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ABSTRACT

In recent years there has been an effort to model
turbulence as the nonlinear interaction of self consistent
coherent fluctuations of the éystem. Vortex theories in fluid
turbulence and the clump theory for kinetic turbulence are
the most prominent examples. Thié thesis reports the first
detailed sfudy of such coherent, stationary, = nonlinear
solutions for the case of a magnetised inhomogeneous plasma

in both fluid and kinetic limits.

Following the basic theme of identification of nonlinear
coherent exact solutions, the equations describing nonlinear
£luid drift waves have been re-examined. It is shown that a
new kind of two dimensional monopole vortex solution is
possible if nonlinear parallel lon motion is retained. These
solutions are different from the Hasegawa-Mima type dipole
vortices or the ones due to scalar nonlinearities related to
strong temperature gradients. The effect of weak temperature

gradients on these solutions is also studied numerically.

One of the latest models for kinetic turbulence, is the
theory of phase space holes. The primary direction was given
by Dupree (1982) in which it was shown that the maximum
entropy state of a self-trapped equilibrium is a BGK mode in
the case of a homogeneous unmagnetised plasma. This most

probable BGK mode was called a phase space hole.

In this thesis this concept has been extended to the



case of. a magnetised inhomogeneous  collisionless plasma.
General steady state solutions of the drift kinetic equation
are fdund and the distfibution function in the mixing region
is determined by entropy maximisation subject to appropriate
constraints. Then an inverse EGK type problem is set up and
the steady state equation for the electrostatic potential is
solved numerically. We have looked for a general class of

nonlinear oscillatory solutions.

Two main cases are dealt with. The first is the problem
of the most probable nonlinear steady state of the one
dimensional drift wave. The dominant nonlinear mechanism here
is the phase space or parallel trapping of resonant electrons
that drive +the 1linear instability of the drift wave.
Temperature gradient and ion trapping effects are also

incorporated.

The second case 1is more general and includes a
nonlinearity which, from recent gyrokinetic simulations,
appears to be more dominant in two dimensions at lower
amplitudes than parallel trapping. This is the physical space
trapping of electrons due to the perpendicular ExB resonance.
However, in the present calculation both effects are retained
'\andy the resulting two dimensional maximum entropy state 1is
studied. The case ofvExB resonant trapping of electrons is
then combined with the ExB convection of fluid ions to set up

some interesting almost maximum entropy monopole solutions of

 the system.



From the point of view of exploriﬁg the high frequency
regime for the existence of nonlinear statiohary states, the
special cése of an eiectrostatio wave +traveling perpendi-
cular to the ambient magnetic field 1is studied. A new
mechanism is proposed to keep the particles trapped in the
wave field without resorting to relativistic effect. It 1is
demonstrated that using nonuniformities of +the magnetic
fields 1in the direction of wave propagation, the trapped
particles can be ac¢elerated indefinitely. The resultant

damping of the wave 1s also estimated.
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CHAFTER I

INTRODUCTION

A nonequilibrium plasma 1is a system that occurs
frequently in both laboratory and astrophysical systems. The
nonequilibrium nature of the system can be the result of +the
presence of several types of sources of free energy. These
can be in the form of density and temperature gradients,
nonuniform magnetic fields, presence of beamé and flows, etc.
The most prevalent tendency of such a system is to release
this free energy in order to approach a state of equilibrium.
This is done via the mechanism of generating a large spectrum
of collective modes. These modes are characterised by ths
relevant driving mechanism and geometry of the system.
Further, they are often unstable in the presence of the
sources of free energy and grow beyond their lineér limits.
As a result the entire system of such interacting modes 1is
highly nonlinear. The study of such nonlinear systems 1is of
great importance 1in order to understand ‘the transport of
particles and energy in laboratory and spaoe‘plasmas. A large

body of very significant work exists today in the area of

plasma turbulence.

Traditionally, turbulence theories take the view that
turbulence can be described as a collection of nonlinearly

interacting Fourier modes of the system. This is a natural




consequence of the assumption that turbulence results from
instabilities due to which waves growvfrom small amplitude
linear perturbaﬁions Jto large amplitudé flﬁctuations. The
guasilinear theory and the fenormalised perturbation theories
have been developed to a great extent with these underlying
principles (Kadomtsev 1965). These are the kinetic theories
of turbulence. The basis of the majority of kinetic theories
in plasma physics 1s the self-consistent Vlasov-Polsson
system of equations. In a two dimensional (x,v) phase space

these are:

Vo f + VIxf + £ Ef =<

Ay E = - 47T€M,[00(Vf

The quasilinear theory examines the effect of the
turbulent fluctuations on the time evolution of certain
spatially or ensemble averaged quantities. This approach is
applied to ’weakly turbulent’ situations. The nonlinearifies
are weak and can be written as perturbations to the 1linear

behaviour. Then the distribution function can be separated

as:

Lotz v, ) = Ffolvit) + £ (vt
where, | j(o (V,{;) = < j[o C(JL/ v t) >e><_ '

f, 1is a spatially averaged distribution and is a slow
function of time. fy is the rapidly oscillating part and
:?epresents a system of oscillations with randomly distributed

phases. In the quasilinear theory it is determined by the




lineariéed form:

oo e o oLy
W, -—kV
uﬁkis the characteristic frequency of the kP node. This
response forms the turbulentvbackground. In the presence of
such filelds a typical plasma particle with a resonant
veloclity \/=(€5 , undergoes a random walk in velocity space,

since the acceleration provided by these fields 1is random.

The slow time evolution of fo(v,t) is then given by:

9{; f; = 2)V (’[)V 9\/:£o‘> ’

This is the quasilinear diffusion equation. The
assumption used here is that the growth rate of the modes
is smaller than the mode frequency; \m<<< L%< So the
interaction between jndividual modes can be neglected, and
they can be considered to be a superposition of separate
modes. This assumption breaks down even when there 1s weak
interaction between modes. Then, the growth rates become
functions of the filelds due to these modes and the

quasilinear theory cannot be applied.

The most representative result of this treatment is the
case of Landau damping. The quasilinear theory predicts that
the distribution in the resonant reglon will become

progressively flatter, leading to a diminishing damping rate.

VWl In\the long time limit it will become completely flat and the

damping will stop.

The renormalised perturbation +heories go one step



beyond the quasilinear approximatiohf They take into account
the interaction of the Fourier modes in the-large amplitude
limit. The response of the plasma is then described by an
infinite set of kinetic equations derived.from the Vlasov
equation. They describe nonlinear phenomena such as wave-wave
coupling, scattering of waves by particles, decay of a single
mode into two waves, etc. It is impossible +to handle the
entire infinite set to study these effects, so truncation
schemes have been déveloped to reduce the system. In the weak
turbulence 1limit the ’random phase approximation’ 1s used.
This allows only the description of the modulus of the wave
amplitudes, averaged over the phases of the waves.
Cofrelations among the fluctuating quantities wupto fourth
order are retained, effectively truncating the set of coupled
equations. In the strong turbulence limit the ’wealk coupling
approximation’ 1is used. The turbulent motion is described by
a system of nonlinear integral equations for the spectral
density and the Green's function describing the response of
the system to an external force. As the coupling between the
modes decreases, these equations reduce to the kinetic wave

equations.

All these theories assumed a coarse grained form of the
distribution function as described by the Vlasov equation,
where +the fine scale was generally taken to be the Debye
length. Correlations over a scale of the Debye length were
neglected. The distribution function used in the Vlasov

equation was essentially the one point distribution. Any



correlations over scale lengths larger than the Debye length
were self—consistently‘determined in terms of the individual
local '§ne point distributions. The two point distribution
function could then be expressed as the product of two one
point distributions. All perturbed quantities could be given
in terms of the perturbed one point distribution to study
phenomena whose scale_lengths were at the least of the 6rder

of the Debye length.

Particle orbits in turbulent plasmas become random,
since they see the éombined field of a collection of modes
with randomly distributed phases; This continued to be the
basic assumption of the turbulence theories. If this happens
in a region of phase space where the gradient of the average
density 1is significant then these random orbits would bring
about a considerable rearrangement of the local phase space
density. This 1is called mixing and is the only mechanism
through which a collisionless Vlasov system can relax to

equilibrium and is inherent in all the previous theories.

What these theories neglected was the fact that, the
time scale of this mixing process 1s finife and a function of
the smallest cell size in phase space Or the assumed fine
scale. But this implies that for a given degree of coarse
graining there would always remain a few elements of phase
space which have not had time to phase mix down to fine
Sgales. In fact, as was pointed out by Dupree (1972,1978),

these could act as additional sources of turbulent



fluctuations through their interaction with the background

fields.

“The theory of clumps‘introduced the existenée of these
entities into the renormalised perturbation theories. A clump
is a fluctuation produced when the phase space density in a
small  region is moved randomly to a new location where 1its
value fJ differs from the local average fo‘ It 1is clear,
therefore, that the fluctuation cannot be described in terms
of the 1local coarse grained distribution. It appears as a
peak in the two-point correlation function. It was shown that
a clump persists as a single coherent entity for a 1long
enough time to interact with the background turbulence before
velocity diffusion effects break it up. The typical clump

life times are,

')(02 (Aocl— 2 AXAV T, + 2 avic? )] )

Cel = — S l%{

1
3
r Th
3
where, T, = (4 kbg» , ko is the average wavenumber of the
turbulence, Dv is the diffusion coefficient and 4%, AV the
clump scale lengths in phase space. Z} is the mixing time and
is finite. If a clump is preserved for a time chl , then

the mean square fluctuation produced due to its presence

would be, by Dupree’s estimates:

<f2> = T Dy (QVJ[O)L'

It was recently pointed out by Dupree (1982) that the
main deficiency of the clump theory was that it did not take

into account electric fields that are generated self



consistently by the clump. He prbppsed that, these self
fields would be instrumental in bringing about the self
ttappiﬁg of these random fluctuations, effectiveiy increasing
their 1lifetime. As is oiear from the expression for the
fluctuation level due to a clump, this would also 1ncrease
with "CC]. This is also another reason for studying this
phenomenon. However, it is not possible to include the self
trapping effects in a traditional perturbative treatment. The
orbits of the trapped particles in phase space are turned
around and the bounce frequency of such a particle 1is
typically proportional to the square root of the trapping
potential. That is not to say that there is no wave-particle
interaction of the trapping type included in these theories.
A single particle, for example, would see the field of a
£luctuation +that 1is 1large enough to trap it but it will
typically spend less than a single bounce period in the field
of this wave before being taken out by the effect of the
ambient turbulent field. It is not possible, therefore, to
form coherent structures with the help of this interaction.
Hence 1t is necessary to consider a complementary approach

to the perturbation theories to include this effect.

The earliest observation of coherent structures 1in
turbulent plasmas came from Morse and Nielson (1869). They
analysed the simulation of the phase space dynamics of
electron-electron two stream generated electrostaiic
turbulence and saw that it was dominated by large phase space

structures having life times longer than the typical



turbulent time scales. More specifically, the formation of
obherent‘-Structuresrwith particle trapping effects has also
been studied by previous authors. Self-consisten£ saturated
states of an electron plasma wave due to particle trapping
were studied by Bernstein, Greene and Kruskal (1957). The BGK
modes are nonlinear, coherent, exact solutions of the Vlasov-
Poisson system with particle trapping effecﬁs. The particles
making up the fluctuations are self-consistently trapped by
the potentials +they produce, giving rise +to coherent
structures 1in phase space. The time evolution of a large
amplitude wave towards such structures due to nonlinear
Landau damping was given by O’Neil (1965). He showed that the
phase mixing of the particles trapped in the potential wells
of the wave leads to its saturation at finite amplitudes. The
concept of BGK modes was later extended +to study +trapped
particle effects 1in ion acoustic waves ( Schamel 1978 and

references therein).

It was proposed by Dupree (1982) that, i1f clumps were to
get ‘trapped by their self fields, they would be 1like BGK
modes and in the isolated state would have infinite
lifetimes. This presents an entirely different picture of
turbulence as against the traditional theories. Instead of a
large spectrum of large amplitude interacting Fourier waves,
there 1is mnow a collection of isolated nonlinear coherent
structures in phase space. Dupree (1982), for a one
dimensional unmagneti5ed case, proposed +that phase space

holes could be modeled as the most probable or maximum




entropy BGK modes. The strength of their interaction would
depend on their density in phase space; In ﬁhe limiting case
of sufficient hole density, the hole—hole interaction would
overcome the self binding-force,of a single hole and the
system would revert to the clump mode. However, in the case
where holes are only weakly interacting, turbulence can be
regarded as a collection of such almost-coherent structures.
It 1is understood, of course, that turbulent fluctuations
cannot be exact BGK modes since they are continually
interacting with each other, but it 1is a good starting
approximation. Coherent structures_in the form of eddies or
vortex forms are well known to be present in turbulent
fluids. The phase space holes suggested by Dupree (1982) are
the exact analogue of these vortex structures, representing

self-organised motion in turbulent systems.

In this thesis, this concept of phase space holes as
maximum entropy exact nonlinear coherent solutions of the
relevant kinetic equations, is extended to the case of a
magnetised, inhomogeneous, collisionless plasma. The typical
Fourier spectrum of such a system consists Qf a large number
of drift type modes, which have frequencies less than the ion
cyclotron frequency. They are linearly unstable in most éf
the parameter space covered by systems like tokamaks and
magnetospheric plasmas. Hence they are regarded as prime
candidates for some important nonlinear phenomena, such as
anomalous particle and energy transport, observed in these

systems. It would be appropriate at this point to briefly




review the physics of the linear drift wave and introduce

some ofvﬁhe terminology used frequently henceforth.

Consider a plasma in slab geometry with a uniform
magnetic field B in the z-direction and an equilibrium
density gradient in the x-direction. The equilibrium fluid

drifts are the electron and ion diamagnetic drifts, given by:

Vg = c  Br3p
Kn is the scale of the density gradient, Te the electron

temperature, c¢ the velocity of light and e the electronic

charge. Typical drift waves have phase velocities 1n the

range, Vi, << Wy << Vihe

Then, typically electrons have the Boltzmann
distribution and their linearised response can be written as:

Me €.¢,

"N o _Tﬁ
The lon continuity equation is:

2¢m + Yo (niX) =o

‘E%X!% Adc} ~
A\J/L = Ve + l/,b , Ve =¢ 52 \N/)>=~ggf’c‘@¢/'

Neglecting parallel velocity, linearising and looking
for plane wave solutions of the type, ~~ QX)J (L}S Y-1w @ ,

gives the perturbed ion density to be:

N ky Vi 2 0 eg
= - ..\\j__ 4+ 705 V_[_ ______’_
Mo w —ré

It 1is assumed that for a low /3 plasma the perturbations

are electrostatic and kx << ky. The first term on the RHS is

10



due to the ExB drift coupling with the density gradient. The
second term represents the charge separétion coming from the
ion polarisation drift. Drift oscillations are quasineutral,

~ Ty, we obtain the dispersion relation:

LW o= "W /( ( 7 + kff ﬂsl) p

where , f; is the ion Larmor radius at electron temperature

and (WO, ( ZEf;Té Kn /e ), the drift frequency. When the

50 sétting ng

linearised parallel ion motion is included for an oblique
wave ( having a finite k, along B ), there 1s another branch
of thé linear drift wave that represents the modified ion
acoustic wave due to the density gradient. The - dispersion
relation then becomes:
0\31-—- W Wy - }(}7'—%7-: o

In the kinetic limit the linear density gradient driven
drift wave 1is unstable. The free energy residing 1in the
density gradient 1is released via the mechanism of wave-
particle interaction. It 1is convenient to describe low
frequency phenomena like drift waves in the guiding centre or
drift approximation. This means ignoring effects that have
perpendicular scale lengths smaller than the ion Larmor
radius. Frequencies larger than the ion Larmor frequency are
averaged out and the gyromotion of particles around the fiéld
lines 1is ignored. Then the perpendicular velocities can be
replaced by single particle drifts in those directions. In
such a description the magnetic moment, A@ , 1s an invariant
and in the guiding centre phase space the distribution

function can be written as:

11



CF i) = f L% Yy KD

Conservation of the density of guiding centres then

leads to the well known drift kinetic equation (DKE):

1
0 f ?(}“/l‘f) + VW f o EHQVH% = O

The ordering of the DKE is typically taken to be:

éﬁ? ~ JEL i Mfi ~ & <KL 7 .
Te UACC/ Lo

Electrons having velocities close to the parallel phase
velocity of the wave undergo large ExB displacements in the
direction of +the density gradient, Electrons ffom- the low
density region are taken into high density regions enhancing
the - density fluctuation. This creates a phase difference
between the potential and density perturbation giving a net
growth. The growth rate is given by:

oo e O kY
1 " }?u\/z V%e, J

This mechanism of the drift instability relies entirely
on the resonant interaction of the electrons with the wave.
This wave-particle interaction is absent in the fluid theory.
This lack of a path for the dissipation of the free energy

makes the fluid drift modes stable.

Theories of drift turbulence in both fluid and kinetic
limits are varied and well developed. As before, they are
based on the principle of interacting nonlinear modes which
are assumed to have grown due to the instability mechanisms

described earlier. A‘large amount of work has been done to

12



extend the quasilinear and perturbative theories for ﬁhe
understanding of drift turbulence. Thé éoncept of clumps has
also beeﬁ incorporated in. the  theory of strong drift
turbulénoe (Dupree 1978). As pointed out earlier the major
assumption of this thesis.is that only completely coherent
nonlinear steady state structures are constructed and
studied. The +time evolution of the system towards these
states 1s not studied. However, the physical ideas used in
this thesls have had considerable input from earlier attempts
at understanding drift turbulence. Therefore, it will be
useful to briefly go through the assumptions and :esults of

these theories.

The Hasegawa-Mima equation (Hasegawa and Mima 1878)
describes fluid drift turbulence in terms of +the nonlinear
ion dynamics with long parallel and shért perpendicular
wavelengths. The ExB and polarisation drift nonlinearities of
ions are described and electrons are assumed to be adiabatic.
Farlier authors have looked for exact coherent nonlinear
solutions of this equation in different limits, in the form
of dipole or monopole vortex solutions (Hasegawa et al. 1979,
Miess and Horton 1983, Laedke and Spatschék 1988, Lakhin et
al 1987). The phenomenon of self-organisation in fluilds 1is
well known and gives rise to eddies or vortex formation.
These coherent solutions are the analogue of thils concept of
intermittancy in fluid turbulence. They establish the link
between strong turbulence and self-organised motion. The

stability of such structures to various perturbations 1s an

13



area of much current interest. Attempts are being made to
build theories for fluid drift turbulencé on the basis of the
interaction of a large number of such struotﬁres (Miess and
Horton 1982, Horton 1988). In chapter II we have re-examined
this equation for the presence of new monopole vortex

solutions in the presence of nonlinear parallel ion motion.

In the kinetic limit, the main focus of interest in this
thesis is the nonlinear wave-particle interaction aspect. Forx
a magnetised inhomogeneous plasma this has a special
significance. We shall consider +two cases of such an
interaction. The first is the well known parallel"or phase
space trapping of particles having velocities close to the
parallel phase velocity of the wave. This 1is the effect
leading to the formation of BGK modes. For a simple one
dimensional, homogeneous, unmagnetised plasma, the steady

state conserved quantity 1s the total energy.

) 2 S
N = Ei7w v+ 4 §b
The parallel resonance, in a frame moving with the phase

velocity W/k , is given by:

|
ek p 2
I ey

%]

Then the phase curves of the steady state distribution

function have the following characteristic form:

Y

)

14



The trapped particles have a bounce frequency given by,
Lo x o Q~'\J/ |
5 = A
Henceforth, this effect will be referred to as, velocity
space ‘trapping, parallel trapping or'phase space trapping.
Dupree(1982) has formulated the maximum entropy states for a
homogeneous unmagnetised plasma, with parallel trapping

effects. We shall examine the analogous one dimensional case

for a magnetised inhomogeneous plasma in chapter III.

The phenomenology considered. in chapter IV of +this
thesis deals with the second kind of wave-particle
interaction typical to the case of a drift wave; the physical
space trapping of particles due to the resonance between the
perpendicular phase velocity of the wave and the ExB drift
velocity of the particles in that direction. This effect has
been studied by Dupree(1967), Ching(1973) and Hirshman(1980)
theoretically and by Lee et al.(1984), Smith et .al.(1985),
Federici et al.(1987), and Dimits(1988) through gyrgkinetic
particle simulations. As shown by Ching (1973), Hirshman
(1980) and Smith (1985), the Hamiltoniah for a single
particle trapped in the perpendicular physical space for

known form of the wave potential is,
H c q;’ ( 3) 0 — /‘3/: Vi

= — e -+ —_
® ’ R L

It is clear that far away from the parallel resonance

the (x,y) trajectories will be almost stralght lines. But

near the resonance the lines will close giving trapped

15



trajectories. The following picture illustrates the

situatioﬁ: ’
3 O

0

0

Henceforth, this effect will be referred to as,
perpendicular trapping, physical space trapping or ExB
trapping. The bounce frequency of such a trapped particle' is

typically: 2 A
Ck
17 = —_

Exz 13
Note that the ExB trapping of both electrons and ions
occurs at the same amplitude since the ExB drift 1is mass
independent. Also, this effect becomes important at
amplitudes lower than those required for parallel trapping to
dominate. This can be seen by comparing the respective
trapping frequencies: 7
g . eg <&> (ﬂ)u?
B;B Te, | ki S
The work of Dupree(1967) and Ching(1973) emphasised the
role played by ions in the saturation mechanism of drift
turbulence. Dupree(1967) showed +that in the case of +the

current driven drift instability, the growth rate is

suppressed by a nonlinearly generated ’broadening’ of the
parallel resonance. Basically, the point here was that, due
to the presence of a large number of incoherent modes, there

16



is a ]phase difference between thé'_density and potential
fluctuations, giviﬁg a net electron diffusion in the linear
stage. As the instabiiity gfows, this flux becomes larger. If
now the lons are treated linearly, the instabilitylwill never
saturate, since in the linear limit there is no balancing ion
diffusion. Also, typically, phase velocities of these waves
are much larger than ion thermal velocities. Therefore ions
cannot absorb energy until they get trapped by the wave.
Therefore it becomes necessary to include the most dominant
of the wave-particle interactions which is the perpendicular
trapping. This led to a broadening of the parallel resonance
and some parts of the ion distribution could then carry out

ion Landau damping to saturate the spectrum.

The model presented in this thesis does not contain the
effects studied by Dupree in the resonance broadening theory.
The kinetic theory of the perpendicular trapping of resonant
ions is not attempted. Also, the model studied here assumes a
completely coherent response of the plasma and so that the
system consists of a large number of phase space holes all
propagating at the same phase velocity. So even though the
relationship between the steady state density and potential
fluctuations is complicated and contains effects of the order
of the square root of potential, there is no net phase
difference between the +two. This 1in effect 1lgnores any
diffusion procésses. It may become important when a
statistical ensemble of such holes with a distribution in

phase velocities is considered in the limit of weak hole-hole

17



interaction. The presence of colliSions can also introduce a
certain incoherence and hence an enhanced diffusion. These

effects are not studied in this thesis.

The work of Ching(1973) also emphasises lon effects in
the saturation process. However, this treatment is completely
coherent. It 1is shown that though the parallel resonance
remains sharp, ion perpendicular trapping shifts it into the
main ion distribution function, leading to the drift wave
being ion Landau damped. There 1s no net flux of particles or
diffusion 1in the treatment. The Hamiltonian fér such a
trapping for a single particle with an assumed form of +the
drift wave potential was studied. A similar treatment was
carried out by Hirshman (1980) where the trajectory of a
perpendicular physically trapped particle was studied by
setting up the single particle equations of motion for an
assumed potential and deriving a Hamliltonian of the system.
In this thesis the effect of Ching(1973) wheré ions are the
kinetic species with their resonant physical space trapping
is not studied. Ion parallel trapping in one dimension 1is
modeled in chapter III, but that 1s an essentially one
dimensional case and does not have the perpendicular trapping

effects in it.

A powerful tool for studying low frequency turbulence is
the recently developed method of gyrokinetic particle
simulation. The gyrokinetic equation 1s also a reduced Vlasov

equation for studying phenomena with frequenciles lower than
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the 1ion cyclotron frequency. It differs from the drift
kinetic equation in the ordering of thé Scale lengths of the
fluctuations; for the DKE, .kﬂ‘;(( 1, for the gyrokinetic
equatién ) klf5~ 0(1). These simulations give an approximate
solution of the gyrokinetic system of equations derived by
Lee(1983) and Dubin et al.(1983). This system consists of the
gyrokinetic Vlasov equation for +the gyrophase averaged
distribution function and the gyrokinetic ‘Poisson equation
which describes the electrostatic potential in terms of the
particle gyrocentre densities. The code has a dimensionality
of 2 % , with f(x,y,vj,,éﬁ). We shall concentrate here on the
efforts begun by Lee et al.(1984)‘to examine, for the first
time, the role played by electron nonlinearities in the
saturation of drift wave turbulence and carried on later by

Smith et al.(1985), Federici et al.(1987) and Dimits(1988).

Lee et al.(1984) in their study of the nonlinear effects
leading to steady state fluctuations found that the primary
cause of the saturation of the turbulent spectrum was the
nonlinear behaviour of the electrons. It was found that modes
with m=1 and n=+1 are dominant while most other modes were
heavily damped. No ion heating was observed in the course of
the simulation showlng that nonlinear wave-particle
interaction of the type studied by Dupree(1967) and Ching
(1973) could not be the saturation mechanism. The parallel
velocity space nonlinearity of electrons was seen to affect
only the amplitude of the final saturated state but could not

by itself lead to saturation. Similar conclusions were
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arrived at in the study by Smith et al.(1985). Both studies

showed that the electron ExB advection of resonant electrons

was the dominant saturation'mechanism in the limit of weak

nonlinearity. The saturétion levels were seen to be:
K Yo
Cm , (_._’1>(_~—->
A ke W x

So, when }/{< (/\3%>

that c¢ould bring about saturation by itself, without +taking

it was the electron ExB advection

account of ion nonlinear effects. However, in the 1limit of
strong nonlinearity, \Q_ ~ a& , the electron flux in the
nonlinear stage became too large for +the instability to
saturate by electron dynamics alone. But unlike in the
resonance broadaning.thebry, it was still not necessary to
bring in the kinetic effects of ions (Dimits 1988). The fluid
ExB convection of ions was sufficient to set up the
balancing ion flux to bring about a steady state. So the two
major nonlinear effects isolated by the simulation work are;
the resonant ExB advection of electrons and their associated
parallel velocity space nonlinearity and the ExB convection
of fluid ions. These studies were more coherent than those
of Dupree(1967) in that they considered a few modes to be the
dominant ones in the system, while the rest’were essentially
damped out long before the mnonlinear effect took over.
Federici et al.(1987) and Dimits(1988) also essentially
arrived at the same conclusions, but went further +to study

the effects of collisions on these saturation mechanisms.

In chapter IV we shall first consider the entire electron

nonlinearity in two dimensions and set up the maximum entropy

20



state treating the ions +to be linéar.'Some limiting cases
ihcluding those derived by Smith et al.(1985) will be
rebovered showing the imbortance of ‘the electron ExB
nonlinearity as compared to thelr parallel trapping one.
Later in chapter IV wé shall take up the problem of including
the fluid ExB convection of ions and studying some
interesting almost-maximum entropy monopole solutions of the
system.‘Again there are no diffusion effects or net particle

fluxes included in the problem.

As 1is inherent in the motivation behind studying such
structures, +their properties neea not conform to what is
predicted by any existing theories, since these are based on
the assumption of interacting Fourier modes. Therefore, the
parameter regimes set up by the previous studies can at Dbest

provide loose guidelines for the present approach.

The organisation of the thesis and its results in brief

are as follows:

In the second chapter we deal with the possibility of
the existence of stationary states of the fluid drift wave. A
new 2-d monopole solution of the generalised Hasegawa-Mima
equation with parallel ion nonlinearity is found. Unlike . the
earlier cases, this solutlion does not depend ‘upon strong
temperature gradients or higher order effects of the density
gradient. A weak temperature gradient modifies its circular
symmetry but monopole solutions continue to exist. It is also

shown that +the one dimensional analogous structure is
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unstable to two dimensional perturbatiéné. Monopole solutions
have been shown to have better ‘stability. properties than
dipole vortices (Mikhailovskaya 1986, Su 1988). This solution
is of significance since it lies in a physically realistic

parameter regime.

In the limit of kx << k the response of a magnetised

v
inhomogeneous plasma is essentially one dimensional. This
simple case has been used in chapter III to formally set up
the ﬁethod of entropy maximisation in a magnetised,
inhomogeneous plasma. The parallel velocity space or phase
space ‘trapping of particles is the nonlinear effect. This
arises as a result of a resonance where particles with
velocities close to the parallel phase velocity of the mode
get trapped in its potential or when, € kfé?/w\le ~ 1. The
case of electron phase space trapping together with nonlinear
fluid 1ion equations and later with ion Phase space +trapping
effects is studied. An earlier calculation presented by Terry
et al. (1987) had constructed isolated drift rhase space
holes in three dimensions with electron trapping effects and
linear ion equations. However the treatment is a rather
special case since it makes a specific choice for the form of
the distribution function in the presence of the hole which
cannot always be Jjustified. As a result, 1t also ignores +the
important two dimensional effect of ExB trapping in physical
space. No such assumptions are made here. A case
demonstrating the inclusion of an electron temperature

gradient 1s also studied.

22



In +the limit of kx ~ k the two dimensional problem

v
has been solved ‘in chapter IV to studyb maximum entropy
statéé. The additionél nonlinearity here 1s due to the
perpendicular ExB resonance.VWhen the perpendicular phase
velocity is close to the ExB drift speed of particles in that
direction, +they get trapped in physical space. The case of
linear fluid ions with +the ExB and parallel trapping
nonlinearity of electrons is studied and some known results
are recovered. The coupling between physical space and phase
space ‘trapping is shown analytically and numerically. The
fluid ion ExB nonlinearity is thén added to the problem to
show that maximum entropy monopole Vortex solutions can be
formed through this approach. Thus the roles of both electron
and 1on nonlinearities in various parameter regimes, as
indicated by earlier theoretical and computational results,
are taken into account while studying these coherent
structures. In most of these cases we have looked for general
nonlinear oscillatory solutions of the final equations. These

can be regarded as a periodic array of the isolated holes

described by Dupree (1982) and Terry et al:. (1987).

Finally, in order to extend the idea of the
identification of coherent exact solutions +to the high
frequency regime, we have done a preliminary calculation
with single particle effects. The wave-particle interaction
in a high frdquency wave +traveling perpendicular to an

inhomogeneous magnetic field i1s studied in chapter V. Some
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interesting results regarding particle acceleration and
associated wave damping are presented. It is poésible that
these . can be applied and extended further to vstudy some
realistic cases for the fofmation of stationary states. For
example, the beam-driven lower hybrid wave is an unstable
mode which also propagates perpendicular to the magnetic
field. It will be interesting to study these effects in such

a system.

It would be appropriate to point out here that in this
thesis only the exact, nonlinear, c¢oherent states of a
magnetised 1inhomogeneous plasma are formulated and studied.
The +time evolution of the drift instability to +this steady
state 1is not given. No attempts are made to go further and
actually estimate the nature of interaction of a collection
of such structures or its results. It is believed, however,
that this study will be useful in construcfing a turbulence
model based on the principle of interacting coherent

structures in phase space.
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CHAPTER 11

Nonlinearr Fluld Dxrift

Vortices

2.1 Introduction:

In this chapter we study nonlinear coherent fluid
structures in magnetised inhomogeneous plasmas. This
represents the first step towards the study‘ of such
structures 1in the more realistic kinetic plcture. The major
difference between these +two limits is that +theére 1s no
dissipation in the fluid limit and the expansion free energy
cannot be released. As a result there is no instability of
the normal modes. On the other hand, in the kinetic limit,
the linear drift waves are unstable. The instability 1is
driven by resonant wave particle interaction. This
interaction or phase space effect is absent in the fluid
theory. Therefore the study of coherent structures in this
case, 1is simply the study of nonlinear fluid motion in a
stable magnetised inhomogeneous plasma. These solutions,
however, occupy an important place in the theories of fluid
drift turbulence and transport studies, since they represent
organised motion in the presence of nonlinear effects. As in
ordinary fluids, these structures take the form of eddies or
vortex forms. In this chapter we identify the parameter

ranges of such solutions studied by earlier workers and
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pinpoint new éffects that have not been examined so far. In
the proéess we also learn which important  nonlinear fluid
motions can contribute to.the overall theory of phase space

‘structures in magnetised inhomogeneous plasmas.

The coherent nonlinear wave solutions of the fluid drift
wave have been investigated by several authors in one and two
dimensions. It was first suggested by Petviashvili (1967)
that a new kind of one dimensional nonlinear solitary
structure 1s possible if temperature gradient effects are
retained in the limit of kh« R, and kf?o:“ T, with
{77£ /hf’g’ where ﬁ i1s the ion Larmor radius at electron
temperature. By retaining finite Larmor radius effects
through the linear polarisation drift he arrived at a KdV
type equation. This has both the solitary as well as the
oscillatory cnoidal waves as its solutions. Oraevskii et al.
(1969) also essentially arrived at the conclusién that the
scalar nonlinearity due to VT, was important in one
dimension giving solitary and oscillatory solutions. However,
they retained a higher order term of the nonlinear ion
polarisation drift in the limit REYZZA;O[1) .  Later on
Petviashvili (1977) showed that this solitary structure was
unstable to two dimensional perturbations. He speculated that
this instability would lead +to +the formation of two
dimensional circularly symmetric localised potential

structures or monopole vortices (Petviashvili 1981).

Hasegawa and Mima (1978) independently looked at
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nonlinear drift waves and pointed out the importance of the
two dimensional nonlinearity of the polarisation drift in the
absence of iemperature gradients. This 1is a vector
nonlinearity as against the scalar nonlinearity studied by
Petviashvili (1977) and Oraevskii (1969). It was found that
the presence of this nonlinearity led to dipole solutions or
modons (Hasegawa et al. 1979, Miess and Horton 1983). While
the monopole solution represents a net increase in the local
charge density, the dipole vortex represents a local
polarisation in the local charge density. The stability of
these solutions to head-on or _overtaking vortex-vortex
collisions has been demonstrated (Makino et al. 1981, Swaters
1986). However, more recently, Mikhailovskaya (1986) and ©Su
(1988) have shown that the presence of a scalar nonlinearity
can destabilise dipole vortices. These vortices then separate
into their constituent cyclone ,(§£< 0) and anticyclone ( #>>
0) monopoles. These monopoles are long lived and very stable
configurations. A moie recent stability analysis undertaken
by Marquardt et al. (1989) also seems to imply Dbetter
stability properties of monopole vortices in the presence of

scalar nonlinearities.

Both Petviashvili (1977, 1986) and Oraevskili et al.
(1969) had ignored the vector nonlinearity of the Hasegawa-
Mima (1978) type resulting from the nonlinear ion
polarisation drift. Lakhin et al. (1987) pointed out that
this was a serious flaw. It turns out that by keeping this

nonlinearity in two dimensions, Y Te effects cancel
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identically. The implicit scaling used was,
N _
AV Tk/ A VA TN

This was weaker than that used by  Petviashvili
(1977)which had the strong gradient ln Tp ~ & . The only
contribution to the nonlinear térm then came from the higher
order expansions of VN,. The reduced one dimensional form,
therefore, had no contribution from Y77; . In two dimensions
this treatment predicted monopole solutions. Recently
Marquardt _et al. (1989) have suggested that in fact the
relative 1mportance of the scalar nonlinearity against the

vector nonlinearity is a matter of appropriate scaling of

77 .- We shall discuss this further in the next section.
c

The stability analysis has established the importance of
the presence of a scalaf nonlinearity. So far the only
sources for +this are the ‘7Q'type given by Petviashvili
(1977) and the tho type given by Lakhin et al. (1987). 1In
+this chapter we show that retaining nonlinear parallel ion
motion can 1lead to a scalar nonlinearity giving monopole
solutions. These solutions also fit into a more realistic
scaling of the equilibrium gradients since they require
neither strong temperature gradients nor second order effects
of density gradients. It is also shown that this additional
parallel ion motion nonlinearity does not affect the
stability of +the one dimensional structure. It remains
unstable to two dimensional perturbations. Effects of order
)QLL{E%N,0[1) have also been retained. Effects of Y?ﬁé on

these monopole solutions will be examined and numerical
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solutions_presented.
2.2 Basic equations:

We shall begin by setting up the nonlinear equations for
the fluid drift waves retainihg the 1ion parallel motion
nonlinear-effects. A few 1imiting cases and scalings used by
previous authors will then be reviewed. Then the parallel
motion nonlinearity will be included in the appropriate
scaling to éee i{f any new effects can be seen. Consider a
uniformly magnetised, inhomogeneous, collisionless plasma, in

a slab geometry with,

A
B =8z, dxTe = K, dx Mo = K .

~ Te N o

Where Te’ ng, and B are the equilibrium electron
temperature, density and magnetic field. Kn—l and KT—l are

the density and temperature gradient scale lengths. The waves

are assumed to be electrostatic with E = - ¢ . There is mo

equilibrium electric field.

As is standard in the calculation of fluid drift waves,
we assume the parallel phase velocity of the waves to be much
smaller than the electron thermal velocity. Since there is a
small but finite kn, electrons can flow along the B field to
to wash out the temperature fluctuations. Then in the
parallel direction the velocity averaged response of the

electrons is given by the Boltzmann relation:

Ne = Nol(x) €xp (658)/775)
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- We wént to  study the low ' frequency ( W << W )
responsé of the ions. The parallel phase velocity is taken to
be much larger than the ion thermal velocity. In this limit,
when T, >> Ty the continﬁity and parallel momentum

equations for the ion fluid reduce to:

M + Yo (niX) =0, (2.1)
Q ~
Qpvy + (LX) W= - I d, (2.2)
where E“= “‘ZI¥7' In the low frequency drift approximation,
the perpendicular ion velocity is given by
£ c ~
~= ~ ™~ B / "’P B W,
de = 20+ V9, + Ve ¥V - (2.3)

The oscillations are quasineutral and Ng = MNy. - Using

this and substituting equation (2.3) into (2.2),

(90 TV Yy =2y ¢ 9x + 0x b2y ) (Fg 4 mno—Vid)

T V// V}/ = ) (2.4)

(9 +V WbV, = =V (2.5
t -+ I V” “‘”9:7 ¢9}( -/‘ x¢ j) ] - I/ 95 p)

where, all length scales have been normalised to fg , all

velocities to Cg, time to (O and

e eF s e (nke)

Te
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The convective derivative in the.polarisatioﬁ drift has
both, the parallel and ExB Veloéity. The nonlineéf v, terms
are new. The linear dispefsion relation can be obtained by
linearising +these equations .and looking for plané wave

solutions with frequency ¢> and wavenumber 5. It is given by,
2 2L . L.

Equations (2.4) and (2.5) are the complete equations

that will be studied in this chapter. The effects studied by

previous authors are all contained in these equations. The

ExB terms give the vector nonlinearity of Hasegawa-Mima. The

ordering used to recover the Hasegawa-Mima equation is:

2
dp ~ P Ky o~ b, YL 6

Q%N?\v ~ol1) , K=o or §
The HM equation has no temperature gradients. Note that
it also gives a reasonable description of the plasma when

K/T A/k37)~ The solutions studied in the HM equation have

perpendicular scales of the order of @). It is given by:

(Qﬁ/io”‘ /Crngg) P — Dy V12¢
+ (P9 ¢9x —oxP2y ) VI = 0. (2.6

The last term gives the vector nonlinearity and the

equation has standard modon or dipole solutions.

Petviashvili (1977) studied the one dimensional analogue
of equations (2.4) and (2.5) in a slightly different
parameter regime. He was looking for solutions where the

temperature gradients scaled on the order of Cl . The
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ordering_used was:

‘ | | | |
DL (v¢’\’_’bv]"*g/. Vi ~ 9x ~ €

So, for a strong +temperature gradient, when kx << ky,

the equations were:

g ()/‘[o - Vﬁ)qg = Ka 9y S+ VY
+ KJT/;{OC#QJ ¢ = o (2.7)

ot Vy = - VR | (2.8)

These were then reduced to the KdV form to obtain

solitary wave solutlons.

In the following sections we shall examine the effect of
retaining the parallel ion nonlinearity on the various
solutions studied so far. We shall also see if any
qualitatively new solutions can be written down for these

nonlinear equations.
2.3 One dimensional solitary structures:

In this section the effect of retaining parallel ion
nonlinearity on the one dimensional solutions studied by
Petviashvili (1977) will be examined. So, we no longer make
the assumption of long parallel wavelengths and use the

following ordering:

L o~ ~ Ky~ &, Uy~ S

93 ~ 0(1) 9%w£l/ Ky o 0(1) .
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The equations (2.7) and (2.8) are moaified as:
P (Plgo =)~k 2y ¢t ViV + Y, PR,
TF Vb 'VV/‘gé /“Za = O,

| . (2.10)
2t Vy o+ Vg wy Wy =~

In order to study the solitary stationary ‘states and
their -stability properties, we néed to reduce this set of
coupléd equations. Since the effect of +two dimensional
perturbations 1s +to be examined, the lowest order +term in
k9L f; has been retained. This comes from +the linear
polarisation drift. We now introduce the following'éhange in

variable to study the nonlinear stationary states:
n:g+92~%tj Vo= 8V,
giving: 5
0t (g~ 78) = g, 01 ¢ —Km Oy + w7y VP
-+ 9—7\/ + K-T/fogégw)qf + Va’)? sé/‘fo = O ) (2.11)

9{;\/“%9’7 Vo Va'y) V= — 919’7526 . (2.12)

In order to eliminate 76 or V from equations (2.11) and

(2.12) we employ the standard methods of studying solitary

one dimensional structures. Introduce the stretched
variables:

— ‘_ ’?) “MA

o= A, TE AWML, = A
where,
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/Fz = (%Z/qo 4 UKoy = BT) LU

. , 7 ' _
settimg, & = M 1o A F (™) //<,7— ;

Substituting and retaihing terms of the order A2, the
following equation is obtained:

2 .Qﬁ F,?. I ﬁv_
97 (V a UTKT?D%) 2 F)Eo (?0 F )QCF‘

pA 2 '
In the steady state, when D% <2f9 , the potential is

J

given by the one dimensional KdV type equation:

” o r2
I+ — V2 — F =
va i ( Kr?o%> Z ” (2.13)

This is the new equation for the one dimensional steady
state potential when dion parallel motion effects are
retained. The coefficient of the nonlinear term now has an
additional contribution due +to +the parallel nonlinear

g»

effects. In the limit P << 1, and Kx << k this equation was

y!
solved by Petviashvili (1977). It has both, solitary and

periodic solutions. The stability of the solitary solution,

Fo(n) = 2 cosh” (’)/z) ,
to two dimensional perturbations was estimated by
Petviashvili (1977), and it was shown to be unstable. The
presence of the extra nonlinear term does not make any
qualitative difference in this result. It is to be remembered
that the temperature gradient is sharp. T falls to the e-
folding value on the scale of f; . Also, the parallel

wavelength 1is smaller than kynl. 50, the effect of the
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|45 F
additional term is small and the solitary solution remains

unstable to two dimensional perturbations.

The growth rate can be eétimated to be,
b _91 6= )
) X K w
I / 770
(Vg + O/u>)"?

This result is similar to that derived by Petviashvili

.

(1977). Thus the inclusion of the parallel ion motion makes
no qualitative difference to the stability of the one

dimensional solution.

It is clear, therefore, that in the evolution of the
fluid drift wave it is not possible to retain one dimensional
coherent structures. They would be unstable and lead to the

formation of two dimensional vortex structures.

7T 1
When 9X ~o ?j -, Petviashvili (1977) suggested that
these would take the form of two dimensional circularly
symmetric monopole solutions described by:

2 L
9%P+9%C+—g——}":©'

where the nonlinear term arises essentially due to 'V72
effects. The equation has cylindrical symmetry and was shown
to have circular solutions in the (r, &) plane (Petviashvili
1981). We have given the modified form of this scalar
nonlinearity 1in the presence of parallel lon motion in one
dimension. It becomes interesting, therefore, to see if this

additional scalar term can give some qualitatively new
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results in two dimensions.

In'the‘next seétion’wQ shall go on to the consideration
of monopéle structures in fhe presence of parallel nonlinear
ion motion. We shall also consider the effects of weak
temperature gradients on these solutions. Note that the
stability of the one dimensional structure has been examined
only for the strong temperature gradient case. As will Dbe
shown in the next section, a weak temperature gradient does
not give a scalar nonlinearity in either one or two

dimensions.

2.4 Two dimensional localised structures:

Lakhin et al. (1987) pointed out that it is incorrect to
ignore +the wvector nonlinearity of +the Hasegawa-Mima type
coming through the nonlinear ion polarisation drift. They
showed that in two dimensions this led +to the exact
cancellation of +the scalar nonlinearity. However, the
scaling used there was different from that of Petviashvili
(1977). The temperature gradient was not so sharp. The

equations (2.4) and (2.5) in the moving frame are:

(_%971_1/9“7_97¢91+3x¢3n>(?§/?0+/’n"ﬂo~Vll?s)
‘-‘f- 9{7 V -0 (2.14)

(-9 + v on = Iy Pox + PO ) V = - 919775( -

2.15)

Then the ordering used by Lakhin et al. (1987) was:
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)

7

ey . .
(W/qotKmn) v §77, B vk ~aw~ S
VLo~ S}/l , "é(// = O, | |

This shows that the scalar nonlinearity due to Vﬁais of

5/

the same order as the vector nonlinearity and there is an
exact cancellation. The structures studied by Lakhin et
al. (1987) had scale lengths longer than +the ion Larmor
radius. Also the temperature gradient here has a more
realistic scaling as compared to the sharp gradients of
Oraevskii et al. (1989), Petviashvili (1977) and that of the
previous section. In the treatment of Lakhin et al. (1987)
the only source of avsoaiar nonlinearity then came from a
second order term in the expansion of 'Vno. In case anis a
constaqt, the HM equation gives the correct description in

this 1limit.

In +this section we shall explore +this region of
parameter space for the existence of new monopole vortex
solutions. As shown by recent workers (Mikhailovskaya 19886,
Su 1988), dipole solutions are unstable to scalar
nonlinearities of the +type in equation (2.8). Monopole
structures have been observed to have better stability
properties. It is of interest, therefore, to identify any new

sources of this nonlinearity.

Since we want +to consider the role played by the
nonlinear 1lon motion +the new ordering used here has the

effects of short parallel wavelengths:
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E o
-Vh i S; s Sn/ ~ .

Following Lakhin et al. (1987), we now look for

solutions of the type:

Vi o= )b+ G(x) P
Vo= alt)¢ b p”

This particular choice of functional form is an attempt

(2.186)

to look for monopole solutions. Later in this section we will
Justify +this cholce by obtaining the same result through a

different method.

Using (2.16) in equation (2.14) and (2.15) we find,

a(zr) = @l/w ) b (%) = 94/2%%

/ K g6 *
( = _ —e —_ _ /
7F :L) 7o “ “ n
g (x) = Alz)F () blx) - alx)
2 2 W 2.%%0'

+ 22 ay/g g,

2
Substituting in equation (2.16) for V7¢ it can be seen
that +the Y?Té term cancels identically, as shown by Lakhin

et al. (1987). Then in normalised variables,
| kv B K QK
o~ Y 7;__ ™ 77 7ﬁ
Ve =g 0 Tan PP zf
U nw (2.17)

The coefficient of gives the linear dispersion
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relation when Kp = 0. Both the drift .and modified ion
acoustic branches are included. In this limit,.when' P« 1
and Kn.:.constant, this équation reduces to the one studied
by previous authors for dipole solutions (Miess et alf 1983,
Leadke et al. 1988). It is clear that the ion parallel motion
has contributed to the nonlinear term. In fact, it is now not
necessary to retain the Kn‘ terms to obtain a monopole

solution and will be ignored henceforth in the limit of Kn =

constant.

Equation (2.17), then may be obtained in another way. We

look for generalised solutions of the type,
e - ()
V ¢ = ﬁ6¢) / V — :)C ’

2
without any assumptions about the (CL,’O, ¢») dependence of V;&

Substituting in (2.14) and (2.15),
2
L(F) = w - (u—0"p)";
‘ ‘ 2_@2- %2 7—92'
Vi = - kmw [(1-E0g) 2] o (1-=¢).

With the boundary conditions, _

as, A, Y > 0 ; P >0 and V—>o0,
we look for localised solutions. In the limit of small
amplitudes, this reduces to,

S Ky 0% 8 kyy 8t 2

P (11 B) g (k) oty

W :ZIL 2 un Mt
4 (2.18)
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which is the same as equation (2.17). S& our assumed form of
the functional dependence of 'Vl¢ was Jjustified. It is to be
noted ihat the coefficiént of the nonlinear term must be
positive for a monopole solution to exist. An equation of the
type, VLQA =[] ¢+ [p] 2 , has no bounded solutions.
Usually, the density gradient 1s taken to be in the negative

x direction, so substituting K, = -K, in equation (2.17) we

obtain: l

2 ( _ Rm b — + }f_”l)__L ¢7~. (2.19)
g{)-.:' U ’LL'L) ’LLL 2w/ -

This is the complete equation to be studied in order to
see the difference between the work of Lakhin et al.(1987)
and the more general approach given here. The coefficient of

the nonlinear term is positive and the equation has monopole

solutions.

The numerical solution of equation (2.19) 1is done " using
the DELSQPHI code by Hockney (1970) for solving a nonlinear
Poisson egquation in a two dimensional cartesian system. The
grid is a rectangular 16x16 matrix and solutions are correct
upto a relative error of 1O~4. The code uses a mixed Fourier
transform - cyclic reduction method and has been widely used.
The boundary conditions were Dirichlet with the poténtial
zero on the boundary. ©So only bounded solutions were
examined. A larger grid size gave the same results. The
initial guess solution given was in the form of concentric

circles of diminishing value commensurate with the zero

boundary. Successive values of the coefficients of ¢> and
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§5lﬁere given the earlier solutions as.initial guesses.

The numerigal solutions of equation (2.19) for KT = 0,
givei lOCAlised circularly symmetric potential contours of a
monopole vortex as shown in fig. (2.1). These are similar to
the ones predicted by Petviashviii (1981) and Lakhin et al.
(1987). The potential is peaked at the centre and falls off
raplidly, almost exponentially, but déoreases smoothly to zero
at +the boundary. This fall off is consistent with the scale
of the density gradient. The potential reaches its e-folding
value on a scale similar to the density gradient, i.e. over a
distance of about ten Larmor radii. This is reasonablé since
we are studying structures with long perpendicular scale

lengths.

Introduction of +the temperature gradient would mean
solving (2.19) for a finite value of KT. Fig.(2.2) shows the
result for Kp = 0.01. The deviation from circular symmetry is
small. As Kp increases, the deviation becomes larger, as
shown by fig. (2.3) for KT = 0.1. However, monopole solutions
continue to exist. Therefore it is clear that for this
scaling of the temperature gradient, the ion parallel motion
alone is able to bring about the formation of monopole
vortices. In parameter regimes where finite k” effects are
important, e.g. +tokamak edge plasmas and magnetospheric

plasmas, these solulions would be of int@rest.
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2.

1

Circular potential contours for KT = 0,

K. = 0.1, u/0= 1.2 (Eq.(2.19)].

n
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6= 0.02,



Fig. 2.2 : Potential contours for KT = 0.01 [Eq.(2.19)].



Fig. 2.3 : Potential contours for KT = 0.1 [Eq.(2.19)].

44



2.5 Conclusion

In +this chapter we . studied the nonlinear éoherent
structures 1in a magnetlsed inhomogeneous fluid plasma. We
looked for these solutioﬁs of the'generaliSed HM equation,
including the ion parallel motion effects, in both one and
two dimensions. It was shown that one dimensional structures
are unstable to two dimensional perturbations. This leads to
the formation of two dimensional vortex solutions. The
important new nonlinear effect has been identified to be due
to the parallel ion motion. The effect of a weak temperature
gradient on these solutions has been studied and it is shown
that the vortex solutions become noncircular but continue to
exist. As mentioned earlier, the monopole seems to have
better stability properties than the dipole (Su 1988). This
solution does not rely on strong temperature gradients or
second order density gradients, unlike solutions obtainéd in
earlier studies. Hence it would seem to be a more likely
stable configuration in realistic parameter regimes. It has
been shown, therefore, that finite k effects play an

1l

important role in the nonlinear dynamics of drift turbulence.

In the following chapter we shall turn to the
formulation of one dimensional maximum entropy solutions of

the drift kinetic equation.
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CHAFPTER II11

Oy e ID:irneaxlssj_chlaa]_ Dx3i £t

Phase Space Holes

3.1 Introduction:

In this chapter we shall study the maximum entropy
solutions of the drift kinetic equation in one dimension. In
the last chapter, coherent stationary states of the
magnetised, inhomogeneous system were studied in the fluid
limit. Thus the phase space effects were excluded and
important fluid nonlinear terms identified.and examined in
various parameter regimes. New effects, leading to the
formation of vortices in physical space, were studied. We now
wish to take into account wave particle interaction to study

the formation of phase space structures.

As a first step towards extending Dupree’s formalism
(18982) of phase space holes as maximum entropy states, we
would | like +to consider the simplest system. The one
dimensional DKE is an ideal point to begin the formulation of
this concept for a magnetised, inhomogeneous plasma. In order
to study some possible nonlinear steady state properties of
this wave, it 1s important to note that a kinetic drift wave
is unstable in the linear limit, as against the fluid case,

which 1s always stable, since it does not take into account
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resonant wave-particle interactions in phase space. In thé
kinetic limit, the resonant electrons néaf the parallel phase
velocity undergo large ExB displacements in the direction of
the deﬁsity gradient. As'a result of this gradientlthere are
more number of particles giving energy to the wave than
taking energy from it, leading fo wave growth. In order to
achieve a steady state, there must exist some mechanism to
counter this process. In genéral the nonlinear terms in the
DKE arise due to the nonlinear ExB advection of particles and
their motion in the parallel direction. However, in the limit

when k, << k

o v the ExB nonlinearity is ignored, effectively

reducing the system to one dimension. The dominant nonlinear
mechanism here 1is then due to parallel motion. This gives
rise to phase space trapping of particles. In this chapter we
shall set up one dimensional phase space holes due to this
effect. There is a gualitative difference between electron
and ion trapping in the case of a drift wave. Since electrons
are responsible for the instability mechanism, their trapping
should give a direct modification of the groﬁth rate. The ion
trapping effects are small even in the kinetic .limit since
their thermal velocities are generally smaller than the wave

phase velocities.

Oraevskii, Sagdeev, Galeev and Rudakov (1969a)
considered the quasilinear theory of stability and saturation
of drift waves due to parallel trapping. It was shown that
coherent parallel +trapping in a single mode as well as

quasilinear diffusion due to many Wwaves can cause, a)
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steepening of the wvelocity distributién'of electrons and b) a
locél flaﬁtening of the spatlial gradient, near the» parallel
resohance; While the former is a stabilising effect, the
latter 1leads to an effective reduction in the growth rate.
This can be seen from the expression for the linear electron

response , calculated from the drift kinetic equation.

The first derivative describes standard Landau damping
due to parallel acceleration and causes the net shift in the
perturbed electron density to run behind the potential. The
second derivative term is due to the ExB drift of electrons
near resonance. This makes the net electron density run ahead

of the potential. When LOW> w as is usually the case, the

_* ]
latter effect dominates, giving a net growth. Therefore, a)

enhances damping and b) makes the growth mechanism vanish.

The problem of maximum entropy steady states of the DKE
with electron parallel trapping effects was examined by Terry
et al. (1987) in the full three dimensional geometry. They
made the assumption that, the electron distribution function
could be taken to be a function of 75 alone. So, f(x,y,z,v” )
= f(?é). In effect they ignored any independent x-dependence
of f in the form of a density gradient. However, this cannot
be assumed to be the only configuration of the saturated
state. In more realistic situations some modified form of the
density gradient 1is maintained in the steady state phase.

Also, in more than one dimensions the ExB nonlinearity
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leading to perpendicular physical space trqpping of resonant
particles becomes dominant at amplitudes‘lower than those
‘required for parallel trapping td be effeétive; The
assumption of f(qﬁ).ignored this effect completely since
Yf - f(¢p) = 0, vhen, £ = f(#ﬁ. This reduced their
problem to an effective one dimensional case and may
therefore be treated as a speclial case of the present

formulation.

In the following sections we shall systematically reduce
the system to a single dimension and formulate +the most
general maximum entropy state. Both electron and ion trapping
effects are considered in various limiting cases of the hole
velocity. Finally we shall apply this formalism to the case
of a plasma with an equilibrium temperature gradient. It was
pointed out in section (2.2) that the presence ofJa'VELscalar
nonlinearity gives interesting solutions in the one
dimensional fluid limit. This case will be modified with the
most probable phase space response with trapping effects.
Numerical solutions of the resulting equations for the steady

state potential will be presented.

3.2 Distribution function and entrovy:

We begin by writing the drift kinetic equation (DKE) for
a magnetised, inhbmogeneous plasma with a density gradient.
The equilibrium consists of é plasma in a slab geometry with
s uniform B field in the z-direction. There is an equilibrium

density gradient in the x-direction, no(x).
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The DKE is, »
Dy i+ Vi (Vif) Vi Tf T LBy £ =0
'&JL+ ~ AL N'L g I Ul ’rfn/) I Vl/jlu /

o

VL:A‘J/E‘*‘,Y/D’ ) E:_—Egb

N

Consider the electron DKE in this geometry.

Def + nggﬂgxf« “9x759\‘97£ + Y U, £

€.
b Z VE Oy f =0 o)

This equation was studied by Terry et al. (1987) for the
three dimensional pérallel trapping problem. However they
assumed that the second and third terms vanished identically
when £ = f( #’). With this ansatz the only constant of motion

in the steady state 1s the parallel kinetic energy,
. A ~
= —L m V, — e,
W/ = I i

Therefore the general solution of equation (3.1) in the

steady state 1is,
f= Flw)

This ) reduces the problem effectively to the one
dimensional case. Let us consider the more general problem
and not say anything about the dependence of f on x,y,z,vy,

We want to look for stationary nonlinear solutions of the
plane wave type in a moving frame. Then we can transform to a

moving frame with veloclity u,
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q) = Y + 02 — ”M,ij,f
so that, f(x,y,z,v“,t) = ‘f(x,fnkv”). u is the hole velocity
in the perpendicular direction and, typically, is close to
the drift veloclty, Va . The equation (3.1) has in general

the following two conserved quantities.

~ 2. P
£ = Ly~ c07 %,
2.
2
K = V + ®ce
wheré vV = C;V” - u. Therefore now the general solutions of

equation (3.1) is any arbitrary function of K and E,

f (e, w)= F (KED (3.2)

E is the parallel kinetic energy and K the canonical
momentum. This gives the complete description of the steady
state. The parallel trapping of electrons 1is present through
the dependence on E. In simple terms, the resonant particles
at u/ will get trapped in a region of velocity space around

t, }VI < (Zﬁ.ﬁzy;%nw)V% In the treatment of Terry et al.
(1987) the dependence of K has been ignored, removing all
gradients from the system. The equation (3.2) includes both
the parallel as well'as perpendicular trappiné information.
In order to study the one dimensional system we make the

following assumptions.

It is specified that, in the unperturbed state, the

density gradient has an exponential form,

e
=
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Further, we make the approximation, k

x'<< ky. Then, in

one dimension, the eqﬁation (3.1) reduces to,

V9~]J£+ — QV]/“ %Qﬁgkfnf

(3.3)

The RHS gives the correction due to the presence of the
density gradient to the one dimensional unmagnetised case
studied by Dupree (1982). The solutions of this equation are

given by,

Km V'
J((V/ﬂ): JIE) exp 'x&) ) | (3.4)

2
dﬁ: K%£/9 and g(E) is any arbitrary function of E. This is
the correct distribution function to be used to study the
parallel trapping problem. Kn = 0 will reduce this to the

case of Terry et al. (1887).

Particle +trapping effects are now incorporated through
the choice of g(E). In the original BGK approach (1857) the
potential structure §£V( W)) and the untrapped particle
distribution were specified. Then, in the simple case of a
electron plasma wave, the Poisson equation wés solved for the
trapped distribution. However, this solution 1is artificial.
Depending on the choice of #;(‘ﬁ) there are an infinity of
such solutions. One could equally well solve the 1nverse
problem. Specify all the distributions and solve for;?i”v ).
This was attempted by BGK (1957) and later applied to the

study of nonlinear ion acoustic solitary waves by Schamel
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(1972). But the arbitrariness in the choice of these

functions would persisﬁ.

Iﬁ -order to remo#e this ambiguity, the following
approach, as suggested by Dupree (1982), is taken. We are not
looking for any ad-hoc steady sﬁate. Only the most probable
one. So the restriction on the choice of g(E) 1is that it
should be commensurate with the maximum entropy state of the
system. The boundaries of +this structure will also be
determined self-consistently. The resulting potential ;:(qj )
would +then describe a phase space hole in the sense of

Dupree.

It is +to be remembered, however, that it is only the
form of g(E) in equation (3.4) that is being determined, not

of f(V,“)) as a whole.

The form of +the entropy to be used to describe a
collisionless Boltzmann system 1s an area of much
investigation. Lynden-Bell (1967) has proposed an alternative
form of the entropy. However, the subject has not produced
final answers yet. For lack of a better alternative and from
the point of view of familiarity, we continue to use the

Maxwell-Boltzmann form of entropy,

S = — [finf dxdy

It is obvious from results of the statistical mechanics
of the Boltzmann equation that the maximum entropy form of
f(X’ﬁ) would be similar to the Maxwellian. However we shall

carry out the process to see what the specifications are.
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3.3 Entropy Maximisation

We.shéll continue tﬁ'study the system where the kinetic
species is the electrons. Ions will be described by fluid
equations. This is a good approximation when the parallel
phase velocity u/g 1s close to or larger than the electron
thérmal velocity. Then the ions will not see the parallel
resonance and can be treated adequately as a fluid. Let FO(V)
be the equilibrium distribution of electrons. Let u/8 = u’ be
the parallel hole velocity. Then the amount of phase space
density that 1s regquired to fill the area of +the trapping
region in order to créate a phase space hole is, Fo(u’). This
phase space density is lost by the untrapped region in a
reversible fashion. So, the creation of the hole rearranges
the rhase space in the hole region irreversibly and
contributes to the change in entropy. But +the untrapped
region remains unchanged except for losing some density and
does not contribute +to the change of entropy. Then the

entropy of the entire system may be written as,

@ = m H[fhj'“fh" Fo (W) bn P (30 | 0/7.6{\/-# ATENS
h

where @ is the initial entropy.

ﬁ,(m): gle) exp (MV) ; (5.6)

Kp

as given by equation (3.4). We now maximise the entropy

subject to certain constraints. We want to keep +the total
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mass, momentum and energy of the system constant during the
maximisation process. Assuming that the‘regibn outside the
hole may be treated as a linear dieiectric, we can write the

constraint equations to be:

Mo ' : ™
- ) ; — (U
P, 7 fhfolva(v (1~ Fo0) | mv (5.1)
T, | E
where M P T . are the mass, momentum and energy of the

o’ o’ o}

hole. The definition for the case of general osclillatory
solutions will be modified and M,, P, and T, will be defined
as quantities per unit wavelength. These quantities, in
physical terms, refer to the hole density, hole velocity and

hole temperature, respectively.

a4l
The potential ¢J(W)) is given self consistently by the

quasineutrality condition,

Ne = e (3.8)

We now wish to find fh(V,W7) and the hole boundary in

velocity space, V(W}) that will make maximum. Using
Lagrange multipliers, a, b and —zil, for MO, Po and TO
respectively, we get two equations corresponding to

independent variations in fh(v,4)) and V(’q) on the boundary,

g(ZO:fJO"*]O(V(1+’”n3LE)+% + A&
K
+obv— ) § £ (8.9

b =o fC)“) SV [(fnnfr— Folnk) (310
+ (atbv=5)(fu-F)]
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Since both cgfh and $7V(°)) are arbitrary, from (3.9) we

obtain,

9le)= wb[%” bt X)V «-17.

However, we know from equation (3.4) that g(B) 1is a

function of E alone, fixing the value of 'b’ to be,

k) = — Km / e

Therefofe,
g(e) = expl T -a-1).

Equation (3.10) gives the condition that, on the hole

boundary,
F% (w) = ZFh (b7°7) y
giving
, E . Ky
J[h (vim) = F (W0 exp <E’ t ‘;;V) 7 (3.10)
when,
2 zL
K _ L Vo — __K%‘C [?Z:&Q ?LEE_J_
'EE TV T = 1= W\o(@t' ™ C/S+ww2<el

Thus the maximum entropy form of equation (3.5) 1is
determined together with the relevant limits in velocity
space where it is valid. Making the untrapped distribution

continuous at the boundaries, we can write,

fr. (Vi) = exp w’i[i(g Tl v) %j

when V<V , "/>V.,,,
(3.11)

This represénts a shifted Maxwellian. As Kv-—>0 this
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entire set reduces to the one studied by Schamel et al.
(1972) for nonlinear ion acoustic waves. Howe&er, " they had
also faken account of ion trapping. When Kn = 0, thg drift
wave branch will be absent and these equations will describe
the parallel propagating ion acoustic wave. In the limit of
6%( 1, the +trapping will be a very small effect aﬁd the
Boltzmann response for electrons recovered. € 1is the
temperature of the trapped region and for a hole 1in phase

density, must be positive, - C< 0.

The electron density is given by

Net)= [ Fovm)dv+ [Fluwr)dv
n h

(3.12)

The fluid limit is obtained when T >0 , giving,

a/«/
Me (M) = @xp (_—é> |
Thus (3.12) together with (3.10) and (3.11) gives the
most probable electron response. Note that by fixing the
value of 'b’, we are being restricted to a single value of
hole momentum Po. The cholice of T and u’  will give the

corresponding values of TO and Mo. Thus all parameters have

been determined without ambiguity.

As said earlier the ions will be treated as a cold

fluid, in the limit, O =7 ki Vi

We use the equations of continulity and parallel momentum

for ions in the low frequency approximation, in the limit kX
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<< ky. We retain parallel motion nonlinearlty and effects of

the order  of kl.ﬁ; ~ C>(1) in the polarisation drift

giving, _
2~
C
— / . \/9"7 )
B B wWer ( L ] ?6 (3.13)
~P 1 + = 9
+ 5 7 ¢
where Vi is now the ion fluid velocity, Vi = E}V“ - u. The

denominator in equation (3.13) arises due to finite Larmor
radius effects. Note that, in chapter II this term had been
ignored giving only the dominant numerator. Then the ion

equations become,

’ C
— VD gf
1;7 §b 7 f'f — ,7 ﬁf"j

S C
V%;2}7 VC = - %ﬁ? ;97 ?S (’1 l' o ;L7 ;é/)

Solving these, we get the following results,

ékﬁénvd/{é + k?

N Cn > 4.f -EL- 2
V. ( )
(3.13)
L
W — Mo, ~ ~ Mcag* ~y
W = 2y, 4+ o ¢+?B..£ 697 c;s) (3.14)

where W and K are arbitrary constants. W 1s the parallel
kinetic energy of fluld ions, with contributions from the
polarisation drift. Using (3.14) to eliminate Vi in (3.13) we

use the following boundary conditions to determine K and W.

at Y = o, 7,5\1:15'{)0(3”)7;\}:5/9%5;\’“
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and Vi = - » | | (3.15)

Then, using quasineutrality and equation (3.12) we can

write in normalised variables,

Ne () V(W)

o b =
77 exp (= KnVefuy )+ 1

(3.16)

The electron density has been normalised to its value
at, = .
P =P

Equation (3.16) describes the most probable steady state
potential of a drift wave with electron trapping effects.
When T = 0, the fluid limit for n (’v) is recovered, since

there is no trapping.

In chapter II we had studied the one dimensional fluid case
in +the presence of temperature gradients. Also, only the
linear part of the polarisation drift was retained there 1in
one dimension. So, both electrons and ions have been treated
more exactly. It has been solved together with the conditions
(3.15), numerically. Equation (3.16) can be written in

terms of an effective potential,

3?7 Cf = 0/35 %eﬁt (‘75) (3.18)

The concept of defining an effective potential has been
used 1in the study of shocks in plasmas (Tidman and Krall

1971). For an ion acoustic shock, this 1s called the Sagdeev
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potential, It has the characteristic shape given below.

F. |t g fT
I

Loy -

The equation (3.18) gives +the description of a
'pseudoparticle’ moving in the potential S%L . The space
variable becomes the effective time variable. The motion of
such a pseudoparticle in §2igives the properties ofﬁ%( 07).
In our case the RHS. of (3.16) is not a function of ﬁﬁ ,
alone but also of 297<%. So it is not possible to write down
an analytic form for E% . However, we have drawn an analogy
with this description to explain the boundary conditions
used. q%) is the turning point on the trajectory of such a
pseudoparticle. At this point it is given an energy & and we‘
look for oscillatory solutions of the system. This means
specifying the value of 9?¢ at 7% . ’v‘acts as the time
variable. Obviously, for larger values of & , amplitudes will
also be larger. In a single period the pseudoparticle will
bounce upto some value ¢C and bounce back. The limit on &
will come from,

2
Wt 26" gar + O A

= ¢Wﬂa><
for a given value of u. This is similar to the condition on

2

It

O

the Mach number of an ion acoustic soliton. Since ¢> is &
o]
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turning point,

. : 0
opd | =&, FE| =0
o 9/50 ' . ,C?SO. '

The effect of increasing ¢ can be seen in Fig.(3.1).
Curve (1) is the fluid électron 1imit and corresponds to the
solution of the one dimensional problem in equation (2.13),
when, KT = 0. Note that the introduction of trapped electrons
has lowered +the amplitude for the same set of Dboundary

conditions and values of K., u, £. The minimum of the

n’

potential has been fixed at 55 = 0.

T 1is ‘the temperature of the particles in the hole
region. The distribution function for T > 0 is shown in fig.
(3.2). As T becomes larger the dip becomes deeper. As @&
result a larger number of particles traveling close to u’ are
now avallable in the trapping region. So it can be expected
that saturation should take place at larger amplitudes. This
can be seen from the fig. (3.3). As T becomes larger, the
amplitude increases, together with the wavelength. The
wavelengths of these periodic structures are typically of the
order of a few ion Larmor radii ( é ), as expected from the

results of the one dimensional treatment of chapter II.

3.4 A 1-D rectangular hole:

It would be interesting to see analytically how this
maximum entropy state differs from that studied by Dupree
(1982). Simple approximate solutions for an isolated hole may

be obtailned by using the rectangular hole approximation
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Fig. 3.1 : Potential showing effects of Ej:
(1) The fluid limit of electrons

(2) K, = -0.1, u/® = 1.2, £ =25, £=0.3

(3) & = 0.1
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Fig. 3.2 : The complete distribution function for T > 0. The

dip in the trapping reglon deepens with
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Fig. 3.3 : Potential showing effect of
K, = -0.1, we =1.2, $=0.36, £=0.11:

(1) T =0.1, (2) C = 0.23
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(Dupree 1982). The shape of the hole boundary 1is taken to be
a rectangle instead of the one describéd by equation (3.10).
'When"the‘holé‘is‘Shallow, the hole depth can be approximated

by a constant. The description of such a hole can be given

by, ’ ,
~ KmV /e
f (V/WJ) = & +  Fo (1)
when, — A7) £ £ 47/,
— Av/2 £V £ 4V/2

~

I

Fo (20) otherwice . - (3.19)

for a hole moving with velocity u, and located at‘v = 0. The
scale lengths in phase space, Av , ALV ,will be determined now

from entropy maximisation.

Fo) ]

T

>V

For the sake of simplicity we shall treat i1ons linear,

giving,
YL( 2V e p
R 9” .
M, W Te (3.20)

Equations (3.19) and (3.20) describe a special subset of
hole solutions of the drift kinetic equation described 1in

section (3.3). The parallel motion nonlinearity and FLR
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effects studied in chapter II and. section (3.3) aré
neglected. ZElectron trapping effeéts aré retained ‘upto the
Vﬂég' dependence of velOcity limité of thé trapping reglon.
Higher order effects are ignofed. The trapping parameter, ([,

v
is replaced by f.

We now use the maximum entropy property of the hole to
obtain the scale lengths xﬂj and AV , subject to constraints

that MO, P and TO as given by equation (3.7), are kept

o

constant.

Using equation (3.17) and the definition of entropy

given by equation (3.5) we get the expression,

"o
Mo
g = T\QC%) (3.21)

for the entropy.

Using (3.19) and (3.20), we get the following -equation

~
for the potential ¢(rn),

o J5) ¢ = 2Te 7 22 eimh (F22))

o e Ko - 2

-~

ol
wheve, A = (1+ Vd/%)/ ls (3.22)

Then using standard Greens function methods we can solve
equation (3.22) to give the hole potential to be,

Iy T fﬁkg_ ' Km Av
(7) = —’-2 c S]Wh("‘““"" P
# ) e L) Ko 2 de
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[7 - AWl sh [ )_7 | ._ | | :(3.23)

The hole mass, momentum and energy can be evaluated,

~ e _ K AV
Mo de [)m,av L [ Km AV “77
Pl
T, = )<%1Ma leﬂv " _K“ﬂ P@
2 < ¢ b de Mone

L
LoIMTe e = 7_(va — AN\
P e £ o simi( T Jhar a3

In the limit of Kn = 0, these quantities revert to those
calculated by Dupree (1982). Using these and maximising 3 in

(3.21), we get the following relation,

[AV)lgl‘le Km A V> Q0 975 (O)j (@)
(3.24)

where,
Ay = Mo /o,
amd g Y) = éewe’—ft)
J [J (-9

Flo) = ¢ (7=0)

In the limit of large scale length density gradlents or

( A—VJ)Q‘/\J QgJC())

recovering the parallel trapping limit of Dupree (1982).

small Kn’
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There are corrections to this result due to the finite Kj.
For a specified value of Hq—and QEYO) eqdatioh (3.22) can be
solved for A V. The potential ﬂﬁ(’ﬂ ) in the hole region 1is
plotted in fig.(3.4). It has the right sign for trapping
electrons and is an isolated hole solution wunlike in the
previous section, where we had looked for Qscillatory
solutions. Aﬁ)typlcally varies from a few times K; to some
fraction of K, 1. Outside the hole region the ¢>(“)) decays
with the e-folding length,A . Note that, the solutions
studied in section (3.3) can be regarded és a periodic array

of such isolated holes.

3.5 Ion trapping effects:

In section (3.3) we have taken into consideration the
nonlinear'fluid ion response. This was a good description as
long as u’, the parallel hole velocity, was close to the
electron thermal velocity. However, typically it lies
anywhere between the ion and electron thermal velocities. If
'I‘i = Te, then as u’ gets closer to the sound speed Cs’ parts
of the ion distribution will be affected by the resonance and
get ‘trapped by the wave field. Also as pointed out by
Dupree(1982), the essential basis for this formalism is that,
whatever happens in the nonlinear fegime need not be
predicted 1in a perturbative way only on the basis of the
linear theory. So, it could very well happen that there are
stationary nonlinear modes propagating close to the ion
thermal velocity, even though linear theory does not predict

them. In this parameter regime, we shall take 1into account
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Fig. 3.4 : The one dimensional rectangular hole potential.
Aﬂ) = 2.208, Kn = -0.1, w6 = 1.2, 6 = 0.02
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the ion trapping effects. In the ion " DKE, perpendicular
veloéities hOuld ’consiét of the ExB and the .polarisation
dfift as given by equation (3!13). vy is replaced .by the
phase space velocity V = QV“ - u. Then the steady state 1ion

DKE in one dimension becomes

v 9m f eoCn 0, L _ Ckn ~
TV T L -
—+ V97 BLOC"C 5 Njf

The general solution for this equation is,

v (E;) € ”&VMH-&BQ%N
Fflvm) = 9glE) exp (7 7, Y,
h : L
where ‘(L _ Q3CL 9, " C
*2’_/\)
E, = %v1+&8¢+ 231{795)
as in equation (3.14). The general distribution function to

be determined, therefore, can be written as

9. (Es) wp( kw)(?ﬂ/ e 7>)

L_i.:
=
(Va}
i

where ‘s’ denotes the species.
. -
m 2 2 _ _
E&:::. z\/——@Bgé/ q/ﬁ”‘mé{‘;alyﬁ -
0o
. L " _ e

The total entropy of the system %o be maximised is,
G‘: E(NS ijIW]O{\/(j[h/'Y\:)[h“ OS/MFOS)
S h
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We now impose constraints for the'maximisation. It turns
outv that it is not sufficient to say that the totél mass,
momentum and energy be constant. All the Lagrange muitipliers
do not get determined self consistently in that case. This is
obvious since instead of a one specles case as in the last
section, we are now dealing with a two species system whose
masses and charges are different. In order to take into
account these we must introduce two additional constraints.

Apart from saying that MO, Po, To as defined by,

riMo *—7H5.

Pe Zfﬂs f}/dw]a{v(}ft\g“ﬁasj Ms V
S

T; L Es

be constant, we also say that the total current and charge of

i

the system should remain unaltered, giving the following two

additional constraints:

FoL |
) = 2. N fja(”yd\/ (fh; Fo.@)
Jo S Lo q.V

1

These additional constraints regardiﬁg constancy of
total charge and current were not necessary in the last
section. This is because, for a single species, constancy of
total mass and charge and constancy of total momentum and
current are degenerate constraints. Now introducing the
Lagrange multipliers a, b, ~"C~1, d and e for My, Py, To, Jg

and QO respectively and carrying out the maximisation
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processes, we obtain,

| e, »
fios = e [-ams b v - day-et 1]

Or

35(‘%) = eﬂ]—’ [%'/‘V‘(%“E”d%)wamj
Q v
| —eq .~ ,(/7‘-7{5 37¢)J

It is to be noted that the variations in the electron
and ion trapped distributions are taken to be independent of
each other, as are the variations in their respective
velocity boundaries. Knowing that gq is a function of Es

alone, at all times, we get the following algebraic equations

for the Lagrange multipliers.

tﬁmg +C{15: KM/O{\S

2~
awe + eqe = — v (1+7s 97?5)

Thus, a, b, d and e are determined completely, fixing
the values of the hole mass, momentum, current and charge. T,
the hole temperature remains a parameter. Then apart from the

electron distributions in equations (3.10) and (3.11), we get

the trapped and untrapped distributions of ions to be,
) K }/l G
. v — - '”r"( 4 &Ry flal
jfb%( ) = QJX}){ Te [’" BT ‘) %J
When V>Vy , VLV
Gm d,
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Fni (vm) = Fo () o p =2y)
ohen, Vo £V & Vi

2\
L o=
3L

whey e .
.  [zeg* ,2/V)ct9
Mf = Zﬁ:l i [- (W P)+ 2 [

#/ is related to the maximum of the potential.

In the limit of T — 0, we recover the cold fluid limit

of ni(”q) given in the previous section.

Using these equations and gquasineutrality we can write

the following equation for the potential 75,

nd = £

This P7equation was studied numerically in various
parameter regimes. In case of the fluid ions it was seen that
as u increases the amplitude of the potential decreases. This
can be understood from the fact that as u increases the
parallel resonance shifts further down the tail of +the
distribution. So lesser number of particles are available for
trapping, even when C is kept constant. However, for u’close
to Cs it was found that the amplitude of the potential in the
trapped ion case was smaller than the fluid ion case for the
same set of initial conditions. This is shown in fig. (3.5).
The decrease is small. This can be understood again because
the ion distribution function sampled by the resonance 1is
very small, the effect of trapped ions 1is proportionately
less. As u’ increases beyond C5 this effect becomes

negligible and the fluid description holds good.
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0-241
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0
Fig. 3.5 : Trapped ion potential.
K, = -0.1, uwe = 1.2, ¢ = 0.24,

£ =0.11, T=0.1

(1) Fluid ions, (2) Kinetic ions
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In the next section we shall »Qonsider a further
modification in the form of an equilibrium temperature
gradient,_This is motivatéd by the interesting physics of the

one dimensional fluid case studied in chapter I1.
3.6 Temperabure gradient effects:

In this section the maximum entropy state of a
magnetised, inhomogeneous plasma with an equilibrium electron
temperature gradient, due to phase space trapping 1in one
dimension will be set up. In chapter 1II, +the stationary
solutions of the one dimensional fluid drift wave were
studied 1in the presence of an electron temperature gradient
(equation 2.13). It was shown that the scalar nonlinearity
due to this term is important in certain parameter regimes
and is, in fact, the most dominant nonlinear term. There, the
electron response was taken to be adiabatic and given by the
Boltzmann relation. However, as pointed out earlier, as the
amplitude of the modes become large enough to trap particles,
this 1s no longer a good description. In the following
calculation, it will be modified to incorporate the parallel
trapping effects. So, we are now applying the formalism for
entropy maximisation, developed in the earlier sections, to a
known case of 1interest, to see the difference 1in the

properties of the final steady states.

In section (2.3) the parallel nonlinearity of fluid
ions was also taken into account. In this section we shall

continue to treat ions as a fluid and use the equation (3.14)
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to give their steady state response. So! their parallel fluid
nonlinearity and the polarisation drift effects are also

included.

As before, if we assume that there is an equilibrium
temperature gradient in the x-direction, such that, when kx

<< ky, i.e. in one dimension,
ng/f = K7\+ T}Qf€%~f

Then in place of equation (3.3) we now get the following

1-dim. form for the DKE of electrons.

~ 1 i
Vdw f + E/E_—r On b OTS 7 ;—%i S I f

C.K o ‘
= B 97¢ JL (3.25)

For KT = 0, this reduces to equation (3.3). We assume
that temperature T appears only as the normalisation of the

energy E, therefore,

1=
QT]C = Q(E/T)jc ) QT [?)

AQEJC.}%.

Substituting in (3.25) we obtain,

s
c K ~ : o b Do, 4

(l

c K ~J
. =D (3.286)
= )7 f

Apart from the parallel nonlinearity in the third term, '

there is an additional nonlinear term due to the temperature
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gradient. This term is similar to the scalar nonlinearity in
the equation (2.9) énd studied by PetviaSh&ili (1977). Inm
.fact, if, the parallel nonlinearity is neglected. then, the
trapping effect would vaﬁish.' The velocity average of
equation (3.26) would then reduce to the Boltzmann relation
for electrons with a temperature gradient. Then the
equations (2.9), (2.10) would be recovered. It can be seen
further +that E is no longer a constant of motion. Changing

the variables,

%(an) = %?(U/E);

equation (3.26) becomes,

v CK‘T E c?)J . C){/w’) ~
NF- % e T e f = 50T

Then, the new equation for the characteristics 1is,

- oK ~ £
o €

5 7 e

where y
pIR 1~J2
viey = [ S(E-eo @) ]
This equation can be solved perturbatively for the new
constant of motion, ﬁ,
— k@7‘
_ r Mv)-
Then +to lowest order in ( Kp7), the form  of
distribution function 1is,

i

* < Ky V
<Le

f(vim) = 9LE) exp

Treating ions as a nonlinear £luid as in equation (3.14)
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and following the procedure for entropy maximisation given in
sectlon (3.3), we get an altered trapped electron

distribution furiction:

' E . Ky
th (vy) = Fo(n) QX}? [z: T e
h , " )
rhen E ~t- .)._<_:>./.)__\-/ = O
C £ g
)
2 2 /
= V — Km C + </Z: Km?~ + %méfi mi)’L
* 24 Ve boetVpg 7

where Vbo is the positive boundary value in the limit KT = 0.
Again, making the untrapped distributions continuous at the

boundaries 1in veloclty space, we can write,
) 2
| e TKm "
3 - St (g 2V S
jét (V/W)> - (ija [jTt {" ( + Q@ ’) %Lg

when | v<eve , V= Vg

Using these distributions and the expression for ni('n )
in equation (3.14) we can now solve for %y(’j ). These
distributions reduce to the fluid limit when C = 0. The
nonlinearity due the T7z&in equation (2.14) has now been
modified by the presence of the trapped particles. Fig. (3.6)
shows the results of the numerical calculations and the
difference Dbetween the fluld electron case of section (2.3)
and the effect trapping. As KT increases both the ahplitude
and wavelength 1increase. However, the amplitude of the
trapped electron case is lower than that of the solution of
equation (2.14) for the same set of parameters. The

difference between the amplitudes for successive values of KT
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0-376

0-125

Fig. 3.6

. Temperature gradient case.

K, = -0.1, u/@ = 1.2, 42: 0.25,
= 0.11, T = 0.1:

(1) Kp = 0.2, (2) Kg = 0.1,
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is small since only first order terms in (ACTé ) ‘have been

retained.

Thus we have successfully applied the formalism of
maximum entropy stationary states to the interesting case of
one dimensional structures with equilibrium temperature
gradients. It should be remembered, however,‘that‘the fluid
one dimensional solutions were unstable to two dimensional
perturbations. This analysis is not attempted here for the

trapped electron case.

3.7 Conclusion

In this chapter we extended the theory of phase space
holes given by Dupree (1882) for an unmagnetised, homogeneous
plasma to the case of a magnetised, inhomogeneous plasma.
Electron and ion trapping effects were considered to build
the most probable BGK modes in one dimension. In chapter II
we had studied the stationary solutions of the fluid drift
wave and found that they are vortices in two dimensional
physical space. The solutions studied here are phase space
structures in one dimension. The fluid solutions were
essentially a resul£ of the ExB and polarisation drift
nonlinearities .of ions. Therefore it would seem that in two
dimensions there could be a coupling between these two
effects in some parameter regime. The ExB nonlinearity would
come into play when kx ~ k. and then the =system can  no

Yy

longer be reduced to a one dimensional form.
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It would be appropriate at this point to explore the
regime of existence of such states. These steady states may
be regarded aé saturated.states of.the drift ihstability. As
the wave grows beyond the linear limit, the amplitude would
become large enough for the resonant electrons near ®/k to
be trapped in the potential of the wave. In the limit of
sufficient density of trapped electrons the instability 1is
quenched and a finite amplitude steady state established. In
the limit k, << ky used here the existence of such states 1is
possible, even though the ExB nonlinearity has been 1ignored.
However Ott et al. (1976) have examined the stability of
drift waves with electrostatically trapped electrons in the
presence of collisions. It appears that collisions can induce
a detrapping of particles from the wave filelds to‘give rise
to a net growth. So the stability of these one dimensional
phase space holes against collisions may restrict its
stationarity to time periods smaller than the collisional
detrapping time scales. Their stability to one and two
dimensional perturbations will also have to be explored since
the one dimensional fluid structures of chapter 11 were shown

to be unstable to these.

In +the next chapter we shall go on to the more complex
problem of setting up two dimensional phase space holes with
contributions from both the ExB and parallel phase space

nonlinearity.
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CHAPTER 1V

Tywo dAdAimensional drx3I £t

rphase space holes

4.1 Introduction:

In +this chapter we take up the more complex problem of
two dimensional maximum entropy states in magnetised,

inhomogeneous plasmas.

In the preceding chapters we considered the exact
solution of the nonlinear equations for such a system in two
special cases. The first was, the fluid vortex solution of
the generalised Hasegawa-Mima equation involving parallel ion
nonlinéarity and a temperature gradient. The next step was,
to find maximum entropy solutions of the drift kinetic
equation 1in one dimension. Parallel electron trapping,
nonlinear fluid ions, parallel ion trapping and temperature
gradient effects were examined. We set up the mos£ probable
steady states and studied their properties.l The underlying
assumption for the one dimensional nature was that, kx << ky.
We now wish to study structures where ky, -~ ky. Then the
problem becomes two dimensional and the important ExB

nonlinearity leading to physical space trapping of the

particles comes into play. This trapping takes place when,
2L
(‘,Jﬂ?ﬁ/Bw v 0(”)
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As discussed in chapter I, there'are - several }parameter
regimes iﬁ' whiéh effects leading to the saturation of the
drift tufbulence have been exémined. Earlier theofies like
the resonance broadening theory of Dupree(1967) and the ion
Landau damping theory of Ching(1973) examined the importance
of resonant ion nonlinearities. These models predicted thev

saturation amplitude of the turbulent spectrum to be:

S%/% v Km/k%

These theories directly took account of particle trapping

~

due to the perpendicular ExB resonance effect in an obliquely
propagating wave. The broadening of the parallel ion
resonance due to the ExB trapping of ions predicted by
Dupree(1967) brought a part of the ion distribution into the
resonance leading to ion Landau damping. The assooiated
trajectories of particles trapped in the physical space were
first studied in detail by Ching(1873) in a completely
coherent single mode picture. The process of saturation of a
single drift mode was due to the shifting of the ion parallel
resonance into the the bulk ion distribution as a result of
the perpendicular trapping of ions. The drift wave then
Landau damped heavily and saturated at a finlte amplitude.
However, unlike the resonance broadening theory, the

resonance here remained sharp.

In this chapter we shall not attempt an analogous
treatment taking account of resonant ion dynamics.. Attention

will be focused instead on the resonant electron
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nonlinearities, keeping the ions in_the £fluid 1limit. These
were first studied by Lee et al.(1984) through gyrokinetic
partiqle- simulations. A more détailed stud& of the role
played by the ExB trapping of resonant electroﬁs in the
saturation of drift turbulence was doné by Smith et
al.(1985). Their conclusions were reviewed in chapter I and

will be repeated here for the sake of completeness.

The system studied in the gyrokinetic code was, to Dbegin

with, more coherent than that of Dupree(1987). A few modes
| were 1identified as being most dominant and contributing to
the particle fluxes observed during the simulation. In the
collisionless limit it was found that the dominant saturation
mechanism at low levels of instability was the ExB advection
of resonant electrons. No ion heating was observed so the
Ching-type mechanism of ion parallel acceleration was absent
and ions could be treated adequately in the fluid limit, with
their nonlinear ExB convection and polarisation drift
effects. Parallel eleétron acceleration was also seen to have
only a higher order effect and could not carry out saturation
by itself. In the weakly unstable limit (@ = 0.01) there was
a small electron flux that could be effecti&ely inhibited by
the ExB advection of the resonant electrons. The saturation

levels predicted by this mechanism were:
Y
§7\/% ~ (Kv\/}z%>< L/co;e)

So, when '{L < Wyg , the electrons were the saturating
species. However, for 6} = 0.002, the instability was

stronger and the electron flux could not be effectively
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contained by their ExB advection. It ﬁés seen that when the
instabilityb is strong or Y{,” Wy then the  steady state
reached also has a substantial contribution ffom the ExB 1ion
nonlinearity. The energy exchange between the dominant modes
leads to an enhanced electron Velocity diffusion 1in the
parallel direction. If then the lons are treated linear there
is no saturation. The diffusion induces a nonlinearly
genera£ed phase shift between ion density modes and the
potential, leading to growth. The only mechanigﬁ to
counterbalance +this phase shift is to bring in the 1ion ExB
advection. They can still be treated as hydrédynamic,
however, since ®/k >> Vthi' This effect 1s seen to be
important even in the absence of collisions for sufficiently
small values of ¢ (Dimits 1988). However, due to the semi-
coherent nature of the system under consideration, the
resonance broadening mechanism was still not important. The
only similarity was that, saturation was due to a balance
between the electfon and ion fluxes in the large amplitude

limit.

As was pointed out in chapter I, the basic difference
between all these efforts and the model developed in the
present thesis 1s that, there are no particle fluxes in the
saturated state. These arise primarily due to ilncoherent mode
coupling effects which, by definition, are absent in this
treatment. Therefore, the absence of any source - of
incoherence in the system (collisions could also contribute

but are not included) is the major difference between the
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earlier theories and the present approéch of studying maximum
entrépy céherent steady statés.v The incoherence would
possibly “enter when these st:uétures are no longer .isolated
and start interacting at least weakly. Then particles could
get detrapped and theré could exist some finite particle
fluxes. However, that interaction is out of the scope of this

thesis.

Further, it is interesting to note thatvthe electron ExB

4T

nonlinearity becomes important at lower amplitudes than that
required for their parallel trapping to dominate. This can be

seen most simply from the comparison of the two trapping

frequencies.
~ 2
_ kg gl R
QDE;KB o ~“~f§~ ! 8 Mo

Therefore, the estimate of the amplitude will be given by:

o~ ~
ed’ 9 o | ¢

: c - ) whewg¢ , = —
Te S*

R L
and, kj_ 85 ~ O /1/).

Yz

R P
When § ~ § , then both effects have to be accounted for,
7 L
but when, O < g , the dominant mechanism at low amplitude
is +the ExB trapping of resonant electrons with corrections

due to phase space trapping.

In the following sections we shall treat two separate
cases regarding the comparative welghtage of +the various

nonlinear effects. We shall first take into account the

86



entire nonlinear electron dynamics but treat the ions 1ineaf
in the regime of ¥, < Wy . Some limiting cases will be
recovered analytically and we shall also solve the problem of
the coﬁpiete maximum entfopy staté in such a case. So we have
gone one step beyond the work in chapter II1 and included the

effects of the perpendicular motion of resonant electrons.

We shall next present a model to include what seem to Dbe
the two most dominant saturation mechanisms at  low
amplitudes. Both ion and electron ExB trapping takes'p}ace at
the same levels of amplitude. So the correct procedure would
be to incorporate the perpendicular trapping of both species
in the kinetic 1imit. However, we shall not attempt this
complete problem here. Instead, we shall treat the two most
dominant nonlinear effects leading to saturation isolated by
the simulations: the ExB trapping of kinetic resonant
electrons and the fluid ion ExB convection. Some methods
learnt in the study of vortex solutions of fluid drift waves
in the second chapter will be applied to study 1interesting
monopole solutions in this case. The nonlinearity is entirely
different from the fluid case. There, 1t was the parallel ion
motion +that led to the formation of these Structures; here

the ExB trapping of resonant electrons and the convection of

fluid ions will play that role.

It would be appropriate to add a note about the processes
leading to an increase in entropy in the situation considered
here. In the earlier chapter the mixing in phase space due to

parallel +trapping and the resultant modification in the
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velocity distribution in the trapping fegion'was the cause
for the incfease in entropy. However, the dominant mechanism
here is. due to the reairangement of +the physical space
density gradient. This is reminiscent of +the quasilinear
theory where in the saturated state the density gradient in
the resonant region is flattened out. However, it was seen in
the simulations of Smith et al.(1985) that steady states with
finite density gradients in the resonant region coq}d be

achieved. We shall look for such generalised solutions. The

flat gradient would be only a special case.
4.2 Two dimensional structures:

In the last chapter we found that the electron DKE in the

steady state has solutions of the form:

]C(%/W/V) = £ (K, E),
) = Vv —+ OQ(;Q,QQ‘CL‘)

3
£ = émvl—— ¢ e g

The entropy of the system with a phase space hole 1is

given by,

= om f//a{v(%)dx (I f = B, b Bolw))

In the most general two dimensional system the constraint

equations would be,

l\;: = ’Y\fffdvdv)d?t (fh 7{1)) ‘::\qKJ )
To E

where f7 (u,x) is the untrapped or equilibrium distribution.
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We wish to determine fh and its boundary in the velocity
space by maximising fﬁkeeping MO, PO, To Constant. This

gives us two equations:
th: QX}) (é“‘b)@‘a‘ﬂv) J

and Fo(u,x) = fh on the boundary. -1/¢ ,a,b are Lagrange
multipliers as before. F_(u,x) is the equilibrium
distribution and a function of x. We choose the equflibrium

gradients to be of the form,
2K

£o(w,x) = F () e

FO has an x-directed density gradient as before.

Therefore, on the boundary,

K

K =
ﬁ; (QL) e — QJ‘ﬁ> ( = - bk — Cl~7’> .
The equation of the boundary 1s given by,

£ _ bk - K, = = const,

C

e Fo () .

I

The complete distribution function is,
fo (0,v) = Fo(u) exp (57— bK)
(m +he hole YEj:'om
. SN . (4.1)
= o (w) othevwice .

The hole boundary in velocity space is given by,
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b . Thep™~ 2T 2
Vi = = t — }757“ ?(13&3((;9*/&,)
b N e
~- ™
These equations give the complete description of the
nonlinear electrons in the maximum entropy steady state. The
combined dependence of the hole distribution on E and K takes
account of both parallel as well as perpendicular trapping.
This can be seen from, 1) the J(f dependence typical of
parallel +trapping and 1ii) the x-dependence due to physical

space trapping, in equation (4.2).

We shall treat ions linear and write the quasineutrality

condition as in chapter I, to give,

LV ed
(fw= 5-1) }Zj = [dv (f- Folem) 0
c h

Note +that unlike in the case of the one dimensional
problem ’'b’ does not get determined. For different values of
b, P, will take different values. Also it will determine the
form of the gradient in the mixing region. Bo we afe looking

for general solutions of the two dimensional problem.

Equation (4.3) will have to be solved numerically. We
shall, however, do a simpler calculation first in order to
see the essential physics of the problem and recover some
known results. The solution of equation (4.3) will be

presented later in the light of these limiting cases.
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4.3 Rectangular hole approximation:

In.the last section'we maximised entropy to find the form
of the distribution_funcﬁion in the mixing region and 1its
boundaries in velocity space. fhe resulting equation (4.3)
does not give any analytical insight into the problem. So we
shall do the following reduced problem, following section

3.3.

A

We assume that the distribution function in the mixing
region 1s known to us. Its boundaries in phase space, 4%,
quand AV , will be considered to be parameters. Then the

‘entropy will be maximised to find these parameters, keeping

M P and TO constant.

o’ o

If the fluctuation level is small, then we can write the

hole distribution to be:
i Km K/«
JZL‘I (%/w)/v) == JE €. &

when, — Axfy. & 2 & A%y,

+  Fo (um)

—A /2 £ £ A7/,
—AV)y L v £ Av, (4.4)

= F% (Qt,qi) otherwilse.

Using this we can calculate the following gquantities,

L 2MM AL A Kon AJC \
M, = 7] Le 9 ( 7 t)
Kmq 7[ IML‘ 2 Kp ’

(4.5)
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P, = LM [Knte oy (akkny o)
| Sl e

Kom 2 g, | - T,
- | 2~ A v |
T, = Aﬁé? ( e ) [ik?n AR _ 2-j%)k30;]
cKE 2 Km: F Ko & Lo Mo
L, 2
b Mo KeT 40 " ) (4.7)
24
where, AN = AV 4, A ., and the entropy can be

evaluated to be:

A
Mo f
0" - /7'\/\ ‘Fo(%l%’> '
~no
Equation (4.3) gives the equation for ¢>(x q))'

[Vﬂ+ (1+ VA/%>/&2]§_?€/ _ 2(6{5 %(ij;@
2

K.
5 (4.8)

_ J%(V”)’
G (=i )= = z);_ Z (o, () e ’

where Gm(x,x’) satisfies the equation,

Define the Green’'s function,

(3= 1) G (an) = & (=),

and is given by, .
| - {=x')
G, (x-2') = - A e /A
where, -2 2,2 V4 ,/ f’CL
A= (1 khwm ts /%) 5

Therefore is given by:

g?(f?(,’)) = WM mL\(AKf’
Ly e Kon R s re
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- ”gm(kmmg(4 o ()

(4.9)
The potential energy part of T, gan now be evaluated,
) 2 ~o Ky K/
Tope = ~€6 f//wndkswe moe
A% —-M—/A
_ BoMe  Sim (kmd1/2) A Orte T4
T ke an Ax @~eﬂzm@
-~ L
%Mﬂ,ta::— &9¢{%:@7:q)
T, = Tere T lope (4.10)

We need to maximise ( in order to find A=, A’7 , AV .

Differentiating (4.10) with respect to A7 keeping Mo, P
~

(0]

constant and putting lQACL'f = 0, we get the following
results,
A ro 21
= /k”m (4.11)

and ‘

K [Re47) 2

’Y]AKa . e E(o A
(AK) S % = + 3("‘)(4 12)

% T A '

where,

) (94 € 1)
3 (3) - é\(j Y (7 -—3/1)

Consider the following limits of equation (4.12).
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1. As K, — 0 and 6 < 1,

)

. )
[4K) 5~ %%9 # () 9 (}(?:) (4.19)

(A_K)z ro

Or,

Mo
2

This recovers the parallel trapping 1limit with the
dependence of square root of potential. The function g
introduces corrections due to the two dimensionality of the

problem.

2. However, for @ << 1, Kn small but finite and for small

amplitudes egﬁ(O)/Te < 1, we recover the limit,

F09(4%) [ s om0

This is the case studied by Lee et al.(1984) and Smith et

AV 2

al.(1985) in conslidering the pure perpendicular trapping of

electrons. They get a Hamiltonian for the particle motion in
~ .

a known potential ¢>(x,7)) to be,

, c ~ W - k:/VH
H = I ¢ (™) + k.

This 1s also the result derived by Hirshman(1980) for

physical space trapping in an oblique wave and gives the
closed trajectrories in (x,ﬁ ) space discussed in chapter I.
Far away from the resonance the +trajectory of a single
particle gives straight lines in the x- 7% plane. Near the
resonance they close giving the trapping effect. We have

recovered this result in equation (4.14). It 1is therefore
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clear that for finite density gradienfsiand small amplitudes
the electron dynamics, especially their ExB advection
effects, dominate. Equation (4.12) can be solved for values

of A7 and 4V in various parameter regimes.

Fig. (4.1) gives the behaviour of ¢> as a function of x
and W] from equation (4.9). It falls off smoothly and has the
correct sign for trapping electrons.

As 1is shown in fig.(4.2), the fall of ?é in x -becomes
less sharp as élis.increased. In the limiting case there
would be a very shallow potential profile in the hole region
and would essentially correspond to the parallel trapping

limit.

These results are now used as inpuﬁs to the numerical
solution of equation (4.3). We look for solutions that are
periodic in ’7) and bounded in x. The results show a
surprising degree of matching. The value of b is varied from
—Kn/,(ﬁ to 0. It is seen that the solution does not change
character very much except for the value of the amplitude.
But the value of thas the same effect as predicted by the
results of the rectangular solution. Fig. (4.3) and (4.4)
show that as 91-increases, the potential profile in the x—7
direction becomes shallower. Thus we can say that the
rectangular hole 1s a good approximation to the actual
complete problem. It gives the essential featurés of the

structures and 1is easier to handle, without losing any

significant information. Note that while the rectangular hole
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Fig. 4.1 : A 2-d box hole. © = 0.01, ¢, = 0.433.
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Fig. 4.2 : Box solution for © = 0.02, ¢,: o.113.

97



Fig.

4.

3

~—
e T ——, i
e

—— M

A 04E-01 T

Solution of equation (4.3) for © = 0.01.

98



R

—1.04

L

B0

Solution of equation (4.3) for ©

99




has a finite potential on the boundary, . the solutions of
equation (4.3) ‘Thave been set to have zero potetial on the
boundary. We have also lboked for solutions that are periodic
in the W) direction. This sélution may be iooked upon as a

periodic array of the rectangular. solutions.

As mentioned in chapter I, both electron and ion ExB
trapping occur at the same amplitude levels since +the ExB
drift 1s mass independent. 80 in principle, both should be
treated simultaneously in the kinetic 1limit for.% this
nonlinearity. However, we shall not attempt +this complex
problem here. The simulation studies of Smith et ai.(1985)
and Dimits(1988) make the following observation in the range
of strong instability. As the system evolves towards a steady
state, the fluctuations in the electrostatic potential cause
electron diffusion and an associated phase shift between the
electron density modes and the respective potential modes.
For the spectrum +to saturate, there must also be an
assoclated phase shift between the ion density modes and the
potential. Therefore, if the ion dynamics are kept linear the
modes keep growing. It seems that the only way to stop this

growth 1is to include the fluid ion ExB conveotion.

In the next section we make use of this input in order to
present a first attempt at including +the fluid ion ExB
convection, keeping electrons kinetic with the maximum
entropy property to set up an equation for the steady state

potential,
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4.4 Nonlinear ion effects:

This seotioﬁ will concentrate on the task of. combining
the méximum entropy eleotron.distribution retaining only the
ExB nonlinear effect, with the fluid ion ExB nonlinearity.
Some techniques learned in Chapter II will be used to set up
an entirely new monopole vortex solution for the steady state
potential. The issue of parallel trapping of ions will not be

attempted here. .

Again it is to be remembered that in the simulation
studies the steady state has a balance of electron 'and ion
fluxes generated by their ExB dynamics. In the present model
there are no particle fluxes. So, this cannot be considered
to be a direct analogue of the simulation results. However,
we have incorporated what seem to be the most relevant
nonlinear effects. 1In principle, what effects actually
dominate the nonlinear stage of a turbulent system is still a
matter of educated conjecture. So, +to that extent, all
bparameter regimes should be examined without bilas. This being
an almost impossible task we have taken the cues from
exlisting studies to explore the most prevalently interesting

regime.

From the calculations of section 4.2 we know that
maximising the entropy for the electron DKE gives the

following results for the hole distribution,

fim exp (£ - br-asi),

and, on the boundary,

101



Epye o anp (£-broa1)
giving, |
Q“&_;i — FQ (w) >
and, | '

Sle — b K= conclant.

Since we do not wish to retain +the parallel trapping
effects, we now make the followlng assumption:

6E/C ~ ]fN/ L, (%) ,

~S
where fﬂ is a constant. This is an assumption similar to

that made in the last section for rectangular holes. We are
not interested in studying the fine structure of the trapping
region in velocity space. So 1t is replaced by a flat
rectangular dip with constant depth. However, in the last
section the entropy was maximised after the assumption was
made. The scale lengths in phase space were consistent with
thls assumption. Here, we are making this approximation after
finding the maximum entropy form of both fh and i1ts boundary
in velocity space. Therefore, this form of the hole
distribution can no longer be considered strictly most
probable. However, we feel Jjustified in doing so since the
last section has shown that for a large parameter regime the
prediction of the ¢ rectangular hole calculation is an

excellent approximation to the complete problem.

The equation for the velocity boundary now becomes,

;fyp;(m) ex b (~bk,~9cKm) = constant
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giving,

/<J+_’<b_l?q¢+ .if_.'xo; (4.15)
where,
¢ —  (pnst. - Fo(%)/fw

Since the parallel resonance 1s not of interest here, we
can expand K as, 2
g ¢ 2
— AR + g =
k: = = 7 1 —
Z\[Ee
Normalised quantities are used. To the lowest order in §£ ,
vV = E

and the equation (4.15) becomes,

p—

Z A

6 2 Am A - :
A SRk S o

2V
To first order in gﬁ , this gives the boundary in V-space

to be,
V. = (xx +A]L) + (xx+A7p) g 291¢
T i - 2. X/ b

where,

.
X = 8+ Kal/b
Note that this closely resembles the prediction of the
single particle Hamiltonian of Smith et al.1885), which

gives,

V o~ @/

for the trapped region in physical space. The density of +the

trapped region is given by,

My = JO{V [fh~—ﬁ’o(%f>c))

103



knowing, ' _~‘b k;. ,
A= Rl T e vV,

where,

C :.7?/‘?&(%)

Integrating and expanding for small 7>, to order «%5) we

get ny, to be,

Ny, - _ be b(xx+A) 26 krnxb(x:w/x)
A P LT
gt blx > 4 4)
(%’x,+/\) g
A= T/}

The untrapped density is approximated by the adiabatic

electron response,
MH. L}(-h — 4
—_— = €% 6}
e L/IT P+ #°/ 2 j
The total density is,
o= No= PG g0 P ray gt

where,

199%7- b(x=z+A) 2 bts ¢ 6%
2 . —
b(XJ B [;; (% ]:TA) 2.,]
- b (k2 +4) L K7
‘# EZ bé}jt K% e + G e
1) = b (2e
Z:/;9 e 5 0% + b (X)) o h<m

0% PR
M) = — 9 (2, + B;-_ €59%+b(wi‘/\)gb?@9 . Q(f]
(e x+A4)*
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‘ bet Lk 2 kn
[t/lp‘ - beac,+b(76v’>:¢7‘/iv) L e "”J

Let us calculate what the ion equation would look like. The

ion continuity equation is,

o+ Y (k) =e
In the steady state we retain only the ExB nonlinear
terms and the linear polarisation drift. Parallel motiqp and
nonlinear polarisation effects are 1gnored. Then in
normalised quantities,
2
R R A A

where,

N = lﬁv'7%

Using guasineutrality we know that,

2.
N = plz) + 4) ¢ + () @7

(4.17)

Therefore we now know N completely as a function of x and

ﬁ in terms of <¢ and parameters of the system.

We now look for monopole type vortex solutions as in

chapter II. We want solutions of the form,

2
vVog = () b N (x) ¢2‘, (4.18)
Substituting equations (4.17) and (4.18) in (4.16) and

comparing coefficients, we can write,

o () = 4(%) + P PO /o,
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M () = Vx) + O x C@(%) '/1%)_

giving,

V2¢ _ B(z) " ox })(%)J¢ *.[P(”L)T‘ 9);2?)_7 95.2(4.19)

—'w

This gives the equation for the steady state potential
with the resonant electron and fluid ion ExB effects
included. The solutions of this equation would be vortex
structures in (x,”j) space. Remember that the phase sgpace
trapping effect has been neglected. So the modification of
the phase space in the trapping region will arise solely due

to the physical space trapping of electrons.

Fig. (4.5) describes the situation. For every constant-V
surface, there 1s some ExB trapping that modifies the phase
space in the (x,?)) plane. The parallel trapping effect leads
to mixing of two or more constant V surfaces leading to the

modification of the distribution in velocity space.

In chapter II we had studied the monopole vortex
solutions of +the generalised Hasegawa-Mima equation by
retalning +the parallel ion motion. The treatment presented
here 1is similar only to the extent that the LHS of equation
(4.19) comes from the ion polarisation density. The
coefficients of #> and ¢;Lin the present case come from the
perpendicular nonlinearity of electrons and ions. The
adiabatic Boltzmann response used for eleotfons in chapter 1II

is now severely modified with their resonant ExB dynamics.
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Numerical solutions of equation (4.19) were carried out

for a few cases. It is seen that monopole solutions do exist

for such a system. The parameter T , which giVes the

effective temperature of the trapped region, is now
~o

substituted by +the ratio, :f / Fo (1@) , giving the

relative size of the hole in the distribution function. As
seen 1in £he earlier cases the amplitude of +the potential
increased with increasing T , since more number of particles
took part in the wave-particle interaction. We see a sim}lar
trend here also as T 1s increased. Fig. (4.86) showé a
typical monopole solution with T = 0.01. The potential on
the boundaries is zero and peaks at an off-centre point in
the x- 7 plane. Figs. (4.7) and (4.8) show the increasing
amplitude for (¢ = 0.05 and 0.1 respectively. Values higher

than this would go against the shallow hole approximation.

It 1is quite clear, therefore, that a monopole solution
exists for this particular combination of the electron and
ion nonlinearities. The entire parameter regime for +the
existence of these solutions has not been worked out here.
However, since the values of various parameters considered
are realistic it is a physical solution that needs to be
taken 1into account in any theory of drift +turbulence that

retains the existence of coherent structures.

4. Y Conclusion:

In this chapter we have effectively integrated all +that

was learnt in the earlier chapters in order to set up an

108



Fig. 4.6 : Monopole solution of eq. (4.19) for @ = 0.01,

<;/>W\x = 0.129.
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almost-maximum entropy state for a combination of electron
and ion nonlinearities that the simulations have_showﬁ to be
of most importance. The resonantvExB trapping of elecﬁrons in
perpendicular physical space waé first added to the parallel
trapping problem of chapter II1 keeping the ilons linear. The
limiting cases of pure phase space trapping and the
Hamiltonian for physical space trapping (Ching 1973, Hirshman
1980, Smith ét al. 1985) were recovered. It was shown that a
reduced description in the form of the rectangular hole. 1is
accurate without losing any significant information. The
resulting maximum entropy periodic structures in two

dimensions were studied numerically.

Then - we incorporated the ion fluid ExB convection into
the problem neglecting the parallel electron nonlinearity +to
set up an almost maximum entropy monopole vortex solution.
Unlike in the second chapter the nonlinear +terms in the
vortex equation came from the resonant ExB +trapping of
electrons. It was shown numerically that monopole solutions
for realistic values of the parameters could indeed be found

for the equation.

The results of éhis chapter are different from those of
Dupree(1882) 1in that the dominant nonlinearity is not the
phase space but the physical space trapping of particles
which Dbecomes important at a lower amplitude. This 1is the

most interesting wave-particle interaction in this case.

It 1is obvious, however, that several important effects
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have been left‘out of the present treatment. The resonance
broadening effects with resonant ion dynamics,(Dupree 1967)
and the ‘"ion Landau damping of Ching(1973) have not been
included. In the last chapter.we shall summarise the results
and deficiencies of the work done so far in this thesis in
brief and suggest some possible interesting paths along which

it can be extended.
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CHAPTER V.

Particle eac:c:eaingmrea1;ilcax1 dAxm

ppaearpraendicular waves

5.1 Introduction:

In the preceding chapters the low frequency response of
a uniformly magnetised, inhomogeneous plasma was studied for
the existence of nonlinear stationary states.  This
essentially involved the consideration of a reduced form of
the Vlasov equation which takes into account phenomena in the
frequency range 03<<Cﬁcé The perpendicular velocities in such
a system are replaced by the particle drift wvelocities in
those directions. The resultant maximum entropy steady
states were assumed to be formed due +tc wave particle
interaction. The two effects taken into consideration were:
rhase space trapping and perpendicular trapping in physical
space. Their effects on the properties of the resultant

stationary states were studied.

As a first step towards extending this formalism to +the
high frequency regime, the specific case of wave particle
interaction in an electrostatic wave propagating
perpendicular to an ambient magnetic field was taken up. This
problem was studied by some earlier workers. It was found

that for a negligibly small magnetic field, the wave particle
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interaction in similar to that in an unmagnetised plasma. The
absorption of wave energy saturates due ﬁo particle trapping.
For  wvery . large B fields the proéess of ‘acceleration of
particles is stochastic, as shown by Karﬁey (1978).  However,
for intermediate B fields a novel non-stochastic acceleration
process takes over. This was investigated by Sugihara and
Midzuno (18979), Savdeev and Shapiro (1973) and Dawson et al.
(1983). Basically, particle trapping occurs if the forces due
to the electrostatic wave fields are larger than those
resulting from the ambient B fields. Trapped particles are
then accelerated to the ExB drift speeds in the wave frame.
When this acquired velocity exceeds a critical value it leads
to a detrapping ExB force that flings the particle out of the

wave.

This process, however, 1is such that the maximum
detrapping velocity that the particle can acqguire is limited.
Katsouleas and Dawson (1983a) have shown that relativistic
effects can prevent detrapping and give unlimited
acceleration across B. This requires +the application of

intense electric fields such that,

E, = {FhBo (Xphzj7“vbt/;l>

From the point of view of studying the possible
formation of stationary states due to wave particle
interaction, the interest was to keep the particles trapped
in the wave field without resorting to relativistic effects.

In this chapter such a mechanism is proposed and it’s
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implications are worked out. Use is made of an inhohogeneity
in the B field in the direction of wave propagétion; As the
trapped -bérticle moves with the wave it experiences regions
of lower B fields. As a resulf the VxB force never overcomes
the electrostatic +trapping force. This mechanism then
predicts an indefinite particle acceleration, while keeping

the particles trapped.

Indefinite acceleration would mean that ultimately® the
velocities would become large enough for relativistic effects
to take over. Beyond this stage, the relativistic Katsouleas-
Dawson mechanism (1983a) will have to be used for further
acceleration. The method proposed here may be used in a
preinjector that gives acceleration to near relativistic
energies and injects them into a conventional or plasma base

high energy accelerator.

However, +the acceleration of particles implies wave
damping. In order to study the formation of stationary states
it might be interesting to consider putting in a source of
lnstabilily, say, in the form of a beam of particles. Then
the growth rate of this beam induced 1instability may be
tailored +to Dbalance the wave damping self consistently to

form a stationary situation. This extension is not attempted

here.
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5.2 uatio of motion:

Consider the motion of a charged particle of mass m and

charge g, in an electrostatic wave field,
= - E 'SI"?’\ KL - N-t A
E o sim (ky )y

and a y-dependent magnetic field,

B o= B(y)z = -9y AxlY).

~v

Such an inhomogenelty may be generated externally or by
using x-directed plasma currents in the region of particle

acceleration.

The equations of motion for a particle in these fields

are,

o = % B (Y)Y (5.1)

MY = — 48, cm (by-wt)- LBl e . ©D

Equation (5.1) can be integrated once to give,

: 1
P = o 4 - Ax (YY) = conctant . (5.3)
X v C
This shows the invariance of the x-component of
canonical momentum that results from the translational

symmetry of the fields in the x-direction.

Using (5.3), (5.2) becomes,

\\‘j‘ + Cﬁi‘z C/'of\,()c\y—- wt) =
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QZL
~ ——_ 9y (/-\7(,) + f;; Po 9y Ax . 54

m C

Th;sl equation completely deéscribes the motion of a
particle 1in a large amplitude electrostatic wave and an -
arbitrary y-dependent magnetic field. In the wave frame, this

motion can be seen to be that of a nonharmonic oscillator

with +time dependent potential and 1is, 1n general, very
complex.
Consider the case when B is uniform. Then AX = -Bgy, and

shifting to the wave frame,’q =y - %%t, we obtain

F o Dok ke thp] - wF 2 s

where, UQG::({BO mc - This is the equation solved by earlier

authors (Dawson et al. 1883). The Dbasic results may be
qualitatively understood as follows.
When, 2 %E‘)ok 2

042"

then the particle velocity in the wave frame oscillates about

- w, - N
= - e (%)

This mean motion results in a progressive dephasing

the mean,

between the trapped particle and the wave. Detrapping occurs
when this phase lag is the equivalent of one wavelength,

bty o~
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giving : ’ 2
| Wa. |
’td v C—— —
. We* W
The lab frame distance traveled by the particle would

Ya = M (W}Z)E

Then the x acquired in time tq can be estimated from equation

be,

(5.3) to be:
. t e R =
W 7 - v

So  that the detrapping particle at escape has the ExB

velocity. This was the result worked out by earlier authors
(Dawson et al. 1983). Note that the detrapping particle gains
its energy from the oscillating E-field and in turn must damp
the wave. This damping effect is not taken into account self
consistently here. If, as would be a realistic case, a large
number of particles are under going acceleration then it
would be necessary to introduce a distribution function of
particle velocities and the trapped density would be a
function of the wave amplitude. Also the damping rate would

have to be found selﬁ*consistently.

5.3 Inhomogeneous Fields:

As mentioned earlier, the aim of this work was to find a
way of keeping the particles trapped in the wave. This
essentially meant ensuring that the detrapping VxB force
never becomes larger than the trapping QE force. It was

thought +that +this may be achieved by letting the trapped
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particle see smaller and smaller B-fields as the wave travels
across it. This meant using an inhomogeneous magnetic field

with alnonuniformity in the .direction of propagation.

First consider the special case,

Ai“ A;C’h‘\\jﬂ) ;o Px=o

L is the scale length of nonuniformity in magnetic field
and the initial conditions are set to be such that,

Lo = - -t Ar (o) 5 Be = Ao/al

™ C |
/2
B(y) = Be/ (1+ /)" .
With these specifications, equation (5.4) takes the

simple form in the wave frame:

. o 2
"+ Q;o cim (k) = - o Low, . (5.6)

This is the equation of a nonlinear oscillator driven by
a constant force. Let us consider the case of a well-trapped

particle, such that,

eim (k) ~ k7

Then, the particle position oscillates about a mean

displacement, ok
— l'DC
M X o —-2L0 ( (,QBl)

As long as'ﬁdremains smaller than the wavelength, the

particle cannot detrap, giving the condition,

N
W /o, > >> 2kl (5.7)

Unlike 1in the uniform B case there is no mean velocity
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of the particle in the wave frame  and it will remain

indefinitely trapped as long as this condition is satisfied.

Thé.x—directed veldcity‘of such a well trapped particle

may be estimated from equation (5.3), giving,

l

— : /2.
. 4 wt C . ZNCZ
W = - — A T+ — + — Sin(Wtrep) - =€
me k L kL ) Wp?

Asymptotically, therefore, the X increases indefinitely
as t1/2. At near-relativistic velocities, this result- would
be modified. The condition for indefinite trapping may be
derived using the uniform B field case. Following the Dawson
mechanism (1983) of a mean drift in the wave frame, the
laboratory frame distance traveled during the detrapping time

is,

ey Al

w.*,/ w

Y, o~ (‘%7‘ )

Therefore, as long as,

(l%l/wcl)/k << L,

the particle will detrap before it can feel the inhomogeneity
in B, giving a condition.for indefinite trapping consistent

with equation (5.7).

Equations (5.1) and (5.2) were solved numerically

for, )
[3- = B>0 1/ ( 1+ H/’L/) /Ln)

with the initial conditions,

o = — * An (Jo)

wm C .
As shown in fig. (5.1), in the case of large kL ~10% the
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limit @g /iy b << kL with B /w,

The particle detraps.
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uniform field case is recovered. The.particle detraps and
settles on a large Larmor orbit, since it does not see the

inhomogeneity in the magnetic field before detrapping.

2 pa
In the opposite 1limit, when kL = 1 and “)B‘/k%, = 40,
indefinite acceleration takes place, as shown by fig. (5.2).
Fig. (5.3) verifies the tl/z dependence of x in this case,

showing that not only does the particle stay trépped but 1is
also accelerated. It should be pointed out that since B is
being reduced continuously while the electric field “remains
unchanged, when LO@L/A%1 ~ O (L) , the wave particle
interaction will reduce to the unmagnetised problem of the

type described by O’Neill (1965H).

“

As stated earlier, once the particle acquires
relativistic energies, it may be further accelerated by the
Katsouleas-Dawson mechanism. For this method 1t is required

that, EO > ’{ph B Thus if nonrelativistic acceleration can

o
bring the particle to, say, a fraction f of the velocity of
light ¢, then at that point the magnetic field would be given

using equation (5.3),

LY = llL‘wc,/]EC , 1(}:}1 Bo
critical
For the relativistic mechanism to take over,
2 L Wp
Eo > *“Jz“: YIDL Bo

This shows that “the relativistic indefinite acceleration
can be achieved at smaller values of Eo than stated by
Katsouleas and Dawson (1983a). A few other variations of the

B(y) were also considered.
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Particle trajectory in velocity space in the

7 1 L ;
Hmit Wg/o >> kL; ©87/10> = 40 and ®r = 1.

The particle remains trapped and accelerates.
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-
For, fb — B_(D /(/’+ \Lj/[_)_/él— S

we find that asymptotically, x ~ 174 45 shown in fig. (5.4).

However, for wvariations faster than the square root,

such as,
B o= Bo/(1+90)"

x is seen to saturate and become asymptotically constant;
fig. (5.5). In this case the effective acceleration stops
after some time. The reason being, Ay, (y)— 0 asymptotically,

and therefore,

. . 1
N A, F ;:Z A%,(ﬂd ‘

Thus if the particle is injected in the-wave at a finite
vector potential and finally taken to a region where Ay (y)
vanishes, it is left with a finite energy. Similar arguments
have been used by Kaw and Kulsrud (1973) for acceleration of

particles by inhomogeneous electro-magnetic fields.

5.4 Damping effects:

As mentioned earlier, the calculations done so far do
not self-consistently +take into account the fact that, as
particles are accelerated, the wave must damp. Though this
1s not attempted here, it would be interesting to estimate
the damping rate of the wave, due to this single particle

indefinite acceleration.

29

The case of P, = 0 and B = B,/(1+Y/c) ~ will be examined

for the effect of particle acceleration on wave amplitude.
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In ordér to estimate this, it is necessary to ‘calculate
the particle ehergy. Consider eguation (b.8). The

corresponding effective potential that the particle sees is,
qFE | ¥
\/m): - i cos U{”)) + 2L We
™

V{( ﬂ ) must possess a minimum in order that trapping

should take place.

B C%)V _ ?5% Sim (kn)_~QJ_Wkl:: o,

implyings

. L
SJ%(M)=-7—LMW1/1ED- ~ (5.8)
For a well trapped particle the necessary condition is,

| <im Ckm)y| £ 1,

or

pa
qE, > 2Lw,m,
recovering equation (5.7) and the condition for indefinite

trapping.
Further for a minimum of V(W)),
N
0{n 4 t>> 0 )

giving the following picture of V(W)),

V()1
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Consider the case of a well-trapped particle at a

particular»minimum ”70;

Then, .
. 2
sim (k7o) = = 2L m /96, -

For such a particle, y = 7+ Q%'t and y = @W/k. The
particle is undergoing small oscillations about the bottom of
the minimum of V(7" ) at 7) . In the long time limits,
however, these oscillations would average out and only the
acceleration effect due to the mean displacement in thé wave

frame will contribute. So from equation (5.3),

o= ke LPot (1 ).

The +total kinetic energy of +the particle in the

laboratory frame is,

e )
2 2.
Then,
_ 2L W
O(-{;f = 2m L w, ld/[,*:Q_LwC’ME
Since there are no other sources or sinks in the problem,
LW
di \/\/mv& = —ndy T = —2almuw, < (5.9)

where n is the density of such trapped particles.

Thus the wave is damped due to particles accelerating

along x. The same result may be obtained using the argument

that,

(l

di W, <JT-E)

The RHS can be calculated to be,

ave,
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(T E> = —MgEo {sim(km) Yy >.
Sinoé' there 1is a mean displacement in the wave frame

this does not average to zero, glving,

[
&h:\/\/wave; = ,“KHLQC m Pk

which 1is the same as equation (5.9). Thus the wave damps at

the rate,

v, = 2nblm o, (k)

In a more realistic calculation this effect would have
to be taken 1into account self-consistently. In such a
calculation, +the density n would be determined by the
amplitude of the wave field and the distribution function of

particles.

5.5 Conclusion:

As a first step towards examining the possibility of the
formation of stationary states of a high ffequenoy
electrostatic perpendicular wave, the nature of wave particle
interaction was re-examined. A method was suggested to keep
the particles trapped indefinitely in the wave. It was found
that the associated effect of particle acceleration to large

energies could be utilised in plasma accelerators.

It was found ‘that particles trapped 1in the wave
accelerate at the cost of the wave energy leading to wave
damping. In order to achieve a stationary state, however, it
would be necessary to be able to counteract this damping

mechanism. This could be done by considering a mode with a
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linear instability mechanism. Then if. the growth rate could
be made to match this damping, a dynamic steady state may be
~achieved. This ‘would require careful ‘calculatibn of the
trapped particle density; the effect of the B field
inhomogeneity on wave propagation and the growth mechanism in
a self-consistent treatment. Recent work has shown. that
oblique propagation 1in a nonuniform field gives higher
acceleration rates and final velocities of particles. It
would be interesting to include these effects alap. One
possible realistic case study can be the beam-driven lower

hybrid wave.

Later work by Erokhin et al. (1989) has shown that from
more general arguments regarding the conservation of the
associated adiabatfb invariants to keep the particles
trapped, a similar form of nonuniformity of B fields emerges.
In a self consistent treatment, therefore, it may be possible
to optimise the form of the B fields to give rise +to

stationary states.
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CHAFPTER M1

CONCLUSITONS

In this thesis the nonliﬁear coherent exact stationary
solutions : of the equations governing a magnétised,
inhomogeneous, collisionless plasma have been studied. This
thesis contains the first detailed consideration of the
modeling of such solutions in the kinetic limit as?hmaximum
entropy stationary states. This approach was motivated on one
hand by the need to provide a complementary approéch to the
exlsting theories for drift wave turbulence. It is hoped that
the phase space holes modeled in this thesis will prove to be
useful building blocks for such a consideration. On the other
hand, there is a large amount of ill understood physics in
the nonlinear phase of low frequency turbulence. So from the
point of view of the identification of nonlinear effects
leading to a saturated spectrum of drift turbulence and their
associated parameter regimes, this study has been

instructive. The main results of this thesis are as follows.

It has been shown that when nonlinear ion parallel
dynamics 1is included, the -generalised HM equation has
Qualitatively new two dimensional monopole vortex solutions.
Their existence does not depend upon strong temperature
gradient effects or second order density gradients, as

studied by earlier authors. The inclusion of a weak
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temperature gradient produces nonciréular monopoles. However,
the one 'dimenSionalv analogue of these solutions remains
unstable to two dimensional pérturbations. Recent bsimulation
studies of the stability of dipole and monopole vortices Thas
indicated the better stability properties of +the monopole.
The monopole solutions studied here, therefore, might play an
important role in the development of fluid drift turbulence

in realistic parameter regimes.

The one dimensional maximum entropy state of the4bKE has
been formulated and studied in the limit k, <X« ky. The method
of entropy maximisation outlined by Dupree(1982) .has been
formally extended to this case. Both ion and electron phase
space trapping effects in relevant parameter spaces have been
included. The case of a known temperature gradient 1is also
attempted. The properties of the resulting steady state

potential structures have been investigated numerically.

In the limit of kx ~ k the electron nonlinearities

¥
have been considered fully in a study of +two dimensional
phase space holes. Both their parallel phase space and
perpendicular physical space trapping effects are taken into
account. The rectangular hole approximation has been used to
give analytical insight to +the complex problem. From
numerical solutions of the two dimension equation for the
steady state potential it is shown that it is a good
approximation to the complete problem for sﬁall amplitudes.

The properties of the solutions for various values of the

instability parameter b,/’hL are studied.

134



In +the limit of kx ~ ky, approximately ma#imal entropy
solutions are built. The EXB nonlinearity of kinetic
electrons and fluid ioné is taken into consideration. It 1is
shown that monopole type vortex solutions can be constructed.
Numerical solutions of the resultant equation for the steady

state potential are presented.

In determining the comparative weightage of the ~wvarious
nonlinear effects in their respective parameter reéimes, the
results of gyrokinetic simulations by earlier workers have
been used extensively. These have provided valuable
guidelines in the interpretation of +the results obtained

here, speclally in the two dimensional calculations.

As a first step towards extending the concept of the
ldentification of nonlinear, coherent, exact solutions to the
high frequency regime, a preliminary attempﬁ has been made.
The specific case of wave particle interaction in a
perpendicular wave 1in a magnetised plasma is studied.
Important results regarding indefinite particle acceleration
and associated wave damping are presented. Numerical results
of single particle orbits supporting these are given. It 1is
hoped that these results can be successfully extended to give
self consistent stationary solutions for inherently unstable

systems such as the beam-plasma interaction.

While studying the possible parameter spaces for the

existence of such exact solutions several interesting
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questions arose, suggesting areas for  further exploration.

Some_of them can be listed as follows:

% " The stability analysis ‘of the fluid monopole solutions
in +the presence and absence of temperature gradients can be
carried out. The effects of a'sheared magnetic field can be

introduded as a realistic addition.

X The entire maximum entropy formalism must be studied in
the presence of collisions. They would induce detrapping as
pointed out by Ott et al.(1979) leading to & net growth.
Collisions cculd also form a source of incoherence and lead
to diffusion and further instability as suggested by the
simulation results. Thus time scales of the validity of a
possible turbulence model based on interacting holes may be

determined by collisions.

* The main source of incoherence, in a collisionless
system, will come from the interaction among phase space
holes that have a random distribution in phase velocities.
The model of turbulence built on this basis would necessarily
have the associated diffusion effects and the resulting
particle fluxes. A fully kinetic model +that takes into
account both, ion Landau damping as described by the
resonance broadening theory and the electron nonlinearities
studied in this thesis, would give the correct rlcture of the
turbulent spectrum and its evolution towards & steady state.

This will be the most interesting and possibly complete model

for turbulence.
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* It would be, of course, of gréaﬁ interest to include
effects of sheér and other inhomogeneities of the magnetic
fieid "in  the maximum ~entropy formalism. A fully three
dimensional +treatment might prove useful in such a case. An
interesting case for further study would be to include the
effects- of magnetic field perturbations in the parallel
direction, in the parameter regime of Alfven-like modes.
These effects might lead to the formation of maximum entropy

island formation.

* As an immediate off shoot it would be of practical
interest to make some heuristic predictions for the particle
and energy ‘transport in an interacting hole model for

turbulence.
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