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ABSTRACT OF THE THESIS

We investigate, in this Thesis, some problems pertaining to .
the existence and propagation of nonlinear ion acoustic waves and non-

linear amplitude mbdulated, high frequency Langmuir waves and the

associated low frequency ion waves. In the case of nonlinear ion

acoustic waves, we first investigate the physical implicatiQng of ;hg
different sets of stretched.co—prdinates empldyed in the geductive ‘
Perturbation Method for obtaining the relevant evolution equation,
nameiy, the Korteweg-de Vries equation.:‘It is found that fhe»two sets
of co-ordinates yield different Korteweg-de V;iésnequatiopsniﬁvthe;

(x,t) co-ordinate system and that the initial valgé Q;Qbiemé asSéciatea' ;
with these equations afe different. The experimgptalhimplications of
these differences have been digcussed. We ihvéstigate, next,*‘ the

effect of plasma inhomogeneities on the propagation characteristics of
the nonlinear ion acoustic waves using the Reductive Perturbation‘
Analysis. In the presence of spatial.éradients in the ion density

aﬁd ion temperature, these waves are found to be governed by‘a modified
Kortéweg»de Vries equation. Soliton solutién’of this equation showé

that as the nonlinear ion acoustic waves propagate along the ion tempe-
rature (or dehsity) gradient, their amplitudes are reduced. A linear
analysis of the problem of ion acousﬁic wave propagation in inhomogeneous

plasmas has also been carried out.

For the problem of nonlinear, amplitude modulated Langmuir
waves we develop a theory valid in the entire range of the soliton Mach

number, namely, & <M < 1. A sét_of;goverhing équations for the
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stationary propagation of the high frequency Langmuir waves and the

associated ion waves has been derived by taking into account the full
ion nonlinearity and complete departures from the charge neutrality

for the low frequency ion waves. A method is then developed to solve

these coupled, nonlinear equations. This method is capable of taking
into account any arbitrary degree of ion nonlinearity, consistent with

the nonlinearity retained in the Langmuir field amplitude. A class of

double~hump Langmuir solitons having non-zero Langmuir field intensity :

at the centre is found for intermediate values of the Mach number in

the range ® < M <1. These solutions are found to provide a Smgq?h‘
transition from single~hump Langmuir solitons to the double-hump
Langmuir solitons having zero Langmuir field intensity at the centre:
The regions of parameter‘values for the existence of different typeS'éfx
Langmuir soliton solutions are explicitly obtained. The existence and
structure of these solutions have been étudied by means of the Sagdeev
Potential Analysis. The theory developed here yields, under suitable
limiting conditions, various Langmuir soliton solutions discussed
éarlier by other authors. Finally, a conjecture is made about the
existence of many-hump Langmuir solitons for higher order nonlinearities

in the low frequency ion potential.
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CHAPTER I

INTRODUCTION

One of the most important and interesting characteristics of
plasmas is their ability to sustain a riéh variety of wave phenomena.
This’is due to the fact that the interactiohs between the‘plagﬁé'parti_
cles are longurénge in nature and, macroscopically, plésmas behave 1like
fluids. The presence of an external magnetic field"fﬁrthef increases
the number of waves which plasmas can support. The éﬁudy df wave pheno—
méné in plasmas is interesting as well as important in two ways: |
firstly, as a means of understanding the various complicated processes
that take plaée in plasmas under differentbconditioﬁs and; secondly, as
a diagnostic tool in experimental studies of plasma systems.. Both these
aspects are of great/importance in the study.of plagmas, one of the
principal objectives of which is the cOntrolleé release of energy from

thermonuclear reactions.



I.1l Role of Nonlinearities in Plasmas

In the “last few decades; a great-deal-of theoretical and
experimental work has been carried out on linear waves and instabilities
in plasmas. A fairly complete account of these studies is available in
(stix, 1962; Akhiezer et al, 1975 ) and in the reviews (Berngstein &
Trehan, 1960; Allen & Phelps, 1977). However, the usual linear appro-
ximation that the wave amplitudes are infinitesimally small has very
limited applicability in many practical situations. For instance, when
the waves are linearly unstable, the wave amplitudes grow exponentially -
in accordance with the predictions of linear theories. As the amplitudes
grow, the linear theories are no longer applicable. Also, othér proce-~
sses like particle trapping, resonant wave-~particle effects, wave decay
and higher harmonic generation, etc., which are not consideredkih'linear»
theories become quite important. Some of thése processes actually
account for the saturation of wave amplitudes observed in experiments on
linearly unstable modes. Thus, the analysis of effects of nonlinearities
on waves .and instabilities forms an integral part of the study of plasma
systems. While the study of weakly nonlinear systems is a first step
in overcoming the limitations of linear theories, a thorough analysis
of the effects of strong nonlinearities is very essential for a more
complete understanding of the nonlinear plasma dynamics and the tu:bulence
phenomena in plasmas. A detailed account of these studies can be found
in Davidson (1972), Tsytovich (1970), Sagdeev & Galeev (1969), Kalman &
Feix (1969), Whitham (1974), Leibovich & Secbass (1974), and in Kadomtsev

& Karpman (1971), Franklin (1977).



I.2 Selitary Waves - Their Importance and Applicatibns

>

in plasmas as well as in other fields, the conéépt of Solitary waves or
Solitons has come to occupy an important place in recent years. Solitons

can be loosely defined as stationary, localized, finite energy wave

packets which arise due to the balance between the effects of nohliﬂear—o

ity and dispersion; (for a more precise definition see, for instance,

Scott et al (1973)). Dispersive effects are very important foryfhe
formation of solitary waves in any:systé%. A nonlinear system without
any disperéion ihjects the initial pulse enétgy into higher freguency
modes through harmonic generation wherééé, in dissipative systeﬁs, thié
leads to the formation of ‘shocks’. ”6ﬁ the othei hand, in.a linear
system with dispersion alone;, Qariéﬁsvféurier components of a given
initial pulse propagate with different phase velocities ané, henée,
separate out from each other in course of time. This eventually leads o
to the spreading of the ini£iai pulse because of dispersion. 'Hﬁwever,
under suitable circumstances, a proper balance between these two compe-
ting processes can be broﬁght-about and this results in the formation

of solitary waves or solitons.

A broad claésiéication of solitons into two groups is gene-
rally based on the consiéeratidns of the strength of dispersive effe-
cts. Wheﬁ the effect of dispersion is weak, the solitons are generally
agoverned by the usual Korteweg-de Vries (K-dv) equation (or any of its
generalizations) and are known as K-dv solitons. Such equations have

been used to describe various phenomena like (i) self-trapping of heat

Among*thewhost»efwnonliﬁearuphenemenamthat.have been congidered =



pulses in solids (Tappert & varma, 1970}, (ii) shallow water wave

- propagation (Zabusky & Galvin, 1971), and (iii) propagation of waves

in anharmonic lattices (Zabusky, 1973). On the other hand, when the

. dispersive effects are strong, solitary wave solutions can be obtained
for the amplitude of the modulated waves, and these are called :
'envelope solitons'. In many cases, envelope solitons are governed

by a nonlinear Schrodinger-like equation. This equation has been used
to describe (i) self-trapping phenomena in nonlinear optics (Karpman. &
Kruskal, 1969), (ii) filamentary structure of light beams in nQniiﬁéar
liquids (Bespalov & Talanov, 1966), (iii) propagétion of stationary
optical pulses in dispersive dielectric fibres (Hasegawa & Tapperf,
1973), and is (iv) related to the Ginzburg-Landau equation-in super— .

conductivity (de Gennes, 1966).

There are numerous other nonlinear equatibns which have soliton
type of solutions. Among them, the following equations are more common}y
used in different fields: the sine-Gordon equation for (i) the propaga-~
ﬁion of crystal disloéations (Frenkel & Kontoro?a, 1939), (ii) propagaé
tion of magnetic flux on a Josephson line (Scott, 197%); the‘Toaa'léﬁtice
equation for the motion on a one-dimensional lattice of mass points
interacting through nonlinear potentials (Toda, l97@): the Boussinesqg
equation for shallow water wé&es (Hirota, 1973a): the Hirota equation
{Hirota, 1973b) which is a simultaneous generalization of the K—dv
equation and the nonlinear Schrodinger equation; the Born-Infeld equa-
tion which is a nonlinear modification of the Maxwell equations

(Barbashov & Chernikov, 1967). These equations have found many applica-

tions in such diverse f1e1d5 as Solid State Physics, Lasar Phy51cs



Astrophysics, Nuclear Physics and, recently, in Particle Physics.

Excellent reviews on solitons in plasmas as well as in other fields

can be found in Scott et al (1973), Lonngren & Scott (1978), Bishop &

Schneider (1978), Bhatnagar (1979) and in Physica Scripta (1979, Vol.20,

L pp.291).

I.3 Solitons in Plasmas

Much of the current interest in solitgry‘anEs in plasmas
started with the work of Zabusky & Kruskal (1965i who made a computer
study of the K-dV equation through numerical integration. Some of the
more important results of their investigation can be summarized as
follows: (i) Under a wide variety of conditions, any given initial pulse
breaks up intb a number of solitons which move in the plasma with diffe-
rent, constant velocities; (ii) Solitons nonlinearly interact with each
other and after the interaction, they emerge out without any changes in
their'shapes or in their wvelocities, thué retaining their identities;
(iii) Periodically, they reconstruct the initial state with almost the
same phase and thereby exhibit a recurrence phenomenon similar to the
one first observed by Fermi et al (1965) in their numerical study oﬁ a
diScretized, weakly nonlinear string. It is the particle—ligg behaviour
of these nonlinear entities in their interactions with each other that

led Zabusky & Kruskal (1965) to coin the name “Soliton® for them.

With the work of Zabusky & Kruskal (1965), a many-faceted
investigation about the formation and interaction of solitary waves in

plasmas has been launched. It is now well established that many of
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_the normal modes of plasma give rise to corresponding solitary waves in

__the weakly nonlinear regime (Jeffrey & Kakﬁtani, 1972; Kaipman, 1975a;

Ichikawa & Watanabe, 1977). The first attempt in this direction was made :

by Gardnér & Morikawa (1968) who derived the K-dV equation for weakly
nonlinear hydromagnetic waves in a cold plasma. By taking finite ele-
ctron temperature into account Kawahara (1969) showed that weakly non=
linear magneto-acoustic waves are governed by the usual KFdV equatioh
whereas the Alfven solitary wave is described by a modified K-av éqﬁafiéh; 
The nonlinear evolution of small but finite amplitude‘ion acoustié wgves
in a collisionless plasma was later shown to be governed by the K=aVv
eQuationA(Washimi‘& Téniuti, 1966). While nonlinear drift waves‘in a
magnetized plasma show soliton type of behaviour (Petviashyili, 1967;
1977), a K-dv type of equation for these waves was explicitly‘derived; 
by Orefice & Pizzoli (1970), Nozaki & Taniuti (1974) and Todoriii &

Sanuki (1974).

While the above analyses are concerned with weakly dispersive
systems, modulational instsbilities play an important role in strongly
dispersi?e media. Linear stability analyses show that a wide variety
of finite amplitude waves become modulationally unstable when subjected
to 1ong—wave1ength perturbations (Kakutani & Sugimoto, 1974; Hasegawa,
1975). Here again, the wave steepening due to the nonlinearity is
balanced by the dispersive effects of the wave and the resulting state
is that of the ‘envelope soliton'. It is interesting to note here that
this phenomenon is very much similar to self-focussing and self-
contraction of wave packets, first discovered in‘nonlinear optics

(Askaryan, 1962; Chiao et al, 1964; Akhmanov et al, 1968). 'In plasmas,
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many waves show this type of behaviour. Taniuti & Washimi (1968) were

the first to show that the modulational instability and the self-

trapping phenomena of hydromagnetic waves along the external magnetic
field in a cold plasma could be described by a nonlinear Schrodinger
equation. Similar analyses for electron- and ion-cyclotron waves have

been carried out by Hasegawa (1973; 1971).

While the modulational instability of Langmuir waves was
considered by Vedenov & Rudakov (1965), the nonlinear evolutlon as well
as the so-called "collapse ohenomena' of these waves has been dlscusso& o
by Zakharov (1972) in some detail. An important applicatlon of the
envelope Langmuir solitons to the strong Langmuir turbulence inkplasmas
is due to Rudakov (1973) and Kingsep et al (1973) who treaﬁ the turbu-
lent state as a collection of interacting, randomly distributed Langmuir’
solitons. For the one-dimensional case, Kingsep et al (1973) obtained
the turbulence spectra «1 Ekli « k_2' where k is the wave number of
the Langmuir waves and ‘Eklp the Langmuir field amplitude. It may be
noted here that such turbulent spectra have been obtained in a number of
one-dimensional numerical studies of strong Langmuir turbulence (see,
for instance, Sudan, 1973: Kruer et al, 1973). As other examples in
this type of analyses, amplitude modulated upper-hybrid waves (Kaufman
& Stenflo, 1975) and ion acoustic waves (Tidman & Stainer, 1965;
Kakutani & Sugimoto, 1974) are also found to be describable through non-
linear Schrodinger equation. Finally, the similarity between the long-
time behaviour of the modulational instability and the Férmi—Pasta~Ulam
recurrence phenomenon has been pointed out by Lake et al (1977), Yuen &

Ferguson (1978) and Janssen (1981).




I.4 Motiwation for the Present Work

TAmMOnY the airferent”type5*0f~solitary—waveswthat_haﬁewbeen;;lw

discussed in the lite;ature, those of ion acoustic waves and Langmnir
waves have attracted much attention in the last decade. As pointed out
earlier, these are respectively goVerned by the K-dV equation and the
nonlinear Schrodingef eduation (or the Zakharov equations).o Both these
are prototype equatlons for a large number of nonlinear phenomena where
dispersive effects (weak or strong) are also 1mportant. Mathematically,
the X~dV equation is the simplest of all nonlinear evolution equatlons

of its kind, and the studies of this equation have led to much of the

present understanding of some of the nonlinear effects. -\ signifioanﬁq \

outcome of these studies has been the discovery of Inverse Scatterlng
Method (Gardner et al, 1967) which is an analytic method for solving a
class of nonlinear equations as initial value problems. While fdfther
studies of this equation are continuing (Miura, 1976), a gteat deal of
the curreﬁi studies of solitary waves in plasma physics have centred
around the anelysis of the Zakharov equations (Zakharov, 1972) and their
solutions. One of the motivations for these studies comes from their

possible application to some problems in strong Langmuir turbulence

(zakharov, 1972; Rudakov, 1973).

As is well known, the exiSting approaches to the problem of
strong Langmuir turbulence can be divided into two groups: (i) the
statistical approach developed by Weinstock & Bezzerides (1973),
Khakimov & Tsytovich (1973) and others, and (ii) the dynamical approach

started by Zakharov (1972) and Rudakov (1973). The starting point in



the statistical approach is to consider the developed modulational

instability and describe the density depletions statistically through

relevant correlation functions. Even though this approach offers a

better description of the turbulent state, it suffers from loss of

 information about the detailed dynamical behaviour of modulational

interactions.

The dynamical approach, on the other hand, consists of three
steps: (i) to identify certaiﬁ nonlinear dynamical entities induced by
modulational interactions; (ii) to study interactions of these entities
among themselves and with other plasma waves/particles and, finally,
(iii) to obtain the turbulence spectra through an analysis of fheir
statistical behaviour. With regard to the first step, it‘is now believedk
that the nonlinear entities like Langmuir solitons (in one-dimensional
case), cavitons (the infinitely increasing local density depressions*in
higher dimensions; for the spﬁerically symmetric case, ref. Zakharoﬁk
(1972)), etc., indeed represent the type of dynamical entities one is
looking for in the dynamical approach. Not much work has, however,
been carried out so far on the interaction processes involving these
solitons (for a review of the above two aspects, see, for instance,

Thornhill & ter Haar, 1978; Rudakov & Tsytovich, 1978)) .

For the amplitude modulated Langmuir waves, Zakharov (1972)
derived a set of eguations in an adiabatic approximation. 1In the quasir-
static case M &< 1 (M = Mach number) , these equations lead to the non-
linear Schrodinger equation from which Rudakov (1973) obtained an enves

lope soliton as a stationary solution. Kingsep et al (1973) have tried
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to model the one-dimensional strong Langmuir turbulence as a ong-

dimensional gas of these Rudakov solitons in a close packing.

The Rudakov soliton is A solution of the Zaﬁharov equations
‘in only one of the possible llmlfs - the quasi-static 11m1tu " Karpman
soliton (Karpman, 1975b) is another solution in the near-sonic limit
M ﬁi 1. However, the Zakharov equations; themselves, are valid only for
‘small amplitude for the ion wave; that is, these equaticns take into
account only the linear ion response and assume charge neutrality for
the low frequency ion motion. One could, therefore, constder a genera-
iization of the Zakharov equations to include nonlinear ion dynamics and
a departure from charge neutrality. A weakly nonlinéar ion respdnse of
the K-dV type was con51dered by Nishikawa et al (1974) along w1th ,,,,,, :
departures from charge neutrality. . This leads to a different type of
dynémical entity: a double-hump soliton with the Langmuir field ampli-
tude{vanishing at the centre of the soliton. The associated ion wave
is given, in this case, by a plasma density depression with a maximum

~

depth at the centre of the soliton.

One could, in principle, include any arbitrary degree of ion
nonlinearity along with the complete Poisson equation for the low fre;
quency waves, and investigate the various possible forms of Langmuir
soliton solutions: (We have carried out such an investigation in
Chapter IV, and have indeed found a élass of double-~hump solition
solutions having non-zero Langmuir field intensity at the centre of the
solitons; further, these solutions are found to provide a smooth transi~
tion from the Rudakov soliton at one end (M:¢£<C 1) to the solitons of

Nishikawa et al as well as Karpman at the other end (M £ 1)}
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Tt is clear that strongly nonlinear Langmuir turbulence will

‘have ion wave associated with it in the form of density depletions

brought about by the Langmuir wave induced ponderomotive force. . It has,
in fact, been found that collisions of the solitons of Nishikawa et al
(1974) can lead to their complete destruction resulting in the emission

of Langmuir and ion sound waves (Appert & vaclavik, 1977).

The formulation of a theory of strong Langmuir turbulence,
thus, requires that we must study, in detail, the various propefties of
these nonlinear entities and the dynamics of their interactions with
other nonlinear entities, and other ion acoustic and,Lénéhuir waves.

It is with this view that we have underﬁaken the investigations\cariiedi
out in this Thesis, which constitutes only a first step tpwafds suchta

programme{

1.5 Scope of the Thesis

We thus investigate, in this thesis, some problems relating
to the existence and propagation characteristics of nonlinear ion
acoustic waves as Weil as nonlinear, amplitude modulated Langmuir waves
and the associated ion waves. A brief summary of each one of tﬁesé

investigations is given in the following.

In Chapter II, we investigate, for weakly nonlinear ion
acoustic waves, the physical implications of the use of two diffe;ent
sets of stretched co-ordinates in the framework of Reductiye PégﬁgrbaM
tion Analysis which yield the K-dV equatiops of identical fégm in the

two sets of the co-ordinates. This problem has significance when one
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compares the results of an experiment on K~dv solitons with the theore-

tical expectations. We find that even though the two sets of stretched

co-ordinates have the same ordering with respect to the smallness para-

meter used in the Reductive Perturbation Analysis, the K-dv equations
(and hence their solutions) obtained through them differ substantially.
In particular, the soliton solutions corresponding to the two éets have
different propagation characteristiés like the amplitude and the widtﬂ;
Further, we discuss the differences between the two K~dV equations when
transformed into the laboratory frame of reference and show that the

two sets of stretched co-ordinates correspond to different ways of
launching the solitons in experiments. We compare also the cOhtriBuﬁiQns,
coming from the second-order solutions With the first-order solutiqns 

for both the sets of stretched co-ordinates.

Chapter III deals with the analysis of the effects of plasma
inhomogeneities on the propagation characteristics of linear and non-
linear ion acoustic waves. Most often, plasmas are inhomogeneous and
the plaswz inhomogeneities can appreciably modify the wave propagation
characteristics. We consider, in this chapter, inhomogéneities which
arise due to spatial gradients in the ion density and ion temperature.
assuming them to be slowly varying but having arbitrary distribution
with respect to the space co-ordinate. First, we carry out the linear
analysis of the basic fluid equations and ghow that as the linear ion
acoustic wave propagates along the ion temperature {(or ion density)
gradient, its amplitude decreases. The nonlinear analysis of the basic
equatiohs is, then, carried out using the Beductive Perturbation

Analysis. This yields a modified K-dv equation as the governing
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equation for the propagation_of~non1inear ion acoustic waves in inhomo-

geneous plasmas. Soliton solutions of this equation indicate that as

the ion acoustic solitary wave propagates along the ion temperature (Qr
ion density) gradient, its awplitude decreases. Thus, the effects of
épatial gradients»in the ion temperature and ion density on the ampli¥
tudes of the linear as well as nonlinear ion acoustic waves a?e found
to be similar. The changes in the wave number (for the linear wéve)

and the width (for the nonlinear wave) then follow as a coﬁseqﬁence of
the changes in the amplitudes. We also show that‘when fhe two gradients

are in opposite directions with suitable scale lengths, the amplitudes

of the waves remain constant whereas other characteristics like the

width and the wavenumber change.

In Chapter IV, we make a systematic and self-consistent analy-
sis of the problem of amplitude modulated Langmuif waves and the asso-
ciated ion waves, and develop a theory valid in the entire range of the
Mach number, namely, ¢ £ M < 1. Starting with the basic fluid equa-
tions, we first obtain a set of qoverning equations for the amplitude
of the high frequency Langmuir waves (Ej and for the low frequency\ion
potential ( g? ). UWhile the equation for the Langmuir field amplitude
has been derived froﬁ relevant fluid equations by averaging them over
the ‘fast time’ oY) ;; ( Qape is the usual Langmuir wave frequency
corresponding to the unperturbed state), the equation for the low fre-
guency potential has been derived from the ion fluid equations by taking
into account full ion nonlinearity and complete departures from charge
‘neutrality (for the low frequency waves) through the Poisson equation.

We, next, develop a method far solving these equations wherein arbitrary
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degree of ion nonlinearity consistent with the nonlinearity retained

_in the Langmuir field amplitude can be taken into account. For small

‘yalues of Mach number (M"<:a£_ 1)y, we‘obtalny from'our“sqlutionsthhe
single-hump Rudakov solitons (Rudakov, 1973) Qhere only the linear ion
dynamics is considered. On the other hand, as the‘Mach number is incréaf
sed the solution for E? becomes narrower and smaller, and for'Values of
M beyond a certain critical Mach nuﬁber Mcrit the solution.fbr E2
develops a dip at the centre whose deﬁth increases with fufther iqdrease‘
of the Mach number until E2 vaniéhes at the centfevfo; a certain iimit«
ing Mach pumber, the cut-off Mach numberchut. We thus obﬁéin a class

<

of double-hump soliton solutions (for Mach numbers in the range‘Mcrit
M < Mcut) which have non-zero Langmuir field intensity at.the centre
of the solitons. These solutions provide a smooth transition from
sithe-hump Langmuir solitons (Rudakov, 1973; Karpman, 1975b) to the
double-hump Langmuir sblitons having zero Langmuir field intensity at
the centre (Nishikawa et al, 1974). The existence of such a smooth
transition is further confirmed by explicitly carrying out tﬁe Sagdeev
pdtential analyses of the relevant equations for the Langmuir field
amplitude and the low frequency ion potential. Finaliy, wé make a con-

jecture about the existence of many-hump Langmuir soliton solutions for

higher order nonlinearities in the low frequency ion potential.

Before considering these analyses in detail in the succeeding
Chapters we discuss below, briefly, a few of the mathematical methods
that are commonly used for treating nonlinear equations one usually
encounters in Plasma Physics as well as in other fields, and some of

which we have used in our investigations.
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1.6 Mathematical Methods for Nonlinear Equations

usually encounters in the analysis of nonlinear problems in any field
are not generally amenable to exact analytic solutions. Evenlif the
exact solution of a problem can be found explicitly, it may be difficult
for physical and mathematical interpretations. However, if one is
looking for some specific nonlinear effects, special methods (both

exact and perturbative) do exist. We discuss below a few of such

methods which are widely used in the studies of solitary wave phenomena'
in plasmas. Needless to say that, quite often, depending on the need,

new techniques have to be devised for solving nonlinear equations.

I.6.1 Reductive Perturbation Method

Perturbation methods offer an easy way of handling nonlinear
equations when the nonlinearities involved are weak. Among the numerous
perturbation methods that are available now (Nayfeh, 1973), the so-
called Reductive Perturbation Method (Taniuti & Wei, 1968) has been
extensively developed and applied to a wide variety of nonlinear
phenomena (for a thorough review of this method, ref. Suppl. Progr.
Theor. Phys., No.55, 1974). The basic aim of this method is to ‘reduce’
a class of systems of nonlinear equations to a more tractable single
nonlinear equation which, for specific values of the parameters involved,
yields the Burgers equation or the K-dV equation oxr the nonlinear
Schrodinger equation or a variety of modifications thereof. While

originally the method was developed for hombgeneous systems, it was later
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_extended by Asano & Ono (1971) for inhomogeneous systems as well. In

__the fbllowing, we give a brief outline of the reductive perturbation

,method as applied to homogeneous, weakly nonlinear and weakly disper-

“sive (or dissipative) systems.

A weakly nonlinear system can generally be representéd by

the system of equations,

Eﬁ Lj ZB'LI BN

where p 2; x and t are respectively the space and time co-

N

ordinates, and U is a column vector with n components uig..{...,un

o : 2
(n 77 2) representing various physical quantities; A, Hci and K

‘are n X n matrices whose elements are functions U. Linearizing egs.
(1.1) and using Fourier transforms in space and time, the dispersion
relation can be obtained for the frequency (,) and the wavenumber k.
If we now restrict only to long wavelength perturbations, thén, the

dispersion relation takes the form
-t 2Py
/\o + M K + C) ( k ) 5 (1.2)

where J\(> is the linear phase velocity of the waves in the long wave-
lenqth limit and /J~ is a constant. In plasmas, n equals 3 for ion

acoustic and magnetoacoustlc waves, and for Alfven waves propagating in
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a direction oblique to the magnetic field direction; p equals 2 for

Alfven waves propagating along the magnetic field direction.

The characteristic curves of the reduced equation obtained by
neglecting the last term in egs. (1.1) can be written in the following

foxm:

CI;‘ - /\o —+ & /\1 + Cj CEZJ’ Ce ‘ i v(1.3)i:;

where é; is a small, positive parameter specifying the magnitgdé of
the nonlinearity. Comparing eq.(1.2) with eq. (1.3), we note that the
coupling of the nonlinear effect with dispersion (or dissipatién) is
possible in the order of & if k 27 Eﬁa where a =1/ (p -~ 1). On

the other hand, since in the limit k ——3» 0 the phase velocity wW/k

of the wave is constant, it is more convenient to go over to a frame

of reference moving with a velocity ;\ a0 Thus, one introduces a

set of 'stretched co-ordinates® defined by (Taniuti & Wei, 1968)

a .
?LF (X"'/’\Oitﬁ)?

a1

T = € X (1.4)

We may point out here that this transformation is not unique and one

can as well introduce the following set of stretched co~ordinates

(Taniuti & Wei, 1968):
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L
H
TN
?r—\
=

{
N
®)
>
S’

z - é; . X / (l:4a)

Obviously, the sets of stretched co-ordinates (1.4) and (l.4a) have the

same ordering with respect to the smallness parameter é . However,

the evolution equations obtained through them in the x - t co-ordinates

are ‘different and hence give rise to different time evolutions of a
~given initial pulse (some of these differences for the case of nonlinear

ion acoustic waves have been considered in Chapter II).

Assuming now that tﬁere exists a constant solution U@ such:
that U, A, H and K-ﬁa can be developed as a power series in € 5

2

we write

| .
UsU,+€eU,+€ y+---,

AZA,+e A +e A+ e (1.5

Substituting eqs. (1.4) (or egs.(l.4a)) and (1.5) into egs.(l.l) the co-
efficients of various powers of Ef are equated to zero to yield sets
of equations corresponding to different orders in e . The equations
corresponding to the zeroth and first order in E{ relate, respectively,
the different unperturbed guantities and the first order perturbed quan-
tities. Using these equations, the equations corresponding to second

order in é; can be reduced to mequation of the form
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(1) _ -
oU T Ty
> e e 1 1] = 4+ = =) (1.6)
I - ~y S B e =t I
L é b & 5 r .
where u(l) is one of the components of the column vector U1 and Cl’ C2

are constants which are known functions of the\unperturbed guantities.
Note that eq.(1.6) becomes, with appropriate églues of C1 and C2, the
Burgers equation for p = 2 and K~-dV equation for p = 3. The abové
procedure can easily be extended for higher powers of é; and, corres-—

pondingly, the governing equations for the higher order-perturbed.quah-

tities can be obtained.

The Reductive Perturbation Method has been extended so as to
be applicable to strongly dispersive nonlinear systems also (Taniuti,
1974). The reduced equation for such systems is the nonlinear Schrodinger

equation, namely,

(27 ~
;o T o M

U =0 .7

(1)

where u now represents the complex amplitude of the modulated waves
and P, O are constants. Obviously, the reduced equations (1.6) and (1.7)
are much simpler than the original set of equations and can readily be

solved using the Inverse Scattering Method discussed below.




I.6.2 Inverse Scattering Method

One of the most significant and far-reaching results obtéined'

"in recent years through the studies of K-dV equation has been the dis-
covery of Inverse Scattering Method whereby one can solve the initiai
value problem for a class of nonlinear nartial differential equations.
The method was, originally, developed by Gardner et al (1967) for the
K-dV equation and it was, later, extended and’applied to other equations
1ike the nonlinear Schrodinger equation (Zakharov & Shabat, 1972), the
Modified K-dV equation (Wadati, 1572), etc. A notable contributioﬁ_in
this direction is by Ablowitz et ai (1973) who set up a generalzinvérsé"
Vscattering framework for solving a clasé of nonlinear evolution equations
of physical significance encompassing the K-av aquation, the sine~-Gordon
equation, the sinh-Gordon equation, the Benny-Newell equéﬁion and their
various generalizations. The original inverse scattering method of
Gardner et al (1967) has been expressed in an elegant and general form

by Lax (1968).

The procedure in the inverse scattering method or in any of
its generalizations consists of four steps: (i) constructing an appro-
priate linear scattering (eigenvalue) problem in the 'space’ var?aﬁle
where the solution to the nonlinear evolution equation plays,the'role
of the potential; (ii) choosing the "time' dependence of the eigen
functions in such a way that the eigenvalues remain invaxiant with
respect to time as the potential evolves according to the given evolu~
tionbequation; (iii) solving the direct scqttering problem at the

initial time and determining the time dependence of the scattering



_data and, finally, (iv) carrying out the inverse gscattering problem at

later times, that is, to construct the potential knowing the (discre_t’:e)mrgw
keigénvalues corresponding to the bound étates and the time dependende'
of other scattering data. The last step can be written in terms Qf a
‘linear integral equation (or a coupled set of linear integrallequations)
~from which one can cqmputé the solution to the evolution equation fqr
all times. Obviously, the advantage of such a procedure is that instead
of solving a nonlinear equation one needs only to solve an a coupled
set of linear equations. In the following, we describe briefly the
above method for solving the K-dV equation. Relevant details can be

found in, for example, Davidson (1972).

Consider, then, the K-dv eéuation for the variable v( E:"f )

obtained from eq. (1.6) for p = 3 and for appropriate values of Cl and C2,

in the form

a\/ dV

“:\J
/
1 <

-6V - + = (1.8)
B'l“ )" 218 0,

where E; and ?’ are respectively the space and time variables. It
is required to solve eq.(1.8) as an initial value problem for a given
v( ? p ’ZJ = ) and obtain v( }' , ’Z ) for all T . For this, let us

assune, for the time being, that v( E‘, 2’ ) is known and treat it as

the potential in the time-independent Schrodinger equation,

A5

dgz +. [E ~‘,\/( 2/) r\Tl ._____07 (L?)
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where ﬂf is treated as a narameter. The quantities E and ﬁf , then,

depend on '7f parametrically. If at some fixed value of 1 . say,

: 7‘ =0, v( F ﬂf ) is sufficiently well behaved, then, the direct

3 v

scattering problem associated with eq. (1.9) can be solved. FEquation

(1.9) admits, in general, a finite number of bound states with energies

2 ' .
E = —kn, n=1,2 , N and a continuum of states with energies

2 .
E = k°; and one can obtain the corresponding scattering data. The

solution of the inverse problem requires a knowledge of the discréte
eigenvalues E corresponding eigen functions f§?71 and the féflébt—

ion coefficient R(k,ﬁf ); the transmission coefficient T(k, ¥ ) is not

needed for obtaining the solution of the inverse problem.

When the potential in eq.(1.9) satisfies the K-dV equation

(1.8), the scattering parameters are given by (Davidson, 1972}

‘ kY)(T) :k}q(o))
Cy (1) = Cpl0)-exp (bky 7),
Ry (k,'f):P\ (k)o)ex]{;(’gkg'z’)’ (1.10)

where Cn is the amplitude of the wave function,

’\Pn = (:*)/} . ex P _(,, ik . }f) (1.11)

Then, the required solutionh v( }T, Qf } of the K-dV equation (1.8) is

given by
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7y = _n &
\/(S n{) =2 K (5 fz») 112

’

where X( EE ’ §'. 1{ ) is the solution to the Gelfand=Levitan integral

equation

K(En7)+B(x+7,7)

-3%[(;(’2/]3 (YZ“'"YZI,,T)'K (?,7: T) = O | (1.13)

amdB( ¥, 7 ) is defined by

B(5,7) =& [dk R (k,7)-exb(KE)

+ Z C)’)Z(T) -CxP (’kn('f) -f) (.10 ‘\

Thus, the problem of solving the nonlinear equation (1.8)
has been reduced to solving two coupled linear equations, namely, the
time-independent Schrodinger equation (1.9) and the Gelfand-Levitan

integral equation (1.13). In many cases, this is a big gain.




1.6.3 sagdeev Potential Analysis

Even though the methods outlined above-are fréquently used in

the discussion of nonlinear wave phenomena, they have certain limita-
tions. The reduction procedure of the first method is applicable when
the linear dispersion relation of ﬁhe system of equations under cénsiv
deration is of a particular form and when the nonlinearities to be con-
sidered are weak. On the other hand, the inverse scatterin§ nrocedure
for obtaining the exaqt analytic solutions is limited, in its applica-
tions, to a particular class of nonlinear evolution equations. However,
even when the system of equations are more general and are not amenable
to explicit solutions, it is possible to analyse the nature of its solu~
tions under different conditions by using a nrocedure first employed.by
Sagdeev (1966). This procedure is particularly suited for finding out
the existence of soliton type of stationary, localized solutions for a

given set of nonlinear equations.

Let the given set of equations be represented by the system

LiCU‘l,.U\Z ,‘..,U\m)::o, 1=1,2,..,N (1.15)

where the variables u, represent various physical quantities and Li are

functions of differential operators with respect to the space and time

co-ordinates x and t respectively. For  stationary solutions, it is

more convenient to go over to a frame of reference moving with the wave

and, accordingly, define the variable,
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ToX-a+ , , (1.16)

where a is the velocity of the stationary wave. Using eq.(1.16), the
variables x and t in eqgs. (1.15) can be transformed away in favour of E; .
The resulting set of equations are then suitable combined and integrated
with respect to EF , if necessary, to yield a single nonlinear equation'

of the form

-

AUl e
(%) +V(u) =0, 5.

P

where u represents one of the variables u, . i=1,2,v...,N. If we now
consider the variable u as analogous to the space co-ordinate and };
as analogous to the time co~ordinate, then, eq.(1.17) is equivalent to
the equation of motion for a particle of unit mass in a potential V(u).
In eq.(1.17), the first term represents the 'kinetic energy' of the
particle and the second term the ‘potential energy’. The quasi-potential
V(u) is Salled the Sagdeev potential.

One can now analyse the potential V(u) for the existence of
scliton type of localized solutions for u( E')a For simplicity, let u
be positive in '~ < F (4 O and V(u) be single Galued with
respect to u (this corresponds to single-hump soliton solutions for
u( z? } with the maximum at u = um). Integrating eq.(1,17) with respect

to ; once, w& obtain,
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=L 2vw) Tdu,

fnclearlv, for real values of };'g v(u) must be negative in the range,

L uu, where u is the maximu& of the solution ul E‘L; then, the

lower limit of the 1ntegratlon in eq. (1. 18) lles in the range

0 vy vy The value of E‘ given by eq. (l 18) ‘can be thought of as
the 'time' taken by the quasi-particle to move in the qua51fpotent1al

V(ﬁ) from u = u. to u = 0. Consider now the behaviour of véu) in the

)
&2

neighbourhood of u = 0. Expanding V(u) in Taylor series around u = Q,

we obtain,

\/(u) =~ \f(O) + QU +b u?.) | .19

where

Vi(o)=V(u=0),
_ 2.
a = % 10V (1.20)

e e s
2

DU lyzc 7~ % 2 Wln=0

.

Given V(@) =0, a=0and b is finite, it is easy to see from egs.
(1.18) and (1.19) that the point (0,0) in the u-V plane is mapped to the
points (t 00, 0) in the jE -1 plane; Similarly, one can analyse the
behaviour of the potential V@u) in the neighbourhood of u = u,- It,

‘then, follows that if



V(U= =0 :Q.S‘Zl () (1.208)

v i 5 TV
2 2 A2
and V/("j Lk is finite at u = u_, then, the point (u, &) in the
>

u-V plane is mapped to finite }' points in the ¥ -u plane.

‘We thus obtain the following conditions for the existence of:

single~hump, localized solutions for u( E ):

\7(u “.:O) =0z V(U*: U\.m);

V| o
olLlu=o0

I

av j‘; O, (1.21)
dU =y,

together wn:h the requ:,rements that v(u) &£ @ in the range 0 £ u < u
and that ) X]/a (l be finite at u = ¢ as well as qt u=u. The
guasi-particle motion in potential V{u}, then, consigts of a single-

transit of the particle fromu = ¢ to u = u . and back.

The above analysis can be extended to the case when v{u) is
a multi~-valued Ffunction of wu, in which case the solution for u }' )
will consist of many-humps (an analysis of this type for the amplitude

modulated Langmuir waves has been carried out in Chapter Iv).
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CHMAPTER IT

EFFECTS OF STRETCHED CO-ORDINATES AND HIGHER ORDER CONTRIBUTIONS IN.:

THE  REDUCTIVE PERTURBATION METHOD FOR NONLINEAR ION ACOUSTIC WAVES

II1.1 Introduction

Amoné the various normal modes of plasmas ion acoustic waves
were one of the first to be studied both theoretically and experiment-
ally. It isrwell known that in the linear approximation the ion acoustic
waves, in a hgmogeneous collisionless plasma, are non-dispersive in the
long wavelength limit with the dispersion relation L= Csk ( (J is
the wave frequency, k the wavenumber). They, thus propagate with the
speed Cs’ the ion acoustic speed, which is determined essentially by
the electron temperature Te and the ion mass m, , C: = Te/mi' This is
because for these low frequency oscillations the inertia is provided by

the ions while the restoring force is provided by the hot electrens.

However, if contributions due to finite wavenumbers are taken into
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‘account, then, the waves become dispersive and this leads to the spread-

4mwing,ofwanyuqiven initial pulse. On the other hand, when the waves are

of finite amplitudes, the effects of nonlinearity become important and
this leads to a steepening of the wavefronts. Under suitable conditions,
a balance between these two competing processes, namely, the wave
spreading due to the dispersion and the wave-steepening due to the non-
linearity can be brought out, resulting in the formation of ion acoustic

solitons.

The effects of nonlinearity and dispersiqn of ion acoustic

waves were first considered by Sagdeev (1966) who predicted the exist-
ence of ion acoustic solitons. Later, Washimi & Taniuti (1966) showed:
.that small but finite amplitude ion acoustic wa&es are governed by

the usual Korteweg-de Vries (K~-dv) equation which had been numerically
studied earlier by Zabusky & Kruskal (1965). An analytic method, namely,
the Inverse Scattering Method for solving the K-dV equation as an ini~
tial value problem was developed by Gardner et al (1967). Experimental
studies of ion acoustic solitons have been carried out by Tkezi et al
(1970), Ikezi- (1973) and others. While the above analyses are restri~
cted td the propagation of ion acoustic waves in one~dimension, extensions
»to two and three dimensions in space have been carried out by many authors
(Maxon & Viecelli, 1974; Ogino & Takeda, 1976; Chen & Schott, 1976;

Nishida et al, 1978; Nishida et al, 1379).

We consider, in this Chapter, the differences in the descript-

ion of weakly nonlinear ion acoustic waves arising due to the use of

different sets of 'stretched co~ordinates' - in the reductive perturbation
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method. As is well known, the K-dV equation which coverns the evolution
T of”weakly“nonlinearwionwacoustiewwaveS—in~amhomogeneous_pl@smiwgggwbe
derived by the reductive perturbation method which makes use of a set
of slowly varying co-ordinates called 'stretched co-ordinates® (ref.
§ 1.6.1). As pointed out in Chapter I, this set of stretched co-ordinates
is not unique and there exist in the literature two different sets of
stretched co-ordinates which have same ordering with respect to the
relevant smallness parameter, giving rise to similar K-dV equations for
the two sets. One may then ask whether the solitaryﬁwaves governed by
the K-dV equations obtained through these different stretchings have the
same or different propagation characteristics in the (x, t) space.
This problem is important when one compares the result of experiments on
soliton propagation with the theoretical predictions. In particular,
one would like to ascertain the proper equation whose predictions to

compare the experimental results with.

Thus, for one-dimensional propagation of ion acoustic solitons

in a homogeneous plasma, we show here that the K-dV equations obtained

" through these stretched co-ordinates have identical forms in the two
sets of the co-ordinates. When we transform these K-dV equations to the
(x, t) co-ordinates, we find them to be complétely different (Rao &
Varma, 1977). While the highest derivative (third order) in one is with
respect to the time co-ordinate, it is with respect to the space co-
ordinate (x) in the other. If we seek soliton solutions of these equa-
tions such that they correspond to the same propagation velocity u in
the x-t space, we find these solitons to have different dependence of

their amplitude and width on the velocity of provagation. We further
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 discuss the implications of these equations and their solutions from the

'experimentalwvieprointwandwsuggest~that~thesemmaywdescribefsolitons

corresponding to two different ways of launching them in the experiments.

We alsc discuss here the contributions of the second order
perturbed quantities in the reductive perturbation analysis for ion
acoustic waves. It turns out that for both the sets of stretched co-
ordinates, the second order perturbed quantities are governed by linear,
inhomogeneous equations driven by source terms which are functions of
the first order perturbed quantities. The solutions of these equations
are compared with the solutions for the first order perturbed quanti-
ties. For both the sets of stretched co-ordinates the effect of the
second order perturbed quantities is to reduce the aﬁplitudes of the

first order solutions.

I1.2 Derivation of the X-dV Equations

We consider a homogeneous, collisionless plasma in one-
dimension with cold ions and hot isothermal electrons. The basic set
of fluid equ;tions required to derive the K-dV equation for weakly non-
linear and weakly disnmersive ion acoustic waves in such a system are
the continuity and momentum conservation equations for the ions and the

Poisson equation. These are, respectively, given by

:}_ll ,_B;.« ia! \/\) =0 (2.1)
D% + DX ( 4 ’
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Vi oYy 2% _

af O X DX

Z
25 Cb ' ‘ 2.3
S5~ eXP(e)+m =0, 2.3

where in eq.(2.3) we have used the Boltzmann distribution for the elect-

O , (2.2)

ron number density obtained from the momentum conservation equation for
electrons by neglecting the eleétron,inertia. The notations used in
egs. (2.1) - (2.3) are as follows: n is the ion number density, v the
ion fluid velocity, ;j) represents the electrostatic potential and, x
and t are the space and time co-ordinates respectively. All these
quantities are normalized with respect to the equilibrium parameters,
namely, plasma density’(n@), ion acoustic velocity (CS), a characteri-
stic potential (Te/e), electron Debye length ( ;\ ge= Te/4TTn@g2) and

ion plasma period.(‘7'§i= mi/4TTn@ez),

The linear dispersion relation for the ion acoustic waves can
be obtained by linearizing the set of egs.(2.1) - (2.3) and by assuming
the various perturbed quantities to vary as .~ exp L’i(kx -~ (J ti] .

This yields the dispersion relation

- .4
k ( l + k ) ' (2.4)
If solved for k in texrms of () , eq (2. 4) vields,

Gzt (1-w?) .



39

gince we are considering long wavelength (k & <K 1) and low frequency

(< b oscillations, the dispersion relations (2.4) and (2.5) can

be approximated to give, respectively,

3

, 1 . '
A IR V- (2.6)
C)NL zk,
and
3
ot G _.;,%:C\) (2.7)

By making use of egs.(2.6) and (2.7), one can now analyse the phase
factor (kx- ¢y t) and this suggests the following sets of stretched co-

ordinates (Washimi & Taniuti, 1966):

i/2
5?6 (X - %)

3/2 |
?ﬂ - 65 . if (2.8)

2

and

/2
Foe (x-t)

)? — 63/2- v (2.9)

where é; is the smallness parameter characterizing the strength of

the nonlinearity, and is related to the amplitude of the wave.



ap

To obtain the K~dV equations corresponding to the sets of

stretched co-ordinates (2.8) and (2.9), we now carry out the reduction

 procedure outlined in é I.6.1. Accordingly, we expand the quantities

n, vand @ as

2 3
N=1+en,+€ n,+€ Nyt
- : Z 3
V= eVite v, +e vVt

¢

(2.10)

i

| 2 3
€, +¢ ® +E Oyt

and substitute these expansions along with the stretchings (2.8) or (2.9)

into egs.(2.1) - (2.3). This yields the K-dVv equations,

3
?;..C_-D-j—' + ® 5 @1 + .j:_ ‘D.CEJ_ =0 (2.11)
57 e O

and

BC?%. ad% }"ad}l 2.12
sv tHSE T e 7Y o

corresponding to thé two stretchings given by eqs.(2.8) and (2.9)
respectively. The two equations (2.11) and (2.12) are identical in
form and differ in one of their independent variables, namely, ?ﬂ

and 7? being different.
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IT.3 Solutions of the K~dV Equations

The K-dV equations (2.11) and (2.12) admit soliton solutions

with a constant velocity u in the (x, t) space. In order to facili-

tate a proper comparison of the propagation characteristics of the
solitons described by the egs.(2.11) and (2.12), we must obtain solu-
tions having the same propagation velocity u in the (x, t) space in
both cases. Thusg, we look for solutions of ﬁ}i which depend on the
variables x and t through a variable z = gg%(x—ut) where u is
normalized with respect to the ion acoustic velocity, Cs' The factor

oM

& ensures the large width of the solitons.

Using the definitions of ( g', 7’ )y and ( }F ,72 ) we find

Z=%-a7 ; a=(u-1)/e (213

corresponding to the stretchings (2.8) and eq.(2.11), and

"Z — (l Ef__ v( )2 ) (2.14)

corresponding to the stretchings {2.9) and eq.(2.12). Then eq.(2.11)
can be easily integrated for stationary solutions of the form

djq_= Gﬁ}l(z), subject to the boundary conditions,

;%fl ] i;—::f* , ' 5 > (3 as l Eif __;_ijj (2.15)

to obtain the solution
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2
§ 1) 5@ ""}‘7 E “:_}} (X o t )])_‘_, (2.16)

‘where - €§1,= - ijL" similarly, the soliton solution of the eq.(2.12)

subjected to the same boundary conditions (2.15) is given by

- 1/2
3(U-1) 21Cu-1
@l:* . Sech Z__:*TE (X__u i.) (2.17)
LL é-LA *
: —d

Obviously, the solitons represented by the solutions (2.16) and (2.17)

have different propagation characteristics. These differences, together
with the implications of the differences in the two K-dV egquations (2.11)

and (2.12) are discussed in the next section.

I1.4 Comparison of the Soliton Solutions

Comparing the two solutions (2.16) and (2.17), we note that
while the two solitons propagate with the same velocity u in the (x, t)
space, the dependence on u of their amplitudes and widths is quite
different. Figures (1) and (2) show the plots of amplitudes and widths
obtained from egs.(2.16) and (2.17) as function of the soliton velocity

u for both the casecs. The differences are small for velocities u > 1

X

whereas for higher velocities, they become quite appreciable. However,
for sufficiently large values of u the contribution from the higher
order perturbed quantities become important. This will be considered

in the next section.

There is another important difference between egs. (2.11) and

(2.12), and their solutions which does not show up in the stationary
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FIGURE (1). Plot of the amplitudes (l,z, and C,L_,,L of the ion
acoustic K—dV solitons as functions of the soliton Mach number.
The subscripts ’Z/ and 7’?) denote the type of stretched co-

ordinate used in obtaining the s.o‘lutions.v
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FIGURE (2). Plot of the half-widths ({T and Ci’?, of the ion
acoustic K~-dv solitons as functions of the soliton Mach
number, The subscripts ”Z’ and 72 denote the type of stre-

tched co-ordinate used in obtaining the ‘vsolutions.
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solutions (2.16) and (2.17). Here, the identity of the x and t

variables is somewhat lost because of the solitons being stationary

in the frame moving with the sollton velocity. The real difference
k_bétween the egs.(2.11) and (2.12) appears when we transform them into
the (x, t) variables. From egs.(2.8) and (2.9), the inverse trans-

formations are given, resgpectively, by

"l/l ——3/2

X=€ T4+e€ 7,

i‘ = -3z (2.18)

\

il
™
,\l

and,

X

\
m
~3

-3/2 ~1/2
* — G (2.19)

Using egs. (2.18) and (2.19), we transform the XK-dv eqﬁations (2.11)

and (2.12) into the ones in the x~t variables and obtain respectively

D1 u<3>1 O¢1 ;1 D Pa _ 5
SE e tEh o tr 500 o

and

j(bl n aCb € Dd)J 1 ad):t -0 (2.21)
ot o FEY S

A comparison between egs.(2.20) and (2.21) shows, except for changes of

sign, the interchange of the roles of x and t variables between the

two equations. Obviously, these two equatidns will give different time
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‘Equation (2.20) involves a term with a first order time deri-

vative of CD 1 As an initial value problem, then, one would need to

‘of space at some initial time. If we, therefore, specify a spatial
distribution for (1)1 at an initial time, the resulting soliton should
correspond to egs.(2.8), (2.11) and (2.16). On the other hand; eq. (2.21)
involves a third order derivative of ij- with respect to time and
only a first order space derivati§e of ij_' Therefore, to solve this
equation as an initial value problem, one would need to specify at all
space points the value of the function <¢)1 along with its first and
second time derivatives at the initial time. If the spatial distribu-
tion of the initial disturbance be taken to be a E;~function at certain
point and a time varying disturbance be applied to it (with its" first
apd second time derivatives along with the value being specified), then
this corresponds to the standard experimental technique of using a
potential pulse on a grid for launching the solitons {(John & Saxena,
1976; Ikezi et al, 197Q). The resulting soliton would correspond to

egs. (2.9), (2.12) and (2.17).

On the other hand, to obtain a soliton corresponding to the
set of egs.(2.8), (2.11) and (2.16), one would have to specify a poten-
tial distribution initially all over space. This will have to be done
by distributing a number of grids in the plasma volume and applying
appropriate potentials to them at only the initial time (that is, a 5~
function in time). This seems to be a more difficult provosition from
an experimental view point than the other one. Thus, clearly, the

solitons observed in the experiments so far (for instance, John & Saxena
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. 1976; Tkezi et al, 197Q) should be compared for their propagation

characteristics with the solitons that are derived from egs. (2.9) and

(2.17).

‘IT1.5 Higher Order Contributions in the Reductive Perturbation Method

In the above discussion, we have considered the K-dv equations
(2.11) and (2.12) which govern the first order perturbed quantities in
the expansions (2.10). Notwithstanding the fact that the k~dv equation
takes into account the basic nonlinear and dispersive effects, from the
point of view of perturbation approaches it is important to evaluate the
contributions coming from higher order terms and compare them with the
contributions due to the first order perturbed quantities. Such an
analysis was first carried out by Ichikawa et al (1976) who made a quanti-
tative analysis of the higher order contributions in the reductive per-
turbation framework for the weakly nonlinear ion acoustic waves by consis.
dering the stretchings given by egs.(2.8). rurther developments in the
evaluation of higher order contributions are due to Sugimoto & Kakutani
(1977), Watanabe (1978), Kodama & Taniuti (1978), Kodama (1978) and
others. In the following, we extend the analysis of Ichikawa et al
(1976) for the other set of stretched co-ordinates given by egs.(2.92)
and compare the contributions coming from the second order perturbed

quantities from those of the first order perturbed quantities.

The evolution equations for the higher order perturbed quan-
tities can be obtained by substituting the stretchings (2.8) (or (2.9))
and the expansions (2.10) into the basic equations (2.1) - (2.3), and

equating the coefficients of like powers of éa to zero. In
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particular, the equation for the second oxder perturbed quantities can

be obtained by collecting the terms corresponding to third order in &

and eliminating the third order quantities Ngy, Vy and (j)3 from the

resulting set of equations. This gives the equation,

0P, L 3o

L _,,, ¢ re (2.22)
5 iz, ‘+“ (?1? <i> 2 E) §73 A_)l ((i))

corresponding to the stretched co-ordinates (2.8), and the eguation

O P 1 9. 2.23
5*22 (CDCD ) T 2. a§3~'52(¢j')’ | (229

for the other set of stretched co-ordinates given by egs.(2.9). The

source terms S, and S, in eqgs.(2.22) and (2.23) are given by

2

3

1

Py (‘Pl © Cbz _3_ aq)i (2.24)
D53 l-« 0F 2z 8 DF°’

S(P)=7

N

u

OF> Of OF* *Z 2%
3 v
CID dP1 3 O (2.25)
?)”Z L ©07VF* | |

3 2
Sz (¢,) = P, QP oP1 D¢, 2 20,

where the first order solutions (i)l are respectively given by egs.
(2.16) and (2.17). Equations (2.22) and (2.23) are linear, inhomo-
geneous equations for (pz.driven by the source terms which are

functions of the first order perturbed quantity only. This implies

that while the fundamental nonlinear effect is fully accounted for in
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the lowest order evolution equation, namely, the K-dV equation, the equa-

__tiona  for higher order quantities describe the interaction between

the higher order dispersion and the fundamental nonlinearity.

The stationary solutions of the evolution equations (2.22) and

(2.23) can be obtained by the method of wariation of rarameters

(Ichikawa et al, 1976). This yields the solution,

@2 = 9p". S&’CHZ(AZ)

- | .
. LLAZ-XCU?E (AZ)‘I’_] sech (AZ)_.QJ (2.26)

for the equation (2.22), and,

®,=90"B" sech’ (B7)

: E"Z BZ fanh(BZ)+L sech (82) «%] .

for the equation (2.23). The notations used in egs.(2.26) and (2.27) -

are:

2

1/2

~1/2 |
A = Y2 :(EL:,}’
(._ 2 ) , B -ZL,L3)

Bs expected, the second order contributions are different for the two
sets of stretched co-ordinates. The total perturbed potential db is
given by the expansion in egs. (2.10). Keeping terms up to EE , we

have for Clb ;



2 . .
D=cd +€ b =F, + D, . (2.28)
L = .’

A
Ssubstituting for <ﬂ§1 and éf)?. from egs.{2.16), (2.26) and (2.17),
(2.27) corresponding to the two sets of stretched co-ordinates (2.8) and

(2.9), we finally obtain the total perturbed potential as.,
N P
P =6A"sech (nZ)

+ 94" sech®(AZ)

————i

EZAZ' tanh(AZ)+7sech’(AZ)-8| @

for the stretched co-ordinates ( E? . if ) defined by egs.(2.8), and

2 2
CP =68 (,,iz' 5@6(") (BZ)
L
+ 9B sechz(BZ)
¥ " :_]
[-2B7 tanh(B+l sech’ (B -5 @™

for the stretched co-ordinates ( Ei f72 ) defined by egs.(2.9)

The amplitudes of the solitons given by egs. (2.29) and (2.32
are plotted as functions of the soliton velocity in Figure (3). It is
clear from this figure that for both sets of the stretched co-ordinates
the effect of second order perturbed quantities is such as to reduce the
amplitudes of the first order solutions. In Figure (4), we plot expli-~
citly the actual profiles of the solutions for a particular value of the
soliton velocity, u = 1l.2. We thus find that the widths of the solutions

are also reduced due to the contributions coming from second order

nmardesartAA ranti 1o
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FIGURE (3). Plot of the amplitudes of the first order and total
(up to second order) solutions for the ion acoustic solitons as
b .
functions of the soliton Mach number. Here, {P (0)= @a‘O) and
il } -
$ (0)= <P1(0)+ Q?z(o). The subscripts J and 7 denote the

type of stretched co-ordinate used in obtaining the solutions.
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FIGURE (4). Plot of the solutions ép (2)= 4?1(2) and ép (z)=
é@zl(z)+ 452(2) for a value of the soliton Mach number, u=1l.2 .
The subscripts 7’ and 7} denote the type of stretched co-ordinate
‘used in obtaining the solutions (2.29) & (2.30). Note that for
both the sets of stretched co-ordinates, the amplitudes and the
widths of the first order solutions are reduced due to the contri-

butions coming from the second order quantities.
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IT.6 Conclusions

We- have-considered, in this Chapter, the differences that arise

in the description of the weakly nonlinear ion acoustic waves in the
reductive perturbation method where different sets of straztched co-
ordinates are used. By carrying out the usual reductive perturbation
analysis on the basic set of fluid equations we have shown that even
though the two sets of stretched co-ordinates have the same ordering
with respect to the smallness parameter, the K-dv eguations obtained
through them differ substantially. The soliton solutions of the two
K-dV equations are found to have different velocity dependences of

their amplitudes and widths. By analysing the two K-dV equations in the
(x, t) co-ordinates, we deduce that the initial value problems‘associa—
ted with them are different and hence give rise to different time evolu-
tions for some given initial pulse. From an experimental view point, the
two sets of stretched co-ordinates are shown to correspond to different

ways of launching the solitons in experiments.

We have also analysed the contributions coming from higher
order perturbed quantities in the reductive perturbation analysis. We
find that for both the sets of stretched co-ordinates, the second order
perturbed quantities are governed by linear, inhomogeneous equations
driven by source terms which are functions of only the first order per-
turbed quantitdes. This indicates that while the K-dvV equation accounts
for the basic nonlinearity present in the system, the interaction between
the fundamental nonlinearity and the higher order dispersion is described

by the evolution equations for the higher order perturbed quantities.
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A comparison of the second order solutions with the first order solu=

higher order contributions are considerably important.
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CHAPTER IIT

LINEAR AND NONLINEAR ION ACOUSTIC WAVES IN INHOMOGENEOUS PLASMAS

ITI.1 Introduction

Various aspects of linear and nonlinear wave propagqtion in
homogeneous plasmas have been extensively studied over the last few
decades. From the theoretical point of view, it is much sim@ler to
consider homogeneous systems where the unperturbed quantities do not
vary with respect to the space or time co«ordinafes. However, many
physical systems of practical interest are inhomogeneous in nature.

When a system is not homogeneous, the interactions of the waves

(linear or nonlinear) with the inhomogeneities become important and
these can appreciably modify the wave piopagation characteristics. Thus,
the study of the effects of inhomogeneities on the wave propagation in

plasmas is important both theoretically and éxperimentally.
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Plasma inhomogeneities can be broadly classified into two

groups: (i) spatial inhomogeneities where the unperturbed quantities are

functiohs of the space co-ordinates and are time independent, and (ii)
temporal inhomogeneities where the unpertuebd quantities are time~-
varying but spatially homogeneous, Typical examples of the interactions
of the linear and nonlinear waves with such inhomogeneities are tﬁe
damping-growth transition of ion acoustic waves propagating in a spat-
1ally inhomogenccus plasma, steepening of sound waves propagating up-
wards in the atmosphere, decay of the solitary water waves in the inter-
action with the bottom irreqularities, growing or damping of waves in a

homogeneously expanding or contracting gas and so on.

The propagation of linear ion acoustic waves in a spatially
inhomogeneous plasma with density gradients has been considered by many
authors. D'Angelo (1968) suggested a model for the heating of the solar
corona based on the Landau damping of ion acogstic waves in the coronal
regions. This suggestion was later verified éheoretically by Parkinson
& Schindler (1969) and by Liu (1970) who considered the initial value
problem associated with the propagation of ion acoustic waves in a
collisionless, gravity-supported plasma. For laboratory plasmas, the
effect of density gradients on the linear acoustic waves has been consi~
dered, theoretically as well as experimentally, by D'Angelo et al (1975},
D'Angelo et al (1976), Gunzburger (1978) , Mateev & Zhelyazkov (1978) and
others. Doucet et al (1974) have carried out a theoretical and experi-
mental analysis of the boundary~value problem associatedeith the linear
jon acoustic waves propagating in a collisionless, finite-size plasma

having an arbitrary equilibrium density profile.
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In case of the nonlinear waves, Asano & Ono (1971) have extended

the usual Reductive Perturbation Method so as to be applicable to inhomo-

”geneous systéﬁé és well;w These authors show that the basic set of equa-
tions for a class of nonlinear dispersive (or dissipative) waves in an
inhomogeneous medium can be reduced to a single nonlinear equation, namely,
~a modified Korteweg-de Vries (K-dV) equation (or a modified Burgers equa-
tion). Theoretical analyses of modified K-dv equations for a wide variety
of inhomogeneities have been carried out by Tappert & Zabusky (1971),

Johnson (1973), Hirota & Satsuma (1976), Ko & Kuehl (1978), Kaup & Newell

(1978). 1In particular, the effect of density gradient on the propagation
of ion acoustic solitary waves has been considered by Nishikawa & Kaw

(1975) and Gell & Gomberoff (1977).

In this Chapter, we consider the problem of the propagation
of both the linear and nonlinear ion acoustic waves in a plasma in the
presence of spatial gradients in the ion density as well as in the ion
temperature. As pointed out earlier, the propagation of linear ion
acoustic waves in the presence of a density gradient alone has been con-
sidered by Doucet et al (1974). We extend their treatment of the linear

waves to include also the spatial inhomogeneity in the ion temperature.

The analysis of the problem of nonlinear ion acoustic waves
in the plasma having spatial gradients in the ion density and ion tempe-
rature has been carried out within the ffamework of the Reductive Per-
turbation Method (Asano & Ono, 1971). Eér these nonlinear waves,
Nishikawa & Kaw (1975) and Gell & Gomberoff (1977) have analysed the
effect of plasma density gradient alone. Thg treatments given by these

authors, however, seem to be inadequate or inconsistent in certain
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respects. A steady state inhomogeneity that is assumed in these treat-

ments has, clearly, to be maintained by an appropriate distribution of

gources and sinks in the plasma. >However, pecause of widely different
inertia of the electrons and ions, it is obvious that such an inhomoge=~
neity induces an ambipolar electric field and, in turn, a zeroth order
plasma fluid velocity. Further, as discussed by Asano & Ono (1971),
the co-ordinate stretching appropriate for a spatially inhomogeneous

plasma is different, in form, from the one for a homogeneous plasma.

Both Nishikawa & Kaw (1975) and Gell & Gomberoff (1977) have
used the co-ordinate stretchings appropriate for a homogenous plasma in
their treatments and have, moreover, not included the zeroth order
plasma fluid velocity induced by the inhamogeneity. Also, while
Nishikawa & Kaw (1975) consider only a linear density gradient, it is
easy to generalize the treatment to an arbitrary but weak density (and
temperature) inhomogeneities. On the other hand, the predictions of the
treatment given by Gell & Gomberoff (1977) regarding the density depend-
ence of the amplitude and the width of the ion acoustic solitary waves
do not agree with the results of the experiment on the K-dv soliton pro-

pagation in density gradients carried out by John & Saxena (1976).

In our analysis of the problem of the propagation of ion
acoustic solitary waves in inhomogeneous plasmas, we include also the
ion temperature gradient and attempt to remove the above shortcomings
of the earlier treatments. Thus, we start with the basic fluid equa-
tions. of continuity, momentum balance and the equation of state for the
jons. Using the set of stretched co-ordinates appropriate for an inhomo-

geneous system, we carry out the reductive parturbation analysis of
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these equations taking, now, into account all the zeroth order unpertur-

bed quantities in the density, the velocity and the potential. The

equation, thus obtained, for the first order perturbed quantities turns
to be a modified K-dV equation with space dependent coefficients and
having now additional terms arising because of the inhomogeneities. It
has been possible, however, through a series of transformations ﬁo again
obtain a K~dV equation with constant coefficients for the new dependent
and independent variables. This enables us to obtain an exact analytic

solution of the original equation.

our results show that the effects of jon temperature gradient
on the propagation characteristics of the lincar and nonlinear ion
acoustic waves are similar to those due to the ion density grédient {ref.
Doucet et al, 1974; Nishikawa & Kaw, 1975). In particular, we show
that as the waves (linear and nonlinear) travel in the direction of
increasing ion temperature (or density), their amplitudes decrease.
The modifications in the other propagation characteristics like the wave-
number (for the linear waves) and the width (for the nonlinear waves)
then follow as a consequence of the changes in the amplitudes. When
the two graidnets are in opposite directions with appropriate scale
lengths, we find that the wave amplitudes remain constant while the
wave number and the width change as the waves propagate in the

gradient regions.

III.2 Basic Equations

We consider a one~dimensional, collisionless, inhomogeneous

plasma having spatial gradients in the ion density as well as in the
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ion temperature. The electrons are assumed . to be hot and isothermal

‘because of their large thermal conductivity at high temperatures) ,

and the ions to be warm and adiabatic. Under this assumptlon, the ele—

ctron temperature T is much larger than the ion temperature Ti(x) and,

hence, the Landau damping of the waves can be neglected.

Since we are considering low frequency. long wavelength osci-
llations the system is well described by means of the fluid equations.
The ions are thus governed by the equatibns of continuity and momentum
balance, and the adiabatic law with j\= 3 (because of one—dimensionalityT
as the equation of state. On the other hand, for electrons, the follow-
ing simplification can be made ¢ Since me<:< n&, the ion acoustic wave
phase velocity is much smaller than the electron thermal veloéity and
hence the inertia of the electrons can be neglected. This, coupled
with the momentum conservation equation for electrons, leads to the
Boltzmann law for the electron density distribution., The system of
equations is then closed by the Poisson equation which relates the
difference in the ion and electron charge densities to the electric
field of the wave. Neglecting transport processes guch as heat condu-
ction, viscosity, etc., the relevant equations can be written in the

form

on 2 -
— 4+ = (MNV) = (3.1)
55 ax (V) =0,

(3.2)

oV L0¢, 1 2Pk _
>t +\/D>( DX ﬂ DX O,
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yA

o

3 —# (X Cxp(P) +N =0, (3-3)

oX

P
’—E+VDX +3P%_\,/,_:O, (3.4

where the last equation is obtained from the adiabatic law for ions.

In egs.(3.1) - (3.4), the following notations are used: n is the ion
density, v the ion fluid velocity, p the ion pressure, q) the
electrostatic potential and, x and t are the space and time co-
ordinates respectively. All these quantities are normalized respectiwely
,with respect to the standard plasma parameters, namely, the plasma
density N, ion acoustic velocity C , electron pressure (NT ), a chara-

cteristic potential (T, /e), electron Debye length ( (Te/4TTNe )%) and

the ion plasma perxod ( (m /4TTNe2)&), all these quantities being.
defined at some particular value of X, say, X = Ky The:quaptity

q(x@) in eq.(3.3) is a known function of Ay

II1I.3 Linear Analysis

We now carry out a linear analysis of the problem by lineari-
zing the set of equations (3.1) - (3.4). For mathematical simplicity
we omit, in the linear analysis, the zeroth order fields and velocities.
This can be physically justified if one is avoiding regions of large
density gradients (or discontinuities), as is the case in many experi-
ments on linear ion acoustic waves (see, for instance, Doucet et al,

1974). We, then, expand the various quantities as
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A (3.5)

N =00 + Ny (x, 1),
V = h\;i(X,i",,), | (3.6)

P P,06,1), ‘
P = A’;1(>< ; k) ] (3.8)

where the perturbed quantities are denoted by tilde. The set of eqs.
(3.1) - (3.4) can now be linearized in the perturbed quantities using
eqgs. (3.5) - (3.8). Further, without loss of generality, we‘can assume
the time dependence of all the perturbed quantities to be given as
follows (such an assumption actually corresponds, in experimental situa~
tions, to the excitation of the waves by a grid on which a continuous-

wave RF signal of angular frequency (J is applied):
Al(X,*) :Ai(X)fQXP(—’('CJ*)) (3.9)

where A = (n, v, q), p) and (&I is the wave frequency which is a slowly
varying function of x . Using eqs. (3.9) and the egs. (3.5) - (3.8) in
egs. (3.1) = (3.4), we obtain the following set of equations for the
space dependent amplitudes of the perturbed quantities.

a\/1 ‘ \/1_ 2No 5100

Lo, 1= Mo 9% X
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eree———

! +
°ox T 2x
T}1: ﬂo Cb’l. / (3;12)

70 Pi a PO + 3 }JO g)\:j' . (3'13),

TP ods 2P . (a1

where we have negelected thé derivatives of ¢y with respect to x and
have assumed charge neutrality in obtaining eq.(3.12). Eliminating the

quantities n,, CPJ. and py in eqgs. (3.10) - (3.13), we finally obtain

an equatioh for Vi in thilform;
(ngr3 ) S 4 (dle dpg dVvy
d>< dX/dx ,
2 o
+ko Y)o \/1 =0, _(3.}4)

where k@ is the wavenumber of the ion acoustic waves in a uniform plaéma.;‘

Equation (3.14) is the governinq equation for the linear ion°ac0u§tic
waves propagating in an inhomogeneous plasma with ion density and ion
‘temperature gradients. One can immediately see that for the case of

cold ions, P, = :

d\/ 1@-‘2(_.1:_;\(2 .~2 = 15)
1+<”odx ol X +tko v =0, e

which was obtained sarlier by Doucet et al (1974) for an inhomogeneous

@ and the above equation reduces to the egquation

plasma with only a density gradient.

Equation (3.14) can be solved for any arbitrary but slowly

varying functions n@(x) and p@(x). However, solutions of eq.(3.14)'have
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V,l(X) = (x)  cos (}4 }\/) 5 (3.16)

*where k is the wavelength and u(x) represents the slow spatial varia-
tion of the wave amplitude as the wave propagates into the inhomogeneous
regions. Substituting eg.(3.16) into eq. (3.14) and assuming k to be

slowly varying function of x , we obtain the following eguation:

[:ékm +3P°/o(x (amo LBkl sin(os

2

Bn +3Po)<dxz"k UJ
"L(dho'}'lﬂj)‘:o)du‘\"k h &‘l/‘COS“/X) ONES 17)’

Sufficient conditions for eq.(3.17) to be satisfied for all values of
% are that the coefficients of the sine and cosine terms must be equal

to zero separately. This yields the equations,

2(no+3P, ) Clu ii”+udb") w=0,

(3.18)

) u dno dtso
(no +3P)C <d\< )du

[( kcf‘“kl) Ne -3 po kz] =0, ‘3y°_1‘9’
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which must be satisfied simultanecusly. These equations, then, deter-

mine the slow variations in the amplitude and the wavenumber as the

+ wave propagates in the gradient regions. The general solution of eq.

(3.18) can easily be obtained as

ol \o {'“'70

LA (X) - pr(f( "X dy (3.20)

2(n,+2pk,) A/

where € 1is the constant of integration. Given n@(x), the amplitude
u{x) can be obtained by performing the integration in eq. (3.20).
Substituting the resulting solution into eq. (3.19), we obtain an equa-

tion for the variation of the wavenumber,

Tt is of interest to note here that if the gradiénts in n@(x)v

and P@(x) are in opposite directions satisfying the relation

dNo _ _\ dbe

——

d X dx ?

then, from eq.(3.18) it follows that the amplitude of the ion acoustic

(3.28a)

wave remains constant as the wave propagates in the inhomogencous regions.
However, as is clear from eq.(3.19), the wavenumber no longer remains
constant. Similar results are obtained in the next section for the

nonlinear ion acoustic waves also.

vVarious special cases of the solution (3.20) can now be consi-
dered. For this, we asSume the ions to be governed by the ideal gas
law, namely, p = nT. Thus, Py @T@ where T (x) is the given ion tempe-

rature distribution with respect to the space variable x and is
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normalized with respect to the constant electron temperature Te. Substi-

tuting the above expression for Py in eq. (3.20), we obtain,

UG = C - exp|-2 (200 ]
| | 1+37},

l—
d(x)+h) 1 L.
YP' if‘fé el D

where

N4 O’()"?o _ 1 dTo
9(>\> ﬁ O(X ? h(X)"’-]:(;dX

and these are related to the characteristic lengths of variations of the

7

two gradients.

a

Case (i): T@ = Q

When the ion temperature is zero, the solution (3.21) reduces

to

-1
(,\’):: (- 'ﬂo /2 (3.22)
2

which is the result ohtained by Doucet et al (1974) for an inhomogeneous

plasma with only a density gradient.

Case (ii): T@ = a constant

In this case, h,(x) = § and from the solution (3.21), we obtain

2\ T
U (x) = Ny 1+3T . (3.23)

Thus, it follows that the presence of a constant ion temperature further
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increases the effect of the density gradients on the amplitude of the

ion acoustic wave.

Case (iii): T@ = T@(x)

When both the gradients are present, the exact behaviour of
the wave amplitude is given by the solution (3.21). Given n@(x) and
T@(x), one can do the integrations on the right hand side of eq. (3.21)
and study the effect of inhomogeneities on the propagation characteri-

stics of the linear ion acoustic wave.

Thus, we see that the presence of finite ion temperature which
could be a constant or varying as a function of x indeed modifies the
propagation characteristics of the linear ion acoustic waves. In the
next section, we discuss these modifications for the weakly nonlinear

ion acoustic wave.

117.4 Nonlinear Znalysis

The evolution of weakly nonlinear ion acoustic waves in a
inhomogeneous plasma can be studied by means of the Reductive Perturba-
tion Method developed by Asano & Ono (1971). This method was used in
our earlier analysis (Rao & Varma, 1979) for the weakly nonlinear ion
acoustic waves in a inhomogeneous plasma having only the ion density
gradient. 1In this analysis, the zeroth order fields aAd the fluid

velocities that exist in the system due to the presence of the inhomo-

geneities. were taken into account and a set of stretched co-ordinates
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appropriate for the inhomogeneous media was used. In this section, we

extend the above analysis for the case when ion temperature gradient is

also present.

ITI.4.1 Reductive Perturbation Analysis

The basic equations required to derive the governing equations
for the nonlinear ion acoustic waves in the'inhomogeneous plasma are given
by eqgs. (3.1) - (3.4). To carry out the reductive perturbation analysis
of these equations, we define the following set of stretched co-ordinates
which is appropriate for the spatially inhomogeneous plasmas (Asano &

Ono, 1971):

{ — é; X (3.24a)

where éf is a small, positive parameter characterizing the strength
of the nonlinearity. )&Cfx) is the phase velocity of the frame moving
with the soliton and will be determined later self-consistently. From

eqgs. (3.24a) we obtain following inverse transformations,

73-/2

X =€ n,

-3/ N / _
T =€ ¢ fw_ggl__ f 2 T (3.24p)
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Using eqs.(3.24a) and (3.24b), one can easily obtain the following

transformatiorrs for the space and time derivatives:

2 = 51/2 o , | (3.252)
ot 0%
and
L o= "é.-i/;, 22
)3 BEY
) ~3/2 ‘*5/2

- (3.25b)

oot o e et JE—————

1 53X T M(x) oF

Since we are considering only spatial gradients, ng (x) and p.@(x) are

functions of x only. Hence, they satisfy. the conditions,

Do 2R |
= 7 7T
[ORS 0%

also, as /\o is a function of x only, we have,

a/\o . ' .
— = (3.26b)
0 ¢

Using egs. (3.25a) , we write the eqs. (3.1) - (3.4) in terms of ( 'E , TZ )

co~ordinates as,
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1 ) O Yoy .27)
o L2 (hw)+e 2 (nv) =0 (3.2
ox o G C)Yz
— DV , MV oV oV
N EL S = ENY
0F Ao 0§ N
o o) op :
+n.E o 4 éh +L P g)__r_ =0, (3.28)
O/\,». b: YZ /\o {.}g ())z
& z 2
G C€b+2€ o 20 DO
g 2 - 2
o a? Ao DEDN A D UE
+ -l ;'; az¢ < Y - R 2
- — - ?}.()(O)_e’xp(@/ N :O) (3.29)
o n
BF LV oF DP 3P E"V
ol +EV oY
E)E; 'AO O.E. ? /\o ’
5 oV
L3€P ,::;j;( = 0. (3.30)
We now expand the various quantities n, Vv, Cp , and p
in terms of the smallness parameter ¢ as
' 2
A — N - R ' (3.31)
V= et e+
where ~} = (n, v, Cb ; p)‘and the subscript '¢' denotes the corres-

ponding unperturbed quantities which are slowly varying functions of the

space co-ordinate x . Substituting the expansions (3.31) into the

eqs. (3.27) - (3.30) and equating the coefficients of same powers of &

to zero, we get sets of equations corresponding to different orders in
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& - The zeroth order equations, thus obtained,
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coupled with eqs.

Ve _, 28 _,
2F ~ 7 2F

The first order equations in ¢ obtained from eqs. (3.27) -

{3.30) are respectively given by

- on Ne oOVa 2N
+ e == 4 Ye 071
8F " Ao DF  AeDE | OM

a\/j_ Y}OVO a\/; aVo
°5F T x, oF T V%sw

gt 291 00, 1 DPL .
Ao DE 37 AN DT

M (noiv‘)) :O ?

_oB Ly, 2k 2k 3P OV
°F  J, 0F 907 ' X, oF
B\/o

where we have used egs.(3.26a), (3.26b) and (3.32).

We now impose the

(-3.32)_

(3.33)

(3.34)

(3.35)

(3.36)

boundary condition that the plasma is homogeneous at the boundary, that

is,



>
o

\/O’(;:)oﬁpc — U,
na)/\o"";) 1} [

as | F]—>00, (3.37)

and integrate the egs.(3.33) - (3.36) once with respect to 'EF'to obtain

respectively,
Vl :R N - &5, | (3.38)
= (A - 1 Ao /o DVe
Pr= (o= Vo) Vs =55, Py = 52 (Mo,
Y, ?L?é> +@_£9)~§; (3.39)
oM 0 ’ ‘
ﬂ1:Y%dM_) (3.40)
Py = 3B (RN
bawmvs L1t NopymFR)
No~ Yo /! P S
D,"o -2 OVoi T
}";r)\o (\/o {;;Z -+ O H) Y '\/_J (3.41)
where
1 . Au 0
R=2 (ho-t) , a =5 55 (MeVa
Equations (3.38) - (3.41) constitute a set of inhomogeneous

equations for the perturbed quantities Rys Vs (bi , and Py- Using
egs. (3.38), (3.40) and (3.41), we eliminate vy and p, from eq.(3.39f

in terms of 491 to get,
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¢, =5 -na( NPT (./3‘°0+3;>Oa"")

,-/K -\ C)vg Eﬁcb 121?‘;1 IR
(./\0 \0>(n6\/£,az noa)?o“{—'ay?zﬁ;

D; £y =\ 200 NV, 2 7——1 (3.42)
L__o\‘)\o Vo/i “Rﬂo(/\a \/o\) +~?Pnopo‘ 9

In eq.(3.42), the right hand side depends on the zeroth ord;;jéuanti—

ties whereas q3 is a first order quantity. Since the first order
quantities cannot be determined in terms of zeroth order quantities

alone, we make the expression on the right hand side of eq.(3.42) anin-
determinate quantity with respect to the zeroth order quantities:

that is, we put both the numerator and the denominator of the eq.(3.42)

equal to zero separately.

Putting the denominator of the expression on the right hand

side of eq. (3.42) equal to zero, we obtain the equation,

| 1
/\o:\/o + (i +3P0/Tio) {2 (3.43)

which determines /\CD self-consistently in terms of the unperturbed
quantities. Similarly setting the numerator equal to zero, we get,

after using the eq.(3.43),

Yic‘/\o (/\ \/) B\/o ano /\ bpo

1323)?
D(b . = 0. (3.44)

710 )\o

This equation then gives a relationship between the unperturbed quan-

tities. Given n@, the unperturbed pofential q%) can be calculated from
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the zeroth order squation obtained from eq.(3.29). Knowing ns. Qﬁc

and p the zeroth order fluid velocity induced by the inhomogeneities

el

__can be calculated from eq..(3.44). O 03 1

To derive the equation describing the evolution of the icn
acoustic solitary waves in the presence of inhomogeneities, we look for
a nonlinear equation for the first order perturbed quantities.. To this
end, we consider the equations in the second order in ¢ arising from

eq. (3.27) ~ (3.3¢), these are:

_ 212 D/, oy )
T T 5:)—;(’)10\/2 Ny Vg + N V)
o [ .
b2 (nver ) =0, o
n, LVz _ Ny oV 4 Yo Vo oVa + TV, Vs
D?E 0% Ao OF DM
—7\/ Vo
+5 (n Vy + 7, V) f‘+(n v+ Ts) B
?)cb 3431 @f&e
L2 1 0 4 BF (3.46)
Ao B? ’2)72 :
2
Q. y
;l“ 9 5 l e D, Mé__ No (Pl +_Y\Z =0, (3.47)

5]1 0 Pi ap D Po
PZ * o (\/ 13%, >+(V 571*‘\/.16?2)

RO e OB 0. e
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Equations (3.45) - (3.48) can be considered as a set of four equations

for the four second order quantities Ny Voo Q)

o~

A

any. three of the quantities can be eliminated to obtain an equation for

and Py from which

the fourth one. Thus, when Nye V, and P, are eliminated, we get the

following equation for dr}z :

| 1
Lz 3
q}l: F *\mo (Ao \/o)"nozc\o'vo) “*”-3}30)4‘0 ()\O”Voﬂ (3.49)

where F is a known function of the unperturbed and first order perturbed
quantities, and their derivatives. It is easy to see that the denomina-
tor in eq.(3.49) is zero by virtue of eq.(3.43). In order, however,
that CPZ. be finite it follows that the numerator should also be equal
to zero simultaneously. Putting, therefore, the function F to be equal
to zero and eliminating the quantities nye vy and Py in favour of (bl
ﬁsing egs.(3.38) - (3.41), we obtain, after some simplifications, the
following modified K~AV equations as the governing equation for the

first order perturbed potential d:,l. (Rao & Varma, 1978):

~ 1 - pod
d>1 " @ 0P S &

s r—

+
N mu 1% MMy DES

1 oAe 1 QM0 - 0Py D ﬁ:om 3"' 0 Q) =0, (3.50
- (5 37 '

“i o/t e Tz \nea =

where 1 / 2

3{?)
T 2 lo (3.51)
1= (14 52)
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This equation, then, governs the propagation of weakly nonlinear ion
acoustic waves in an inhomogeneous plasma with spatial gradients in the

ion density and ion temperature.

Before obtaining the stationary solution of the above equation,
we discuss, briefly, the various limiting cases. First of all, for a
homogenecus plasma with zero ion temperature, we have Ny = 1, ?Q = Q
and Vo = Q. Equations (3.43) and (3.51) then give respectively /\O = 1
and /Jb = 1. Por these values of Ay and ,ﬁ‘o , eq. (3.50) reduces

to the usual K~dV equation for a homogeneous, cold ion plasma, first
derived by Washimi & Taniuti (1966). On the other hand, for a cold ion
plasma with only the ion density gradient present, Py = © and hence,
/Ao== 1. Equation (3.5Q) reduces, in this case, to the modified K~-dv
equatibn obtained earlier by Rao & Varma (1979) and, further, for the
approximatiop ,Aﬁ)cﬁ 1, it reduces to the eguation obtained by |

Nishikawa & Kaw (1975). In the next section, we obtain the stationary

solution of eq.(3.5Q) by means of certain transformations,

II1T.4.2 Solution of the Modified K-dv Equation

The exéct soljiton solution of the modified,K~dV equation (3,S@)’
can be obtained by making use of certaiﬁ dependent and independent
variable transformations similar to the ones given, for example, by Asano
& Ono (1971) and Wishikawa & Kaw (1975). Defining the following new

dependent and indepéndent variables,

ot , :?)' )j/z
O (nw I /o b, ,
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7 — .,,‘2 l (3.52)

eq. (3.50) can be reduced to the form,

j A o~ 3’%’ .
90, 1 X 0Py, 1 01 _ O (3.53)
o 1 S U7 ~ &3 7
2R N2 1T INg 0%
_ o H
where N@ = ng /Lz\c/\o . In order to reduce the eq.(3.53) to the usual

K-dV equation with constant coefficients, we introduce the independent

variables § and 7 as

ly

| 1

—g :_ENO(W)J ' 3:,
% o

7 -‘:f [/\/o("’f')j /lfdsfg; <3,-%4>

in terms of which eq. (3.53) takes the form

o~
~7

Fa¥) BN '
Y AT S L
00y, 5 20, L Ohpps
07 0C 2 oF

PRSIl

4 g (3.55)
S |

>

The last term on the left hand side of eq.(3.55) can be elimi-

nated by defining another set of independent variables,



¢ =1-(p(1)d7
{ T (3.56)

These transformations, then, finally enable us to reduce eq (3.55) to

the usual K-dV equation for a homogeneous plasma, namely,

0P, N CD J”bl + 4 a’?l - 0. (3.57)
— + ¢, ;

27

The soliton solution of this equation is well known and is given by

~ » g 12 - ~
B, =30 sech’[($)" (3-a7)],
-l

In temms of ( § ,7 ) variables, the zbove

(3.58)

where 'a' is a constant.

solution becomes

3Q (
¢1 (y] /ug)j/?- sech ((L) Mi( -An N, /ﬂ

" Ao | ol
(/J_'F/LY) 7‘;‘0>:§"—a f“}*\/o,l/u; ‘ (3.59)

From this solution, it is obvious that the propagation characteristics

of the ion acoustic solitons are modified by the presence of ion tempe-

rature gradient.

Results and Discussions

Irr.4.3

Assuming now the ideal gas law for the ions, we have
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= n@T@ where T@(x) is the spatially varying ion temperature distri-

_.bution.-..The expression for jk_, then becomes,

Po

Mo = (1 +3To(>()), (3.60)

where T@(x) is normalized with respect to the constant electron tempera-
ture Te. Combining eq. (3.60) with the solution (3.59), we obtain the
following result: as the soliton propagates in the direction of the ion

! temperature gradient, the amolitude decreases. The modifications in the
propagation velocity and the width of the soliton then follow as a con-
sequence of this change in the soliton amplitude. These results can be
readily understood as follows: as the soliton propagates into higher ion
density (or temperature) regions, the dispersive term in eg. (3.50) redu~
ces. Thus, a smaller amplitude is required to balance this term with the
nonlinear term. Hence, as long as the soliton solution is maintained,
the soliton amplitude keeps reducing as it travels along the gradient

regions.

The above analysis shows that the effect of ion temperature
gradient on the soliton amplitude is similar to that of the ion density
gradient. This can also be seen directly from the goveraing eq. (3.50) :
the last term on the left hand side of eq. (3.50) gives rise to the modi-
fications in the soliton amplitude and, its dependence on the inhomoge-
neous quantities n@(x) and /io(x) is the same except for a numerical
factor. This similarity brings out the following interesting result:
When the two gradients in n@(x) and }ib(x) are in opposite directions

satisfying the relation,
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::’:. _Q(,_B.‘? 1 d)uo_ (3.61)

e UURERE A 4 4 )

dx Mo dX

then, the last term in eq. (3.52) becomes zero and hence the soliton

amplitude remains constant. However, the width and the propagation
velocity of the soliton change as it propagates in the gradient regions.
Tt is interesting to note here that a similar result was obtained for

the linear ion acoustic waves in S 11I.3.
-

II1.5 summary

We have considered in this Chapter the modifications in the
propagation characteristics of linear and nonlinear waves as they propa-
gate in an inhomogeneous plasma‘having spatial gradients in the ion
density as well as the ion temperature.' The treatment employed here
for the linear waves is similar to the one given by Doucet et al (1974)
where only the density gradient was considered. On the other hand, for
the weakly nonlinear waves we carry out the Reductive Perturbation
Analysis of the basic equations and thereby derive a more general modi-
fied K-dV equation for the inhomogeneous plasma. The soliton solution
of this equation has been explicitly obtained by making use of certain
dependent and independent variable transformations. Our results show
that the effect of the ion temperature gradient on the propagation
characteristics of the ion acoustic waves (linear or nonlinear) is
similar to that of the ion temperature gradients. In particular, we
show that for both the linear as well as nonlinear ion acoustic waves
the wave amplitude is reduced as the wave propagates into regions of

higher ion density or ion temperature regions. The fact that the
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effects of density and temperature gradients on linear or nonlinear ion

_acoustic waves are similar in nature leads to an interesting result :

When the two gradients are in opposite directions with appropriate
scale lengths, then, the wave amplitudes remain constant whereas the
wavenumber (for the linear waves) and the width (for the nonlinear
waves) change as the waves propagate in the gradient regions. These

results are explained on simple physical grounds.
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CHAPTER IV

A THEORY FOR LANGMUIR SOLITONS

Iv.l Intreduction

The problem of amplitude modulated Langmuir waves has been
extensively considered over the last several years (Rudaﬁov & Tsx?ovich,
1978; Thornhill & ter Haar, 1978). As is well known, a large ampiitudé
Langmuir wave becomes modulationally unstable when sﬁbjected to lqﬁéj
wavelength perturbations, thus leading to a concentration of plasmons
in some regions of space and depletion in others. The ponderomotivé'
force due to the high frequency Langmuir field acting on the electrOns,
then, expéls“the'lattef from tégions where Langmuir field intensity is
COncentrated1Mdré. The ions follow,the’eleqtrons and this results in
the reduction of plasma number density in regions of higher plasmon
density which, then, leads to furtherktrappiné of the plasmons.

However, this self-consistent phenomenon of Langmpix wave trapping
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attains, in the time domain, an equilibrium state with the two competing

__forces, namely, the ponderomotive force due to the high frequency field

and the force due to particle pressure balancing each other. One
obtains, in this manner, localized stationary entities known as Langmuir

solitons.

v.2.1 Brief Review of Earlier Analyses

Many of the analyses of Langmuir solitons (Abdulleov et al,
1975; Degtyarev et al, 1975; Schmidt, 1975; Lebedev & Tsytovich, 1975;
Gibbons et al, 1977; Pereira, 1977; Pereira & Sudan, 1977; D'Evelyn &
Morales, 1977; Wang, 1978; Wardrop & ter Haar, 1978; Goldman & Nichonson,
1978; Nicholson & Goldman, 1978; Wang, 198Q) are based on the Zakharov
equations (Zakharov, 1972) which are a set of coupled equations: (i)’a
schrodinger~like equation for the modulated amplitude of the high fre~
quency Langmuir waves and (ii) the wave equation for the low frequéncy
ion waves which is now driven by the ponderomotive force of the Langmuir

waves. The Schrodinger~like equation is obtained from the electron
1

fluid equations through an averaging over the fast-time scale (*>;e p
where 5gpe is the usual Langmuir wave freguency corresponding to the
equilibrium density. The wave equation, on the other hand, is derived
from the fluid equations for the low frequency ion waves by taking into
account only the linear response of the low frequency ‘motion. The

charge-neutrality is, therefore, assumed for the low frequency part

of the ion motion.
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~ Rudakov (1973) obtained a quasi-static (M<<1, where M is
the Mach number of the soliton normalized to the ion acoustic velocity);
single-hump Langmuir soliton as a stationary solution of the Zakharov
equations while Karpman (1975) obtained a near-sonic (M ﬁ;l) soliton
solution, aléo_a single~hump solution. However, when the Mach numbef
takes near-sonic values, neither the linsar response fqr the low freqﬁency
motion nor the charge-neutrality (for the low frequency part) is, in
general, a good approximation. Makhankov (1974a, b) considered a
boussinesg type of equation for the ion waves and obtained a correqfibn \
to the single~hump soliton solutions for near-sonic velodities;: .
Nishikawa et al (1974), on the other hand, considered a K~dv typéfdf
weakly nonlinear wave equation for the low_ffequency motion of the iong;
they, thereby, obtained a near-sonic soliton which has a node at the |
centré for the Langmuir field amplitude and, hence, a'double—hump’stru-

cture for the plasmon number density.

Schamel et al (1977) have taken complete ion nonlinearity
into account, but have assumed charge-neutrality for thev low frequency
motion to close their system of equations. For small amplitude waves,
these authors obtain explicit solutions while for finite amplitudes,
they ébtain, instead, a set of 'existence relationg'. However, the
assumption of charge neutrality is not quite consistent with taking
full ion nonlinearity into account. Recently, Laedke & Spatschek
.(1979) have considered the effects of charge non~neutrality and ion

nonlinearity in a perturbative manner.
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While the above analyses are theoretical in nature, experi-

Wmentalminvestigatiens»onwLangmuir_solitgnswhaye_Qgen carried out in

recent years. The double-hump solitons of Nishikawa et al (1974) have
been observed experimentally by Ikezi et al (1974) while structures
similar to single-hump Rudakov solitons have been observed by Wong &
Quon (1975), by Ikezi et al (1976) in the interaction of electron beams
with plasmas, and by Kim et al (1974) for a R.F. electric field in a

plasma.

The single-~hump, quasi-static Rudakov soliton and the double-
hump, near-sonic soliton of Nishikawa et al (1974) obviously have
different forms and, furthex, they exist for widely separated regions
of Mach number values in the range 0 < M < 1. It is, therefore, desi-
rable to investigate the existence of>soliton solutions for intermediate
values of the Mach number in the range 0 < M < 1 and further, to under-
stand if it is possible to go ovef smoothly from single-hump solutions
to the double~hump solutions as one increases the Mach number. In
order to be able to do so, a more general treatment of the problem
retaining full ion nonlinearity and taking complete departures from
charge-neutrality (through Poisson's equétion) for the low frequency

waves. is needed.

Iv.2.2 Abstract of the Present Analysis

We present, in this Chapter, a systematic and self~consistent
analysis of the above problem, valid in the entire range of the Mach

number, namely, 0 < M 1. We first derive the equations of evolution
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for the system by taking into account full ion nonlinearity and complete

‘departures~fromwcharge~neutraL$Gym£ex~themlowwfreqnency motion. A method

is then developed to solve these coupled, nonlinear equations whereby
any degree of ion nonlinearity consistent with the nonlinearities
retained in the Langmuir field amplitude can be taken into aecount
(Varma & Rao, 1980). We, thus, find that the single~hump solutions
corresponding to the Rudakov solitons exist for small values of the
Mach ﬁumber. As the Mach number is increased, the solution for the plas-
mon number density (EZ) becomes narrower with a corresponding increase
in the amplitude of the low frequency ion:.potential (fﬁ!). For values
of the Mach number beyond a critical valueiMcrit’ the solution fér E2
develops a dip at the centre of the soliton, which becomes deeper With
the increase of the Mach number until Ez-vanishes at the centre for a
. The solutions obtained for values of the

t

Mach number M = Mcut are then identified with the solutions of Nishikawa

limiting Mach number Mcu

et al (1974).

We, thus, obtain a class of double~hump Langmuir soliton
2
solutions with E- # @ at the centre of the solitons for the Mach numbers

in the range M These solutions provide a smooth transi-

crit < ML Mc:ut’
tion with respect to the Mach number from single-hump soliton solutions

to the double-hump solitén solutions for Ez obtained by Nishikawa et al
(1974) . We also obtain explicitly the parameter regions, in the (M, A )
parameter space, for the existence of different types of Langmuir soli-
tons where /Z\ is the normalized nonlinear frequency shift in the Langmuir

wave frequency. The Sagdeev potential analyses of the relevent equations

2 .
for E° and éé, confirm the above features of the Langmuir solitons.
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Iv.3 Equations of Evolution for the System

We consider one-dimensional Langmuir waves in a collisionless,

homogeneous plasma with no external magnetic field. The'bonderomotive
force (or the Miller force) due to the high frequency Langmuir field
actlng on the electrons tends to expel them from reglons where the
Langmuir field is concentrated more. As ions follow the electrons,.
this leads to a depletion in the plasma density in these regions. The
formation of such a ‘den51ty~well' leads to further trapping of the
Langmuir field. There are thus two types of oscillations lnvolved here-
(i) the high frequency electron oscillations corresponding to the
Langmuir waves and, (ii) the low frequéncy ion and electton:oscillations
characteristic of the ion acoustic waves. We consider the nonlinear
coupling of these two widely separated frequencies of oscillations
follow1ng the Zakharov adiabatic approximation (Zakharov, 1972), but
retaining now the Poisson equation and complete ion nonlinearity for the

low frequency waves.

v.3.1 The Electron Response

Consider first the high and low frequency responses of the
electrons in the plasma, which are governed by the usual particle
and momentum conservation equations, and the Poisson equation.

These are respectively given by

e | D
8—'{‘ + < 3% (ﬂ@\/e> 0, (4.1)
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(4.2)

2k | V€TX T g oX TreYle OX

z
°od _

)

hﬁe(ﬁl‘”ng), (4.3)

where, in the standard notation, n, . Te’ v, and m, denote the electron

number density,

eleéctron mass re
electrostatic po
is the usual adi

electrons in one

electron temperature, electron fluid velocity and the
spectively, while (b and n, denote respectively the
tential and the ion number density. The quantity '}{‘
abatic exponent which takes the value 3 fo; adiabatic

~dimension(as in the high frequency case) and equals

unity for the low frequency response (when the electrons are isothermal).

Let

gn denote the high frequency part of the electron den-

v

sity perturbation corresponding to the Langmuir oscillations and gne,

the low frequency part corresponding to the ion acoustic oscillations.

Similarly; let

entirely of low

1]
E;ni denote the ion density perturbation which is

frequency. The electron and ion number densities, can,

then, be split as
! ,
Ne=Ne+ ENe +EN,

/
Ng=Ng+ M7 (.9

where n@ is the
~ ~t

H

common ion (or electron) number density. Likewise, if

¢b and éb denote, respectively, the high and low frequency parts of

perturbed electrostatic potential Cb , then,
]

+ @ . : (4.5)
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Substituting eq. (4.5) into eq.(4.3) and separating the high

and low frequency parts, we obtain the following Poisson equations which

et

ac

relate the two potentlals (t> and éf‘ to their corresponding charqe

,deﬁsity perturbations.

2 .
0 o
BXZ L'T[@ 5n (4.6)
yA
0

@ SR i s |
——LTe (Sn;, = Sne) (4.7

It may be noted here that the usual assumption of'eheige neutrality'for

the low frequency oscillations implies, in the hetaticﬁ-ef;eq;(4}7), that
érn = 811, and, hence, amounts to neqlecéiﬁg‘theﬁﬁeiéeon equetion\\ |
(4.7, We, however, allow arbltrary departures from charge neutrallty

by making use of eq. (4.7)., Equations (4.1) and (4.2) are now linearized

in the high frequeﬁcy perturbed quantities using eqgs. (4.4). This yields

the equations,

(, (07)-{* Y) ¢ ::0 6@}_({3)@&\@) = O , | (4.8)

JdVe @G _@§ 4 37 S
3% e 0X | Men, ¢ ’)><<m)

il

0. (4.9)

Equetions (4.8) and (4.9) together with the Poisson equation (4.6)

then constitute the basic set of equations governing the high frequency

response of electrons.
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The low frequency response, on the other hand, is obtained by

“”avéragiﬁthhewetectronwequationwof-metion~over~the fast time-scale.

This gives rise to the usual ponderomotive force Na/@)( (l E'Z) (the
Miller force) where E is the complex amplitude of the high frequency
Langmuir field oscillations. Using this additional nonlinear force on
the right hand side of the electron momentum equation (4.2) (with Y= 1,
for the one-dimensional isothermal motion of the electrons corresponding
to the low frequency oscillations) and neglecting the electron inertia
for the low frequency waves, we obtain the following expression for the

electron density low frequency perturbatiOn,
—— e~ 7
/ : SN E
ENe =M GXP(QL—-** - }., _}ﬂ — ) - 11, (4.10)

Following Zakharov (1972), we write the Langmuir- field E as

a high frequency oscillating exponential modulated by a slowly varying

low frequency amplitude E(x,t). Thus,

where Wpe is'the'electron plasma frequency corresponding to the

unper;upbed’density. Using eq. (4.11) in egs.(4.6), (4.8) and (4.9), and
i -1

averaging the resulting equations over the fast time scale ((;)pé), we

obtain (Zakharov, 1972),

Z
ok z 0E 1 /¢ N (4.12)
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where, in deriving eq. (4.12), the second derivative of E with respect

to- -t -has beenwneglectedmMwInwgngQiléliwwfiwf_jﬁe / mi?%'

ot
E;ne = é;ne / Ny and all other quantities are normalized as follows:

2
x and t with respect to the electron Debye length )\De=(Té/4TTn@e )&

and the ion plasma period ?rpi = ZTT/agpi, respectively, and IE} with
2. " '

respect to (4TTn©e ) .

We now look for stationary solutions for E(x,t) in the form

E(X;?ﬁ) = EQ(X' Y x),e,xp[i{}(_(x) +T (,{)j} : (4.13)

where M is the Mach number of the stationary solution (normalized

with respect to the ion acoustic velocity, CS = ('I‘e / mi)%). To deter=-
mine the unknown functions X(x) and T(t), we substitute eq.(4.13) in

eq. (4.12) and separate, in the‘resulting equation, the real and imaginary

parts. The imaginary part of the equation gives, after integration, the

equation

X(X) = é(\/lX/g ) (4.14)‘

while the real part of the equation gives the following equation for

thej’ampvlitudéjza;

. e . |
33_,,?@ — (/\ -}‘Sﬂe) {:Q , (4.15)

where

2 2 '
T=X-Mt >, A=2A+E M /3, Gl

and [\ = €.dr/at is the normalized frequency shift in the Langmuir

wave frequency.
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Iv.3.2 The Ion Response

The response of the ions in the system is, of necessity, of
low frequency and is given by the equation of particle and momentum
conservation, and the Poisson equation (4.7). Using the standard nota-

tions for the relevant variables, these can be written in the form

%—?i . (Y\ Vi) = O, (4. 16)

7\/z oV DD |
ZE LB (4.17)
2+ Ve

~

X ox

_ 2
D@ Ea
Y\L—-G‘(P<@~ =a ):—_O) (4.18)
0 X L
where in eg. (4.18), we have made use of the expressions for grg_and

1

SN
© ne given, respectively, by eqgs. (4.4) and (4.10). Further, in egs.
o~
(4.16) - (4.18), a5 = ¢ Q§/Te and the variables n, and vi are norma-

lized, respectively, with respect to_n@ and CS; the variables x, t and

Ea are non-dimensionalized as in & IV.3.1l. 1In eq. (4.17) the pondero-
motive force on the ions has been neglected since it is smaller than

that on the electrons in proportion to the electron-to-ion mass ratio.

Assuming now that N vy and éﬁ are functions of the

variable ~§'= (x - Mt) only, and using boundary conditions that

nz’ — 1, Vy—>0, & —>0 as |F| =00, (4.19)
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one can integrate eqgs. (4.16) and (1,17) once with respect to E’ to
give an expression for ng in terms of Eﬁ alone. Using this expression

S o) ni~in,eq.(4.18), we obtain the following equation for the low fre-

quency ion wave potential:

G

L - mf g hexp e ).

. 1 .
Substituting for Ln_ = &n, / n, from eq. (418} in eq. (4.15), the

£

equation for Ea becomes,

OE+E exb(d-EN), @
O[E?_'” ’\ =~} t" X}’ q.')’k l.—yl !
where in egs.(4.20) and (4.21), the subscript 'a' on E, has been dropped

for convenience.

Equations (4.20) and (4.21) are the required equations of evo-
lution for the system under consideration (Varma & Rao, 1980). They con-—
stitute a coupled set of nonlinear equations for the propagation of the
stationary, coupled solutions for the Langmuir field amplitude E and
the associated ion wave notential é@ . Further, they involve two free
parameters: the Mach number M and the nonlinear frequency shift v .
since complete ion nonlinearity along with Poigson's equation have been
taken into account, these equations describe, in pﬁindiple, the Langmuir
solitons in the entire range of the Mach number, namely, ¢ £ M £ 1. In
the next section, we develop a technique for solving these equations up
to any arbitrary degree of ion nonlinearity, consistent with the non-

linearity retained in E .

. 20)

21)



tIv.4 Method of Solution for the Equations of Evolution

We develop, in this section, a procedure for obtaining the
solutions of the coupled cquations (4.20) and (4.21) valid in the entire
range of the Mach number, @< M < 1. our aim here is to eliminate the
independent variable Y between eqs. (4.20) and (4./21) . To this end, we
first note that these equations can be derived from a Lagrangian

L & O, E . ,be ) qiven by
ps I £

5.2 1/2
L:%—(g-—;«—/ dE)“"M(M 2@)

.,.—1%— (/\“1) E2'+ exp (@D - EZ/LJ . (4.22)

Since this Lagrangian L does not depend explicitly on the independent
variable E , the corresponding Hamiltonian is a constant of motion
with respect to g . Using the boundary conditions for localized solu-

tions for E and @ , namely,

E .
E, o, jf ifwo 1T — (4.23)

we obtain the ’energy integral' in the form

‘1+MZ *f‘ 3(“?: 1(d—§)+M(M 2@)

-1 (A1) Flrexp(@-g2). @
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Making use of the eq. (4.24), we can now eliminate the independent

~-yayiable v~E~~«-~between..~,»eqs,.,,§4 20) and (4.21). This yields the following

differential equation for r\P = E2/4 in terms of @ alone (Varma &

Rao, 1980):

17 - {/lM(M 2@ ~(1+M*) ~(A- 7)‘1’

+exp (g - ) j;

ra[m(mt2e) —exp(6-¥)) (4F)

-—6[M(Mz—-2<“i>)l/f(_1+f\4?)—-2(x\’«—l)“?
+(1-F).exp (@-'“Pﬂ

e [m(v2e) exp (o «@ (43)

Lt [(A-D+exp(@-T) ]

i

O . (4.25)

We may now attempt a power series solution for r\}_’ in terms

of @ in the form

., i M |
f{/ :2" O“Y) @ , (4.26)

where the coefficients a, are to be determined so that eq.(4.26) is a

solution of the eq.(4.25). In order, however, that the coefficients ay
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be finite in the limit M —¥ 0, it is more appropriate to introduce,

in place of (P , the variable ( defined by

7 _ b 2 ;
O = P /‘vq (4.27)
Substituting for é@ from eq. (4.27) into eq.(4.26), the series for ~p

becomes

(4.28)

o=

‘\ /;

C}f

MO
3

where bn = M2n a- Using this expansion for rg? in eq. (4.25) and

expanding the various guantities in powers of E} , we explicitly obtain
expressions for bn by equating like powers of @& to zero. The coeffi-
cient b, is zero by virtue of the boundary conditions (4.23) while the
coefficient b1 is determined entirely in terms of the free parameters M

and A\ , that is,

vbo 0,
2
L’»;": Mz”“1 ~ 14 |\/‘2<le + éz/\/f /3)/3 . (4.29)

]

All the other higher coefficients are uniquely determined in terms of

the lower coefficients. Some of them are listed in the Appendix.

One can, thus, solve for d? in terms of (= up to any number
of terms in the expansion (4.28). This solution, which is now consist-
ent with the egs. (4.20) and (4.21), can be substituted in eq. (4.20)
giving an equation for £ (or é@ ) alone. The resulting equation
can, in principle, be solved for G;( E; ) with the boundary conditions.

(4.23). It is, however, possible to obtain analytic solution for
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E}( }; ) if terms up to third order in @ are retained. In that

l!O{f)

A 6‘4«:12(;; + ols @ (4.30)

where,
O<1 - (ﬂ + C )?
J. _ 3 1 2
oz = > — by 0ol b -1 O(Z (4.31)
3 ,._-Z 3 ) 2 6 P /.
with

A = - (l + L‘,/\ M 2/3) (4.31a)

The solution of eq. (4.3Q) subject to the boundary conditions (4.23) is,

then, obtained in the form (Varma & Rao, 1980)

N f: F’ SeC 1” ﬁ'( 4.32)
@(5) """ f -lzkar}h F(f EQ).} -

where

A [y g 2 y
£ L= o2 T (Lods-19dds) " |,

1/2
= (/\ /5) , (.39

and k ¥, is the initial phase of the soliton which may be taken, with-~

out any loss of generality, to be equal to zero. The solution for
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Ez(*f ) is then obtained by substituting the solution (4.32) for @( )

in-eq.(4.28); this yields.

2 i
E (E):Ll; bn@ (‘f)) | (4.34)

retaining now only appropriate number of terms.

The solutions (4.32) and (4.34) for & and g2 involve the
free parameters M and [} , which anppeared naturally in the equa-
tions of evolution, namely, eqs.(4.20) and (4.21). In place of AN
we may, sometime, take Ed, the Langmuir field amplitude at the centre

}5 = 0, as a free parameter. Then, [} and E, are related through

¢
the relation (4.34) at }' = .,

iv.5 Discussion of the Solutions

The solutions (4.32) and (4.34) for the }ow frequency ion
potential & (T ) and the high frequency pgpqmuir field amplitude
E( }') are valid in the entire range of the Mach number, namely,
0<& M« 1. We consider, in this section, the structure of these solu=
tions for different values of the parameters M and A\ . In parti-
cular, we show here the existence Qf a class of double~hump‘Langmuir
solitons having non-zero Langmuir field intensity at the centre $§ = 0.
These solutions, then, provide a smooth transition from the sub-sonic
qnd near-gonic single~hump Langmuir solitons to the near~sonic double-
hump solitons of’Nishikawa et al (1974) which have a zero Langmuir

field intensity at the centre of the soliton.
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In order to simplify the discussion, we consider here a speci-

7 . . . 2
fic case where the expansion—in-eq.-(4 34)_contains terms up to (& only,

e ¢ 2 |
i) =ube®+be ], e

with @9 T ) still being given by eq. (4.32)s

_ ﬁ’ipﬁlf SQC"\Z(R a
F-B tanh(kE)

where the initial phase of the soliton is taken to be equal to zero.

0 (%)

For the case considered here, the definitions (4.31) and (4.33) remain
exactly the same except that in the expression for d,3 in egs.(4.31),
the coefficient b3 is zero (ref. eq.(4.35)). For the sake of mathema-

tical convenience, we first take M and /) as the free parameters.

V.5.1 Free Parameters: M and £

Typical plots of the solutions (4.35) and (4.36) for a value
of [} and for different values of M are shown respectively in
Figures (1) and (2). For sub-sonic velocities, we obtain solutions
for the Langmuir field intensity E2 and the ion wave potential éé which
have single-hump and one bottom-well structure respectively. Such
solutions are the ones obtained with the linear ion response by Rudakov
(1973) using zakharov equations. As the Mach number increases, the

2 e S ;
solution for E™( ¥ ) becomes narrower with a decrease in its amplitude.

(4.36)
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Beyond a certain critical value of the Mach number, the solutions for

E (’F') develops a dip at ¢ =f"whose—depth—inereases- with_ further
increase of the Mach number. The critical Mach number (Mcrit) beyond
which the solutiors for Ez, therefore, have double-hump structures is a

function of /\ , and is calculated from the equation

bi -+ 2 bz pz :: O ) (4.’37)_

which is obtained from egs. (4.35) and (4.36) as a condition that

2
a (E2)/d :Ez be zero at }= a.

Since E2(;E ) is positive, its minimum value at '§'= § can
only be zero. This corresponds to the soliton solutions with the
maximum dip, which are then identified with the solutions obtained by
Nishikawa et al (1974). TFor a given value of /\ , the mgximum dip’
occurs for a limiting Mach number beyond which double-hump solutlons
for Ez( }7) with E2 positive everywhere do not exist. Such a cut—off

Mach number'Mcut can be evaluated from the equation

by + by P20 o

which is obtained from eq. (4.35) as a condition that E2 =0at £ =
Clearly, for a given value of [} # @, the cut-off Mach number is always
greater than the critical Mach number. Figure (3) shows the plot of
Mot and M_ .. as functions of /\ in the (M, £\ ) parameter space.
Here, for values of M and /\ corresponding to the region below the

shaded region, the solutions for E ( }’) have single-hump structures,

similar to the solutions obtained with the linear ion response (Rudakov,
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FIGURE (3). Plot of the Critical Mach number M_ ,, and the
Cut~off Mach number Mcut as functions of the nonlinear freque~‘
ncy shift /\ in the (M, /\) parameter space. For values of the
parameters M & /\ corresponding to the shaded region, the solu-

tions for EZ(ZE) have double-hump structures with non-zero

Langmuir field intensity at the centre of the solitons.
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1973; Karpman, 1975). On the other hand, the shaded region gives the

parameter values for which the Langmuir riéTd“intensitymhas~a«déubieehumpﬁ \
2, e _ . o

structure with E- # ¢ at jf = ©. The curve M = M_ ., in the (M,gl )

parameter space defines the transition from single~hump solutions to the

double~hump solutions, whereas for values of M and A corrésponding'

to the curve M = Mcut' we recover the solutlons of Nishikawa et al (1974)

Further, one can easily identify the parameter region for the existence

of near-sonic, single-hump solutions discussed by Karpman (1975}.

‘From the above discussion, it follows that ‘thefe exists, for
a given [3 , a sﬁooth transition from single-hump solutions to the,
double—hump solutions as one increases the Mach'numbér in the range\
04 M < 1. However, for all these solutions the low frequeéency ion wave
potential @? ( §7) exhibits a one bottom-well structure throthout.
In Figures (4) and (5), we plot the Langmuir field intensitykEé and:the
ion wave notential <ﬂ?@ at the centre j§‘= © as functions of the Mach
numbexr fot different values of /) , whereas, in Figure (6), we plot
IQ§C)vas a function of /) for the corresponding values of the critical
and cut~off Mach numbers. In the following section, we carry out the
sagdeev potential analyses of the equations (4.30) and'(4.35) and confirm .

the above mentioned features of the Langmuixr solifbns.

Iv.5.2 Sagdeev Potential Analyses

We first carry out the Sagdeev potential analysis of the
eq. (4.30). Integrating this equation with respect to '}" once and using

the boundary conditions (4.23), we obtain
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FIGURE (4). Langmuir field intensity Eg at the centre of the
soliton E's(J (eq.(4.35)) as a function of the soliton Mach number

M for different values of the nonlinear frequency shift A .
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FIGURE (5). Plot of the amplitude of the ion wave potential:gaﬁo “j

(eq.(4.36)) for values of the parameters ‘M and A\ as in Figure (4).
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FIGURE (6). Plot of the amplitude of the ion wave potential

Qtzx(eq,(4.36)) as a function of the nonlinear frequency shift ‘

A for corresponding values of the Critical Mach number Mooit

and the Cut-off Mach number M .
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i

where,

\“](:D (C?) - — 2’:&(6-(‘3)(6 F )9 | f414@)

Equation (4,.39) is analogous to the equation of motion of a particle in
a potential v@ (CT‘) called the Sagdeev potential (ref. ? 1.6.3).
Consider the behaviour of V@ with respect to C-'b '\f@ is zero at
minimum ( § = sz‘z) and the maximum ( € = @) values of @ ; and is
negative for all negative values of @ . Also, from eq (4.40) it
follows that (i) (\/\f/d@ is zero at ¢ = @ and (ii) ol V/d@

is finite at (i) = (. One can now analyse the behaviour of: '\7@ 1}‘1’ the z;‘“,
neighbourhood of gTJ = @ and show that the point (0,%) 1n the' @‘;‘7@,
plane is mapped to the points (+ o, ) in the E«@ ‘_;plane (see,
5‘; 1.6.3). Thus, V@ behaves appropriately for tlie existence of
localized, soliton solutions. The single-valuedness of '\ffﬁ with
respect to @ implies that the solution for (@ ( £ ) has one bottom-
well structure always. This is consistent with the soiution {4.36)
plotted in Figure (2) for different walues of the Mach number. Typical

plots of '\7@( ) are shown in Figure (7).

: 2.0,
We next carry out the Sagdeev potential analysis for ET( E )
(Rao & Varma, 198l). Differentiating eq. (4.35) with respect to E once

and substituting for (/{QS/O(?ST from eqs. (4.39) and (4.40), ve obtain

(4.39)
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where, 2

.(9.—(32_) [ (4.42)»

and is the Sagdeev potential for solutions for EZ( T ). 1In eq.(4.42),
£ is to be determined in terms of g2 from eq. (4.35), which is a quadra-

tic in & , and hence gives the two roots’ E}lﬂ‘and 692 as,

m——n e

. 1/7 |
1 — 2 2
01, ~ 75, L by ¥ (b, +b,E ) B

(4.43)

. ) i

Since b1 is negative always, both 691 and g;2 are negative when b2 is
negative whereas only 591 is negative when b2 is positive. The condition
that E2f§ bi/ {bzl ensures the reality of é91,2 when b2 is negative.
Using eqgs. (4.43) in eq. (4.42), we note that VE is, in general, a double-

valued function of E2, say Vl and V2; that is,

Z
- 32k v Y a B
2= 22 (20,0, ) (6, 7 )

Z
(61,2” %) @1)2 . (4.44)

, 2 .
Using egs. (4.44), one can now examine V1 2(E ) for the exist:
?

2
m

ence of soliton solutions for E2( }'). Let E* be the maximum of’Ez,that'

2
is, Em = bi/ (b?'. From eqgs. (4.44), it is easy to verify that



(4.45)

V, ,(EY) ; . =0,

# Ez
40
E2 once and using egs. (4.43),

Differentiating vy 2(Ez) with respect to

we note also that,

j i
a‘\/‘l =0,

C{-\);,?. :f: () ) (4.46)

—_-_-2 2 Z.
dEX [2e?

2 .,
Further from eq.(4.43) and (4.44), it follows that dzvl/d(Ez) is

finite at E2 = . This, together with the first of egs. (4.46) ., gua~
rantees that the point (¢,%) in the E2 o VE plane is mapped to the points

(+ oo » @) in the 5 - E2 plane. On the other hand, since
' 2 2
dV2/d(E2) # ¢ and d2V2/d(E2)Zis finite at E%= B as well as at E = E_,

2
the points (Eﬁ?,@) and (E;{ @) in the E° - Vo plane are mapped into
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s s R . 4 . 2
finite ¥ points in the §§ - E? plane. Hence, the potentials vl(E )

and Vz(Ez) behave appropriately for the existence of soliton solutions

for EX( £

By detailed analysis of Vl 2 we find that when M takes
’

values in the range &< M <'Mc ; only Vl(Ez) is negative and, there-

rit
fore, the solution for Ez( 37) in this range of Mach number values has
only a single-hump: when M lies in the range Mcrit L M4 Mcut' V2 is’
also negative, giving rise to double~hump soliton solutions for Ez( E‘)
which have non-zero E2 at §f= 0. The double-hump soliton solutions
having E@ = 0 (Nishikawa et al, 1974) correspond, in the present analysis,
to the special case when both Vl(Ez) and VZ(EZ) are negative and the
second equation in egs. (4.45) is gatisfied. Typical plots of Viyz(E2)~
showing the above features of the solution for Ez(:§ ) are shown in
Figure (8). The usual interpretation of 'particle motion in a potential
well' can now be applied to the sagdeev potentials Véﬁ( Q§) and lez(Ez) ‘
(ref. § T.6.3). Thus, these analyses confirm the smooth transition |
from single~hump Langmuir soliton solutions of Rudakov (1973) and

Karpman (1975) to the double-hump Langmuir soliton solutions of Nishikawa

et al (1974) as one increases the Mach number in the range 0 £ M < 1,

wv.5.3 Free Parameters:M and E@

Tn the above discussion, the mathematical connection between
different types of Langmuir soliton solutions obtained for different
ranges of values of the Mach number has been brought out by taking the:

free parameters M and /\ which occurred in- the equations of avolution,
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namely, eqs.(4.20) and (4.21). 1In order to obtain a better physical

_understanding of these solutions, we now take M and E, as the free

parameters, in which case /% is no longer a free parameter and is

determined by eq. (4.35) at % = @, that is, by
2 ; ~ o 2 |
I — (4.47)
Eo =4 <bieo ' b;z.@o );

where, from eq.{(4.36), (903: F%L( M ,13) . EBquation (4.47) them

determines /\ for a given set of values of M and E@.

Figurés (9) and (10) show typical plots of finite amplitude
Langmuir solitons given by egs. (4.35) and (4.36) for Eé = 0.2 and for
different values of the Mach number. For this value of Eé, the sqlﬁtibns
for Ez( Ef) have single-hump structures when M £ 0.76. M = 0.76 corres-
ponds to the critical Mach number (Mcrit) for Eé = {.2. For values‘of
the Mach number M > .76, the solution for E2( T ) develops a double=hump
structure indicating increased concentration of Langmuir field intensity
around ;§'= @. The solutions obtained by Nishikawa et 2l (1971) corres-
pond, in our case, to taking E@ = 0. Solutionsg of this type are found
to exist only in the near-sonic values of the Mach number. Figure (1)
shows the plot of these solutions obtained from the present analysis.
For a given E@ # @, the corresponding critical Mach number can be cdlcufrj
lated from the egs.(4.37) and (4.47). The values of Mcrit thus obtained

are plotted as a function of Eé in Figure (12).
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FIGURE (11). The double-hump Langmuir soliton solutions with
Eé::O (Nishikawa et al, 1974) as obtained from the present

theory. These solutions exist for values of the parameters

M & /) corresponding to the curve M=4_ . in the (M, /\) parame-

ter space shown in Figure (3).




Mcrit

FIGURE (12).

Plot of the Critical Mach number M __..  as
crit

E

a function of the Langmuir field intensity at the centre,
2 (egs.(4.37) & (4.47).
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_IV.6 Some Limiting Cases

In the previous section, we have considered general, two=term

- solutions for the equations of evolution (egs.(4.20) and (4.21))éh6 héve

obtained the parameter regiens in the (M, /\ ) parameter space for the
existence of different types of Langmuir soliton solutions. We consider,
in this section, some limiting cases and recovef explicitly the solu-
tions obtained earlier by other authors (Rudakov, 1973; Karpman, 1975;
Nishikawa et al, 1974; Schamel et al, 1977). In all these analyses’
(barring Schamel et al, 1977), the solution for é@( £) loxr 9 (%))
is obtained by taking only the first two terms on the right hand‘side of
eq. (4.30). Taking, therefore, the limit Ci3 —3 @, we obtain from

egs. (4.30), (4.32) and (4.33) the follaowing solution for ©( % ):

S (?) - %/' SeChz <k E), (4.48)

, .
%_/:‘ O(;_/Olz , g = 30l /Z- (4.49)

Iv.6.1 The Linear Case - Zakharov's Equations

The Zakharov equations correspond to the case when only the
linear response of the ions in the low frequency waves is considered.
These equations which have been used to obtain the Rudakov soliton and

the Karpman soliton solutions can be obtained from the present theory

by retaining only the first term in the expansion (4'34)555¢3#;:,
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2 - : : ,
Substituting the expression for bl given by eq.(4.29) in eq. (4.50) and
using the resulting expression for E2 in eq.(4.10), we obtain, in the
linear approximation,

2

g Ne =~ = | - (4.51)
- L' <,1 L l‘/fz) , : ;

Equations (4.12) and (4.51), then, constitute the set of equations first

obtained by Zakharov (1972) for a stationary solution moving with a Mach
number M. Since 5 ng is negative and finite for a Langmulr sollton, |
it follows ffom eq. (4.51) that M < 1. Equations (4.12) and (4.51) give,
on integration,; the near—static'Rudakov soliton for M << 1 and the near-
sonic Karpman soliton for M‘ﬁ 1. Both these solutions have single—huﬁp
structures for the Langmuir field intensity E2( E') with a corresponding
depression in thé density given by eq.(4.51). BAs discussed in §;IV.S.1,
such single-hump SOlutions for E2( Ef) exist in our analysis for all

values of the Mach number in the range 0 < M M (ref. Figure (3)).

crit

Iv.6.2 Weakly Nonlinear Case

Zakharov's analysis assumes charge-neutrality for the low

. frequency motion where the ion motion is governed by the linear wave

equation. The importance of ion nonlinearity together with dispersion
of the low frequency ion waves (throuqh P01sson s equatlon) in the

dynamics’ of Langmuir solitons for near—sonic ‘velocities was flrst shown

O DR A e A Frhaal el T'A +-'ha :mnT'if‘nﬂQ of the hicgh
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frequency Langmuir waves is governed, as usual, by the Schrodinger-like

equation (4.12), the low frequency ion motion is described by a weakly

nonlinear equation of the K-dV type which 1is driven by the ponderomotive
force due to Lahgmutr waves. Very much unlike the nearfsénic solutioné
of Karpman (1975), solutions of these equations have a node at the
centre for Langmuir field amplitude and, therefore, a double-hump stru-
cture (with E@ = ) for the plasmon number density. The low frequency
ion wave potential, however, has only one bottom-well structure as in
the linear case. As discussed earlier, these solutiéﬁs are obtained‘in
the present theory when the parameters M and L\ take values corres~
ponding td the curve M = Mcut in the (M, /\ ) parameter space shown‘in

Figure (3).

To recover explicitly the above solutions from our analyses,

we consider the solutions (4.35) and (4.48), namely,

A
E (%) =4 (ble + b-_,.@l‘) , (4.35)"
O(%) = —~{3§“1-SQQ.”h2(k‘§), (4.48)

and, take the free parameter E@ to be equatl to zero. Equation (4.35)'

then yields,

bi -+ bz O, = o, | | (4.52)

where €9b is now given by eq.(4.48)'at T =0 :

0= (M, ). - e

.
A

) 1 i
Using eq. (4.48) in eq.(4.35) along with egs.(4.49), (4.52) and (4.53),

we obtain the following solutions for E( ¥ ) and é@ ( }F;):‘




1lo

o\ B 1/_2_ L , E g :
’ A< /= k"(/d\,j 1/0(‘2-) : SGCh(k E.‘)*—k‘ah K (kg-)) 4.5y
C:D(E):"(BM L)(1/2.\)( ) sech (k}) (4.55)

where Xk is given by the second of eqs.(4.33). Solutions (4.54) and
(4.55) have the same functional form as the solutions obtained by
Nishikawa et al (1974). It may be noted here that the solutions (4.545
and (4.55) have only one free parameter which can be either the Mach
number M or the nonlinear frequency shift /\ . The other paraméter

can, then, be determined through egs.(4.52) and (4.53).

Iv.6.3 Finite Amplitude, Quasi-Neutral Case

Schamel et al (1977) have considered finiﬁe amplitude Langmuir
waves together with the full ion nonlinearity in the low frequency iénl
waves. However, these authors assume charge neutrality for the low f;éh
quency response to close their system of equations (that 15, S nr;_ =6n;, -
in the notation of egs.(4.4)). Even though they reéover the single-hump
Langmuir solitons of Rudakov (1973) and Karpman (1975) in the small ampli¥
tude limit, they have not discussed the form of their éolutions for finite
amplitude waves but have, instead, obtained a set of 'existence relations'
through Sagdeev potential analysis. While the assumption of charge neu-
trality is not quite consistent with taking full ion nonlinearity into
account, the ‘existence relations' obtained by these authors are not

valid, as we shall show below, for intermediate as well as for near“SOniéﬁﬂQ:

values of the Mach number in the range, 04 M < 1.
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Since the evolution equations (4.20) and (4.21) derived in the

present theory are fully nonlinear in the ion motion and, further, take

into éc(:ount completely the space charge effects in the' low frequency
responée, We can obtain the 'existence relations' of Schamel et al (1977)
by forcing the assumption of charge neutrality for the low frequency ion
waves. This assumption implies, through the eq. (4.20), the folloﬁinrj ‘

relation between E2 and C};‘ :

‘_.‘1/2 . : o |
M(m*=23) =exhp (@ ~ EZ/LJ .50

1f, beééﬁse of char«jé\:heutrality, ny (G)’ =n (@) = N, be the common ion

and electron number dyensity at § = {, then, from eq. (4 56) ; we obtaz.n

..12

M(M22,) Sexp (8-Ell)=N. @

Also, from the 'enerqy integral' given by eq. (4.24), we get

1+M° = M (l\’l Z@) A__,_(/\ 1)[; |
| +CXP (@ - o /u) (4.58)

since, dE/d“g = d QS/d T o= { at E = ., From eqgs.(4.57) and
(4.58), we easily obtain the following equations for )\ and M?»in terms

2
of;E@ and N :

, i 1 /
/VIZ—: 2 (kn NV -%—Eoz/u) (1-N 2) (4.59)

)

A =1+ (/\/~1) (1 ~ ,\/,Z/N)/(EOZ/O_ | (4.60)
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Equations (4.59) and (4.60) are the 'existence relations' derived by

~Schamel-et-al (1977)-.

We now examine the validity of the existence relations (4.59)
and (4.60) with respect to the Mach number. Equation (4.56) yields, on

expansion, the following expression for E2 in terms of éi§ :

- 5 ,
k= 2 & L |
___..::(\\A——l)(_:_;i)_},_J—_(]V}_S)(@_)+_'.? (4.61)
3 M £ N 7 ,
This solution can, then, be cdmpared with our solution for E2é§iventhJnQJ' ;’

eq. (4.28), namely,

E*_ [y (- (204 ]| ()
—=|C -‘)+{~5M (2‘A+6M/3_:U T
+ b, (%2)2—’— SR a6

where, in cbtaining eq. (4.62), we have made use of the expressién for b@
and b1 given by eqs.(4.2§). Obviously, the solution (4.61) departs from
the general solution (4.62) already in the linear term; only in theylimit
M £< 1 does eq. (4.62) reduce to eq.(4.61) while for larger values of M,
the additionai term being proportional to (8 O /3)M2 can be quite large.
Thus, the existence relations.(4.59) and (4.60) obtained by Schamel et al
(1977) are nof valid for intermediate as well as near-sonic values of the
‘Mach number in the range 0 £ M £ 1. On the other hand, the explicit solu-
tion for Ez( % ) and (? (E) 'given respectively by egs. (4.35) and (4.36)
are valid, as discussed in §TIV.5, in the range of the Mach number

DML M
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.7 ' Langmuir Wave and Ion Wave Energy.

In thié séction, we evaluate the total enerqgy associated with
the high frequency Langmuir waves and the low frequency ion waves which

are defined, respectively, by

+ao

Ne = [ EX(B)dE, .69

J

Ne=[ &(par,

where Ez( ¥ ) and <@ ( %) are given by egs. (4.35) and (4.36). The
quantity Np is sometimes called the total piasmon namber, being the tbtal

number of quasi-particles associated with the Langmuirx field oscillations.

Substituting for E2( ¥ ) and é@ ( F) from eqs.(4.35) and (4.36)
in egs. (4.63) and (4.64), the integrals in the latter equations can be

reduced to the form (Rao & Varma, 1981)

Np=- 2K g 1Bl [2bst (B r@a)ﬂ

i

+ L{bz P}l ”57-, /k > . (\4.6\5)\\,’\’

f\/@ = i\/! F’] I (A ’ ) Sk | (4’.66)\\’

(1)

where J is the integral defined by,
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B+IB) o

jzz("( — %}: O(’? X | (4.67)’

)
2
f-‘»,_

and can be evaluated explicitly as,

S < -1 i
/4 @‘11/2 i?}ﬁ{GXF(cosh ( 1+|B)

~1d /2y T .
S &) *é; 2 >0,
1 '

1/2

3/
AL !%_li/zﬂ%l |
817 g 17

R

e

i

- % <O (4.68)

o T —
{
Ny
N

Figures (13) and (14) show the plot of N, and Ng (o;,;aineg:~
from egs. (4.65) - (4.68)) as functions of Mach number (M) for differeng { : , 
values of the nonlinear frequency shift ( /). These figures should be.‘ ‘
compared with Figures (4) and (5) where the corresponding energy densi~ .
ties are plotted. It follows from these figures that the Langmuir soii-
tons with larger Langmuir (ion) wave amplitudes haveblarger total Langmuir
{ion) field eneréy for the same values of M and D . In Figurey(lS),
we plot Np as a fuﬁction of M for different values of t¢§§ . Clearly,
for a given N & the Langmuir field energy decreases with the increaséE

p

in the Mach number. Thus, if one were to consider the Langmuir{solitbn

as a "particle" , then, the total energy associated with the Langmuir
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FIGURE (13). Total plasmon number Np (eq.(4.65)) as a function
of the soliton Mach number M for different values of the non-

linear frequency shift A\ .
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FIGURE (14), Total ion field energy N@ (eq.(4.66)) for

values of the parameters M and () as in Figure (13).
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FICURE (15). Plot of the total plasmon number Np‘as a

functwi'on of the soliton Mach number M for different, given

values of the total ion field énergy Nd—) .
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field osciilations can be identified as the "mass" of the “particle”.
wFigurem(16Lmshowsmthemvériationwoﬁ_ﬁllaryMﬁdxh_respectwtewthefkach‘numberWMfi
when NP is kept constant. It follows from this figure that thé ébli;bpg‘f\\’

" with larger Mach number have greater total ion wave enerqy fof;saﬁé amount

of Langmuir field energy. Similar wesults are obtained from the Zékhafov
equations also (see, for inétance, Gibbons,et al, 1977). We cohclude this
section with Figures (17) and (18) whefe;h lines of constant NP and Nqé

are respectively plotted in the (M, Z},) parameter space. The corres=
ponding critical and cut-off Mach numbers are also ploﬁted in thesé

figures.

Iv.8 Summary and Conclusions

We have developed, in this Chapter, a theory for the nonlinear,
amplitude modulated Langmuir waves and the associated ion acoustic waves.
The significant features and the main results of our investigation of the

problem can be summarized as follows:

(a) A set of governing equations for the Langmuir,soliténs, valid
in the entire range of the Mach number, namely, 0« M « 1 has been deri-
ved without using the charge neutrélity condition for the low freqdquy
iOH*WéQésiand any a priori ordering schemes. An analytic method is;\\
théﬁ,>developed for solving these coupled set of nonlinear equétions;\
The method is capable of taking into accognt any arbitrary degree of

ién nonlinearity‘COnsésgent,with the noﬁiinéarity retained in the

Langmuir field amplitude.



FIGURE (16). Plot of the ion field energy Né@ as a function
of the soliton Mach number M for different, given values of

the total plasmon number Np .
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FIGURE (17), Constant plasmon numbexr trajectories N_ in the

B
(M, ) parameter space. Corresponding Critical and Cut-off

Mach numbers (MCrit and M_ . respectively) are also plotted.
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FIGURE (18). Constant ion field energy trajectories N(13
in the (M,/\) parameter space., Corresponding Critical and

Ccut-off Mach numbers (MCrit and Mcut ’ respectlvely) are
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(b) A 'c¢lass of double~hump Langmuir soliton solutions having:non—

zero Langmuir field intensity at the centre of the solitons is found for

a range of values of the Mach number M and the nonlinear frequency shift
’ZS . U51ng thpse solutions, a smooth transition from smngle~hump soli-
tdn solutions of Rudakov (1973) and Karpman (1975) to the double?ﬁump
soliton solutions of Nishikawa et al (1974) has been established with‘4
respect to the Mach number. The regions of parameter values for the
existence of different types of soliton solutions are explicitly obtalned
in the (M, /\ ) parameter space. The theory developed here yields, under
appropriate limiting conditions, various soliton solutions obtained

earlier by other authors.

(c) The existence of soliton solutions for the Langmuir field
amplitude as well as for the ion wave has been discussed through Sagdeev
potential analyses. These analyses, further, confirm the smooth transi-
tion from single~hump Langmuir solitons to the double~hump Langmuir soli=

tons with respect to the Mach number.

(d) The discussion of the existence and structure of Langmuir soli-
ton solutions presented above has been carried out by considering tarms

up to second order in the low frequency ion wave potential (ref.é? IvV.5).
Howgver, this can be extended so as to incorporate higher order nonlineari-
ties in the ion wave potential. 1In this connection, a conjecture is made
about the existence of many~hump Langmuir solitons corresponding to higher

order nonlinearities in the low frequency ion dynamics.
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APPENDIX

We give here the first four coefficients bl’ bz, b3 and b4 in

the expansion (4.28):

5 | .
bi: ol + Vi , (A.1)

where, as defined in the text,

7 z 2
= 1-UAM Tz, A= 2A+E Mz . e
Also,
2 _ R s
b2 -— Fi P bz" F3 J bLj” FS, ) (A.3)
where
= 9b, ~36 \M°
Fl = J Yy /\ y)

2 2 2
=2 by (3-o°) +3M (d=M7)
6
+ oMl b1+6M“(1+oz_) FUAMS,
"9b é/\‘\/) bj_,

}—H =24 M (b B —-/\b)

-9 by (£-db, + 2o)+ F6byb,(2-R,)
+12 b, (1+ot}]
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[

2 3

hy
4

. , 1N/ - N 2]
cem? [ba b=

~6 M [y (byPy b, Ay) +Lp, (b,Ra+b, ))+h AL, |
+élVL{ [b,’ m2_>+3b (j.”ll’d):]
+U (byPy +2Ab,),

= _
= 9b, 180 AM by

= —24 Mz EB by <b167—+ blBi)
+b,(b;Bs+b, Bzﬁ’b Bﬂ)j
_g[‘bi %F..,..——G; +20b,) + <
F6b; b, (5-P3)+(12b, b +9brbs)
(3 -0+ (1) 6ty 1957 |
b [ (5wt ey By
+ZL O(h} +Libyb, By +12B,6,5;
+ B,y (L bj+é_bib5>!

lzu‘*
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L

A - ‘ |
o Y ) bi (blHS+DZH’Z.+b391)

-

*'”b1bz(hﬁﬁﬁblﬁl+b34)

2 L
+{ by +gb, by) (byAa+b, ))H12ALbE, |

i}
e

2
+t6M" b (2-Ry)+ 3byb, (2-A,)

+(2+) (2, +1 b, by)|

where the following notations are used:

Fii:“{i ?
b+ & o°
}:)Z:”",DZ‘-‘("'Z‘O()

1 5
Fg‘z - - t)g -4” Ci til'“ 2;“ C* >

Hy = =bu 42 (b+2aby)-Labrto’,

E31~:: ”";\[)i‘)
1 2 1 ,ﬂz'
BZ:"‘Z’V) -—}\bl.l,»z—»a ,



120

+olb "‘"éi,“d;zi
s L2 o
B,=-2 M = Ab,+ 2 (bi+20by)
o

O(b+zL,d'

T
’Bz"'ﬂzM )\b

Similarly, higher ordé?fcoefficiehts can be obtained. Then, for any

given set'of valﬁeé‘éf the‘pafameﬁers M and £ , all the coefficients

b, (or an) cah be evaluated explicitly.
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