the intraspecies interaction of 85Rb is varied. A similar result was reported in an

earlier work on quasi-2D system of TBEC [74].
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Figure 3.5: Low-lying modes of 85Rb-87Rb for N87Rb = N85Rb = 102 as a function of

a85Rb87Rb. At phase-separation the structure of the density profiles is side-by-side and one of

the modes goes soft.

3.1.2 Avoided crossings and quasidegeneracy

Avoided crossings or level repulsion are generic to Hamiltonians which have coupling

or interaction terms. With tunable coupling parameter, two neighbouring energy levels

can undergo a close encounter and avoided crossings happen between levels having

the same symmetries. Otherwise, they just cross each other and level mixing does

not occur. The effect of perturbation through the coupling parameter is manifested

through the phenomenon of level repulsion. This phenomenon is quantum-mechanical

in nature and contributes to emergence of quantum chaos [175].

From Fig. 3.3(a), it is evident that there are several instances of avoided level cross-

ings as a
CsRb

is varied to higher values. These arise from the changes in the profile of

nck(z), the condensate densities, as the uk and vk depend on nck(z) through the BdG

equations. For this reason, the density of avoided crossings is higher around the crit-

ical value of a
CsRb

, where there is a significant change in the structure of density pro-

files nck(z) due to phase separation. Another remarkable feature which emerges when

a
CsRb

> 310a0 are the avoided crossings involving three modes. As an example, the

mode evolution around one such case involving the Kohn mode is shown in Fig. 3.3(b).

Let us, in particular, examine the 5th and 6th modes, the corresponding mode energies

in the domain of interest (309a0 6 a
CsRb

6 321a0) are represented by blue colored
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Figure 3.6: The quasiparticle amplitudes of the 5th and 6th modes at quasidegeneracy. (a-

c) The quasiparticle amplitudes uk’s and vk’s of the 5th mode for 3 values of a
CsRb

represented

and marked by blue points and red arrows, respectively, in Fig. 3.3. (d-f) The quasiparticle

amplitudes uk’s and vk’s corresponding to the 6th mode for the same values of a
CsRb

. In the

plots uk’s and vk’s are in the units of a−1/2
osc .

points in Fig. 3.3(b). At a
CsRb

= 309a0, the 6th mode is the Kohn mode, which is

evident from the dipolar structure of the uk and vk as shown in Fig. 3.6(d). The closest

approach of the three modes, 4th, 5th and 6th, occurs when a
CsRb

≈ 311a0, at this

point the 4th mode is transformed into Kohn mode. For a
CsRb

> 311a0, the 5th and

6th mode energies are quasidegenerate and pushed to higher values. For example, at

a
CsRb

= 316a0 the energies of the 5th and 6th modes are 1.24~ωz(Cs) and 1.25~ωz(Cs),

respectively. However, as shown in Fig. 3.6(b) and (e), the structure of the correspond-

ing uk and vk show significant difference. It is evident that for the 5th mode uCs and

uRb correspond to principal quantum number n equal to 0 and 2, respectively. On the

other hand, for the 6th mode both uCs and uRb have n equal to 1. At a
CsRb
≈ 320a0, the

two modes (5th and 6th) undergo their second avoided crossing with a third mode, the

7th mode. Afterwards, for a
CsRb

> 320a0, the 5th mode remains steady at 1.50~ωz(Cs),

and the 6th and 7th are quasidegenerate. To show the transformation of the 5th and 6th

modes beyond the second avoided crossing, the uk and vk of the modes are shown in
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Figure 3.7: The evolution of the low-lying quasiparticle eigenfrequencies in the Rb-Na

TBEC; N23Na = N87Rb = 104. (a) Shows the evolution of the low-lying quasiparticle ex-

citations as a function of z0, trap center separation, in the domain 0 6 z0 6 3.8aosc(Rb) for

a
NaRb

= 100a0.

Fig. 3.6(c) and (f) for a
CsRb

= 321a0. It is evident from the figures that the uCs and vCs

of the 5th mode undergo a significant change in the structure: the central dip around

a
CsRb

= 321a0, visible in Fig. 3.6(b), is modified to a maxima.

3.1.3 Mode hardening in displaced trap centers

The configuration of the trapping potential considered so far, coincident centres, are

difficult to realize in experiments. The centers never coincide due to gravitational

sagging, and deviations of the trapping potentials from perfect alignment. In this con-

figuration, non-coincident trapping potential centers, we find that the third Goldstone

mode in the phase-separated domain hardens with the increase in the separation of the

trap centers. To probe the mode evolution, the trapping potentials are replaced by the

following effective potentials

Vk(z, z0) =
1

2
mkω

2
zk

[
z + (−1)kz0

]2
, (3.1)

where 2z0 is the separation between two trap centers, and the other symbols have

their usual meaning. For the present study, we consider a quasi-1D Rb-Na mixture
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z0 in the Rb-Na TBEC in the domain 0 6 z0 6 3.8aosc(Rb) for (a) z0 = 1.5aosc(Rb), (b)

z0 = 2.5aosc(Rb).

in the immiscible regime with ωz(Rb) = 2π × 4.55 Hz, ωz(Na) = 2π × 3.89 Hz and

ω⊥(Rb) = 2π×40.2 Hz, ω⊥(Na) = 2π×32.2 Hz andNNa = NRb = 104. Let Rb and Na

be the first and second species, respectively with a11 = aRbRb = 100a0, a22 = aNaNa =

50a0, and a12 = aNaRb = 100a0 where a0 is the Bohr radius. With these parameters,

UNaRb >
√
URbRbUNaNa and hence, the TBEC is in the phase separated domain. When

the trap centers are coincident, that is, z0 = 0, the spectra is characterized by three

Goldstone modes. The condensate density profile assumes a sandwich geometry, in

which Rb condensate is at the center and flanked by Na condensate at the edges. For

the Rb-Na TBEC, experimentally, it is possible to steer the system from miscible to

immiscible domain through the Rb-Na Feshbach resonance [176]. Phase-separation in

Rb-Na TBEC has also been experimentally observed [51].

For z0 > 0, separated trap centers, with the breaking of the z-parity of the system,

the energy of the second Goldstone mode of the Na condensate gradually increases

and gets hardened at a critical value of z0 ≈ 1.8aosc(Rb). The Na Kohn mode which is

transformed into the third Goldstone mode of the system, second for the Na conden-

sate, at phase-separation with z = 0, regains energy when z0 > 0 to emerge as the

second Kohn mode of the system. This is evident from the mode evolution as shown

as a function of z0 in Fig. 3.7(a), and the profile of the hardened mode is shown in

Fig. 3.8. The energy of the Rb Kohn mode, on the other hand, remains unchanged

even in a separated trap setting. Furthermore, with the change from coincident to non
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coincident trap center, the sandwich type density profile gradually changes into a side-

by-side density profile. The excitation spectra of the system is now identified by two

Goldstone modes and two Kohn modes. It must, however, be emphasized that the

evolution of the Goldstone mode when the TBEC undergoes a transition from misci-

ble to immiscible with z0 = 0, discussed in Sec. 3.1.1, is different from the current

case [177]. Other recent studies related to the Goldstone modes in condensates are: the

Goldstone mode is predicted to harden in spinor condensates( three-component con-

densates) due to quantum fluctuations [178]; and for TBECs in optical lattices quantum

fluctuations modify the ground sate geometry, and hence the structure of the Goldstone

modes [179].

3.2 Mode evolution in TBEC with dark soliton at T = 0

The experimental realization of single- and multi-component Bose-Einstein conden-

sates (BECs) in atomic gases have opened up the possibility of exploring topologi-

cal defects. Due to the ubiquitous presence of topological defects in nature, study of

matter-wave excitations such as vortices and solitons in atomic BECs has been a topic

of extensive research both experimentally and theoretically over the last few years.

In fact, these have attracted much attention as they are created spontaneously dur-

ing BEC phase transition through Kibble-Zurek mechanism [180–183]. Other novel

phenomena have inspired numerous experiments [184, 185] and theoretical studies

[76, 186–191] with dark and bright solitons in atomic BECs in a wide range of set-

tings under different scenarios. The experimental observation shows that the notch of

the dark soliton gets filled up with thermal atoms over time and the soliton becomes

grey, hence starts oscillating which are either short- or long-lived depending upon the

system of interest [77, 192, 193].

Most of the theoretical studies on the statics and the dynamics of dark solitons have

been carried out in quasi-1D setting at zero temperature where thermal fluctuations can

be ignored [194]. Stability of multiple solitons in quasi-1D trap has been examined

[195, 196]. Quantum depletion in BECs with soliton at T = 0 in weakly interacting
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Figure 3.9: Experimental technique to imprint a dark soliton in a BEC. In particular, a

spatial light modulator (SLM) is used to imprint a π phase jump by exposing part of the con-

densate to a far-detuned laser beam. Frame (c) shows an absorption image of the condensate,

taken directly after preparation of the soliton followed by a subsequent free expansion. Frame

(d) shows integrated column density, and Frame (e) shows an image of the soliton after evo-

lution. Reprinted by permission from Macmillan Publishers Ltd: [Becker et al., Nat. Phys. 4,

496 (2008).] Copyright © 2008.

Bose gases has also been studied using approximate models [197–203]. This moti-

vated us to reexamine the role of quantum fluctuations in BECs, whether it is with or

without soliton. We show that quantum fluctuation in BECs with soliton is higher than

without it. This is due to the presence of the anomalous mode, and we demonstrate

that quantum fluctuations can make the dark soliton grey, which as a result becomes

dynamically unstable.

Furthermore, repulsive TBECs support coupled dark-bright solitons which makes

it richer and more interesting than single-component BECs [76]. The bright soliton, on

the other hand, cannot survive in single-component BECs with repulsive interaction.

This has prompted us to study the evolution of Goldstone modes and mode energies

for TBEC with soliton as a function of interspecies scattering length. As the scattering

length is varied, the TBEC undergoes a phase transition from miscible to immiscible

phase. Here we show that the presence of the soliton introduces an additional Gold-

stone mode to the system. Even at zero temperature without considering any quantum
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fluctuation, for certain range of interspecies scattering length, the TBEC becomes dy-

namically unstable. The difference in the mass of the two species also plays a signifi-

cant role in mode evolution and topology of density profiles.

3.2.1 The Dark Soliton

Solitons are localized disturbances which propagate without change of form. They

exist and preserve their shape because non-linearity of the medium nullifies the effect

of dispersion in the medium. Soliton solutions exist for several non-linear equations;

for example, the Korteweg-de Vries equation which describes the properties of shallow

water waves. Solitons may either correspond to density depressions known as dark

solitons, or density elevation referred to as bright soliton. Dark soliton can be further

divided into black ones whose minimum density is zero, and grey ones, for which it is

non-zero [27].

For repulsively interacting homogeneous BECs, the GP equation bears one dimen-

sional soliton solution. Here the density is a function of spatial coordinate z, time t,

and depends explicitly on z − ut; where u is the velocity of the soliton. Furthermore,

we take n→ n0 as z → ±∞. Using solution of the form

φ(z, t) = f(z − ut)e−iµt/~, (3.2)

in the time-dependent GP equation, one arrives at the following soliton wave function

φ =
√
n0

[
i
u

s
+

√(
1− u2

s2

)
tanh

(
z − ut√

2ξu

)]
e−iµt/~, (3.3)

and the density n = |φ|2 is [27]

n = n0 − (n0 − nmin)
1

cosh2[(z − ut)/
√

2ξu]
. (3.4)

Here
√
n0 denotes the amplitude of the wave function for z → ±∞ and s is the speed

of acoustic waves in the medium. The width of the soliton, ξu, is given by

ξu =
ξ

[1− (u/s)2]1/2
, (3.5)

and the minimum density nmin = n0
u2

s2
. In the above equation, ξ is the value of the

healing length at position z0. The location of a dark soliton is a place in a quasi-1D

condensate where the condensate wave function φ(z) changes sign.



3.2. Mode evolution in TBEC with dark soliton at T = 0 73

The wave function of condensate with a soliton at z0 = 0 is antisymmetric and the

phase of the wave function jumps discontinuously by π as φ passes through the origin.

The experimental images of condensates with dark and grey solitons, along with the

schematics of soliton generation with phase imprinting technique from Ref. [77] are

shown in Fig. 3.9. In a homogeneous condensate as s =
√
n0U/m, the soliton velocity

u = (nminU/m)1/2 [27, 204]. Thus, when u = 0, nmin = 0, and the density profile is

reduced to

φ(z) = φ0 tanh

(
z√
2ξ

)
. (3.6)

The soliton energy is given by

Esol =
4

3
n0~s

(
1− u2

s2

)3/2

. (3.7)

This shows decrease in soliton energy with increasing u due to a negative effective

mass arising from the depletion of particles associated with the soliton.

The presence of an external confining potential affects the dynamics of a soliton.

Most importantly, the energy of the soliton is modified to

Esol =
4

3
√
mU

[µ− V (zs)−mu2(zs)]
3/2, (3.8)

where zs denotes the position of the soliton centre. Subject to the constraint that the

total energy is conserved, it turns out that the motion of a soliton in a trapped BEC is

the same as that of a particle of mass 2m in the same potential. For a potential having

a global minima, the period of motion of a soliton is
√

2ωz. Thus one can say that

dark solitons behave like particles in slowly varying external potentials [186]. In ad-

dition, the soliton accelerates due to the external potential emitting sound waves. The

acoustic radiation from the soliton is similar to the Larmor radiation from an acceler-

ating charged particle [205]. The energy dissipated tends to make the soliton less dark,

making it grey [206].

3.2.2 Fluctuation induced instability in single-species BEC

The low-lying excitation spectrum of a quasi-1D BEC with a soliton is characterized

by the presence of an anomalous mode, which indicates that the BEC is in an energet-

ically excited state. This is in addition to the Goldstone and the Kohn modes, which
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Figure 3.10: Quasiparticle amplitudes corresponding to the first two excited modes of a

single-species BEC with a dark soliton. In the plots u’s and v’s are in units of a−1/2
osc .

are also present in the excitation spectrum of a quasi-1D BEC without soliton. The

quasiparticle amplitudes corresponding to the first two excited modes are shown in

Fig. 3.10.

For further analysis we introduce ∆j , the amount of energy carried by the jth

eigenmode in a single-species BEC. It is defined as

∆j =

∫
dz(|uj|2 − |vj|2)Ej. (3.9)

The sign of the quantity ∆j is known as Krein sign. If this sign turns out to be negative

for the jth mode, then the mode is referred to as an anomalous mode [197, 207–210].

It signifies the energetic instability which may be present due to a topological de-

fect in the system. If such a mode is resonant with another mode with a positive

Krein sign, then complex frequencies appear in the excitation spectrum. In general,

the anomalous, and Kohn mode energies are real, and the energy of the anomalous

mode Ean ≈ ~ωz/
√

2. The appearance of the anomalous mode signifies that the soli-

tonic solution of the stationary quasi-1D GP equation is dynamically stable, however,

the system is in a metastable state. So, when the solution is evolved in imaginary time,

with the inclusion of ñ at T = 0, the anomalous mode is transformed into an imaginary

energy eigenmode. This is an unambiguous signature of quantum depletion induced

instability of the solitonic solution. In other words, the non-zero ñ arising from the

quantum fluctuations within the notch of the soliton turns it grey, and renders the sys-

tem dynamically unstable. Furthermore, the low-lying energy spectrum is devoid of
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any negative Krein sign eigenmodes. The anomalous mode, however, reappears in the

spectrum on evolving the system over imaginary time.
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Figure 3.11: The temporal evolution in the profile of the non-condensate atom density ñ at

T = 0 measured in units of a−1
osc, where aosc =

√
~/(mωz). The plots show a steady drop in

the number of non-condensate atoms till it reaches a threshold value, and then, the anomalous

mode reappears in the spectrum. The latter is reflected in the profile of ñ at t = 69ω−1
z , where

it has maximal distribution.

To study the trend in the evolution of Ean we examine the temporal variation of ñ.

For this, we consider condensate of 87Rb with a soliton at the center of the trap con-

sisting of N = 2000 atoms whose s-wave scattering length is a11 = aRbRb = 100a0,

where a0 is the Bohr radius. The evolution of the low-lying modes are computed for

the above-mentioned aRbRb with ωz = 2π × 4.55 Hz, and ω⊥ = 20ωz. This choice of

parameters are consistent with the experimental setting and satisfies the condition of

quasi-1D approximation [164, 192, 211]. The contribution from the anomalous mode

fills up the notch of the soliton and ñ(0) has the largest possible value at the initial state

of evolution. At later times, Ean is imaginary and ñ(0) decreases, the trend is as shown

in Fig. 3.11. However, when ñ(0) reaches a critical value, which in the present work

is ≈ 2.312 a−1
osc, it is no longer large enough to render the solitonic solution dynami-

cally unstable and the anomalous mode reappears. This confirms ñ(0) has a threshold

value below which the solitonic solution may be stable. Apart from this criterion, the

observed long lifetime of dark soliton in experiments with quasi-1D condensates is

attributed to an optimum choice of radial trapping frequency, and the strength of the
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repulsive inter-atomic interactions [77].
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Figure 3.12: Variation in the total number of non-condensate atoms Ñ at T = 0 as a

function of the scattering length a11. The solid (dashed) blue, green, and black lines represent

Ñ in the presence (absence) of soliton with total number of atoms N = 500, 1000, and 2000,

respectively. The solid red line represents Ñ in the presence of soliton for N = 2000, with

the number of basis Nb = 170, it is shown to indicate lack of accuracy at higher a11 with

lower number of basis functions. The inset plots show the trend of Ñ in the neighbourhood

of a11 ≈ 0, where there is a sharp increase.

For the limiting case of aRbRb → 0, or the non-interacting limit the Bogoliubov

modes are, to a very good approximation, the eigenstates of the trapping potential. In

this limit too, the condensate with the soliton has higher ñ than the condensate without

soliton. An exponential increase in the total number of non-condensate atoms

Ñ =

∫ ∞
−∞

ñ dz, (3.10)

is observed as aRbRb is increased from near-zero to aRbRb ≈ a0, this is evident from

the inset plot in Fig. 3.12. However, Ñ increases linearly with further increase of

aRbRb and this is shown in the main plot of Fig. 3.12. An important observation is that,

dÑ/daRbRb ∝ N (total number of atoms), which is due to higher repulsive interaction

energy with increasing N . This is visible in the family of curves given for different

values of N in Fig. 3.12. It should be emphasized here that an optimal choice of basis

size Nb is necessary in all the computations to obtain accurate mode functions and
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energies. For weakly interacting condensates with soliton, a basis set consisting of 170

basis functions give converged and reliable results. But, for the strongly interacting

case 1 � NU , the energy eigenvalues Ejs do not converge and Ñ diverges as shown

by the red solid line in Fig. 3.12 for N = 2000. However, we get converged and

reliable results when the basis size is increased to 240 basis functions.
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Figure 3.13: Transition to phase-separation and structure of the density profiles in TBEC

with soliton. (a-c) show the transition from miscible to sandwich type density profile with the

change in interspecies scattering length aCsRb for a Cs-Rb TBEC and correspond to aCsRb =

{200a0, 320a0, 400a0} respectively. In the plots density is measured in units of a−1
osc.

3.2.3 Interaction induced instability in TBEC with soliton

Dark solitons in one of the component in quasi-1D TBECs, like in single-species are

dynamically unstable at T = 0 due to the quantum fluctuations. There is, however,

another type of instability associated with dark solitons, and unique to TBECs. It

arises from the interspecies interactions, and occurs when an anomalous mode collides

with a higher energy mode. The collision transforms the two modes into degenerate

complex energy modes, and renders the dark solitonic state unstable. In this thesis, we

examine the collision of the modes as a function of the interspecies scattering length,

and study in detail the nature of these modes, and their evolution. Mode collisions

of similar nature, giving rise to oscillatory unstable states, have been investigated in

the context of a single-species cigar-shaped BEC with dark solitons in double-well

potentials [208].
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In TBECs, as mentioned earlier, phase-separation occurs when U12 >
√
U11U22.

To study the stability of dark solitons in TBECs, like in Section. 3.1 we consider Cs and

Rb as the first and second species, respectively. To investigate the mode evolution with

solitons, we imprint a soliton onto the first species (Cs condensate ) at z = 0. We, then,

vary a
CsRb

from miscible to immiscible regime, which is experimentally possible with

the Cs-Rb Feshbach resonance [168]. The mode energies, Ej , are computed at T = 0

in steps of increasing a
CsRb

in the domain [0, 420a0] with NRb = NCs = 103, ωz(Rb) =

2π × 3.89 Hz and ωz(Cs) = 2π × 4.55 Hz as in Ref. [49, 164]. To make the system

quasi-1D we take ω⊥ = 30ωz, and Fig. 3.13 shows the density profiles of the TBEC

with a dark soliton imprinted in the central component undergoing transition from the

miscible to immiscible phases on tuning a
CsRb

. The low-lying excitation spectrum is

characterized by the presence of an anomalous mode signifying the presence of soliton.

The other two significant low-lying modes, which are also present in quasi-1D TBECs

without soliton, are the Goldstone and Kohn modes of the two species.

When a
CsRb

= 0, the UCsRb dependent terms in Eq. (2.68) are zero and the spec-

trum of the two species are independent as the two condensates are decoupled. The

clear separation between the modes of the two species is lost and mode mixing occurs

when a
CsRb

> 0. For instance, the energy of the Cs anomalous mode increases with in-

creasing a
CsRb

, and collides with the other modes resulting in the generation of a quar-

tet of degenerate complex mode energies. This occurs when a
CsRb

is in the domains

[157a0, 162a0], [281a0, 317a0], and [318a0, 327a0] marked by red dots in Fig. 3.14. In

these domains, the low-lying energy spectrum has no anomalous mode and the system

is oscillatory unstable. For 162a0 < a
CsRb

< 281a0, the anomalous mode reappears

and crosses the fourth excited state at a
CsRb
≈ 264a0. Continuing further, as evident

from Fig. 3.14(b), at a
CsRb
≈ 327a0 there is a bifurcation after which the anomalous

mode ceases to undergo mode collisions.

It should be emphasized here that, with the transition from miscible to immiscible

regime the Kohn mode and the fourth excited modes go soft. This introduces two new

Goldstone modes, including which, there are four Goldstone modes in the excitation

spectrum. These features deserve detailed discussion and are given in the following

sections.
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Figure 3.14: The evolution of the modes as a function of the interspecies scattering length

aCsRb in the Cs-Rb TBEC with soliton. (a)The evolution of the low-lying modes in the

domain 0 6 aCsRb 6 420a0 for NRb = NCs = 103. (b) The enlarged view of the region

enclosed within the black colored rectangular box in (a) to resolve the mode collisions and

bifurcations. The plots show only the real part of mode energies ω/ωz .

3.2.4 Mode collisions

From Fig. 3.14, it is evident that there are several instances of avoided crossings and

mode collisions when two modes meet as a
CsRb

is varied to higher values. We have

used the latter term (mode collision) to identify the case when one of the two modes

is the anomalous mode and when mode collisions do happen, the evolution of the

mode energies is different from the avoided crossings. In mode collisions, there are

two possible scenarios: either the two modes cross each other or undergo bifurcation.

These occur due to the changes in the spatial profile of the mode functions (uRb, vRb,

uCs and vCs), which in turn depend on the condensate densities nck(z).

To examine the case of two modes crossing each other during mode collision, con-

sider the anomalous and fourth excited mode in the neighborhood of a
CsRb

= 261a0.

At values of a
CsRb

slightly below 261a0, the anomalous and the fourth excited mode
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Figure 3.15: Variation in the nature of mode evolution near mode crossing and collision.

(a-b) Quasiparticle amplitudes corresponding to the anomalous and fourth excited mode, re-

spectively, at a
CsRb

= 261a0 when the modes cross each other. (c-d) Quasiparticle amplitudes

corresponding to the anomalous and sixth excited mode, respectively, at a
CsRb

= 279a0 when

the modes collide. For better visibility uCs and uRb are scaled by a factor of 2.5. In the plots

u’s and v’s are in units of a−1/2
osc .

approach and cross each other at a
CsRb
≈ 261a0. In this case, there are no mode mixing

pre and post mode collision. As shown in Fig. 3.15(a), the mode functions uRb and vRb

corresponding to the anomalous mode are zero at z = 0, whereas the mode functions

uCs and vCs, have maxima at z = 0. In contrast, the fourth excited mode has uCs and

vCs which are zero at z = 0, while uRb and vRb have maxima at z = 0 as shown in

Fig. 3.15(b). The mode functions, thus, have very different profiles at z = 0 and mode

mixing does not occur, instead they just cross through.

Now, let us consider the case of bifurcation at a
CsRb
≈ 279a0. For this value of

a
CsRb

the mode functions corresponding to the anomalous mode and the sixth mode

have similar profiles with both uCs, vCs 6= 0 at z = 0 as shown in Fig. 3.15(c-d).

These two modes collide and give rise to complex mode energies. A similar trend is

also observed at a
CsRb
≈ 157a0, when the Cs anomalous mode collides with the Rb

Kohn mode. In the domain 157a0 6 a
CsRb

6 162a0, the profile of the Rb Kohn mode

resembles the structure of the Cs anomalous mode. So that after mode collision, they
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give rise to complex eigenfrequencies and makes the states oscillatory unstable.
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Figure 3.16: Evolution of quasiparticle amplitudes corresponding to the Rb Kohn mode as

a
CsRb

is increased from 0 to 400a0. (a) At a
CsRb

= 0, it is a Kohn mode of the Rb condensate.

(b-d) In the domain 0 < a
CsRb

. 350a0 the mode acquires admixtures from the Cs Kohn

mode (nonzero uCs and vCs). (e-f) At phase-separation 310a0 . a
CsRb

the mode transforms

to a Goldstone mode: uRb and vRb resemble the profile of nRb = |φRb|2 but with a phase

difference. In the plots u’s and v’s are in units of a−1/2
osc .

3.2.5 Third and fourth Goldstone modes

The third Goldstone mode emerges in the excitation spectrum as a
CsRb

is increased,

and the Rb Kohn mode goes soft at phase separation when a
CsRb
≈ 350a0. This is

consistent with the results discussed in Section. 3.1.1 and reported in our work [136].

The evolution of the Rb Kohn mode functions (uRb and vRb) with increasing a
CsRb

is shown in Fig. 3.16. It is evident that when a
CsRb

= 0 (Fig. 3.16(a)), there is no

admixture from the Cs Kohn mode ( uCs = vCs = 0). However, when 0 < a
CsRb

.
400a0 the admixture from the Cs Kohn mode increases initially, and decreases to zero

as we approach UCsRb >
√
UCsCsURbRb (Fig. 3.16(b-f)). So, the third Goldstone

mode is present in the system when a
CsRb

& 350a0. As mentioned earlier, two of the

Goldstone modes have identical |uRb| and |vRb| but with different phases, and thus, the

global phase symmetry of the Rb condensate is broken.

The fourth excited mode, unlike in the case of quasi-1D TBECs without a soliton
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also goes soft at a
CsRb
≈ 380a0. The evolution of the mode functions (uRb and vRb)

corresponding to the fourth excited mode with a
CsRb

are shown in Fig. 3.17. It is

noticeable that when a
CsRb

= 0 (Fig. 3.17(a)), there is no contribution from higher

energy modes of Cs. However, when a
CsRb

> 0 the admixture from the third excited

mode of the Cs condensate is discernible in the lower values of a
CsRb

and are shown in

Fig. 3.17(b-c). At higher values of a
CsRb

, 261a0 . a
CsRb

. 400a0, the spatial profile of

the mode functions are different from those of the lower values of a
CsRb

, and are shown

in Fig. 3.16(d-f). At around a
CsRb
≈ 300a0, the mode functions begin to resemble the

structure of φRb, and the transformation is complete at a
CsRb
≈ 380a0 when the mode

goes soft. Moreover, |uRb| and |vRb| resemble the structure of the bright soliton in

φRb and has a different phase from |uRb| and |vRb| at the edges which softened at

a
CsRb

& 350a0. Thus, at phase separation the Rb BEC at the edges, the bright soliton

in φRb, and Cs BEC at the center are four topologically distinct BECs leading to four

fragments, hence four Goldstone modes. Here too, the underlying principle behind the

appearance of an additional Goldstone modes is not due to tunnel splitting as discussed

earlier.

3.2.6 Different mass ratios

To gain insight on the complex nature of the mode evolution in the Cs-Rb TBEC,

we study the interplay of mass difference and intraspecies scattering lengths. For the

set of aforementioned parameters the ground state of TBEC, after phase-separation

is of sandwich geometry, in which the species with the heavier mass (Cs) is at the

center and flanked by the species with lighter mass (Rb) at the edges [49], albeit

aCsCs � aRbRb. This geometry minimizes the trapping potential energy, and hence

the total energy of the system. In contrast, for TBECs with m1 ≈ m2, at phase-

separation, the species with the smaller intraspecies scattering length is surrounded by

the other species. In this case the mode evolution in the presence of soliton is devoid

of any mode collisions. Thus, we attribute the pattern of mode collisions in Cs-Rb

TBEC binary condensate with soliton to the interplay between mass difference and

intraspecies scattering lengths.

To understand the transition in the mode evolution from m1 ≈ m2 to a case similar
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Figure 3.17: Evolution of the quasiparticle amplitudes corresponding to the fourth excited

mode as a
CsRb

is increased from 0 to 420a0. (a) At a
CsRb

= 0, it is the second excited mode

of the Rb condensate. (b-d) In the domain 0 < a
CsRb

. 300a0 the mode acquires admixtures

from the Cs Kohn mode (nonzero uCs and vCs). (e-f) At phase-separation 380a0 . a
CsRb

the mode transforms to a Goldstone mode: uRb, vRb and uCs, vCs resemble the profile of

nRb = |φRb|2 and nCs = |φCs|2 but with a phase difference. In the plots u’s and v’s are in

units of a−1/2
osc .

to Cs-Rb TBEC, we consider a test case where 87 amu 6 m1 6 125 amu and fixm2 =

mRb. We then compute the evolution of the modes as a function of the interspecies

scattering length as we increase m1 from 87 amu to 125 amu in steps of 2 amu. For

example, the mode evolution for three different values of m1 (95 amu, 100 amu, and

105 amu) are shown in Fig. 3.18. From Fig. 3.18(a) it is evident that at m1 = 95 amu

the anomalous mode goes soft at phase-separation and becomes the third Goldstone

mode of the system without any mode collisions. At a12 ≈ 300a0, the two species

are partially miscible and the notch of n1 at z = 0 due to the soliton is filled with the

second species.

For higher values of a12 ≈ 340a0, the energetically favorable state is of a sandwich

geometry where the species with the heavier mass (m1 = 95 amu) is at the edge of the

trap and the species with lower mass (m2 = 87 amu) occupies the center. It should,

however be recalled here that a11 > a22.

There is a major change in the nature of mode evolution, as shown in Fig. 3.18(b)

for m1 = 100: the anomalous mode collides with the second excited mode twice at
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a12 ≈ 180a0 and 320a0. The emergence of a bifurcation is evident in the second

mode collision at a12 ≈ 320a0. On further increase of m1, as shown in Fig. 3.18(c)

for m1 = 105, the trend of the mode collision begins to resemble that of the Cs-Rb

mixture. In this case, the bifurcation arising from the collision between the anomalous

and sixth excited mode is quite evident. Coming to the topology of the density profiles,

prior to phase-separation (a12 ≈ 300a0) n1 and n2 overlap with each other and the

notch of the soliton is filled by the second species. At still higher values of a12, n2 from

the edges migrates towards the notch of the soliton and the soliton gets topologically

deformed. This is the energetically favorable density configuration. At a12 ≈ 380a0,

the migration is complete and n2 occupies the center of the trap and is surrounded by

n1 and the system is then phase-separated. Here, it must be mentioned that without

soliton the density profile would be opposite: condensates with masses m1 and m2

occupy the center and edges, respectively. Thus, the presence of the soliton induces a

change in the topology of the density profiles in TBECs. On further increase of m1,

the energy of the anomalous mode increases with increasing a12 and the collision with

the sixth mode occurs at higher energies.
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Figure 3.18: The evolution of the low-lying modes of the TBEC with soliton for different

mass ratios as a function of the interspecies scattering length a12 in the domain 0 6 a12 6

420a0. The masses of the first and second species in each of the panels correspond to (a)

95 and 87, (b) 100 and 87, and (c) 105 and 87 amu, respectively. The number of atoms in

each species is 103. The intraspecies scattering lengths of the first and second species are

a11 = 280a0 and a22 = 100a0, respectively. The plots show only the real part of mode

energies ω/ωz .

3.3 Summary of the Chapter

TBECs with strong interspecies repulsion with the sandwich density profile at phase-

separation are equivalent to three coupled condensate fragments devoid of any node

and satisfies Feynman’s no-node theorem. The Rb condensate gets redistributed and
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occupies the edges with its central density ≈ 0. On the contrary the Cs condensate oc-

cupies the center of the trap. Because of this we observe three Goldstone modes in the

system after phase-separation. At higher interspecies interactions, we predict avoided

crossings involving three modes and followed with the coalescence or quasidegen-

eracy of two of the participating modes. The third Goldstone mode in TBECs with

sandwich profile at phase separation gets hardened when the trap centers are separated

by a critical distance. This is accompanied by the topological change from sandwich to

side-by-side condensate density profiles. This result has important experimental impli-

cations, and demonstrates why it is a major challenge to obtain sandwich type density

profiles in TBEC experiments.

Furthermore we have examined the stability of solitons in single and two-component

BEC. We have predicted that at zero temperature presence of soliton enhances the

quantum depletion and fills up the notch of the soliton which makes it oscillatory

unstable. In TBECs having a dark soliton with strong interspecies interaction, four

Goldstone modes emerge in the excitation spectrum. We have also predicted that the

TBECs with soliton in one of the components oscillate while interacting even at zero

temperature. This is due to the non-zero density of the other species within the notch of

the dark soliton. We have also shown a soliton induced change in the density profiles

when the atomic masses of the two species differ widely. We also find an enhancement

in the mass ratio at which the heavier species, with higher scattering length, occupies

the central position at phase-separation. The results and discussion that have been

described here in this chapter are at T = 0.

Our next task is to consider the effect of the thermal cloud on the condensates

which will be discussed in the subsequent chapters.



Chapter 4

Finite temperature effects in

condensate mixtures

Phase-separation in two-component fluids is ubiquitous in nature, and the transition

from miscible to immiscible phase is a quintessential example of critical phenomena.

One classic example is the temperature driven phase-separation in the cyclohexane-

aniline mixture [138]. It is then natural to ask what are the similarities and differences

in binary mixtures of quantum fluids ? The criterion for phase-separation, derived from

Thomas-Fermi (TF) approximation at zero temperature [27], is that the intra-(U11, U22)

and interspecies interaction (U12) strengths, must satisfy the inequality U2
12 > U11U22.

This criterion is based on TF approximation at zero temperature, however, experiments

are performed at finite temperatures. Therefore, deviations from the criterion are to be

expected.

In this thesis, we study the role of thermal fluctuations in the phenomenon of phase-

separation in trapped TBECs using HFB-Popov approximation, and as example, self-

energy Feynman diagrams subsumed in this approximation are shown in Fig. 4.1. Our

studies reveal that at T 6= 0, the constituent species in the TBEC undergo phase-

separation at a higher U12 than the value predicted based on the TF-approximation

at T = 0. Consistent with experimental observations of dual species condensate of
87Rb and 133Cs [49], our theoretical investigations show that even when the TF phase-

separation condition is met, there is a sizable overlap between the two species. We

attribute this to the presence of the thermal clouds, which have profound effect on the

87



88 Chapter 4. Finite temperature effects in condensate mixtures

miscibility-immiscibility transition. At T = 0, the TBECs are coherent throughout

the spatial extent of the condensate, however, when T 6= 0 coherence decays and is

reflected in the correlation function. This implies that at T = 0, the miscible and the

immiscible phases are indistinguishable from the trends in the correlation function.

But, for T 6= 0 the miscible-immiscible transition and the associated changes in the

density profiles have a characteristic signature in the correlation functions. There is a

smooth cross-over between the correlation functions when the transition occurs. Fur-

thermore, we examine the mode evolution at T 6= 0 and demonstrate the existence

of mode bifurcation near the critical temperature. The Kohn mode, however, exhibits

deviation from the natural frequency at finite temperatures after the phase-separation.

This is due to the exclusion of the non-condensate atoms in the dynamics. We choose

the parameter domain where the system is quasi-1D and a mean-field description like

HFB-Popov is applicable. The quasi-1D trapped bosons exhibit a rich phase structure

as a function of density and interaction strengths [162]. For comparison with the exper-

imental results we also consider the parameters as in the experiment [49]. We find that,

like in Ref. [163], the quasi-1D description is in good agreement with the condensate

density profiles of 3D calculations [164].

4.1 Overlap measure and correlation function

To examine the role of temperature in phase-separation of TBECs, we introduce over-

lap integral Λ as a measure of phase separation. It is defined as

Λ =

[∫
n1(z)n2(z)dz

]2[∫
n2

1(z)dz
] [∫

n2
2(z)dz

] , (4.1)

where nk is the density of the kth species, including condensate and non-condensate

atoms. In the expression, the integral in the numerator is a measure of the overlap

between the two species, and normalized to the densities so that 0 6 Λ 6 1. The

two limits Λ = 0 and 1 signify complete phase-separation and miscible phase with

maximal density overlaps [213]. To distinguish the two phases, we consider the TBEC

is phase separated and miscible when 0 < Λ 6 0.5 and 0.5 < Λ 6 1, respectively.

Another important measure, which describes the coherence of the species in a

TBEC, is the field-field correlation. In terms of the Bose field operator Ψ̂k, the nor-
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Figure 4.1: Self-energy diagrams for TBEC in the HFB-Popov approximation. The black

and red wiggly lines represent propagator for φ1 and φ2, respectively. The smooth solid lines

denote propagator for ñ1. The broken lines represent interatomic interaction [98, 212].

malized first order or the off-diagonal correlation function, which is also a measure of

the phase fluctuations, is

g
(1)
k (z, z′) =

〈Ψ̂†k(z)Ψ̂k(z
′)〉√

〈Ψ̂†k(z)Ψ̂k(z)〉〈Ψ̂†k(z′)Ψ̂k(z′)〉
. (4.2)

It can also be expressed in terms of off-diagonal condensate and non-condensate den-

sities as

g
(1)
k (z, z′) =

nck(z, z
′) + ñk(z, z

′)√
nk(z)nk(z′)

, (4.3)

where,

nck(z, z
′) = φ∗k(z)φk(z

′)

ñk(z, z
′) =

∑
j

{[u∗kj(z)ukj(z
′) + v∗kj(z)vkj(z

′)]N0(Ej)

+v∗kj(z)vkj(z
′)}.

At T = 0, when the entire system is coherent and characterized by the presence of

condensate only, then g(1)
k = 1 within the extent of the condensate, whether it is in
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the miscible or in the immiscible regime. So, one cannot distinguish between the two

phases from the trends in the correlation functions of the individual species. However,

at T 6= 0, a clear signature of miscible-immiscible transition of the density profiles is

reflected in the form of the correlation functions. The correlation undergoes power law

decay of g(1)
k in the neighbourhood of z = 0, and exponential decay at the edges of the

TBEC.

4.2 Mode evolution of trapped TBEC at T 6= 0

For the T 6= 0 calculations, as mentioned earlier, we solve the coupled Eq. (2.67) and

(2.68) iteratively till convergence. After each iteration, φk(z) are renormalized so that∫ ∞
−∞

[
|φk(z)|2 + ñk(z)

]
dz = Nk, (4.4)

where k is the species index. To improve convergence, we use successive over relax-

ation, but at higher T we encounter serious convergence solutions and require careful

choice of the relaxation parameters. For computations, we again consider the Cs-

Rb TBEC with trap parameters ω⊥(Cs) = 2π × 40.2 Hz, ω⊥(Rb) = 2π × 32.2 Hz,

ωz(Rb) = 2π × 3.89 Hz and ωz(Cs) = 2π × 4.55 Hz with coinciding trap centers, the

number of atoms as NRb = NCs = 103 and aCsRb = 650a0. The evolution of ω

(mode frequency) with T is shown in Fig. 4.2, where the T is in units of Tc, the critical

temperature of ideal bosons in quasi-1D harmonic traps defined through the relation

N = (kBTc/~ωz) ln(2kBTc/~ωz) [214], where N is the number of atoms. Consider-

ing that ωz(Rb) < ωz(Cs), the critical temperature of Rb is lower than that of Cs. So,

for better description we scale the temperature with respect to the Tc of Rb atoms,

and here after by Tc we mean the critical temperature of Rb atoms. From Fig. 4.2,

when T/Tc > 0.2 the Kohn mode energy increases with T/Tc. Based on this obser-

vation, for the present work, the HFB-Popov theory produces reliable results in the

temperature range T < 0.2Tc. This is consistent with an earlier work on HFB-Popov

studies in single-species condensate [107], but different from the trend observed in

Ref. [105, 106]. The increase in Kohn mode energy could arise from an important

factor associated with the thermal atoms. In the HFB-Popov formalism the collective

modes oscillate in a static thermal cloud background and dynamics of ñk are not taken
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into account. In TBECs the effects of dynamics of ñk may be larger as ñk is large at the

interface. An inclusion of the full dynamics of the thermal cloud in the theory would

ensure the Kohn mode energy to be constant at all temperatures [132]. The Goldstone

modes, on the other hand, remain steady [107].
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Figure 4.2: Frequencies (ωj) of the low-lying modes at T/Tc 6= 0. The filled circles

(brown) are the excitation energies from the HFB-Popov theory with NRb = NCs = 103.

The trend in the evolution of the modes indicates bifurcations at T/Tc ≈ 1 and is

consistent with the theoretical observations in single-species condensates [105–107].

At this temperature, as evident from Fig. 4.2, the Kohn mode and the mode above it

(which has principal quantum no n = 2 for both the species ) merge. This is one of

the bifurcations emerging from the Rb atoms crossing the critical temperature, above

this temperature there is no Rb condensate. At T > Tc the Cs condensate density is

still non-zero as Cs has higher critical temperature. So, there may be another mode-

bifurcation at the critical temperature of Cs. A reliable calculation for this would,

however, require treating the interaction between thermal Rb atoms and Cs condensate

more precisely. For this reason in the present work we do not explore temperature

much higher than the Tc of Rb atoms and the possibility of the second mode bifurcation

shall be examined in future works. In the case of single-species calculations, at T/Tc >

1, the mode frequencies coalesce to the mode frequencies of the trapping potential. In

the present work we limit the calculations to 0 6 T/Tc 6 1.1, so that T/Tc � Td/Tc.

Here, Td ≈ (NRb+NCs)~ωz/kB is the degeneracy temperature of the system and in the

present case Td ≈ 437 nK. For a single-species BEC in 3D, the results for T/Tc > 0.65

may have significant errors as extensive numerical studies have shown that the HFB-
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Popov theory gives accurate results at T/Tc 6 0.65 [106]. We have, however, extended

the computations in the present work to T/Tc > 0.2 like in Ref. [105] to study the

general trends and properties of mode bifurcations at the critical temperature.
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Figure 4.3: Density profile of nc and ñ at 25 nK. (a), (b) and (c) correspond to

NRb = 840(NCs = 8570), NRb = 3680(NCs = 8510), and NRb = 15100(NCs = 6470),

respectively, with coincident trap centers. (i), (ii) and (iii) correspond to same atom numbers

as the previous sequence, however, the trap centers are shifted relatively by 0.8aosc(Cs). In the

plots density is measured in units of a−1
osc.

To examine the profiles of nck and ñk, we compute the densities at 25 nK for

three cases, these are NRb = 840(NCs = 8570), NRb = 3680(NCs = 8510), and

NRb = 15100(NCs = 6470). The same set was used in the previous work of Pattin-

son et al. at T = 0 [164] and correspond to three regimes considered (NCs > NRb,

NCs ≈ NRb, and NCs < NRb) in the experimental work of McCarron et al. [49].

The actual experimental images for these cases from Ref. [49] are shown in Fig. 3.1.

Consider the trap centers, along z-axis, are coincident, then ñk and nck are symmetric

about z = 0, and are shown in Fig. 4.3(a-c). In all the cases, Cs condensate occupies

the central position. This configuration is energetically preferred as heavier atomic

species at the center has lower trapping potential energy and minimizes the total en-

ergy. In the experiments, the trap centers are not exactly coincident. So, to replicate the

experimental situation we shift the trap centers, along z-axis, by 0.8aosc(Cs) and the cor-

responding density profiles are shown in Fig. 4.3(i-iii). For NRb = 840(NCs = 8570)
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and NRb = 3680(NCs = 8510), Fig. 4.3(i-ii), the nck and ñk are located side-

ways. So, there are only two Goldstone modes in the excitation spectrum. But, for

NRb = 15100(NCs = 6470), Fig. 4.3(iii), nCs is at the center with nRb at the edges

forming sandwich geometry and hence has three Goldstone modes. In all the cases

ñk have maxima in the neighbourhood of the interface and the respective ncks are not

negligible. So, we can expect larger nck-ñk coupling in TBECs than single-species

condensates. For the NRb = 3680(NCs = 8510) and NRb = 15100(NCs = 6470)

cases, nck are very similar to the results of 3D calculations at T = 0 [164]. How-

ever, it requires a 3D calculation to reproduce the experimental profiles of nck for

NRb = 840(NCs = 8570) as the relative shift δx is crucial in this case.

4.3 Suppression of phase segregation

The thermal suppression of phase-separation is generic to any binary condensate mix-

ture. For comparison with experimental realizations we, however, consider the Cs-

Rb BEC mixture. The interspecies scattering length is chosen here to be a12 =

aCsRb = 295a0 with NCs = NRb = 5 × 103. With these parameters, the TBEC is

in the phase separated domain and has sandwich profile: Cs condensate occupying

the central region surrounded by Rb condensate at the edges . To form a quasi-1D

trap we take ωz(Cs) = 2π × 4.55 Hz, ωz(Rb) = 2π × 3.89 Hz, ω⊥(Cs) = 50ωz(Cs) and

ω⊥(Rb) = 50ωz(Rb). For these values of ω⊥, the temperature along the radial direction is

~ω⊥/kB ≈ 11 nK, and the tight confinement condition is valid as µk/~ω⊥ ≈ 10−2. In

addition to this, the healing length ξk � 1/nk. Thus the system is in the weakly inter-

acting TF regime [162] and mean field description through GP equation is valid. This

choice of parameters is consistent with the experimental parameters of a recent work

on quasi-1D TBEC of different hyperfine states of 87Rb [215], in which dynamical

evolution of mixtures of quantum gases has been observed. It should be emphasized

here that sandwich type density profiles are applicable only to trapped systems. In uni-

form systems, at phase-separation, the energetically preferred states are the symmetry-

broken density profiles where one species is entirely to the left and the other is entirely

to the right. We refer to this configuration of density profiles as side-by-side type. In
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Figure 4.4: The suppression of phase-separation in 87Rb-133Cs TBEC at a12 = 295a0.

(a)-(c) The solid and dashed red (black) lines represent nCs(nRb) and ñCs(ñRb), respectively,

at T = 0, 5, 10 nK. (d)-(f) The solid red (black) lines represent ncCs(ncRb) at T = 0, 5, 10

nK respectively. The dashed red (black) lines ncCs(ncRb) at T = 0 with the same number of

condensate atoms at T = 0, 5, 10 nK respectively. Here, n and z are measured in units of a−1
osc

and aosc, respectively.

the present work, we demonstrate the role of thermal cloud in sandwich type density

profiles since these are unique to trapped systems and experimentally pertinent. For

the homogeneous binary condensates, using periodic boundary condition with ωz = 0

in our computations, we do get side-by-side density profiles at phase-separation and

these are consistent with the results reported in previous works [216].

At T = 0, in TBECs, as mentioned earlier, the criterion for phase-separation is

U12 >
√
U11U22. With the parameters of Cs-Rb TBEC, consider keeping aCs and aRb

fixed, but varying a12 = aCsRb through a magnetic Feshbach resonance [168]. The

condition for phase-separation, using TF-approximation, is then a12 > 261a0. When

a12 = 0, the TBEC is non-interacting and the two species are completely miscible, in

which case Λ = 1. On increasing a12, the extent of overlap between the two-species

decreases, and hence Λ decreases. For instance, at a12 = 50a0, Λ = 0.97 and it

decreases monotonically with Λ → 0 at complete phase-separation. At a12 = 295a0,
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just at the onset of phase-separation, Λ = 0.14. As shown in Fig. 4.4(a), the density

profiles corresponding to the two-species have interfacial overlap, and the interaction

parameters satisfy the phase-separation condition. Furthermore, at phase-separation,

ncCs(0) is maximum, whereas ncRb(0) ≈ 0 and the species do not have significant

overlap. In other words, Cs at the center of the trap is flanked by Rb at the edges

and Λ ≈ 10−1. It is to be emphasized that the value of a12 at which phase-separation

occurs is higher with the numerical solution of GP equation than the value obtained

from the TF approximation. This can be attributed to the large condensate density

gradients around the interface region at phase-separation, which are ignored in the

TF-approximation.
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Figure 4.5: (a)-(c) The first order spatial correlation function, g(1)
Cs/Rb(0, z) with z > 0, of

87Rb-133Cs TBEC at equilibrium for a12 = 295a0 at T = 0, 5, 10 nK respectively. Here z is

measured in units of aosc.

For T 6= 0 the Bose factor N0(Ej) 6= 0, so in addition to the quantum fluctuations,

the non-condensate densities ñk have contributions from the thermal cloud as well.

The condensate atoms nck then interact with ñk of both the species, and modify nck.

For illustration, at T = 5 nK and a12 = 295a0, the total and non-condensate density

profiles are shown in Fig. 4.4(b). Compared to the density profiles in Fig. 4.4(a), there

is a remarkable change in ncRb as a result of the finite temperature: ncRb(0) > 0. Thus,

keeping all the parameters same, but taking T = 5 nK, the two species have substantial

overlap as shown in Fig. 4.4(b), and the value of Λ changes from ≈ 10−1 at zero

temperature to ≈ 0.55 at 5 nK. In other words, the finite temperature transforms the

phase separated TBEC at T = 0 to a partially miscible phase. The degree of overlap
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increases with temperature and at T = 10 nK, the TBEC is miscible as Λ ≈ 0.77.

Thus, with the increase in temperature, the density of thermal cloud increases and

the phase-separation is suppressed. This is evident from Fig. 4.4(c), which shows

the plots of corresponding total and non-condensate density profiles. Thus, a12 has

to be greater than 295a0 at T 6= 0 for phase-separation to occur. To confirm that

the suppression is a consequence of non-zero temperature, we identify and compute

the number of condensate atoms in each species, and use these numbers for T = 0

computations. Despite the difference in the numbers of atoms, as shown in Figs. 4.4(d-

f), the TBEC retains the immiscible profiles at zero temperature. This implies that

without the thermal cloud, there are no deviations from the usual phase-separation

condition.
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Figure 4.6: (a)-(d) The first order spatial correlation function, g(1)
Cs/Rb(0, z) with z > 0,

of 87Rb-133Cs TBEC at equilibrium at T = 5 nK for a12 = 0, 220, 250, 290a0, respectively.

Here z is measured in units of aosc.

To investigate the spatial coherence at equilibrium, we examine the nature of the

first order correlation function g(1)
k (z, z′) as defined in Eq. (4.3). As to be expected,

profile of g(1)
k (z, z′) depends on the interaction strength and temperature. This is inde-

pendent of whether the TBEC is in miscible or immiscible regime.
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As stated earlier, in the quasi-1D regime at T = 0, there is coherence in the Cs-Rb

TBEC and g(1)
Cs/Rb(0, z) ≈ 1 within the spatial extent of the condensates. The decay

as seen in Fig. 4.5(a) is due to the finite size of the system. For homogeneous case

the decay would be absent, however, it must be mentioned here that a Bose gas cannot

condense in a homogeneous 1D system at T = 0 and T 6= 0. This is due to Hohenberg-

Mermin-Wagner theorem [217,218], and a consequence of large quantum fluctuations.

For simplicity and based on the symmetry of the system we consider g(1)
Cs/Rb(0, z) with

z > 0, and plots at different temperatures are shown in Fig. 4.5. At T = 0 the form

of the g(1)
Cs/Rb(0, z) remains unchanged as the system undergoes the dramatic transition

from miscible to immiscible phase. This is evident from the plot in Fig. 4.5(a). How-

ever, when T 6= 0, unlike the zero temperature case, g(1)
Cs/Rb(0, z) is maximum at z = 0

and decays to zero with z. This is due to the non-condensate atoms, which modify

the nature of coherence in the system. The rate of decay of the g(1)
Cs/Rb(0, z) increases

with temperature, and this is evident from the plots of g(1)
Cs/Rb(0, z) at T = 5 nK and

T = 10 nK shown in Figs. 4.5(b-c) for a12 = 295a0. We also observe a dramatic

variation in g
(1)
Cs/Rb(0, z) as the value of a12 is steered from miscible to immiscible

regime at fixed temperature. At the outset, when the TBEC is miscible at a12 = 0,

g
(1)
Rb(0, z) decays to 0 at a larger distance than g(1)

Cs (0, z) as shown in Fig. 4.6(a). This

is because nRb has a larger spatial extent than nCs. As a12 is increased, the TBEC

undergoes a phase-transition from miscible to sandwich type density profiles. Along

with this, the distance at which g(1)
Rb(0, z) falls off to zero increases with increase in

a12. On the contrary, the distance at which g(1)
Cs (0, z) falls off to zero decreases with

increase in a12. This causes the g(1)
k (0, z) of the individual species to cross each other

at a certain distance z0 from the origin. At z0, the two species have equal g(1)
Cs/Rb(0, z0)

and this is a characteristic signature of immiscible phase. These features are shown

in Figs. 4.6(b-d). It deserves to be mentioned here that z0 increases, and g(1)
Cs/Rb(0, z0)

decreases with increase in a12. In addition, there is a dramatic difference in the de-

cay rates of g(1)
Cs/Rb(0, z0); it is much faster in Cs. This is attributed to the fact that both

ncRb and ñRb increase along z within the bulk of Cs-Rb TBEC. Where as in Cs, around

the origin ncCs decreases but ñCs increases. This trend is similar with a single-species

Cs condensate. The presence of Rb does not affect the nature of g(1)
Cs (0, z) in Cs-Rb
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TBEC. Around the point of phase-separation ncRb(0) in a Cs-Rb TBEC is distinctly

different from single-species Rb condensate, so is the nature of g(1)
Rb(0, z).
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Figure 4.7: The equilibrium density profiles and first order spatial correlation function

g(1)(0, z) with z > 0 of Cs and Rb BEC respectively at T = 10 nK. (a) The solid blue and

dashed red lines represent ncCs and ñCs, respectively. (b) The solid blue and dashed red lines

represent ncRb and ñRb, respectively. (c) The solid red (black) line represents g(1)
Cs (0, z) in

Cs BEC (Cs-Rb TBEC) at T = 10 nK. (d) The solid red (black) line represents g(1)
Rb(0, z) in

Rb BEC (Cs-Rb TBEC) at T = 10 nK. Here, n and z are measured in units of a−1
osc and aosc,

respectively.

To show the dramatic transformation of g(1)(0, z) in TBEC, the g(1)(0, z)s of single-

species condensates of 87Rb and 133Cs are shown in Fig. 4.7. From the figure we see

there is no significant change in g(1)
cs (0, z) of the 133Cs in a single-species condensate

and Cs-Rb TBEC. In the latter, 133Cs condensate occupies the central region at phase-

separation. But, there is a major deviation in g(1)
Rb(0, z) from the single-species case

when it occupies the outer edges in a TBEC.

To examine the provenance of the thermal suppression, we identify the quasiparti-
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Figure 4.8: Quasiparticle amplitudes corresponding to the fourth excited mode in 85Rb-
87Rb TBEC at T = 0, 10 nK respectively. In the plots u’s and v’s are in units of a−1/2

osc .

cle mode which has maximum contribution to the thermal cloud. From the solutions

of the coupled BdG equations, it is the fourth excited mode which has the largest con-

tribution to the thermal density. From Fig. 4.8(a), it is clear that at T = 0, u2(0) is

maximum whereas v2(0) ≈ 0. Thus ñ2(0) is finite but small, and the condensates

are phase-separated. The quasiparticle amplitudes u1 and v1 belonging to species 1

and have very little contribution towards ñ1 as they get repelled from φ2(0) and ñ2(0).

However, at finite temperatures there are few notable changes in the spatial structure

of this quasiparticle amplitude. For example, consider the case of T = 10 nK, u2(0)

and v2(0) both being maxima, has larger contribution to ñ2(0) as shown in Fig. 4.8(b).

Similar to the T = 0 case, u1(0) and v1(0) are still small. The emergence of higher

ñ2(0) modifies φ2(0) and the TBEC becomes partially miscible.

4.4 Segregation independent of temperature

In the domain of large a12, U12 �
√
U11U22, Λ ≈ 0, and the phase-segregation is more

prominent. However, due to the geometry of the TBEC mean-field approximation is

still valid. In this domain the interfacial overlap is minimal and the TBECs assume

sandwich type density profile. The system is then equivalent to three coupled conden-
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Figure 4.9: Density profiles showing complete phase-separation at T = 0 and T = 10

nK. (a) Phase-separation in 87Rb-133Cs TBEC for a12 = 650a0. The solid and dashed orange

(brown) lines represent ncCs(ncRb) and ñcCs(ñcRb), respectively at T = 0. The solid and

dashed red (black) lines represent ncCs(ncRb) and ñcCs(ñcRb), respectively at T = 10 nK.

(b) Phase-separation in 85Rb-87Rb TBEC for a12 = 20a0. The solid and dashed orange

(brown) lines represent nc and ñ of 85Rb (87Rb), respectively at T = 0. The solid and dashed

red (black) lines represent nc and ñ of 85Rb (87Rb), respectively at T = 10 nK. Here, n and

z are measured in units of a−1
osc and aosc, respectively.

sate fragments, and as discussed earlier the Bogoliubov analysis shows the presence of

three Goldstone modes [136]. For the Cs-Rb TBEC considered here, the background

interspecies scattering length aCsRb = 650a0 satisfies the above condition. With this

value of a12, at T = 0 as shown in Fig. 4.9(a), Cs condensate lies at the center of the

trap and Rb condensate at the edges. So, at the center nRb(0) = 0 and nCs(0) is max-

imum. With the increase in a12, there is a decrease in the number of non-condensate

atoms arising from quantum fluctuations. This is a manifestation of smaller overlap

between the condensates at the interfaces. On the contrary, for a single-species BEC,

with the increase in intraspecies interaction strength, the number of non-condensate

atoms due to quantum fluctuations increases [137]. When T 6= 0, the thermal densities

ñk interact with the condensate clouds through the intra- and interspecies interactions.

But, due to the large a12, the interspecies interaction energy is much larger than the

intraspecies interaction energy. This makes nRb(0) ≈ 0, and there is little overlap of

the thermal cloud of one species with the condensate of the other species, such that
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Λ < 0.1. Thus, there is no thermal suppression in the domain of large a12 [219]. We

observe similar results in the case of 85Rb-87Rb TBEC as well, where the intraspecies

interaction of 85Rb is decreased to obtain completely phase-separated density profiles.

These are shown in Fig. 4.9(b).
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Figure 4.10: The suppression of phase-separation in 85Rb-87Rb TBEC at a11 = 120a0.

(a)-(c) The solid and dashed red (black) lines represent n1(n2) and ñ1(ñ2) at T = 0, 5, 10

nK respectively. (d)-(f) The solid red (black) lines represent nc1(nc2) at T = 0, 5, 10 nK

respectively. The dashed red (black) lines nc1(nc2) at T = 0 with the same number of

condensate atoms at T = 0, 5, 10 nK respectively. Here, n and z are measured in units of a−1
osc

and aosc, respectively.

4.5 Thermal suppression in 85Rb-87Rb BEC

Consider the 85Rb-87Rb BEC mixture at phase-separation [53, 64] as an example of

binary condensates with different isotopes of the same element, take 85Rb and 87Rb as

the first and second species, respectively. To navigate the TBEC through the miscible-

immiscible transition, in experiments as well, the intraspecies scattering length of 85Rb

is varied using magnetic Feshbach resonance [220]. We, then, consider a set of param-
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eters in the immiscible domain and examine the finite temperature effects to phase-

separation. The parameters are: the intraspecies scattering lengths a11 = a85Rb =

120a0, a22 = a87Rb = 100a0, the interspecies scattering length a12 = a85Rb87Rb =

214a0 with N85Rb = N87Rb = 5 × 103. To examine the TBEC in quasi-1D trap we

take ωz(85Rb) = 2π× 4.55 Hz and ωz(87Rb) = 2π× 3.89 Hz; ω⊥(85Rb) = 50ωz(85Rb) and

ω⊥(87Rb) = 50ωz(87Rb). For this parameter set, the ground state is sandwich type with

the 85Rb condensate at the centre and surrounded by the 87Rb condensate at the edges.

As mentioned earlier thermal suppression of phase-separation is universal to any

binary condensate mixture. For illustration, the total and non-condensate density pro-

files are shown in Fig. 4.10(b),(c) for T = 10, 25 nK and a11 = 115a0. Here too, the

finite temperature transforms the phase separated TBEC at T = 0 to a partially misci-

ble phase. As expected, we find that with increase in temperature the phase-separation

is suppressed due to the increase in the density of the thermal clouds.

4.6 Summary of the Chapter

At finite temperatures, to examine the properties of binary condensates in the neigh-

bourhood of phase-separation, it is essential to incorporate the thermal component. At

T 6= 0 there are mode bifurcations close to the T/Tc ≈ 1. In general, there is a delay

or suppression of phase-separation due to the thermal component, and we have exam-

ined this in detail with the Cs-Rb binary condensate as an example. In this system

the transition is driven by tuning the interspecies interaction, and similar results are

obtained in 85Rb-87Rb binary condensate, where tuning the intraspecies interaction of
85Rb induces the transition. The binary condensate mixtures of dilute atomic gases are

different from the classical binary fluids which undergo miscible-immiscible transition

with temperature as control parameter. First, the variation of temperature in TBECs is

applicable only below the lower of the two critical temperatures. Second, each species

has two sub-components, the condensate and non-condensate atoms. The condensate

or the superfluid components are coherent, but the non-condensate components are in-

coherent and like the normal gas. Third, there are spatial density variations of all the

components due to the nature of the confining potential and diluteness of the atomic
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gas. Fourth, beyond a certain critical value of interaction strength or in the strongly

phase separated domain, temperature does not alter the density profiles. Finally, the

transition to the phase separated domain at finite temperatures is associated with a

distinct change in the profile of the correlation functions.





Chapter 5

Fluctuations in quasi-2D

condensates

The remarkable advances in cooling and trapping techniques of dilute atomic gases

have accelerated research in the field of quantum gases in the last two decades. Central

to such achievements are the experimental realizations of optical lattices [221, 222],

double-well potentials [223–225], elongated [211] or pancake shaped traps, quasi-

homogeneous potential [226], and random potentials [227]. The phenomenon of An-

derson localization which was originally predicted in the context of electron transport

in crystals [228] has also been observed in BEC of dilute atomic gases using random

disordered potential [229, 230]. A collection of ultracold atoms with repulsive binary

interactions exhibits diverse properties depending on the geometry of the potential and

provides an ideal testbed to explore fundamental topics in many-body physics. One

of the topics of particular interest is the physics of toroidal BECs, which has attracted

much attention since these are multiply connected systems and topologically distinct

from conventional harmonically trapped BECs. The superfluidity of an interacting di-

lute atomic gas in such a ring geometry is elucidated through the presence of persistent

current. Experiments with cold atoms in toroidal traps [231, 232] provide an oppor-

tunity to validate the cosmological scenario for string formation in the early Universe

through the Kibble-Zurek mechanism [180, 233].

105
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Figure 5.1: Transformation of condensate density distribution as harmonic trapping po-

tential is modified to a toroidal one. (a) - (d) Show the 23Na condensate density profiles

corresponding to U0 = 0, 5, 10, 20~ωx respectively with NNa = 2 × 103, α = 1, λ = 39.5,

and ω⊥ = 20.0 Hz. Density is measured in units of a−2
osc.

5.1 Quasi-2D BEC : Theory

In a quasi-2D system, the trapping frequencies of the harmonic oscillator potential

V = (1/2)mω2
x(x

2 + α2y2 + λ2z2) should satisfy the condition ωx, ωy � ωz, and

~ωz � µ. Here, α = ωy/ωx and λ = ωz/ωx are the anisotropy parameters along

the transverse and axial directions. For λ � 1, the axial degrees of freedom can be

integrated out and only the transverse excitations contribute to the dynamics. Under

mean field approximation, in Cartesian coordinate system, the second quantized form

of the grand-canonical Hamiltonian describing an interacting BEC is

Ĥ =

∫∫
dxdyΨ̂†(x, y, t)

[
− ~2

2m

(
∂2

∂x2
+

∂2

∂y2

)
+ V (x, y)

−µ+
U

2
Ψ̂†(x, y, t)Ψ̂(x, y, t)

]
Ψ̂(x, y, t). (5.1)

Here, Ψ̂ and µ are the Bose field operator of the single-species BEC, and the chemical

potential, respectively. The strength of the repulsive interaction between two atoms in
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Figure 5.2: Evolution of quasiparticle amplitude corresponding to the Kohn mode as

U0 is increased from 0 to 20~ωx for α = 1. (a) - (c) Show the uNa corresponding to

U0 = 0, 10, 20~ωx, respectively. Harmonic trapping potential is applicable when U0 = 0,

otherwise, it is a Mexican hat potential. At U0 = 20, a toroidal shaped BEC is formed and

the Kohn modes get deformed. (d) - (f) Show the vNa corresponding to U0 = 0, 10, 20~ωx,

respectively. In the plots u and v are in units of a−1
osc. Here x and y are measured in units of

aosc.

a quasi-2D condensate is given by U = 2g
√

2πλ , where λ = (ωz/ω⊥)� 1. Based on

this Hamiltonian, the equation of motion of the Bose field operator is

i~
∂

∂t
Ψ̂ = ĥΨ̂ + UΨ̂†Ψ̂Ψ̂, (5.2)

where ĥ = (−~2/2m)
(
∂2/∂x2 + ∂2/∂y2

)
+ V (x, y) − µ. In this thesis, to study

toroidal condensates we superimpose a 2D-Gaussian potential to the harmonic oscilla-

tor potential. Thus, the confining potential is

Vnet(x, y) = V (x, y) + U0e
−(x2+α2y2)/2σ2

, (5.3)

with U0 as the strength of the Gaussian potential, and σ is the width of the Gaussian

potential along the x and y directions. With U0 = 0, when α = 1, Vnet is rotation-

ally symmetric and hence, is rotationally invariant. But, when α < 1 the rotational

symmetry of the potential Vnet is broken and the circle is transformed to an ellipse
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with the major axis oriented along the y-axis. Furthermore, when U0 � 0, Vnet is

modified, and at higher values of U0 the potential assumes the form of a doughnut

or a toroid. Such a trapping potential configuration was realized in an experiment

with Na condensate [234]. This transformation is reflected in the geometry of the

condensate density distribution, which is evident from the density plots in Fig. 5.1.

The possibilities of a toroidal potential were first examined in theoretical works with

Laguerre-Gaussian (LGl
p) laser beams [235,236] of radial and azimuthal orders, p > 0

and l, respectively. Following which, in experiments, toroidal condensates of atomic
23Na [237], and 87Rb [238] have been achieved using LGl

0 beams [239]. Furthermore,

toroidal trapping potentials for 87Rb condensates have been realized by combining an

RF-dressed magnetic trap with an optical potential [232] or by the intersection of three

light beams as elucidated in Ref. [240]. In the present case, like in the previous cases,

the spatial and temporal variables are scaled as x/aosc, y/aosc and ωxt respectively,

where aosc =
√
~/mωx. To study the dependence of the collective excitations of the

system on U0 and α, and to examine the density distribution at finite temperatures we

employ HFB-Popov approximation. In this formalism, the Bose field operator Ψ̂ is

decomposed into two parts; the c-field or the condensate part represented by φ(x, y, t)

and the non-condensate or the fluctuation part denoted by ψ̃(x, y, t). Thus, Ψ̂ is written

as,

Ψ̂ = φ+ ψ̃. (5.4)

The generalized GP equation with the time-independent HFB-Popov approximation

is then given by

ĥφ+ U [nc + 2ñ]φ = 0, (5.5)

where, nc(x, y) ≡ |φ(x, y)|2, ñ(x, y) ≡ 〈ψ̃†(x, y, t)ψ̃(x, y, t)〉, and n(x, y) = nc(x, y)+

ñ(x, y) are the local condensate, non-condensate, and total density, respectively. Ap-

plying Bogoliubov transformation, the fluctuations operators in terms of the quasipar-

ticle modes are

ψ̃(x, y, t) =
∑
j

[
uj(x, y)α̂j(x, y)e−iEjt/~ − v∗j (x, y)α̂†j(x, y)eiEjt/~

]
,

ψ̃†(x, y, t) =
∑
j

[
u∗j(x, y)α̂†j(x, y)eiEjt/~ − vj(x, y)α̂j(x, y)e−iEjt/~

]
.
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Figure 5.3: The evolution of the mode energies as a function of U0 for α = 1 at T = 0.

(a) Shows the evolution of the low-lying mode energies in the domain 0 6 U0 6 20~ωx for

NNa = 2 × 103. (b) The enlarged view of the region enclosed within the black rectangular

box in (a) to resolve the avoided crossing and quasidegeneracy of modes.

Here, α̂j (α̂†j) are the quasiparticle annihilation (creation) operators and satisfy the

usual Bose commutation relations, and the subscript j represents the energy eigenvalue

index. The Bogoliubov-de Gennes (BdG) equations, discussed in previous chapters,

are

(ĥ+ 2Un)uj − Uφ2vj = Ejuj, (5.6a)

−(ĥ+ 2Un)vj + Uφ∗2uj = Ejvj. (5.6b)

The number density ñ of the thermal or non-condensate particles is given by

ñ =
∑
j

{[|uj|2 + |vj|2]N0(Ej) + |vj|2}, (5.7)

where 〈α̂†jα̂j〉 = (eβEj − 1)−1 ≡ N0(Ej) with β = 1/kBT , is the Bose factor of the

quasiparticle state with energy Ej at temperature T . However, it should be emphasized
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Figure 5.4: Evolution of quasiparticle amplitude corresponding to the l = 0 mode as U0

is increased from 0 to 15~ωx for α = 1. (a) - (c) Show the uNa corresponding to U0 =

5, 7.5, 15~ωx, respectively. (d) - (f) Show the vNa corresponding to U0 = 5, 7.5, 15~ωx,

respectively. In the plots u and v are in units of a−1
osc. Here x and y are measured in units of

aosc.

that, when T → 0, N0(Ej)’s in Eq. (5.7) vanish. The non-condensate density is then

reduced to

ñ =
∑
j

|vj|2. (5.8)

Thus, at zero temperature we need to solve the equations self-consistently as the quan-

tum depletion term |vj|2 in the above equation is non-zero.

5.2 Mode evolution at T = 0

To examine the properties of a quasi-2D condensate with a Gaussian potential, as a

test case, we consider a 23Na BEC with a = 53.3a0 [2, 57]. The evolution of the

quasiparticle modes is computed for NNa = 2 × 103 with λ = 39.5, and ωx = ωy =

ω⊥ = 20.0 Hz. We, then, study mode evolution in two different ways: varying U0, but

keeping α = 1; and varying α, but keeping U0 constant. For this set of parameters,

~ωz � µ such that the system can be assumed to be in the harmonic oscillator ground

state along the axial direction z. All the degrees of the freedom along z are frozen.
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Figure 5.5: Evolution of quasiparticle amplitude corresponding to the hexapole mode

which goes soft as U0 is increased from 0 to 15~ωx for α = 1. (a) - (c) Show the uNa

corresponding to U0 = 5, 7.5, 15~ωx, respectively. (d) - (f) Show the vNa corresponding to

U0 = 5, 7.5, 15~ωx, respectively. In the plots u and v are in units of a−1
osc. Here x and y are

measured in units of aosc.

5.2.1 Variation in U0

To examine the mode spectrum with variation in U0, we consider the value in the range

0 6 U0 6 20~ω⊥. At the starting point when U0 = 0, the density profile has rota-

tional symmetry with nc(0, 0) as the maximum and decreases to zero with r > 0. The

corresponding excitation spectrum is identified by the presence of a Goldstone mode,

and doubly degenerate Kohn modes with ω/ω⊥ = 1. The quasiparticle amplitudes

corresponding to one of the degenerate Kohn modes is shown in Fig. 5.2(a).

For U0 6= 0, the condensate density at the central region of the trap gets depleted.

So, the general trend is, as to be expected, an increase in U0 is associated with a de-

crease in nc(0, 0), and the radial extent of the condensate increases. When 15~ω⊥ /
U0, the effective potential assumes the form of a Mexican hat, and the condensate cloud

lies along the toroid with nc(0, 0) → 0. For instance, when U0 = 0, 5, 10, 15, 20~ωx,

nc(0, 0) ≈ 200, 92, 9, 0.04, 0a−2
osc, respectively. In addition, as shown in Fig. 5.1, the
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Figure 5.6: The plots show the variation in the profile of (a) uNa, and (b) vNa along x-axis

at y = 0 corresponding to the l = 0 mode at T = 0 and α = 1. These represent one of the

transformations in the mode function as harmonic to toroidal trap geometry occurs. The plots

correspond to U0 = 5, 7.5, 15~ωx, and in the plots u and v are in units of a−1
osc. Here x is

measured in units of aosc.

maximum value of the condensate density decreases with increasing U0. The change

in the topology of the density profiles brings about a change in the nature of the ex-

citation spectrum and the structure of the Bogoliubov quasiparticle amplitudes. With

the transformation from a harmonic to a toroidal BEC, the wavelength of excitations

becomes longer as they now lie along the circumference of the toroid. This decreases

the energy of the quasiparticle excitations. For the present study, the evolution of mode

energies as a function of U0 is shown in Fig. 5.3. In the lower part of the plot, the Kohn

mode getting soft with increase in U0 is discernible. The metamorphosis of the Kohn

mode from harmonic to toroidal configuration of the BEC is shown in Figs. 5.2. At
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Figure 5.7: The evolution of the quasiparticle mode energies as a function of α for U0 = 0

at T = 0. Two distinct family of curves, marked by solid red dots (•) and purple triangles

(N), are discernible as α is decreased from 1 to 0.1. In each of the families, each member

differs from the other by the principal quantum number n. As an example, the degeneracy of

the 3rd and the 4th eigenvalues is lifted to give rise to two branches traced by the red and the

green arrows.

U0 = 20~ωx, the lobes of the degenerate Kohn mode get distorted and become horse-

shoe shaped. In particular, the ratio of the wavelength of the Kohn mode of U0 = 20

to U0 = 0 is ≈ 4.0 and agrees well with the corresponding ratio of their energies as

provided in Fig. 5.3. It deserves to be mentioned here that for 15 < U0 < 20~ωx, the

energy of the Kohn mode gets saturated. This is because the variation in the circum-

ference of the condensate is small, and the change in the wavelength of excitations is

negligible.

The other striking feature that deserves discussion is the softening and hardening

of l = 0 mode and the subsequent bifurcations. At U0 = 0, the mode with ω/ω⊥ =

2.0 is nondegenerate and corresponds to the l = 0 mode. The mode is rotationally

symmetric. Close to this mode are the doubly degenerate modes with ω/ω⊥ = 2.06

which are hexapole in structure. With the increase in U0, say at U0 = 5~ωx, the energy

of the l = 0 mode is lowered to ω/ω⊥ = 1.47. The same trend is observed with
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Figure 5.8: Evolution of Bogoliubov quasiparticle amplitudes for the family of curves

connected by solid red dots (•) as shown in Fig. 5.7. (a) - (c) Show uNa corresponding to the

first three eigenvalues for α = 0.6 with principal quantum number n = 1, 2, 3, respectively.

(d) - (f) Show uNa corresponding to the first three eigenvalues for α = 0.2 with principal

quantum number n = 1, 2, 3, respectively. In the plots us are in units of a−1
osc. Here x and y

are measured in units of aosc.

the hexapole modes, and the mode energy decreases to ω/ω⊥ = 1.49. The closest

approach of these two modes occurs at U0 ≈ 7.5~ωx. At this point the hexapole

modes are lower in energy than the l = 0 mode and avoided level crossing occurs.

At U0 ≈ 10~ωx, we observe a bifurcation and the l = 0 mode hardens due to the

increase in the number of nodes at higher values of U0, the energy of the hexapole

modes continues to be lower than the l = 0 mode. The evolution of the quasiparticle

amplitudes corresponding to the l = 0 and hexapole mode for 0 < U0 ≤ 15 are shown

in Figs. 5.4, and 5.5. The changes in the node structure is visible from the variation of

uNa and vNa along x at y = 0, which are shown in Figs. 5.6.

As evident from the Fig. 5.6, the radial extent of the mode function corresponding

to the l = 0 mode increases for 0 < U0 < 10, which lowers the excitation energy.

However, when U0 ≥ 10 the mode develops a dip at the center and the condensate

atoms are repelled from the central region. This hardens the l = 0 mode. The other

noticeable feature of this excitation spectrum is the evolution of the doubly degenerate

modes at ω/ω⊥ ≈ 2.67, 2.73 when U0 = 0. As U0 is increased, these two modes
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Figure 5.9: Evolution of Bogoliubov quasiparticle amplitudes for the family of curves

connected by solid purple triangles (N) as shown in Fig. 5.7. (a) - (c) Show uNa corresponding

to the first eigenvalue marked by (N) for α = 0.6, 0.4, 0.2 with principal quantum number

n = 1, respectively. (d) - (f) Show uNa corresponding to the second eigenvalue marked by

(N) for α = 0.6, 0.4, 0.2 with principal quantum number n = 2, respectively. In the plots us

are in units of a−1
osc. Here x and y are measured in units of aosc.

initially soften, then at a critical value of U0 ≈ 10.5~ωx start hardening, and crosses

other modes of opposite parity. So, no avoided crossing occur, and unlike the previous

case, at every U0 the higher excited mode continues to be higher in energy than the

other. For illustration, the mode with ω/ω⊥ ≈ 2.67, 2.73 at U0 gets transformed to a

mode with lower in energy with ω/ω⊥ ≈ 1.13, 1.79 at U0 = 20~ωx.

One may recall that, as mentioned earlier, LG beams are used in experiments [237,

238] to produce toroidal optical dipole traps. In cylindrical coordinates the intensity

profile of a LG beam at its focus (z = 0) is given by [235]

Ip,l(r) =
2p!

(p+ |l|)!
P0

πw2
p,l

(
2r2

w2
p,l

)|l|
e−2r2/w2

p,l

[
L|l|p

(
2r2

w2
p,l

)]2

, (5.9)

where, P0 is the power of laser beam, and l is the azimuthal mode index. The number of

radial intensity maxima is given by radial mode index p. The mode spot size is given by

wp,l and L|l|p is the generalized Laguerre polynomial. To create a single-ringed toroidal

trap, a red-detuned laser field (∆ < 0) is used with p = 0 and l > 0. The optical dipole
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Figure 5.10: Evolution of the quasiparticle amplitudes corresponding to the eigenvalues

traced by the red arrows in Fig. 5.7. (a) Shows the quadrupole mode corresponding to the

3rd eigenvalue for α = 1.0. (b) - (d) Show the deformation of the quadrupole mode with the

wavelength of the quasiparticle excitation increasing along the y direction corresponding to

α = 0.8, 0.6, 0.4 respectively. (e) Shows the three lobed mode corresponding to α = 0.2. In

the plots us are in units of a−1
osc. Here x and y are measured in units of aosc.

potential in order to produce a toroid of radius rT is given by

Ul(r) = Ul

(
r

rT

)2l

e−l(r
2/r2

T−1), (5.10)

where,

U1 =
~Γ2

8∆

(
e−1P0

πr2
T ISat

)
, Ul ≈ U1

√
l. (5.11)

Here U1 is the optical dipole potential well depth for l = 1 with the radius fixed at rT .

The natural linewidth of the optical transition is denoted by Γ, ∆ is the laser detuning

parameter from the optical transition frequency, and ISat is the resonant saturation

intensity. The toroidal trap becomes more deeper and tighter with increasing l, which

is similar to the configuration we have used ( combination of harmonic and Gaussian

trapping potentials) when U0 = 0. However, it is to be noted that, at r = 0 and

r → ±∞, Ul = 0 for any l > 0. So, the LG beams do not have a counterpart of

U0 = 0 or low values of U0, and cannot be adopted to examine the evolution of the

fluctuations as a pancake shaped condensate is transformed to a toroidal one.

On examining the number of non-condensate atoms due to quantum fluctuations
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Figure 5.11: Evolution of the quasiparticle amplitudes corresponding to the eigenvalues

traced by the green arrows in Fig. 5.7. (a) Shows the quadrupole mode corresponding to

the 4th eigenvalue for α = 1.0. (b) - (e) Show the evolution of the quadrupole mode for

α = 0.8, 0.6, 0.4, 0.2 respectively. In the plots us are in units of a−1
osc. Here x and y are

measured in units of aosc.

at T = 0, we observe an increase in the number of non-condensate atoms with the

increase U0. A closer inspection reveals that the dominant contribution to the number

of non-condensate atoms Ñ =

∫
ñ(x, y) dxdy arises from the |v|2 corresponding to

the doubly degenerate Kohn modes. This contribution is the least for U0 = 0, and

rises as U0 is increased from 0 to 20~ωx. It must be mentioned here that the genesis

of higher quantum fluctuations in quasi-1D BEC with a dark soliton is very different:

anomalous mode and interactions play a vital role.

5.2.2 Variation in α

We now study the mode evolution of the system with variation in the anisotropy pa-

rameter α, but keeping U0 fixed. As α is decreased or ωy is decreased, the rotational

symmetry of the condensate is broken and transformed to an ellipse with the semi-

major axis along the y direction. With this transformation, the excitations along the y

direction are lower in energy than the excitations along the x direction. For U0 = 0,

the Kohn mode is doubly degenerate when α = 1. The degeneracy is lifted when

α < 1, and the excitations along the x and y directions differ in energy. The Kohn
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mode with ω/ωx = 1 remains steady, whereas the other Kohn mode decreases on low-

ering α. The evolution of the mode energies with variation in α is shown in Fig. 5.7.

It is evident from the figure that as α is varied from 1 to 0.1, the condensate density

profiles transform from a quasi-2D to an effectively quasi-1D regime. With this the

quasiparticle modes form a families of curves with similar slopes, and two such fam-

ilies are discernible in the figure, which are marked with solid red dots and purple

triangles. The curve represented by red dots and purple triangles differ in the nature of

Figure 5.12: Evolution of the Bogoliubov quasiparticle amplitude corresponding to the

Kohn mode which remains steady as α is decreased from 1 to 0.1 when U0 = 0. Show

the (a) - (c) uNa, and (d) - (f) vNa corresponding to α = 1.0, 0.6, 0.2, respectively. The

mode excitation is effectively along the x-direction and the wavelength of excitation along

this direction remains unchanged with decrease in α. In the plots us and vs are in units of

a−1
osc. Here x and y are measured in units of aosc.

excitation which is elucidated through the quasiparticle amplitudes. However, in each

of the families, the curves differ from the other by the principal quantum number n.

In particular, with varying α, each member of the family has the same n, but l differs

from each other. This trend in the nature of the curves is shown in Figs. 5.8, and 5.9.

In Fig. 5.8 we show the quasiparticle amplitudes corresponding to the modes shown by

red dots in Fig. 5.7. Each member constituting the family is distinct from the other by

the number of nodes. The first member of the family corresponds to a dipole or Kohn

mode for any value of α. For the quasiparticle amplitudes corresponding to the modes

connected by purple triangles, a similar trend is observed with the first member, which
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Figure 5.13: Evolution of the Bogoliubov quasiparticle amplitude corresponding to the

Kohn mode which goes soft as α is varied from 1 to 0.1 when U0 = 0. Show the (a) - (c) uNa,

and (d) - (f) vNa corresponding to α = 1.0, 0.6, 0.2, respectively. The mode excitation is ef-

fectively along the y-direction and the wavelength of excitation along this direction increases

with decrease in α. In the plots us and vs are in units of a−1
osc. Here x and y are measured in

units of aosc.

is a quadrupole mode as shown in Fig. 5.9.

The other interesting feature is the bifurcation due to the lifting of degeneracy as α

is varied from 1.0 to 0.1. At the outset when α = 1.0, the 3rd and the 4th eigenvalues

are ≈ 1.52. As the rotational symmetry of the condensate is broken for α < 1, these

modes bifurcate to give rise to two branches. The first branch, traced by the red arrows

in Fig. 5.7, softens with decrease in α. For α = 1.0, the quasiparticle amplitude

corresponding to ω/ωx = 1.52 is a quadrupole mode as shown in Fig. 5.10(a). As α is

decreased, the condensate gets elongated along the y direction with contraction along

the x-axis. This makes the lobes along the x-axis coalesce, and the quadrupole mode

is transformed to a three lobed structure at α = 0.2 as shown in Fig. 5.10(e). The

intermediate stages of deformation are also shown in Fig. 5.10.

The other degenerate mode at α = 1.0 which can be thought of an excitation

along the x-axis forms the second branch traced by the green arrows in Fig. 5.7. The

wavelength of the quadrupole mode ( at α = 1.0 ) decreases with the variation in α,

which is the reflected by a decrease in the energy as shown in Fig. 5.7. As evident from
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the figure the decrease in the energy of this branch is less than the other branch. With

the decrease in α this mode retains it structure as shown in Fig. 5.11.

Furthermore, the quasiparticle amplitude corresponding to the steady and softened

Kohn mode is also shown in Fig. 5.12 and 5.13 respectively.

Figure 5.14: Transformation of a rotationally symmetric to an ellipsoidal BEC for U0 =

5. (a) - (c) Show the 23Na condensate density profiles corresponding to α = 1.0, 0.6, 0.2

respectively with NNa = 2× 103, α = 1, λ = 39.5, and ω⊥ = 20.0 Hz. Density is measured

in units of a−2
osc.

With U0 6= 0, the radial extent of nc increases when α = 1, and for α < 1 the

condensate becomes elongated along the y direction as shown in Fig. 5.14. The doubly

degenerate Kohn modes becomes nondegenerate and its energy decreases further with

lowering of α as shown in Fig. 5.15. Of these two modes, one corresponds to the

excitation along the x direction and the other along the y direction. The decrease in

the energy of the Kohn mode is enhanced for U0 6= 0. For example, when U0 = 5

the mode identified along y direction softens and gets transformed into a Goldstone

mode as shown in Fig. 5.15. At α = 0.2, spontaneous symmetry breaking occurs and

a new Goldstone mode emerges in the excitation spectrum. To examine the further,

consider the condensate density in TF-approximation, where the equipotential curves

of the trapping potential coincides with isodensity curves. The same is applicable for

α 6= 1, so, the condensate density profiles matches the equipotential curves of the

trapping potential. However, at lower α or higher U0, the condensate density profile

along semi-minor axis has large gradients, and TF approximation is not valid. In other
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words, the equipotential curves are no longer coincident with the isodensity curves.

This mismatch is the root of symmetry breaking and the appearance of the Goldstone

mode. For higher values of U0, symmetry breaking and the subsequent appearance

of an additional Goldstone mode occurs at lower values of α. The mode along x

does not remain steady and gets reduced unlike when U0 = 0, and like in U0 = 0,

we observe bifurcations and the appearance of a family of curves identified by the

principal quantum number n.
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Figure 5.15: The evolution of the quasiparticle modes as a function of α for U0 = 5 at

T = 0. One prominent feature, which distinguishes the plot from U0 = 0, is the softening of

the Kohn mode.

5.3 T 6= 0 results

Consider U0 = 0 and α = 1 as the starting choice of parameters to probe the finite

temperature effects. When T 6= 0 the Bose factor N0 6= 0, so in addition to the quan-

tum fluctuations, the non-condensate densities ñ have contributions from the thermal

fluctuations as well. The condensate atoms nc then interact with ñ, and this in turn

modifies nc. Due to the repulsive interaction energy between the condensate and non-

condensate atoms, the profile of ñ develops a dip at the center of the trap, where nc is

maximum. In general, due to higher kinetic energy, the spatial extent of the thermal
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cloud is larger than the condensate cloud, this is evident from the density plots shown

in Fig. 5.16.
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Figure 5.16: The plots along x-axis at y = 0 showing the variation in (a) condensate and

(b) non-condensate density profiles at T = 10 nK for different values of U0. In the plots nc

and ñ are in units of a−2
osc. Here x is measured in units of aosc.

With higher U0, nc gets modified developing a dip at the center, and ultimately

gets transformed to a toroidal condensate which is shown in Fig. 5.16. Subsequently,

the non-condensate density distribution also gets modified. At U0 = 15, both nc and

ñ are low at the central region, and with ñ > nc. The low nc reduces the repulsive

interaction energy between the thermal and condensate atoms. This renders energeti-

cally favourable for the non-condensate atoms to reside in the central region of the trap

even when nc → 0 as shown in Fig. 5.17 (d), (h). With higher U0, the maxima of nc

decreases, whereas the maxima of the non-condensate density increases; the position

of the maxima of the condensate as well as the non-condensate densities shift radially

outward. Initially, these two maxima do not coincide and the separation is ≈ 2.0aosc.

When U0 = 15, the separation reduces to ≈ 0.1aosc and the Kohn modes resemble the

structure of the condensate density profiles. The trend in the shifting of the maxima is

shown through a radial cut along y = 0 in Fig. 5.16. The density plots are also shown

in Fig. 5.17. The number of thermal atoms increases with increasing the strength of

U0.
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Figure 5.17: Condensate and non-condensate density plots at T = 10 nK for different

values of U0. (a) - (d) plots of condensate, and (e) - (f) non-condensate density distribution

for U0 = 0, 5, 10, 15, respectively. Here x and y are measured in units of aosc.

5.4 Summary of the Chapter

At T = 0, with the changeover from a rotationally symmetric harmonic to a toroidal

trapping potential, the Kohn mode is transformed from a radial to a circular mode.

This decreases the energy of the Kohn mode. The degeneracy of the modes is lifted

when α < 1. The nondegenerate quasiparticle modes form distinct group of curves

as α is varied from 1 to 0.1. Each branch forming the group is distinguished from the

other by the principal quantum number. With finite strength of U0 and varying α, an

additional Goldstone mode appears in the system at a critical value of α. On increase

of U0, the Goldstone mode appears at a higher value of α. That is, higher U0 enhances

the phenomenon of SSB. At T 6= 0, for α = 1 with increase in U0, the maxima of

equilibrium condensate and non-condensate density profiles tends to coincide. This is

not the case with U0 = 0, where the non-condensate density is depleted in the central

region, but in the same region the condensate density has a maximum.





Chapter 6

Scope for Future Work

We have used the self-consistent HFB-Popov approximation, which is best suited to

examine the quasiparticle spectrum and mode functions, to study the equilibrium so-

lutions of TBEC. Using this formalism, we have examined in detail the equilibrium

density profiles of a trapped TBEC at T = 0 and T 6= 0. We have also examined

the evolution of quasiparticle modes of the stationary TBEC as a function of the in-

teraction strengths and temperature. The role of thermal cloud in the suppression of

phase-separation in TBEC has also been demonstrated. In the HFB-Popov approx-

imation the dynamics of the non-condensate part is not included which may be the

dominant reason for damping of Kohn mode at finite temperatures. However, in our

future works we plan to study the dynamics of Bose gases with the inclusion of fi-

nite temperature effects using Zaremba-Nikuni-Griffin (ZNG) formalism [98]. In this

method, a dissipative GP equation describes the dynamics of the condensate cloud.

The non-condensate evolution is represented by a quantum Boltzmann equation which

includes collisions between condensate and non-condensate parts resulting in transfer

of atoms.

Using the ZNG formalism, the growth dynamics of a TBEC can be a topic of future

study [241,242]. One can also look at the dynamics of vortex dipole, multiple vortices

of like or different charge in a BEC at finite temperatures. Melting of vortex lattices at

T 6= 0 in a BEC or a TBEC is again a topic of further investigation. Motivated by the

recent study of finite temperature dynamical structure factor of a 1D Bose gas [243],

the ZNG formalism can be employed to perform a similar investigation for TBEC. As
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pointed in Ref. [243], the dynamical structure factor has a typical width which bears

a close connection to the Kardar-Parisi-Zhang (KPZ) universality class of dynamical

critical phenomena. “Is this applicable to TBEC ?”, is a question that needs to be

answered in the future investigations.



Appendix A

Numerical Details

For the T = 0 studies we solve the pair of coupled Eqns. (2.67) by neglecting the

non-condensate density (ñk = 0) using finite-difference methods and in particular, we

use the split-step Crank-Nicholson method [244] adapted for binary condensates. The

method when implemented with imaginary time propagation is appropriate to obtain

the stationary ground state wave function of the TBEC. Using this solution, and based

on Eq. (2.69), we cast the Eq. (2.68) as a matrix eigenvalue equation in the basis of

the trapping potential. The matrix is then diagonalized using the LAPACK routine

zgeev [245] to find the quasiparticle energies and amplitudes, Ej , and uk’s and vk’s,

respectively. This step is the beginning of the first iteration for T 6= 0 calculations.

In which case, the uk’s and vk’s along with Ej are used to get the initial estimate of

ñk through Eq. (2.70). For this we consider only the positive energy modes. Using

this updated value of ñk, the ground state wave function of TBEC φk and chemical

potential µk are again re-calculated from Eq. (2.67). This procedure is repeated till the

solutions reach desired convergence. In the present work the convergence criteria is

that the change in µk between iterations should be less than 10−4. In general, the con-

vergence is not smooth and we encounter severe oscillations very frequently. To damp

the oscillations and accelerate convergence we employ successive over (under) relax-

ation technique for updating the condensate (non-condensate) densities [246]. The new

solutions after IC iteration cycle are

φnew
IC (z) = sovφIC(z) + (1− sov)φIC−1(z),

ñnew
IC (z) = sunñIC(z) + (1− sun)ñIC−1(z), (A.1)
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where sov > 1 (sun < 1) is the over (under) relaxation parameter. During the cal-

culation of the uk and vk, we choose an optimal number of the harmonic oscillator

basis functions. The conditions based on which we decide the optimal size are: obtain-

ing reliable Goldstone modes; and all eigenvalues must be real for stable equilibrium

solutions.
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Goldstone modes and bifurcations in phase-separated binary condensates at finite temperature
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We show that the third Goldstone mode, which emerges in binary condensates at phase separation, persists to
higher interspecies interaction for density profiles where one component is surrounded on both sides by the other
component. This is not the case with symmetry-broken density profiles where one species is entirely to the left
and the other is entirely to the right. We, then, use Hartree-Fock-Bogoliubov theory with Popov approximation
to examine the mode evolution at T �= 0 and demonstrate the existence of mode bifurcation near the critical
temperature. The Kohn mode, however, exhibits deviation from the natural frequency at finite temperatures after
the phase separation. This is due to the exclusion of the noncondensate atoms in the dynamics.

DOI: 10.1103/PhysRevA.89.013617 PACS number(s): 67.85.Bc, 03.75.Hh, 03.75.Mn

I. INTRODUCTION

The remarkable feature of binary condensates or two-
species Bose-Einstein condensates (TBECs) is the phe-
nomenon of phase separation [1,2]. This relates the system
to novel phenomena in nonlinear dynamics and pattern
formation, nonequilibrium statistical mechanics, optical sys-
tems, and phase transitions in condensed matter systems.
Experimentally, TBECs have been realized in the mixture of
two different alkali-metal atoms [3–5], and in two different
isotopes [6] and hyperfine states [7,8] of an atom. Most
importantly, in experiments, the TBEC can be steered from
miscible to phase-separated domain or vice versa [9,10]
through a Feshbach resonance. These have motivated theo-
retical investigations on stationary states [1,11], dynamical
instabilities [12–14], and collective excitations [15–21] of
TBECs.

In this paper, we report the development of Hartree-Fock-
Bogoliubov theory with Popov (HFB-Popov) approximation
[22] for TBECs. We use it to investigate the evolution
of Goldstone modes and mode energies as a function of
the interspecies interaction and temperature, respectively.
Recent works [20,21] reported the existence of an additional
Goldstone mode at phase separation in the symmetry-broken
density profiles, which we refer to as the side-by-side density
profiles. We, however, demonstrate that in the other type of
density profile where one of the species is surrounded on both
sides by the other, which we refer to as the sandwich type, the
mode evolves very differently. To include the finite temperature
effects, besides HFB-Popov approximation, there are other
different approaches. These include projected Gross-Pitaevskii
(GP) equation [23], stochastic GP equation (SGPE) [24],
and Zaremba-Nikuni-Griffin (ZNG) formalism [25]. For the
present work we have chosen the HFB-Popov approximation,
which is a gapless theory and satisfies the Hugenholtz-Pines
theorem [26]. The method is particularly well suited to
examine the evolution of the low-lying modes. It has been used
extensively in single-species BEC to study finite temperature
effects to mode energies [22,27–29] and agrees well with
the experimental results [30] at low temperatures. In TBECs,
the HFB-Popov approximation has been used in the miscible
domain [31] and in this paper, we describe the results for the
phase-separated domain. Other works which have examined

the finite temperature effects in TBECs use the Hartree-Fock
treatment with or without trapping potential [32,33] and the
semiclassical approach [34]. Although, HFB-Popov does have
the advantage vis-a-vis calculation of the modes, it is nontrivial
to get converged solutions. In the present work, we consider
the TBEC of 87Rb-133Cs [4,5], which have widely differing
s-wave scattering lengths and masses. This choice does add to
the severity of the convergence issues but this also makes it a
good test for the methods we use. We choose the parameter
domain where the system is quasi-one-dimensional (quasi-1D)
and a mean-field description like HFB-Popov is applicable.
The quasi-1D trapped bosons exhibit a rich phase structure
as a function of density and interaction strengths [35]. For
comparison with the experimental results we also consider
the parameters as in the experiment [5]. We find that, like
in Ref. [36], the quasi-1D descriptions are in good agreement
with the condensate density profiles of three-dimensional (3D)
calculations [37].

II. THEORY

For a highly anisotropic cigar-shaped harmonic trapping
potential V = (1/2)m(ω2

xx
2 + ω2

yy
2 + ω2

zz
2), the trapping fre-

quencies should satisfy the condition ωx = ωy = ω⊥ � ωz.
In this case, we can integrate out the condensate wave
function along xy and reduce it to a quasi-1D system. The
transverse degrees of freedom are then frozen and the system
is confined in the harmonic oscillator ground state along the
transverse direction for which �ω⊥ � μk . We thus consider
excitations present only in the axial direction z [38,39]. The
grand-canonical Hamiltonian, in the second quantized form,
describing the mixture of two interacting BECs is then

H =
∑
k=1,2

∫
dz�̂

†
k (z,t)

[
− �2

2mk

∂2

∂z2
+ Vk(z) − μk

+ Ukk

2
�̂

†
k (z,t)�̂k(z,t)

]
�̂k(z,t)

+U12

∫
dz�̂

†
1(z,t)�̂†

2(z,t)�̂1(z,t)�̂2(z,t), (1)

where k = 1,2 is the species index, �̂k’s are the Bose field
operators of the two different species, and μk’s are the chemical
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potentials. The strength of intra- and interspecies interactions
are Ukk = (akkλ)/mk and U12 = (a12λ)/(2m12), respectively,
where λ = (ω⊥/ωz) � 1 is the anisotropy parameter, akk is
the s-wave scattering length, mk’s are the atomic masses of the
species, and m12 = m1m2/(m1 + m2). In the present work we
consider all the interactions are repulsive, that is, akk,a12 > 0.
The equation of motion of the Bose field operators is

i�
∂

∂t

(
�̂1

�̂2

)
=

(
ĥ1 + U11�̂

†
1�̂1 U12�̂

†
2�̂1

U12�̂
†
1�̂2 ĥ2 + U22�̂

†
2�̂2

)(
�̂1

�̂2

)
,

where ĥk = (−�2/2mk)∂2/∂z2 + Vk(z) − μk . For compact
notations, we refrain from writing the explicit dependence of
�̂k on z and t . Since a majority of the atoms reside in the ground
state for the temperature regime relevant to the experiments
(T ≤ 0.65Tc) [28], the condensate part can be separated out
from the Bose field operator �̂(r,t). The noncondensed or
the thermal cloud of atoms are then the fluctuations of the
condensate field. Here, Tc is the critical temperature of ideal
gas in a harmonic confining potential. Accordingly, we define
[22], �̂(z,t) = �(z) + �̃(z,t), where �(z) is a c-field and
represents the condensate, and �̃(z,t) is the fluctuation part.
In two-component representation,(

�̂1

�̂2

)
=

(
φ1

φ2

)
+

(
ψ̃1

ψ̃2

)
, (2)

where φk(z) and ψ̃k(z) are the condensate and fluctuation part
of the kth species. Thus for a TBEC, φks are the stationary
solutions of the coupled generalized GP equations, with time-
independent HFB-Popov approximation, given by

ĥ1φ1 + U11[nc1 + 2ñ1]φ1 + U12n2φ1 = 0, (3a)

ĥ2φ2 + U22[nc2 + 2ñ2]φ2 + U12n1φ2 = 0, (3b)

where nck(z) ≡ |φk(z)|2, ñk(z) ≡ 〈ψ̃†
k (z,t)ψ̃k(z,t)〉,

and nk(z) = nck(z) + ñk(z) are the local condensate,
noncondensate, and total density, respectively. Using
Bogoliubov transformation,

ψ̃k(z,t) =
∑

j

[ukj (z)α̂j (z)e−iEj t − v∗
kj (z)α̂†

j (z)eiEj t ],

where α̂j (α̂†
j ) are the quasiparticle annihilation (creation)

operators and satisfy Bose commutation relations, uk and vk

are the quasiparticle amplitudes, and j is the energy eigenvalue
index. We define the operators as common to both the species,
which is natural and consistent as the dynamics of the species
are coupled. Furthermore, this reproduces the standard coupled
Bogoliubov-de Gennes equations at T = 0 [20] and in the
limit a12 → 0, noninteracting TBEC, the quasiparticle spectra
separates into two distinct sets: one set for each of the
condensates. From the above definitions, we get the following
Bogoliubov-de Gennes equations,

L̂1u1j − U11φ
2
1v1j + U12φ1(φ∗

2u2j − φ2v2j ) = Eju1j , (4a)

L̂1v1j + U11φ
∗2
1 u1j − U12φ

∗
1 (φ2v2j − φ∗

2u2j ) = Ejv1j , (4b)

L̂2u2j − U22φ
2
2v2j + U12φ2(φ∗

1u1j − φ1v1j ) = Eju2j , (4c)

L̂2v2j + U22φ
∗2
2 u2j − U12φ

∗
2 (φ1v1j − φ∗

1u1j ) = Ejv2j , (4d)

where L̂1 = (
ĥ1 + 2U11n1 + U12n2), L̂2 = (

ĥ2 + 2U22n2 +
U12n1

)
, and L̂k = −L̂k . To solve Eq. (4) we define uk and vk’s

as the linear combination of N harmonic oscillator eigenstates.

u1j =
N∑

i=0

pij ξi, v1j =
N∑

i=0

qij ξi,

(5)

u2j =
N∑

i=0

rij ξi, v2j =
N∑

i=0

sij ξi,

where ξi is the ith harmonic oscillator eigenstate and pij , qij ,
rij , and sij are the coefficients of linear combination. Using
this expansion Eq. (4) is then reduced to a matrix eigenvalue
equation and solved using standard matrix diagonalization
algorithms. The matrix has a dimension of 4N × 4N and
is non-Hermitian, nonsymmetric, and may have complex
eigenvalues. In the present work, to avoid metastable states, we
ensure that Ej ’s are real during the iteration. The eigenvalue
spectrum obtained from the diagonalization of the matrix has
an equal number of positive and negative eigenvalues Ej ’s.
The number density ñk of the noncondensate atoms is then

ñk =
∑

j

{[|ukj |2 + |vkj |2]N0(Ej ) + |vkj |2}, (6)

where 〈α̂†
j α̂j 〉 = (eβEj − 1)−1 ≡ N0(Ej ) is the Bose factor

of the quasiparticle state with real and positive energy Ej .
The coupled Eqs. (3) and (4) are solved iteratively until the
solutions converge to desired accuracy. However, it should be
emphasized that, when T → 0, N0(Ej )’s in Eq. (6) vanish.
The noncondensate density is then reduced to

ñk =
∑

j

|vkj |2. (7)

Thus, at zero temperature we need to solve the equations
self-consistently as the quantum depletion term |vkj |2 in the
above equation is nonzero. The contribution from the quantum
depletion to the noncondensate is very small; it is ≈0.1% for
the set of parameters used in our calculations. In addition,
the solutions to the equations converge in less than five
iterations.

III. RESULTS AND DISCUSSIONS

A. Numerical details

For the T = 0 studies we solve the pair of coupled equations
[Eq. (3)] by neglecting the noncondensate density (ñk = 0)
using finite-difference methods and in particular, we use the
split-step Crank-Nicholson method [41] adapted for binary
condensates. The method when implemented with imaginary
time propagation is appropriate to obtain the stationary ground-
state wave function of the TBEC. Using this solution, and
based on Eq. (5), we cast the Eq. (4) as a matrix eigenvalue
equation in the basis of the trapping potential. The matrix is
then diagonalized using the LAPACK routine ZGEEV [40] to
find the quasiparticle energies and amplitudes, Ej , and uk’s
and vk’s, respectively. This step is the beginning of the first
iteration for T �= 0 calculations. In which case, the uk’s and
vk’s along with Ej are used to get the initial estimate of ñk
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through Eq. (6). For this we consider only the positive energy
modes. Using this updated value of ñk , the ground-state wave
function of TBEC φk and chemical potential μk are again
recalculated from Eq. (3). This procedure is repeated until the
solutions reach desired convergence. In the present work the
convergence criteria is that the change in μk between iterations
should be less than 10−4. In general, the convergence is not
smooth and we encounter severe oscillations very frequently.
To damp the oscillations and accelerate convergence we
employ a successive over- (under-) relaxation technique for
updating the condensate (noncondensate) densities [42]. The
new solutions after the IC iteration cycle are

φnew
IC (z) = sovφIC(z) + (1 − sov)φIC−1(z),

(8)
ñnew

IC (z) = sunñIC(z) + (1 − sun)ñIC−1(z),

where sov > 1 (sun < 1) is the over- (under-) relaxation
parameter. During the calculation of the uk and vk , we choose
an optimal number of the harmonic oscillator basis functions.
The conditions based on which we decide the optimal size are
as follows: obtaining reliable Goldstone modes; all eigenvalues
must be real. For the T = 0 studies we find that a basis
set consisting of 130 harmonic oscillator eigenstates is an
optimal choice. We observe the Goldstone mode eigenenergies
becoming complex, with a small imaginary component, in
the eigenspectrum when the basis set is very large. So, in
the present studies, we ensure that there are no complex
eigenvalues with an appropriate choice of the basis set size.

B. Mode evolution of trapped TBEC at T = 0

In TBECs, phase separation occurs when U12 >
√

U11U22.
For the present work, we consider Cs and Rb as the first
and second species, respectively. With this identification
a11 = aCsCs = 280a0 and a22 = aRbRb = 100a0, where a0 is
the Bohr radius, and arrive at the condition for phase separation
a12 = aCsRb > 261a0, which is smaller than the background
value of aCsRb ≈ 650a0 [4]. To examine the nature of modes
in the neighbourhood of phase separation, we compute Ej

at T = 0 and vary aCsRb , which is experimentally possible
with the Rb-Cs Feshbach resonance [43]. The evolution
of the low-lying modes in the domain 0 ≤ aCsRb ≤ 450a0

with NRb = NCs = 104 are computed with ωz(Rb) = 2π ×
3.89 Hz and ωz(Cs) = 2π × 4.55 Hz as in Refs. [5,37].
However, to form a quasi-1D system we take ω⊥ = 50ωz,
so that �ω⊥ � μk . For these values, the relevant quasi-
1D parameters α = 2aCsCs

√
(ω⊥/ωz)(mω⊥/�) ≈ 0.36 and γ =

2(aCsCs/nCs)(mω⊥/�) ≈ 10−5, so the system is in the weakly
interacting TF regime [35] and mean-field description through
the GP equation is valid. For this set of parameters the ground
state is of sandwich geometry, in which the species with the
heavier mass is at the center and flanked by the species with
lighter mass at the edges. An example of the sandwich profile
corresponding to the experimentally relevant parameters is
shown in Fig. 1(c). On the other hand for TBEC with species
of equal or near equal masses and a low number of atoms,
in general, the ground-state geometry is side by side. As
an example the side-by-side ground-state density profile of
85Rb-87Rb TBEC is shown in Fig. 1(f).
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FIG. 1. (Color online) Transition to phase separation and struc-
ture of the density profiles in TBEC. (a)–(c) Show the transition
from miscible to sandwich-type density profile with the change in
interspecies scattering length aCsRb for a Cs-Rb TBEC and correspond
to aCsRb = {200a0,310a0,420a0}, respectively. The density profiles in
(c) is referred to as the sandwich type. (d)–(f) Show the transition
from miscible to side-by-side density profile with the change in
a85Rb87Rb for a 85Rb −87 Rb TBEC and correspond to a85Rb87Rb =
{100a0,290a0,400a0}, respectively. The density profile in (f) is
referred to as the side-by-side type. In the plots density is measured
in units of a−1

osc.

From here on we consider the same set of ωz (ωz(Rb) =
2π × 3.89 Hz and ωz(Cs) = 2π × 4.55 Hz), as mentioned
earlier, in the rest of the calculations reported in the manuscript.
In the computations we scale the spatial and temporal variables
as z/aosc(Cs) and ωz(Cs)t which render the equations dimension-
less. When aCsRb = 0, the UCsRb-dependent terms in Eq. (4) are
zero and the spectrum of the two species are independent as the
two condensates are decoupled. The system has two Goldstone
modes, one each for the two species. The two lowest modes
with nonzero excitation energies are the Kohn modes of the
two species, and these occur at �ωz(Cs) and 0.85�ωz(Cs) for Cs
and Rb species, respectively.

1. Third Goldstone mode

The clear separation between the modes of the two species
is lost and mode mixing occurs when aCsRb > 0. For example,
the Kohn modes of the two species intermix when aCsRb > 0,
however, there is a difference in the evolution of the mode
energies. The energy of the Rb Kohn mode decreases, but the
one corresponding to Cs remains steady at �ωz(Cs). At higher
aCsRb the energy of the Rb Kohn mode decreases further and
goes soft at phase separation (UCsRb >

√
UCsCsURbRb) when

aCsRb ≈ 310a0. This introduces a new Goldstone mode of the
Rb BEC to the excitation spectrum. The reason is, for the
parameters chosen, the density profiles at phase separation
assume sandwich geometry with Cs BEC at the center and Rb
BEC at the edges. So, the Rb BECs at the edges are effectively
two topologically distinct BECs and there are two Goldstone
modes with the same |uRb| and |vRb| but different phases. A
similar result of the Kohn mode going soft was observed for
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FIG. 2. (Color online) The evolution of the modes as a function of
the interspecies scattering length aCsRb in Cs-Rb TBEC. (a) Shows the
evolution of the low-lying modes in the domain 0 ≤ aCsRb ≤ 400a0 for
N87Rb = N133Cs = 104. (b) The enlarged view of the region enclosed
within the blue colored rectangular box in (a) to resolve the avoided
crossing and quasidegeneracy of modes (highlighted with dark-blue
points). The points marked with red arrows correspond to interspecies
scattering length aCsRb = {309a0,316a0,321a0}, respectively.

single-species BEC confined in a double-well potential [44].
Although the the two systems are widely different, there is a
common genesis to the softening of the Kohn mode, and that
is the partition of the one condensate cloud into two distinct
ones. This could be, in our case, by another condensate or by
a potential barrier as in Ref. [44].

To examine the mode evolution with the experimentally
realized parameters [5], we repeat the computations with
ω⊥(Cs) = 2π × 40.2 Hz and ω⊥(Rb) = 2π × 32.2 Hz. With
these parameters the system is not strictly quasi-1D as �ω⊥k ≈
μk for NCs = NRb = 104, however, as ωzk 
 ω⊥k there must
be qualitative similarities to a quasi-1D system [36]. Indeed,
with the variation of aCsRb the modes evolve similar to the
case of ω⊥k = 50ωzk and low-lying ωs are shown in Fig. 2(a).
The evolution of the Rb Kohn mode functions (uRb and
vRb) with aCsRb are shown in Fig. 3. It is evident that when
aCsRb = 0 [Fig. 3(a)], there is no admixture from the Cs Kohn
mode (uCs = vCs = 0). However, when 0 < aCsRb � 310a0 the
admixture from the Cs Kohn mode increases initially and
then goes to zero as we approach UCsRb >

√
UCsCsURbRb

[Figs. 3(b)–3(f)].
One striking result is the Rb Kohn mode after going soft

at aCsRb ≈ 310a0, as shown in Fig. 2(a), continues as the third
Goldstone mode for 310a0 < aCsRb . This is different from the
evolution of the zero energy mode in TBEC with side-by-side
density profiles. In this case after phase separation, z-parity
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FIG. 3. (Color online) Evolution of quasiparticle amplitude cor-
responding to the Rb Kohn mode as aCsRb is increased from 0 to
400a0. For better visibility ucs and uRb are scaled by a factor of 1.2.
(a) When aCsRb = 0, it is a Kohn mode of the Rb condensate. (b)–(d)
In the domain 0 < aCsRb � 310a0 the mode acquires admixtures from
the Cs Kohn mode (nonzero uCs and vCs). (e)–(f) At phase separation
310a0 � aCsRb the mode transforms to a Goldstone mode: uRb and vRb

have the same profile as the nRb = |φRb|2 but with a phase difference.
In the plots u’s and v’s are in units of a−1/2

osc .

symmetry of the system is broken and the zero energy mode
regains energy. So, there are only two Goldstone modes in
the system. This is evident from Fig. 4, where we show
the mode evolution of 85Rb-87Rb mixture with side-by-side
density profiles at phase separation. The parameters of the
system considered are N85Rb = N87Rb = 102 with the same ωzk

and ω⊥k as in the Rb-Cs mixture. Here, we use intraspecies
scattering lengths as 99a0 and 100a0 for 85Rb and 87Rb,
respectively, and tune the interspecies interaction for better
comparison with the Rb-Cs results. This is, however, different
from the experimental realization [9], where the intraspecies
interaction of 85Rb is varied. A similar result was reported in
an earlier work on the quasi-2D system of TBEC [20].
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FIG. 4. (Color online) Low-lying modes of 85Rb-87Rb for
N87Rb = N85Rb = 102 as a function of a85Rb87Rb. At phase separation
the structure of the density profiles is side by side and one of the
modes goes soft.
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2. Avoided crossings and quasidegeneracy

From Fig. 2(a), it is evident that there are several instances
of avoided level crossings as aCsRb is varied to higher values.
These arise from the changes in the profile of nck(z), the
condensate densities, as the uk and vk depend on nck(z)
through the BdG equations. For this reason, the number
of avoided crossings is high around the critical value of
aCsRb , where there is a significant change in the structure of
nck(z) due to phase separation. Another remarkable feature
which emerges when aCsRb > 310a0 are the avoided crossings
involving three modes. As an example, the mode evolution
around one such case involving the Kohn mode is shown
in Fig. 2(b). Let us, in particular, examine the fifth and
sixth modes; the corresponding mode energies in the domain
of interest (309a0 ≤ aCsRb ≤ 321a0) are represented by blue
colored points in Fig. 2(b). At aCsRb = 309a0, the sixth mode is
the Kohn mode, which is evident from the dipolar structure of
the uk and vk as shown in Fig. 5(d). The closest approach
of the three modes, fourth, fifth, and sixth, occurs when
aCsRb ≈ 311a0; at this point the fourth mode is transformed into
the Kohn mode. For aCsRb > 311a0, the fifth and sixth mode
energies are quasidegenerate and pushed to higher values.
For example, at aCsRb = 316a0 the energies of the fifth and
sixth modes are 1.24�ωz(Cs) and 1.25�ωz(Cs), respectively.
However, as shown in Figs. 5(b) and 5(e), the structure of
the corresponding uk and vk show significant difference. It
is evident that for the fifth mode uCs and uRb correspond to
principal quantum number n equal to 0 and 2, respectively. On
the other hand, for the sixth mode both uCs and uRb have n

equal to 1. At aCsRb ≈ 320a0, the two modes (fifth and sixth)
undergo their second avoided crossing with a third mode, the
seventh mode. After wards, for aCsRb > 320a0, the fifth mode
remains steady at 1.50�ωz(Cs), and the sixth and seventh are
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FIG. 5. (Color online) The quasiparticle amplitudes of the fifth
and sixth modes at quasidegeneracy. (a)–(c) The quasiparticle
amplitudes uk’s and vk’s of the fifth mode for three values of
aCsRb represented and marked by blue points and red arrows,
respectively, in Fig. 2. (d)–(f) The quasiparticle amplitudes uk’s and
vk’s corresponding to the sixth mode for the same values of aCsRb . In
the plots uk’s and vk’s are in the units of a−1/2

osc .

quasidegenerate. To show the transformation of the fifth and
sixth modes beyond the second avoided crossing, the uk and vk

of the modes are shown in Figs. 5(c) and 5(f) for aCsRb = 321a0.
It is evident from the figures that the uCs and vCs of the fifth
mode undergoes a significant change in the structure: The
central dip at aCsRb < 321a0, visible in Fig. 5(b), is modified to
a maxima.

C. Mode evolution of trapped TBEC at T �= 0

For the T �= 0 calculations, as mentioned earlier, we solve
the coupled Eqs. (3) and (4) iteratively until convergence. After
each iteration, φk(z)’s are renormalized so that∫ ∞

−∞

[|φk(z)|2 + ñk(z)
]
dz = Nk, (9)

where k is either Rb or Cs. To improve convergence, we use
successive over-relaxation, but at higher T we face difficulties
and require careful choice of the relaxation parameters. For
computations, we again consider the trap parameters ω⊥(Cs) =
2π × 40.2 Hz and ω⊥(Rb) = 2π × 32.2 Hz with coinciding
trap centers, the number of atoms as NRb = NCs = 103 and
aCsRb = 650a0. The evolution of ω (mode frequency) with
T is shown in Fig. 6, where the T is in units of Tc, the
critical temperature of ideal bosons in quasi-1D harmonic traps
defined through the relation N = (kBTc/�ωz) ln(2kBTc/�ωz)
[45], where N is the number of atoms. Considering that
ωz(Rb) < ωz(Cs), the critical temperature of Rb is lower than
that of Cs. So, for better description we scale the temperature
with respect to the Tc of Rb atoms, and hereafter by Tc we
mean the critical temperature of Rb atoms. From the figure,
when T/Tc ≥ 0.2 the Kohn mode energy increases with T/Tc.
This is consistent with an earlier work on HFB-Popov studies
in a single-species condensate [29], but different from the
trend observed in Refs. [27,28]. The increase in Kohn mode
energy could arise from an important factor associated with
the thermal atoms. In the HFB-Popov formalism the collective
modes oscillate in a static thermal cloud background and
dynamics of ñk is not taken into account. In TBECs the effects
of dynamics of ñk may be larger as ñk is large at the interface.
An inclusion of the full dynamics of the thermal cloud in the
theory would ensure the Kohn mode energy to be constant
at all temperatures [46]. The Goldstone modes, on the other
hand, remain steady [29].
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FIG. 6. (Color online) Frequencies (ωj ) of the low-lying modes
at T/Tc �= 0. The solid circles (brown) are the excitation energies
from the HFB-Popov theory with NRb = NCs = 103.
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The trend in the evolution of the modes indicates bifur-
cations at T/Tc ≈ 1 and is consistent with the theoretical
observations in single-species condensates [27–29]. At this
temperature, as evident from Fig. 6, the Kohn mode and the
mode above it (which has principal quantum number n = 2
for both the species) merges. This is one of the bifurcations
emerging from the Rb atoms crossing the critical temperature;
above this temperature there are no Rb condensates atoms.
At T > Tc the Cs condensate density is still nonzero as Cs
has higher critical temperature. So, there may be another
mode bifurcation at the critical temperature of Cs. A reliable
calculation for this would, however, require treating the
interaction between thermal Rb atoms and Cs condensate
more precisely. For this reason in the present work we do
not explore temperature much higher than the Tc of Rb atoms
and the possibility of the second mode bifurcation shall be
examined in our future works. In the case of single-species
calculations, at T/Tc > 1 the mode frequencies coalesce
to the mode frequencies of the trapping potential. In the
present work we limit the calculations to 0 ≤ T/Tc ≤ 1.1,
so that T/Tc 
 Td/Tc. Here, Td ≈ (NRb + NCs)�ωz/kB is
the degeneracy temperature of the system and in the present
case Td ≈ 437nK. The results for T/Tc > 0.65 may have
significant errors as the HFB-Popov theory gives accurate
results at T/Tc ≤ 0.65 [28]. We have, however, extended the
calculations to T/Tc > 0.65 like in Ref. [27] to study the mode
bifurcation.

To examine the profiles of nck and ñk , we compute the
densities at 25 nK for three cases; these are NRb = 840(NCs =
8570), NRb = 3680(NCs = 8510), and NRb = 15100(NCs =
6470). The same set was used in the previous work of
Pattinson et al. at T = 0 [37] and corresponds to three regimes
considered (NCs > NRb, NCs ≈ NRb, and NCs < NRb) in the
experimental work of McCarron et al. [5]. Consider the trap
centers, along the z axis, are coincident, then ñk and nck are
symmetric about z = 0, and are shown in Figs. 7(a)–7(c).
In all the cases, nCs is at the center. This configuration is
energetically preferred as the heavier atomic species at the
center has smaller trapping potential energy and lowers the
total energy. In the experiments, the trap centers are not exactly
coincident. So, to replicate the experimental situation we shift
the trap centers, along the z axis, by 0.8aosc(Cs) and n are shown
in Figs. 7(i)–7(iii). For NRb = 840(NCs = 8570) and NRb =
3680(NCs = 8510), Figs. 7(i) and 7(ii), the nck and ñk are
located sideways. So, there are only two Goldstone modes in
the excitation spectrum. But, for NRb = 15100(NCs = 6470),
Fig. 7(iii), nCs is at the center with nRb at the edges forming
sandwich geometry and hence has three Goldstone modes.
In all the cases ñk have maxima in the neighborhood of the
interface and the respective ncks are not negligible. So, we can

0

500

1000
(a)ncCs

n~Cs
ncRb
n~Rb

(b) (c)

0

500

1000

-12 0 12

d
en

si
ty

i

-12 0 12
z(in units of aosc)

ii

-12 0 12

iii

FIG. 7. (Color online) Density profile of nc and ñ at 25 nK.
(a)–(c) Correspond to NRb = 840(NCs = 8570), NRb = 3680(NCs =
8510), and NRb = 15100(NCs = 6470), respectively, with coincident
trap centers. (i)–(iii) Correspond to the same atom numbers as the
previous sequence, however, the trap centers are shifted relatively by
0.8aosc(Cs). In the plots density is measured in units of a−1

osc.

expect larger nck-ñk coupling in TBECs than single-species
condensates. For the NRb = 3680(NCs = 8510) and NRb =
15100(NCs = 6470) cases, nck are very similar to the results
of 3D calculations at T = 0 [37]. However, it requires a 3D
calculation to reproduce nck for NRb = 840(NCs = 8570) as
the relative shift δx is crucial in this case.

IV. CONCLUSIONS

TBECs with strong interspecies repulsion with the sand-
wich density profile at phase separation are equivalent to three
coupled condensate fragments. Because of this we observe
three Goldstone modes in the system after phase separation. At
higher interspecies interactions, we predict avoided crossings
involving three modes and followed with the coalescence or
quasidegeneracy of two of the participating modes. At T �= 0
there are mode bifurcations close to the T/Tc ≈ 1.
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Rev. A 85, 043613 (2012).
[20] C. Ticknor, Phys. Rev. A 88, 013623 (2013).
[21] H. Takeuchi and K. Kasamatsu, Phys. Rev. A 88, 043612 (2013).
[22] A. Griffin, Phys. Rev. B 53, 9341 (1996).
[23] P. Blakie, A. Bradley, M. Davis, R. Ballagh, and C. Gardiner,

Adv. Phys. 57, 363 (2008).
[24] N. P. Proukakis and B. Jackson, J. Phys. B 41, 203002 (2008).
[25] E. Zaremba, T. Nikuni, and A. Griffin, J. Low Temp. Phys. 116,

277 (1999).
[26] N. M. Hugenholtz and D. Pines, Phys. Rev. 116, 489 (1959).
[27] D. A. W. Hutchinson, E. Zaremba, and A. Griffin, Phys. Rev.

Lett. 78, 1842 (1997).
[28] R. J. Dodd, M. Edwards, C. W. Clark, and K. Burnett, Phys.

Rev. A 57, R32 (1998).

[29] C. Gies, B. P. van Zyl, S. A. Morgan, and D. A. W. Hutchinson,
Phys. Rev. A 69, 023616 (2004).

[30] D. S. Jin, M. R. Matthews, J. R. Ensher, C. E. Wieman, and
E. A. Cornell, Phys. Rev. Lett. 78, 764 (1997).

[31] M. O. C. Pires and E. J. V. de Passos, Phys. Rev. A 77, 033606
(2008).
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We show that the presence of a soliton in a single-species condensate, at zero temperature, enhances the
quantum depletion sufficiently enough to induce dynamical instability of the system. We also predict that for
two-species condensates, two Goldstone modes emerge in the excitation spectrum at phase separation. Of these,
one is due to the presence of the soliton. We use Hartree-Fock-Bogoliubov theory with Popov approximation
to examine the mode evolution, and demonstrate that when the anomalous mode collides with a higher energy
mode it renders the solitonic state oscillatory unstable. We also report a soliton-induced change in the topology
of the density profiles of the two-species condensates at phase separation.
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I. INTRODUCTION

The experimental realization of single and multicomponent
Bose-Einstein condensates (BECs) in atomic gases has opened
up the possibility of exploring topological defects. Due to the
ubiquitous presence of topological defects in nature, the study
of matter-wave excitations such as vortices and solitons in
atomic BECs has been a topic of extensive research both
experimentally and theoretically over the last few years.
In fact, these have attracted much attention as they are
created spontaneously during BEC phase transition through
the Kibble-Zurek mechanism [1–4]. A soliton, for instance,
can be used to probe the phase of the image acquired in
a BEC interferometer as proposed by Negretti et al. [5,6].
These and other novel phenomena have inspired numerous
experiments [7,8] and theoretical studies [9–15] with dark
and bright solitons in atomic BECs in a wide range of settings
under different scenarios. The experimental observation shows
that the notch of the dark soliton gets filled up with thermal
atoms over time and the soliton becomes gray, and hence starts
oscillating which is either short- or long-lived depending upon
the system of interest [16–18].

On the theoretical front, most of the studies on the statics
and the dynamics of dark solitons have been carried out in a
quasi-one-dimensional (1D) setting at zero temperature where
thermal fluctuations can be ignored [19]. There have been
several works on the stability of solitons in cigar-shaped
double-well potential [20], disordered potential [21], and
optical lattice [22–25]. The stability of multiple solitons in
a quasi-1D trap has also been examined [26,27]. Quantum
depletion in BECs with a soliton at T = 0 in weakly interacting
Bose gases has also been studied using approximate models
[28–34]. This motivated us to reexamine the role of quantum
fluctuations in BECs, whether it be with or without solitons. We
show that quantum fluctuation in BECs with a soliton is higher
than without it. This is due to the presence of the anomalous
mode, and we demonstrate that quantum fluctuations can make
the dark soliton gray, which as a result becomes dynamically
unstable.

The two-component BECs (TBECs), on the other hand,
have different ground states depending on the interactions,
as compared to a single-component BEC. The most unique
aspect of TBECs is the phenomenon of phase separation.
Most importantly, in experiments, the TBECs can be steered

from a miscible to a phase-separated domain or vice versa
through a Feshbach resonance [35,36]. This has motivated nu-
merous theoretical investigations on stationary states [37–39],
dynamical instabilities [40–42], and collective excitations
[43–47] of TBECs. Furthermore, repulsive TBECs support
coupled dark-bright solitons which makes them richer and
more interesting than single-component BECs [10]. The bright
soliton, on the other hand, cannot survive in single-component
BECs with repulsive interaction. It may be mentioned here
that, solitons in BECs and TBECs have been experimentally
achieved either by a phase-imprinting method [16] or in two
counterflowing miscible TBECs above a critical velocity [48].
For miscible TBECs, the creation and interaction of dark soli-
tons has been theoretically examined in Refs. [49,50]. Families
of stable solitonic solutions from coupled Gross-Pitaevskii
(GP) equations in quasi-1D TBECs at zero temperature have
been obtained [51,52].

In the present work, we describe the development of
Hartree-Fock-Bogoliubov theory with Popov (HFB-Popov)
approximation for trapped TBECs. We use it to examine
the evolution of Goldstone modes and mode energies for
TBECs with a soliton as a function of interspecies scattering
length. Recent works [43–46] have reported the existence
of an additional Goldstone mode at phase separation in the
symmetry-broken density profiles. We have demonstrated in
our earlier work [45] that in the sandwich-type density profiles
where one of the species is surrounded on both sides by the
other, the mode evolves very differently with the appearance
of a third Goldstone mode. In the present work, we show
that the presence of the soliton introduces an additional
Goldstone mode to the system. Even at zero temperature
without considering any quantum fluctuation, for a certain
range of interspecies scattering length, the TBEC becomes
dynamically unstable. The difference in the mass of the two
species also plays a significant role in the mode evolution and
topology of density profiles.

II. THEORY

A. Single-component BEC

For a quasi-1D system, the trapping frequencies in V =
(1/2)m(ω2

xx
2 + ω2

yy
2 + ω2

zz
2) should satisfy the condition

ωx = ωy = ω⊥ � ωz. The condensate wave function in such a
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potential can be integrated out along the xy direction to reduce
it to a quasi-1D system. The grand-canonical Hamiltonian, in
second quantized form, describing an interacting BEC is then

H =
∫

dz �̂†(z,t)

[
− �2

2m

∂2

∂z2
+ V (z) − μ

+ U

2
�̂†(z,t)�̂(z,t)

]
�̂(z,t), (1)

where �̂ is the Bose field operator of the single-species BEC,
and μ is the chemical potential. The strength of the intraspecies
repulsive interactions is U = (aλ)/m, where λ = (ω⊥/ωz) �
1 is the anisotropy parameter, a is the s-wave scattering length,
and m is the atomic mass of the species. Starting with this
Hamiltonian, the equation of motion of the Bose field operator
is

i�
∂

∂t
�̂ = ĥ�̂ + U�̂†�̂�̂, (2)

where ĥ = (−�2/2m)∂2/∂z2 + V (z) − μ. For the sake of
simplicity of notation, we will refrain from writing the explicit
dependence of �̂ on z and t . Since a majority of the atoms
populate the ground state for the temperature domain pertinent
to the experiments (T ≤ 0.65Tc) [53], the condensate part can
be separated out from the Bose field operator �̂(z,t). The
noncondensed or the thermal cloud of atoms are then the
fluctuations of the condensate field. Here, Tc is the critical
temperature of an ideal gas in a harmonic confining potential.
Accordingly, we define [54] �̂(z,t) = φ(z,t) + ψ̃(z,t), where
φ(z,t) is a c field and represents the condensate, and ψ̃(z,t) is
the fluctuation part. For a single-component BEC, �̂ can then
be written as

�̂ = φ + ψ̃. (3)

Thus for a single species BEC, φ is the stationary solution
of the generalized GP equation, within the time-independent
HFB-Popov approximation, given by

ĥφ + U [nc + 2ñ] φ = 0. (4)

In the above equation, nc(z) ≡ |φ(z)|2, ñ(z) ≡
〈ψ̃†(z,t)ψ̃(z,t)〉, and n(z) = nc(z) + ñ(z) are the local
condensate, noncondensate, and total density, respectively.
Using Bogoliubov transformation, the fluctuations are

ψ̃(z,t) =
∑

j

[uj (z)α̂j (z)e−iEj t − v∗
j (z)α̂†

j (z)eiEj t ],

ψ̃†(z,t) =
∑

j

[u∗
j (z)α̂†

j (z)eiEj t − vj (z)α̂j (z)e−iEj t ].

Here, α̂j (α̂†
j ) are the quasiparticle annihilation (creation)

operators and satisfy the usual Bose commutation relations,
and the subscript j represents the energy eigenvalue index.
From the above definitions, we get the following Bogoliubov–
de Gennes (BdG) equations:

(ĥ + 2Un)uj − Uφ2vj = Ejuj , (5a)

− (ĥ + 2Un)vj + Uφ∗2uj = Ejvj . (5b)

The number density ñ of noncondensate particles is then

ñ =
∑

j

{[|uj |2 + |vj |2]N0(Ej ) + |vj |2}, (6)

where 〈α̂†
j α̂j 〉 = (eβEj − 1)−1 ≡ N0(Ej ) with β = 1/kBT is

the Bose factor of the quasiparticle state with energy Ej at
temperature T . However, it should be emphasized that, when
T → 0, the N0(Ej )’s in Eq. (6) vanish. The noncondensate
density is then reduced to

ñ =
∑

j

|vj |2. (7)

Thus, at zero temperature we need to solve the equations self-
consistently as the quantum depletion term |vj |2 in the above
equation is nonzero.

B. Harmonic oscillator basis

We solve the quasiparticle amplitudes uj and vj in the basis
of the harmonic oscillator trapping potential.

uj =
Nb∑
i=0

pij ξi, vj =
Nb∑
i=0

qij ξi, (8)

where ξi is the ith harmonic oscillator eigenstate and Nb is the
number of the basis that is considered. Using this expansion,
Eq. (5) is then reduced to a matrix eigenvalue equation and
solved using standard matrix diagonalization algorithms. The
matrix has a dimension of 2Nb × 2Nb, and is non-Hermitian,
nonsymmetric, and may have complex eigenvalues. The
eigenvalue spectrum obtained from the diagonalization of
the matrix has an equal number of positive and negative
eigenvalues Ej . In addition, the amount of energy that is
carried by the eigenmode j is given by

�j =
∫

dz(|uj |2 − |vj |2)Ej . (9)

The sign of the quantity �j is known as the Krein sign.
If this sign turns out to be negative for a mode j , then
the corresponding mode is called the anomalous mode. It
signifies the energetic instability which may be present due
to a topological defect in the system.

C. Hartree-Fock basis

To incorporate the interactions present in the system while
calculating the Bogoliubov quasiparticle amplitudes uj and
vj more efficiently, in terms of basis size, we resort to the
Hartree-Fock basis. Thus, to solve Eq. (5), we define uj ’s and
vj ’s as a linear combination of Hartree-Fock basis functions
ζk ,

uj =
∑

k

c
j

k ζk, vj =
∑

k

d
j

k ζk, (10)

where ck and dk are the coefficients of linear combination.
In principle, the GP equation has an infinite number of
eigenvalues εk and eigenvectors ζk . In general, Eq. (4) can
then be recast into a matrix eigenvalue equation

Hζk = εkζk, (11)
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where H = ĥ + U [nc + 2ñ], and k stands for the eigenvalue
index. The eigensolution with the lowest eigenvalue ε0 is
referred to as the condensate ground state with the condensate
wave function φ ≡ ζ0. To calculate the quasiparticle ampli-
tudes uj and vj we again expand the eigensolutions ζk in
terms of ξi , then

ζk =
∑

i

ak
i ξi . (12)

Taking the orthogonality and linear independence of ξi’s into
account and plugging Eq. (12) into Eq. (11), one can obtain
the expansion coefficients ak used in decomposing the above
equation. This yields a set of basis functions {ζk}, which is
generally referred to as the Hartree-Fock basis. The choice
of ζk reduces the number of basis functions required in the
calculation of uj ’s and vj ’s as ζk subsumes the effect of
interactions in the system.

D. Two-component BEC

Similarly, for a TBEC in a quasi-1D trapped system,

H =
∑
k=1,2

∫
dz �̂

†
k (z,t)

[
− �2

2mk

∂2

∂z2
+ Vk(z) − μk

+ Ukk

2
�̂

†
k (z,t)�̂k(z,t)

]
�̂k(z,t)

+ U12

∫
dz �̂

†
1(z,t)�̂†

2(z,t)�̂1(z,t)�̂2(z,t), (13)

where k = 1,2 is the species index, �̂k’s are the Bose field
operators of the two different species, and μk’s are the chemical
potentials. The strengths of the intra- and interspecies repulsive
interactions are Ukk = (akkλ)/mk and U12 = (a12λ)/(2m12),
respectively, where λ = (ω⊥/ωz) � 1 is the anisotropy pa-
rameter, akk is the s-wave scattering length, mk’s are the atomic
masses of the species, and m12 = m1m2/(m1 + m2). Starting
with this Hamiltonian, the equation of motion of the Bose field
operators is

i�
∂

∂t

(
�̂1

�̂2

)
=

(
ĥ1 + U11�̂

†
1�̂1 U12�̂

†
2�̂1

U12�̂
†
1�̂2 ĥ2 + U22�̂

†
2�̂2

)(
�̂1

�̂2

)
,

where ĥk = (−�2/2mk)∂2/∂z2 + Vk(z) − μk . In the same way
as in the single-species case, we define [54] �̂(z,t) = �(z) +
�̃(z,t), where �(z) is a c field and represents the condensate,
and �̃(z,t) is the fluctuation part. In the two-component
representation (

�̂1

�̂2

)
=

(
φ1

φ2

)
+

(
ψ̃1

ψ̃2

)
, (14)

where φk(z) and ψ̃k(z) are the condensate and fluctuation parts
of the kth species. Thus for a TBEC, φk’s are the stationary
solutions of the coupled generalized GP equations, with time-
independent HFB-Popov approximation, given by

ĥ1φ1 + U11 [nc1 + 2ñ1] φ1 + U12n2φ1 = 0, (15a)

ĥ2φ2 + U22 [nc2 + 2ñ2] φ2 + U12n1φ2 = 0. (15b)

In the above equation, nck(z) ≡ |φk(z)|2, ñk(z) ≡
〈ψ̃†

k (z,t)ψ̃k(z,t)〉, and nk(z) = nck(z) + ñk(z) are the local
condensate, noncondensate, and total density, respectively.
Using Bogoliubov transformation, the fluctuations are

ψ̃k(z,t) =
∑

j

[
ukj (z)α̂j (z)e−iEj t − v∗

kj (z)α̂†
j (z)eiEj t

]
,

ψ̃
†
k (z,t) =

∑
j

[
u∗

kj (z)α̂†
j (z)eiEj t − vkj (z)α̂j (z)e−iEj t

]
.

From this formalism we obtain the following BdG equations:

L̂1u1j − U11φ
2
1v1j + U12φ1(φ∗

2u2j − φ2v2j ) = Eju1j ,

(16a)

L̂1v1j + U11φ
∗2
1 u1j − U12φ

∗
1 (φ2v2j − φ∗

2u2j ) = Ejv1j ,

(16b)

L̂2u2j − U22φ
2
2v2j + U12φ2(φ∗

1u1j − φ1v1j ) = Eju2j ,

(16c)

L̂2v2j + U22φ
∗2
2 u2j − U12φ

∗
2 (φ1v1j − φ∗

1u1j ) = Ejv2j ,

(16d)

where L̂1 = (ĥ1 + 2U11n1 + U12n2), L̂2 = (ĥ2 + 2U22n2 +
U12n1), and L̂k = −L̂k . The number density ñk of noncon-
densate particles is then

ñk =
∑

j

{[|ukj |2 + |vkj |2]N0(Ej ) + |vkj |2}. (17)

To solve Eq. (16) we define u’s and v’s as a linear combination
of ξi’s. The equation is then reduced to a matrix eigenvalue
equation and solved using standard matrix diagonalization
algorithms.

III. THE DARK SOLITON

The location of a dark soliton is a place in a quasi-1D
condensate where the condensate wave function φ(z) changes
sign. The condensate wave function then has a kink where
the density is zero. Typically, a wave function of the dark
soliton is simply proportional to tanh[(z − z0)/ξ ], where ξ is
a local value of the healing length at position z0 of the soliton.
Hereafter, it is to be noted that the symbol ξ without any
subscript refers to the healing length. The condensate with a
soliton at z0 = 0 is an antisymmetric wave function of z and
the phase of the wave function jumps discontinuously by π

as z passes through zero. Even at T = 0, quantum depletion
from the condensate leads to graying of the dark soliton.
The kink of the soliton gets filled up with incoherent atoms
quantum depleted from the condensate. The soliton is created
by employing a phase-imprinting method [16]. We assume
that before phase imprinting all the atoms of the system are in
symmetric ground state. Right after this operation one gets a
condensate with an antisymmetric wave function.
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IV. RESULTS AND DISCUSSIONS

A. Numerical details

For studies of single-component BECs at T = 0 we solve
Eq. (4) neglecting the noncondensate density (ñ = 0) using
finite-difference methods, and in particular, we use the split-
step Crank-Nicholson method [55]. For TBECs, we proceed
in a similar way by solving the pair of coupled Eqs. (15) and
setting ñk = 0. The method when implemented with imaginary
time propagation is appropriate to obtain the stationary
ground state wave function of the single-component BEC
or TBEC. Furthermore, we use numerical implementation of
the phase-imprinting method to generate a dark soliton in the
(T)BEC. For this, we begin the simulation with imaginary time
propagation of the GP equation and imprint π phase jump
corresponding to a soliton at z0 = 0 by using φ = |φ| exp(iπ ).
Using this solution of the GPE, and based on Eq. (8), we cast
Eq. (5) as a matrix eigenvalue equation in the basis of the
trapping potential. The matrix is then diagonalized using the
LAPACK routine ZGEEV [56] to find the quasiparticle energies
and amplitudes Ej , and uj ’s and vj ’s, respectively. We begin
our T = 0 calculations to account for quantum fluctuations
with this step. This sets the starting point of the first iteration
where the uj ’s and vj ’s along with positive energy modes
Ej are used to get the initial estimate of ñ through Eq. (6).
The ground state wave function φ of the BEC and chemical
potential μ are again redetermined from Eq. (4), using this
updated value of ñ. For calculation of eigenmodes of the
TBEC with a soliton, we again cast Eq. (16) as a matrix and
diagonalize it [45]. During the calculation of the uk and vk ,
we choose an optimal number of the harmonic oscillator basis
functions.

B. Single-species BEC

The low-lying excitation spectrum of a quasi-1D BEC with
a soliton is characterized by the presence of an anomalous
mode, which indicates that the BEC is in an energetically
excited state. This is in addition to the Goldstone and the Kohn
modes, which are also present in the excitation spectrum of a
quasi-1D BEC without the soliton. The anomalous and Kohn
mode energies are real, and the energy of the anomalous mode
is ≈�ωz/

√
2. A unique feature of the anomalous mode is

the negative Krein sign [20,28]. This shows that the solitonic
solution of the stationary quasi-1D GP equation is stable.
However, when the solution is evolved in imaginary time, with
the inclusion of ñ in the T = 0 GP equation, the anomalous
mode is transformed into an imaginary energy eigenmode. This
is an unambiguous signature of quantum depletion induced
instability of the solitonic solution. In other words, the nonzero
ñ arising from the quantum fluctuations within the notch of
the soliton turns it gray, and renders the system dynamically
unstable. Furthermore, the low-lying energy spectrum is
devoid of any negative Krein sign eigenmodes. The anomalous
mode, however, reappears in the excitation spectrum on further
evolving the system over imaginary time.

To further examine the trend in the evolution of Ean, the
energy of the anomalous mode, or the first excited state, we
study the variation of ñ with time as shown in Fig. 1. The
contribution from the anomalous mode fills up the notch of
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FIG. 1. (Color online) The temporal evolution in the profile of
the noncondensate atom density ñ at T = 0 measured in units of a−1

osc,
where aosc = √

�/(mωz). The plots show a steady drop in the number
of noncondensate atoms until it reaches a threshold value, and then,
the anomalous mode reappears in the spectrum. The latter is reflected
in the profile of ñ at t = 69ω−1

z , where it has maximal distribution.

the soliton and ñ(0) has the largest possible value at the initial
state of evolution. At later times, Ean is imaginary and ñ(0)
decreases; the trend is as shown in Fig. 1. However, when
ñ(0) reaches a critical value, which in the present work is
≈2.312a−1

osc, it is no longer large enough to render the solitonic
solution unstable and the anomalous mode reappears. This
confirms ñ(0) has a threshold value below which the solitonic
solution may be stable.

For the limiting case of aRbRb → 0, or the noninteracting
limit, the Bogoliubov modes are, to a very good approximation,
the eigenstates of the trapping potential. In this limit too, the
condensate with the soliton has higher ñ than the condensate
without the soliton. An exponential increase in the total number
of noncondensate atoms,

Ñ =
∫ ∞

−∞
ñ dz, (18)

is observed as aRbRb is increased from near zero to aRbRb ≈
a0; this is evident from the inset plot in Fig. 2. However, Ñ

increases linearly with a further increase of aRbRb and this is
shown in the main plot of Fig. 2. An important observation is
that dÑ/daRbRb ∝ N (total number of atoms), which is due to
higher repulsive interaction energy with increasing N . This is
visible in the family of curves given for different values of N

in Fig. 2. It should be emphasized here that an optimal choice
of basis size Nb is necessary in all the computations to obtain
accurate mode functions and energies. For weakly interacting
condensates with a soliton, a basis set consisting of 170 basis
functions gives converged and reliable results. But, for the
strongly interacting case 1 � NU , the energy eigenvalues Ej

do not converge and Ñ diverges as shown by the red solid
line in Fig. 2 for N = 2000. However, we get converged and
reliable results when the basis size is increased to 240 basis
functions.

The results that we have presented in this section correspond
to a condensate with a soliton at the center of the trap consisting
of N = 2000 87Rb atoms whose s-wave scattering length
is a11 = aRbRb = 100a0, where a0 is the Bohr radius. The
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FIG. 2. (Color online) Variation in the total number of noncon-
densate atoms Ñ at T = 0 as a function of the scattering length a11.
The solid (dashed) blue, green, and black lines represent Ñ in the
presence (absence) of a soliton with a total number of atoms N =
500, 1000, and 2000, respectively. The solid red line represents Ñ

in the presence of a soliton for N = 2000, with the number of basis
Nb = 170; it is shown to indicate a lack of accuracy at higher a11 with
a lower number of basis functions. The inset plots show the trend of
Ñ in the neighborhood of a11 ≈ 0, where there is a sharp increase.

evolution of the low-lying modes is computed for the above-
mentioned aRbRb with ωz = 2π × 4.55 Hz and ω⊥ = 20ωz.
This choice of parameters is consistent with the experimental
setting and satisfies the condition of quasi-1D approximation
[17,57,58]. It must be mentioned here that we get almost
identical results using either the harmonic oscillator basis
or the Hartree-Fock basis. With the latter, in general, we
require a smaller basis size. However, for the present work
on quasi-1D condensates, the dimension of the BdG matrix
is within manageable limits even with the harmonic oscillator
basis.

C. Interaction induced instability in TBEC

Dark solitons in one of the components in quasi-1D TBECs,
like in single species, are also dynamically unstable at T = 0
due to the quantum fluctuations. There is, however, another
type of instability associated with dark solitons, and unique
to TBECs. It arises from the interspecies interactions, and
occurs when an anomalous mode collides with a higher energy
mode. The collision transforms the two modes into degenerate
complex energy modes, and renders the dark solitonic state
unstable. In the present work, we examine the collision of the
modes as a function of the interspecies scattering length, and
study in detail the nature of these modes and their evolution.
Mode collisions of similar nature, giving rise to oscillatory
unstable states, have been investigated in the context of a
single-species cigar-shaped BEC with dark solitons in double-
well potentials [20].

In TBECs, phase separation occurs when U12 >
√

U11U22.
For the present study, we consider Cs and Rb as the first
and second species, respectively. With this identification
a11 = aCsCs = 280a0 and a22 = aRbRb = 100a0, and arrive at
the condition for phase separation a12 = aCsRb > 261a0, which
is smaller than the background value of aCsRb ≈ 650a0 [59].
To investigate the mode evolution with solitons, we imprint a
soliton onto the first species (Cs condensate) at z = 0. We then
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FIG. 3. (Color online) The evolution of the modes as a function
of the interspecies scattering length aCsRb in the Rb-Cs TBEC with
a soliton. (a) The evolution of the low-lying modes in the domain
0 ≤ aCsRb ≤ 420a0 for NRb = NCs = 103. (b) The enlarged view of
the region enclosed within the black-colored rectangular box in (a)
to resolve the mode collisions and bifurcations. The plots show only
the real part of mode energies ω/ωz.

vary aCsRb from a miscible to an immiscible regime, which is
experimentally possible with the Rb-Cs Feshbach resonance
[60]. The mode energies Ej are computed at T = 0 in steps
of increasing aCsRb in the domain [0,420a0] with NRb = NCs =
103, ωz(Rb) = 2π × 3.89 Hz, and ωz(Cs) = 2π × 4.55 Hz as in
Refs. [58,61]. To make the system quasi-1D we take ω⊥ =
30ωz. The low-lying excitation spectrum is characterized by
the presence of an anomalous mode signifying the presence of
a soliton. The other two significant low-lying modes, which
are also present in quasi-1D TBECs without solitons, are the
Goldstone and Kohn modes of the two species.

When aCsRb = 0, the UCsRb-dependent terms in Eq. (16) are
zero and the spectrums of the two species are independent
as the two condensates are decoupled. The clear separation
between the modes of the two species is lost and mode mixing
occurs when aCsRb > 0. For instance, the energy of the Cs
anomalous mode increases with increasing aCsRb , and collides
with the other modes resulting in the generation of a quartet
of degenerate complex mode energies. This occurs when
aCsRb is in the domains [157a0,162a0], [281a0,317a0], and
[318a0,327a0] marked by red dots in Fig. 3. In these domains,
the low-lying energy spectrum has no anomalous mode and the
system is oscillatory unstable. For 162a0 < aCsRb < 281a0, the
anomalous mode reappears and crosses the fourth excited
state at aCsRb ≈ 264a0. Continuing further, as evident from
Fig. 3(b), at aCsRb ≈ 327a0 there is a bifurcation after which
the anomalous mode ceases to undergo mode collisions.

It should be emphasized here that, with the transition from a
miscible to an immiscible regime the Kohn mode and the fourth
excited mode go soft. This introduces two new Goldstone
modes, including which, there are four Goldstone modes
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in the excitation spectrum. These features deserve detailed
discussion and are given in the following sections.

1. Mode collisions

From Fig. 3, it is evident that there are several instances
of avoided crossings and mode collisions when two modes
meet as aCsRb is varied to higher values. We have used the latter
term (mode collision) to identify the case when one of the
two modes is the anomalous mode and when mode collisions
do happen, the evolution of the mode energies is different
from the avoided crossings. In mode collisions, there are two
possible scenarios: either the two modes cross each other or
undergo bifurcation. These occur due to the changes in the
spatial profile of the mode functions (uRb, vRb, uCs, and vCs),
which in turn depend on the condensate densities nck(z).

To examine the case of two modes crossing each other
during mode collision, consider the anomalous and fourth
excited mode in the neighborhood of aCsRb = 261a0. At values
of aCsRb slightly below 261a0, the anomalous and the fourth
excited modes approach and cross each other at aCsRb ≈ 261a0.
In this case, there are no mode mixing pre- and postmode
collisions. As shown in Fig. 4(a), the mode functions uRb and
vRb corresponding to the anomalous mode are zero at z = 0,
whereas the mode functions uCs and vCs have maxima at z = 0.
In contrast, the fourth excited mode has uCs and vCs which
are zero at z = 0, while uRb and vRb have maxima at z = 0
as shown in Fig. 4(b). The mode functions thus have very
different profiles at z = 0 and mode mixing does not occur;
instead they just cross through.

Now, let us consider the case of bifurcation at aCsRb ≈ 279a0.
For this value of aCsRb the mode functions corresponding
to the anomalous mode and the sixth mode have similar
profiles with both uCs,vCs �= 0 at z = 0 as shown in Figs. 4(c)
and 4(d). These two modes collide and give rise to complex
mode energies. A similar trend is also observed at aCsRb ≈
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FIG. 4. (Color online) Variation in the nature of mode evolution
near mode crossing and collision. (a), (b) Quasiparticle amplitudes
corresponding to the anomalous and fourth excited mode, respec-
tively, at aCsRb = 261a0 when the modes cross each other. (c), (d)
Quasiparticle amplitudes corresponding to the anomalous and sixth
excited mode, respectively, at aCsRb = 279a0 when the modes collide.
For better visibility uCs and uRb are scaled by a factor of 2.5. In the
plots u’s and v’s are in units of a−1/2

osc .

157a0, when the Cs anomalous mode collides with the Rb
Kohn mode. In the domain 157a0 ≤ aCsRb ≤ 162a0, the profile
of the Rb Kohn mode resembles the structure of the Cs
anomalous mode. So that after mode collision, they give rise
to complex eigenfrequencies and make the states oscillatory
unstable.

2. Third and fourth Goldstone modes

The third Goldstone mode emerges in the excitation
spectrum as aCsRb is increased, and the Rb Kohn mode goes
soft at phase separation when aCsRb ≈ 350a0. This is consistent
with the results reported in our earlier work [45]. The evolution
of the Rb Kohn mode functions (uRb and vRb) with aCsRb are
shown in Fig. 5. It is evident that when aCsRb = 0 [Fig. 5(a)],
there is no admixture from the Cs Kohn mode (uCs = vCs = 0).
However, when 0 < aCsRb � 400a0 the admixture from the
Cs Kohn mode increases initially, and decreases to zero as
we approach UCsRb >

√
UCsCsURbRb [Figs. 5(b)–5(f)]. So,

the third Goldstone mode is present in the system when
aCsRb � 350a0.

The fourth excited mode, unlike in the case of quasi-1D
TBECs without a soliton, also goes soft at aCsRb ≈ 380a0. The
evolution of the mode functions (uRb and vRb) corresponding
to the fourth excited mode with aCsRb are shown in Fig. 6.
It is noticeable that when aCsRb = 0 [Fig. 6(a)], there is no
contribution from the higher energy modes of Cs. However,
when 0 < aCsRb the admixture from the third excited mode
of the Cs condensate is discernible in the lower values of
aCsRb and is shown in Figs. 6(b) and 6(c). At higher values of
aCsRb , 261a0 � aCsRb � 400a0, the spatial profiles of the mode
functions are different from those of the lower values of aCsRb ,
and are shown in Figs. 5(d)–5(f). At around aCsRb ≈ 300a0, the
mode functions begin to resemble the structure of φRb, and the
transformation is complete at aCsRb ≈ 380a0 when the mode
goes soft.
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FIG. 5. (Color online) Evolution of quasiparticle amplitudes cor-
responding to the Rb Kohn mode as aCsRb is increased from 0 to 400a0.
(a) At aCsRb = 0, it is a Kohn mode of the Rb condensate. (b)–(d) In
the domain 0 < aCsRb � 350a0 the mode acquires admixtures from
the Cs Kohn mode (nonzero uCs and vCs). (e), (f) At phase separation
310a0 � aCsRb the mode transforms to a Goldstone mode: uRb and vRb

resemble the profile of nRb = |φRb|2 but with a phase difference. In
the plots u’s and v’s are in units of a−1/2
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D. Different mass ratios

To gain insight into the complex nature of the mode
evolution in the Rb-Cs TBEC, we study the interplay of mass
difference and intraspecies scattering lengths. For the set of
aforementioned parameters the ground state of the TBEC
after phase separation is of sandwich geometry, in which
the species with the heavier mass (Cs) is at the center and
flanked by the species with lighter mass (Rb) at the edges [61],
albeit aCsCs � aRbRb. This geometry minimizes the trapping
potential energy, and hence the total energy of the system.
In contrast, for TBECs with m1 ≈ m2, at phase separation,
the species with the smaller intraspecies scattering length
is surrounded by the other species. In this case the mode
evolution in the presence of a soliton is devoid of any mode
collisions. Thus, we attribute the pattern of mode collisions
in the Rb-Cs TBEC binary condensate with a soliton to the
interplay between mass difference and intraspecies scattering
lengths.

To understand the transition in the mode evolution from
m1 ≈ m2 to a case similar to the Rb-Cs TBEC, we consider
a test case where 87 amu ≤ m1 ≤ 125 amu and fix m2 = mRb.
We then compute the evolution of the modes as a function of the
interspecies scattering length as we increase m1 from 87 amu to
125 amu in steps of 2 amu. For example, the mode evolution
for three different values of m1 (95, 100, and 105 amu) are
shown in Fig. 7. From Fig. 7(a) it is evident that at m1 =
95 amu the anomalous mode goes soft at phase separation and
becomes the third Goldstone mode of the system without any
mode collisions. At a12 ≈ 300a0, the two species are partially
miscible and the notch of n1 at z = 0 due to the soliton is filled
with the second species. For higher values of a12 ≈ 340a0, the
energetically favorable state is of a sandwich geometry where
the species with the heavier mass (m1 = 95 amu) is at the edge
of the trap and the species with lower mass (m2 = 87 amu)
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FIG. 7. (Color online) The evolution of the low-lying modes of
the TBEC with a soliton for different mass ratios as a function of the
interspecies scattering length a12 in the domain 0 ≤ a12 ≤ 420a0.
The masses of the first and second species in each of the panels
correspond to (a) 95 and 87, (b) 100 and 87, and (c) 105 and 87
amu, respectively. The number of atoms in each species is 103. The
intraspecies scattering lengths of the first and second species are
a11 = 280a0 and a22 = 100a0, respectively. The plots show only the
real part of mode energies ω/ωz.

occupies the center. It should, however be recalled here that
a11 > a22.

There is a major change in the nature of mode evolution,
as shown in Fig. 7(b) for m1 = 100: The anomalous mode
collides with the second excited mode twice at a12 ≈ 180a0

and 320a0. The emergence of a bifurcation is evident in the
second mode collision at a12 ≈ 320a0. On further increase of
m1, as shown in Fig. 7(c) for m1 = 105, the trend of the mode
collision begins to resemble that of the Rb-Cs mixture. In this
case, the bifurcation arising from the collision between the
anomalous and sixth excited mode is quite evident. Coming to
the topology of the density profiles, prior to phase separation
(a12 ≈ 300a0) n1 and n2 overlap with each other and the notch
of the soliton is filled by the second species. At still higher
values of a12, n2 from the edges migrates towards the notch of
the soliton and the soliton gets topologically deformed. This
is the energetically favorable density configuration. At a12 ≈
380a0, the migration is complete and n2 occupies the center of
the trap and is surrounded by n1 and the system is then phase
separated. Here, it must be mentioned that without the soliton
the density profile would be opposite: condensates with masses
m1 and m2 occupy the center and edges, respectively. Thus,
the presence of the soliton induces a change in the topology of
the density profiles in TBECs. On further increase of m1, the

023612-7



ARKO ROY AND D. ANGOM PHYSICAL REVIEW A 90, 023612 (2014)

energy of the anomalous mode increases with increasing a12

and the collision with the sixth mode occurs at higher energies.

V. CONCLUSIONS

In conclusion, we have examined the stability of solitons
in single and two-component BECs. We have predicted that
at zero temperature the presence of a soliton enhances the
quantum depletion and fills up the notch of the soliton which
makes it oscillatory unstable. In TBECs having a dark soliton
with strong interspecies interaction, four Goldstone modes
emerge in the excitation spectrum. We have also predicted that
the TBECs with a soliton in one of the components oscillate
while interacting even at zero temperature. This is due to the
nonzero density of the other species within the notch of the
dark soliton. We have also shown a soliton-induced change in

the density profiles when the atomic masses of the two species
differ widely. Based on a series of computations, we find an
enhancement in the mass ratio at which the heavier species,
with higher scattering length, occupies the central position at
phase separation.
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We examine the role of thermal fluctuations in binary condensate mixtures of dilute atomic gases. In particular,
we use the Hartree-Fock-Bogoliubov theory with the Popov approximation to probe the impact of noncondensate
atoms to the phenomenon of phase separation in two-component Bose-Einstein condensates. We demonstrate
that, in comparison to T = 0, there is a suppression in the phase separation of the binary condensates at T �= 0.
This arises from the interaction of the condensate atoms with the thermal cloud. We also show that, when T �= 0,
it is possible to distinguish the phase-separated case from the miscible from the trends in the correlation function.
However, this is not the case at T = 0.
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Phase separation in a two-component fluid is ubiquitous
in nature, and the transition from a miscible to immiscible
phase is a quintessential example of critical phenomena. One
classic example is a temperature-driven phase separation in
the cyclohexane-aniline mixture [1]. It is then natural to ask,
what are the similarities and differences in the binary mixtures
of quantum fluids? Recent experimental advances in binary
Bose-Einstein condensates (BECs) of dilute atomic gases
provide an ideal testbed to address such a question. In the case
of binary mixtures of BECs or two-species BECs (TBECs),
tuning the interaction through Feshbach resonances [2,3] can
render it miscible or immiscible. Using improved experimental
techniques, over the last decade, TBECs have been achieved
in mixtures of two different alkali-metal atoms [4–8], or two
different isotopes [2,9,10] and atoms of the same element in
different hyperfine states [11–14]. The remarkable feature of
phase separation in TBECs has been successfully observed in
85Rb - 87Rb [9,10] and 87Rb - 133Cs [7] condensate mixtures.

The criterion for phase separation, derived from the
Thomas-Fermi (TF) approximation at zero temperature [15],
is that the intraspecies (U11,U22) and interspecies interaction
(U12) strengths must satisfy the inequality U 2

12 > U11U22.
However, experiments are conducted at finite temperatures,
and, therefore, deviations from the criterion are to be expected.
Theoretical studies on the effects of thermal clouds on phase
separation have been carried out for homogeneous binary Bose
gases using Hartree-Fock theory [16] and a large-N approxi-
mation [17]. The phase separation of trapped binary mixtures
at finite temperatures has also been examined using the local-
density approximation [18]. In this Rapid Communication
we address this issue by using the Hartree-Fock-Bogoliubov
theory with the Popov approximation (HFB-Popov) [19] to
account for the thermal fluctuations. It is a gapless formalism
satisfying the Hugenholtz-Pines theorem [20] and can be em-
ployed to compute the energy eigenspectra of the quasiparticle
excitations of the condensates.

The method has been validated extensively in single-species
BECs, and we have used it in our recent works to examine the
effect of quantum fluctuations in TBECs [21]. In the present
work, we systematically study the role of thermal fluctuations
in the phenomenon of phase separation in trapped TBECs.
Our studies reveal that at T �= 0, the constituent species in the
TBEC undergo phase separation at a higher U12 than the value

predicted based on the TF approximation at T = 0. Consistent
with experimental observations of a dual-species condensate
of 87Rb and 133Cs [7], our theoretical investigations show that
even when the phase-separation condition is met, there is a
sizable overlap between the two species. We attribute this to
the presence of a thermal cloud, which has a profound effect on
the miscibility-immiscibility transition. At T = 0, the TBECs
are coherent throughout the spatial extent of the condensate,
however, when T �= 0, coherence decays and is reflected in the
correlation function. This implies that at T = 0, the miscible or
immiscible phases are indistinguishable from the trends in the
correlation function. But, for T �= 0, the miscible-immiscible
transition and the associated changes in the density profiles
have a characteristic signature in the form of correlation
functions. There is a smooth crossover between correlation
functions when the transition occurs. Interspecies Feshbach
resonances of ultracold bosons have been experimentally
demonstrated for Na-Rb [22], K-Rb [23], and Cs-Rb [24]
mixtures, but a Bose-condensed mixture of Na-Rb is yet to
observed experimentally. The Cs-Rb condensate mixture is a
stepping stone towards the production of a quantum gas of
dipolar RbCs molecules, as, unlike the KRb molecule, the
rovibrational ground state of the RbCs molecule is stable
against an exchange of atoms. Considering this, we focus our
study on the finite-temperature effects in the Cs-Rb condensate
mixture. Other than tuning the interspecies, it is also possible to
steer the condensate mixture through the miscible-immiscible
transition using intraspecies Feshbach resonance. An example
is the tuning of the intraspecies interaction of 85Rb in
85Rb - 87Rb [9,10], and for this system, too, we have examined
the suppression of phase separation at T �= 0 [25]. It must be
emphasized that, as the background scattering length of 85Rb
is negative, it is possible to obtain 85Rb BECs [26] only with
the use of the Feshbach resonance [27].

Theory. We consider a cigar-shaped TBEC, where the
frequencies of the harmonic trapping potential satisfy the
condition ω⊥ � ωz with ωx = ωy = ω⊥. In this case,
the radial excitation energies are large and assume the radial
degrees of freedom are frozen for which �ω⊥ � μk . So,
the dynamics and hence the excitations occur only along
the axial direction, z axis, of the trap. In the mean-field
regime, using the HFB-Popov approximation [21,28], a pair
of coupled generalized one-dimensional (1D) Gross-Pitaevskii
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(GP) equations describe the dynamics and density distributions
of the TBEC. The combined form of the equations is

ĥkφk + Ukk[nck + 2ñk]φk + U12n3−kφk = 0, (1)

where ĥk = (−�2/2mk)∂2/∂z2 + Vk(z) − μk is the one-body
part of the Hamiltonian, with k = 1,2 as the species label.
The strengths of the coupling constants are given by Ukk =
(akkλ)/mk and U12 = (a12λ)/(2m12), where, for cigar-shaped
traps, λ = ω⊥/ωz � 1. Without loss of generality, for stable
configurations, the intraspecies scattering lengths akk and the
interspecies scattering length a12 are considered as positive
(repulsive). Under the HFB approximation, the Bose field
operators are decomposed as �̂k = φk + ψ̃k , where the φk’s
are the stationary solutions of Eq. (1) obtained by evolving
the solution in imaginary time, with nck(z) ≡ |φk(z)|2. The
field operator ψ̃k(z) represents the fluctuation part of �̂k(z),
and it incorporates both quantum and thermal fluctuations. The
fluctuation operators, both quantum and thermal, are functions
of the elementary excitations of the system, which solve the
coupled Bogoliubov–de Gennes equations,

L̂1u1j − U11φ
2
1v1j + U12φ1(φ∗

2u2j − φ2v2j ) = Eju1j , (2a)

L̂1v1j + U11φ
∗2
1 u1j − U12φ

∗
1 (φ2v2j − φ∗

2u2j ) = Ejv1j , (2b)

L̂2u2j − U22φ
2
2v2j + U12φ2(φ∗

1u1j − φ1v1j ) = Eju2j , (2c)

L̂2v2j + U22φ
∗2
2 u2j − U12φ

∗
2 (φ1v1j − φ∗

1u1j ) = Ejv2j , (2d)

where L̂1 = (ĥ1 + 2U11n1 + U12n2), L̂2 = (ĥ2 + 2U22n2 +
U12n1), and L̂k = −L̂k . Here, ukj ’s and vkj ’s are the Bo-
goliubov quasiparticle amplitudes corresponding to the j th
energy eigenvalue. The quantities ñk(z) ≡ 〈ψ̃†

k (z,t)ψ̃k(z,t)〉
and nk(z) = nck(z) + ñk(z) are defined as noncondensate and
total density, respectively. To solve the above eigenvalue
equations, the ukj ’s and vkj ’s are decomposed into a linear
combination of harmonic oscillator eigenstates. The order
parameters φk’s and the noncondensate densities ñk’s are
then the self-consistent solutions of the coupled Eqs. (1)
and (2). The thermal components, in terms of the quasiparticle
amplitudes, are

ñk =
∑

j

{
[|ukj |2 + |vkj |2]N0(Ej ) + |vkj |2

}
, (3)

where N0(Ej ) = (eβEj − 1)
−1

with β = 1/(kBT ) is the Bose
factor of the j th quasiparticle mode at temperature T . More
detailed descriptions of the decomposition and derivation of
the relevant equations are given elsewhere [25]. In this Rapid
Communication we examine the role of temperature in the
phase separation of TBECs. For this, a measure of phase
separation is the overlap integral,

	 = [
∫

n1(z)n2(z)dz]2

[ ∫
n2

1(z)dz
][ ∫

n2
2(z)dz

] . (4)

The miscible phase is when 	 = 1 and signifies a complete
overlap of the two species, whereas the binary condensate is
completely phase separated when 	 = 0 [29].

In terms of the Bose field operator �̂k , the normalized
first-order or the off-diagonal correlation function, which is

also a measure of the phase fluctuations, is

g
(1)
k (z,z′) = 〈�̂†

k (z)�̂k(z′)〉√
〈�̂†

k (z)�̂k(z)〉〈�̂†
k (z′)�̂k(z′)〉

. (5)

It can also be expressed in terms of off-diagonal condensate
and noncondensate densities as

g
(1)
k (z,z′) = nck(z,z′) + ñk(z,z′)√

nk(z)nk(z′)
, (6)

where

nck(z,z′) = φ∗
k (z)φk(z′),

ñk(z,z′) =
∑

j

{[u∗
kj (z)ukj (z′) + v∗

kj (z)vkj (z′)]N0(Ej )

+ v∗
kj (z)vkj (z′)}.

At T = 0, when the entire system is coherent and characterized
by the presence of a condensate only, then g

(1)
k = 1 within the

extent of the condensate, whether it is in the miscible or in
the immiscible regime. So, one cannot distinguish between
the two phases from the nature of the correlation functions of
the individual species. However, at T �= 0, a clear signature
of a miscible-immiscible transition of the density profiles is
reflected in the form of correlation functions.

The thermal suppression of phase separation is generic to
any binary condensate mixture. However, for comparison with
experimental realizations, we consider the 133Cs - 87Rb BEC
mixture with 133Cs labeled as species 1 and 87Rb as species
2. Hereafter, for brevity, we drop the mass numbers and write
these as Cs and Rb. The intraspecies scattering lengths are
a11 = aCs = 280a0 and a22 = aRb = 100a0, the interspecies
scattering length is a12 = aCsRb = 295a0 with NCs = NRb =
5 × 103, and a0 is the Bohr radius. To form a quasi-1D trap
we take ωz(Cs) = 2π × 4.55 Hz and ωz(Rb) = 2π × 3.89 Hz;
ω⊥(Cs) = 50ωz(Cs) and ω⊥(Rb) = 50ωz(Rb). For this value of ω⊥,
the temperature along the radial direction is �ω⊥/kB ≈ 11 nK,
and the tight confinement condition is valid as μk/�ω⊥ ≈
10−2. In addition to this, the healing length ξk � 1/nk . Thus
the system is in the weakly interacting TF regime [30] and
the mean-field description through the GP equation is valid.
For this parameter set, the ground-state density distribution is
phase separated with species 1 at the center and surrounded
by species 2 at the edges. We refer to this configuration of
density profiles as a sandwich type. This choice of parameters
is consistent with the experimental parameters of a recent
work on quasi-1D TBECs of different hyperfine states of
87Rb [31], in which the dynamical evolution of mixtures of
quantum gases has been observed. It should be emphasized
here that sandwich-type density profiles are applicable only
to trapped systems. In uniform systems, at phase separation,
the energetically preferred states are the symmetry-broken
density profiles, where one species is entirely to the left and
the other is entirely to the right. We refer to this configuration
of density profiles as a side-by-side type. In the present work,
we demonstrate the role of thermal clouds in sandwich-type
density profiles since these are unique to trapped systems
and are experimentally pertinent. For homogeneous binary
condensates, using a periodic boundary condition with ωz = 0
in our computations, we do get side-by-side density profiles at
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FIG. 1. (Color online) The suppression of phase separation in
87Rb - 133Cs TBECs at a12 = 295a0. (a)–(c) The solid and dashed red
(black) lines represent nCs(nRb) and ñCs(ñRb), respectively, at T = 0,
5, and 10 nK. (d)–(f) The solid red (black) lines represent ncCs(ncRb)
at T = 0, 5, and 10 nK, respectively. The dashed red (black) lines
ncCs(ncRb) at T = 0 with the same number of condensate atoms at
T = 0, 5, and 10 nK, respectively. Here, n and z are measured in
units of a−1

osc and aosc, respectively.

phase separation. As an example, the density profiles are shown
in Ref. [25], and these are consistent with the results reported
in previous works [32]. In the computations, the spatial and
temporal variables are scaled as z/aosc(Cs) and ωz(Cs)t to render
the equations dimensionless.

At T = 0, in TBECs, as mentioned earlier, the criterion for
phase separation is U12 >

√
U11U22. With the parameters of

Cs-Rb TBECs, consider keeping aCs and aRb fixed, but varying
a12 = aCsRb through a magnetic Feshbach resonance [24]. The
condition for phase separation, using the TF approximation, is
then a12 > 261a0. When a12 = 0, the TBEC is noninteracting
and the two species are completely miscible, in which case
	 = 1. On increasing a12, the extent of overlap between the
two species decreases, and hence 	 decreases. For instance,
at a12 = 50a0, 	 = 0.97, and it decreases monotonically with
	 → 0 at complete phase separation. At a12 = 295a0, just
at the onset of phase separation, 	 = 0.14. As shown in
Fig. 1(a), the density profiles corresponding to the two species
have an interfacial overlap, and the interaction parameters
satisfy the phase-separation condition. Furthermore, at phase
separation, ncCs(0) is maximum, whereas ncRb(0) ≈ 0 and the
species do not have significant overlap. In other words, Cs
at the center of the trap is flanked by Rb at the edges and
	 ≈ 10−1. It is also to be mentioned here that for phase
separation, there is a considerable difference between the
values of a12 derived from the TF approximation and the
numerical solution of the GP equation. This can be attributed
to large gradients in condensate densities, which are ignored
in the TF approximation.

Suppression of phase segregation. For T �= 0, the Bose
factor N0 �= 0, so in addition to the quantum fluctuations,
the noncondensate densities ñk have contributions from the
thermal cloud as well. The condensate atoms nck then interact

with ñk of both species, and modify nck of both species.
For illustration, at T = 5 nK and a12 = 295a0, the total
and noncondensate density profiles are shown in Fig. 1(b).
Compared to the density profiles in Fig. 1(a), there is a
remarkable change in ncRb as a result of the finite temperature:
ncRb(0) > 0. Thus, keeping all the parameters the same, but
taking T = 5 nK, the two species have substantial overlap, as
shown in Fig. 1(b), and 	 becomes ≈0.55. In other words,
the finite temperature transforms the phase-separated TBECs
at T = 0 to a partially miscible phase. The degree of overlap
increases with temperature, and at T = 10 nK, the TBEC is
miscible as 	 ≈ 0.77. Thus, with an increase in temperature,
the density of the thermal cloud increases and the phase
separation is suppressed. This is evident from Fig. 1(c), which
shows the plots of the corresponding total and noncondensate
density profiles. Thus, a12 has to be greater than 295a0 at
T �= 0 for phase separation to occur. To confirm that the
suppression is a consequence of nonzero temperature, we
identify and compute the number of condensate atoms in
each species, and use these numbers for T = 0 computations.
Despite the difference in the numbers of atoms, from the
plots in Figs. 1(d)–1(f), the TBEC retains the immiscible
profiles at zero temperature. This implies that without the
thermal cloud, there are no deviations from the usual phase-
separation condition. For comparison, plots of nck from the
finite-temperature cases are also shown in the figure.

To investigate the spatial coherence at equilibrium, we
examine the nature of the first-order correlation function
g

(1)
k (z,z′) as defined in Eq. (6). As expected, the profile of

g
(1)
k (z,z′) depends on the interplay between the interaction

strength and temperature. As stated earlier, at T = 0, there
is perfect coherence in the Cs-Rb TBEC and g

(1)
Cs/Rb(0,z) = 1

within the spatial extent of the condensates. This is indepen-
dent of whether the TBEC is in the miscible or immiscible
regime. For simplicity and based on the symmetry of the
system, we consider g

(1)
Cs/Rb(0,z) with z ≥ 0, and plots at

different temperatures are shown in Fig. 2. At T = 0 the form
of the g

(1)
Cs/Rb(0,z) remains unchanged as the system undergoes

a dramatic transition from the miscible to immiscible phase.
This is evident from the plot in Fig. 2(a). However, when
T �= 0, unlike the zero-temperature case, g

(1)
Cs/Rb(0,z) is max-

imum at z = 0 and decays to zero with z. This is due
to the noncondensate atoms, which modify the nature of
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FIG. 2. (Color online) (a)–(c) The first-order spatial correlation
function, g

(1)
Cs/Rb(0,z) with z ≥ 0, of 87Rb - 133Cs TBECs at equilib-

rium for a12 = 295a0 at T = 0, 5, and 10 nK, respectively. Here, z is
measured in units of aosc.
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coherence in the system. The rate of decay of the g
(1)
Cs/Rb(0,z)

increases with temperature, and this is evident from the plots
of g

(1)
Cs/Rb(0,z) at T = 5 and 10 nK, as shown in Figs. 2(b)

and 2(c), for a12 = 295a0. We also observe a dramatic variation
in g

(1)
Cs/Rb(0,z) at fixed temperature, but the value of a12 is

steered from the miscible to immiscible regime. At the outset,
when the TBEC is miscible at a12 = 0, g

(1)
Rb(0,z) decays to 0

at a larger distance than g
(1)
Cs (0,z), as shown in Fig. 3(a). This

is because nRb has a larger spatial extent than nCs. As a12 is
increased, the TBEC undergoes a phase transition from the
miscible to sandwich-type density profile. Along with this, the
distance at which g

(1)
Rb(0,z) falls off to zero increases with an

increase in a12. On the contrary, the distance at which g
(1)
Cs (0,z)

falls off to zero decreases with an increase in a12. This causes
the g

(1)
k (0,z) of the individual species to cross each other at

a certain z0. At z0, the two species have equal g
(1)
Cs/Rb(0,z0),

and this is a characteristic signature of the immiscible phase.
These features are shown in Figs. 3(b)–3(d). It deserves to be
mentioned here that z0 increases, and g

(1)
Cs/Rb(0,z0) decreases

with an increase in a12. In addition, there is a dramatic
difference in the decay rates of g

(1)
Cs/Rb(0,z0); it is much faster

in Cs. This is attributed to the fact that both ncRb and ñRb

increase along z within the bulk of the Cs-Rb TBECs, whereas
in Cs, around the origin, ncCs decreases but ñCs increases.
This trend is similar to a single-species Cs condensate. The
presence of Rb does not affect the nature of g

(1)
Cs (0,z) in Cs-Rb

TBECs. Around the point of phase separation, ncRb(0) in a
Cs-Rb TBEC is distinctly different from a single-species Rb
condensate, and so is the nature of g

(1)
Rb(0,z) [25].

Segregation independent of temperature. In the domain of
large a12, U12 � √

U11U22, 	 ≈ 0, and the phase segregation
is more prominent. However, due to the geometry of the
TBEC, the mean-field approximation is still valid. In this
domain the interfacial overlap is minimal and the TBECs
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FIG. 4. (Color online) Density profiles showing complete phase
separation at T = 0 and 10 nK. (a) Phase separation in 87Rb - 133Cs
TBECs for a12 = 650a0. The solid and dashed orange (brown) lines
represent ncCs(ncRb) and ñcCs(ñcRb), respectively, at T = 0. The solid
and dashed red (black) lines represent ncCs(ncRb) and ñcCs(ñcRb),
respectively, at T = 10 nK. (b) Phase separation in 85Rb - 87Rb
TBECs for a12 = 20a0. The solid and dashed orange (brown) lines
represent nc and ñ of 85Rb ( 87Rb), respectively, at T = 0. The solid
and dashed red (black) lines represent nc and ñ of 85Rb ( 87Rb),
respectively, at T = 10 nK. Here, n and z are measured in units of
a−1

osc and aosc, respectively.

assume a sandwich-type density profile. The system is then
equivalent to three coupled condensate fragments, and, as a
result, the Bogoliubov analysis shows the presence of three
Goldstone modes [28]. For the Cs-Rb TBECs considered here,
the background interspecies scattering length aCsRb = 650a0

satisfies the above condition. With this value of a12, at T = 0,
as shown in Fig. 4(a), the Cs condensate lies at the center of
the trap and the Rb condensate at the edges. So, at the center,
nRb(0) = 0 and nCs(0) is maximum. With an increase in a12,
there is a decrease in the number of noncondensate atoms
arising from quantum fluctuations. This is a manifestation of a
smaller overlap between the condensates at the interfaces. On
the contrary, for a single-species BEC, with an increase in the
intraspecies interaction strength, the number of noncondensate
atoms due to quantum fluctuations increases [21]. When
T �= 0, the thermal density ñk interacts with the condensate
clouds through intraspecies and interspecies interactions. But,
due to the large a12, the interspecies interaction energy is much
larger than the intraspecies interaction energy. This makes
nRb(0) ≈ 0, and there is little overlap of the thermal cloud
of one species with the condensate of the other species, such
that 	 < 0.1. Thus, there is no thermal suppression in the
domain of large a12. We observe similar results in the case of
85Rb - 87Rb TBECs as well, where the intraspecies interaction
of 85Rb is decreased to obtain completely phase-separated
density profiles. These are shown in Fig. 4(b).

Conclusions. At finite temperatures, to examine the prop-
erties of binary condensates in the neighborhood of phase
separation, it is essential to incorporate the thermal component.
In general, there is a delay or suppression of phase separation
due to the thermal component, and we have examined this in
detail with the Cs-Rb binary condensate as an example. In
this system, the transition is driven by tuning the interspecies
interaction, and similar results are obtained in the 85Rb - 87Rb
binary condensate, where tuning the intraspecies interaction
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of 85Rb induces the transition. The binary condensate mixtures
of dilute atomic gases are different from the classical binary
fluids which undergo a miscible-immiscible transition with
temperature as the control parameter. First, the variation of
temperature in TBECs is applicable only below the lower of
the two critical temperatures. Second, each species has two
subcomponents, the condensate and noncondensate atoms.
The condensate or the superfluid components are coherent, but
the noncondensate components are incoherent and are similar
to the normal gas. Third, there are spatial density variations
of all the components due to the nature of the confining
potential and diluteness of the atomic gas. Fourth, beyond
a certain critical value of interaction strength or in the U12 �√

U11U22 domain, temperature does not alter the density
profiles. Finally, the transition to the phase-separated domain

at finite temperatures is associated with a distinct change in
the profile of the correlation function. Our results provide an
explanation of the experimentally observed density profiles
at phase separation [7]. Even when the phase-separation
condition is satisfied, there is a finite overlap between the
two species at finite temperature which is due to the presence
of a thermal cloud. Our findings clearly demonstrate the
dominance of thermal fluctuations over quantum fluctuations,
which causes the suppression of phase segregation in TBEC
experiments.
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useful discussions. The results presented here are based on the
computations using the 3TFLOP HPC Cluster at the Physical
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(2011).

[7] D. J. McCarron, H. W. Cho, D. L. Jenkin, M. P. Köppinger, and
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