
Vortices of Light and their Interaction with

Matter

A thesis submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

by

Shashi Prabhakar

(Roll No. 11330013)

Under the guidance of

Prof. R. P. Singh

Theoretical Physics Division

Physical Research Laboratory, Ahmedabad, India.

DISCIPLINE OF PHYSICS

INDIAN INSTITUTE OF TECHNOLOGY GANDHINAGAR

2014 - 2015





to

my family





Declaration

I declare that this written submission represents my ideas in my own words

and where others’ ideas or words have been included, I have adequately cited and

referenced the original sources. I also declare that I have adhered to all principles

of academic honesty and integrity and have not misrepresented or fabricated or

falsified any idea/data/fact/source in my submission. I understand that any

violation of the above can cause disciplinary action by the Institute and can also

evoke penal action from the sources which have thus not been properly cited or

from whom proper permission has not been taken when needed.

Shashi Prabhakar

(Roll No: 11330013)

Date: April 6, 2015





Thesis Approval

The thesis entitled

Vortices of Light and their Interaction
with Matter

by

Shashi Prabhakar

(Roll No. 11330013)

is approved for the degree of

Doctor of Philosophy

Prof. R. P. Singh Dr. Goutam K. Samanta

(Supervisor) (DSC Member)

Prof. Jitesh R. Bhatt Prof. S. Ramachandran

(DSC Member) (Academic Chairman)

Date: April 7, 2015

Place: PRL, Ahmedabad





Acknowledgements

This thesis is the result of a very nice and revealing research time during

2009-14 at Physical Research Laboratory (PRL), Ahmedabad. It gives me a great

pleasure to acknowledge all those who supported me directly or indirectly and made

this thesis possible.

First and foremost, I wish to express my sincere thanks to my supervisor,

Prof. R. P. Singh, for giving me the opportunity and the resources to conduct my

doctoral research program at PRL. I owe my deep sense of gratitude to him. I am

also very thankful to him for constant guidance that he has provided throughout

my research endeavor. He helped in my study to large extent from basics of optics

to image analysis as well as from independent thinking to scientific writing. His

persistent support, far-sighted guidance and broad scientific experience made my

research work possible. It is a great privilege for me to get a companionship with

him. I consider myself fortunate to have him as my supervisor.

I thank Prof. J. N. Goswami, Director; Mr. Y. M. Trivedi and Wg. Cdr.

(Retd.) Vibhas Gupta, Registrar; Prof. A. Joshipura, Prof. U. Sarkar, Prof.

A. K. Singhvi and Prof. S. Rindani, former Deans of PRL; Prof. Prof. P.

Janardhan, present Dean; Prof. S. Rindani, former area chairman and Prof. S.

Mohanty current area chairman, for providing necessary facilities to carry out

research work. I thank Dr. Goutam K. Samanta and Prof. Jitesh R. Bhatt for

reviewing the work and motivating constantly during these five years.

I am highly obliged to Prof. J. Banerji for his suggestions and critical com-

ments which helped me to improve scientific outcomes. The fruitful discussions

with him always helped me to improve the quality of the scientific results and

manuscripts. A big thank you for Dr. Goutam K. Samanta who has helped in

keeping the motivation for perfectness inside me. Discussions on fundamentals

and experimental techniques with Dr. Samanta was always enjoyable and fruitful.

I thank Prof. J. S. Ray, Prof. Angom D. Singh, Dr. D. Banerjee, Dr. N.

Mahajan, Prof. R. Rangarajan, Mr. T. Sarvaiya, Prof. H. Mishra and Prof. K.

P. Subramanian for teaching the courses during my course work at PRL which

turned out to be very useful in tenure of research work. In this petabyte era of com-

putational capabilities, data handling and computations have been a very crucial

but tedious task. In this regard, I thank all the staff members of PRL computer

center for providing excellent computational and internet facilities. Especially, I

must acknowledge the help received from Jigar Raval, Samuel Johnson, Hitendra

Mishra, Alok Srivastava and Tejas Sarvaiya from computer center. In addition, I

express my appreciation for the co-operation and help extended by the library and



ii ACKNOWLEDGEMENTS

its staff members in general and Mrs. Nistha Anilkumar and Pragya Pandey in

particular.

I take this opportunity to thank my seniors, Ashok Kumar and Pravin Vaity,

who introduced me to the world of Optics and paved a smooth way for further

research in this area. Sincere discussion with them and sometimes “not” receiving

ready made answers helped me a lot in understanding the subject. The work

culture maintained by Ashok and Pravin in the lab was highly motivational. I

am also thankful to Sunita Kedia from whom I have learnt “not busy” attitude.

I have learnt a lot from Virendra Jaiswal and Jitendra Bhatt, whose occasional

visits to lab were very informative.

I am thankful to all my colleagues, Gangi, Aadhi, Chithra, Apurv, Vinayak,

Jabir, Ali and Vinayak in Lab for being friendly and co-operative during this

research journey. Our academic and non-academic discussions have made my

stay enjoyable and eventful in lab. I have learned a lot about different fields in

which my colleagues are working. In one way, I have learnt about different fields,

and not just one in the last five years of my life. I would like to thank the visitors

which include summer and engineer trainees, particularly to Aabhaas, Shaival,

Kinchit, Binal, Chirag, Mehul, Gaurav, Megh and others.

My special thanks and gratitude goes to my batchmates Devagnik, Fazlul, Kabi-

tri and Tanushree. Their presence has made me feel that I am not alone and

someone is there to care for me during odd days. Special thanks to Fazlul who

has helped me in some of my experiments. He has also helped me in numerical

techniques and computer related issues.

I would like to thank Prof. Sudhir K. Jain, Director; Prof. Amit Prashant,

Dean; Prof. B. Datta, associate Dean; and the academic section of Indian Insti-

tute of Technology, Gandhinagar for the support and help. Special thanks to Mr.

Piyush for his prompt response and help during registration.

This acknowledgement section remains incomplete if there is no mention of

my wonderful seniors cum friends who were always there to support and help at

my stay in hostel. My sportsman spirit became alive after I saw them playing

volley ball, badminton and table tennis. My seniors Arun, Amrendra, Sunil, Sid-

dharth, Koushik, Chinmay, Sushant and Yogita have helped to keep my loneliness

away from me. I am also thankful to Ashwini, Arvind Singh, Pankaj, Vineet,

Neeraj, Prashant, Bhaswar, Sandeep, Vimal, Ketan, Sudhanwa, Suman, Amzad,

Srikant, Satinder, Arvind Saxena for making my stay comfortable. In addition,

I express my sincere thanks to my dear juniors Avdhesh, Damu, Lekshmy, Mid-

hun, Anjali, Arko, Bhavya, Dillip, Gaurav, both Girish, Gulab, Monojit, Naveen,

Priyanka, both Tanmoy, Yashpal, Dinesh, Upendra, Wageesh, Arun, Gaurava,



ACKNOWLEDGEMENTS iii

Abhaya, Anirban, Guru, Ikshu, Kuldeep, Manu, Shraddha, Alok, Sanjay, Bivin,

Deepak, Dipti, Jinia, Lalit, Rahul, Ashim, Chandana, Newton, Pankaj, Venky,

Chandan, Hemant, Kuldeep, Venkata, Navpreet, Prahlad, Satish, Rukmani, Rupa,

Yasir, Komal, Manish, Vaidehi, Sneha, Upasana, Lijo and several others who

made my stay in PRL pleasant and having a wonderful experience.

This thesis is incomplete if I do not acknowledge “Google”. It has always

made my life easier like a friend. Google has not put in such a situation that I

have searched something and there was zero result(s). I also thank open-source

packages like XUbuntu, Firefox, Zotero, Texmaker, PDFtk and others which had

made my work very simple.

I am deeply indebted to my school teachers, specially Ms. Lipika Paul for

excellent teaching and encouragement. A special thanks goes to my long time

friends Gautam and Tribedi for their constant support and encouragements. Their

constant push and motivational chats have helped me to recover from odd times.

Last, but not the least, I would be nowhere around here without the love and

support of my parents. Words cannot express my gratitude for my parents, cousins

and my family members. Finally, I must also acknowledge the love, support and

blessings of friends, teachers, relatives and all known and unknown persons whom

I met with or interacted with in life.

(shashi prabhakar)





Abstract

Optical vortices are singularities in the phase distribution of a light field. At

the phase singularity, real and imaginary parts of the field vanish simultaneously

and associated wavefront becomes helical. For an optical vortex of topological

charge l, there are l number of helical windings in a given wavelength λ of light

and it carries an orbital angular momentum of l~ per photon. This dissertation

concerns with the study of interaction of optical vortices with matter namely non-

linear optical crystal β-Barium Borate (BBO) and Bose-Einstein condensate.

A new method to determine the order of optical vortex from just the intensity

distribution of a vortex has been discussed. We show that the number of dark

rings in the Fourier transform (FT) of the intensity can provide us the order. To

magnify the effect of FT, we have used the orthogonality of Laguerre polynomials.

We have studied the interaction of optical vortices with BBO crystal. The

spatial-distribution of degenerate spontaneous parametric down-converted (SPDC)

photon pairs produced by pumping type-I BBO crystal with optical vortices has

been discussed. For a Gaussian pump beam, we observe a linear increase in thick-

ness of the SPDC ring with pump size. On the other hand, the SPDC ring due

to optical vortex forms two concentric bright rings with an intensity minimum

in the middle. We also observe that if the beam size is lower than a particular

value for a given topological charge l of the vortex, then there will be no change

in full-width at half maximum of the rings formed by down-converted photons.

We have experimentally verified the quantum inspired optical entanglement

for classical optical vortex beams. The extent of violation of Bell’s inequality

for continuous variables written in terms of the WDF increases with the increase

in their topological charge. To obtain this, we have used the FT of two-point

correlation function that provides us the WDF of such beams.

Quantum elliptic vortex (QEV) is generated by coupling two squeezed vacuum

modes with a beam splitter (BS). The Wigner distribution function (WDF) has

been used to study the properties of this quantum state. We also study how this

coupling could be used to generate controlled entanglement for the application

towards quantum computation and quantum information. We observe a critical
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point above which the increase in vorticity decreases the entanglement.

We have also studied the annihilation of vortex dipoles in Bose-Einstein

condensates. To analyze this, we consider a model system where the vortex-

antivortex pair and gray soliton generated by annihilation of vortex dipoles are

static and the system could be studied within Thomas-Fermi (TF) approxima-

tion. It is observed that the vortex dipole annihilation is critically dependent

on the initial conditions for their nucleation. Noise, thermal fluctuations and

dissipation destroy the superflow reflection symmetry around the vortex and an-

tivortex pair. It is note worthy that some of our theoretical results have already

been verified experimentally.

Keywords: Singular optics, Optical vortex, Spontaneous parametric down-

conversion, entanglement, Wigner distribution function, Bell’s inequality, Vortex

dipole annihilation, Bose-Einstein condensates.
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Chapter 1

Introduction

In optics, the concept of phase is important because it provides a visual perception

of wave propagation and transformation along its path. The phase in a beam of

light is characterized by the wavefront that is a surface of equal phase, which

can have regular shapes like planer, spherical, cylindrical and even helical. The

superposition of two wavefronts leds to the interference fringes and supported the

wave theory of light, similar to Young’s double slit experiment [1]. This thesis

deals with the beams with helical wavefronts, in particular optical vortices. It

includes the interaction of optical vortices with matter namely non-linear optical

crystal β-Barium Borate (BBO) and Bose-Einstein condensate.

1.1 Optical vortices

The Laguerre Gaussian (LG) beams are the eigen modes of stable laser resonator

which has cylindrical symmetry. These beams form infinite dimensional orthog-

onal set of solutions. The complex field distribution of LG beams are [2]

Elp(r, φ, z) =
CLG
lp

w(z)

(
r
√

2

w(z)

)|l|
exp

(
− r2

w2(z)

)
L|l|p

(
2r2

w2(z)

)
× exp

(
ik

r2

2R(z)

)
exp(ilφ) exp [i(2p+ |l|+ 1)ζ(z)] , (1.1)

where p and l are the radial and the azimuthal indices which represent orders

of associated Laguerre polynomial Lpl (). C
LG
lp is the normalization constant, and

1
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w(z), R(z) and ζ(z) are beam parameters. These beams contain p dark rings in

their intensity profile with a π phase jump.

Due to azimuthal phase term exp(ilφ), they have a twist of 2lπ in their wave-

front which acts as a screw dislocation [3, 4] and produces a vortex. The factor

l is called as the order of the vortex or its topological charge, which determines

how many times the phase should change by 2π on one complete rotation around

the center of the vortex [5]. This generates phase singularity in the wavefront.

Due to the same twist, these beams carry an orbital angular momentum (OAM)

of l~ per photon [6].

max
(a) (b)

(c) (d)

(e) (f)

min

max

min

0

π/2

π

3π/2

2π

0 π 2π

Figure 1.1: Optical vortex of order +1. (a, b) 2D and 3D intensity profile (c)

wavefront (d) phase profile and (e, f) interference pattern with a plane reference

beam and spherical beam.
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max

min

max

min

0

π/2

π

3π/2

2π

(e) (f)

0 π 2π

(c) (d)

(a) (b)

Figure 1.2: Optical vortex of order −1. (a, b) 2D and 3D intensity profile (c)

wavefront (d) phase profile and (e, f) interference pattern with a plane reference

beam and spherical beam.

When p=0, Eq. 1.1 reduces to a vortex beam equation

El(x, y, z) = E0(x+ sgn iy)l
w0

w(z)l+1
exp

(
−x

2 + y2

w(z)2

)
exp

(
ik
x2 + y2

2R(z)

)
exp (ikz − i(l + 1)ζ(z)) , (1.2)

where sgn denotes the sign of topological charge which is +1 for positive and −1

for negative. The intensity profiles and the phase profiles for different indices

p = 0, l = +1 and p = 0, l = −1 have been shown in Fig. 1.1 and Fig.

1.2 respectively. One can verify that Eq. 1.1 reduces to the Gaussian beam

expression for p=0 and l=0, which has been shown in Fig. 1.3.
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(a) (b)

(c) (d)

max

min

max

min

(e) (f)

Figure 1.3: Gaussian beam. (a, b) 2D and 3D intensity profile (c) wavefront

(d) phase profile and (e, f) interference pattern with a plane reference beam and

spherical beam.

Optical vortices can also be observed in scattering of laser beam through rough

surfaces or ground glass [7], however in laboratory, they can also be generated

in a controlled manner [8]. In the speckle patterns formed by scattering of laser

beams, many dark spots are observed which are actually optical vortices of order

±1. These are formed by the interference of many scattered waves [9]. In isotropic

random fields, the probability of creating positive and negative-charge vortex is

the same, so the sum of all the vortex charges remains zero.

This OAM can be transferred to micron-sized particles placed along the prop-

agation axis. This property of Laguerre-Gaussian beams finds practical interest

in the field of optical trapping and micro-machining [10]. It must be noted that
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the OAM of LG beams are different from the angular momentum due to the

polarization of light. These beams have found a variety of applications, such as

in the optical trapping of atoms [11], optical tweezing and spanning [10], optical

communication [12], imaging [13], and quantum information and computation

[14].

1.2 Orbital angular momentum (OAM) of light

Light carries a linear momentum equivalent to ~k per photon and, if circularly

polarized, a spin angular momentum (SAM) of ±~ per photon [15]. In 1992,

Allen et al. recognized that light beams with an azimuthal phase dependence of

exp(ilφ) carry an orbital angular momentum (OAM) of l~ per photon [6, 16, 17]

that can be many times greater than the SAM and that such beams were readily

realizable. This OAM is completely distinct from the familiar SAM, most usually

associated with the photon spin, that is manifest as circular polarization.

The origin of OAM is easier to understand. The simplest example of a light

beam carrying OAM is one with a phase in the transverse plane of Φ(r, φ) =

rl exp(ilφ) (simplified version of Eq. 1.2) where φ is the angular coordinate and

l can be any integer, positive or negative. These beams have helical phase fronts

with the number of intertwined helices and the handedness depending on the

magnitude and the sign of l, respectively. One can see immediately that an elec-

tromagnetic field transverse to these phase fronts has axial components. Equiv-

alently, the Poynting vector, which is at all times parallel to the surface normal

of these phase fronts, has an azimuthal component around the beam and hence

an angular momentum along the beam axis exists.

1.3 Interaction of optical vortices with non-linear

crystal

Nonlinear optics is the study of phenomena that occur as a consequence of the

modification of the optical properties of a material system by the presence of light.
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Typically, only laser light is sufficiently intense to modify the optical properties

of a material system. For example, second-harmonic generation occurs as a result

of the atomic response that scales quadratically with the strength of the applied

optical field.

In non-linear optics, the optical response can be described by expressing the

polarization
−→
P (t) as a power series in the field strength

−→
E (t) [18],

−→
P (t) = ε0

[
χ(1)−→E (t) + χ(2)−→E 2(t) + χ(3)−→E 3(t) . . .

]
=
−→
P (1)(t) +

−→
P (2)(t) +

−→
P (3)(t) . . . (1.3)

where the constant χ(1) is known as linear susceptibility and ε0 is the permittivity

of free space. The quantities χ(2) and χ(3) are known as the second and third-order

non-linear susceptibilities.

Nonlinear effects fall into two categories – parametric and non-parametric

effects. A parametric non-linearity is an interaction in which the property of

the nonlinear material is not altered by the interaction with the optical field.

As a consequence of this, the process is ’instantaneous’ and the total energy

is conserved. This makes the phase matching polarization dependent. In non-

parametric non-linearly, the property of the nonlinear material gets altered while

interaction with the optical field and the energy conservation rule is not satisfied.

The nonlinear effects in certain crystals have been exploited in a number

of applications such as frequency doubling, optical parametric oscillation and

spontaneous parametric down-conversion [18, 19]. These phenomena can occur

when an input electric field interacts with the dielectric properties of the medium

in a nonlinear way. The phenomena of SPDC were first observed by Burnham

and Weinberg [20] and theoretically studied by Hong and Mandel [19].

1.3.1 Spontaneous parametric down-conversion (SPDC)

The process of spontaneous parametric down-conversion (SPDC) has been used

extensively for the generation of entangled photon pairs in many recent experi-

ments. The purpose of these experiments range from Bell’s inequality violation

[21] to the implementation of quantum information protocols [22]. In the process
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of SPDC, a laser pump beam photon interacts with second-order nonlinear χ(2)

crystal, gets annihilated and gives rise to the emission of two photons. These two

photons are generated simultaneously and follow the laws of energy and momen-

tum conservation.

When a nonlinear crystal, for example Beta Barium Borate (β-BaB2O4), with

a second order nonlinear susceptibility (χ(2)) is pumped by a highly intense laser,

a pump photon (frequency ωp and wave vector kp) splits into two photons called

signal and idler. These two photons are generated simultaneously inside the

crystal. This process is governed by energy and momentum conservation as

~ωp = ~ωs + ~ωi, (1.4)

~kp = ~ks + ~ki (1.5)

where ω is the frequency, k is the wave vector and suffices s and i denote signal

and idler photons respectively. This information has been pictorially shown in

Fig 1.4. The phase matching is determined by the frequency of the pump laser

beam, and the orientation angle of the crystal’s optic axis with respect to the

pump.

p (pump)
s (signal)

i (idler)Nonlinear
χ(2) crystal

(a) SPDC Process

ωp

ωs

ωi

E0

E1

(b) Energy Conserva-

tion

pk


ik


sk


(c) Momentum Conser-

vation

Figure 1.4: Conservation laws in the process of SPDC.

SPDC is stimulated by random vacuum fluctuations [23, 24], and hence the

photon pairs are created at random times. The conversion efficiency of SPDC is

very low, on the order of 1 pair for 1012 incoming pump photons [25]. However,

from one of the pair, if signal is detected at any time then its partner idler is

known to be present [20].
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1.3.2 Types of SPDC process

Based on the polarization of generated photons and phase-matching conditions,

SPDC is classified into two types – type-I and type-II [26].

Type-I SPDC

In this process, the down-converted photons have same polarization [27]. This

process is o→ e + e type interaction and hence produces a single cone. In crystal-

lography, o and e represent ordinary and extra-ordinary rays inside birefringent

crystals. These also represent horizontally and vertically polarized light based

on the birefringence of the crystal. Ring structure formed by the cone is shown

in Fig. 1.5. The output of a type-I down-converted photon pair is a squeezed

vacuum state that contains only even photon number terms [28].

a) b)

Figure 1.5: a) Theoretical and b) experimentally obtained ring structures formed

by type-I SPDC process produced by pumping with a Gaussian beam. Experi-

mental SPDC rings are obtained at different orientations of the crystal. Chang-

ing orientation of the crystal changes the thickness as well as the diameter of the

SPDC ring. The center of the ring does not change by changing the crystal’s

orientation.
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Type-II SPDC

In this process, the two down-converted photons have orthogonal polarizations

[29, 30]. This process is o→ o + e type interaction and produces two cones. Ring

structure formed due to the two cones is shown in Fig. 1.6. One ring corresponds

to o-ray and other ring corresponds to e-ray. The output of the type-II down-

converted photon pair is a two-mode squeezed vacuum.

a) b)

Figure 1.6: a) Theoretical and b) experimentally obtained ring structures formed

by type-II SPDC process produced by pumping with a Gaussian beam. Experi-

mental SPDC rings are obtained at different orientations of the crystal. Chang-

ing orientation of the crystal changes the thickness as well as the diameter of the

SPDC ring. The seperation between the center of two rings does not change by

changing the crystal’s orientation.

1.4 Quantum elliptic vortex (QEV) state

Quantum elliptic vortex (QEV) can be generated in signal photon mode by cou-

pling squeezed coherent states of two modes with beam splitters or a dual channel

directional coupler (DCDC) [31]. The quantum interference due to the coupling

between the two modes generates the controlled entanglement for quantum com-

putation and quantum tomography. Although, Agarwal et al. have studied the

properties of a generic vortex wave function of the form (x± iy)m, which is per-
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fectly symmetric, however, no real physical system can exhibit perfect symmetry.

Therefore, a generalized quantum elliptic vortex provides a more realistic and

more widely applicable vortex model.

Following the mathematical treatments of [32], with the choice of the pa-

rameters, ηi = 1/(
√

2σi), for i = x, y, one can calculate the normalized spatial

distribution of displaced QEV state of charge m as

ΨD
qev(x, y) =

√
2m−2

σxσyΓ(m+ 1
2
)
√
π

[
x− x0√

2σx
± y − y0√

2σy

]m
× exp

[
−1

2

{(
x− x0

σx

)2

+

(
y − y0

σy

)2
}]

(1.6)

where σi = exp(2ζi). It is centered at a point (x0, y0), where x0 = <e(αx)
and y0 = <e(αy). ζ is the squeezing parameter. A quantum state is said to be

squeezed when the noise in one variable is reduced below the symmetric limit

at the expense of the increased noise in the conjugate variable such that the

Heisenberg uncertainty relation is not violated i.e. 4x ×4px = const. α is the

eigenstates of the annihilation operator of coherent states |α〉. The distribution

|ΨD
eev(x, y)|2 is shown to have elliptic vortex structure, with zero intensity at (x0,

y0), i.e. the point of displacement of the vacuum. The density and phase function

is shown in Fig. 1.7 for m = 1. Inverting the ratio σx/σy rotates the ellipse by

π/2. In this case, the two axes x, y are the defined as the quadratures, and not

as spatial dimensions. Quadratures are similar to phase-space dimensions. In

this type of study, the electric field for the optical beam are considered quantum

mechanically and represented as a quantum state.

To study the properties of quantum states a number of (quasi)probability

distributions have been defined. However, among all the (quasi)probability dis-

tributions, the Wigner function stands out, as it is real, nonsingular, yields correct

quantum-mechanical operator averages in terms of phase-space integrals, and pos-

sesses positive definite marginal distributions [33]. Once the Wigner distribution

is known, the other properties of the system can be calculated. Keeping this in

mind we calculated the Wigner function of the QEV states [31]. We observed

quantum interferences due to coupling between the two modes of the vortex.
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0

max

0

2π

Figure 1.7: Density function (left) and phase (right) of an quantum optical ellip-

tical vortex state. Here σy = 1, σx/σy = 0.7, x0 = y0 = 0.3σy and m = 1.

1.5 Propagation of optical vortex in free space

A vortex embedded at the center of a Gaussian beam, when propagates in free

space, the position of the vortex does not change while propagation. However,

an off-axis vortex rotates about the center of beam during propagation [34]. This

phenomena is clearly visible in Fig. 1.8.

The propagation of a vortex dipole has attracted a lot of interest since the last

decade [35, 36, 37, 38, 39]. Bazhenov et al. [35] have experimentally generated

the pair of vortices in a single beam by using diffraction gratings for the first time.

Indebetouw studied the propagation of an array of vortices through free space and

showed that the relative separation between the vortices is invariant during the

propagation in the case of same type (sign) of charges whereas they will attract

and annihilate each other in the case of oppositely charged vortices [36]. Chen and

Roux have studied the annihilation of dipole vortices during their propagation as

shown in Fig. 1.9. They found that the background phase function at a point

where two dipoles annihilate have a continuous potential, which is the result of

annihilation. They have used the same background phase function to accelerate

the annihilation process [39]. Recently, the tight focusing properties and the

propagation dynamics of a pair of vortices have been investigated theoretically

[40, 41].
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Figure 1.8: Free space propagation of an off-axis vortex beam with charge +1 at

a distance of 0.3w0 from the center: intensity (top) and phase (bottom). Images

are taken at distances 2 mm, 400 mm and 800 mm from waist plain.
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Figure 1.9: Free space propagation of a vortex dipole with charges (+1, −1)

seperated by a distance of 0.6w0 symmetrically along the center: intensity (top)

and phase (bottom). Images are taken at distances 2 mm, 400 mm and 800 mm

from waist plain.
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The propagation of vortices in a non-linear medium, like Bose-Einstein Con-

densate, has garnered a lot of interest for their importance to the fluid system.

When an obstacle steers the condensate, vortex and vortex dipoles gets generated

around the obstacle. The dynamics of these generated vortex and vortex dipoles

holds a very important place in the field of hydrodynamics. As we have seen from

Fig. 1.9 that when vortex dipoles propagate in free space, they get annihilated.

We have attempted to study the steering of BEC with optical vortex which has

not been studied earlier.

1.6 Vortices in Bose-Einstein condensate

At normal temperature and pressure, both bosonic and fermionic type of gases

obey Maxwell-Boltzmann statistics, and consequently very difficult to differenti-

ate one from the other. However, when the temperature of these gases are lowered

(∼ 10−9K), the inherent properties of bosonic and fermionic gases become signif-

icant and show different behavior. In case of bosons, lowering the temperature

below a critical temperature Tc leads to the macroscopic occupation of the single

particle ground state; whereas in case of fermions, the system enters into a state

with a filled Fermi sea. One parameter which characterizes this transition is phase

space density, which is defined as the number of particles occupying the volume

equal to the cube of thermal de-Broglie wavelength λT [42]. At Tc, phase space

density becomes of the order 1 and the system can be considered as quantum

degenerate. The quantum degenerate bosonic system is also called Bose-Einstein

condensate (BEC).

The gases in Bose-Einstein condensate state act as superfluid [43, 44]. One

effect of this is that the viscosity becomes zero, meaning that normal rules of

surface tension, such as capillarity, are no longer obeyed. A superfluid in a glass

tube will literally “crawl” up the side of the tube in a thin film because of this

property. This superfluidic system can be considered as one of the best system

to study basic and fundamental theories of hydrodynamics at zero viscosity and

zero temperature. One such study is the formation and annihilation of vortex
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dipoles. Vortices in BEC can be considered as basic excitations in the superfluids

[42].

One of the important developments in recent experiments on atomic Bose-

Einstein condensates (BECs) is the creation of vortices and the study of their

dynamics [45, 46]. Equally important is the recent experimental observation of a

vortex dipole, which consists of a vortex-antivortex pair, when an obstacle moves

through a BEC [47] and observation of vortex dipoles produced through phase

imprinting [48, 49]. In superfluids, the vortices carry quantized angular momenta

and are the topological defects, which often serve as the conclusive evidence of

superfluidity. In a vortex dipole, vortices of opposite circulation cancel each

other’s angular momentum and thus carry only linear momentum. This is the

cause of several exotic phenomena like leap frogging, snake instability [50], orbital

motion [51], trapping [52], and others. The effects of vortices are widespread in

classical fluid flow [53] and optical manipulation [10]. A good description of

vortices in superfluids is given in Ref. [42] and review articles [54, 55]. More

detailed discussion of vortices is given in Ref. [56]. Number density and phase

profile of a vortex dipole have been shown in Fig. 1.10. The sense of rotation

of phase around the center of vortices are opposite of each other that shows the

presence of a dipole.

00

max 2π

Figure 1.10: Number density (left) and phase (right) profile of condensate with

vortex dipole. Two oppositely charged vortices are marked with two differently

colored circles.
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1.6.1 Trajectory of a vortex-dipole

The motion of a vortex ring in a trapped BEC may be understood in terms of

two contributions to the velocity of each element in the ring. First, the precession

due to the inhomogeneity of the condensate and secondly, the velocity induced

by the other rings. In the present case, we have considered highly oblate BEC

with few well separated vortex dipoles, hence the contribution due to the other

rings can be neglected. The velocity on each element is then given by

v = ωpk̂× r (1.7)

where k̂ defines the direction of the circulation at the element, and ωp is the

precession frequency. This equation can be reduced to two equations in x − y

plane as

dx

dt
= −ωpy +

1

2y
(1.8)

dy

dt
= ωpx (1.9)

These two equations govern the motion of the vortex dipoles. The solution of

these equations is shown in Fig. 1.11.

From the Fig. 1.11, one can observe that the vortex dipole come closer only

along the diameter of the BEC, if they are generated symmetrically along the

diameter of condensate. In the course of their motion, they can even be closer

than the coherence length. However, vortex-dipole with a separation less than

the coherence length is an ambiguous situation.

Among the important phenomena associated with the Bose-Einstein conden-

sate (BEC), the creation, dynamics, and annihilation of vortex dipoles carry use-

ful information associated with the system. Several methods have been suggested

to nucleate vortices and recently, nucleation of the vortices has been observed

experimentally by passing a Gaussian obstacle through the BEC with a speed

greater than some critical speed [47]. The trajectories of these vortex dipoles are

ring-structured as described in Refs. [57, 58] and shown in Fig. 1.11.
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Figure 1.11: The trajectories of the vortex dipole in oblate BEC calculated nu-

merically from the equation of motion (Equations 1.8 and 1.9). The energy is

same in every case. The trajectories depend upon location of generation of vortex

dipoles.

1.7 Aim of the thesis

Optical vortices have importance in various applications which include optical

trapping and tweezing, optical communication, and quantum information and

computation. Therefore, the study of their interaction with matter becomes an

essential necessity. In this thesis work, we have characterized vortices and studied

their linear as well as nonlinear interactions with matter.

1.8 Thesis overview

Chapter 1 contains the basic introduction of the subject i.e. optical vortices,

spontaneous parametric down-conversion process. Basics of entanglement with

quantum optical elliptical vortex state along with correlation properties for op-
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tical vortex beams similar to quantum entanglement are also discussed. The

vortex dipoles and their dynamics in Bose-Einstein condensates including the

review of the background material form a substantial part of the chapter. Chap-

ter 2 is devoted towards the generation and characterization of optical vortices.

This chapter discusses a method for the detection of order of vortices using their

intensity distribution recorded with the CCD camera.

Chapter 3 focuses on the interaction of optical vortices with non-linear crystal.

One such interaction is spontaneous parametric down-conversion (SPDC). This

chapter discusses the spatial distribution of SPDC photons when the non-linear

crystal is pumped with optical vortices. The process of SPDC generates photons

in entangled states. Chapter 4 discusses the classical entanglement for an optical

vortex beam which contains singularity. This chapter covers the experimental

verification of entanglement present in such beams. Chapter 5 presents the theo-

retical study of entanglement of quantum elliptical vortex (QEV). The amount of

entanglement of QEV can be controlled using the squeezing parameter. In recent

times, entanglement of classical beams has evolved a great deal.

Annihilation of vortex dipoles is observed in optics. However, in case of Bose-

Einstein condensates, annihilation is not observed. Chapter 6 deals with the

annihilation of vortex-dipoles in Bose-Einstein condensate. This chapter also

deals with the thermodynamical stability of vortex dipoles. The last chapter,

chapter 7 of the thesis provides the summary and scope for future work.





Chapter 2

Generation of the vortex and

finding its order

We know that the optical vortices are the solution of Maxwell equations and

they can be generated using an optical cavity and mode-converters. However,

they cannot be controlled in real time. To change the mode or beam profile, the

whole cavity needs to be modified. To overcome these issues, we use computer

generated holography technique for generation of optical vortex beams. The

computer generated hologram (CGH) modifies the phase and amplitude of input

Gaussian beam in such a way that the diffracted beam from hologram acquires

the desired beam profile. Spatial light modulator (SLM) is used to do phase and

amplitude modulation in real time. It allows us to change the beam profile along

with the topological charge of vortex beams. In recent years with advancement

of technology, spiral phase plate (SPP) in the form of vortex lens has been made

available in the optical wavelength range which can imprint phase structure of

the vortex on a Gaussian beam [59].

In this chapter, we have described the method for generation of optical vortex

beams along with their characterization. Section 2.1 starts with the basic prin-

ciple of conventional holography. The computer generated holography technique

is introduced in section 2.1.1. The technique behind SPP is discussed in section

2.1.2. Section 2.2 describes the determination of the order of an optical vortex

using the intensity pattern recorded with the CCD camera. The theory for the

19
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determination of order using the Fourier transform of the intensity distribution of

an optical vortex is discussed in section 2.2.1, results in section 2.2.2 and finally

conclude in section 2.2.3.

2.1 Generation of optical vortices

In this section, we discuss about the methods for generating optical vortices.

Computer generated holography using spatial light modulators and spiral phase

plates are two such commonly used methods in the laboratory.

2.1.1 Computer generated holography

Computer generated holography is one of the easiest methods to generate an op-

tical vortex in laboratory. This technique is based on the principle of holography.

In this section, we have discussed computer generated holograms and spatial light

modulators.

Computer generated hologram (CGH)

Computer generated hologram (CGH) is an interference pattern of an object beam

with a reference beam obtained numerically by using a computer [60, 61, 62].

When we consider the object beam as an optical vortex and the reference beam

as a plane Gaussian beam then the interference pattern or hologram looks like

a fork pattern. The reduced size of this pattern is either cast on a holographic

sheet or printed by a high resolution laser printer on a transparency sheet [60].

On passing a laser beam through the branch point of generated fork pattern we

obtain diffraction pattern consisting of various orders of optical vortex in different

diffraction orders.

Let us consider the optical vortex of order m as object beam. The electric

field for object beam can be written as

Eobj = E0(x± iy)m exp

(
−x

2 + y2

w2

)
, (2.1)
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where w is the spot size. In cylindrical coordinate system, Eobj can be written as

Eobj = E0r
m exp(±imθ) exp

(
− r

2

w2

)
. (2.2)

where r =
√
x2 + y2 and θ = tan−1(y/x). Considering the plane wave as reference

beam, the electric field can be written as

Eref = Er0 exp [−i(kxx)] . (2.3)

The intensity distribution of the interference of this object and reference beam

can be written as

I =
∣∣Er0 exp(−ikxx) + E0r

m exp(±imθ) exp(−r2)
∣∣2 . (2.4)

Considering Er0, E0 and w as unity, we get the spatially varying transmission

function as

T = 2 [1 + cos (kxx±mθ)] . (2.5)

Apart from sinusoidal transmission function, holograms with other types of

transmission functions can also be generated, e.g. for binary hologram, the trans-

mission function becomes

Tbinary = sign [2(1 + cos(kxx±mθ))] (2.6)

where sign(x) = x/|x|. Binary holograms are much easier to print on trans-

parency sheet than the sinusoidal variation of optical density. Binary hologram

has more diffraction efficiency than that of sinusoidal transmission grating.

Blazed gratings are also used to generate optical vortex with high diffraction

efficiency in the first diffracted order. The transmission function for such a grating

is

Tblazed =
1

2π
Mod (kxx±mθ, 2π) (2.7)

where Mod(α, θ) is the remainder on division of α by θ. The different kinds of

gratings for the formation of an optical vortex of order m=1 have been shown in

Fig. 2.1.

Amplitude holograms absorb most of the input power therefore their diffrac-

tion efficiency is poor. To overcome this limitation and to maximize the power
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a) b) c)

Figure 2.1: Computer generated holograms with different transmission functions

for the generation of optical vortex of order 1, a) sinusoidal, b) binary and c)

blazed.

of optical vortices phase only holograms are used. These holograms ideally do

not absorb any power and modulate the phase of incident light according to the

stored interference pattern.

Spatial light modulator (SLM)

Spatial light modulator (SLM) is a device which modulates light in amplitude and

phase spatially [63, 64]. SLM consists of large number of square-shaped liquid

crystals, arranged in two-dimensional array, in which the orientation of liquid

crystal molecules can be altered by applied electric field. In our experiments, we

have used SLMs (Holoeye LC-R 2500 and Hamamatsu x10468-05) which work in

reflective mode. SLM can be used as a dynamic diffractive optical element.

The numerically obtained fork patterns are transferred into the SLM through

the computer interface. The SLMs are connected to the computer using the

outputs from graphics card which is installed in the PCI-e ×16 slot. The purpose

of the graphics card is to display the same content on both the displays i.e.

computer monitor and SLM. The generated video signal corresponds to the input

fork pattern displayed on the computer monitor that is transmitted to the SLM.

The electrical voltages from the signal align the molecules of liquid crystals to

form a fork type pattern. When the reference beam i.e. laser beam is incident on

the SLM it results into optical vortices as diffracted orders and is shown in Fig.

2.2.
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Figure 2.2: Diffracted orders from the SLM.

2.1.2 Spiral phase plate

The spiral phase plate (SPP) or vortex lens is also a type of mode converter that

can generate optical vortices from laser beam by introducing a spiral phase [59].

SPP is a transparent disc whose thickness varies circumferentially but is uniform

radially. These are constructed from a piece of transparent dielectric material.

When a light beam passes through such plates then it suffers different path delays

around the center of the disc as shown in Fig. 2.3. Light beams passing through

the thicker part suffer longer optical path and hence greater phase shift. On

the whole, due to spiraling thickness it generates spiral phase distribution of the

optical vortex. The SPP is made for a particular wavelength of light.

Plane wave

Helical wave

t

Figure 2.3: Generation of optical vortex using spiral phase plate. The thickness

t is adjusted to generate order 2 vortex for the wavelength of laser used.
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2.1.3 Generation of optical vortices using spatial light mod-

ulator (SLM)

In Fig. 2.4, we have shown a simple setup for the generation of optical vortices

through a CGH with sinusoidal function. Gaussian beam from an intensity sta-

bilized He-Ne laser (Spectra-Physics, 117A) is sent towards a beam splitter (BS).

The transmitted beam from BS goes towards the SLM (Holoeye, LC-R 2500).

The positions of the BS and the SLM are aligned in such a way that the trans-

mitted beam from the BS falls normal to the SLM. Vortices of higher orders are

produced in the first diffraction order by introducing different fork patterns onto

the SLM via a computer (PC1). An aperture A is used to select the required first

diffraction order produced from the SLM. It is then passed through a neutral

density filter (NDF) to decrease the intensity of the vortex so that it does not

saturate the CCD camera.

Figure 2.4: Experimental set-up for generating optical vortices and to find their

order.

In Fig. 2.5, we show the intensity distribution of the optical vortex obtained

from Eq. 2.9 and from experiment i.e. CCD camera. We would like to make

it clear that the aperture A is being used just to select a particular diffracted

order from the SLM, not to diffract the vortex. We take care that the selection
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does not introduce any diffraction ring to the vortex, which can be seen from the

experimental intensity profiles of the vortices in Fig. 2.5.

Figure 2.5: Intensity distribution of optical vortices of orders m = 1 to 4 (from

left to right): theoretical (top) and experimental (bottom).

2.2 Determination of the order of vortex through

intensity record

Detection and determination of the charge of optical vortices is one of the basic

requirements in singular optics. Most of the techniques to determine the order

of vortices are based on interferometry [65, 66, 67, 68]. The interferometry has

been further extended to find the spatial coherence function which also provides

information about the order of vortex [69]. All these methods require a good num-

ber of optical elements and their fine alignment. Aberrations in optical elements

such as scratch and dig, dust particles on these elements and their misalignments

disturb the characteristic interference pattern of the vortex. Therefore, efforts

have been made to find the order of the vortex using techniques other than the

interferometry [70, 71, 72, 73, 74].

In this section, we show that the order of a vortex can be obtained from the

record of its intensity distribution itself. We know that when the order of the

vortex increases, the size of the dark core at the center increases [75]. Moreover,
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the size of the dark core may vary depending on the resolution of the hologram

used in the SLM [76]. Therefore, just by measuring the size of the dark core, it

is difficult to discriminate the orders experimentally.

We provide a method to find the order of vortex by taking the Fourier trans-

form (FT) of the recorded intensity of vortex and using the orthogonality of

Laguerre polynomials.

2.2.1 Theoretical analysis

The field of a vortex of order m can be written as

Em(x, y) = (x+ iy)m exp

(
−x

2 + y2

σ2

)
, (2.8)

where σ = 1.69 mm is the radius of the first diffraction order Gaussian beam at

the CCD (see Fig. 2.4). The beam was generated by placing a grating without

fork pattern at the SLM. The intensity of the vortex is given by

Im(x, y) =
(
x2 + y2

)m
exp

(
−2

x2 + y2

σ2

)
. (2.9)

The FT of Im(x, y) has the expression

Fm(ω1, ω2) =

∞∫
−∞

∞∫
−∞

(
x2 + y2

)m × exp

(
−2

x2 + y2

σ2
− i(ω1x+ ω2y)

)
dx dy,

(2.10)

where ω1 and ω2 are spatial frequencies. Expanding (x2 + y2)
m

in a binomial

series, Eq. 2.10 can be written as

Fm(ω1, ω2) =
m∑
n=0

(
m

n

)
In(ω1)Im−n(ω2), (2.11)

where

In(ω1) =

∞∫
−∞

x2n exp(−2x2/σ2 − iω1x)dx. (2.12)

Using the formula [77]

∞∫
0

x2n exp(−β2x2) cos ax dx = (−1)n
√
π

(2β)2n+1
exp

(
− a2

4β2

)
H2n

(
a

2β

)
(2.13)
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and

H2n(x) = (−1)n22nn!L−1/2
n (x2), (2.14)

we get

In(ω1) =
√
π
σ2n+1

2n+1/2
n! exp

(
−ω

2
1σ

2

8

)
L−1/2
n

(
ω2

1σ
2

8

)
, (2.15)

and similarly for Im−n(ω2). Substituting in Eq. 2.11, and performing the sum-

mation over n by means of the formula [77]

m∑
n=0

Lαn(x)Lβm−n(y) = Lα+β+1
m (x+ y), (2.16)

we get

Fm(ω1, ω2) =
πσ2m+2

2m+1
m! exp(−ζ)Lm(ζ), (2.17)

where ζ = (ω2
1 + ω2

2)σ2/8. In Eqs. 2.13 to 2.17, we have used the standard

notations Hn(x), Ln(x) and Lαn(x) to denote Hermite, Laguerre and generalized

Laguerre polynomials respectively. By using the following orthogonality property

of Laguerre polynomials

∞∫
0

exp(−ζ)Lm(ζ)Ln(ζ) dζ = δm,n, (2.18)

one finds that the integral

Cmn =

∞∫
0

Fm(ζ)Ln(ζ) dζ (2.19)

will give a peak value for m = n. We have evaluated Cmn numerically by using

the FT of the measured intensity profiles. We expect that this method is sensitive

enough to detect any order of the vortex.

Before proceeding to our main result, it is important to realize that the FT

of the vortex intensity can, in principle, determine the order of the vortex as the

number of zeros of Lm(ζ) in Eq. 2.17 equals the order of the vortex. This is most

clearly seen in the contour plot of the following quantity:

Gm(ω1, ω2) = log[1 + |Fm(ω1, ω2)|]. (2.20)

The zeros will appear as dark rings and thus the order of the vortex will be equal

to the number of dark rings in the contour plot of Gm(ω1, ω2). The rationale

behind plotting Gm instead of Fm was to identify the zeros more clearly.
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2.2.2 Results and discussion

The fast-Fourier transform (FFT) of the measured intensity distributions is car-

ried out numerically using Matlab. These images are processed in Matlab to

reduce the noise and adjust the brightness and contrast. In Fig. 2.6, we show

the contour plots of Gm(ω1, ω2) for vortices of different orders. The corresponding

theoretical results are obtained by using Eqs. 2.17 and 2.20. It is clearly seen that

the number of dark rings in each plot equals the order of the corresponding vor-

tex and the experimental results are in excellent agreement with the theoretical

predictions.

Figure 2.6: Distribution of Gm(ω1, ω2) computed from the intensity distributions

of Fig. 2.5: experimental (top) and theoretical (bottom).

We mention parenthetically that for lower order vortices, a contour plot of

Gm(ω1, ω2) will suffice to determine the order of the vortex. However, it will

become difficult to see the rings beyond a certain order because of the dampening

effect of the exponential factor in Eq. 2.17. This is why our chosen method is

based on the orthogonality property of Laguerre polynomials rather than relying

upon a contour plot of Fm or Gm.

Using orthogonal relations of Laguerre polynomials, one can detect any order

of the vortex. The results are shown in Fig. 2.7. It shows that for an optical

vortex of order m, the normalized integral (Eq. 2.18) has maximum value when

m = n.
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Figure 2.7: Normalized orthogonal integrals Cmn for optical vortices of orders

m = 1 to 4. Inset shows Cmn and the intensity record of vortex for m = 10.

The sensitivity of this method can be easily established in the present context.

For example, note that the outermost dark ring for 4th order vortex is not so

distinct in Fig. 2.6 and thus it is not clear whether the vortex is of order 3 or

4. The orthogonality integral, in contrast, shows a clear peak for order m=4. In

fact, our method applies even for a vortex of order m = 10, as shown in the inset

of Fig. 2.7.

We would like to point out that unlike other methods where one need to find

the FT of the field, in our case, it is the FT of the intensity of an un-diffracted

vortex. This can be seen in our analytical treatment as well. Furthermore,

our method does not use any annular aperture for diffraction. Therefore, the

maximal topological charge that can be measured is not limited by the width

of the annular aperture. As a demonstration, we have successfully applied our

method for a vortex of order as high as m = 10. Moreover, for a given vortex,

the only optical element one really requires is a neutral density filter (NDF) to

reduce the intensity of the vortex to avoid saturation of the CCD. Thus, we have
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the least optics and the least aberrations.

2.2.3 Conclusion

In this work, we have outlined a simple technique to determine the order of

a vortex based on the FT of its intensity profile and the orthogonality of the

Laguerre polynomials. Since the phase information is lost in the intensity record

of a vortex, our method cannot, however, determine the sign of its charge. At

present, the method works for on-axis, isotropic vortices embedded in a Gaussian

host. These limitations notwithstanding, the strong point of this technique is its

simplicity and novelty. Since the experimentally recorded vortices do not have

ideal Gaussian hosts, one experiences noise in the experimentally determined

Gm(ω1, ω2) (see top row of Fig. 2.6) and Cmn in Fig. 2.7 does not reduce to

zero for m 6= n. However, it still shows peaks for m = n and is thus effective in

determining the order of the vortex. Moreover, our method is fast. It takes just

a fraction of second (0.85 seconds on Pentium IV, 3.4 GHz with 1.2 GB RAM)

to calculate Gm(ω1, ω2) and a similar time in finding the Cmn. A Graphical User

Interface (GUI) can be created using standard FFT routine for automating the

process. This will help to get the order of vortex in real time. In conclusion, we

have shown how complementary space can be used to provide us with the order

of the vortex [78, 79].
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Spatial distribution of SPDC

photons

The photon pairs generated through SPDC are entangled in the spatial degrees

of freedom i.e. position-momentum entanglement [80] as well as entanglement

in orbital angular momentum (OAM) [12]. The OAM entanglement can be de-

scribed by a multi-dimensional Hilbert space [14, 81, 82], compared to the case

of polarization entanglement which is limited to two dimensions only [83]. The

produced photon pairs have been found to be entangled in time-bin also [84].

For any application of entangled photons generated through the SPDC, it is

important to know the spatial distribution of these photons. For the Gaussian

pump beam, the spatial distribution of SPDC photons has already been reported

[27, 85, 86, 87]. However, for photons generated by pumping with higher order

vortices, it has not been reported so far, although the phase-matching condition

for an optical vortex pump beam has been studied theoretically by Pittman et.al.

[88].

With the availability of low noise and high quantum-efficiency electron -

multiplying CCD (EMCCD) cameras, the experiments with low photon level

imaging has become possible [89]. To observe the shape of the SPDC ring formed

by the Gaussian as well as optical vortex beams, we have carried out experi-

ments using EMCCD. The observed experimental results are supported by our

numerical results.

31
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3.1 Theory

To numerically simulate the photon pair distribution in SPDC due to optical

vortex beams, we start with the intensity distribution of an optical vortex of

order l that is written as

Il(x, y) = I0(x2 + y2)|l| exp

(
−x

2 + y2

σ2

)
, (3.1)

where σ is the beam radius of host beam, I0 is the maximum intensity in the

bright ring. Clearly, Eq. 3.1 shows that the Gaussian beam can be considered as

a special case of optical vortex with l = 0.

The nonlinear effects in crystals have been exploited in a number of applica-

tions such as frequency doubling, optical parametric oscillation and the SPDC

[18]. When Beta-Barium Borate (BBO) is pumped by an intense laser, a pump

photon (frequency ωp and wave-vector Kp) splits into a photon pair namely signal

and idler. The energy and momentum conservation provide us with

~ωp = ~ωs + ~ωi, (3.2)

Kp = Ks + Ki, (3.3)

where suffices s and i denote signal and idler photons respectively. The phase

matching is determined by the frequency of pump laser beam, and the orientation

of crystal optic axis with respect to the pump. Equation 3.2 can be simplified as

1

λp
=

1

λs
+

1

λi
, (3.4)

where λp, λs and λi denote wavelengths of pump, signal and idler photons respec-

tively. We have considered type-I non-linear BBO crystal which gives e → o + o

type (e: extraordinary, o: ordinary) interaction. Hence, Eq. 3.3 can be written

in terms of the momentum components as

2πne(λp,Θ)

λp
=

2πno(λs)

λs
cos(φs) +

2πno(λi)

λi
cos(φi) (3.5)

2πno(λs)

λs
sin(φs) =

2πno(λi)

λi
sin(φi) (3.6)

where φs is the angle between Kp and Ks, φi is the angle between Kp and Ki and

Θ is the direction of optic axis with respect to Kp as shown in Fig 3.1. ne(λp,Θ)
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and no(λs,i) are the extraordinary and ordinary refractive indices for respective

wavelengths. These refractive indices are obtained from the Sellmeier equations

[18] and for the BBO crystals used in the experiment can be written as

no(λ) =

√
2.7359 +

0.01878

λ2 − 0.01822
− 0.01354λ2 (3.7)

ne(λ) =

√
2.3753 +

0.01224

λ2 − 0.01667
− 0.01516λ2 (3.8)

ne(λ,Θ) = no(λ)

√√√√ 1 + tan(Θ)2

1 +
[
no(λ)
ne(λ)

× tan(Θ)
]2 (3.9)

where λ is in µm.

In Fig. 3.1, we have given a sketch of the SPDC photon pair generation in

non-collinear type-I SPDC process. C denotes the crystal optic axis. The angular

separation between Kp and Ks is due to energy and phase-matching conditions

(Eq. 3.5 and 3.6) required for the SPDC process. We have also shown generation

of a pair of signal and idler photons and formation of the ring centered around

Kp. In the present case, we have assumed that the pump beam has circular

symmetric i.e. same horizontal and vertical widths.

C

Ks

Ki

SPDC Cone

i

s

Kp



Figure 3.1: Sketch diagram for the SPDC ring formation after passing the pump

beam through the BBO crystal. Light and dark gray levels represent generation

of idler and signal photon SPDC rings respectively.

We have used a negative-uniaxial BBO crystal with non-linear coefficient deff
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= 2.00 pm/V, thickness 5 mm and optic axis Θ = 29.7◦. The pump beam with

wavelength λp = 405 nm is incident normal to the crystal. We plan to study the

degenerate or near-degenerate case in which the signal and idler photons have

almost same wavelength λs,i = 810±5 nm. The wavelengths for down-converted

photons are chosen from the interference filters (IF) used in the experiment. With

these experimental parameters, Eqs. 3.5 and 3.6 have been solved to determine

φs and φi by Runge-Kutta (RK) method for a particular value of λs and λi that

satisfies Eq. 3.4.

Numerical simulations have been performed by first considering a particular

values λs and λi. Angles φs and φi are evaluated using RK method for chosen λs,

λi and experimental parameters. The signal and idler photons are generated in

cones having half-opening angle φs and φi as represented in Fig. 3.1 and appear

as two rings on the detector plane. The center of these rings are concentric with

the pump beam. Now, consider a single point on the intensity distribution of

pump falling on the crystal. The stream of single photons passing through the

chosen point generates SPDC rings whose radius depends on the distance between

crystal and EMCCD. The intensity of the ring is proportional to the intensity at

the selected point. The rings corresponding to signal and idler photons are then

added to obtain the SPDC ring corresponding to pump photons. In the similar

way, rings for all other points of pump intensity distribution are obtained and

added. The obtained spatial distribution depends on the shape and size of the

pump beam. This will provide the SPDC ring for λs and λi. The contributions

due to whole wave-length range (810±5 nm)allowed by the IF has been considered

to obtain the resultant spatial distribution of SPDC ring.

3.2 Experimental setup

The experimental set-up to study the SPDC photon pair distribution generated

by the Gaussian as well as the optical vortex pump beam is shown in Fig. 3.2.

The ellipticity of the diode laser (RGBLase 405 nm, 50 mW) has been removed

by using a combination of lenses. The collimated beam is then sent to a spatial
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light modulator (SLM) (Hamamatsu LCOS SLM X-10468-05), which is interfaced

with computer (PC1) with slightly tilted mirror for not losing the power. Blazed

holograms have been used to generate OV with higher power in the first diffraction

order [90]. The first diffracted order is selected with an aperture A3. Polarizer

(P) and half-wave plate (HWP) are used to select and rotate the polarization of

pump beam respectively. BBO crystal (6×6×5 mm3) with optic axis at 29.7◦ is

used for the spontaneous parametric down-conversion. As the size of OV beams

of higher order becomes bigger than the size of the crystal, we have used a lens L1

(f=15 cm) to loosely focus the vortex beam on the crystal [91]. The BBO crystal

is mounted on a rotation stage, so that phase-matching angle can be achieved by

rotating the crystal towards its optic axis. After achieving phase-matching, the

crystal remains unaltered for all the observations.

BBO

IF1

HWP

EMCCD

L1

Collimating Lens Combination

M2

M1

SLM

A3

A2

λ=405 nm, P=50 mW

A1

L2

Laser

PIF2

PC1

PC2

Figure 3.2: Experimental setup for the study of SPDC photon pair distribution

with an optical vortex as pump beam.

When phase-matched, the output cone makes half angle of ∼ 4◦ with pump

direction Kp. The BBO crystal’s optic axis has been chosen in such a way that
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it can down-convert only vertically polarized light. Therefore, when angle of the

HWP is 0◦ (45◦), then we will get (not get) down-converted photons. Image of

the down-converted ring is recorded by Andor iXon3 EMCCD camera using an

imaging lens of focal length 5 cm. We have used the EMCCD in background

correction mode. In this mode, background is obtained when λ/2 plate is at

45◦ and signal is obtained when λ/2 plate is at 0◦. The central bright spot in

experimental observations show the unfiltered pump beam. This could not be

subtracted completely while subtracting the background due to slight shift in its

position during the rotation of HWP from 45◦ to 0◦. The interference filters IF1

and IF2 pass only the down-converted photons of wave-length 810±5 nm and

block the pump photons of wave-length 405 nm. Two interference filters have

been used to reduce the pump photons as much as possible that increase the

signal to noise ratio in the SPDC ring.

The power of 405 nm laser falling on the BBO crystal was 2 mW. EMCCD

was operated at -80◦C. Further, we have taken images by accumulating 50 frames

with exposure time of 1 s. We have used the complete 512×512 pixels of the

camera. The readout rate was set at 1 MHz 16-bit. Since the observed SPDC

rings are sufficiently intense, we have not enabled the electron-multiplication gain.

The size of pump beam has been measured by imaging the beam at the posi-

tion of crystal with Point-Grey (FL2-20S4C) CCD camera. The images obtained

from the CCD camera are read in Matlab for further processing. The 2-D curve

fitting is used to obtain the best-fit intensity distribution obtained by Eq. 3.1

that provides us with beam-width of the pump (σpump). For our numerical cal-

culations, we have used the best-fit value of σpump obtained experimentally.

3.3 Results and discussion

The objective of the experimental work is to characterize the spatial distribution

of degenerate SPDC photon pairs produced by higher order vortices and verify

the results obtained with numerical calculations. Before pumping the nonlinear

crystal with high order vortices, we study the distribution of SPDC photons
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generated by the Gaussian beam of different widths.
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Figure 3.3: Experimental (left) and Numerical (right) are Gaussian pump and

their corresponding SPDC rings. The three Gaussian beams have been taken by

placing the crystal at distances 150 cm, 250 cm and 350 cm from the SLM.

To make a comparison of spatial distribution of down-converted photons due

to the Gaussian and the vortex beams, the Gaussian beam is generated using

the SLM by transferring the blazed grating hologram of topological charge 0 to

the SLM. To vary the width of the Gaussian beam, we have used the beam at

different propagation distances from the SLM (150 cm to 350 cm in the steps of

50 cms). As the size of beam is lower than the aperture size of the crystal at 350

cm from the SLM, lens (L1) was not used. The experimentally and numerically

obtained SPDC rings are shown in Fig. 3.3. We observe an increase in thickness

of the SPDC ring as the pump beam size increases.

To obtain a quantitative variation of SPDC ring, we use the line profile across

the SPDC rings through their center. Numerically, we have observed that the

SPDC ring fits with a Gaussian function. To calculate the width of SPDC ring
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Figure 3.4: Variation of σring with σpump. The curve shows the linear variation in

thickness of the SPDC ring with the beam-width of Gaussian pump beam.
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Figure 3.5: Schematic diagram for the generation of two rings when pumped with

optical votex beams.
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Figure 3.6: Experimental (left) and Numerical (right) SPDC rings due to an opti-

cal vortex pump beam for order 0, 1, 3 and 5. Spot in the center of experimental

images correspond to the unfiltered pump beam.
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(σring), the profiles obtained are fitted with a Gaussian function as in Eq. 3.1

for l=0. The variation of thickness of the SPDC rings with the size of the pump

beam is shown in Fig. 3.4. Numerical and experimental results are found to be

in good agreement with each other. We find that our results are similar to the

one obtained earlier [85].

Figure 3.5 shows the generation of two rings when the BBO crystal is pumped

with OV. The blue and red lines show the intensity distribution of the pump and

the SPDC photons. As the size of optical vortex goes beyond the aperture of

BBO crystal, we have used lens (L1) to loosely focus it. It has been observed

that the SPDC ring due to optical vortex forms two concentric bright rings with

non-zero intensity in middle. The SPDC rings due to optical vortices are shown

in Fig. 3.6. From these images, we can observe the increase in thickness of the

SPDC ring along with two concentric rings.
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Figure 3.7: Variation of FWHM of SPDC ring for optical vortex pump beams

with the order of optical vortices.

With the increase in topological charge of vortices, the full width at half maxi-

mum (FWHM) of the ring increases as shown in Fig. 3.7. The separation between

the inner and the outer ring also increases with the increase in order. However,
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we can observe the asymmetry caused due to the crystal length. This asymmetry

arises due to the longitudinal phase matching and depends on nonlinear crystal

properties of the crystal, including crystal length [85]. This is one of the fac-

tors which affect the selection of entangled photons and consequently the total

coincidence counts.
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Figure 3.8: Variation of FWHM of SPDC ring for optical vortex pump beam of

order l=2 with beam width of the host beam.

We have also observed that if σpump is lower than a particular value for the

OV of topological charge l, then there will not be any change in FWHM. This

variation has been studied by varying σpump and keeping the order l fixed. We

have observed that the FWHM of the ring starts increasing only when σpump is

more than a particular beam size, called critical beam size. The variation of

FWHM of SPDC ring for order l=2 with σpump is shown in Fig. 3.8. In case

of OV, the numerical and experimental results are in good agreement with each

other.

The width of the SPDC ring is governed mainly by two parameters – pump

beam size and crystal length. Both these parameters increase the width of the
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ring. In our experiment, same crystal of length 5 mm has been used throughout

the study. The pump beam size was changed by changing the propagation dis-

tance from the SLM. The increase in the width of SPDC ring due to the crystal

length cannot be avoided, as it is fixed. This was one of the reasons for the pres-

ence of critical pump-beam size below which the width of SPDC ring does not

decrease. This holds true for Gaussian as well as Laguerre Gaussian beams.

3.4 Conclusion

The spatial distribution of entangled photons generated by pumping the non-

linear crystal with the light beam is of importance in the field of quantum in-

formation and quantum computation. We have observed a linear increase in

thickness of the SPDC ring with beam radius of the Gaussian pump.

We have also observed the formation of two concentric SPDC rings if the

crystal is pumped with optical vortex beams. One of the reasons for generation

of two rings is the dark core of optical vortex i.e. unique intensity distribution

of the vortex. The numerical and experimental widths of the SPDC ring are in

good agreement with each other. The formation of two rings takes place when the

pump beam size is more than the critical beam size. These observations would

be useful in the experiments to maximize the coincidence counts. Physically,

the broadened SPDC is a consequence of the greater spread of pump transverse

wave-vectors, resulting in phase matching for a greater spread of signal and idler

transverse wave-vectors.



Chapter 4

Violation of Bell’s inequality for

phase singular beams

Traditionally, entanglement has been regarded as an exclusive feature of quan-

tum mechanics and provides a powerful resource for quantum information science

especially in quantum computing, quantum cryptography, and quantum telepor-

tation [92]. The quantum state of an entangled system cannot be factored out

into the product of individual states. Bell’s inequality measurement is one of

the ways to measure the presence of entanglement in quantum entangled sys-

tems [93, 94]. The entanglement carries, in quantum context, a rich variety of

implications such as nonlocality and Bell’s inequality violation.

The term “classical” in “classical entanglement” indicates the non-quantum

nature of classical electromagnetic field. Classical entanglement should not be

confused with “entanglement present in classical optics” and hence cannot be

used to reproduce non-classical correlations between measurements [95]. Rather,

it can be considered as the presence of non-factorizable field of the light beam in

two-conjugate variables, for example position and momentum. Thus, the main

purpose of this study is to revisit the concept of the so-called “classical entangle-

ment” for a beam of light.

In this study, we deal with bright beams of light like Gaussian and optical

vortex beams. However, whether the beam is very intense or very weak, is a

factor that does not have any effect on the amount of entanglement. In this study,

43
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the spatial coherence present in the beam plays a vital role. Study of the Wigner

distribution function (WDF) has been found to be very useful since it can provide

coherence information in terms of the joint position and momentum (phase-space)

distribution for a particular optical field [96]. Using the WDF, one can study the

continuous variable correlations present in classical beams. Recently, the famous

Bell’s inequality has been defined for classical sources using WDF and it has been

shown theoretically that the optical vortex beams violate this inequality [97]. The

calculation of inequality uses variable correlations existing between position and

momentum of the vortex. Such quantum inspired inseparability has been termed

as “classical entanglement” [98, 99].

In this chapter, we have demonstrated the experimental verification of “clas-

sical entanglement” using the WDF and two-point Bell’s inequality for optical

vortex beams obtained in ref. [97]. To verify the theoretical results, we produce

different orders of vortex fields described by the LG modes using a spatial light

modulator (SLM) [75]. The two-point correlation function has been found us-

ing the interference between vortices of the same order and is scanned using a

shearing Sagnac interferometer (SSI) [100, 101]. Theory related to this study has

been discussed in section 4.1, experimental details have been given in section 4.2.

Results and discussion constitute in section 4.3 and finally we conclude in section

4.4.

4.1 Theoretical background

The WDF for optical vortex beams can be written as [96, 102]

Wnm(X,PX ;Y, PY ) =
(−1)n+m

π2
Ln[4(Q0 +Q2)]× Lm[4(Q0 −Q2)] exp(−4Q0),

(4.1)

where {X,PX} and {Y, PY } are conjugate pairs of dimensionless quadratures and

n is the azimuthal while m is the radial index of Laguerre Gaussian beam Eq.

1.1. Q0 and Q2 are

Q0 =
1

4

[
X2 + P 2

X + Y 2 + P 2
Y

]
, Q2 =

XPY − Y PX
2

, (4.2)
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where the scaled variables X, PX , Y and PY can be defined as

x(y)→ σ√
2
X(Y ), px(py)→

√
2λ

σ
PX(PY ) (4.3)

and follow [X̂, P̂X ] = [Ŷ , P̂Y ] = i. σ is the beam waist of the Gaussian host beam.

WDF defined in Eq. 4.1 can be obtained by taking the Fourier transform

(FT) of two-point correlation function (TPCF) that is defined as

Φ(x, εx; y, εy) = 〈E(εx + x/2, εy + y/2)E∗(εx − x/2, εy − y/2)〉 , (4.4)

In fact in experiment, one measures TPCF only to determine the WDF.

4.1.1 Bell’s inequality for continuous variable systems

For discrete entangled systems, the Bell-CHSH inequality can be written as [93,

103]

B = |S(a, b) + S(a, b′) + S(a′, b)− S(a′, b′)| < 2, (4.5)

where (a, b), (a′, b′) are two analyzer settings and S(a, b) is the joint probability

corresponding to settings (a, b). The entanglement in quantum systems with

continuous variables is characterized by probabilities. For continuous variable

systems, WDF is expressed as an expectation value of a product of displaced

parity operators. Banaszek and Wodkiewicz [104, 105] have argued that the

WDF can be used to derive the analog of Bell’s inequality in continuous variable

systems.

Considering the transformation Π(X,PX ;Y, PY ) = π2W (X,PX ;Y, PY ) in di-

mensionless quadratures, then the Bell-CHSH inequality B with chosen points

{a,b} ≡ {X1, PX1;Y 1, PY 1} and {a′,b′} ≡ {X2, PX2;Y 2, PY 2} can be written as

B = Πnm(X1, PX1;Y 1, PY 1) + Πnm(X1, PX1;Y 2, PY 2)

+Πnm(X2, PX2;Y 1, PY 1)

−Πnm(X2, PX2;Y 2, PY 2) < 2. (4.6)
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4.1.2 Bell’s violation for first order vortex (n=1 and m=0)

From Eq. 4.1, the WDF of an optical vortex beam with topological charge 1 can

be obtained as

W10(X,PX ;Y, PY ) = exp
(
−X2 − P 2

X − Y 2 − P 2
Y

) (PX − Y )2 + (PY +X)2 − 1

π2
.

(4.7)

Choosing X1 = 0, PX1 = 0, X2 = X,PX2 = 0, Y 1 = 0, PY 1 = 0, Y 2 = 0, PY 2 =

PY , the Bell-CHSH parameter can be can be written as

B = Π10(0, 0; 0, 0) + Π10(X, 0; 0, 0) + Π10(0, 0; 0, PY )− Π10(X, 0; 0, PY ) (4.8)

= e−P
2
Y (P 2

Y − 1) + e−X
2

(X2 − 1)− e−P 2
Y −X

2

[(PY +X)2 − 1]− 1. (4.9)

The maximum Bell’s violation considering only two variablesX and PY is |Bmax| ∼
2.17 which occurs at X ∼0.45 and PY ∼0.45. Considering all eight variables

from Eq. 4.6, the maximum Bell’s violation is |Bmax| ∼2.24 at X1 ∼ −0.07,

PX1 ∼0.05, X2 ∼0.4, PX2 ∼ −0.26, Y 1 ∼ −0.05, PY 1 ∼ −0.07, Y 2 ∼0.26 and

PY 2 ∼0.4. The experimental verification for these results have been discussed in

the following section.

4.2 Experimental setup

The experimental setup to find the two-point correlation function (TPCF) is

shown in Fig. 4.1. Computer generated holography has been used to gener-

ate optical vortices [64]. A Gaussian laser beam from an intensity stabilized

He-Ne laser (Spectra-Physics, 117A) is incident normally to the SLM (Holoeye,

LC-R 2500) using the mirror M1 and the beam splitter BS1. The SLM is a

liquid-crystal-based device that can modulate light and can be used as a dynamic

diffractive optical element. Vortices of different orders are produced in the first

diffracted order by introducing different fork patterns onto the SLM via a com-

puter PC1. Apertures A1 and A2 are used to select an optical vortex of the

desired order. A polarizer (P) is used to fix the polarization (here vertical) of

the optical vortex. The vortex with the vertical polarization is coupled to the

Shearing-Sagnac interferometer (SSI) that comprises the beam splitter BS2 and
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two mirrors, M2 and M3. A quarter-wave plate (QWP) and a half-wave plate

(HWP) are kept in common path for the quadrature selection. A glass block

mounted upon a rotation stage is also kept in the common path to introduce the

shear in two transverse directions. This arrangement ensures that both the clock-

wise (cw) and the counter-clockwise (ccw) fields experience one reflection from

and one transmission through the beam splitter. This removes the effect of devi-

ations from 50% transmission and polarization-sensitivity of the beam splitters.

The two counter-propagating beams are interfered and imaged using a Evolution

VF cooled CCD camera that is connected to computer PC2.

Figure 4.1: Experimental setup for determination of TPCF.

First, we have calibrated the shear in laser-beam produced by the glass block.

For this, we put one polarizer inside the SSI. The clock-wise and counter clock-

wise propagation of beams were chosen by the rotation of the polarizer. We

have put a normal grating on the SLM to propagate Gaussian beam inside the

SSI. Then, we rotate the glass block such that there is no shear between the

two beams. After this, we have provided some shear in the glass block which is

mounted on a rotation stage with linear scale. The shear is varied in equal steps.

The particular rotation in the glass block will provide us the shear in the beams

propagating inside the SSI. We have recorded the intensity of two beams with

CCD camera. These images were processed in MATLAB to determine the shear

in between the two beams. The beam width w of the laser beam falling on the
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CCD was determined using the 2D curve-fitting in MATLAB. The scaled shear

was obtained using Eq. 4.3 corresponding to the linear scale on the rotation stage

of glass block. We have achieved the required shears after calibrating the SSI.

The amount of shear as a function of scale has been shown in Fig. 4.2.
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Figure 4.2: Calibration curve for dimensionless shear (X, Y ) in the SSI. The

x-axis (t) denotes the position of linear scale in the mount on which the cube was

mounted. The red line is the linear fit to our data.

4.3 Results and discussion

The main part of our experiment is to determine the TPCF [100, 69]. For various

tilts of the glass block, we have recorded the interferograms by keeping the fast

axes of the QWP and the HWP parallel to the incident beams’ polarization direc-

tion. In this orientation, the wave plates have no effect on the polarization of the

optical beam, and both the CW and CCW propagating fields travel equal optical

path lengths inside the SSI. The recorded interferograms contain the information

of Re[Φ(X, εx;Y, εy)]. Keeping the same lateral shear values, interferograms for

Im[Φ(X, εx;Y, εy)] is taken after rotating HWP by π/4 such that both the CW
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and CCW propagating fields rotate in polarization by 90◦. Figure 4.3(a) shows

the TPCF of a Gaussian beam, while 4.3(c) and 4.3(e) show for optical vortex of

topological charge n = 1 at zero shear (X = Y = 0) and non-zero shear (X = 0.1,

Y = 0.1) respectively. TPCF at non-zero shear (X, Y ) was obtained by tilting

the glass cube to corresponding positions along x and y axes suggested by Fig.

4.2.
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Figure 4.3: Experimentally obtained absolute value of TPCF (left column) and

corresponding Wigner distribution function (right column) for Gaussian beam

(first row) and optical vortex of topological charge n = 1 at zero shear X = Y = 0

(middle row) and non-zero shear X = 0.1 and Y = 0.1 (bottom row).
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These TPCFs are obtained at zero shears (X=0, Y=0). To obtain the TPCF

at different shears (X, Y ), the glass cube is rotated to corresponding positions

along x and y axes suggested by Fig. 4.2.

To obtain the WDF, we have taken the Fourier transform of the experimentally

obtained TPCF [96]. Figure 4.3(b) shows the WDF of Gaussian beam while 4.3(d)

and 4.3(f) show WDFs for optical vortex with topological charge n = 1 at zero

shear (X = Y = 0) and non-zero shear (X = 0.1, Y = 0.1) respectively. This

shows that our results are consistent with the previously obtained WDFs [96].

After obtaining four WDFs at choosen shears (X1, Y 1), (X2, Y 1), (X1, Y 2)

and (X2, Y 2), the four dimensional addition was performed over PX1, PX2, PY 1, PY 2

axes to determine B as defined in Eq. 4.6. The experimentally obtained WDF

is a two-dimensional (PX , PY ) function, keeping two dimensions (X, Y ) to be

constant. However, after addition of four WDFs, the dimension for B is a four-

dimensional function (PX1, PX2, PY 1, PY 2) and other four dimensions (X1, X2,

Y 1, Y 2) are fixed. Equation 4.6 shows the generation of a four-dimensional matrix

after adding four two-dimensional functions. Proper axes should be considered

while adding. The maximum value of B was determined to verify the violation

of Bell’s inequality.

Considering X1=0, PX1=0, X2=X, PX2=0, Y 1=0, PY 1=0, Y 2=0, PY 2 = PY ,

the 2D surface plot of |B| varying with X and PY described by Eq. 4.8 is shown

in Fig. 4.4. From the plot, location of the maximum of |B| has been determined

that matches with the theory. The |Bmax| obtained from Fig. 4.4 is 2.1793, which

indicates that the continuous variables of optical vortex field are non-separable.

It shows scatter since the vortices have been generated through diffraction

from the SLM. One may see the experimental results of intensity correlations for

different order of vortices formed using SLM vis a vis a Gaussian laser beam for

a comparison [106]. In the present case, |Bmax| can be used to obtain the degree

of entanglement since the earlier results also point out an increase in information

entropy, a quantity proportional with the order of a vortex.

Fig. 4.5 shows the variation of maximum Bell’s inequality violation (|Bmax|)
for Gaussian beam (n = m = 0) and optical vortices of order n =1–3, m = 0.
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Figure 4.4: Variation of |B| with X and PY (Eq. 4.8) for n = 1 and m = 0.

Theoretical (top) and experimental (bottom).
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Order (n) |Bmax| (X1, X2, Y1, Y2)

0 2.00 (0.00, 0.58, 0.00, 0.00)

1 2.24 (−0.07, 0.40, −0.05, 0.26)

2 2.35 (0.09, −0.40, 0.00, 0.00)

3 2.40 (−0.09, 0.35, −0.01, 0.06)

Table 4.1: Theoretical values of variables providing |Bmax|.

From the Fig. 4.5, it is clear that there is no Bell’s inequality violation for

Gaussian beam. However for optical vortex beams, the Bell’s inequality has been

violated. The amount of Bell’s violation increases with the increase in order of

the vortices. The amount of non-local correlations increases with the order of an

optical vortex due to the increase in Bell’s violation parameter (Bmax). We have

also performed experiments around the point of maximum and observed that

amount of Bell’s violation decreases as we move away from the point of maxima.
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Figure 4.5: Variation of |Bmax| with the order of vortex n (m = 0).

To estimate the experimental error, the experiment was repeated for five times.
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In every set of experiment, four WDFs were determined and for each WDF, two

sets of interferograms corresponding to real and imaginary component of TPCF

were recorded. |Bmax| was calculated for each set of experiments. The |Bmax| used

in Fig. 4.5 is the average of five |Bmax| determined from each set of experimental

interferograms. Errors are the standard deviations for five values of all the |Bmax|.

4.4 Conclusion

In conclusion, we have experimentally verified the quantum inspired optical en-

tanglement of classical optical vortex beams having phase singularities. We have

shown that these classical beams violate Bell’s inequality for continuous variables.

The extent of violation of Bell’s inequality increases with the increase in its topo-

logical charge. To obtain this, we have used the Fourier transform of two-point

correlation function that provides us the Wigner distribution function of such

beams. The violation of Bell’s inequality in phase-space (x, px; y, py) clearly

shows the existence of different spatial correlation properties for optical vortices

compared to the Gaussian beam, which is similar to entanglement in quantum

systems. One must be able to see this type of entanglement for electron vortex

beams also due to the generic nature of vorticity.

The phrase “classical entanglement” has been used here to show the non-

separability of position and momentum for a light beam. It does not imply non-

locality for spatially separated photons associated with quantum entanglement.

Our results suggest that the non-separability is enough for the violation of Bell’s

inequality.





Chapter 5

Entanglement of quantum optical

elliptical vortex

Recently, quantum elliptic vortex (QEV) state has been generated by coupling

squeezed coherent states of two modes with beam splitter (BS) or a dual channel

directional coupler (DCDC) [107, 108, 109, 110, 111]. Both the components, BS

and DCDC, find practical applications in optical coherence tomography. The

QEV states studied by the authors can also be produced with experimental tech-

niques which implement creation and annihilation operators [112]. To study the

properties of quantum states a number of (quasi)probability distributions have

been defined [113, 114, 115]. However, among all the (quasi)probability distribu-

tions, the Wigner distribution function (WDF) stands out, as it is real, nonsingu-

lar, yields correct quantum-mechanical operator averages in terms of phase-space

integrals, and possesses positive definite marginal distributions. The WDF has

come to play an ever increasing role in the description of both coherent and par-

tially coherent beams and their passage through first order optical systems. Once

the WDF is known, the other properties of the system can be calculated from

it. Keeping this in mind, we calculated the WDF of the QEV states [31]. We

observed quantum interferences due to coupling between the two modes.

We calculate the entanglement of a generalized elliptical vortex formed by

quantized radiation field, using WDF for such states. We observed that there

is a critical squeezing parameter above which the entanglement is less for higher

55
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vorticity, which is counter intuitive. By changing the squeezing parameter, the

entanglement can also be controlled.

In this chapter, we discuss how this coupling could be used to generate con-

trolled entanglement for application to quantum computation and quantum in-

formation. We show this by quantifying the entanglement in terms of the log-

arithmic negativity, a quantity evaluated in terms of symplectic eigenvalues of

the covariance matrix corresponding to the state. We would like to emphasize

that the logarithmic negativity can be used as a quantifier only for a Gaussian

state in partitions of the kind 1xN (1 party entangled to a set of N other par-

ties); it cannot be used for the general multi-partite states. Section 5.1 discusses

the method for the generation of quantum elliptical vortex by using DCDC. In

section 5.2, we have discussed the computation of WDF. The generation of con-

trolled entanglement is discussed in section 5.3 and finally we conclude in section

5.4.

5.1 Generation of displaced QEV state using

dual channel directional coupler (DCDC)

For two-mode states characterized by the annihilation operators a1 and a2, a

coupling transformations can be generated by evolution under a Hamiltonian of

the form H = g(a†1a2e
iφ + h.c.). Agarwal and Banerjee constructed circular

vortex state using the above Hamiltonian H [107] described for BS/DCDC, and

studied the properties of its entropy, while Kim et al. examined the question of

the generation of entangled state by a beam splitter using Fock states as input

fields [111]. Considering output operators a†i (out) are generated by the unitary

transform U †a†i (in)U (i = 1, 2), for the above mentioned Hamiltoniana†1(out)

a†2(out)

 =

A1 A2

A2 A∗1

a†1(in)

a†2(in)

 (5.1)

where U = e−iH . A1 and A2 denote transmissivity and reflectivity of the BS

respectively and satisfy the relations |A1|2 + |A2|2 = 1, and A∗1A2 + A∗2A1 = 0.

Mixing of equal amount (A1 = A2) generates a circular vortex which has been
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dealt quantum mechanically elsewhere. In the cases where the coefficients of

mixing (Ai) are not equal, they produce an elliptical vortex. As the asymme-

try becomes larger and larger, more “which path” information is available, and

the quantum interference effect is correspondingly diminished. Somewhat sur-

prisingly, this reduced interference has been found to be extremely useful in a

number of quantum information processing applications in linear optics, such as,

quantum computing gates and quantum cloning machines.

We consider two separate squeezed coherent states (which are basically dis-

placed vacuum modes) as our input states and couple them through a BS or

DCDC. A quantum state is said to be squeezed when the noise in one variable is

reduced below the symmetric limit at the expense of the increased noise in the

conjugate variable such that the Heisenberg uncertainty relation is not violated.

At this point, we change our label for the modes from (1, 2) to (x, y). If we look

at any of the output states after m times the operation is performed, it is given

by

|ΨD
qev〉 =

[
ηxa

†
x + iηya

†
y

]m
Sx(ζx)Sy(ζy)Dx(αx)Dy(αy)|0, 0〉, (5.2)

whereN is the normalization constant and ζi is the squeezing parameter. Si(ζi) =

exp(ζ∗i a
†2
i − ζia2

i ) and Di(αi) = exp(α∗i a
†
i − αiai) are the usual squeezing and dis-

placement operators corresponding to x and y directions (the index i = x, y). αi

are the eigenvalues of the annihilation operator of coherent states |αi〉. We call

these states displaced quantum optical elliptical vortex (DQEV). The term in

square bracket, generated by BS/DCDC, is responsible for the elliptical vortex.

If we put ηx = ηy = 1, ζx = ζy = ζ (real), it reduces to the displaced circular

vortex state in a displaced circular Gaussian beam (DCCV): |ΨD
ccv〉. |ΨD

ccv〉, a

circular vortex in circular beam, is discussed in detail in using Q function. For

the case ζx 6= ζy, the beam profile becomes elliptical, whereas ηx 6= ηy refers

to elliptical vortex. The parameters in the generator of the vortex term ηi are

trivially connected to the reflection and transmission of the BS, or the coupling

ratios for DCDC, as described in Eq. 5.1.
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5.2 Computation of Wigner distribution func-

tion of the QEV state

We change our variables to shifted (displaced) and scaled ones as X1 = x−x0
σx

,

Y1 = y−y0
σy

, Px1 = σx√
2
(px − px0), Py1 = σy√

2
(py − py0), X2 = σy

2σx
(x − x0), Y2 =

σx
2σy

(y − y0), Px2 =
σ3
y√
2
(px − px0), Py2 = σ3

x√
2
(py − py0). By considering x0 = <(αx)

and x0 = <(αx), we have calculated the four-dimensional WDF [116] of QEV

state as defined in Eq. 1.6

W (x, y, px, py) =
2(m−4)m!

π
√
πΓ(m+ 1

2
)

[
−2(σ2

x + σ2
y)
]m

× exp
[
−(X2

1 +X2
2 + P 2

X1
+ P 2

Y1
)
]

×L−1/2
m

[
P 2
X2

+ P 2
Y2
−X2

2 − Y 2
2

σ2
x + σ2

y

]
(5.3)

where L
−1/2
m is associated Laguerre polynomial (ALP). We point that the effect

of Di(αi) is nothing but producing a displacement of the center of the beam as

well as the vortex (x0, y0). So, we drop this term and call these states as QEV.

Note that in Eq. 5.3, the changed variables in the Gaussian term are different

from the changed variables in the argument of the ALP term. In case of circular

vortex the hole and vortex terms factor out as a product r2mL0
m [117], along with

the Gaussian term. In the present case, the usual Gaussian term is factored out

nicely, but the hole term (r2m) is not separated out from the Laguerre term. We

notice that it is embedded in the ALP term. Here, one can be reminded of the

Rodrigues’ formula for the ALP,

Lαm =
(−1)m

m!
ex

2

x−2α d
m

dxm

[
e−x

2

x2(m+α)
]
. (5.4)

Eq. 5.4 ensures that the elliptical vortex may be expressed as a combination of

circular vortices from 0 to m.

5.3 Entanglement of QEV state

In this section, we study entanglement of the vortex states with change in one

of the squeezing parameters. The measure of entanglement has been done in
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terms of logarithmic negativity, which is well defined for the Gaussian states. It

is well known that a two mode squeezed state or two squeezed mode state can

be completely characterized by its first and second statistical moments given the

covariance matrix Σ. The squeezed vacuum state also falls under the class of

Gaussian states. Now, we focus on our method for generating the vortex state by

the propagation of light through a BS or coupled waveguides, the unitary oper-

ations, which currently are used in quantum architectures and quantum random

walks. Here, we would like to draw attention to the lemma: “If U is a unitary

map corresponding to a symplectic transformation in the phase space, i.e. if

U = exp(−iH) with Hermitian H and at most bi-linear in the field operators,

then δA[UρU †] = δA[ρ]” [118]. The proof of the lemma ensures that single-mode

displacement and squeezing operations, as well as two-mode evolutions as those

induced by a beam splitter or a parametric amplifier; do not change the Gaussian

character of a quantum state. As the generalized vortex states, we considered, are

generated only by such operations, it qualifies to be Gaussian. Note that since

the first statistical moments can be arbitrarily adjusted by local unitary opera-

tions, it does not affect any property related to entanglement or mixedness and

thus the behavior of the covariance matrix Σ is all important for the study of the

entanglement. Therefore, the logarithmic negativity EN , a quantity evaluated in

terms of the symplectic eigenvalues of the covariance matrix Σ, and measure of

the entanglement for a Gaussian state, can be applied to measure the entangle-

ment for the QEV states. The elements of the covariance matrix Σ are given, in

terms of conjugate observables, in the symmetrized form

Σ =

 α µ

µT β

 (5.5)

with

α =

 〈x2〉 〈xpx+pxx
2
〉

〈xpx+pxx
2
〉 〈P 2

x 〉

 ,
β =

 〈y2〉 〈ypy+pyy

2
〉

〈ypy+pyy

2
〉 〈P 2

y 〉

 ,
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and µ =

 〈xy+yx
2
〉 〈xpy+pyx

2
〉

〈ypx+pxy
2
〉 〈pxpy+pypx

2
〉

 . (5.6)

The structure of Σ ensures that it is the transpose of itself (ΣT = Σ). The

symmetric operator averages in the matrix elements of Σ are calculated from the

WDF using the relation

〈Ô〉 =

∫ ∫ ∞
−∞

dx dpx

∫ ∫ ∞
−∞

dy dpy Ô W (x, y, px, py). (5.7)

The condition for entanglement of a Gaussian state is derived from the Peres-

Horodecki positive partial transpose (PPT) criterion, according to which the

smallest symplectic eigenvalues ν< of the transpose of matrix Σ should satisfy

ν< <
1

2
, (5.8)

where ν< = min[ν+, ν−]. In this definition eigenvalues (ν+, ν−) are given by

ν± =

√
∆(Σ)±

√
∆(Σ)2 − 4Det(Σ)

2
(5.9)

where ∆(Σ) = Det(α) + Det(β) − 2Det(µ), Det denotes the determinant. Thus

according to the condition in Eq. 5.8, when ν< ≥ 1/2, Gaussian states become

separable. The corresponding quantification of entanglement is given by the

logarithmic negativity of EN defined as

EN = max [0,−ln(2ν<)] . (5.10)

At this point, we note an interesting observation from Fig. 5 and 6 in Ref. [119]

as shown in Fig. 5.1 here, which is not mentioned by the authors of that refer-

ence. We note that in both the plots the entanglement show similar periodicity

over mixing ratio, but lagging/leading with a phase factor of π/2, as outcome

of BS/DCDC coupling. The separable state acquires entanglement due to the

action of BS/DCDC. Especially in DCDC the entangled state again becomes

separable after certain distance, and the process repeats periodically. It is inter-

esting to note similar oscillation from one to the other type has also been reported

elsewhere. It means that through DCDC a two (separate) squeezed state mode

(TSSM) is converted to a two mode squeezed state (TMSS) and again to TSSM
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(a) Time evolution of logarithmic negativ-

ity EN for the state |ζ〉 = |ζa〉
⊗ |ζb〉, sep-

arable two mode squeezed state as an in-

put. Here |ζi〉 = exp(0.5r(i†
2 − i2)|0〉 and

i→ a, b.

(b) Time evolution of logarithmic nega-

tivity EN for the initial entangled state

|ξ〉 = exp(r(a†b† − ab))|00〉, an entangled

two mode squeezed state as an input.

Figure 5.1: Comparision of time dependent logarithmic negativity EN for (a)

separable |ζ〉 and (b) entangled |ξ〉 two mode squeezed state as input. Here

amount of squeezing is taken to be r = 0.9. These plots are obtained from

arXiv:0907.2432v3.

periodically. Our states, described by the WDF in Eq. 5.4, describe both the

extreme cases, along with the generalized states, in between.

Remembering the fact that the effect of Di(αi) is nothing but shifting the

center of the beam as well as the vortex, we choose x0 = y0 = px0 = py0 = 0,

in the WDF, without loss of any new information, and compute the dependence

of entanglement on squeezing parameter. The states in between may also be

described by the QEV state, expressed by Eqs. 5.2-5.3. We report a critical

squeezing parameter, above which, higher AM means lower entanglement. We

have computed the entanglement for a choice of parameters σy =
√

5σx. In terms

of ζi, the relationship is linear: ζy = ln 5
4

+ ζx
2

. We have plotted the entanglement,

EN , in Fig. 5.2, for m = 0 to 5, i.e. for different orders of the vortex, as a

function of σx. First of all, we analyze our observation for m = 0. For this

state, we observe entanglement, which is counter intuitive. m = 0 means that

no vortex is formed, thus there should be no entanglement, as it is TSSM. The
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Figure 5.2: Plot of entanglement EN (in arbitrary units) versus σx, for different

charge (m) of QEV. Note that the finite constant entanglement for m=0 and

critical point of squeezing parameter, where the curves m 6= 0 cross each other.

reason for this apparent contradiction is explained below. It is definitely true that

if the two squeezing parameters are random, then the state would be separable.

However, we suspect that due to our (or, logically speaking, any) choice of a

specific relation between the squeezing parameters, some sort of entanglement

is generated. Thus we argue that the constant entanglement, generated in our

computation, is due to the non-random choice of squeezing parameters. The

observation of the constant value of the entanglement supports the logic that

as it is generated with some fixed relationship, it remains constant. We have

verified the fact that some other fixed relationship produces entanglement, with

some other constant value. However, the other dependencies of the parameters

will be considered in future correspondences, if found with interesting features.

Similar properties are again evident from the plot of entanglement vs. ζx,

in Fig. 5.3. The intercepts of the plots vary as lnK, defined after Eq. 5.3.

The important observation in both the figures is that the above a critical point,

σx = 0.002 (ζx = −3.1073 = 3.1073eiπ), the higher charge or the higher OAM
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Figure 5.3: Plot of entanglement EN (in arbitrary units) versus ζx, for different

charge (m) of QEV. Note that the finite constant entanglement for m=0 and

critical point of squeezing parameter, where the curves m 6= 0 cross each other.

corresponds to lower entanglement. The squeezing parameter ζi is complex in

general. However, most of the studies consider only real positive values of the

parameter. We report our work in the complex domain of the parameter from

the expression of ζx mentioned above, where the negativity is realized in the

phase factor of the complex squeezing parameter. A critical value of the squeez-

ing parameter, above which the resolution of the Mach-Zehnder interferometer

decreases, has been reported [120] previously also. It implies that the different

domains of the generally complex squeezing parameters should be explored for

the different experimental setups.

5.4 Conclusion

To conclude, we proposed the two well-known mechanisms, using DCDC and BS,

to generate a quantum optical elliptic vortex (QEV) states. We have argued that

the QEV is a Gaussian state as squeezing or coupling between the two modes
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do not change this property. Thus the entanglement follows the Peres-Horodecki

PPT criterion and the logarithmic negativity of the lowest eigenvalue of the co-

variance matrix. We have computed the entanglement of such quantum elliptical

vortex from the four-dimensional WDF, which is used to find out covariance ma-

trix and therefore, the logarithmic negativity. We show that by changing the

squeezing parameter one can control the entanglement. We observed a critical

point above which the increase in vorticity decreases the entanglement.



Chapter 6

Annihilation of vortex dipoles in

Bose-Einstein condensate

In recent years, the propagation dynamics of optical vortices in linear and non-

linear media have gained interest in the literature [36, 38, 121, 122, 123, 124].

The trajectories of the vortices while propagation show that the vortices move

around in the transverse plane of the beam. They display interesting dynamical

behavior, which includes moving toward each other, rotating around each other,

or annihilating each other. For example, propagation dynamics of a non-centered

vortex and annihilation of a vortex dipole are shown Figs. 1.8 and 1.9. In Fig.

1.9, annihilation of the vortex dipole is clearly visible from the intensity as well as

the phase distribution. There are two main factors which govern the propagation

dynamics of vortices – the intensity gradient and the phase gradient produced

by the vortices and the host beam which depend on position of the vortices in

the host beam. After the annihilation of an optical vortex dipole, formation of

soliton has also been observed [58, 125, 126].

In optics, annihilation of vortex dipoles embedded in a Gaussian host beam has

been studied extensively [123, 124]. These annihilation events can be accelerated

by manipulating the background phase function of the beam [39]. In non-linear

systems like BEC, the annihilation of a vortex dipole in the BEC formed by an

obstacle that can be a Gaussian or a vortex beam of light, has been mentioned

in a number of theoretical studies [51, 127, 128, 129]. Large number of factors,

65
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such as position of the generated vortex and the anti-vortex, density function,

scattering length affect the annihilation events. Thus the factors affecting the

annihilation of BEC vortices are very much similar to annihilation of optical

vortices. However, there is a lack of extensive study on this topic and more

importantly, no definite signatures of vortex dipole annihilation in BEC were

observed in the experiment [47]. The study of vortex dipole annihilation in BEC

will shed light on the process which influences the separation between vortex-

antivortex and conditions for annihilation along with other phenomena arising

from the dynamics of vortices of the dipole.

In this chapter, we present analytical as well as numerical results related to

vortex dipole annihilation for an oblate BEC at zero temperature. The results

are obtained using Gross-Pitaevskii (GP) equation. Condensate with diametric

vortex dipole and gray soliton are studied and this is described in section 6.2.

Section 6.2 contains studies done in the strong as well as weak interacting systems.

Annihilation of vortex dipoles is analyzed from the energies obtained from the

analytical calculations. The numerical results, confirming the analytic results,

are discussed in Section 6.3, and we then conclude.

6.1 Superfluid vortex dipole and its generation

There are several theoretical and experimental proposals to generate vortices in

non-rotating traps. These include stirring of the condensate using blue-detuned

laser or several laser beams [47, 57], adiabatic passage [130], Raman transitions

in binary condensate systems [131], laser beam vortex guiding [132], and phase

imprinting [49]. Among these methods, the easiest one to nucleate vortex dipoles

is by stirring a BEC with a blue-detuned laser beam which can be a Gaussian or

a vortex beam. When the velocity of the laser beam exceeds a critical velocity,

vortex-antivortex pairs are released from the localized dip in the number density

created due to the laser beam. These vortex dipoles then move through the

BEC and exhibit various interesting dynamics [48, 57, 133]. The critical velocity

depends on the number density, width and intensity of the laser beam, and the
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frequency of the trapping potential. This nucleation process exhibits a high degree

of coherence and stability, allowing us to map out the annihilation of the dipoles.

In an axis-symmetric trap, a vortex dipole is a metastable state of superfluid flow

with long lifetime.

In the mean-field approximation, the dynamics of a dilute BEC is very well

described by the GP equation

i~∂tΨ(r, t) = [H + U |Ψ(r, t)|2]Ψ(r, t), (6.1)

where H, U and Ψ are the single-particle Hamiltonian, interaction strength and

order parameter of the condensate respectively. The order parameter, Ψ, is nor-

malized to N , the total number of atoms in the condensate. In the present case,

the single-particle Hamiltonian H consists of the kinetic-energy operator, an axis-

symmetric harmonic trapping potential, and a Gaussian obstacle potential, that

is,

H = − ~2

2m
∇2 +

mω2

2
(x2 + α2y2 + β2z2) + Vobs(x, y, t), (6.2)

where α and β are the anisotropies along y and z axis respectively, m is the mass

of particles used in condensate, ω is the trapping potential, and Vobs(x, y, t) is

the repulsive Gaussian obstacle potential. Experimentally, a blue-detuned laser

beam is used to generate the Vobs(x, y, t) and it can be written as

Vobs(x, y, t) = V0(t) exp

[
−2

(x− vt)2 + y2

w2
0

]
, (6.3)

where V0(t) is the potential at the center of the Gaussian obstacle at time t, v is

the velocity of the obstacle along x-axis, and w0 is the radius of repulsive obstacle

potential. In the present work, we consider the motion of obstacle along x-axis

only. Defining the oscillator length of the trapping potential as aosc =
√

~/(mω),

and considering ~ω as the unit of energy, we can then rewrite the equations in

dimensionless form with transformations r̃ = r/aosc, t̃ = tω, and the transformed

order parameter assumes the form

φ(r̃, t̃) =

√
a3

osc

N
Ψ(r, t). (6.4)

For the sake of notational simplicity, hereafter we denote the scaled quantities

without tilde in the rest of the manuscript. In a pancake-shaped trap α = 1 and
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β � 1 and the order parameter can then be written as

φ(r, t) = ψ(x, y, t)ζ(z) exp(−iβt/2), (6.5)

where ζ(z) = [β/(2π)]1/4 exp(−βz2/4). The Eq. 6.1 is then reduced to the two

dimensional form[
−1

2

(
∂2

∂x2
+

∂2

∂y2

)
+
x2 + y2

2
+
Vobs(x, y, t)

~ω

+u|ψ(r, t)|2 − i
∂

∂t

]
ψ(r, t) = 0, (6.6)

where u = 2aN
√

2πβ/aosc, with a as the s-wave scattering length, is the modified

interaction strength. In the present work, we consider condensate consisting of

87Rb atoms in F = 1, mF = −1 state with a = 99a0 [134]. We have neglected a

constant term corresponding to the energy along axial direction as it only shifts

the energies and chemical potentials by a constant without affecting the dynamics.

We solve this equation numerically using the Crank-Nicholson method [135].

6.2 Condensates with vortex dipole or gray soli-

ton

To analyze the vortex dipole annihilation, we consider a model system where

the vortex-antivortex dipole pair and gray soliton, which may be generated when

annihilation of vortex dipole occurs, are static. However, we vary the distance

of separation and examine the energy of the total system. The present system

can be studied under two regimes: strongly interacting system, and weakly in-

teracting system. The strongly interacting system is studied considering φ with

Thomas-Fermi (TF) approximation and the weakly interacting system is studied

considering the Gaussian form of φ.

6.2.1 Strongly interacting system with Thomas Fermi (TF)

approximation

For the Na/aosc � 1 case, we use TF approximation to determine the steady

state density profile and energy of the condensate. To begin with, we consider a
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condensate with vortex dipole and later, with gray soliton.

Diametric vortex dipole

We consider a condensate consisting of N atoms in a purely harmonic potential

V (x, y) =
x2 + y2

2
. (6.7)

Consider that the condensate has a vortex dipole, consisting of a vortex and an

antivortex located at (0, v2) and (0,−v2), respectively. The cores of the vortex

and antivortex can be approximated as circular regions centered around (0, v2)

and (0,−v2) and with radii equal to the coherence length ξ. At the cores, we

consider the density to be equal to zero. Hence, we use the TF approximation

and adopt the following piecewise ansatz for density of the condensate

n(x, y) =



0 for x2 + y2 > R2

0 for [x2 + (y ± v2)2] 6 ξ2

[
µ− V (x, y)

u

]
for

x2 + y2 6 R2 &

[x2 + (y ± v2)2] > ξ2,

(6.8)

where R =
√

2µ is the spatial extent of the condensate in TF approximation,

and ξ = 1/R is the coherence length at the center of the trap. Normalizing this

ansatz yields

π (2− 4R4 +R8 + 4R2v2
2)

4R4u
= 1. (6.9)

This equation defines the radius of the condensate. The TF ansatz can be used

to calculate the total potential energy arising from the regions outside the cores

of the vortices and is given as

E0 =
π [1− 3R8 +R12 + 3R2v2

2 (2 +R2v2
2)]

12R6u
. (6.10)

The main energy contribution from the vortex dipole is the kinetic energy due

the velocity field associated with it. This energy can be approximated as [136]

EKE =
R2

u
Log

(
2v2

ξ

)
. (6.11)
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This relation is valid when ξ � v2 � R and in the present work, ξ ∼ 0.06 and

R = 15.5 aosc. In order to estimate the energy contributions from the cores of

the vortices, we approximate the density within the cores as

n(x, y) =


2n0[x2 + (y − v2)2]

x2 + (y − v2)2 + ξ2
for [x2 + (y − v2)2] < ξ2

2n0[x2 + (y + v2)2]

x2 + (y + v2)2 + ξ2
for [x2 + (y + v2)2] < ξ2,

(6.12)

where n0 is the average TF density on the circle x2 + (y ± v2)2 = ξ2. Assuming

that the normalization is still defined by equation Eq. 6.9, Eq. 6.12 can be used

to calculate energy contribution from the core region. The energy within the core

consist of

Eq
c =

6πn0

8
, (6.13)

Etr
c = πξ4(Log[4]− 1)n0, (6.14)

Eint
c = 2πuξ2(3− Log[16])n2

0, (6.15)

where, Eq
c , Etr

c and Eint
c are the energies arising from the quantum pressure,

trapping potential and interaction within the core region, respectively. Thus, the

total energy of the condensate with a vortex dipole is

Evd = E0 + EKE + Eq
c + Etr

c + Eint
c . (6.16)

The variation of Evd as a function of v2 is shown in Fig. 6.1.

Gray soliton

For gray soliton extending from (0, −v2) to (0, v2) along y-axis, we use the

following piecewise ansatz in the TF approximation

n(x, y) =



0 for x2 + y2 > R2,

[
µ− V (x, y)

u

]
for


x2 + y2 ≤ R2,

|x| > ξ,

|y| > v2,[
µ− V (x, y)

u

]
2x2

x2 + ξ2
for |x| ≤ ξ & |y| ≤ v2.

(6.17)
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And, the normalization condition leads to following constraint on the radius of

the condensate

1

12R3u

[
3πR7 + 4v2

(
10 + 6R4 − 3π

(
1 +R4

)
(−2 + π)R2v2

2

)]
= 1. (6.18)

For the gray soliton, other than the quantum pressure, there is no need to separate

out the energy associated with the trapping and interaction potential within the

soliton. So, the total energy of the system is

Es = E0 + Eq
c , (6.19)

where, E0 is the potential energy associated with the system and Eq
c is the energy

arising from the quantum pressure. These are given as

E0 =

∫ ∫ [
V (x, y)n(x, y) +

u

2
n(x, y)2

]
dxdy,

Eq
c =

1

2

∫ ξ

−ξ

[∫ v2

−v2
|∇xy

√
n(x, y)|2dy

]
dx. (6.20)

From the expression of the n(x, y) in Eq. 6.17, we obtained

E0 =
1

180R5u

{
15πR11 + 3

[
236− 75π + 20(19− 6π)R4 + 15(8− 3π)R8

]
v2

+10R2
[
−28 + 9π + 6(−3 + π)R4

]
v3

2 − 9(−4 + π)R4v5
2

}
(6.21)

Eq
c = −(8 + 3π)v2 (−3R2 + 3ξ2 + v2

2)

48uξ
. (6.22)

Interestingly, the Eq
c has a 1/ξ dependence, which is to be expected as smaller ξ

implies larger density variation and translates to higher quantum pressure.

For illustration, the vortex dipole and gray soliton inside the condensate is

shown in Fig. 6.2. The vortex dipole is located at (1, 0) and (−1, 0) while the

gray soliton extends from (−1, 0) to (1, 0) along the x-axis. In the case of vortex

dipoles, the phase varies from 0 to 2π, if one goes around the point of singularity.

While in the case of gray soliton, there is a phase discontinuity of π along the line

forming the soliton. The number density at the point of singularity is zero. In

Fig. 6.1, Es is plotted as a function of v2 and the values varies from 0.05 aosc to 2.0

aosc. From the figure, it is evident that for v2 6 0.2, the value of Evd is higher than

Es and hence, the gray soliton is the energetically favored state of the system.

However when v2 > 0.2, the vortex dipole state is the energetically favorable.

This analytical result provides a compelling reason to study the annihilation of

vortex dipoles and formation of gray solitons.
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Figure 6.1: Comparing the energy of vortex dipole and band soliton under TF

approximations. The crossover in energy can be seen through ansatz chosen

and the analytical expressions obtained. Inset shows the variation of energy

obtained by solving GP equation numerically. The difference in the value of v2

for crossover in energy is due to the too ideal wave-function considered for the

analytical calculations.
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Figure 6.2: Band soliton (top) and vortex dipole (bottom) with density profile

(left) and phase profile (right) obtained numerically.
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6.2.2 Weakly interacting system with Gaussian approxi-

mation

In Na/aosc � 1 regime, a simplistic model of a vortex dipoles in the BEC of

trapped dilute atomic gases can be considered as the superposition of harmonic

oscillator eigenstates. The minimalist wave function which supports a vortex and

antivortex at coordinates (−a/c,−
√
b/d) and (−a/c,

√
b/d) is

ψ(x, y) = e−iµt
(
ia− b+ ixc+ dy2

)
e−(x2+y2)/f , (6.23)

where a, b, c, d, and f are positive variational parameters and µ is the chemical

potential of the system. The wave function is a superposition of the scaled ground

state and the first and the second excited states of harmonic oscillator along the

x and y-axes, respectively. The wave function is ideal for weakly interacting

condensates.

We have considered that the vortex and antivortex are located on the diam-

eter of the condensate. Without loss of generality, we consider the diameter as

coinciding with the y-axis, which is equivalent to a = 0 in Eq. 6.23. Such an

assumption does not modify the qualitative descriptions, but expressions are far

less complicated. The wave function is then

ψ(x, y, t) = e−iµt
[
−b+ icx+ dy2

]
e−(x2+y2)/f . (6.24)

The nontrivial phase of the wave function θ is discontinuous along x = 0 line for

−
√
b/d 6 y 6

√
b/d. Across the discontinuity, there is a phase change from −π

to π as we traverse along x-axis from 0− to 0+ and this phase variation is shown

in Fig. 6.3. So, there is a discontinuity across the y-axis and this is the typical

phase pattern associated with vortex dipoles. For the present case, the ground

state wave function is

ψg(x, y, t) = −be−iµte−(x2+y2)/f , (6.25)

and from the normalization condition∫ ∞
−∞

∫ ∞
−∞
|ψg|2dxdy = 1, (6.26)
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we get the constraint equation

b2 =
2

fπ
. (6.27)

For general considerations, rewrite the additional term as

δψ(x, y, t) = e−iµt
(
icx+ dy2

)
e−(x2+y2)/f . (6.28)

So that the total wave function ψ = ψg + δψ, where δψ represents an elementary

excitation of the condensate. We can calculate the total energy of the system,

without the obstacle potential, as

Evd =

∫ ∞
−∞

∫ ∞
∞

[
1

2
|∇⊥ψ(x, y)|2 +

x2 + y2

2
|ψ(x, y)|2 +

× u|ψ(x, y)|4
]
dxdy. (6.29)

This is the energy of the condensate with a vortex dipole with the assumption that

it is a weakly interacting system. Energy without the vortex may be calculated

trivially [42]. In general, the energy added to the system due to the vortex dipole

is not large compared to the total and for obvious reason, the angular momentum

of the condensate is still zero.

(a)

(b)

π

−π

Figure 6.3: Phase pattern resulting due to a (a) vortex dipole and (b) gray soliton.

A slight modification to the wave function can describe a solitonic solution

along y-axis. The form of the modified wave function is

ψ(x, y) =
[
b+ icx+ dy2

]
e−(x2+y2)/f , (6.30)
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where except for the change in the sign of b, all the terms remain unaltered as

in Eq. 6.23. It is a gray soliton as the density n ∝ (b + dy2)2 + (cx)2 has a dip

but is different from zero. The phase varies smoothly from −π/2 to π/2 along

the normal to the line which connects (0,−
√
b/d) and (0,

√
b/d). This phase

variation is shown in Fig. 6.3(b).

Using the wave function in Eq. 6.30, we can then evaluate the total energy of

the system Egs and calculate the energy difference between two possible states of

the system

∆E = Evd − Egs, (6.31)

which after evaluation is

∆E =
bdf 2π

256

[
64b2u+ 15d2f 2u+ 8f(8 + c2u)

]
. (6.32)

The most general solution is when all the constants are positive, then ∆E > 0 and

the gray soliton is lower in energy. This shows that when the vortex-antivortex

collides, it is energetically favorable for them to decay into gray soliton. As

discussed in the results section, this is confirmed in the numerical calculations.

The analysis so far is for an ideal system at zero temperature, where we

have neglected the quantum and thermal fluctuations and perturbations from

imperfections. In addition, there is dissipation from three body collision losses in

the condensates of dilute atomic gases.

6.3 Numerical Results

For the numerical computation, we choose 87Rb with N = 2 × 106 atoms. The

trapping potential and obstacle laser potential parameters are similar as those

considered in Ref. [47], i.e., ω/(2π) = 8 Hz, β = 11.25, V0(0) = 93.0 ~ω and

w0 = 10 µm. To nucleate the vortices on the edges of the condensate, the obstacle

potential Vobs is initially located at (−12.5 aosc, 0) and moves along the x direction

at a constant velocity with decreasing intensity until Vobs vanishes at (5.18 aosc,

0).
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6.3.1 Vortex dipole nucleation

We study the nucleation of vortices by Vobs with the translation speed v ranging

from 80 µm s−1 to 200 µm s−1. Vortices are not nucleated when the speed is

80 µm s−1. However, a vortex-antivortex or a vortex dipole is nucleated when

the speed is in the range 90 µm s−1 < v < 140 µm s−1. Increasing the speed of

obstacle generates two pairs of vortex dipoles when 140 µm s−1 6 v < 160 µm

s−1 and more than two when v > 160 µm s−1. In other words, the number of

vortex dipoles created can be controlled with the speed of the obstacle. Creation

of vortex dipoles above a critical speed vc is natural as the vortex nucleation must

satisfy the Landau criterion [137]. The density and phase of the condensate after

the nucleation of vortex dipole for v = 120 µm s−1 is shown in Fig. 6.4. The

figure clearly shows nucleation dynamics of the vortex dipoles.

From numerical calculations, we have determined vc ≈ 90 µm s−1. This is,

however, less than the local acoustic velocity of the medium s =
√
nU/m, which

depends on the local condensate density. This also explains the reason for the

predominant vortex dipole nucleation around the edge of the condensate where

n is lower and s is accordingly lower.

6.3.2 Vortex dipole annihilation

To determine the energetically preferred state of the system, we examine the

energy of the condensate with vortex dipole and gray soliton as a function of the

separation v2. The result is shown as the inset plot in Fig. 6.1. Like in the TF

calculations, vortex dipole is the stable solution for larger v2 but for v2 < 0.5aosc

gray soliton is the stable solution. However, in the numerical results, the critical

value of v2 at which the vortex soliton overtakes gray soliton as the stable solution

is higher than the TF values. This may be an account of the piecewise nature of

the TF ansatz.

It is observed that the vortex dipole annihilation is critically dependent on the

initial conditions of the nucleation, in particular, the vortex-antivortex separation,

v2. The annihilation occurs when the vortex dipole is generated with v2 < 0.5aosc,

which is consistent with the analytical results and solutions of time-independent
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GP equation. The initial v2 is, however, is dependent on the velocity v of the

obstacle potential. For this reason, the annihilation events are observed only for

specific range of v. As an example, the annihilation event when v is 120 µm s−1

is shown in Fig. 6.4. In Fig. 6.4, we can notice the density minima arising from

the annihilation and propagating away from the obstacle potential.
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Figure 6.4: A vortex dipole is nucleated when the obstacle potential traverses the

condensate at a speed of 120 µm s−1. The vortex dipole, however, passes through

and overtakes the obstacle. Later, as seen in (e), the vortex dipole annihilates

and generates a gray soliton. The figures in the left panel show the density

distribution and those on the right show the phase pattern of the condensate.

From top to bottom, t = 2.9, 3.1, 3.3, and 3.5 respectively.

A reliable and qualitative way to describe occurrence of annihilation could be

achieved by observing the density at the cores of vortex and antivortex which

form the dipole. For the vortex, the matter density at the core when v is 120 µm

s−1 is shown in Fig 6.5. In the plot, at time ≈ 3.19 (scaled unit), the core density
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starts increasing. This is because the core starts to fill in with the atoms from

around the vortex after the annihilation. This filling process may not complete

till it reaches the edge of the condensate and gets reflected inside the condensate.

3.10 3.15 3.20 3.25 3.30
0.00

0.01

0.02

0.03

0.04

 

 

|Ψ
|2

t (scaled unit)

Time of annihilation

Figure 6.5: Density variation at the core of the vortex with time. After the vortex

dipole annihilation, density increases till it reaches the bulk value. The values

correspond to the obstacle speed of 120 µm s−1. After annihilation, the number

density has been considered from the location of minimum density. X-axis denotes

the time elapsed from the starting of obstacle at (−12.5aosc, 0).

After the annihilation of vortex-antivortex dipole pair, a gray soliton gets

generated. We can clearly observe the propagation of this soliton in Fig. 6.6.

The speed of propagation is 2000 µm s−1 which is similar to the speed of sound

in condensate. During the propagation, the number density on the location of the

soliton increases which is clearly visible from Fig. 6.6 as well as from Fig. 6.5. To

estimate the energy of gray soliton, we have obtained the stationary state with

the same position of vortex dipoles and obstacle potential. The energy difference

between stationary state and dynamic state will provide us with the energy of
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gray soliton as discussed in ref [138]. The energy released due to the annihilation

is 0.004 ~ω and is similar to the energy difference observed in Fig. 6.1, obtained

from the TF approximation. We have also observed that this soliton gets reflected

back-and-forth from the edge of the condensate. This reflection is similar to the

reflection of any pulse from the circular edges.
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Figure 6.6: The propagation of the gray soliton after the annihilation of vortex

dipole. The higher the value, higher the number density dip at that point. From

(a)-(c), t = 3.2, 3.4 and 3.6 respectively.

It is to be mentioned that for the parameters considered in the present work,

the speed of sound is 2190 µm s−1 and the coherence length of the system is

∼ 0.229 µm. These are in agreement with the minimum separation between the

vortex and antivortex observed in the analytical work. The energy gap for vortex

dipole and gray soliton for the same size matches with the estimates from the

ansatz based on TF approximation. The vortex dipole annihilation is not only

observed for Vobs = 120 µm s−1, it also occurs for other obstacle velocities as well.

Once such case, for Vobs = 160 µm s−1, is shown in Fig. 6.7. In this case, the

difference in energy of vortex dipole and gray soliton is 0.0025 ~ω.
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Figure 6.7: A vortex dipole is nucleated as the obstacle potential traverses the

BEC with a speed of 160 µm s−1. The figures in the left panel shows the density

with time, where time progresses from top to bottom. Figures on the right panel

show the phase pattern of the condensate. From top to bottom, t = 1.6, 1.8, 2.0,

and 2.2 respectively.

One observation, which is common to all the vortex dipoles getting anni-

hilated, is the nature of their trajectories. All of them traverse through Vobs,

whereas the ones which do not get annihilated avoid Vobs. The vortex dipoles are

generally nucleated at the aft region of the Vobs where there is a trailing super-

flow. When nucleated very close to each other (v2 < 0.5) and with high velocity,

the mutual force further increases the velocity of the vortex dipoles. At the same

time, it decreases the distance separating vortex and antivortex. So, the kinetic

energy is high enough to surpass Vobs. Later, at some point vortex and antivortex

separation is less than ξ, and they annihilate.



6.3. Numerical Results 81

6.3.3 Effect of noise and dissipation

In the numerical studies, the annihilation events are not rare. But, this is in

contradiction with the experimental results of Neely and collaborators [47]; they

observed no signatures of annihilation events. One possible reason is that our nu-

merical calculations are too ideal, and an immediate remedy is to include quantum

and thermal fluctuations. The rigorous way to study these fluctuations is to use

methods like Truncated Wigner approximation (TWA) [139, 140], however, in

this work, we use the simple but widely accepted method of adding white noise

[141, 142]. As white noise constitutes random fluctuations and hence it is able to

change number density of the condensate. White noise is added numerically using

random number generator. We have used Mersenne Twister pseudo random num-

ber generator. The strength of random noise used in our numerical calculation is

0.01% of maximum density of the condensate. This noise is added/subtracted at

every time-step of the real-time evolution of the condensate. One immediate out-

come is, the symmetry in the position of the vortex and antivortex is lost. The

superflow around the vortex is no longer a mirror reflection of the antivortex,

which was nearly the case without the white noise. The deviations are shown for

an example case in Fig. 6.8, where Vobs = 180 µm s−1. This change in path leads

to the suppression of annihilation events of vortex dipoles. We have also studied

the effect of large white noise (10%) added in the beginning and not at latter

time-step. In such cases, the noise gets damped throughout the condensate and

consequently not able to show any change in the annihilation event.

The other important effect is the loss of atoms from the trap. We have exam-

ined the effect of loss terms, which arise from inelastic collisions in the condensate.

There are two types of inelastic collisions that lead to the loss of atoms from the

trap: two body inelastic collision loss and the three body loss. To model the

effect of loss of atoms from the trap, we add the loss terms

−i~
2

[
K2|Ψ(r, t)|2 +K3|Ψ(r, t)|4

]
, (6.33)

to the Hamiltonian H. Based on the previous work [143] for 87Rb, the inelastic

two-body loss rate coefficient K2 = 4.5× 10−17 cm3 s−1, and inelastic three-body
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Figure 6.8: The figures in the left (right) panel show the density (phase) of the

condensate in the presence of white noise at time t = 4.1 (top) and 4.2 (bottom).

Lack in diametrical symmetry of the position of vortex dipole can be observed.

This reduces the possibility of an annihilation event significantly. In this case,

the speed of the obstacle is 180 µm s−1.

loss rate coefficient K3 = 3.8 × 10−29 cm6 s−1. With trap loss, the annihilation

events continue to occur. However, during the time of flight observations in the

experiments, the decreased atom numbers may lower the contrast and reduce the

possibility of observing an annihilation event.

6.3.4 Optical vortex as obstacle to generate vortex dipole

When we consider optical vortex as obstacle, at the speed of 60 µm s−1, one pair

of dipole is generated. As the time progresses, the generated vortex dipole gets

annihilated. One major outcome of using optical vortex as obstacle is that the

dipoles are generated at very low speed of 60 µm s−1. At this speed, no dipoles

were getting generated in the case of Gaussian beam as obstacle. In this case,

the critical velocity for obstacle is less than that of using Gaussian obstacle. The

number density and phase profile for condensate with optical vortex obstacle at

the speed of 60 µm s−1 is shown in Fig. 6.9.

As optical vortices are ring-shaped, these type of obstacles steer the conden-
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Figure 6.9: A pair of vortex dipoles are nucleated when optical vortex, as the

obstacle, traverses the BEC with a speed of 60 µm s−1. The figures in the left

panel shows the density with time, where time progresses from top to bottom.

Figures on the right panel show the phase pattern of the condensate. From top

to bottom, t = 2.7, 2.9, 3.1, and 3.3 respectively.

sate more strongly than the Gaussian obstacle. This is one of the reasons for the

decrease in critical velocity for the generation of vortices in the condensate.

6.4 Conclusion

When an obstacle moves through a condensate above a critical speed, it nucle-

ates vortex dipoles and the number of dipoles seeded depends on the obstacle

velocity. Depending on the initial condition of nucleation, vortex and antivortex

annihilation events occur under ideal conditions: at zero temperature, no loss,

and without noise. These events are found to be energetically favorable theoret-

ically and observed numerically. In the case of weakly interacting condensates,
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the energy of gray soliton is always less than that of vortex dipole and provides

higher possibility for annihilation events. Similarly, in the case of strongly inter-

acting condensates, we use TF approximation to study the system and find that

if the separation between the vortex anti-vortex pair is less than the coherence

length, the energy of vortex dipole is more than that of gray soliton and this leads

to annihilation. The generated gray soliton propagates through the condensate

and shows the phenomena of reflection from the circular edge of the condensate.

The speed of propagation is found to be similar to the speed of sound in BEC.

However, noise, thermal fluctuations and dissipation destroy superflow reflection

symmetry around the vortex and antivortex. Breaking the symmetry reduces the

possibility of annihilation events and may explain the lack of annihilation events

in experimental observations.



Chapter 7

Summary and Scope for Future

Work

This thesis deals with the study of interaction of optical vortices with matter.

For this dissertation, the chosen systems are non-linear crystal β-Barium Borate

(BBO) and Bose-Einstein condensates (BEC). The optical vortices are generated

using computer-generated holography technique. A new method for characteri-

zation of optical vortex from just the intensity distribution of a vortex has been

proposed and verified experimentally. We have shown that the number of dark

rings in the Fourier transform (FT) of the intensity is the order of vortex. We

have studied the non-linear interaction of optical vortices with BBO crystal. The

SPDC ring due to optical vortex forms two concentric bright rings with an inten-

sity minimum in the middle. We have also experimentally verified the quantum

inspired optical entanglement of classical optical vortex beams. The extent of vi-

olation of Bell’s inequality increases with the increase in their topological charge.

Quantum elliptic vortex (QEV) state can be generated in idler beam by using

beam-splitters in signal beam of SPDC process. We have studied the entangle-

ment and its control for these quantum optical vortices using Wigner distribution

function (WDF).

Next, we have taken BEC and studied the annihilation of vortex dipoles

formed in the BEC. It is observed that the vortex dipole annihilation is criti-

cally dependent on the initial conditions for their nucleation. The noise in the

85
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system destroys the symmetry in the position of the vortex and antivortex and

consequently, the annihilation events are also suppressed. In case of optical vor-

tex as obstacle, as optical vortices are ring-shaped, these type of obstacles steer

the condensate more strongly than the Gaussian obstacle. This is one of the

reason for the decrease in critical velocity for the generation of vortices in the

condensate.

7.1 Summary of work-done

Chapter 1 gives the elementary background for the work presented in this thesis.

We have briefly described the optical vortices and orbital angular momentum

in this chapter. We have also described the process of SPDC and shown the

SPDC rings generated by type-I and type-II SPDC process. The process of

SPDC generates entanglement in the down-converted photons. The propagation

of optical vortex and vortex dipole in free space has also discussed. We have also

briefly described the theory of Bose-Einstein condensate and dynamics of vortex

dipoles in these condensates.

In Chapter 2, we have discussed generation and characterization of optical vor-

tex beams. The computer generated holography technique has been introduced

briefly with explanation of different types of holograms. The steps of computer-

generated holography are presented in this chapter. The working principle of the

SLM has been highlighted. We have briefly described the generation of optical

vortices using spiral phase plate. In this chapter, we have proposed new tech-

niques for the measurement of OAM or topological charge of the vortex. We have

outlined a simple technique to determine the order of a vortex based on the FT

of its intensity profile and the orthogonality of the Laguerre polynomials. This

method is effective in determining the order of the higher charged vortex also.

Chapter 3 describes the spatial distribution of entangled photons generated

by pumping the non-linear crystal with the Gaussian as well as optical vortex

beams. We have observed a linear increase in thickness of the SPDC ring with

beam radius of the Gaussian pump. We have also observed the formation of two
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concentric SPDC rings if the crystal is pumped with optical vortex beams. One of

the reasons for generation of two rings is the dark core of optical vortex i.e. unique

intensity distribution of the vortex. The formation of two rings takes place when

the pump beam size is more than the critical beam size. These observations would

be useful in the experiments to maximize the coincidence counts while working

with entangled OAM states of the photons.

Chapter 4 describes the experimental verification of quantum inspired optical

entanglement of classical optical vortex beams. We have found that these classical

beams violate Bell’s inequality for continuous variable written in terms of the

WDF. The extent of violation of Bell’s inequality increases with the increase in its

topological charge. To obtain this, we have used the FT of two-point correlation

function that provides us WDF of such beams.

In Chapter 5, we proposed the mechanism to generate a QEV state and studied

their entanglement using the logarithmic negativity of the lowest eigenvalue of

the covariance matrix for the QEV. The four-dimensional WDF was used to find

out covariance matrix and therefore, the logarithmic negativity. We have shown

that by changing the squeezing parameter one can control the entanglement. We

have also observed a critical point above which the increase in vorticity decreases

the entanglement.

Chapter 6 is devoted towards the annihilation of vortex dipoles in Bose-

Einstein condensates. These dipoles are created by moving an obstacle, a Gaus-

sian or a vortex beam of light, through a condensate above a critical speed.

Depending on the initial condition of nucleation, vortex and antivortex gets an-

nihilated. In case of optical vortex as obstacle, the critical velocity for the gen-

eration of vortex dipoles is less than that of Gaussian obstacle. In the case of

weakly interacting condensates, the energy of gray soliton is always less than

that of vortex dipole and hence supports annihilation events. Similarly, in the

case of strongly interacting condensates, we use TF approximation to study the

system and found that if the separation between the vortex anti-vortex pair is

less then the coherence length, the energy of vortex dipole is more than that of

gray soliton and this leads to annihilation. However, noise, thermal fluctuations
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and dissipation destroy the superflow reflection symmetry around the vortex and

antivortex.

7.2 Scope for future work

We have verified experimentally that the photon coming out of laser follows Pois-

sonian probability distribution. We have studied this by using both single photon

counting modules (SPCM) as well as EMCCD. As the process of SPDC generates

two photons from one photon of the pump, we would like to study the photon

number probability distribution of down-converted photons. The study of photon

statistics may find application in quantum optics and quantum information.

During the course of our study, we have found that the constrained optimiza-

tion algorithm can be used for accurate phase measurement even at the very low

light levels. We plan to use this technique for measuring the down-converted

optical vortex states which find use in quantum information and computation.

In this thesis work, we have used Gaussian beam as obstacle while studying

the dynamics of the condensate. We have found that the generated vortex dipoles

gets annihilated during the time-evolution of the condensate. In our preliminary

studies, we have observed that while using optical vortex as obstacle, the critical

velocity for the nucleation of vortex dipoles decreases. We would like to study the

effect on annihilation events due to the vortex obstacle numerically as well as an-

alytically. We also wish to study effect of quantum turbulence on the annihilation

events of vortex dipoles.

Recently, we are involved with generation of radially and azimuthally polar-

ized beams to study the non-separability of polarization and spatial modes of

light. These results may boost the application of the optical vortex beams as

information carriers.
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We show that the intensity distribution of an optical vortex contains information of its order. Specifically, the
number of dark rings in the Fourier transform of the intensity is found to be equal to the order of the vortex. Based
on this property and the orthogonality of Laguerre polynomials, we demonstrate the feasibility of an experimental
technique for determining the order of optical vortices. It shows the beauty of going to complementary spaces, which
has been employed earlier also to find the information not available in other domains. © 2011 Optical Society of
America
OCIS codes: 050.4865, 260.6042.

Optical vortices are singular points in the phase distribu-
tion of a light field and observed as dark points on the
screen [1]. Light beams with such a feature have found
a variety of applications in the optical manipulation of
microscopic particles [2] and quantum information and
computation [3].
Detection and determination of the charge of optical

vortices is one of the basic requirements in singular
optics. Most of the techniques to determine the order
of vortices are based on interferometry [4–7]. The inter-
ferometry has been further extended to find the spatial
coherence function that also provides information about
the order of vortex [8]. All these methods require a good
number of optical elements and their fine alignment.
Aberrations in optical elements, scratch and dig, dust
particles on these elements, and their misalignments
disturb the characteristic interference pattern of the vor-
tex. Therefore, efforts have been made to find the order
of the vortex using techniques other than the interfero-
metry [9–13].
In this Letter, we show that the order of a vortex can be

obtained from the record of its intensity distribution
itself. We know that when the order of the vortex in-
creases, the size of the dark core at the center increases
[14]. Moreover, the size of the dark core may vary de-
pending on the resolution of the hologram used in the
spatial light modulator (SLM) [15]. Therefore, just by
measuring the size of the dark core, it is difficult to dis-
criminate between the orders experimentally.
We provide a method to discriminate between the

orders of the vortices by taking the Fourier transform
(FT) of the recorded intensity of the vortex and using
the orthogonality of the Laguerre polynomials. Our main
result is based on Eq. (12) and Fig. 4.
The field of a vortex of order m can be written as

Emðx; yÞ ¼ ðxþ iyÞm exp½−ðx2 þ y2Þ=σ2�; ð1Þ
where σ ¼ 1:69mm is the radius of the first diffraction
order Gaussian beam at the CCD (see Fig. 1). The beam
was generated by placing a grating without fork pattern
at the SLM. The intensity of the vortex is given by

Imðx; yÞ ¼ ðx2 þ y2Þm exp½−2ðx2 þ y2Þ=σ2�: ð2Þ

The FT of Imðx; yÞ has the expression

Fmðω1;ω2Þ ¼
Z

∞

−∞

Z
∞

−∞

ðx2 þ y2Þm

× exp½−2ðx2 þ y2Þ=σ2
− iðω1xþ ω2yÞ�dxdy; ð3Þ

where ω1 and ω2 are spatial frequencies. Expanding
ðx2 þ y2Þm in a binomial series, Eq. (3) can be written as

Fmðω1;ω2Þ ¼
Xm
n¼0

�m
n

�
Inðω1ÞIm−nðω2Þ; ð4Þ

where

Inðω1Þ ¼
Z

∞

−∞

x2n expð−2x2=σ2 − iω1xÞdx: ð5Þ

Using the formulas [16]

Z
∞

0
x2n expð−β2x2Þ cos axdx

¼ ð−1Þn
ffiffiffiπp

ð2βÞ2nþ1 exp

�
−

a2

4β2
�
H2n

�
a
2β

�
; ð6Þ

Fig. 1. (Color online) Experimental setup to generate optical
vortices and to find their order.
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H2nðxÞ ¼ ð−1Þn22nn!L−1=2
n ðx2Þ; ð7Þ

we get

Inðω1Þ ¼
ffiffiffi
π

p σ2nþ1

2nþ1=2 n! exp

�
−

ω2
1σ2
8

�
L−1=2
n

�ω2
1σ2
8

�
; ð8Þ

and similarly for Im−nðω2Þ. Substituting in Eq. (4)
and performing the summation over n by means of the
formula [16]

Xm
n¼0

Lα
nðxÞLβ

m−nðyÞ ¼ Lαþβþ1
m ðxþ yÞ; ð9Þ

we get

Fmðω1;ω2Þ ¼
πσ2mþ2

2mþ1 m! expð−ζÞLmðζÞ; ð10Þ

where ζ ¼ ðω2
1 þ ω2

2Þσ2=8. In Eqs. (6)–(10), we have
used the standard notations HnðxÞ, LnðxÞ, and Lα

nðxÞ to
denote Hermite, Laguerre, and generalized Laguerre
polynomials, respectively. By using the following ortho-
gonality property of Laguerre polynomials

Z
∞

0
expð−ζÞLmðζÞLnðζÞdζ ¼ δm;n ð11Þ

one finds that the integral

Cmn ¼
Z

∞

0
FmðζÞLnðζÞdζ ð12Þ

will give a peak value for m ¼ n. We have evaluated Cmn
numerically by using the FT of the measured intensity
profiles. We expect this method to be sensitive enough
to detect any order of the vortex.
The experimental setup to find the order of the vor-

tices is shown in Fig. 1. A Gaussian beam from an inten-
sity stabilized He-Ne laser (Spectra-Physics, 117A) is sent
toward a beam splitter (BS). The transmitted beam from
BS goes toward the SLM (Holoeye, LC-R 2500). SLM is a
liquid crystal based device that can modulate light in
amplitude as well as in phase and therefore it can be used
as a dynamic diffractive optical element. The positions of
the BS and the SLM are aligned in such a way that the
transmitted beam from the BS falls normal to the SLM.
Higher order vortices are produced in the first diffraction
order by introducing different fork patterns onto the SLM
via a computer (PC1). An aperture A is used to select the
required first diffraction order produced from the SLM.
It is then passed through a neutral density filter (NDF)
to decrease the intensity of the vortex so that it does not
saturate the CCD camera. The final images of the vortices
are recorded with a CCD camera and stored in a compu-
ter (PC2) for further processing. In Fig. 2, we show
the intensity distribution of the optical vortex obtained
from Eq. (2) and from experiment, i.e., the CCD camera.
We would like to make it clear that the aperture A is
being used just to select a particular diffracted order
from the SLM, not to diffract the vortex. We take care

that the selection does not introduce any diffraction ring
to the vortex, which can be seen from the experimental
intensity profiles of the vortices in Fig. 2.

Before proceeding to our main result, it is important
to realize that the FT of the vortex intensity can, in prin-
ciple, determine the order of the vortex as the number of
zeroes of LmðζÞ in Eq. (10) equals the order of the vortex.
This is most clearly seen in the contour plot of the follow-
ing quantity:

Gmðω1;ω2Þ ¼ log½1þ jFmðω1;ω2Þj�: ð13Þ

The zeros will appear as dark rings and thus the order of
the vortex will be equal to the number of dark rings in the
contour plot of Gmðω1;ω2Þ. The rationale behind plotting
Gm instead of Fm was to identify the zeros more clearly.

The fast-Fourier transform (FFT) of the measured
intensity distributions is carried out numerically using
Matlab. These images are processed in Matlab to reduce
the noise and adjust the brightness and contrast. In Fig. 3,
we show the contour plots of Gmðω1;ω2Þ for vortices of
different orders. The corresponding theoretical results
are obtained by using Eqs. (10) and (13). It is clearly seen
that the number of dark rings in each plot equals the
order of the corresponding vortex and the experimental
results are in excellent agreement with the theoretical
predictions. We mention parenthetically that for lower
order vortices, a contour plot of Gmðω1;ω2Þ will suffice
to determine the order of the vortex. For higher order
vortices, however, it will become difficult to see the rings
beyond a certain order because of the dampening effect
of the exponential factor in Eq. (10). This is why our
chosen method is based on the orthogonality property
of Laguerre polynomials rather than relying upon a con-
tour plot of Fm or Gm.

Fig. 2. Intensity distribution of optical vortices of orders
m ¼ 1 to 4 (from left to right): theoretical (top) and experimen-
tal (bottom).

Fig. 3. Distribution of Gmðω1;ω2Þ computed from the in-
tensity distributions of Fig. 2: theoretical (top) and experimen-
tal (bottom).
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Using orthogonal relations of Laguerre polynomials,
one can detect any order of the vortex. The results are
shown in Fig. 4. It shows that for an optical vortex of or-
der m, the normalized orthogonal integral has maximum
value when m ¼ n and lesser values for m ≠ n.
The sensitivity of this method can be easily established

in the present context. For example, note that the outer-
most dark ring for fourth order vortex is not so distinct in
Fig. 3 and thus it is not clear whether the vortex is of
order 3 or 4. The orthogonality integral, in contrast,
shows a clear peak for order m ¼ 4. In fact, our method
applies even for a vortex of order m ¼ 10, as shown in
the inset of Fig. 4.
We would like to point out that in [9], it is the FT of the

field that has been absolute squared and gives the dif-
fracted intensity, which is again Fourier transformed to
find the spatial frequency and order of the vortex. In our
case, it is the FT of the intensity of an undiffracted vortex.
This can be seen in our analytical treatment as well.
Furthermore, our method does not use any annular aper-
ture for diffraction. Therefore, the maximal topological
charge that can be measured is not limited by the width
of the annular aperture. As a demonstration, we have suc-
cessfully applied our method for a vortex of order as high
as m ¼ 10. Moreover, for a given vortex, the only optical
element one really requires is an NDF to reduce the in-
tensity of the vortex to avoid saturation of the CCD. Thus,
we have the least optics and the least aberrations.
In this Letter, we have outlined a technique to deter-

mine the order of a vortex based on the FT of its in-
tensity profile and the orthogonality of the Laguerre
polynomials. Since the phase information is lost in

the intensity record of a vortex, our method cannot,
however, determine the sign of its charge. At present, the
method works for on-axis, isotropic vortices embedded
in a Gaussian host. These limitations notwithstanding,
the strong point of this technique is its simplicity and no-
velty. Since the experimentally recorded vortices do not
have ideal Gaussian hosts, one experiences noise in the
experimentally determined Gmðω1;ω2Þ (see bottom row
of Fig. 3) and in Fig. 4, Cmn does not reduce to zero
for m ≠ n. However, it still shows peaks for m ¼ n and
is thus effective in determining the order of the vortex.
Moreover, our method is fast. It takes just a fraction
of a second (0.85 seconds on Pentium IV, 3:4GHz with
1:2GB RAM) to calculate Gmðω1;ω2Þ and a similar time
in finding the Cmn. A graphical user interface can be cre-
ated using a standard FFT routine for automating the
process. This will help to get the order of vortex in real
time. In conclusion, we have shown how complementary
space can provide us with the order of the vortex [17,18].
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a b s t r a c t

We make a source of entangled photons using spontaneous parametric down-conversion (SPDC) in a
non-linear crystal and study the spatial distribution of photon pairs obtained through the down-
conversion of different modes of light including higher order vortices. We observe that for the Gaussian
pump, the thickness of the SPDC ring varies linearly with the radius of pump beam. However, in case of
vortex carrying beams, two concentric SPDC rings are formed for beams above a critical radius. The full
width at half maximum (FWHM) of SPDC rings increase with increase in the order of optical vortex
beams. The presence of a critical beamwidth for the vortices as well as the observed FWHM of the SPDC
rings are supported with our numerical results.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The process of spontaneous parametric down-conversion (SPDC)
has been used extensively for the generation of entangled photon
pairs in many recent experiments. The purpose of these experi-
ments range from Bell's inequality violation [1] to the implemen-
tation of quantum information protocols [2]. In the process of
SPDC, a laser pump beam photon interacts with second-order
nonlinear χð2Þ crystal, gets annihilated and gives rise to the
emission of two photons. These two photons are generated
simultaneously and follow the laws of energy and momentum
conservation. The phenomena of SPDC was first observed by
Burnham and Weinberg [3] and theoretically studied by Hong
and Mandel [4].

The photon pairs generated through SPDC are entangled in the
spatial degrees of freedom i.e. position-momentum entanglement
[5] as well as entanglement in orbital angular momentum (OAM)
[6]. This OAM entanglement can be described by a multi-
dimensional Hilbert space [7–9], compared to the case of polariza-
tion entanglement which is limited to two dimensions only [10].
These photon pairs have been found to be entangled in time-bin
also [11].

Optical vortices (OV) carry a dark core in a bright background
[12]. If there is a phase change of 2πl around the point of
darkness, it is called a vortex of topological charge l, where l is
an integer. The sense of rotation determines the sign of topolo-
gical charge of the vortex. A beam with such a phase structure
has a helical wavefront and, therefore, carries an OAM of lℏ
per photon [13] for a vortex of topological charge l. These beams
have found a variety of applications, such as optical trapping of
atoms [14], optical tweezing and spanning [15], optical commu-
nication [16], imaging [17], and quantum information and com-
putation [8].

For any application of entangled photons generated through
the SPDC, it is important to know the spatial distribution of
photons arising from the SPDC process. For the Gaussian pump
beam, the spatial distribution of SPDC photons has already been
reported [18–21]. However, for photons generated by pumping
with higher order vortices, it has not been reported so far.
Although, the phase-matching by optical vortex pump beam has
been studied theoretically by Pittman et al. [22].

With the availability of low noise and high quantum-efficiency
electron-multiplying CCDs (EMCCD), the experiments with low
photon level imaging have become possible [23]. To observe the
shape of the SPDC ring formed by the Gaussian as well as optical
vortex beams, we have carried out experimental studies using
EMCCD. The observed experimental results are supported with our
numerical results. The theory regarding the SPDC has been
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discussed in Section 2, experiments performed in Section 3 and
results in Section 4. Finally we conclude in Section 5.

2. Theory

The intensity distribution of an optical vortex of order l can be
written as

Ilðx; yÞ ¼ I0ðx2þy2Þjlj exp �x2þy2

s2

� �
; ð1Þ

where s is the beam radius of host beam, I0 is the maximum
intensity in the bright ring. Clearly, Eq. (1) shows that the Gaussian
beam is a special case of optical vortex with l¼0.

The nonlinear effects in crystals have been exploited in a
number of applications such as frequency doubling, optical para-
metric oscillation and the SPDC [24]. When a nonlinear crystal, for
example Beta-Barium Borate (BBO), with non-zero second order
electric susceptibility (χð2Þ) is pumped by an intense laser, a pump
photon (frequency ωp and wave-vector Kp) splits into a photon
pair called signal and idler. The energy and momentum conserva-
tion provides us with

ℏωp ¼ ℏωsþℏωi; ð2Þ

Kp ¼KsþKi; ð3Þ
where suffices s and i denote signal and idler photons respectively.
The phase matching is determined by the frequency of pump laser
beam and the orientation of crystal optic axis with respect to the
pump. Eq. (2) can be simplified as

1
λp

¼ 1
λs
þ1
λi
; ð4Þ

where λp, λs and λi denote wavelengths of pump, signal and idler
photons respectively. We have considered e-o þ o type
(e: extraordinary, o: ordinary) interaction. Hence, Eq. (3) can be
written as

2πneðλp;ΘÞ
λp

¼ 2πnoðλsÞ
λs

cos ðϕsÞþ
2πnoðλiÞ

λi
cos ðϕiÞ ð5Þ

2πnoðλsÞ
λs

sin ðϕsÞ ¼
2πnoðλiÞ

λi
sin ðϕiÞ ð6Þ

where ϕs is the angle between Kp and Ks, ϕi is the angle between
Kp and Ki and Θ is the direction of optic axis with respect to Kp.
neðλp;ΘÞ and noðλs;iÞ are the extraordinary and ordinary refractive
indices for respective wavelengths. They are obtained from the Sell-
meier equations [24] and for the BBO crystal used in the experi-
ment can be written as

noðλÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:7359þ 0:01878

λ2�0:01822
�0:01354λ2

s
ð7Þ

neðλÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:3753þ 0:01224

λ2�0:01667
�0:01516λ2

s
ð8Þ

neðλ;ΘÞ ¼ noðλÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ tan ðΘÞ2

1þ noðλÞ
neðλÞ

� tan ðΘÞ
� �2

vuuuut ð9Þ

where λ is in μm.
In Fig. 1, we have given a sketch of the SPDC photon pair

generation in non-collinear type-I SPDC process. C denotes the
crystal optic axis. The angular separation between Kp and Ks is due
to energy and phase-matching conditions (Eqs. (5) and (6))
required for the SPDC process. We have also shown generation
of a pair of signal and idler photons and formation of the ring

centered around Kp. In the present case, we have assumed that the
pump beam has same horizontal and vertical widths.

We have used a negative-uniaxial BBO crystal with non-linear
coefficient deff ¼ 2:00 pm=V, thickness 5 mm and optic axis
Θ¼ 29:71. The pump beam with wavelength λp¼405 nm is inci-
dent normal to the crystal. We plan to study the degenerate or
near-degenerate case in which the signal and idler photons have
almost same wavelength λs;i ¼ 81075 nm. The wavelength for
down-converted photons is chosen from the interference filters
(IF) used in the experiment. With these experimental parameters,
Eqs. (5) and (6) have been solved to determine ϕs and ϕi

by Runge–Kutta (RK) method for a particular value of λs and λi
satisfied by Eq. (4).

Numerical simulations have been performed by first consider-
ing a particular value of λs and λi. Angles ϕs and ϕi are evaluated
using RK method for chosen λs, λi and experimental parameters.
The signal and idler photons are generated in cones having half-
opening angle ϕs and ϕi as represented in Fig. 1 and appear as two
rings on the detector plane. The center of these rings is concentric
with the pump beam. Now, consider a single point on the intensity
distribution of pump falling on the crystal. The stream of single
photons passing through the chosen point generates SPDC rings
whose radius depends on the distance between crystal and
EMCCD. The intensity of the rings is proportional to the intensity
at the selected point. The rings corresponding to signal and idler
photons are then added to obtain the SPDC ring for the pump
photons. In a similar way, rings for all other points of pump
intensity distribution are obtained and added. The obtained spatial

Fig. 1. Sketch diagram for the SPDC ring emission after passing the pump beam
through the BBO crystal. Light and dark gray levels represent generation of idler
and signal photon SPDC rings respectively.

BBO

IF1

HWP

EMCCD
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L2
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PIF2

PC1
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Fig. 2. Experimental setup for the study of SPDC photon pair distribution with an
optical vortex as pump beam.
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distribution will depend on the shape and size of the pump beam.
This will provide the SPDC ring for λs and λi. The contributions due to
whole wave-length range (81075 nm) allowed by the IF have been
considered to obtain the resultant spatial distribution of SPDC ring.

3. Experimental setup

The experimental set-up to study the SPDC photon distribution
generated by the Gaussian as well as the optical vortex pump

beam is shown in Fig. 2. The astigmatism of the diode laser
(RGBLase 405 nm, 50 mW) has been removed by using a combina-
tion of lenses. The collimated beam is then sent to a spatial light
modulator (SLM) (Hamamatsu LCOS SLM X-10468-05), which is
interfaced with computer (PC1). Blazed holograms have been used
to generate OV with higher power in the first diffraction order [25].
The first diffracted order is selected with an aperture A3. Polarizer
(P) and half-wave plate (HWP) are used to select and rotate
the polarization of pump beam respectively. BBO crystal
(6�6�5 mm3) with optic axis at 29.71 is used for the parametric
down-conversion. As the size of OV beams of higher order becomes
bigger than the size of the crystal, we have used a lens L1 (f¼15 cm)
to loosely focus the vortex beam on the crystal. The BBO crystal is

Fig. 3. Experimental (left) and numerical (right) are Gaussian pump and their corresponding SPDC rings recorded at distances 150 cm, 250 cm and 350 cm from the SLM.

Fig. 4. Variation of sring with spump. The curve shows the linear variation in
thickness of the SPDC ring with the beam-width of Gaussian pump beam.

Optical Vortex
Pump Intensity

Generated SPDC
Intensity

Generated SPDC
Intensity

Fig. 5. Schematic diagram for the generation of two rings when pumped with
optical vortex beams. (For interpretation of the references to color in this figure
caption, the reader is referred to the web version of this article.)
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mounted on a rotation stage, so that phase-matching angle can be
achieved by rotating the crystal along its optic axis. After
achieving phase-matching, the crystal remains unaltered for
all the observations.

When phase-matched, the output cone makes half angle of
� 41 with pump direction Kp. The BBO crystal is kept in such a
way that it can down-convert only vertically polarized light.
Therefore, when angle of the HWP is 01 (451), then we will get

Fig. 6. Experimental (left) and numerical (right) SPDC rings due to an optical vortex pump beam for orders 0, 1, 3 and 5. Spot in the center of experimental images
corresponds to the unfiltered pump beam.
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(not get) down-converted photons. Image of the down-converted
ring is recorded by Andor iXon3 EMCCD camera using an imaging
lens of focal length 5 cm. We have used the EMCCD in background
correction mode. In this mode, background is obtained when λ/2
plate is at 451 and signal is obtained when λ/2 plate is at 01. The
central bright spot in experimental observations show the unfil-
tered pump beam. This could not be subtracted while subtracting
the background due to shift in its position during the rotation of
HWP from 451 to 01. The interference filters IF1 and IF2 pass only
the down-converted photons of wave-length 81075 nm and
block the pump photons of wave-length 405 nm. Two interference
filters have been used to reduce the pump photons as much as
possible.

The power of 405 nm laser falling on the BBO crystal was
2 mW. EMCCD was operated at �80 1C. Further, we have taken
images by accumulating 50 frames exposure time of 1 s. We have
used the complete 512�512 pixels of the camera. The readout
rate was set at 1 MHz 16-bit. Since the observed SPDC rings
were sufficiently intense, we have not enabled the electron-
multiplication gain.

The size of pump beam has been measured by imaging the
beam at the position of crystal with Point-Grey (FL2-20S4C) CCD
camera. The images obtained from the CCD camera are read in
Matlab for further processing. The 2-D curve fitting is used to
obtain the best-fit intensity distribution obtained in Eq. (1) that
provides us with beam-width of the pump (spump). For our
numerical calculations, we have used the best-fit value of spump

obtained experimentally.

4. Result and discussion

The objective of the experimental work is to characterize the
spatial distribution of degenerate SPDC photon pairs produced by
higher order vortices and verify the results obtained with numer-
ical calculations. Before pumping the nonlinear crystal with high
order vortices, we study the distribution of SPDC photons gener-
ated by the Gaussian beam of different widths.

To make a comparison of spatial distribution of down-
converted photons due to the Gaussian and the vortex beams,
the Gaussian beam is generated using the SLM by transferring the
blazed grating hologram of topological charge 0 to the SLM.
To vary the width of the Gaussian beam, we have used the beam
at different propagation distances from the SLM (150–350 cm in
the steps of 50 cm s). As the size of beam was lower than the
aperture of the crystal at 350 cm from the SLM, lens (L1) was not
used. The experimentally and numerically obtained SPDC rings are
shown in Fig. 3. We observe an increase in thickness of the SPDC
ring as the pump beam size increases.

To obtain a quantitative variation of SPDC ring, we use the line
profile through the SPDC rings along their center. Numerically,
we have observed that the SPDC ring fits with a Gaussian function.
To calculate the width of SPDC ring (sring), the profiles obtained
are fitted with a Gaussian function as in Eq. (1) for l¼0. The
variation of thickness of the SPDC rings with the size of the pump
beam is shown in Fig. 4. Numerical and experimental results are
found to be in good agreement with each other. We find that our
results are similar to the one obtained earlier [19].

Fig. 5 shows the generation of two rings when the BBO crystal
is pumped with OV. The blue and red lines show the intensity
distribution of the pump and the SPDC photons. As the size of
optical vortex goes beyond the aperture of BBO crystal, we have
used lens (L1) to loosely focus it. It has been observed that the
SPDC ring due to optical vortex forms two concentric bright rings
with non-zero intensity in middle. The SPDC rings due to optical

vortices are shown in Fig. 6. From these images, we can observe
the increase in thickness of the SPDC ring.

With the increase in topological charge of vortices, the full
width at half maximum (FWHM) of the ring increases. The
separation between the inner and the outer ring also increases
with the increase in order as shown in Fig. 7. However, we can
observe the asymmetry caused due to the crystal length. This
asymmetry arises due to the longitudinal phase matching and
depends on nonlinear crystal properties of the crystal, including
crystal length [19]. This is one of the factors which affects the
selection of entangled photons and consequently the total coin-
cidence counts.

We have also observed that if spump is lower than a particular
value for the OV of topological charge l, then there will not be any
change in FWHM. This variation has been studied by varying spump

and keeping the order l fixed. We have observed that the FWHM of
the ring starts increasing only when spump is more than a
particular beam size, called critical beam size. The variation of
FWHM of SPDC ring for order l¼2 with spump is shown in Fig. 8.
In case of OV, the numerical and experimental results are in good
agreement with each other.

5. Conclusion

The spatial distribution of entangled photons generated by
non-linear crystal is of importance in the field of quantum information
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Fig. 7. Variation of FWHM of SPDC ring for optical vortex pump beams with the
order of optical vortices.
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Fig. 8. Variation of FWHM of SPDC ring for optical vortex pump beam of order l¼2
with beam width of host beam.
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and quantum computation. We have observed a linear increase in
thickness of the SPDC ring with beam radius of the pump.

We have also observed the formation of two concentric SPDC
rings if the crystal is pumped with optical vortex beams. One of
the reasons for generation of two rings is the dark core of optical
vortex i.e. specific intensity distribution of the vortex. The numer-
ical and experimental widths of the SPDC ring are in good
agreement with each other. The formation of two rings takes
place when the pump beam size is more than the critical beam
size. These observations would be useful in the experiments to
maximize the coincidence counts. Physically, the broadened SPDC
is a consequence of the greater spread of pump transverse wave-
vectors, resulting in phase matching for a greater spread of signal
and idler transverse wave-vectors.
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Abstract
We theoretically explore the annihilation of vortex dipoles, generated when an obstacle moves
through an oblate Bose–Einstein condensate, and examine the energetics of the annihilation
event. We show that the grey soliton, which results from the vortex dipole annihilation, is
lower in energy than the vortex dipole. We also investigate the annihilation events numerically
and observe that annihilation occurs only when the vortex dipole overtakes the obstacle and
comes closer than the coherence length. Furthermore, we find that noise reduces the
probability of annihilation events. This may explain the lack of annihilation events in
experimental realizations.

(Some figures may appear in colour only in the online journal)

1. Introduction

One of the important developments in recent experiments
on atomic Bose–Einstein condensates (BECs) is the creation
of vortices and the study of their dynamics [1, 2]. Equally
important is the recent experimental observation of a vortex
dipole, which consists of a vortex–antivortex pair, when an
obstacle moves through a BEC [3], and the observation of
vortex dipoles produced through phase imprinting [4, 5]. In
superfluids, the vortices carry quantized angular momenta and
are the topological defects, which often serve as the conclusive
evidence of superfluidity. In a vortex dipole, vortices of
opposite circulation cancel each other’s angular momentum
and thus carry only linear momentum. This is the cause
of several exotic phenomena such as leap frogging, snake
instability [6], orbital motion [7], trapping [8] and others. The
effects of vortices are widespread in classical fluid flow [9]
and optical manipulation [10]. A good description of vortices
in superfluids is given in [11] and the review articles [12, 13].
A detailed discussion of vortices is given in [14].

Among the important phenomena associated with the
BEC, the creation, dynamics and annihilation of vortex dipoles
carry useful information associated with the system. Several
methods have been suggested to nucleate vortices and recently,
nucleation of the vortices has been observed experimentally
by passing a Gaussian obstacle through the BEC with a speed

greater than some critical speed [3]. The trajectories of these
vortex dipoles are ring-structured as described in [15, 16]. The
annihilation of vortices or the vortex dipole in the BEC has
been mentioned in a number of theoretical studies [17–19].
However, there is the lack of extensive study on this topic
and more importantly, no definite signatures of vortex dipole
annihilation were observed in the experiment [3]. The study
of vortex dipole annihilation will shed light on the process
which influences the separation between the vortex and
antivortex, as well as the conditions for annihilation along
with other phenomena arising from the dynamics of vortex
dipoles.

In this work, we present analytical as well as numerical
results related to vortex dipole annihilation for an oblate
BEC at zero temperature. The results are obtained using the
Gross–Pitaevskii (GP) equation. In section 2 of this paper,
we provide a brief description of the two-dimensional (2D)
GP equation and vortex dipole solutions. Condensates with a
diametric vortex dipole and a grey soliton are studied, and this
is described in section 3. Section 3 contains studies done in the
strong as well as weak interacting systems. The annihilation
of vortex dipoles is analysed from the energies obtained from
the analytical calculations. The numerical results, confirming
the analytic results, are discussed in section 4, and we then
conclude.

0953-4075/13/125302+08$33.00 1 © 2013 IOP Publishing Ltd Printed in the UK & the USA
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2. Superfluid vortex dipole and its generation

In the mean-field approximation, the dynamics of a dilute BEC
is very well described by the GP equation:

i�∂t�(r, t) = [H + U |�(r, t)|2]�(r, t), (1)

where H, U and � are the single-particle Hamiltonian,
interaction strength and order parameter of the condensate,
respectively. The order parameter, �, is normalized to N, the
total number of atoms in the condensate. In the present case, the
single-particle Hamiltonian H consists of the kinetic energy
operator, an axis-symmetric harmonic trapping potential and
a Gaussian obstacle potential, that is,

H = − �2

2m
∇2 + mω2

2
(x2 + α2y2 + β2z2) + Vobs(x, y, t), (2)

where α and β are the anisotropies along the y- and z-axes,
respectively, m is the mass of particles used in the condensate,
ω is the trapping potential frequency along the x-axis and
Vobs(x, y, t) is the repulsive Gaussian obstacle potential.
Experimentally, a blue-detuned laser beam is used to generate
the Vobs(x, y, t), and it can be written as

Vobs(x, y, t) = V0(t) exp

[
− 2

(x − vt)2 + y2

w2
0

]
, (3)

where V0(t) is the potential at the centre of the Gaussian
obstacle at time t, v is the velocity of the obstacle along the
x-axis, and w0 is the radius of the repulsive obstacle potential.
In this work, we consider the motion of the obstacle along
the x-axis only. Defining the oscillator length of the trapping
potential as aosc = √

�/(mω) and considering �ω as the unit of
energy, we can then rewrite the equations in a dimensionless
form with the transformations r̃ = r/aosc, t̃ = tω, and the
transformed order parameter assumes the form

φ(r̃, t̃) =
√

a3
osc

N
�(r, t). (4)

For the sake of notational simplicity, hereafter, we denote the
scaled quantities without the tilde in the rest of the paper.
In a pancake-shaped trap, α = 1 and β � 1, and the order
parameter can then be written as

φ(r, t) = ψ(x, y, t)ζ (z) exp(−iβt/2), (5)

where ζ (z) = (β/(2π))1/4 exp(−βz2/4). Equation (1) is then
reduced to the 2D form[

− 1

2

(
∂2

∂x2
+ ∂2

∂y2

)
+ x2 + y2

2
+ Vobs(x, y, t)

�ω

+ u|ψ(r, t)|2 − i
∂

∂t

]
ψ(r, t) = 0, (6)

where u = 2aN
√

2πβ/aosc, with a being the s-wave scattering
length, is the modified interaction strength. In this work, we
consider a condensate consisting of 87Rb atoms in the F = 1,
mF = −1 state, with a = 99a0 [20]. We have neglected
a constant term corresponding to the energy along the axial
direction as it only shifts the energies and chemical potentials
by a constant without affecting the dynamics. We solve this
equation numerically using the Crank–Nicolson method [21].

There are several theoretical and experimental proposals
to generate vortices in non-rotating traps. These include

stirring of the condensate using a blue-detuned laser or
several laser beams [3, 15], an adiabatic passage [22], Raman
transitions in binary condensate systems [23], laser beam
vortex guiding [24] and phase imprinting [5]. Among these
methods, the easiest way to nucleate vortex dipoles is by
stirring a BEC with a blue-detuned laser beam. When the
velocity of the laser beam exceeds a critical velocity, vortex–
antivortex pairs are released from the localized dip in the
number density created due to the laser beam. These vortex
dipoles then move through the BEC and exhibit various
interesting dynamics [4, 15, 25]. The critical velocity depends
on the number density, width and intensity of the laser beam
and the frequency of the trapping potential. This nucleation
process exhibits a high degree of coherence and stability,
allowing us to map out the annihilation of the dipoles. In
an axis-symmetric trap, a vortex dipole is a metastable state of
superfluid flow with a long lifetime.

3. Condensates with a vortex dipole or grey soliton

To analyse the vortex dipole annihilation, we consider a
model system where the vortex–antivortex dipole pair and
grey soliton, which may be generated when the annihilation
of vortex dipole occurs, are static. However, we vary the
distance of separation and examine the energy of the total
system. The present system can be studied under two
regimes: a strongly interacting system and a weakly interacting
system. The strongly interacting system is studied considering
φ with the Thomas–Fermi (TF) approximation, and the
weakly interacting system is studied considering the Gaussian
form of φ.

3.1. Strongly interacting system with TF approximation

For the Na/aosc � 1 case, we use the TF approximation to
determine the steady-state density profile and energy of the
condensate. To begin with, we consider a condensate with a
vortex dipole and later with a grey soliton.

3.1.1. Diametric vortex dipole. We consider a condensate
consisting of N atoms in a purely harmonic potential

V (x, y) = x2 + y2

2
. (7)

Consider that the condensate has a vortex dipole, consisting
of a vortex and an antivortex located at (0, v2) and (0,−v2),
respectively. The cores of the vortex and antivortex can be
approximated as circular regions centred around (0, v2) and
(0,−v2) and with radii equal to the coherence length ξ . At the
cores, we consider the density to be equal to zero. Hence, we
use the TF approximation and adopt the following piecewise
ansatz for the density of the condensate:

n(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

0 for x2 + y2 > R2

0 for [x2 + (y ± v2)
2] � ξ 2

[
μ−V (x,y)

u

]
for

{
x2 + y2 � R2 and
[x2 + (y ± v2)

2] > ξ 2,

(8)

2
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where R = √
2μ is the spatial extent of the condensate in the

TF approximation, and ξ = 1/R is the coherence length at the
centre of the trap. Normalizing this ansatz yields

π
(
2 − 4R4 + R8 + 4R2v2

2

)
4R4u

= 1. (9)

This equation defines the radius of the condensate. The TF
ansatz can be used to calculate the total potential energy
arising from the regions outside the cores of the vortices and is
given as

E0 = π
[
1 − 3R8 + R12 + 3R2v2

2

(
2 + R2v2

2

)]
12R6u

. (10)

The main energy contribution from the vortex dipole is the
kinetic energy due to the velocity field associated with it. This
energy can be approximated as [26]

EKE = R2

u
Log

(
2v2

ξ

)
. (11)

This relation is valid when ξ � v2 � R and in this work,
ξ ∼ 0.06 and R = 15.5aosc. In order to estimate the energy
contributions from the cores of the vortices, we approximate
the density within the cores as

n(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

2n0[x2 + (y − v2)
2]

x2 + (y − v2)2 + ξ 2
for [x2 + (y − v2)

2] < ξ 2

2n0[x2 + (y + v2)
2]

x2 + (y + v2)2 + ξ 2
for [x2 + (y + v2)

2] < ξ 2,

(12)

where n0 is the average TF density on the circle x2 + (y ±
v2)

2 = ξ 2. Assuming that the normalization is still defined
by equation (9), equation (12) can be used to calculate energy
contribution from the core region. The energy within the core
consists of

Eq
c = 6πn0

8
, (13)

E tr
c = πξ 4(Log[4] − 1)n0, (14)

E int
c = 2πuξ 2(3 − Log[16])n2

0, (15)

where Eq
c , E tr

c and E int
c are the energies arising from the

quantum pressure, trapping potential and interaction within
the core region, respectively. Thus, the total energy of the
condensate with a vortex dipole is

Evd = E0 + EKE + Eq
c + E tr

c + E int
c . (16)

The variation of Evd as a function of v2 is shown in figure 1.

3.1.2. Grey soliton. For the grey soliton extending from
(0, −v2) to (0, v2) along the y-axis, we use the following
piecewise ansatz in the TF approximation:

n(x, y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 for x2 + y2 > R2,

[
μ−V (x,y)

u

]
for

⎧⎨
⎩

x2 + y2 � R2,

|x| > ξ,

|y| > v2,[
μ−V (x,y)

u

]
2x2

x2+ξ 2 for |x| � ξ and |y| � v2.

(17)
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Figure 1. Comparing the energy of the vortex dipole and band
soliton under TF approximations. The crossover in energy can be
seen through the ansatz chosen and the analytical expressions
obtained. The inset shows the variation of energy obtained by
solving the GP equation numerically. The difference in the value of
v2 for the crossover in energy is due to the too-ideal wavefunction
considered for analytical calculations.

And the normalization condition leads to the following
constraint on the radius of the condensate:

1

12R3u

[
3πR7 + 4v2

(
10 + 6R4

− 3π(1 + R4)(−2 + π)R2v2
2

)] = 1. (18)

For the grey soliton, other than the quantum pressure, there is
no need to separate out the energy associated with the trapping
and interaction potential within the soliton. So, the total energy
of the system is

Es = E0 + Eq
c , (19)

where E0 is the potential energy associated with the system
and Eq

c is the energy arising from the quantum pressure. These
are given as

E0 =
∫∫ [

V (x, y)n(x, y) + u

2
n(x, y)2

]
dx dy,

Eq
c = 1

2

∫ ξ

−ξ

[ ∫ v2

−v2

|∇xy

√
n(x, y)|2dy

]
dx. (20)

From the expression n(x, y) in equation (17), we obtained

E0 = 1

180R5u

{
15πR11 + 3[236 − 75π + 20(19 − 6π)R4

+ 15(8 − 3π)R8]v2 + 10R2[−28 + 9π

+ 6(−3 + π)R4]v3
2 − 9(−4 + π)R4v5

2

}
(21)

Eq
c = − (8 + 3π)v2(−3R2 + 3ξ 2 + v2

2 )

48uξ
. (22)

Interestingly, Eq
c has a 1/ξ dependence, which is to be

expected, as smaller ξ implies a larger density variation and
translates to higher quantum pressure.

For illustration, the vortex dipole and grey soliton inside
the condensate are shown in figure 2. The vortex dipole is

3
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Figure 2. Band soliton (top) and vortex dipole (bottom) with the
density profile (left) and phase profile (right) obtained numerically.

located at (1, 0) and (−1, 0), while the grey soliton extends
from (−1, 0) to (1, 0) along the x-axis. In the case of the vortex
dipole, the phase varies from 0 to 2π , if one goes around the
point of singularity, whereas in the case of the grey soliton,
there is a phase discontinuity of π along the line forming
the soliton. The number density at the point of singularity is
zero. In figure 1, Es is plotted as a function of v2 and the
values vary from 0.05 aosc to 2.0 aosc. From the figure, it is
evident that for v2 � 0.2, the value of Evd is higher than Es and
hence, the grey soliton is the energetically favoured state of the
system. However, when v2 > 0.2, the vortex dipole state is the
energetically favourable state. This analytical result provides
a compelling reason to study the annihilation of vortex dipoles
and formation of grey solitons.

3.2. Weakly interacting system with Gaussian approximation

In the Na/aosc � 1 regime, a simplistic model of a vortex
dipole in the BEC of trapped dilute atomic gases can
be considered as the superposition of harmonic oscillator
eigenstates. The minimalist wavefunction which supports a
vortex and an antivortex at the coordinates (−a/c,−√

b/d)

and (−a/c,
√

b/d) is

ψ(x, y, t) = e−iμt (ia − b + ixc + dy2) e−(x2+y2)/ f , (23)

where a, b, c, d and f are positive variational parameters and
μ is the chemical potential of the system. The wavefunction
is a superposition of the scaled ground state and the first and
second excited states of a harmonic oscillator along the x-
and y-axes, respectively. The wavefunction is ideal for weakly
interacting condensates.

We have considered that the vortex and antivortex are
located on the diameter of the condensate. Without loss of
generality, we consider the diameter as coinciding with the
y-axis, which is equivalent to a = 0 in equation (23). Such
an assumption does not modify qualitative descriptions, but
expressions are far less complicated. The wavefunction is then

ψ(x, y, t) = e−iμt[−b + icx + dy2] e−(x2+y2)/ f . (24)

The nontrivial phase of the wavefunction θ is discontinuous
along the x = 0 line for −√

b/d � y �
√

b/d. Across the
discontinuity, there is a phase change from −π to π as we
traverse along the x-axis from 0− to 0+, and this phase variation
is shown in figure 3. So, there is a discontinuity across the

(a)

(b)

π

−π
Figure 3. Phase pattern resulting due to a (a) vortex dipole and
(b) grey soliton.

y-axis and this is the typical phase pattern associated
with vortex dipoles. For the present case, the ground state
wavefunction is

ψg(x, y, t) = −be−iμte−(x2+y2 )/ f , (25)

and from the normalization condition
∫ ∞
−∞

∫ ∞
−∞ |ψg|2 dx dy =

1, we obtain the constraint equation

b2 = 2

f π
. (26)

For general considerations, rewrite the additional term as

δψ(x, y, t) = e−iμt (icx + dy2) e−(x2+y2)/ f , (27)

so that the total wavefunction ψ = ψg + δψ , where δψ

represents an elementary excitation of the condensate. We can
calculate the total energy of the system, without the obstacle
potential, as

Evd =
∫ ∞

−∞

∫ ∞

∞

[
1

2
|∇⊥ψ(x, y)|2 + x2 + y2

2
|ψ(x, y)|2

+ u|ψ(x, y)|4
]

dx dy. (28)

This is the energy of the condensate with a vortex dipole with
the assumption that it is a weakly interacting system. Energy
without the vortex may be calculated trivially [11]. In general,
the energy added to the system due to the vortex dipole is
not large compared to the total, and for obvious reasons, the
angular momentum of the condensate is still zero.

A slight modification to the wavefunction can describe a
solitonic solution along the y-axis. The form of the modified
wavefunction is

ψ(x, y) = [b + icx + dy2] e−(x2+y2 )/ f , (29)

where except for the change in the sign of b, all the terms
remain unaltered as in equation (23). It is a grey soliton as the
density n ∝ (b + dy2)2 + (cx)2 has a dip but is different from
zero. The phase varies smoothly from −π/2 to π/2 along the
normal to the line which connects (0,−√

b/d) and (0,
√

b/d).
This phase variation is shown in figure 3(b).

Using the wavefunction in equation (29), we can then
evaluate the total energy of the system Egs and calculate the
energy difference between two possible states of the system:

�E = Evd − Egs, (30)

4
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which after evaluation is

�E = bd f 2π

256
[64b2u + 15d2 f 2u + 8 f (8 + c2u)]. (31)

The most general solution is that when all the constants are
positive, then �E > 0 and the grey soliton is lower in energy.
This shows that when the vortex and antivortex collide, it
is energetically favourable for them to decay into the grey
soliton. As discussed in the results section, this is confirmed
in the numerical calculations.

The analysis so far is for an ideal system at zero
temperature, where we have neglected the quantum and
thermal fluctuations and perturbations from imperfections. In
addition, there is dissipation from three-body collision losses
in the condensates of dilute atomic gases.

4. Numerical results

For the numerical computation, we choose 87Rb with N =
2 × 106 atoms. The trapping potential and obstacle laser
potential parameters are similar to those considered in [3],
i.e. ω/(2π) = 8 Hz, β = 11.25, V0(0) = 93.0 �ω and w0 =
10 μm. To nucleate the vortices on the edges of the condensate,
the obstacle potential Vobs is initially located at (−12.5aosc, 0)
and moves along the x direction at a constant velocity with
decreasing intensity, until Vobs vanishes at (5.18aosc, 0).

4.1. Vortex dipole nucleation

We study the nucleation of vortices by Vobs with the translation
speed v ranging from 80 to 200 μm s−1. Vortices are not
nucleated when the speed is 80 μm s−1. However, a vortex–
antivortex pair or a vortex dipole is nucleated when the speed
is in the range of 90 μm s−1 < v < 140 μm s−1. Increasing
the speed of the obstacle generates two pairs of vortex dipoles
when 140 μm s−1 � v < 160 μm s−1, and more than two
pairs when v � 160 μm s−1. In other words, the number of
vortex dipoles created can be controlled with the speed of the
obstacle. The creation of vortex dipoles above a critical speed
vc is natural as the vortex nucleation must satisfy the Landau
criterion [27]. The density and phase of the condensate after
the nucleation of the vortex dipole for v = 120 μm s−1 are
shown in figure 4. The figure clearly shows the nucleation
dynamics of the vortex dipoles.

From numerical calculations, we have determined vc ≈
90 μm s−1. This is, however, less than the local acoustic
velocity of the medium s = √

nU/m, which depends on
the local condensate density. This also explains the reason
for the predominant vortex dipole nucleation around the edge
of the condensate where n is lower and s is accordingly lower.

4.2. Vortex dipole annihilation

To determine the energetically preferred state of the system,
we examine the energy of the condensate with the vortex dipole
and grey soliton as a function of the separation v2. The result
is shown as the inset plot in figure 1. As in the TF calculations,
the vortex dipole is the stable solution for larger v2, but for
v2 < 0.5aosc, a grey soliton is the stable solution. However,
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Figure 4. A vortex dipole is nucleated when the obstacle potential
traverses the condensate at a speed of 120 μm s−1. The vortex
dipole, however, passes through and overtakes the obstacle. Later, as
seen in (e), the vortex dipole annihilates and generates a grey
soliton. The figures in the left panel show the density distribution
and those on the right show the phase pattern of the condensate.
From top to bottom, t = 2.9, 3.1, 3.3 and 3.5, respectively.

in the numerical results, the critical value of v2 at which the
vortex soliton overtakes the grey soliton as the stable solution
is higher than the TF values. This may be an account of the
piecewise nature of the TF ansatz.

It is observed that the vortex dipole annihilation is
critically dependent on the initial conditions of the nucleation,
in particular, the vortex–antivortex separation, v2. The
annihilation occurs when the vortex dipole is generated with
v2 < 0.5aosc, which is consistent with the analytical results
and solutions of the time-independent GP equation. The initial
v2 is, however, dependent on the velocity v of the obstacle
potential. For this reason, the annihilation events are observed
only for a specific range of v. As an example, the annihilation
event when v is 120 μm s−1 is shown in figure 4. In figure 4,
we can notice the density minima arising from the annihilation
and propagating away from the obstacle potential.

A reliable and qualitative way to describe the occurrence
of annihilation could be achieved by observing the density
at the cores of the vortex and antivortex which form the
dipole. For the vortex, the matter density at the core when
v is 120 μm s−1 is shown in figure 5. In the plot, at time
≈3.19 (scaled units), the core density starts increasing. This
is because the core starts to fill in with the atoms from around
the vortex after the annihilation. This filling process may not
complete till it reaches the edge of the condensate and gets
reflected inside the condensate.

After the annihilation of the vortex–antivortex dipole pair,
a grey soliton gets generated. We can clearly observe the
propagation of this soliton in figure 6. The speed of propagation
is 2000 μm s−1, which is similar to the speed of sound in a
condensate. During the propagation, the number density on
the location of the soliton increases, which is clearly visible
from figure 6 as well as from figure 5. To estimate the energy
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Figure 5. Density variation at the core of the vortex with time. After
the vortex dipole annihilation, the density increases till it reaches the
bulk value. The values correspond to the obstacle speed of
120 μm s−1. After annihilation, the number density has been
considered from the location of minimum density. The x-axis
denotes the time elapsed from the starting of the obstacle at
(−12.5aosc, 0).
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Figure 6. The propagation of the grey soliton after the annihilation
of the vortex dipole. The higher the value, the higher is the number
density dip at that point. From (a) to (c), t = 3.2, 3.4 and 3.6,
respectively.

of the grey soliton, we have obtained the stationary state with
the same position of vortex dipoles and the obstacle potential.
The energy difference between the stationary and the dynamic
state will provide us with the energy of the grey soliton, as
discussed in [28]. The energy released due to the annihilation
is 0.004 �ω and is similar to the energy difference observed in
figure 1, obtained from the TF approximation. We have also
observed that this soliton gets reflected back and forth from
the edge of the condensate. This reflection is similar to the
reflection of any pulse from the circular edges.

It is to be mentioned that for the parameters considered
in this work, the speed of sound is 2190 μm s−1 and the
coherence length of the system is ∼0.229 μm. These are
in agreement with the minimum separation between the

(a)

y
(a

o
sc
)

2

0

−2

(b)

(c)2

0

−2

(d)

(e)2

0

−2

(f)

(g)

−12.5 −10 −7.5 −5 −2.5

2

0

−2

(h)

−12.5 −10 −7.5 −5 −2.5

0 max

x (aosc)

0 2π

x (aosc)

Figure 7. A vortex dipole is nucleated as the obstacle potential
traverses the BEC with a speed of 160 μm s−1. The figures in the
left panel show the density with time, where time progresses from
top to bottom. Figures in the right panel show the phase pattern of
the condensate. From top to bottom, t = 1.6, 1.8, 2.0 and 4.2,
respectively.

vortex and antivortex observed in the analytical work. The
energy gap for the vortex dipole and grey soliton of the
same size matches with the estimates from the ansatz based
on the TF approximation. The vortex dipole annihilation is
not only observed for Vobs = 120 μm s−1, it also occurs
for other obstacle velocities as well. Once such case, for
Vobs = 160 μm s−1, is shown in figure 7. In this case, the
difference in energy of the vortex dipole and grey soliton is
0.0025 �ω.

One observation which is common to all the vortex dipoles
getting annihilated is the nature of their trajectories. All of
them traverse through Vobs, whereas the ones which do not
get annihilated avoid Vobs. The vortex dipoles are generally
nucleated at the aft region of the Vobs where there is a trailing
superflow. When nucleated very close to each other (v2 < 0.5)
and with high velocity, the mutual force further increases the
velocity of the vortex dipoles. At the same time, it decreases the
distance separating the vortex and antivortex. So, the kinetic
energy is high enough to surpass Vobs. Later, at some point,
the vortex and antivortex separation is less than ξ , and they
annihilate.

4.3. Effect of noise and dissipation

In the numerical studies, the annihilation events are not rare.
But this is in contradiction with the experimental results of
Neely and collaborators [3]—they observed no signatures of
annihilation events. One possible reason is that our numerical
calculations are too ideal, and an immediate remedy is to
include quantum and thermal fluctuations. The rigorous way
to study these fluctuations is to use methods like the truncated
Wigner approximation [29]; however, in this work, we use
the simple but widely accepted method of adding white noise
[30, 31], as white noise constitutes random fluctuations and is
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Figure 8. The figures in the left (right) panel show the density
(phase) of the condensate in the presence of white noise at time t =
4.1 (top) and 4.2 (bottom). Lack of diametrical symmetry of the
position of the vortex dipole can be observed. This reduces the
possibility of an annihilation event significantly. In this case,
the speed of the obstacle is 180 μm s−1.

hence able to change the number density of the condensate.It is
added numerically using a random number generator. We have
used the Mersenne Twister pseudo-random number generator.
The strength of random noise used in our numerical calculation
is 0.01% of the maximum density of the condensate. This
noise is added/subtracted at every time-step of the real-time
evolution of the condensate. One immediate outcome is that
the symmetry in the position of the vortex and antivortex is
lost. The superflow around the vortex is no longer a mirror
reflection of the antivortex, which was nearly the case without
the white noise. The deviations are shown for an example case
in figure 8, where Vobs = 180 μm s−1. This change in path
leads to the suppression of annihilation events of the vortex
dipoles. We have also studied the effect of large white noise
(10%) added at the beginning, and avoided adding any noise
in the subsequent time-steps. In such cases, the noise gets
damped throughout the condensate and there are no observable
influences on the annihilation event.

The other important effect is the loss of atoms from the
trap. We have examined the effect of loss terms, which arise
from inelastic collisions in the condensate. There are two types
of inelastic collisions that lead to the loss of atoms from the
trap: the two-body inelastic collision loss and the three-body
loss. To model the effect of loss of atoms from the trap, we
add the loss terms

−i�
2

[K2|�(r, t)|2 + K3|�(r, t)|4], (32)

to the Hamiltonian H. Based on the previous work [32], for
87Rb, the inelastic two-body loss rate coefficient K2 = 4.5 ×
10−17cm3s−1 and the inelastic three-body loss rate coefficient
K3 = 3.8 × 10−29 cm6 s−1. With trap loss, the annihilation
events continue to occur. However, during the destructive time
of flight observations in the experiments, the decreased atom
numbers may lower the contrast and reduce the possibility of
observing an annihilation event.

5. Conclusions

When an obstacle moves through a condensate above a critical
speed, it nucleates the vortex dipoles, and the number of

dipoles seeded depends on the obstacle velocity. Depending
on the initial condition of nucleation, vortex and antivortex
annihilation events occur under ideal conditions: at zero
temperature, at no loss and without noise. These events are
found to be energetically favourable theoretically and observed
numerically. In the case of weakly interacting condensates, the
energy of the grey soliton is always less than that of the vortex
dipole, and provides higher possibility for annihilation events.
Similarly, in the case of strongly interacting condensates, we
use TF approximation to study the system and find that if the
separation between the vortex–antivortex pair is less then the
coherence length, the energy of the vortex dipole is more than
that of the grey soliton, and this leads to annihilation. The
generated grey soliton propagates through the condensate and
shows the phenomena of reflection from the circular edge of the
condensate. The speed of propagation is found to be similar
to the speed of sound in a BEC. However, noise, thermal
fluctuations and dissipation destroy the superflow reflection
symmetry around the vortex and antivortex. Breaking the
symmetry reduces the possibility of annihilation events and
may explain the lack of annihilation events in experimental
observations.
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