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ABSTRACT

Optical vortices, whirlpools of light, are phase singularities in the light field. These vortex

beams have helical wave front and their Poynting vector rotates around the propagation axis.

They carry an orbital angular momentum of m~, m being the topological charge or order

defined as the number of helices in one wave length. Such beams have an azimuthal phase

dependence of exp(imφ), where φ = tan−1 (y/x) is the azimuthal angle. Vortex beams can be

generated by a number of methods. Few of them are an astigmatic mode converter, computer

generated holography and spiral phase plates. However, vortices of first order naturally exist

in the speckles that can be formed by the scattering of a coherent light beam through a

rough surface. Speckles are due to the mutual interference of a number of scattered wave

fronts from inhomogeneities of the random medium. It would be very interesting to study

the speckles generated by the optical vortices as they themselves contain vortices. This thesis

concerns with the study of optical vortices and their scattering through random media.

The spatial intensity profile of optical vortices has been studied using two novel and

measurable parameters, inner and outer radii along with their propagation through free space.

We show that the propagation characteristics depend only on width of the host Gaussian

beam and its intensity profile at the source plane. We have also studied the divergence

of vortex beams, considering it as the rate of change of inner and outer radii with the

propagation distance (z), and found that it varies with the order in the same way as that of

the inner and outer radii at z = 0. The corresponding experimental and theoretical results

have been presented.

We have embedded a pair of vortices with different topological charges in a Gaussian

beam and studied their evolution through an astigmatic optical system, a tilted lens. The

propagation dynamics is explained by a closed-form analytical expression. Furthermore, we

show that a careful examination of the intensity distribution at a predicted position, past

the lens, can determine the charge present in the beam. To the best of our knowledge, our

method is the first non-interferometric technique to measure the charge of an arbitrary vortex

pair. Our theoretical results are well supported by experimental observations.

We have experimentally generated higher order optical vortices and scattered them through

a ground glass plate resulting in speckle formation. Intensity autocorrelation measurements

of speckles show that their size decreases with increase in the order of the vortex. It implies

increase in angular diameter of the vortices with their order. The characterization of vor-

tices in terms of the annular bright ring also helps us to understand these observations. We
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have generated the ring shaped beams from the speckles generated by the scattering of LG

and BG beams. We also show that these ring-shaped beams have the same vorticity as the

incident beam falling on the rough scattering surface. The vorticity is measured through a

novel method that uses a non separable state of polarization and orbital angular momentum

of light. The observed vorticity is found to be independent of the amount of scattered light

collected. Therefore, vortices can be used as information carriers even in the presence of

scattering media. The experimental results are well supported by the theoretical results.

We have generated perfect optical vortices (POV), whose intensity distribution are in-

dependent of the order, using Fourier transform of Bessel–Gauss (BG) beams and scatter

them through a rough surface. We show that the size of produced speckles is independent of

the order and their Fourier transform gives the random non-diffracting fields. The invariant

size of speckles over the free space propagation verifies their non-diffracting or non-diverging

nature. The size of speckles can be easily controlled by changing the axicon parameter, used

to generate the BG beams.

Keywords : Optical vortices, Scattering, Random media, Speckles, Astigmatic system,

Perfect optical vortices.
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Chapter 1

Introduction

Vortices are fascinating topological features which are ubiquitous throughout the physical

systems [1–13]. In optics, these vortices have quantized orbital angular momentum (OAM)

that leads to the use of vortices in a number of scientific and technical applications such as

particle manipulation, quantum information, free space optical communication, and wireless

communications [14–27]. This thesis addresses the propagation of optical vortices through

a linear optical system, and its effect on the variation of size and divergence of the beam

along with the consequences of an astigmatic optical system and scattering through random

media like a ground glass plate. In this chapter, I will be giving a brief introduction to

optical vortices and vortices with constant intensity distribution, their scattering, formation

of speckles and their characteristics.

1.1 Optical vortices

Vortices have been observed in a variety of natural phenomena such as hurricanes, tornadoes,

and even while pouring the water from one container to another [1, 28]. However, vortices

have gained an extra importance after their mathematical representation and theory by Berry

and Nye. It has been shown that the mathematical equation representing these vortices is the

solution for Maxwell’s electromagnetic wave equation which implies the possibility of vortices

in light beams [29]. Nowadays, optical vortices have become more than a mathematical

curiosity and have proved their practical value in numerous fields [30–34].

An optical vortex beam is characterized by a doughnut–shaped intensity distribution with

a phase singularity and hence zero field amplitude at the center [35–37]. Optical vortices have

a screw–shaped wavefront dislocation, which can be visualized as a helical phase structure

1
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around the center where as a Gaussian beam has a uniform phase and planar wavefront

[38, 39]. The phase varies linearly with the azimuthal angle φ as described by the phase

term exp (imφ) provided the vortex is circular and symmetric; where m is called the order or

topological charge that defines the number of helices per wavelength or the number of times

phase should change by 2π in one complete rotation around the center of the vortex and its

direction of rotation decides the sign of topological charge.

The electric field distribution of an optical vortex of orderm embedded in a host Gaussian

beam of width w can be written as

Em(x, y, z) = E0(x+ ǫ iy)m
w0

(w(z))m+1
exp

(

−x2 + y2

w(z)2

)

(1.1)

exp

(

ik
x2 + y2

2R(z)

)

exp (ikz − i(m+ 1)ζ(z))

where E0 is the field amplitude, k is the wave vector and w(z), R(z) and ζ(z) are the beam

parameters. “ǫ” denotes the sign of topological charge or the order which is +1 for positive

and -1 for negative.

(a) (b) (c)

Figure 1.1: The intensity distribution (a), wavefront (b) and the phase (c) of a Gaussian

beam (top) and the optical vortices of orders +1 (middle) and -1 (bottom).

The intensity distribution at a given plane, the wavefront and the phase of optical vor-

tices of orders +1 and -1 have been shown in Figure 1.1 along with a Gaussian beam for a
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comparison. The Poynting vector of these beams rotates around the center due to the pres-

ence of spiral phase distribution that causes an orbital angular momentum (OAM) of m~ per

photon [17]. This OAM can be used to impart torque to the particles in an optical tweezer

set up [40] and, more recently, has served as a better quantity for encoding information in

classical and quantum protocols [30–33].

Three of the most common methods for producing optical vortices in the lab are astig-

matic mode converter, spiral phase plate and computer–generated holography. Astigmatic

mode converter modifies the Hermite Gaussian (HG) modes with a rectangular symmetry

to Laguerre Gaussian (LG) modes having circular symmetry [41, 42]. Spiral phase plates

directly impose the vortex structure on an incident beam by linearly varying the optical

path length around the circumference of the device [43–45]. Computer generated holograms

(CGHs) are created by mathematically interfering an oblique plane wave with an optical

vortex. The vortices can be obtained by diffracting a plane wave through the CGH [46]. The

detailed description of these three techniques is given below.

1.1.1 Astigmatic mode converter

An astigmatic mode converter is formed by a pair of cylindrical lenses which have the same

focal length (f) and mounted parallel to each other [41]. This set up is analogous to the

birefringent wave plate with zero fast axis orientation that modulates the polarization compo-

nents according to the optic axis. The separation between the two lenses decides the induced

phase difference between two orthogonal Hermite–Gaussian modes. If the separation is
√
2f

(2f) then the phase difference is π
2 (π) analogous to quarter (half) wave plate. Therefore it

is also called as π
2 (π) converter.

HG01

+

HG10

f2

– Converter 
2

 

HG01

+i

HG10

Figure 1.2: The schematic of the input and output spatial modes of an astigmatic

mode converter consisting of two cylindrical lenses with a given separation.

In order to transform HG mode to LG mode and vice versa, one should use π
2 con-
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verter. The schematic of astigmatic mode converter is shown in Figure 1.2 in which an input

HG1
0|@45o mode, superposition of HG1

0 and HG0
1 modes which are parallel and perpendicular

to the cylindrical lens respectively, converts into LG1
0 mode. Later on the same mode con-

verter was realized using a cylindrical lens and a mirror [47]. This is the folded version of

a basic astigmatic mode converter and by controlling the distance between the lens and the

mirror, one can change the induced phase difference between orthogonal HG modes. The

astigmatic mode converter changes the rectangular symmetry to circular and vice versa. The

polarization controlled OAM CNOT gate and the spatial mode sorter were also implemented

using a single lens π
2 converter [47, 48].

1.1.2 Spiral phase plate or vortex lens

Spiral phase plate (SPP) or vortex lens (VL) is a kind of mode converter that imparts a spiral

phase directly to a coherent light beam. SPP has a thickness which varies circumferentially

around the center of plate, but is uniform radially [44]. The plate is made of a dielectric

material which is transparent. Hence a beam with fundamental Gaussian mode passing

Plane wave

Helical wave

t

Figure 1.3: Changing the planar wavefronts to helical wavefronts using a spiral phase

plate.

though the SPP experiences a spiral element to its phase front. This can be achieved either

by changing the thickness around the center or by changing the optical path which is possible

with the spatial variation of refractive index.

The schematic and the process of conversion have been shown in Figure 1.3. In order to

be effective, SPP must be smooth and accurately shaped to a fraction of wavelength. The

conversion efficiency of a SPP to convert a Gaussian beam to a vortex beam is very high

and it can be used even with high power lasers. The SPP is generally designed for single
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wavelength of light and one topological charge. However, adjustable spiral phase plates work

for multi–wavelength and multi–order purpose [49]. The SPP can be realized easily at higher

wavelengths which has a significant contribution in wireless communication using radio wave

(mm-wave) vortices [21, 50].

1.1.3 Computer generated holography

An object can be generated by illuminating a coherent light beam on a digitally generated

hologram. In general, hologram is an interference pattern of an object with a reference [51–

54]. To generate the vortex beams, one needs to interfere the spiral function eimθ, m being

the order, with planar wavefront eikx, k being the spatial period. This interference pattern

can be obtained through a computer program and looks like a fork. By printing these fork

patterns on a transparent sheet using a high quality printer and illuminating the branch

point with a laser beam, the required vortex beam of both positive and negative orders can

be generated in the first diffraction orders with central order as the host Gaussian beam.

The electric field distribution of an optical vortex (object) of order m embedded in a host

Gaussian beam of width w is given by

Eo = (x+ iy)m e−(x
2+y2)/w2

e−ik(x2+y2)/2Re−i(kz+θ) (1.2)

where R is the radius of curvature and θ is the Guoy phase shift. For the sake of simplicity,

all the field amplitudes have been considered as unity. In cylindrical coordinate system, the

above equation reduces to

Eo = rme±imθe−r2/w2
e−ikr2/2Re−i(kz+φ). (1.3)

The electric field distribution for a plane reference beam is

Er = e−i(kxx+kzz). (1.4)

The intensity for the interference pattern of mth order optical vortex Eo (say at beam waist,

R −→ ∞) with the reference beam Er at z = 0 is given by

I = |e−ikxx + e±imθe−r2/w2 |2. (1.5)

By setting w as unity and ignoring all amplitude variations in the above equation, we get

the spatially varying transmission function as

T = 2 [1 + cos (kxx+mθ)] . (1.6)
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a) b) c)

Figure 1.4: The computer generated holograms with sinusoidal (a), binary (b) and

blazed (c) transmission functions for making an optical vortex of order +1.

This amplitude transmission function is a fork like grating with sinusoidal [46] optical

density as shown in Figure 1.4(a). This is an amplitude hologram which modulates the

amplitude of the incident beam. One can make other types of holograms such as binary [55]

and blazed [56] holograms whose transmission functions are given by

Tbinary = sign [2 (1 + cos (kxx+mθ))] (1.7)

Tblazed =
1

2π
Mod (kxx+mθ, 2π) . (1.8)

where sign[x] = x/|x| and Mod(α, β) is the remainder on division of α by β. The binary and

blazed holograms for generating an optical vortex of order +1 are shown in Figures 1.4 (b) and

(c) respectively. One can also use phase only holograms for the better diffraction efficiency

which changes the phase according to the given interference pattern without affecting the

amplitude.

By printing these fork patterns on a transparent sheet using a high quality printer and

illuminating the branch point with a laser or reference beam, one can obtain the vortex beams.

Figure 1.5: The schematic for the generation of optical vortices by passing a Gaussian

beam through a branch point of the hologram.
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However, one can also transfer these patterns to the liquid crystal based device, spatial light

modulator [57, 58], using a computer interface. The schematic for the generation of optical

vortices with the use of printed holograms is shown in Figure 1.5. The higher order (order

of 100 or above) optical vortices can be generated using special kind of holograms called

kinoforms [59].

The interference patterns are used not only for the generation of optical vortices but also

for their detection. The interference patterns of a Gaussian beam and optical vortices of

orders +1 or -1 with planar (linear fringes) and spherical (spiral fringes) wavefronts have

been shown in Figure 1.6. The difference in number of fringes below and above the singu-

(a) (b) (c)

Figure 1.6: The interference patterns of a Gaussian beam (left) and the vortex beams of

order +1 (middle) and −1 (right) with planar (top) and spherical (bottom) wavefront.

larity of the fork or the number of spirals indicates the order of vortex beam. There are

many other techniques to measure the charge of an optical vortex [60–67] such as applying

Fourier transform to its intensity distribution [63], passing it through a tilted lens [60], and

a triangular aperture [67].

Optical vortices also exist naturally in speckles [68–71] formed by the scattering of co-

herent light beams through a rough surface or a ground glass plate (GGP). The number of

dark spots present in the speckles are actually first order optical vortices. The probability of

getting positive and negative charge optical vortices of order one is same that makes the sum

of all the vortex charges is zero when a Gaussian beam scatters through a rough surface [68].

These optical vortices are anisotropic in nature i.e. the azimuthal phase varies non-linearly

around the position of singularity. It is also interesting to study the properties of speckles
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generated by the scattering of phase singular beams as the scattered beam itself contains the

phase singularity.

1.2 Speckle phenomena

The speckles are fine-scale granular structures formed when a coherent light beam reflects

or passes through a rough surface [72, 73]. This random intensity distribution is due to the

interference of many scattered or reflected wavefronts from randomly distributed microscopic

inhomogeneities of the rough surface at the detection plane. We know that the fringe width

in an interference pattern is directly proportional to the wavelength and the distance from

the source to detection plane. In the same vein, since the speckles are due to the interference,

their size is directly proportional to the wavelength and the propagation distance i.e. the

(a) (b)

(c) (d)

100 µm

Figure 1.7: The speckle patterns generated by the scattering of a Gaussian (a), optical

vortex (b) and perfect optical vortex of order +1 (c) through the ground glass plate

(d).

distance between the rough surface and the detection plane. The speckle size is inversely

proportional to the square root of the area of illumination. The size of speckles is also



1.3. Scattering of optical vortices 9

inversely proportional to the size of the inhomogeneities which plays an equivalent role of slit

width. The contrast of speckles depends on temporal and spatial coherence of the incident

beam which is equal to one for a perfectly coherent beam and zero for a perfectly incoherent

beam. The speckles generated by the scattering of a Gaussian beam, an optical vortex and a

perfect vortex of order +1 have been shown in Figures 1.7(a), 1.7(b), and 1.7(c) respectively.

For generating these speckles, we use a ground glass plate as scatterer whose microscopic

image has been shown in Figure 1.7(d).

The speckles play an important role in many technological and scientific applications

ranging from the rough surface characterization to stellar speckle interferometry [73–82]. The

scattering of light through a disordered media can be used to focus it below the Rayleigh

diffraction limit which has been verified experimentally [76]. However, the characterization

of speckles generated by the scattering of different spatial modes such as optical vortices

has not been studied in detail. In this thesis, we characterize the size and divergence of the

speckles generated by optical vortices and their variation with the order. We also study the

scattering of perfect optical vortices, whose core size is independent of the order.

1.3 Scattering of optical vortices

The scattering of optical vortices is important in many applications starting from astrophysics

to communication. The angular velocity of a rotating object cannot be determined using the

linear Doppler shift, however, the rotation of a spinning object induces a frequency shift to

the light beam that is proportional to the OAM of a light beam. By measuring this frequency

shift (of the order of kHz) due to the scattering of higher order optical vortices with large

OAM a small change in the rotation can be measured [83, 84]. Recently, Tamburini et

al. showed through a numerical calculations that a rotating black hole emits the radiation

containing a spectrum of OAM. It was suggested that a black hole can be observed by

detecting this structured light using proper telescopes. However, it is not easy to determine

the OAM spectrum because of their scattering effects over a long distance [22, 85]. It has been

shown that the intensity correlations of scattered optical vortices can be used to measure the

spectrum of OAM [86] which may have implications in detecting the OAM of light coming

from the black hole. The scattering of two optical vortices with different orders can also be

used to generate coherence vortices, singularities in a cross-correlation function. The order

of this singularity is equal to the difference between the two individual topological charges

[11, 87].
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Recently, the decay of temporal intensity correlation of scattered optical vortices with

increase in the order was studied and verified experimentally [88, 89]. Although, the vortices

are observed to be robust against the diffraction through a circular aperture, their robustness

has not been tested against scattering through random media which finds many applications

in the optical transfer of information [90]. This thesis addresses the issue of recovering

vorticity of an optical vortex after scattering. We verify the vorticity of a scattered optical

vortex using a non-separable state of polarization and OAM.

1.4 Perfect optical vortices

It is well known that optical vortex beams have helical wavefronts due to which they transfer

the OAM to dielectric particles in the trapping process. This OAM can also be used for

many classical and quantum information protocols. Several techniques for generating the

optical vortex beams have been reported during last decade, but all of them exhibit a strong

dependence of the vortex radius on the topological charge, making it difficult to obtain a

high spatial accuracy and a high orbital angular momentum simultaneously. Recently, a

new type of optical vortex, called perfect optical vortex [91], whose radius is independent of

topological charge and whose intensity gradient takes an extremely large value was introduced

to overcome this limitation. The field distribution of a perfect optical vortex of order m is

written as

E(ρ, θ) = δ(ρ− ρ0)e
imθ (1.9)

where ρ is a transverse coordinate and θ is the azimuthal phase.

The presence of a delta function makes the field to be present along the perimeter of a

circle i.e. a circular ring. However, the ideal POV beams cannot be realized in the lab. For

their realization, we need to introduce a small and finite width of the ring (say ∆ρ) which

makes the delta function as an exponential function. Therefore the field distribution of a

POV of order m, ring radius ρ0, and ring width ∆ρ becomes [92]

E(ρ, θ) = e
−

(ρ−ρ0)
2

∆ρ2 eimθ (1.10)

where ∆ρ << ρ0.

The POV beams can be generated using a number of techniques [93–95]. However, one

can simply realize them using the Fourier transform of the Bessel-Gauss beams [94]. The BG

beams can be produced using a computer generated hologram obtained by the superposition

of axicon (eiaρ) and a spiral (eimθ) functions. The sinusoidal and the blazed axicon holograms
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(a) (b) (c)

Figure 1.8: The axicon holograms with a (a) sinusoidal, (b) binary and (c) blazed

transmission functions. This hologram is used to generate the Bessel–Gauss beams.

to generate the BG beams have been shown in Figure 1.8. By embedding the vortex phase

structure into the hologram, one can generate the higher order BG beams. The ring width

of a POV beam is inversely proportional to the width of the Gaussian beam falling on the

hologram and the ring radius is directly proportional to the axicon parameter. The theoretical

intensity distributions of the POV beams of orders 0, 10, 20, 30 at different axicon parameters

have been shown in Figure 1.9.

In this thesis, we use the order independent intensity distribution to verify a physical

process if the speckle distribution depends on the field mode or the intensity distribution.

We also generate the random non-diffracting structured patterns using the speckles produced

by the scattering of a POV beam.

1.5 Objective of the thesis

Optical vortices have been used for communication both in classical and quantum domains.

Therefore, to study the robustness of optical vortices after scattering through a scattering me-

dia and their propagtaion characteristics through different optical systems is very important.

In this thesis, we study the intensity distribution of optical vortices and their propagation

through free space as well as an astigmatic optical system. We also study the properties of

speckles generated by the scattering of optical vortices and confirm the vorticity of scattered

optical vortices. Finally, we study the scattering of perfect optical vortices, whose core size

is independent of the order, through a ground glass plate. The results are compared with

the one obtained for regular optical vortices.
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m=0             m=10             m=20             m=30

a=10mm-1

a=13mm-1

a=16mm-1

Figure 1.9: Theoretically obtained intensity distributions of the POV beams of orders

0, 10, 20, 30 (from left to right) and at axicon parameters of 10, 13, 16 /mm (from top

to bottom).

1.6 Overview of the thesis

Chapter 1 gives the basic introduction towards optical vortices, scattering of light beams and

perfect optical vortices. In chapter 2, the spatial intensity profile of optical vortices has been

studied using two novel and measurable parameters, inner and outer radii along with their

propagation through free space. We show that the propagation characteristics depend only

on width of the host Gaussian beam and its intensity profile at the source plane. We also

study the variation of divergence of vortex beams with their order. Chapter 3, contains the

propagation characteristics of a pair of optical vortices embedded in a host Gaussian beam

through an astigmatic optical system - a tilted lens. The propagation dynamics is explained

by a closed-form analytical expression and used the intensity distribution at a predicted

position past the lens to determine the charges present in the beam.

In chapter 4, We study the scattering of higher order optical vortices through a ground

glass plate that results in the formation of speckles. Intensity autocorrelation measurements

of speckles show that their size decreases with increase in the order of vortex. We relate
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these results with the area of annular bright ring present in the vortex beams. In chapter

5, We experimentally generate the ring-shaped beams by collecting the scattered light of

LG and BG beams. We also study the dependence of ring-shaped beams on the speed of

rotating ground glass (RGG) plate and the width of incident light beam. We theoretically

verify the results using the propagation of partially coherent standard or elegant LG beams.

In chapter 6, we show that the scattered light passing through a lens has the same vorticity

when probed at the Fourier plane. The vorticity is measured using a non-separable state of

polarization and orbital angular momentum of light. The observed vorticity is found to be

independent of the amount/direction of scattered light collected which will enhance the use

of optical vortices in public communication systems.

In chapter 7, we generate perfect optical vortices (POV), whose intensity distribution is

independent of the order, using Fourier transform of Bessel–Gauss (BG) beams and scatter

them through a rough surface. We show that the size of produced speckles is independent

of the order and their Fourier transform provides the random non-diffracting fields. The size

of speckles can be easily controlled by changing the axicon parameter, used to generate the

BG beams. Finally, we conclude in chapter 8.





Chapter 2

Propagation Dynamics of Optical Vor-

tex Beams

Optical vortices or phase singular beams are well known due to their orbital angular mo-

mentum (OAM) [14–17]. This OAM can be used as an information carrier which enhances

the bandwidth as its modes have an infinite dimensional orthonormal basis [19]. It has been

shown that communication is possible with radio wave vortices [20] and demonstrated ex-

perimentally for wireless communication [21]. To use different OAM states for information

processing, one should have both multiplexing and de-multiplexing setups for these modes

and the same has been made with the use of fibers specially designed for OAM modes [23–26].

For implementing these protocols with vortices, one should design fibers that support OAM

modes in which case one should know the intensity distribution of these OAM modes as well

as their divergence. The structure and divergence of Laguerre–Gauss beams were theoreti-

cally studied [96, 97]. However, the parameters used for description cannot be measured in

lab.

In this chapter, we discuss about the spatial intensity profile of vortices using two novel

and measurable parameters (the inner and outer radii) in section 2.1. We study the propa-

gation of vortices in terms of inner and outer radii experimentally as well as theoretically in

section 2.2. The divergence of vortices and its variation with the order have been discussed

in section 2.3. Finally, we conclude in section 2.4.

15
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2.1 Inner and Outer radii of an optical vortex beam

The field distribution of an optical vortex beam of order m, embedded in a Gaussian host

beam of width w0, is

Em(x, y) = (x+ iy)m exp

(

−x2 + y2

w2
0

)

(2.1)

and its intensity

Im(r) = r2m exp

(

−2r2

w2
0

)

, r2 = x2 + y2. (2.2)

This intensity distribution is shown in Figure 2.1. Here, we are defining two parameters

for a vortex beam: inner and outer radii (r1, r2).
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Figure 2.1: The transverse intensity profile of an optical vortex of order 1 and its line

profile.

These are the radial distances at which the intensity falls to 1/e2(13.6%) of the maximum

intensity at r = r0 (say). Here, r1 is the point closer to the origin or the center and r2 is the

point farther from the center. The distances ri (i = 0, 1, 2) can be obtained as follows. For

the sake of convenience, we set w0 = 1, that is, w0 is the unit of measuring radial distances.

We also define χ = r2 and χi = r2i (i = 0, 1, 2) so that Im(r) = Jm(χ) = χm exp(−2χ).

Differentiating Jm(χ) with respect to χ, one easily obtains χ0 = m/2 so that the maximum

intensity has the value Jm(χ0) = χm
0 exp(−2χ0). The equations for χ1 and χ2 can then be

written as

χm
1 exp(−2χ1) = χm

0 exp(−2χ0 − 2), (2.3a)

χm
2 exp(−2χ2) = χm

0 exp(−2χ0 − 2). (2.3b)
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These equations cannot be solved analytically as they are transcendental. We solve these

equations numerically form > 0. The numerical values are tabulated in Table 2.1 and plotted

in Fig. 2.2.

Remarkably, it is found that to a very good approximation (verified up to the order 200),

χ2 + χ1 = m+ 1.3. (2.4)

m χ1 χ2 χ2 + χ1

1 0.0262 2.2526 2.2789

2 0.1586 3.1462 3.3048

3 0.3602 3.9538 4.3140

4 0.6034 4.7154 5.3188

5 0.8748 5.4469 6.3216

6 1.1667 6.1569 7.3236

7 1.4746 6.8504 8.3250

8 1.7951 7.5309 9.3260

9 2.1262 8.2006 10.3268

10 2.4662 8.8613 11.3274

11 2.8138 9.5142 12.3280

12 3.1680 10.1605 13.3284

. . . . . . . . . . . . . . . . . . . . . . . . . .

20 6.1682 15.1622 21.3304

50 18.5793 32.7529 51.3321

100 40.6553 60.6775 101.3330

200 86.5165 114.8165 201.3330

Table 2.1: Numerical solutions for Eqs. 2.3a and 2.3b

This empirical relationship can now be used to obtain simple expressions for χ1 and χ2.

Multiplying the left sides of Eqs. 2.3a and 2.3b, using Eq. 2.4 and the formula (χ2 + χ1)
2 −

(χ2 − χ1)
2 = 4χ1χ2, we get

χ2 − χ1 =
√
qm, qm = (m+ 1.3)2 −m2 exp(−1.4/m). (2.5)
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Figure 2.2: Numerically obtained values of χ2 + χ1 (filled squares) and the line y =

m+ 1.3 as functions of m.

Solving Eqs. 2.4 and 2.5, we get χ1, χ2 and hence, r1, r2:

r1(0) = (m+ 1.3 −√
qm)1/2/

√
2, (2.6a)

r2(0) = (m+ 1.3 +
√
qm)1/2/

√
2. (2.6b)

‘0’ represents the source plane at which vortices being generated i.e. zero propagation

distance z. Now, the area of the bright region in an optical vortex is given by

Am = π(χ2 − χ1) = π
√
qm (2.7)

which clearly depends on the order (m) of the vortex (see Eq. 2.5). These results can also

be used for the geometrical characterization of coherent optical vortices.

We verify experimentally the dependence of the area of the annular bright ring of optical

vortices on their orders. For this, we use an intensity stabilised He-Ne laser to generate optical

vortex beams using computer generated holography technique. We introduce holograms

corresponding to the vortices of different orders to the spatial light modulator (SLM) (Holoeye

LCR-2500). We then allow the Gaussian laser beam to be incident normally on the SLM

at the branch points of the hologram which gives the vortex beam in the first diffraction

order [98, 99]. The vortices of different orders from 1 to 5 have been recorded at closest

point at which first diffraction order is separated from the central order and also at different

propagation distances starting from 52 cm to 107 cm in steps of 5 cm using an Evolution VF
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Figure 2.3: Line profiles along the vortex centres of optical vortices for orders 0 to 5

that are produced in the laboratory.
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Figure 2.4: Experimental and theoretical results showing the variation of (a) inner and

outer radii and (b) area of bright annular region with the order of a vortex.
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color cooled CCD camera of pixel size 4.65 µm. We have recorded 20 images for a given order

and at a given propagation distance. These images have been further processed to determine

the inner and outer radii.

Figure 2.3 shows the line profiles of optical vortices for orders m = 0 to 5 produced in

the laboratory using computer generated holography technique. We have determined inner

and outer radii of the vortex beams from the corresponding line profiles (Fig. 2.3). The

variation of inner and outer radii for vortex beams and the area of the annular bright ring

with the order are shown in Fig. 2.4. The experimental findings are in good agreement with

the theoretical values (obtained from Eqs. 2.6 and 2.7) and prove that area of the annular

bright ring increases in proportion to the order.

The small misalignment of the experimental set up being used to generate the optical

vortices leads to systematic error that increases with the order. This is because of the small

shift in the center of the vortex beam. To avoid this error, we have considered eight different

line profiles and determined the corresponding inner and outer radii. The average over eight

different line profiles has been considered as actual value and their standard deviation as

error.

2.2 Free space propagation of vortex beams

The variation of inner and outer radii with propagation can be studied by propagating the

vortex beam through free space. The field distribution of a vortex beam after propagating

through a linear ABCD optical system is [88, 89]

Em(u, v) =

(

ikw2
1

2B

)m+1

(u+ iv)m exp

(

−u2 + v2

w2
2

)

(2.8)

where

1

w2
1

=
1

w2
0

+
ikA

2B
, (2.9a)

1

w2
2

=

(

w1k

2B

)2

+
ikD

2B
. (2.9b)

The corresponding intensity distribution is

Im(u, v) = αmr2m exp

(−2r2

β2

)

(2.10)

where

αm =
k2w2

1w
∗2
1

4B2
, r2 = u2 + v2,

2

β2
=

1

w2
2

+
1

w∗2
2

. (2.11)

Here, αm is a constant multiplicative factor and will not change the intensity pattern.
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Figure 2.5: The inner radius for vortices of orders m = 1 to 4 at different distances.
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Figure 2.6: The outer radius for vortices of orders m = 1 to 4 at different distances.
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Defining ρ = r/β, the above equation can be written as

Fm =
Im

αmβ2m
= ρ2m exp(−2ρ2). (2.12)

This equation is similar to Eq. 2.2 and have the solutions ρ1 and ρ2 which are the same as

that of r1(0) and r2(0) of Eq. 2.6. Now the inner and outer radii of the vortex beam at a

particular propagation distance are given by ρ1 = r1(z) = βr1(0) and ρ2 = r2(z) = βr2(0)

where r1(0) and r2(0) are the inner and outer radii at z = 0 as expressed in Eq. 2.6.

The expression for β is

2

β2
=

1

w2
2

+
1

w∗2
2

−→ β = w0A

(

1 +
4B2

k2A2w4
0

)1/2

. (2.13)

For free space propagation (A = 1 and B = z), the above equation becomes

β = w0

(

1 +
4z2

k2w4
0

)1/2

= w0

(

1 +
z2

z2R

)1/2

= w(z) (2.14)

where zR = πw2
0/λ is the Rayleigh range and w(z) is the width of host Gaussian beam at

distance z. Now, the inner and outer radii as a function of z can be written as

r1(z) = w(z)r1(0), r2(z) = w(z)r2(0). (2.15)

This relation shows that the defined parameters can describe the vortex beams in a simpler

manner as their propagation is similar to the host Gaussian beam.

Figures 2.5 and 2.6 show the variation of inner and outer radii with propagation distance

for the optical vortex beams of orders m = 1 to 4. Red dots represent the experimental data

points and the blue solid lines represent the fitting with Eq. 2.15. From these figures, it is

clear that the experimental results are in excellent agreement with the theoretical predictions.

The slope of these curves at z >> zR has been considered as the divergence i.e. the rate of

change of inner and outer radii. The experimental results are obtained by taking the average

over 20 images and the error bars are too small to be visible in the plot. The width of host

Gaussian beam used to fit the experimental data is same for all the curves.

2.3 Divergence of the vortex beam

Now, the divergence of optical vortices has been defined as the rate of change of inner and

outer radii ri, i = 1, 2 with respect to the propagation distance z and is given by

dim(z) =
∂ri(z)

∂z
=

wori(0)
(

z2 + z2R)
)1/2

z

zR
, i = 1, 2. (2.16)
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The divergence depends mainly on the corresponding radii at z = 0. At large z (z >> zR),

the divergence is constant and is given by

dim =
wori(0)

zR
. (2.17)

These results are same for vortex beams generated either by using mode converter or diffrac-
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Figure 2.7: The divergence i.e. the rate of change of inner (top) and outer (bottom)

radii with the order of vortex beams obtained experimentally (blue diamonds) as well

as theoretically (red dots).

tive optical elements since we consider only the intensity distribution and its propagation

which is similar to the host Gaussian beam [97].

Figure 2.7 shows the variation of divergence with order of the vortex. The rates of change

of inner and outer radii are directly proportional to their value at z = 0. The blue diamonds
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represent experimentally obtained divergence and the red dots represent the corresponding

results obtained from Eq. 2.17. The variation of divergence with order for the inner and

outer radii are same as the variation of corresponding radius with order at z = 0 as is clear

from Eq. 2.17.

2.4 Conclusion

We have described the intensity distribution of optical vortices by using two novel and mea-

surable parameters, the inner and outer radii. The propagation dynamics of vortices can be

easily described by its intensity distribution at the source plane and the width of the host

Gaussian beam at the plane of observation. We have also studied the rate of change of inner

and outer radii, divergence, and their variation with the order. The experimental results are

well supported by the analytical results.



Chapter 3

Pair of Vortices through an Astig-

matic Optical System

It is known that the two optical vortices interact with each other if they are embedded in

a single host Gaussian beam. The relative separation between the two vortices is invariant

with the free space propagation if the two vortices are of same sign. If both the vortices

are having opposite signs, they will annihilate with each other provided they are of same

magnitude otherwise form a single vortex of a charge equal to the difference between the two

individual charges [100–106]. The optical beams with a pair of vortices can be generated

using a computer generated holography technique [100]. The background phase function at a

point where two dipoles annihilate, has a continuous potential which causes the annihilation

[103]. The same background phase function is also used to accelerate the annihilation process

[104].

In this chapter, we consider a pair of vortices with arbitrary topological charges embedded

in a Gaussian beam and study its evolution through an astigmatic optical system, a tilted

lens. Section 3.1 starts with the theory for propagation of a pair of vortices through an

astigmatic optical system. Section 3.2 describes the experimental set up used to generate

a pair of vortices as well as its propagation through a tilted lens. Section 3.3 contains the

experimental results for various conditions of the input beam as well as theoretical predictions.

Finally we will conclude the chapter with section 3.4.

25
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3.1 Theory

Consider a pair of optical vortices embedded in a Gaussian beam, one with topological charge

ǫ1m (ǫ1 = ±1) located at x1 = −x0, y1 = 0 and another with topological charge ǫ2n (ǫ2 = ±1)

at x1 = x0, y1 = 0. The complex field distribution of the vortex pair at the waist plane of

the host Gaussian beam, with waist size w0, is given by

E1(x1, y1) = (x1 + x0 + iǫ1y1)
m(x1 − x0 + iǫ2y1)

n × exp

[

−
(

x21 + y21
w2
0

)]

. (3.1)

The tilted lens is placed at a distance z0 from the waist plane. The vortex passes through

the lens and travels a further distance z. The overall ray transfer matrix Mtot is given by

[39, 60]

Mtot =





A B

−C/f D



 (3.2)

where A, B, C and D are 2× 2 diagonal matrices with diagonal elements given by aj, bj , cj

and dj respectively. Explicitly,

c1 = sec θ, c2 = cos θ, aj = 1− zcj/f,

dj = 1− z0cj/f, bj = z0 + zdj , j = 1, 2. (3.3)

Next, we define two column vectors r1, r2 so that their transposes are given by row vectors

ri
T = (xi, yi), i = 1, 2. The field E2(x2, y2) at a distance z past the lens is given by the

generalized Huygens-Fresnel integral [39]:

E2(x2, y2) =
i/λ

|B|1/2
∫∫

dx1 dy1E1(x1, y1)e
−(iπ/λ)φ(r1 ,r2) (3.4)

where |B| = |b1b2| is the determinant of B and

φ(r1, r2) = r1
TB−1Ar1 + r2

TDB−1r2 − 2r1
TB−1r2

= x21a1/b1 + y21a2/b2 + x22d1/b1 + y22d2/b2 − 2(x1x2/b1 + y1y2/b2). (3.5)

The integration over x1 and y1 are carried out by writing E1(x1, y1) as

E1(x1, y1) = lim
t→0
t′→0

[

∂m

∂tm
∂n

∂t′n
exp

{

f
(

t, t′
)}

]

, (3.6a)

f(t, t′) = t(x1 + x0 + iǫ1y1) + t′(x1 − x0 + iǫ2y1)−
x21 + y21

w2
0

. (3.6b)

Using the definition of Hermite polynomial and a recurrence relation

Hn(x) =
∂n

∂tn
exp(2xt− t2)|t=0 (3.7a)

dj

dxj
Hn(x) =

2jn!

(n− j)!
Hn−j(x), (3.7b)
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we finally get

E2(x2, y2) =
kw1w2(i/2)

m+n+1γm+n

(b1b2)1/2
× exp

[

−
(

β1x
2
2 + β2y

2
2

)]

Fm,n(x2, y2); (3.8a)

Fm,n(x2, y2) =

min(m,n)
∑

j=0

(

m

j

)(

n

j

)

∆jj!Hm−j [f1(x2, y2)]Hn−j [f2(x2, y2)] (3.8b)

where, k = 2π/λ,

1

w2
j

=
1

w2
0

+ i
kaj
2bj

, (3.9a)

γ = (w2
1 − w2

2)
1/2, (3.9b)

∆ = −2(w2
1 − w2

2ǫ1ǫ2)/γ
2, (3.9c)

αj =
kw2

j

2bj
, (3.9d)

βj =

(

kwj

2bj

)2

+ i
kdj
2bj

, (3.9e)

and




f1(x2, y2)

f2(x2, y2)



 =
1

γ





α1x2 + i(ǫ1α2y2 − x0)

α1x2 + i(ǫ2α2y2 + x0)





=
1

γ





φ1(x2, y2)

φ2(x2, y2)



 (3.10)

Eqs. 3.8-3.10 form one of our main results. It generalizes previous work [106] on the

propagation dynamics of a vortex pair through an astigmatic system. In that the topological

charges m and n need not be the same and can have arbitrary integer values.

Before proceeding further, we note that the above general result includes the following

special cases:

(1) For m = n, we get the propagation dynamics of (a) an isopolar vortex pair if ǫ1ǫ2 = 1

and (b) a vortex dipole if ǫ1ǫ2 = −1;

(2) For n = 0, the j-sum reduces to the j = 0 term only, and we get the propagation dynamics

for an off-center single vortex given by

E2(x2, y2) =
kw1w2(i/2)

m+1

(b1b2)1/2
exp

[

−
(

β1x
2
2 + β2y

2
2

)]

× γmHm[(α1x2 + iǫ1α2y2 − ix0)/γ];

(3.11)

(3) Setting x0 = 0 in the above result, one immediately recovers our previous result [60] for

a single vortex at the origin.

The sum Fm,n can be evaluated formally as follows. We introduce the 2-variable Hermite-

Kampé de Fériet polynomials Hn(x, y) as [107]

Hn(x, y) = n!

[n/2]
∑

r=0

xn−2ryr

(n− 2r)!r!
(3.12)
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in terms of which the classical Hermite polynomials Hn(x) are given by

Hn(x) = Hn(2x,−1). (3.13)

Next, we consider the 4-variable 2-index 1-parameter Hermite polynomials Hm,n(x, z; y,w|τ)
defined as [107–109]

Hm,n(x, z; y,w|τ) =
min(m,n)
∑

s=0

τ ss!

(

m

s

)(

n

s

)

×Hm−s(x, z)Hn−s(y,w). (3.14)

It is then easy to show that

Fm,n = Hm,n(2f1,−1; 2f2,−1|∆) (3.15)

which has the following generating function

exp[−(u2 + v2) + 2(f1u+ f2v) + ∆uv] =

∞
∑

m,n=0

umvn

m!n!
Hm,n(2f1,−1; 2f2,−1|∆) (3.16)

3.1.1 Determination of net topological charge

As noted earlier [60], the modulations due to the Hermite polynomial become most prominent

when w2 = w∗
1. This happens at a certain value z = zc, say critical plane. To determine

zc and also the distance z0 between the waist plane and the lens, we impose the following

conditions:
ka1
2b1

|z=zc = −ka2
2b2

|z=zc =
1

w2
0

(3.17)

Solving Eq. 3.17 and introducing the Rayleigh range zR = kw2
0/2, we get

z0 = zR

(

1 +
2f cos θ

zR sin2 θ

)1/2

zc =
zR(1 + cos2 θ) + z0 sin

2 θ

2(zR/f) cos θ − sin2 θ
(3.18)

The first equality in Eq. 3.18 ensures that w2 = w∗
1 at z = zc (see Eq. 3.9a) whereas the last

equality makes many expressions appearing in Eqs. 3.8-3.10 considerably simpler at z = zc.

Thus, at z = zc,

∆ =







−2 if ǫ1ǫ2 = 1,

−2i if ǫ1ǫ2 = −1;




w2
1

w2
2



 =
w2
0√
2





exp(−iπ/4)

exp(iπ/4)



 ;

γ = w0 exp(−iπ/4);

f1 = δ1x2 − ǫ1δ2y2 + (x0/w0) exp(−iπ/4)

f2 = δ1x2 − ǫ2δ2y2 − (x0/w0) exp(−iπ/4) (3.19)
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where

δj =
kw0

2
√
2bi

(3.20)

3.1.1.1 Vortices with topological charges of the same sign

Suppose ǫ1 = ǫ2 = 1. Then, f1 = θ− + θ0 and f2 = θ− − θ0 where,

θ− = δ1x2 − δ2y2

θ0 = (x0/w0) exp(−iπ/4). (3.21)

Note that the dependence on x2 and y2 is in the form θ− only.

For a small separation between the vortices, one can expand the Hermite polynomials

appearing in Eq. 3.8 as functions of x0/w0 by using the formula

Hn(x+ y) = Hn(x) + 2nyHn−1(x) +O(y2). (3.22)

Substituting in Eq. 3.8 and using the summation rule [109]

min(m,n)
∑

r=0

(−2)rr!

(

m

r

)(

n

r

)

Hm−r(x)Hn−r(x) = Hm+n(x), (3.23)

we get

Fm,n = Hm+n(θ−) + 2θ0(m− n)Hm+n−1(θ−) +O(θ20). (3.24)

For ǫ1 = ǫ2 = −1, θ− will change to θ+ = δ1x2 + δ2y2 in the above expressions.

3.1.1.2 Vortices with topological charges of opposite signs

Suppose ǫ1 = 1, ǫ2 = −1. In this case,

f1 = θ− + θ0

f2 = θ+ − θ0. (3.25)

Note that in this case, the dependence on x2 and y2 is in the form θ± = δ1x2 ± δ2y2.

For a small separation between the vortices, we can proceed as in the previous section,

to get

Fm,n = Hm,n(2θ−,−1; 2θ+,−1| − 2i) + 2mθ0Hm−1,n(2θ−,−1; 2θ+,−1| − 2i)

−2nθ0Hm,n−1(2θ−,−1; 2θ+,−1| − 2i) +O(θ20). (3.26)

This equation can be used describe the propagation of a pair of vortices with opposite signs

and embedded in a Gaussian beam.
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3.1.2 Propagation dynamics away from the critical plane (z >

zc)

As |z−zc| increases, the absolute value of |γ| falls off rapidly and the modulations due to the

Hermite polynomials fade away quickly. Using the limiting form limγ→0 Hm(x/γ) = (2x/γ)m,

we can write E2(x2, y2) in terms of incomplete two-variable Hermite polynomials hm,n(x, y|τ),
which are defined as [107, 110]

hm,n(x, y|τ) = m!n!

min(m,n)
∑

j=0

τ jxm−jyn−j

j!(m − j)!(n − j)!

=







m!τmxn−mL
(n−m)
m (−xy/τ), n > m,

n!τnym−nL
(m−n)
n (−xy/τ), m > n.

(3.27)

Thus E2(x2, y2) reduces to

E2(x2, y2) =
kw1w2i

m+n+1

2(b1b2)1/2
exp

[

−
(

β1x
2
2 + β2y

2
2

)]

×







m!τmφn−m
1 L

(n−m)
m (−φ1φ2/τ), n > m,

n!τnφm−n
2 L

(m−n)
n (−φ1φ2/τ), m > n.

(3.28)

where φj are defined in Eq. 3.10 and τ = −(w2
1 − w2

2ǫ1ǫ2)/2. To the best of our knowledge,

this is the first time one encounters with these polynomials in experimental optics.

3.1.3 Propagation dynamics when the lens is not tilted

For θ = 0, the j-dependence of the parameters in Eq. 3.3 and Eq. 3.9a disappear. Thus,

cj = 1, aj = a = 1− z/f,

dj = d = 1− z0/f, bj = b = z0 + zd,

1

w2
j

=
1

w2
=

1

w2
0

+ i
ka

2b
,

αj = α =
kw2

2b
, βj = β =

(

kw

2b

)2

+ i
kd

2b
,

∆ = −2w2(1− ǫ1ǫ2)/γ
2, and γ → 0. (3.29)

First, we take the limit γ → 0 as in the previous section and use the definitions in Eq. 3.29

to get

E2(x2, y2) =
ikw2

2b
exp[−β(x22 + y22)]×

min(m,n)
∑

j=0

(

m

j

)(

n

j

)

Γjj!∆m−j
1 ∆n−j

2 (3.30)
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where

∆1 = x0 +
ikw2

2b
(x2 + iǫ1y2)

∆2 = −x0 +
ikw2

2b
(x2 + iǫ2y2)

Γ =
w2

2
(1− ǫ1ǫ2). (3.31)

For isopolar vortices (ǫ1ǫ2 = 1), only the j = 0 term survives in Eq. 3.30, and we get

E2(x2, y2) =
ikw2

2b
exp[−β(x22 + y22)]∆

m
1 ∆n

2 . (3.32)

For dipolar vortices (ǫ1ǫ2 = −1), we use Eq. 3.27 to get

E2(x2, y2) =
ikw2

2b
exp[−β(x22 + y22)]

×







m!w2m∆n−m
1 L

(n−m)
m (−∆1∆2/w

2), n > m,

n!w2n∆m−n
2 L

(m−n)
n (−∆1∆2/w

2), m > n.
(3.33)

We present the experimental observations that validate our theoretical predictions in the

following sections.

3.2 Experimental set-up

The experimental set up is shown in Figure 3.1. Suitable phase masks for creating vortex pairs

are produced by using computer generated holography (CGH) technique [46] and sent to a

spatial light modulator (SLM) (Holoeye LCR 2500) via a computer. The SLM is illuminated

by an intensity stabilized He-Ne laser (Spectra-Physics, Model 117A) of power 1 mW and

wavelength 632.8 nm to produce the desired vortex pair. The vortex pair is selected with an

aperture (A) and passed through a spherical bi-convex lens of focal length 50 cm which is

tilted by an angle 6◦.

The tilting of the lens has been done with a rotational stage with least count of 0.1◦. The

aperture is at a distance z1 = 90 cm in front of the SLM. We use the method described in

[111], to find that the Gaussian laser beam hosting the selected vortex pair has a beam waist

0.186 mm at a virtual point which is at a distance of z2 = 60.8 cm behind the SLM. The

distance between the lens and the aperture is z3 = 245 cm. Thus the total distance traveled

by the vortex pair from the waist plane to the lens is z0 = z1 + z2 + z3 = 395.8 cm. The

resultant intensity patterns are recorded by a CCD camera (MediaCybernetics, Evolution

VF cooled Color Camera) placed at a distance z past the lens.
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Lens

CCD

Camera

ASLM

He-Ne Laser
M

 =632.8 nm

Power = 1 mW

A - Aperture

M - Mirror

BS - Beam Splitter

SLM - Spatial Light Modulator

BS

Figure 3.1: Experimental set-up for the determination of the net charge of an arbitrary

vortex pair embedded in a Gaussian beam.

We start the experiment by taking the intensity distributions of a pair of isopolar vortices

and the corresponding interference patterns at two planes as shown in Figure 3.2. One of

the planes is at 96 cm from the SLM, the nearest plane where the diffraction orders can

be separated with an aperture and another after freely propagating a distance 147 cm from

the SLM. In our experiments where intensity distributions have been recorded after the

tilted lens, the aberrations due to the SLM have been neglected as they will be insignificant

compared to the astigmatism introduced by the lens.

Figure 3.2: The intensity distributions of a vortex pair embedded in a Gaussian beam

and the corresponding interferograms at 96 cm (left) and 147 cm (right) from the SLM

with the orders (top) m=n=1; (bottom) m=n=2.
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3.3 Experimental results

In this section, we determine the net topological charge of the vortex pair from its intensity

distribution at z = zc. The predicted value of zc from Eq. ?? is 57.2 cm which is close to the

experimentally observed value of 56.3 cm. In the intensity patterns, with reference to Eq.

3.1, the vortex on the left (x1 = −x0) has a charge ǫ1m and the vortex on the right (x1 = x0)

has a charge ǫ2n. The corresponding Figure is labelled as (ǫ1m, ǫ2n).

3.3.1 Intensity distribution at the critical plane (z = zc)

Figure 3.3 shows the theoretical (first two rows) and experimental (last two rows) images for

the intensity patterns of a pair of vortices with the same sign (ǫ1 = ǫ2 = 1) but different

magnitudes m and n with the separation parameter set at x0 = 0.1w0.

For small separation x0, these patterns can be explained by Eq. 3.24. Since the first term

in Eq. 3.24 is the leading term, one can obtain the net charge m + n by noting that there

are m + n + 1 bright stripes in the intensity distribution. These stripes are parallel to one

another and lie along a line that is neither horizontal nor vertical, but tilted in a clockwise

direction almost along a diagonal as the dependence on x and y is through a single variable

θ− = δ1x2 − δ2y2 and δ1 ∼ δ2. However, interference with the second term will lead to a

slightly asymmetric distribution of brightness among the stripes. As is clear from the second

term in Eq. 3.24, this asymmetry depends on the difference between the magnitude of charges

and the separation between them. Additionally, when the vortices swap their positions as

in (4,1) and (1,4), the lower half of the pattern becomes the mirror image of the upper half

and vice-versa. For m = n as in (2,2), (3,3) and (4,4), the two halves have identical intensity

patterns. In this special case, the net charge is even and the charge of each vortex is half of

the net charge. If the charge of each vortex were negative (ǫ1 = ǫ2 = −1), then θ− would

be replaced by θ+ = δ1x2 + δ2y2 and the bright stripes would be tilted in an anti-clockwise

fashion (not shown).

Figure 3.4 shows theoretical results corresponding to asymmetry of the intensity distri-

butions (at z = zc) with the separation between two vortices and the difference between

their topological charges. This asymmetry increases with the separation provided there is a

difference in their topological charges as shown in Figure (3.4) (top). These results are for

m=4, n=1 at separations from 0.1w0 to 0.5w0. If there is no difference in the charges of the

two vortices (m=n=2) then there is no asymmetry in lobes as shown in Figure 3.4 (bottom).

The corresponding experimental results are given in Figure 3.5. A line profile of the intensity



34 Chapter 3. Pair of Vortices through an Astigmatic Optical System

(4,2)

(1,4) (4,1) (4,2)

(2,2) (3,3) (4,4)

(1,4) (4,1)

(2,2) (3,3) (4,4)

Figure 3.3: The theoretical (first two rows) and experimental (last two rows) results

for the intensity patterns of a vortex pair with topological charges of the same sign, at

z = zc for x0 = 0.1w0.

along the center of the lobes as shown in Figure 3.6 makes it more clear.

To investigate the effect of the separation parameter x0, we have also studied the propa-

gation of an off-axis vortex of charge 2 through the tilted lens. The corresponding theoretical

(first two rows) and experimental (last two rows) results for the intensity patterns at z = zc

are shown in Figure 3.7. From the images, it is clear that the intensity of one of the outer

lobes increases as the vortex moves farther away from the center and the remaining lobes lose

their intensity. In the notation of this section, this off-axis vortex can be labelled as (2,0) for

x0 = |x0|. Consequently, when x0 becomes negative, the vortex is identically described as

(0,2) with x0 = |x0| and the pattern flips diagonally. The situation is analogous to the case

of (4,1) and (1,4) as described in the previous paragraph.
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0.1w0 0.2w0 0.3w0 0.4w0 0.5w0

(4,1)

(2,2)

Figure 3.4: The theoretical results for the intensity patterns of a vortex pair with

topological charges of the same sign with varying separation at z = zc, (top) m=4,

n=1; (bottom) m=n=2.

0.1w0 0. 2w0 0.3w0 0. 4w0 0. 5w0

(4,1)

(2,2)

Figure 3.5: The experimental images corresponding to Figure 3.4.
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Figure 3.6: The line profiles of intensity distributions along the center of the lobes

corresponding to Figure 3.5 at x0 = 0.4w0, (left) m=4, n=1; (right) m=n=2.
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Figure 3.7: The theoretical (first two rows) and experimental (last two rows) results

for the intensity patterns of an off-axis vortex of charge 2, at z = zc for different values

of x0 as labelled in the insets.

Figure 3.8 shows the theoretical (first two rows) and experimental (last two rows) images

corresponding to opposite singularities (ǫ1ǫ2 = −1) for separation parameter x0 = 0.1w0 and

topological charges as shown in the images.

For small values of m and n, these patterns can be explained by expanding the Hermite

polynomials in power series. The calculation would be long and tedious. Instead, we make

the following empirical observation. If m 6= n and m ≥ 2, n ≥ 2 the pattern has a rectangular

‘razor-blade’ structure which is tilted clockwise (anti-clockwise) if the net charge is positive

(negative). On closer observation, we note that there are m bright spots on two parallel sides

and n bright spots on the remaining two parallel sides. Thus, for vortex dipoles (m = n)

the pattern is square with its corners in the east, west, north and south directions, each side

having m = n bright spots. Clearly, for vortices of opposite signs with m ≥ 2 and n ≥ 2, we
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(1,-4) (2,-4) (4,-2)

(2,-2) (3,-3) (4,-4)

(1,-4) (2,-4) (4,-2)

(2,-2) (3,-3) (4,-4)

Figure 3.8: The theoretical (first two rows) and experimental (last two rows) results

for the intensity patterns of a vortex pair with topological charges of opposite signs,

at z = zc for x0 = 0.1w0.

0.3w0 0.6w0
-0.6w00.1w0

0.3w0 0.6w0 -0.6w00.1w0

Figure 3.9: The theoretical (top row) and experimental (bottom row) results for the

intensity patterns of a dipole vortex of charge (2,-2), at z = zc for different values of

x0 as labelled in the figures.
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can determine the individual charges as well (see, for example, Figures for (2,-4) and (4,-2)).

As far as we know, Figure 3.8 represents the first optical realization of the 4-variable 2-

index 1-parameter Hermite polynomials Hm,n(x, z; y,w|τ) modulated by an elliptical Gaus-

sian beam (see Eqs. 3.8, 3.15 and 3.26).

0o                            4o                               6o                                8o

(2,2)

(2,3)

Figure 3.10: Theoretical results for the intensity patterns of a vortex pair with topo-

logical charges (top) m= n=2; (bottom) m=2, n=3, at z = zc corresponding to the

tilt angle θ = 6◦. As the tilt angle moves away from 6◦, the sharpness of the patterns

decreases, as expected.

0o                        4o                         6o                         8o

(2,2)

(2,3)

Figure 3.11: The experimental images corresponding to Figure 3.10 at z = zc.

In Figure 3.9, we show the evolution of a dipole vortex of charge (2,−2) as a function

of separation between the two vortices. For small separation, the intensity distribution is

symmetric in both the transverse directions. As the separation is increased, the pattern

becomes asymmetric. When the separation parameter x0 becomes negative, the vortex is

identically described as (−2, 2) with x0 = |x0| and the pattern flips vertically.

We have also studied the variation in the intensity distribution at a particular plane
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(2,-2) (3,-2) (2,2) (3,2)

60.4 cm

53.3 cm

40.0 cm

Figure 3.12: Theoretical intensity patterns of a vortex pair of different charges (as

given on the top) at various values of the propagation distance z (as given on the left).

(2,-2) (3,-2) (2,2) (3,2)

60.4 cm

53.3 cm

40.0 cm

Figure 3.13: The experimental images corresponding to Figure 3.12.
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(z = 56.3 cm corresponding to the experimentally observed value of zc for a tilt angle θ = 6◦)

by changing the tilt angle of the lens. As z0 and zc depend on θ, the bright or dark lobes

with highest contrast are obtained only at θ = 6◦ in this case. The theoretical as well as

experimental results have been shown in Figures 3.10 and 3.11 respectively. Using Eq. 3.32,

we have also obtained the intensity patterns when the lens is not tilted to highlight the

dramatic impact a tilted lens makes.

3.3.2 Evolution of vortices beyond the critical plane

As we move away from the point z = zc, the modulations due to the Hermite polynomials

disappear quickly. The propagation dynamics is now governed by Eq. 3.28. The theoretical

and corresponding experimental intensity patterns for various values of z are shown in Figures

3.12 and 3.13 respectively. The intensity patterns are, in general, elliptical. Far away from

zc, all patterns become circularly symmetric as α1 → α2 and β1 → β2 [60].

3.4 Conclusion

We have studied, both analytically and experimentally, the propagation of a Gaussian beam

carrying a vortex pair of arbitrary topological charges through a tilted lens. We have also

demonstrated a method to find the net topological charge of the vortex pair. Moreover, for

vortices with topological charges of opposite signs and magnitudes m ≥ 2, n ≥ 2, we can

determine the individual charges as well. Our method is easy to implement in the laboratory

as it needs just a single tilted lens except the tilt has to be small for paraxial approximation

to be valid. Vortices being generic to all the waves, this study can be extended for other

systems like acoustic and matter waves.



Chapter 4

Scattering of Optical Vortices and

Formation of Speckles

Speckle pattern is a random intensity distribution observed when a coherent light beam

passes through a rough surface. The formation of speckles is due to the interference of

many scattered waves having random phases which are induced by inhomogeneities of the

rough surface. The study of speckles have contributed significantly both in science and the

technology [73–82].

In this chapter, we discuss about the scattering of vortex beams through a rough surface

(ground glass plate in the present case). Section 4.1 discusses about the experimental set up

used to generate the speckles and quantification of their size using autocorrelation is discussed

in section 4.2. We describe the GGP using a δ-correlated Gaussian function in section 4.3 and

verify the experimentally obtained results. We also study the spatial intensity correlations

of scattered optical vortices and compare them with the temporal intensity correlations in

section 4.4. We discuss about the shift in focal point with the change in distance between

the GGP and the imaging lens as well as incident beam width in section 4.5. Finally we

conclude in section 4.6.

4.1 Experimental set up

The experimental set up for generating the optical vortices and the corresponding speckles is

shown in Figure 4.1. An intensity stabilized He-Ne laser (Spectra Physics 117A) of wavelength

632.8 nm, power 1 mW and beam waist 0.3 mm is used to generate the optical vortices. The

optical vortex beams are produced using computer generated holograms displayed on a spatial

41
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CCD

Camera

ASLM

He-Ne Laser
M

BS

GGP

Figure 4.1: The experimental set-up for generating the speckles by scattering the

optical vortex beams. Here, A–Aperture, M–Mirror, BS–Beam splitter, SLM–Spatial

light modulator, and GGP–Ground glass plate.

light modulator (SLM) (Holoeye LCR 2500). Different computer generated holograms are

introduced to the SLM through a computer for generating vortices of different order in the

first diffraction order. The required beam is selected with an aperture A, and passed through

the GGP. The scattered light from the GGP forms a granular pattern of intensity maxima and

minima or speckles, as shown in Figure 4.2. These speckles are recorded with an Evolution

VF colour cooled CCD camera with pixel size 4.65 µm. The SLM is placed at a distance of

60 cm from the laser and the GGP is at a distance of 66 cm from the SLM. The CCD camera

is placed at a distance of 18 cm from the GGP.

4.2 Speckle patterns of vortex beams

Figure 4.2 shows the recorded speckle patterns produced by the scattering of optical vortices

of orders m = 0 to 5 through the same GGP; where m = 0 corresponds to the host Gaussian

beam. The speckles are recorded at a distance of 18 cm from the GGP. It is clear from the

figure that the speckle size (Sm) decreases with the increase in order (m). We quantify this

decrease in speckle size using the intensity auto-correlation method.

4.2.1 Auto-correlation for finding the speckle size

The size of recorded speckles can be determined by using auto-correlation method [72, 73]

which calculates the correlation of speckle pattern with itself. In this method, we fix one

image of the speckles and observe its correlation numerically with a number of images shifted

in position. These shifts can be made pixel by pixel in both the transverse directions. We
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m=0

m=4m=3 m=5

m=2m=1

Figure 4.2: The speckle patterns formed by the scattering of optical vortices with

orders m = 0 – 5 at a given plane.

plot the obtained results as a function of the shift. The correlation factor is maximum if

two speckle distributions are completely overlapped and it decreases with the decrease in

overlap. The correlation factor becomes zero if their overlap is less than the speckle size as

any two speckles are independent of each other due to the random nature of speckles. The

correlation curve has a Gaussian distribution whose full width at half maximum (FWHM)

gives the speckle size in any of the transverse directions.

Here, we have considered the normalized speckle patterns to determine the speckle size

as they are overfilling the CCD camera. Figure 4.3(a) shows the speckle pattern formed by

the scattering of a first order vortex through the GGP. The dimensions of autocorrelation

function is always twice the considered dimensions of speckle pattern as we are observing

correlation along both the positive and negative directions. The speckle patterns recorded for

finding the speckle size and its autocorrelation function are shown in Figures 4.3(a) and 4.3(b)

respectively. The distributions of the autocorrelation function in two transverse directions

have been shown in Figures 4.3(c) and 4.3(d). The FWHM of these two distributions provide

the speckle size in corresponding transverse directions.

4.2.2 Speckle size vs order

We show the dependence of speckle size (Sm) on the area of the bright annular vortex ring

(Am) (as discussed in chapter 2). In Figure 4.4, we plot ln(Sm) with ln(Am). From this graph

also, it is clear that the speckle size decreases as the order of vortex increases. The curve is

a straight line with slope equal to the exponent of Am on which Sm depends. With the best
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Figure 4.3: (a) The obtained speckle pattern of first order optical vortex, (b) the

distribution of auto correlation function, (c) and (d) are the variation of autocorrelation

function in transverse directions X and Y respectively.

fit to our experimental data, we have found that the speckle size is directly proportional to

A−0.612±0.021
m . In Figure 4.4, we present the experimental data along with the best fit curve,

which is different from the corresponding result for a Gaussian beam. For a Gaussian beam

scattered through the ground glass plate, one expects a Brownian distribution, and in fact

one gets speckle size as proportional to A−0.50 [72, 73]. We have verified this experimentally

by using different beam sizes of a Gaussian beam and shown in inset of Figure 4.4. This

suggests the non-Gaussian statistics of the speckles generated by the scattering of optical

vortex beams. We know that the size of speckles, the lowest length scale at which light is

correlated, plays a crucial role in astronomy. By finding the size of speckles (S), one can

determine the angular diameter (W ) of the stars from the relation W = Lλ/S where L is

the distance of star from the observation plane and λ is the wavelength. Taking an analogy,

our experimental results show a decrease in speckle size with order implying an increase in

the angular diameter of source generating these speckles i.e. optical vortices. Therefore, we

attribute the decrease in speckle size to the increase in area of illumination with the order

as shown in Figure 2.4(b).
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Figure 4.4: The plot of lnSm versus lnAm where Sm and Am are the experimentally
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best fit to our experimental data.
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Figure 4.5: The plot of speckle divergence vs order of the vortex.
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We also study the rate of change of speckle size with propagation distance, namely diver-

gence of speckles. For this, we have recorded speckles at seven different planes separated by

a distance of 2 cm from each starting at 11 cm from the GGP and found their size. The slope

of line obtained for speckle size vs propagation distance gives the divergence of speckles. We

found that the divergence decreases with increase in the order as shown in Figure 4.5.

4.3 Theoretical modelling

Rough surface of a ground glass plate serves as a good source for generating the speckles.

The goal is to study the variation of size and intensity correlation properties of speckles

generated by the scattering of vortex beams. Here, we work in the strong scattering zone for

which the wavelength λ is comparable to the average size of inhomogeneities or the separation

between two nearest neighbour inhomogeneities. At this condition, the localization effects

are stronger and speckles can be observed easily.

For modelling the GGP, we need to consider the absence of correlations between any two

inhomogeneities i.e. the phase introduced to the beam at that spatial point. This can be well

described using a δ–correlation function; however, the finite size of the inhomogeneities makes

it a δ–correlated Gaussian function. The mathematical form of this correlation function can

be written as

φ(x, y) = δ (x1 − x2, y1 − y2)× e−((x1−x2)2+(y1−y2)2/σ2) (4.1)

where σ is the correlation length. In numerical calculations, it can be realized by replacing

the δ function with a 2-D spatial random function Rand(x, y) and above equation becomes

φ(x, y) = e−((x1−x2)2+(y1−y2)2/σ2) ∗ Rand(x, y) (4.2)

where ∗ represents a 2-D convolution between the two functions.

Now, the electric field of an optical vortex after scattering through a GGP plate is given

by [112]

E′(x, y) = E(x, y)eiφ(x,y) (4.3)

where E(x, y) is electric field of an optical vortex and φ(x, y) is random phase introduced by

GGP to the vortex.

To verify the experimentally obtained results (Figure 4.2), we numerically simulate the

speckles corresponding to the scattering of optical vortices of orderm=0–5 as shown in Figure

4.6. The results show that the size of speckles decreases with increase in the order of vortex

which is same as of our experiment.
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m=0 m=2m=1

m=3 m=4 m=5

Figure 4.6: The numerically obtained speckle patterns for optical vortices with orders

m=0–5.

4.4 Intensity correlation vs order of the vortex

In the 1950s, Robert Hanbury Brown and Richard Q. Twiss performed a series of inten-

sity correlation experiments to measure the correlation between intensity fluctuations in the

light beams from different sources of light [113]. The objective of these experiments was to

calculate the size of radio stars through the coherence of the observed radiation measured

with an intensity correlation experiment. Later, the concept of intensity correlation heralded

the birth of modern quantum optics [114, 115]. Although the original HBT experiments

were conducted half a century ago, these experiments still carry their importance in many

branches of science [116–127]. The observation of bunching (anti-bunching) effect in HBT

experiments with bosons (fermions) reveals the direct existence of symmetric (antisymmet-

ric) wave function for bosons (fermions) [124]. The anti-correlation between the arrival times

of the free electrons [121], anticipated due to Pauli’s exclusion principle, is also observed in

HBT experiment with free electrons. Recently, Bromberg et al. [127] performed HBT-type

experiments with interacting bosons. The photons in their experiments are made to interact

through a non-linear medium [123, 125]. It has been shown that the interaction among the

propagating photons strongly affects the intensity correlation measurements. A large num-

ber of HBT type experiments have also been performed with Bose–Einstein condensates and
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Figure 4.7: The experimentally obtained temporal intensity correlation curves for the

optical vortices of orders m=0–7.
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ultra-cold quantum gases. The results from these experiments show the analogy between the

behaviour of photons and atoms.

We have performed HBT type experiments for optical vortices and those scattered through

a rotating ground glass (RGG) plate. It has been found that the intensity correlation function

for optical vortices behaves similar to that of the Gaussian laser beams. However, on scat-

tering, intensity correlation curves for vortices show features which are very much different

from that of the scattered Gaussian beam of the laser. Along with faster decay of intensity

correlation for vortices, we observe partial revival of their correlations at longer time delays

or larger separations, a feature that is absent for the Gaussian beam.

For measuring the temporal intensity correlations, we have collected the scattered optical

vortices using a photomultiplier tube (PMT). This signal is given to the digital correlator

in which the HBT-type of experiments are performed and obtained the correlation curves.

These curves have been shown in Figure 4.7. It is clear that the decay of correlation is

sharper for higher order vortices.

We have also determined the spatial intensity correlations of the recorded speckles. The

results have been shown in Figure 4.8. It is clear from the figure that spatial correlation

properties are similar in behaviour as of temporal correlation as the decay of correlation

becomes sharper with the increase in order.

It is known in the context of imaging that the spatial noise due to the speckles decreases if

more number of speckles are present [72, 73]. We have shown that the speckle size decreases

with the order of vortex which effectively increases the number of speckles present in a given

area. Therefore, one can use higher order vortices to reduce the spatial noise in speckle

imaging. The results may find use in ghost imaging with vortices [128–130] and in stellar

intensity interferometry.

4.5 Scattering and the focal plane

In the course of our study on the scattering of optical vortices, we observed a shift in the

focal plane of the lens when it was moved away or towards the GGP. A plot between the

position of focal plane (focal shift) and the distance of lens from the GGP has been shown

in Figure 4.9. It is clear, when the lens moves towards the GGP, the focal plane shifts away

from the lens and vice versa. Similar results have been obtained by changing the aperture

size placed in front of the lens for the Gaussian Schell model (GSM) beams[131, 132]. In both

the cases, the focal plane moves towards the lens when we collect less amount of partially
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Figure 4.9: Plot showing the shift in focal plane with the position of lens from the

GGP for different beam widths.

coherent light or effectively decrease the aperture size. The effect of incident beam width on

the focal shift has also been studied. We have observed that at a given distance of the lens

from the GGP, the focal point shifts towards the lens with decrease in the beam width, which

effectively decreases the amount of light collected. The controlled focal shift obtained here

may be useful in changing the trapping planes. In inverted optical tweezer set up, the focal

plane shifts due to the refractive index mismatch between the immersion oil and cover slip;

such shifts may be compensated with controlled focal shifts in the path of trapping beams.

4.6 Conclusion

We have studied the variation of size and divergence of the speckles with the order of an

optical vortex. We have also quantified their size using the intensity auto-correlation method.

The GGP has been simulated with a δ-correlated Gaussian function for the verification of

experimental results. We have shown that the spatial intensity correlation properties are

similar to the temporal properties for scattered optical vortices. It is obtained that the

geometrical focus of lens changes with the amount of light collection that depends on the

distance between the GGP and the lens as well as spot size of the incident beam.



Chapter 5

Speckles and Formation of Ring Shaped

Beams

Ring shaped or dark hollow beams have found applications in guiding cold atoms [133] and

trapping of low refractive index particles [134]. Such beams can be generated through multi-

mode light wave guides, multi-mode fibers [135], spiral phase plates [43–45], and computer

generated holograms (CGH) [46]. The Laguerre-Gaussian (LG) beams with zero radial index

have attracted a great deal of attention due to their applications in optical manipulation,

optical communication and quantum information [16, 19]. We have considered LG beams

with zero radial index throughout the chapter. Along with the LG beams, Bessel beams

owing to their interesting properties of propagation without an apparent spreading due to

diffraction have also been a subject of study since more than two decades [136]. Usually

in a laboratory the Bessel beams are generated using a Gaussian laser beam and termed as

Bessel-Gauss (BG) beams.

The scattered light of a Gaussian laser beam through a rotating ground glass (RGG) plate

can be modeled as a Gaussian Schell-model (GSM) beam [137]. This GSM beam is partially

coherent light which has Gaussian intensity distribution and Gaussian spectral degree of

coherence. Recently, a lot of applications of partially coherent beams have been suggested

in diverse areas [138]. Wang et al. [139] have introduced the partially coherent LG beams of

all orders. The temporal coherence properties of partially coherent beams generated by the

scattering of optical vortices through a RGG plate have also been studied [88, 89]. It has

been shown that the decay of coherence becomes sharper with increase in the order of LG

beam. A similar type of behavior has been observed theoretically in the Fourier transform

of the spatial correlation function of the LGSM and the BGSM beams [140]. It has been

51
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stated that the beams having a rotational symmetry in the Fourier transform of their spatial

correlation function and zero value on the beam axis can generate a dark core in the far

field intensity distribution. Mie and Korotkova [140] generated ring shaped beams with an

arbitrary beam (including Gaussian beam) by introducing LG correlation function through

a phase screen. We have experimentally generated ring shaped beams with LG beams by

introducing Gaussian correlation function through a RGG plate. The obtained experimental

results are simulated by using the expression of cross spectral density of the partially coherent

beams generated by a Schell model source, and at z = 0 it is given by [139]

W (x1, y1, x2, y2, 0) =
√

I1(x1, y1, 0)I2(x2, y2, 0)× g(x1 − x2, y1 − y2, 0). (5.1)

where I1(x1, y1, 0) and I2(x2, y2, 0) are the intensity distributions at the positions (x1, y1, 0)

and (x2, y2, 0) respectively; g(x1 − x2, y1 − y2, 0) is the spectral degree of coherence.

In this chapter, we generate ring shaped beams using the speckles obtained by scattering

Laguerre Gaussian (LG) and Bessel-Gaussian (BG) beams of non-zero topological charge.

Although, the phase of a LG beam completely randomized by the rough surface, we are able

to recover the dark core by probing the field at Fourier plane of a plano convex lens. We

discuss the experimental set up in section 5.1 and the corresponding results in section 5.2.

We simulate the same far field intensity distributions using partially coherent standard LG

beams in section 5.3. Finally, we conclude in section 5.4.

5.1 Experimental set up

Our experimental set up for the generation of ring-shaped beams is shown in Figure 7.1.

An intensity and frequency stabilized He-Ne laser (Spectra Physics 113A) beam of maximum

power 1 mW and beam waist 0.3 mm is used to generate LG and BG beams. These beams are

produced with the computer generated holography technique using a spatial light modulator

(SLM). Different computer generated holograms for generating different LG and BG beams

are introduced to the SLM through a computer. The required beam is selected with an

aperture A, and passed through the lens (L1) of focal length 25 cm and the RGG plate. The

RGG plate is translated along the direction of incident beam to change the width of the

beam falling on the plate. We have done experiment for four positions of the RGG plate by

translating in steps of 2.5 cm starting from 15 cm. The scattered light from the RGG can be

approximated as the corresponding Schell-model beam which is focused with a plano convex

lens (L2) of focal length 10 cm. The images corresponding to the different input beams are

recorded with an Evolution VF color cooled CCD camera of pixel size 4.65 µm. The SLM
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Figure 5.1: Experimental set up for the generation of ring shaped beams.

is placed at a distance of 63 cm from the laser and the lens L1 is placed at 56 from the

SLM. The lens L2 is kept at a distance of 24 cm from the RGG plate and the CCD camera is

placed 37 cm from the lens. Position of the lens L2 is adjusted to get a clear far field intensity

distribution for an optimum diameter of the ring shaped beams that could be captured with

the CCD camera being used by us.

5.2 Results and discussion

We start our experiment with the recording of the images of scattered second order LG and

BG beams (azimuthal index 2) from the static ground glass plate. The images are captured

at the distance of 5 cm from the plate and also at the 18 cm from the focusing lens (L2);

(a) (b) (c) (d)

(h)(g)(f)(e)

Figure 5.2: Images showing the intensity distributions of scattered second order LG

(a-d) and BG (e-h) beams; (a, e) are recorded after the ground glass and (b, f) after

the lens, while (c, g) and (d, h) are recorded at same places when the ground glass is

rotating (linear speed 72.1 cm/sec).
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both for a incident beam of width 1.1 mm. The same are also recorded with the rotating

ground glass plate. These images are shown in Figure 5.2. One can notice that the recorded

images do not show any intensity distribution like original LG and BG beams i.e. there is

no trace of dark core. The random intensity distributions obtained for static ground glass

(Figures 5.2(a,b,e,f) gets averaged out in case of the RGG plate (Figures 5.2(c,d,g,h)).

Although the phase of vortices gets completely randomized by the GGP, the dark core

of vortices can be revived using a single plano-convex lens. We have seen that the far field

intensity distributions form ring shaped beams with dark core for incident beams with non-

zero azimuthal index. To study the effect of width of incident beam falling on the GGP

Figure 5.3: Far field intensity distribution of the scattered LG beams of different

azimuthal indices (l = 2, 4, 6) through a RGG plate for different widths of the incident

beam, 0.496 mm (top), 0.412 mm (middle) and 0.321 mm (bottom).

on far-field intensity distributions, we record at four different widths obtained using the lens

(L1). The far field intensity distributions of the scattered LG and BG beams have respectively

been shown in Figures 5.3 and 5.4. We have shown the far field intensity distributions of

scattered LG and BG beams with azimuthal indices 2, 4 and 6 (radial index is zero for all

images) for a speed 34.3 cm/s of the RGG plate. The presented results correspond to the

different widths of the (taken as width of host Gaussian beam) incident beam falling on the
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GGP. It is clear from the Figures 5.3 and 5.4 that the diameter of dark core increases with

increase in the azimuthal index for both the LG and the BG beams and decreases with the

decrease in incident beam width. The darkness of core decreases gradually with the decrease

in width and finally gets disappears if the beam width is less than 0.140 mm for first order

scattered vortex.

Figure 5.4: Far field intensity distribution of the scattered BG beams for same condi-

tions as in Figure 5.3

We have studied the effect of speed of the GGP and observed that the diameter and

darkness (measured by the dip in its line profile) of dark core is independent of the speed

of the RGG plate i.e. temporal coherence of the scattered light. This has been shown by

drawing the line profiles along the dark core of the far field intensity distributions of scattered

second order LG (left) and BG (right) beams at different speeds of the RGG plate for incident

beam width of 1.1 mm and shown in Figure 5.5 (top). We also verify the disappear of dark

core using the line profiles as shown in Figure 5.5 (bottom). It is clear that the darkness (dip

of the curve) of the core decreases gradually with the decrease in width.

We have also studied the effect of azimuthal index on the size of dark core of ring shaped

beams at a given temporal and spatial coherence. We have plotted the line profiles through
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Figure 5.5: The line profiles along the core of ring shaped beams generated from

scattered second order LG (left) and BG (right) beams at different speeds of the RGG

plate (top) and for different incident beam widths. (bottom)
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Figure 5.6: The line profiles (intensity distribution) along the centers of far field in-

tensity distributions of scattered LG (a) and BG (b) beams for l = 1-6

.
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the centers of ring shaped beams formed by scattered LG and BG beams with different

azimuthal indices (l = 1–6) for the incident beam size of 1.1 mm and the RGG speed of 34.3

cm/sec; shown in Figure 5.6. The dark cores of the ring shaped beams are quite prominent

and as the azimuthal index increases it becomes broader.

5.3 Theoretical analysis

For the theoretical analysis, we start with the electric field of a standard LG beam at the

source plane (z = 0) which can be written as

Epl (r, φ; 0) =

(

qr

w0

)

Ll
p

(

q2r2

w2
0

)

exp

(

r2

w2
0

)

exp (ilφ) (5.2)

where r and φ are the radial and azimuthal coordinates, Ll
p denotes the Laguerre polynomial

with radial mode p and azimuthal index l and q =
√
2. w0 is the host Gaussian beam width.

The corresponding cross-spectral density can be obtained by substituting the Eq. 5.2 in the

Eq. 5.1, and is given by
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(5.3)

where σ is coherence length. when σ −→ ∞, the above equation represents the electric field

of a coherent LG beam. The cross-spectral density of any partially coherent beam after

passing through a linear and aligned optical system is given by

W (u1, v1, u2, v2) =

(

1

λ|B|

)2 ∫ ∫ ∫ ∫

W (x1, y1, x2, y2)

× exp

[

−ik

2B

{

(

Ax21 − 2x1u1 +Du21

)

−
(

Ay21 − 2y1v1 +Dv21

)

+
(

Ax22 − 2x2u2 +Du22

)

−
(

Ay22 − 2y2v2 +Dv22

)

}

]

dx1dx2dy1dy2 (5.4)

where xi, yi and ui, vi are the position co-ordinates in the input and output planes. A, B,

C, D are the transfer matrix elements of the optical system and k = 2π/λ where λ is the

wavelength. By substituting the cross-spectral density (Eq. 5.3) in the above equation, we
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get [139]
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where
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(
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We plot the far field intensity distributions of partially coherent LG beams by propagating

it through through free space of distance z1, lens of focal length f and free space of distance

z2 using Eq. 5.5. We have used the following ABCD matrices for the propagation of partially

coherent LG beams beam

A = 1− z2
f
, B = z1(1−

z2
f
), C =

−1

f
, D =

−z1
f

. (5.7)
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Figure 5.7: Theoretical results for far field intensity distribution of the scattered LG

beams of different azimuthal indices (l = 2, 4, 6) through a RGG plate for different w0

values 0.496 mm (top), 0.412 mm (middle) and 0.321 mm (bottom).
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Figure 5.8: (a) The experimental (top) and theoretical (bottom) far field intensity

distributions of the scattered LG beam of azimuthal index (l = 1) through a RGG plate

for different w0 values, 0.496 mm (left), 0.412 mm (middle) and 0.140 mm (right). (b)

The line profiles of theoretical far field intensity distributions of scattered first order

vortex for different incident beam widths.
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The simulated intensity distributions for LG beams of azimuthal indices m = 2, 4, 6 and

at different widths of the incident beam are shown in Figure 5.7. The results are in good

agreement with the experimental results shown in Figure 5.3.

To quantify the disappearance of the dark core with the decreasing width of incident

LG beam in our theoretical plots, we have given the intensity distributions for first order

scattered vortex for different incident beam widths in Figure 5.8 (a) and shown that the dark

core completely disappears if the beam width is less than 0.140 mm. The line profiles of far

field intensity distributions for first order scattered vortex shown in Figure 5.8 (b). From

these line profiles also, it is clear that the dark core disappears if incident beam width is less

than 0.130 mm. One can obtain the similar results for the scattered BG beams also, as BG

beams can be represented by shifted Hermite-Gaussian beams.

5.4 Conclusion

We have experimentally generated the ring-shaped beams by collecting the scattered light

of LG and BG beams. We have also studied the dependence of ring-shaped beams on the

speed of the GGP and the width of incident light beam. We theoretically verify the results

using the propagation of partially coherent standard or elegant LG beams. The generated

ring-shaped beams may be of importance in optical trapping experiments. The use of these

beams for optical trapping experiments were preferable at higher speeds of the RGG plate

as the beams get more and more smooth.



Chapter 6

Vorticity of the Scattered Optical Vor-

tices

Optical vortices are the twisted light beams recognized by their helical wave fronts due to

azimuthal phase variation around the point of darkness [14, 29]. They carry an orbital

angular momentum (OAM) of m~ per photon where m is order of the vortex [16, 64, 141].

The spin angular momentum of light is related to polarization that has two dimensional basis

whereas the OAM is related to the spatial mode and forms an infinite dimensional basis. This

kind of multi-dimensionality offers a realization of d-dimensional qudits that increases the

channel capacity in quantum communication [18, 142]. In the case of classical communication

once again, the number of spatial modes available have been utilized to enhance the data

capacity in fibers [23, 24, 26]. They have also been used for free space communication

[30, 143]. However for communication, it is desirable to encode the information in a variable

whose value remains unaffected by the scattering. Therefore, the effect of scattering on

coherence for single-photon communication using orbital angular momentum states has been

investigated theoretically [32] along with their propagation through a Kolmogorov type of

atmospheric turbulence [144].

In this chapter, we experimentally as well as theoretically show that the ring shaped

beams formed by the speckles of scattered optical vortices have the same vorticity as the

incident optical vortex [139]. To confirm their vorticity, we try the traditional interferometric

technique and the obtained results are discussed in section 6.1. However, we cannot assure

the vorticity just by seeing these fringes. As an alternative, we use the properties of a

classical non-separable state of polarization and OAM [145, 146] to confirm the vorticity. A

brief introduction to classical entanglement is given in section 6.2. Our experimental set up,

61
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the confirmation of vorticity and the theoretical analysis are discussed in sections 6.3, 6.4

and 6.5 respectively. Finally, we conclude in section 6.6

6.1 Interferometry of a scattered optical vortex

We start our experiments with the scattering of a vortex beam and vortex-vortex interfer-

ometry for both the coherent and the collimated scattered optical vortex beams in a Mach-

Zehnder interferometer. First, we scatter a vortex beam embedded in a host Gaussian beam

of width w0 = 1.92 mm through a ground glass plate (GGP) and collimate the scattered

light using a lens combination as shown in Figure 6.1.

CCD

Camera

Laser
M1

 =532 nm

GGP

M2

L1

L2 BS

M3

M4

BSVL

Figure 6.1: The experimental set up for scattering the vortex beam and to observe the

vortex-vortex interference fringes. M1, M2, M3, M4 - mirrors; VL - Vortex lens; BS -

Beam Splitter; L1, L2 - Plano-convex lenses.

Figure 6.2 shows the intensity distributions of a scattered optical vortex of order 2 at

different positions from the scattering plane i.e. after the GGP, immediately after the lens

placed at a distance from the GGP, and at the Fourier plane respectively from left to right

for zero and non-zero speeds of the GGP. It can be seen that there is no trace of the vortex

beam after the GGP as well as immediately after the lens as the phase of the beam gets

completely randomized. The speckles got averaged out at the non-zero speed of GGP and

provide flat intensity distribution. However, when probed at the Fourier plane, we observe a

ring shaped beam.

The collimated scattered beam interferes with itself and produce a fringe pattern when

phases are matched from speckle to speckle and then, the GGP is removed to observe the

fringes for a coherent vortex beam. The corresponding interference fringes for both, coherent

and scattered vortex beams of orders 0–3 have been shown in Figure 6.3. One needs to
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match every speckle with its copy present in another arm of the interferometer to get the

macroscopic fringes with scattered light. It is clear from the figure that there is a vast

similarity in interferograms of coherent and scattered light beams. In both the cases, the

number of fringes with discontinuity are equal to the order of the vortex. However, one cannot

Figure 6.2: The intensity distributions of a scattered optical vortex of order 2 after

the GGP (left), immediately after the lens (middle) and the Fourier plane (right)

correspond to different speeds of the GGP (top) 0 cm/s and (bottom) 194.7 cm/s.

(b)

Figure 6.3: Experimentally obtained interference fringes for coherent (top) and scat-

tered (bottom) optical vortex beams of order m = 0–3 (from left to right).

confirm the vorticity with these results as the fringe separation and shape change rapidly

with a small spatial shift between the two beams of the interferometer. In the case of coherent

beam, the fringe pattern changes to oppositely oriented fork fringes, a characteristic of vortex-
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vortex interferometry while for the collimated scattered light, it completely disappears due

to mismatch from speckle to speckle. Therefore, we look for an alternative method that uses

the properties of a non-separable state of polarization and OAM to find the azimuthal phase

structure in the scattered optical vortices.

6.2 Entanglement in classical optics

Before we go for the experimental results let us describe briefly about the classical non-

separable state of light. A combined system is said to be entangled when its state cannot

be expressed as a product of states corresponding to the individual sub systems [147]. One

generally uses the entanglement between two spatially separated particles in the same degree

of freedom such as spin or polarization. However, one can also have hybrid entanglement in

which two degrees of freedom of a single particle or two particles are entangled [148]. This

arises due to the non-separability of two degrees of freedom. However, it is not an exclusive

property of a quantum system. Similar kind of non-separability can be seen in classical optics,

for example radially polarized light beams [149]. This quantum like classical entanglement

has been receiving a lot of attention in recent years [145, 150–153]. These non-separable

states of light are shown to violate Bell like inequality [154, 155]. Furthermore, they find

applications in polarization metrology and ultra sensitive angular measurements [156, 157].

A classical light beam with a non-separable state of polarization and OAM [145] can be

represented as

E(x, y) = êxLG
m
0 (x, y) + êyLG

−m
0 (x, y) (6.1)

where êx and êy are horizontal and vertical polarization states of the light. LG±m
0 (x, y),

Laguerre-Gaussian modes with azimuthal index m and radial index 0 correspond to the

field distributions of two equal and oppositely charged optical vortices. This kind of non-

separability is also called non-quantum hybrid entanglement [145, 146]. These LG modes,

which are OAM states of light can be represented on an OAM Poincaré sphere [158, 159]. All

points on this Poincaré sphere can be realized by projecting the above non-separable beam

to corresponding polarizations. The projection to horizontal (vertical) polarization gives an

optical vortex of order m (−m) while to diagonal and anti-diagonal polarizations will give the

superposition of two vortices with the same order but opposite in sign, and can be written

as

ED(x, y) = (êx + êy)(LG
m
0 (x, y) + LG−m

0 (x, y)), (6.2)

EA(x, y) = (êx − êy)(LG
m
0 (x, y)− LG−m

0 (x, y)). (6.3)
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This superposition of states contains the characteristic of azimuthal phase in their inten-

sity distribution with 2m number of petals for the vortex of order m. We follow the same

logic in our experiment. We scatter a non-separable state through the GGP and collect part

of the light with a plano-convex lens. We get two speckle patterns corresponding to two

vortices having orthogonal polarizations which generate ring shaped beams in the Fourier

plane. If these partially coherent beams with dark core have azimuthal phase, their superpo-

sition must give the petals provided the polarization of both the beams is same. These petals

help us in measuring the order of scattered vortex that is half of the number of petals. The

Figure 6.4: The theoretical intensity distributions of a non separable state of polar-

ization and OAM for the different projections – horizontal, vertical, anti–diagonal and

diagonal from left to right of m = 2 (top) and 3 (bottom).

theoretical intensity distributions corresponding to projections to the different polarizations

for a non-separable state have been given in Figure 6.4. The experimental set up and the

corresponding results have been explained below.

6.3 Experimental set up

Our experimental set up for the observation of vorticity in scattered optical vortices is shown

in Figure 6.5. We have used a diode pumped solid state laser (Verdi 10) of wavelength 532

nm. The light beam passes through a half wave plate whose fast axis is oriented at 22.5◦

that converts the polarization from vertical to diagonal. Then it passes through a modified

polarizing Sagnac interferometer [10] containing a vortex lens of order m = 1, 2 & 3. The

beam coming out of the interferometer is a non-separable state of the polarization and the
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spatial mode. This beam is scattered through a ground glass plate rotating at a constant

speed of 194.7 cm/s. The constant rotation of GGP helps in averaging out the speckles and

CCD

Camera

Laser
M1

 =532 nm

PBS GGP

M2M3

M4

VL

i/p state

PHWP (-22.50) L

Figure 6.5: The experimental set up for observing the vorticity in scattered optical

vortex. M1, M2, M3, M4 - mirrors; HWP - half wave plate; PBS - polarizing beam

splitter; VL - vortex lens; i/p state - non–separable state; GGP - ground glass plate;

P - polarizer; L - plano convex lens.

reduces the noise while imaging them [72, 73]. The scattered light consists of two orthogonally

polarized speckle patterns corresponding to the two oppositely charged vortices. It is focused

with a plano-convex lens (L) of focal length 20 cm. Before recording the far field intensity

distributions with a CCD camera, we have used a polarizer P to project the output state

in different polarizations. The lens is placed at a distance of 22 cm from the GGP and the

position of camera has been adjusted to get the geometrical focus. One should note that the

geometrical focus of lens shifts towards the lens with decrease in the amount of light collected

[140, 160]. We have collected the scattered light with a lens of aperture 2.5 cm to observe

the intensity distribution at the Fourier plane.

6.4 Confirmation of vorticity

Figure 6.6 shows the experimentally observed far field intensity distributions of the projec-

tions in different polarizations for a light beam obtained by the scattering of a non-separable

beam with vortices of orders 2 (top) and 3 (bottom). Since the two orthogonally polarized



6.5. Theory 67

speckle patterns never interfere, the far field intensity distribution of the scattered non-

separable beam is similar to an optical vortex beam. If we project on horizontal (vertical)

polarization, it looks like a vortex beam of order m(−m) (first and second columns). While

      Horizontal               Vertical         Diagonal              Anti diagonal

Figure 6.6: Experimentally obtained far field intensity distributions for different pro-

jections in polarization after scattering through a ground glass plate. These results

correspond to the non-separable states with m = 2 (top), 3 (bottom) for w0=1.92 mm.

projection to any arbitrary polarization results into conversion of two orthogonal polarization

states to non-orthogonal and the two vortices start interfering with each other. This super-

position gives the petal structures in the far field intensity distributions (third and fourth

columns). The petal structures are very clear and look similar to the theoretical intensity

distribution for coherent beams as shown in Figure 6.4. These petals confirm the presence

of azimuthal phase in the scattered beam.

6.5 Theory

For theoretical analysis, we start with the electric field of an optical vortex of azimuthal

index m embedded in a host Gaussian beam of width w

E(x, y) = (x+ iy)me−
x
2+y

2

w2 . (6.4)

The random medium introduces δ-correlated Gaussian random function to the beam passing

through it. This can be achieved numerically by taking the convolution between a 2-D spatial
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random function Rand(x, y) and a Gaussian correlation function C(x, y) [72, 73]:

φ(x, y) = C(x, y) ∗ Rand(x, y) (6.5)

where ∗ represents the 2-D convolution between the two functions. The Gaussian correlation

function is defined as

C(x, y) = e−((x1−x2)2+(y1−y2)2/σ2) (6.6)

where σ is the correlation width. Now, the electric field of an optical vortex after scattering

through a GGP plate is given by [112]

E′(x, y) = E(x, y)eiφ(x,y) (6.7)

where φ(x, y) is random phase introduced by the GGP to the vortex. The results have been

simulated using this random phase distribution.

Figure 6.7 shows the far field intensity distributions for the superposition of two equal

and oppositely charged scattered vortices with m = 2 and 3 corresponding to the projections

on different polarization states. The constant rotation of the GGP has been taken into

account by the incoherent addition over 100 frames. The results are in good agreement

with the experimental results shown in Figure 6.6. We have used the non-separable beam

of polarization and OAM in order to make superposition of two scattered vortices in our

experiment. These results confirm the presence of vorticity in the scattered vortex beams.

Figure 6.7: The theoretical far field intensity distributions that correspond to the

images shown in Figure 6.6.

We also study the effect of speed of rotating GGP on the recovered vorticity. The cor-

responding results have been shown in Figure 6.8 along with the simulated intensity distri-

butions. The speckles get disappeared with the increase in speed of the GGP due to the
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averaging of speckles. For the averaging to occur, one should consider the exposure time of

CCD camera used for the imaging that should be much greater than the time required for

the GGP to complete one rotation (trot). The number of frames over which the incoherent

addition should be done for a given exposure time (texpo) of the CCD camera is given by

N = texpo/trot. It can be seen from the non-varying intensity distributions in a given plane

with the speed.

0 rad/s 57 rad/s 117 rad/s 177 rad/s

Figure 6.8: The experimental (top) and simulated (bottom) far field intensity distri-

butions for the projection on diagonal polarization of a scattered non-separable light

beam of m = 2 at different speeds of the GGP given at top of the figure.

We also observe that the topological charge of scattered light is independent of the

amount/direction of scattered light collected by the lens. Thus the topological charge or

vorticity can serve as a better information carrier due to its robust nature against the scat-

tering. One can also make a number of copies by collecting different parts of the scattered

light. This may increase the use of topological charge in public communication systems.

6.6 Conclusion

We have experimentally demonstrated the recovery of vorticity present in the scattered vor-

tices using the properties of a non-separable state of light. The experimental results have

been verified with the theoretical analysis by taking into account random phase introduced by

the GGP. These results may boost the application of the optical vortex beams as information

carriers.





Chapter 7

Perfect Optical Vortices and the Non-

Diffracting Speckles

An optical vortex beam is characterized by a doughnut–shaped intensity distribution with a

phase singularity, and hence zero field amplitude, at the center. These beams carry an orbital

angular momentum (OAM) of l~ per photon due to which they found variety of applications

in both the science and the technology such as particle manipulation and information theory

[18, 20, 23, 27, 30]. The size of vortex beams strongly depends on the topological charge. The

intensity distribution of vortex beams has been studied using two measurable parameters,

inner and outer radii as it looks like an annular ring and described in chapter 2. We have

also studied their variation theoretically as well as experimentally with the order [99].

In order to control the intensity distribution of vortices, perfect optical vortex (POV)

beams have been introduced [91]. These beams have a topological charge independent in-

tensity distribution and contain an annular ring of constant radius [92]. The POV beams

can be generated using a special kind of holographic phase masks [91]. However, one can

generate these beams easily with the use of spatial light modulator (SLM) [93]. Recently,

POV beams were generated using the Fourier transform of non-diffracting Bessel-Gauss (BG)

beams [94, 95]. POV beams have been used to study the dynamics of micro-sized particles

trapped in them [93]. These beams are also known as annular vortices and radius of the

annular ring can be controlled simply by changing the axicon parameter while the width

can be controlled by changing the host Gaussian beam size. Apart from this, the invariant

intensity distribution allows the researchers to verify that whether a physical process is due

to the field mode or because of the intensity distribution. Recent study on the scattering of

optical vortex beams shows that the speckle size decreases with the order which may be due

71
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to increase in the area of illumination on the rough surface [99, 161] as discussed in chapter 4.

Here, we show that the speckle distribution follows the intensity distribution rather than the

field mode by quantifying the size of speckles obtained after the scattering of POV beams.

The generation and the evolution of random non-diffracting fields are getting a lot of

attention in recent years [162–165]. Here, we generate these fields by the Fourier transform

of speckles obtained by the scattering of POV beams through a ground glass plate (GGP).

We also study their non-diverging nature i.e. diffraction free propagation by quantifying the

speckle size. In this chapter, we describe the generation of POV beams in section 7.1 and

their scattering in sections 7.2 and 7.3. Finally we conclude the chapter in section 7.4.

7.1 Generation of perfect optical vortices

We start with the electric field amplitude of a POV beam of topological charge m and ring

radius rr [94, 95]

E(r, θ) = A0 exp (imθ) exp

(

− r2

w2
0

)

Im

(

2rrr

w2
0

)

(7.1)

where A0 is the field amplitude and Im is the modified Bessel function of first kind of order

m. This field can be generated by taking the Fourier transform of a BG beam whose field

amplitude in the cylindrical coordinate system (ρ, φ, z) is given by [166, 167]

E(ρ, φ, z) = Jm(krρ)e
imφ+ikzze(−ρ2/w2

g) (7.2)

where w0 = 2f/kwg and wg is the width of a Gaussian beam used to generate the BG beam.

kr and kz are radial and longitudinal wave vectors. kr controls the ring radius of the POV

beam through rr = krf/k, k being the total wave vector and f being the focal length of the

lens used to take the Fourier transform of BG beam. The BG beams can be generated in the

laboratory using a phase mask formed by the interference of axicon (eiar) and spiral (eimθ)

functions, where a = ktan−1(kr/kz) = ksin−1(kr/k) = kcos−1(kz/k) is the axicon parameter.

This axicon parameter controls the radius of the ring present in POV beams. The width

of annular ring corresponding to POV beams is inversely proportional to the size of host

Gaussian beam (wg) used to generate the BG beams.

Our experimental set up for the generation of POV beams is shown in Figure 7.1. We

have used an intensity and frequency stabilized He-Ne laser (Spectra Physics 117 A) of

wavelength 632.8 nm and power 1 mW. The laser beam has been propagated in free space

before reaching to the spatial light modulator (SLM) (Holoeye LCR-2500) to increase the

beam width to 1.5 mm which is required for better intensity modulation. Different computer
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BD

He Ne 632 nm

SLM

A
M

L1

CCD

60 cm

60 cm

BS

Figure 7.1: The experimental set up for the generation of POV beams using the Fourier

transform of BG beam. Here, M-Mirror, SLM-Spatial light modulator, BS-Beam split-

ter, BD-Beam dumper used to block the unwanted beams, L1-plano convex lens of

focal length f1 = 60 cm.

Figure 7.2: Experimentally obtained intensity distributions for POV beams of orders

m = 0, 2, 4, 6 (from left to right) at different axicon parameters of 7.29 /mm (top),

10.93 /mm (middle) and 14.58 /mm (bottom).
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generated holograms corresponding to the BG beams of different orders are introduced to the

SLM through a computer. The generated BG beam in the first diffraction order is selected

with an aperture (A). Its Fourier transform using a lens (L1) of focal length 60 cm placed at

a distance of 60 cm from the SLM produces the POV beam of the same order. For generating

ideal BG beams, one needs to have a Gaussian beam of infinite width and very high axicon

parameter that gives POV beams of all orders. However, the ring radius of POV beams

increases with the increase in axicon parameter. Thus, we have to compromise between the

size of POV beams and the maximum order upto which they can be generated. We have

used axicon parameters a = 14.58, 17.01, 21.87 /mm for scattering the POV beams through

a GGP. The generated POV beams have been recorded using an Evolution VF color cooled

CCD camera.

Figure 7.2 shows the intensity distributions of POV beams of different orders m =0, 2, 4,

6 for various axicon parameters (a =7.29, 10.93, 14.58 /mm) obtained by taking the Fourier

transform of the BG beams, generated by a phase mask used with the SLM. For a better

comparison, we have considered the same scale for all the images. One can clearly see from

the figure that the intensity distribution is invariant with order and increases with increase

in axicon parameter. It can also be observed that the POV beams are almost covering the

entire CCD camera at a =14.58 /mm, which didn’t allow us to record them at higher axicon

parameters.

m=0                  m=5                 m=10                 m=15

m=20                 m=25                 m=30                 m=35

Figure 7.3: The experimentally observed lobes due to the superposition of two equal

and oppositely charged POV beams of given orders.

The vorticity of POV beams has been verified using the interferometry of two equal
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and oppositely charged vortices. We have aligned the POV beams in a Mach-Zehnder in-

terferometer with a dove prism in one of the arms to invert the charge. The two outputs

of interferometer contain superposition of two equal and oppositely charged POV beams of

order m and give 2m number of lobes due to the presence of azimuthal phase [168]. These

lobes have been collected with a lens of focal length 50 cm after the interferometer in order

to record them within the CCD camera and shown in Figure 7.3. These images also show

that the size of the POV beam is invariant up to the order m =20 and increased slightly

when we increase m from 20 to 35. This implies that for a given axicon parameter, we can

generate the POV beams upto the order of 20.

7.2 Scattering of POV beams: a comparison with

ordinary vortices

After the generation of POV beams, a ground glass plate (GGP) is placed at the plane of

generation to study their scattering [72, 73] as shown in Figure 7.4. Figure 7.5 shows the

BG beam

L1 L2

GGP
CCD

Camera

f2f1

Figure 7.4: The experimental set-up for the scattering of POV beams through the

ground glass plate and to generate the non-diffracting speckles. Here, L1 and L2 are

plano-convex lenses of focal lengths f1 = 60 cm and f2 = 50 cm respectively.

speckle distributions obtained by the scattering of both ordinary Laguerre–Gauss beams and

perfect optical vortex beams. The CCD camera is placed at a distance of 18 cm from the

GGP for recording the speckles (without lens L2). It is clear from the figure that the size of

the speckles decreases with the order for ordinary vortices whereas it remains same for POV

beams. One should note that the intensity distribution of a POV beam is independent of the

order while for the ordinary vortices it depends on the order. Therefore, one can say that

the speckle distribution follows the intensity distribution falling on the random media rather

than the field mode. The speckles corresponding to the POV beams also show structured
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patterns which are same for all the orders at a given axicon parameter.

Figure 7.5: The speckle patterns correspond to scattering of the ordinary optical vor-

tices (top) and the POV beams (bottom) of orders m = 0–3 (from left to right).

7.3 Non-diffracting speckles

Now, we show that the Fourier transform of speckles generated by the scattering of POV

beams gives the non-diffracting speckle patterns. The Fourier transform has been taken

using a lens (L2) of focal length 50 cm placed at a distance of 50 cm from the GGP. We have

recorded these non-diffracting speckles at different distances from the lens starting from 12

cm to 57 cm at the intervals of 5 cm with a CCD camera of pixel size 4.65 µm. The recorded

speckle patterns generated by the scattering of POV beams of orders m =2, 5, 8 and axicon

parameter of 14.58 /mm are shown in Figure 7.6. It is clear from figure that the speckle

size is invariant with propagation distance at a given axicon parameter for all orders. This

confirms the non-diffracting or non-diverging nature of the generated speckles.

Figure 7.7 shows the intensity distributions of these speckles corresponding to the scat-

tering of POV beams of orders m = 0, 3, 6, 9 with different axicon parameters at a given

propagation distance of 37 cm from the collecting lens (L2). The size and distribution of

speckle fields are independent of the order of POV beams. This confirms that the average

speckle size and their distribution are mainly controlled by intensity distribution falling on

the ground glass rather than its field distribution. With the increase in axicon parameter,

the radius of POV beams increases that effectively increases the area of illumination on the

GGP which controls the speckle size. The average size of speckles decreases with increase in
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Figure 7.6: The intensity distributions of non-diffracting speckles obtained by taking

the Fourier transform of speckles generated by the scattering of POV beams of orders

m =2, 5, 8 (from top to bottom) at an axicon parameter of a = 14.58 /mm corre-

sponding to different propagation distances of z = 0.12 m, 0.27 m, 0.42 m and 0.57 m

(from left to right).

Figure 7.7: The intensity distribution of non-diffracting speckles obtained by taking

the Fourier transform of speckles generated by the scattering of POV beams of orders

m =0, 3, 6, 9 (from left to right) and at axicon parameters a =14.58, 17.01, 21.87 /mm

(from top to bottom).
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the axicon parameter due to the increase in area of the annular ring. As the phase singular

density present in the speckle fields is inversely proportional to speckle size [72, 73], it can

be controlled easily by changing the axicon parameter in our study.

We have verified the diffraction-free nature of speckles by quantifying the speckle size

also using intensity auto-correlation method that calculates the correlation of speckles with

themselves [99]. In this method, we fix one image of the speckles and observe its correlation
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Figure 7.8: The variation of speckle size with the propagation distance (top) and the

order (bottom) at different axicon parameters showing no difference with respect to

either of them.

numerically with a number of images shifted in position. These shifts can be made pixel by

pixel in both the transverse directions. We plot the results as a function of the shift. The
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correlation factor is maximum if the two speckle distributions are completely overlapped and

it decreases with the decrease in overlap. The correlation factor becomes zero if their overlap

is less than the speckle size due to the random nature of speckles. The correlation curve has

a Gaussian distribution whose full width at half maximum (FWHM) gives the speckle size in

any of the transverse directions. Here, we have considered the normalized speckle patterns

to determine the speckle size as they are overfilling the CCD camera. We have considered

the average over ten images to measure the speckle size.

Figure 7.8 shows the variation of average speckle size with respect to both the propagation

distance and the topological charge or order of the POV beams. The results show that for a

given axicon parameter, the speckle size obtained by the scattering of a POV beam of order

m =2 remains constant for all the propagation distances. We also verify that the speckle size

is independent of the order for different axicon parameters at a given propagation distance,

in this case z =37 cm. Thus confirming that the physical process of scattering is intensity

dependent.

7.4 Conclusion

We experimentally generate the POV beams by taking the Fourier transform of the BG

beams. We show that the distribution of speckles is controlled by the intensity distribution of

the incident beam falling on the rough surface rather than the field distribution. The Fourier

transform of the speckles generated by scattering of the POV beams gives the non-diffracting

fields i.e. non-diverging speckles. These results may find applications in cryptography [169].





Chapter 8

Summary and Scope for Future Work

This thesis deals with the optical vortex beams and their scattering through random media.

The optical vortices are generated using computer generated holograms as well as using a

spiral phase plate. We also study the generation and scattering of a new type of vortices –

perfect optical vortices (POV). The POV beams are generated using the Fourier transform

of Bessel-Gauss beams. We use a ground glass plate for scattering the light beams. A novel

description has been given for the intensity distribution of vortex beams along with their free

space propagation. We use the effect of an astigmatic system on a pair of vortices embedded

in a single host Gaussian beam to determine the net charge as well as the individual charges.

Next, we scatter the vortex beams through a GGP and record the generated speckle

patterns. The intensity auto-correlation measurements show that the size of speckles as well

as their divergence decrease with the increase in order of the vortex. We model the GGP

using a δ-correlated Gaussian function which can be realized by the convolution of a 2-D

spatial random function and the Gaussian correlation function. We also show how to recover

the vorticity of a light beam after scattering using a single plano-convex lens. The recovered

vorticity is confirmed using the properties of classical non-separable states of light.

At last, we generate the perfect optical vortices having order independent intensity dis-

tribution and scatter them through a GGP. The generated speckles are used to produce the

non-diffracting random fields.

8.1 Summary of the work-done

Chapter 1 provides a brief introduction for the optical vortices and their generation using

different techniques. We also describe briefly the speckles which are natural sources for
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vortices along with scattering of the optical vortices. We introduce the concept of perfect

optical vortices, whose core size is independent of the topological charge, and the methods

for generating them in the laboratory.

In chapter 2, we discuss the intensity distribution of vortex beams using two new and

novel parameters, inner and outer radii. We give the exact analytical expressions for these

two parameters in terms of the order and verified using the numerical and the experimental

results. Next, we have described the free space propagation of inner and outer radii that

provides the divergence of vortex beams. We also show that the divergence varies as the

corresponding radii at the source plane with the order. It helps in designing the fibres for

vortex modes.

Chapter 3 discusses the propagation of a pair of vortices with arbitrary charges and sepa-

ration through an astigmatic optical system, i.e a tilted lens. We provide an exact analytical

equation for the propagation that uses incomplete two variable Hermite polynomials, for

the first time in Optics. The intensity distribution of a beam past the tilted lens is used

to find the net and individual charges embedded in the beam. The special kind of rectan-

gular razor-blade structures are observed for the oppositely charged pair of vortices. The

number of lobes present along the length and breadth of the structure give the individual

magnitudes and their orientation gives the signs. In the case of vortices with same sign, the

asymmetry present in the lobes gives the information about individual charges. We present

the theoretical results along with the experimental verification.

The speckles generated by the scattering of higher order optical vortex beams through a

ground glass plate are shown in chapter 4. The auto-correlation measurements show that the

size of speckles decreases with the increase in order of the vortex. The propagation dynamics

of speckles shows that the divergence of speckles decreases with the order. The scattering

medium, i.e. a ground glass plate is modelled as δ-correlated Gaussian function and the

results are verified. We have also discussed about the spatial intensity correlation properties

of the scattered optical vortices which are similar to the temporal intensity correlations.

In chapter 5, we generate the ring-shaped beams by collecting the scattered LG and BG

beams using a plano-convex lens. We show that the presence of dark core is independent of

speed of the GGP. The size and darkness of the core gradually decreases with the decrease

in incident beam width which is verified using the line profiles along the center of far field

intensity distributions. We also observe that the size of the dark core increases with increase in

the azimuthal index. We theoretically verify these experimental results using the propagation

characteristics of partially coherent standard LG beams through a linear optical system.
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In chapter 6, we recover the vorticity of a scattered vortex beam. After scattering through

a random medium, the light beam gets completely randomized (in the form of speckles) and

do not have any information regarding the vorticity. However, a plano-convex lens can recover

the vorticity when we probe at the focal plane. We confirm the vorticity using the properties

of a classical non-separable state of polarization and OAM. This state helps us to obtain the

superposition of two equal and oppositely charged vortices which leads to the petal structure,

number of petals being equal to twice the order. These petals are the characteristic of the

azimuthal phase present in the vortex beams and thus confirm the vorticity.

Chapter 7 is devoted to the generation and scattering of perfect optical vortex beams.

We generate these beams using an optical Fourier transform of the BG beams. These beams

have topological charge independent intensity distribution and look like a thin annular ring.

The radius of the ring is controlled by the axicon parameter and the width of the ring is

controlled by the width of the Gaussian beam incident on the spatial light modulator. We

confirm the presence of azimuthal phase using the superposition of two equal and oppositely

charged vortices. Next, we scatter the POV beams through a ground glass plate and observe

that the speckle size is independent of the order. We also show that the Fourier transform

of the generated speckles gives the non-diffracting random fields i.e. speckles. We verify the

non-diffracting nature by the invariant speckle size with propagation. These results may find

applications for authentication in cryptography.

8.2 Scope for future work

The intensity distribution of vortex beams has been used for the geometrical characteriza-

tion of coherence vortices, singularities present in the cross-correlation function of two fields

obtained by the scatetring of two optical vortices having different topological charges [170].

It can also be used to generate the perfect coherence vortices. Since, we have studied the

generation and scattering of POV beams, we would like to verify if the correlation singular-

ities between two scattered POV beams have the order independent distribution. If so, we

could extend our study to characterize their properties such as radius and width of the ring.

Preliminary experiments have already been performed for this study.

We have studied the spatial intensity correlation properties of scattered optical vortices

of different orders, however, to understand its properties, one needs a detailed study in-

corporating the effect of GGP. It would be worthwhile to see the dependence of intensity

correlations on the degree of polarization. To take up this study, one can make the light
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beams with varying degree of polarization using a classical non-maximal non-separable state

of polarization and OAM.

The optical characterization of any material can be done with the use of Mueller matrix.

We have proposed and verified a novel method for the determination of Mueller matrix using

Simon-Mukunda polarization gadget or SU (2) universal polarization gadget [171]. This

gadget can be used for quantum process tomography along with quantum state tomography

for polarization entangled photons.

We plan to study the spontaneous parametric down conversion of POV beams through

a second order non-linear BBO crystal [172]. It may be helpful in generating the higher

order OAM spectra with a controlled spatial distribution. It can also be used to verify the

dependence of down conversion on the spatial mode of pump light beam.
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[50] F. Tamburini, E. Mari, B. Thidé, C. Barbieri, and F. Romanato, Experimental verifica-

tion of photon angular momentum and vorticity with radio techniques, Applied Physics

Letters 99, 204102 (2011).

[51] V. Y. Bazhenov, M. Vasnetsov, and M. Soskin, Laser beams with screw dislocations in

their wavefronts, Journal of Experimental and Theoretical Physics Letters 52, 429–431

(1990).

[52] N. Heckenberg, R. McDuff, C. Smith, and A. White, Generation of optical phase sin-

gularities by computer-generated holograms, Optics Letters 17, 221–223 (1992).

[53] N. Heckenberg, R. McDuff, C. Smith, H. Rubinsztein-Dunlop, and M. Wegener,

Laser beams with phase singularities, Optical and Quantum Electronics 24, S951–S962

(1992).

[54] I. M. Firth, Holography and Computer Generated Holograms (Mills & Boon, 1972).

[55] B. Brown and A. Lohmann, Computer-generated binary holograms, IBM Journal of

Research and Development 13, 160–168 (1969).

[56] N. K. Sheridon, Production of blazed holograms, Applied Physics Letters 12, 316–318

(1968).

[57] U. Efron, Spatial light modulator technology: materials, devices, and applications (CRC

Press, 1994).

[58] J. W. Goodman, Introduction to Fourier optics (Roberts and Company Publishers,

2005).



90 BIBLIOGRAPHY

[59] L. Lesem, P. Hirsch, and J. Jordan, The kinoform: a new wavefront reconstruction

device, IBM Journal of Research and Development 13, 150–155 (1969).

[60] P. Vaity, J. Banerji, and R. P. Singh, Measuring the topological charge of an optical

vortex by using a tilted convex lens, Physics Letters A 377, 1154–1156 (2013).

[61] S. G. Reddy, S. Prabhakar, A. Aadhi, J. Banerji, and R. P. Singh, Propagation of

an arbitrary vortex pair through an astigmatic optical system and determination of its

topological charge, Journal of the Optical Society of America A 31, 1295–1302 (2014).

[62] A. Kumar, S. Prabhakar, P. Vaity, and R. P. Singh, Information content of optical

vortex fields, Optics Letters 36, 1161–1163 (2011).

[63] S. Prabhakar, A. Kumar, J. Banerji, and R. P. Singh, Revealing the order of a vortex

through its intensity record, Optics Letters 36, 4398–4400 (2011).

[64] C.-S. Guo, S.-J. Yue, and G.-X. Wei, Measuring the orbital angular momentum of

optical vortices using a multipinhole plate, Applied Physics Letters 94, 231104 (2009).

[65] C.-S. Guo, L.-L. Lu, and H.-T. Wang, Characterizing topological charge of optical vor-

tices by using an annular aperture, Optics Letters 34, 3686–3688 (2009).

[66] Y. Han and G. Zhao, Measuring the topological charge of optical vortices with an axicon,

Optics Letters 36, 2017–2019 (2011).

[67] J. Hickmann, E. Fonseca, W. Soares, and S. Chávez-Cerda, Unveiling a truncated opti-
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