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ABSTRACT

The photorefractive (PR) materials, which show nonlinear response to an

incident light, have already proved their importance in various applications.

These applications include two wave mixing, four wave mixing, phase conju-

gation and optical data storage. The advantage of these materials is that they

show nonlinearity at very low laser powers (µW) unlike Kerr materials which

require very high power. In this thesis, we have found experimentally and nu-

merically, new solutions for the nonlinear paraxial wave equation (PWE) with

the PR nonlinearity for beams engineered in our laboratory using computer-

generated holography. These beams include dipole & quadrupole vortices,

Hermite-Gaussian (HG) beams, Laguerre-Gaussian (LG) beams, Bessel beams,

Airy beams and superposed LG beams. We have studied their dynamics in

free space to make a comparison with the nonlinear dynamics. It also helps us

to characterize these beams.

In this thesis work, we have studied both linear and nonlinear dynamics of

dipole and quadrupole vortices. The linear dynamics of these beams is found

to be unstable which is verified with exact analytical expression. However, in

presence of nonlinearity they form stable structures while propagating through

a photovoltaic PR medium.

We have formed dark ring beams using LG modes and studied their prop-

agation through PR medium. It is found that the dark ring beam breaks to

form quadrupole vortex in the presence of defocusing nonlinearity, instead of

forming dark ring soliton. These results suggest that dipole and quadrupole

vortices may be the solutions of nonlinear PWE with the PR nonlinearity.

We have studied propagation dynamics of non-diffracting, self-accelerated

Airy beams through the PR medium with self-focusing nonlinearity. We ob-

serve interaction amongst their lobes as they propagate in the PR medium.

The result shows that self-trapped, self-accelerated beam can not exist in the

PR medium. We have also examined propagation dynamics of HG beams,

superposed LG beams and Bessel beams in the PR medium.

Keywords: photorefractive, nonlinear, singular optics; computer holography
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Chapter 1

Introduction

The laser cavity with rectangular symmetry supports the Hermite-Gaussian

(HG) modes whereas Laguerre-Gaussian (LG) modes are formed in the cylin-

drically symmetric cavity. The commercially available lasers have typically a

Gaussian beam profile. The Gaussian beam is a fundamental mode of any

laser cavity, it is also called as TEM00 mode. For higher order modes, special

cavity design is needed [1–3].

In this thesis, we have generated different kinds of beams by engineering

phase of an input laser beam, therefore, we call these beams as the engineered

beams. We convert a Gaussian laser beam into these beams by imprinting

corresponding phase through a spatial light modulator (SLM). Apart from

HG and LG beams, there are other beams like Airy beams [4] and Bessel

beams [5] which can be produced using this technique.

The above mentioned beams are the solutions of paraxial wave equation

(PWE) [6]. The propagation dynamics of these beams are well studied in

a linear regime through the PWE. In linear regime, the refractive index of

medium is unaffected by an incident light field. However, there are some

materials which respond to the incident light field nonlinearly. When a light

beam propagates through such a material, it modifies the index of refraction,

which affects propagation of the same beam. This complex dynamics can be

calculated with nonlinear PWE. In this thesis, we have studied the propagation

of various engineered beams through linear and nonlinear media. We have used

1
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photorefractive (PR) material [7] as our nonlinear system. In this work our

aim is to find out new solutions for nonlinear PWE with the PR nonlinearity.

The PR materials have already proved their importance in various nonlin-

ear phenomena which include two wave mixing, four wave mixing, and phase

conjugation [7]. The research on formation of spatial solitons and the light

induced photonic lattice in the PR media are demanding a great deal of at-

tention [8–13]. These effects follow the changes in refractive index in the PR

medium that can be controlled by an applied field, and the ratio of input inten-

sity of beam to background light. Unlike other nonlinear materials, in the PR

materials a strong nonlinearity is observed at milliwatts of laser power itself.

We start this chapter with Maxwell’s equations which are the fundamen-

tal equations of Electromagnetic theory. We show how wave equation can be

obtained from Maxwell’s equations in Section 2. In Section 3, the nonlinear

PWE for inhomogeneous media is derived from the wave equation. Different

nonlinearities are discussed in Section 4. Section 5 is devoted to the solutions

of PWE for free space or homogeneous media. The aim of the thesis is sum-

marized in section 6. And finally, Section 7 gives an overview on chapters of

the thesis.

1.1 Maxwell’s Equations

In Nineteenth century, Maxwell unified electricity, magnetism and light into

one theory. The theory contains four equations, now called as Maxwell’s equa-

tions [6, 7, 15]. These equations couple the electric field vector E and the

magnetic field vector H in following way,

∇× E +
∂(µH)

∂t
= 0,

∇×H − ∂(εE)

∂t
= J,

∇ · (εE) = ρ,

∇ · (µH) = 0, (1.1)
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where J is the current density and ρ is the charge density. µ and ε are the

magnetic permeability and the electric permittivity or dielectric constant of

medium, which are related to the magnetic susceptibility χm and the electric

susceptibility χe of medium, respectively. Their relations are written as follows.

ε = ε0(1 + χe); µ = µ0(1 + χm), (1.2)

where µ0 and ε0 are the permeability and the permittivity of vacuum. The

index of refraction of media relates to these two constants through following

relation.

n =

√
εµ

ε0µ0

. (1.3)

Note that for an anisotropic medium ε become a tensor of rank 2. Most of the

PR media are anisotropic in nature (e.g. lithium niobate, strontium barium

niobate, barium titanate). More details on anisotropic nature of the PR media

are discussed in Chapter 3.

1.2 Wave Equation

Consider a pure dielectric inhomogeneous media (µ = µ0 and ε = ε(x, y, z)).

For such a medium Maxwell’s equations take the form,

∇× E + µ0
∂H

∂t
= 0,

∇×H − ε
∂E

∂t
= 0,

∇ · εE = 0,

∇ ·H = 0. (1.4)

These equations can be decoupled separately into following two equations for

E and H as

∇2E − µ0ε
∂2E

∂t2
= ∇(E · ∇ε

ε
),

∇2H − µ0ε
∂2H

∂t2
= ∇×H × ∇ε

ε
. (1.5)



4 Chapter 1. Introduction

If change in refractive index is small over the distance of one wavelength,

then the quantity ∇ε
ε

can be negligible. And the Eqs. (1.5) become,

∇2E − µ0ε
∂2E

∂t2
= 0,

∇2H − µ0ε
∂2H

∂t2
= 0. (1.6)

In general form, above equations are written as,

∇2u− µ0ε
∂2u

∂t2
= 0, (1.7)

where u can be any component of the electric field vector E or the magnetic

field vector H. The above equation is called as a wave equation which governs

propagation of electromagnetic waves in inhomogeneous media.

1.3 Paraxial Wave Equation

We often consider light in the form of beam (e.g. laser beam) which is

monochromatic and highly directional. One can write this beam as the su-

perposition of plane waves,

u(x, y, z, t) = A(x, y, z)exp[i(kz − ω0t)], (1.8)

where A(x, y, z) is the complex field amplitude, ω0 is the frequency of light

and k is the wave number in medium. After substituting Eq. (1.8), the wave

equation becomes,

∇2
tA+

∂2A

∂z2
+ 2ik

∂A

∂z
− (k2 − µ0εω0)A = 0, (1.9)

where,

∇2
t =

∂2

∂x2
+

∂2

∂y2
, (1.10)

Physically, the change in A within a wavelength along the z direction is smaller

than the A itself. The slow dependence of A can be represented by the paraxial
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approximation which is mathematically written as,

∂A

∂z
� kA⇒ ∂2A

∂z2
� k

∂A

∂z
. (1.11)

With this paraxial approximation, Eq. (1.10) becomes

∇2
tA+ 2ik

∂A

∂z
− (k2 − µ0εω0)A = 0. (1.12)

The refractive index of inhomogeneous media can be written as,

n(x, y, z) =

√
ε(x, y, z)

ε0
. (1.13)

Also,

n(x, y, z) = n0 +∆n(x, y, z),

n2 = (n0 +∆n)2 = n2
0 + 2n0∆n+∆n2,

n2 ≈ n2
0 + 2n0∆n. (1.14)

In above equations, n0 is the linear refractive index while ∆n is the change in

index of refraction. Now, consider the last term of Eq. (1.12) and substituting

value of ε in it.

k2 − µ0εω0 = k20n
2
0 − µ0ε0n

2ω0 = k20(n
2
0 − n2), (1.15)

where, k0 is the wave number in free space. Substituting from Eq. (1.14) in

Eq. (1.15), we get

k2 − µ0εω0 = −2k∆n

n0

. (1.16)

After substituting above equation in Eq. (1.12) and rearranging the terms, we

obtain
∂A

∂z
=

i

2k
∇2

tA+
ik∆n

n0

A. (1.17)
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The above equation is PWE which can calculate the propagation of any beam

having complex field amplitude A(x, y) throughout the inhomogeneous media,

therefore, this equation is also called as paraxial beam propagation equation.

In general, this equation is difficult to solve analytically due to complex form of

∆n, however, one can solve it numerically. Finite Difference, Finite Element

and Split-Step Fourier Transform are different numerical beam propagation

methods which can be used to solve this equation [14–16]. We have used Split-

Step Fourier Transform method to solve this equation. The details of this

method are discussed in Appendix A.

There are some nonlinear processes which modify the index of refraction

and make the medium inhomogeneous. These nonlinearities exist according

to their dependence on intensity (Kerr nonlinearity, saturable nonlinearity),

space charge field (PR nonlinearity), temperature (thermal nonlinearity) and

molecular orientation (reorientation nonlinearity) [17]. We will discuss these

in the next section.

1.4 Nonlinear Process

The process is called nonlinear, when the response of a material system to an

applied light field depends nonlinearly upon the strength of the light field [17].

There are different media which show different nonlinear response that may be

local or nonlocal. When change in index of refraction at a particular point relies

on the intensity or the field value at the same point, then the response is local

otherwise it is nonlocal. Kerr nonlinearity has local response whereas thermal,

photorefractive and reorientation nonlinearities have nonlocal response.

1.4.1 Kerr Nonlinearity

In Kerr nonlinearity, the change in index of refraction ∆n is proportional to

the light intensity I. Mathematically, it is written as,

∆n = n2I. (1.18)
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Here, n2 is the nonlinear coefficient or the Kerr coefficient. After substitut-

ing value of ∆n in Eq. (1.17), the equation becomes well known nonlinear

Schrödinger equation. This equation satisfies soliton solution. At present, the

Kerr nonlinearity is used for generation of spatial solitons [14,15,18]. It is also

used for self-phase modulation [19] and Kerr-lens modelocking [20].

1.4.2 Thermal Nonlinearity

Some part of light energy is absorbed by a material, when the laser beam

incidents on the material. This changes temperature of the material. The

change in temperature leads to the change in index of refraction, written as

∆n =
dn

dT
T1, (1.19)

where dn/dT is the constant which represents temperature dependence of the

index of refraction. For fused silica, its value is 1.2 x 10−5. T1 is the laser

induced change in temperature. One can measure T1 for a given input intensity

profile I(x, y) through following heat transport equation under steady state,

−κ∇2T1 = αI(x, y), (1.20)

where κ and α are the thermal conductivity and the linear absorption coef-

ficient of material. The spatial solitons and their interaction can be studied

by employing thermal nonlinearity in a lead glass [21]. The same nonlinearity

has been used as the basis for the construction of temperature and chemical

sensors.

1.4.3 Photorefractive Nonlinearity

When photorefractive material is illuminated by a light beam, free charge

carriers are generated at the rate proportional to the input optical power [7,17].

These charges diffuse away from the high intensity region, leaving behind the

fixed charges of opposite sign. The free charge carriers are trapped by ionized

impurities at other locations where intensity is low or zero, depositing their
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charge as they recombine. The result is the formation of space charge field

Esc which modulates local refractive index via electro-optic effect or Pockel’s

effect.

The change in index of refraction is given by

∆n = −1

2
n3
0reffEsc, (1.21)

where reff is the effective electro-optic coefficient or Pockels coefficient of

medium. This nonlinearity have been employed for many interesting effects

which include generation of spatial solitons, both coherent and incoherent

[18, 22], beam coupling, phase conjugation and dynamic holography [7]. The

spatial soliton is one of the solutions of nonlinear PWE with PR nonlinearity.

We have used PR nonlinearity for our study of nonlinear propagation of en-

gineered beams. We will discuss this nonlinearity in more detail in Chapter

3.

1.5 Solutions of nonlinear PWE with PR non-

linearity

Self-focusing and self-defocusing of an input beam in a nonlinear medium is

decided by the sign of ∆n. These effects balance the diffraction to form bright

and dark spatial solitons respectively [18]. These solitons can be the solutions

of nonlinear PWE with PR nonlinearity. The advantage of the PR nonlinear-

ity is its ability to exhibit either self-focusing or self-defocusing in the same

crystal by a reversal of external field. Therefore, same crystal can be used for

generation of both bright and dark solitons [18,22].

When light beam propagates through a PR medium, the space charge field

is formed due to redistribution of charges. This field can be screened out by

an externally applied DC field or a photovoltaic field. The effective field can

modify the index of refraction to form a spatial soliton. Mainly two types of

spatial solitons can exist in a PR medium- screening solitons [23] and photo-

voltaic solitons [24–26]. The screening solitons are formed by the external DC
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field while photovoltaic solitons are generated by the photovoltaic field. These

solitons have application in optical communication [27–29].

1.5.1 Bright Spatial Solitons

The light beams have intrinsic property of diffraction while propagating through

a homogeneous medium. If this diffraction is exactly compensated by change

in the index of refraction of the medium due to nonlinear effect, then a shape

preserving beam is formed, which is called as bright spatial soliton.

Figure 1.1 shows the formation of bright spatial soliton in a cerium doped

strontium barium niobate (SBN) crystal. In the absence of nonlinearity, the

beam is diffracted naturally. When this natural diffraction is exactly compen-

sated by the self-focusing PR nonlinearity, bright spatial soliton is formed as

shown in Fig. 1.1. Due to the anisotropy of the PR crystal, the soliton has an

elliptical shape. It should be noted that the soliton solution exist for particu-

lar values of three parameters, 1) ratio of peak input intensity to background

illumination, 2) applied electric field and 3) input beam radius.

without nonlinearity

OutputInput

with nonlinearity

Output

Figure 1.1: Formation of bright spatial soliton.

1.5.2 Dark Spatial Solitons

The dark soliton is a shape preserving hole or stripe in a uniform background

of light. When diffraction of hole or stripe is exactly canceled by the defocusing

effect, then only dark soliton is formed. The stripe forms one dimensional (1D)

soliton whereas hole gets self-trapped and generates two dimensional (2D) dark

soliton. If the self-trapped hole is associated with a phase singularity, then it

is called a vortex dark soliton or simply a vortex soliton [24,30,31].
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Figure 1.2: Formation of dark vortex spatial soliton (first row) along with
phase profiles (second row).

Figure 1.2 illustrates the formation of vortex soliton in an iron doped

lithium niobate. The core of vortex is diffracted in the absence of nonlin-

earity. As the diffraction is balanced by the defocusing nonlinearity of the PR

medium, the dark soliton is formed as shown in Fig. 1.2. Again due to the

anisotropy of the crystal, the shape of the dark hole is elliptical.

1.6 Solutions of Linear Paraxial Equation

When ∆n = 0, Eq. (1.17) reduces to

∂A

∂z
=

i

2k
∇2

tA. (1.22)

This is PWE for homogeneous media. The above equation looks like a quantum

mechanical Schrödinger equation with zero potential. The Gaussian beam is

the most interesting and useful solution of the PWE. Apart from that HG

beams, LG beams, Bessel beams and Airy Beams also satisfy above equation.
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1.6.1 Gaussian Beam

The fundamental mode also termed as TEM00 mode for any laser cavity can

be approximated by a Gaussian function. Therefore, this mode is called as

a Gaussian beam. Most of the commercial lasers are available with Gaussian

beam as the output. The power of Gaussian beam is concentrated in the

center and it decreases exponentially as one moves away from the center. The

wavefront of this beam is plane at z = 0 or at the waist and becomes spherical

as the beam propagates. The complex field amplitude of a Gaussian beam is

written as,

A(x, y, z) = A0 exp[−x2+y2

w2 ]exp[ikz + ik(x2+y2)
2R

]exp[−iψ], (1.23)

where k is the wave number and A0 is the amplitude of beam at x, y, z = 0. w

is the beam radius at z, R is the radius of curvature and ψ is the Guoy phase

shift of the Gaussian envelope. w, R, and ψ are the beam parameters which

Figure 1.3: Intensity distribution of Gaussian beam at different propagation
distances z.
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are related to the waist spot size w0 and the Rayleigh range zr = kw2
0/2,

w = w0

√
1 + (

z

zr
)2, R = z +

z2r
z
, ψ = arctan(

z

zr
). (1.24)

At the plane z = zr, beam have following properties.

1) The beam radius increases by
√
2 and beam cross section by 2.

2) The intensity at beam axis becomes half from its value at z = 0.

3) The Guoy phase shift becomes π/4.

4) The radius of curvature has smallest value (R = 2zr).

The intensity distribution of Gaussian beam at different propagation distances

are shown in Fig. 1.3. The peak intensity of the beam decreases with prop-

agation distance z. Figure 1.3 also indicates that the beam radius increases

gradually with distance z.

1.6.2 Vortex Beam

Optical vortices, often encountered in nature by scattering of light through the

rough surfaces, are the phase singularities in optical field [32, 33]. In contrast

to the well known wavefronts like plane and spherical, the optical vortex has a

helical wavefront. The helical wavefront causes an orbital angular momentum

(OAM) of l~ per photon in such beams (l being order or topological charge of

the vortex) [33]. The vortex beams have found a variety of applications in the

fields of optical tweezing and optical spanning [34], optical communication [35],

as well as in quantum information [36].

The complex field distribution of an optical vortex of charge l embedded

in a Gaussian beam can be written as [37]

A(x, y, z) = (x+ sgn iy)l
w0

wl+1
exp[−(x2 + y2)

w2
]

exp[ik
(x2 + y2)

2R
]exp[ikz − i(l + 1)ψ], (1.25)

sgn denotes the sign of topological charge which is +1 for positive and -1 for

negative. The intensity profiles, interference of vortex with a plane wave and

phase profiles for different values of l are shown in Fig. 1.4. The fork pattern
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Figure 1.4: Intensity profiles (first row), interferogram (second row), and phase
profiles (third row) for vortex of order l.

in interferograms shows the presence of vortex or singularity. The direction of

fork also provides the sign of topological charge. The phase variation is from

0 to 2πl for the vortices of order l around the singularity as shown in Fig. 1.4.

1.6.3 Hermite-Gaussian Beams

The HG beams are the eigen modes of stable laser resonator with rectangular

symmetry. These solutions are complete and form orthogonal set. The complex

field distribution of HG beams for homogeneous media is given by [33,38],

Amn(x, y, z) =
1

w

√
2

πm!n!
exp[−x

2 + y2

w2
]Hm(

√
2x

w
)Hn(

√
2y

w
)

exp[ikz +
ik(x2 + y2)

2R
]exp[−i(n+m+ 1)ψ], (1.26)
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Figure 1.5: Intensity profile (first row) of HG beam for different value of indices
along with phase profile (second row).

where m and n are the indices which represents the order of Hermite poly-

nomial H. The intensity profiles and the phase profiles for different m and n

indices are shown in Fig. 1.5. The phase profiles show that there is a sharp

phase jump of π between two intensity lobes. This forms edge dislocations in

HG Beams.

For m = 0 and n = 0, we will get same expression as a Gaussian beam.

The HG modes can be converted into LG modes by using cylindrical lens mode

converter and vice versa [33,38].

1.6.4 Laguerre-Gaussian Beams

The LG beams are the eigen modes of stable laser resonator with cylindrical

symmetry. Like HG modes, they also form complete and orthogonal set of

solution. If the Laplacian in Eq. (1.22) is defined in the cylindrical coordinate

system, then we get paraxial equation in cylindrical coordinate. The LG beams

are solution of this equation. The complex field distribution of LG beams are
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written as [33,38],

Al
p(r, φ, z) =

1

w

√
2p!

π(p+ |l|)!
(
r
√
2

w
)|l|exp[− r2

w2
]Ll

p(
2r2

w2
)

exp[ikz +
ikr2

2R
]exp[ilφ]exp[−i(2p+ l + 1)ψ], (1.27)

where p and l are the radial and the azimuthal indices which represent orders

of associated Laguerre polynomial Ll
p. The intensity profiles and the phase

profiles for different indices p and l are shown in Fig. 1.6. These beams contain

p dark rings in their intensity profile with a π phase jump. Due to azimuthal

phase term exp(ilφ), they have a twist of 2πl in their wavefront which acts as

a screw dislocation. This generates phase singularity in the wavefront which

leads to darkness in intensity. Due to the same twist, these beams carry an

OAM of l~ per photon [33]. This OAM can be transfered to micron size particle

placed along the propagation axis. This property of Laguerre-Gaussian beams

have practical interest in the field of optical trapping and micromachining. It

is noted that the OAM of LG beams are different from the angular momentum

Figure 1.6: Intensity profile (first row) of LG beam for different value of indices
along with phase profile (second row).



16 Chapter 1. Introduction

due to the polarization of light.

Equation (1.26) reduces to the Gaussian beam expression for p = 0 and

l = 0. If only p = 0, then the above solution reduces to a vortex beam solution.

1.6.5 Bessel Beams

All the beams mentioned above show diffraction i.e. they spread while prop-

agating in free space. The reason behind it is confinement of their energy in

finite region. This spreading is noticeable after the Rayleigh range. However,

there exist non-diffracting solutions for the PWE, first predicted by Durnin et

al. [39]. These solutions form a class of beams called as Bessel beams [5]. Apart

from non-diffracting nature, they also show self-reconstruction property [40].

The field distribution of Bessel beams can be written as

A(r, φ, z) = exp[ikzz]Jn[krr]exp[sgn inφ], (1.28)

where Jn is an nth order Bessel function of first kind, kz and kr the longitudinal

and radial wave vectors, with k =
√
k2z + k2r . As seen from the above solution,

Figure 1.7: Intensity profile (first row) of Bessel beam for different index n
along with phase profile (second row).
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the higher order Bessel beams have phase singularity due to the phase term

exp[sgn inφ]. This phase singularity gives same properties to the beam as

mentioned in previous sections. Figure 1.7 shows the intensity distribution and

the phase profile for different orders of Bessel beams. It is observed that there

is a phase shift of π between adjacent rings of Bessel beams. The above solution

of Bessel beam is ideal, it has infinite rings in its intensity profile. However,

these infinite power beams can not be realized practically, therefore, one forms

truncated Bessel beams using Axicon, computer-generated holography or by

Fourier transformation of bright ring [5, 41].

The non-diffracting nature of Bessel beams leads to a wide range of their

applications in various fields which include atom optics, nonlinear optics [42],

and optical manipulation [5, 43].

1.6.6 Airy Beams

In 1979, Berry and Balazs observed non spreading Airy wave packet as the

solution of the Schrödinger equation [44]. This Airy packet has remarkable

features: non-dispersive nature and ability to accelerate in absence of any ex-

ternal potential. Due to analogy between the quantum mechanical Schrödinger

equation and the paraxial diffraction equation, optics provides an experimen-

tal way to realize such wave packets called Airy beams. But in practice, one

can not realize this infinite power Airy beams. Hence, one has to truncate it

to keep the energy finite. In 2007, Siviloglou et al [4] demonstrated the finite

energy optical Airy beams experimentally. The Airy beams were observed to

follow a parabolic path similar to the projectile motion in gravitational field.

The ballistic dynamics of Airy beams was found to depend on the position

of the Fourier lens, the phase mask and the Gaussian beam illuminating the

mask [45,46]. Like other diffraction-free beams, the Airy beams also exhibit self

healing property [47], for example while propagating through turbulent media,

the Airy beams reform themselves and maintain their nature. The Airy beams

have found applications in optical trapping [48], and plasma wave-guiding [49].
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z=125 cmz=100 cmz=75 cm

z=50 cmz=25 cmz=0 cm

Figure 1.8: Intensity distribution of Airy beams at different propagation dis-
tances z.

The field amplitude of Airy beams can be written as,

A(x, y, z) = Ax(x, z)Ay(y, z), (1.29)

where

Ax(x, z) = Ai

(
x

x0
− (

z

2kx20
)2 +

iaz

kx20

)
exp[

ax

x0
− a

2
(
z

kx20
)2 − i

12
(
z

kx20
)3 +

ia2

2

z

kx20
+

ix

2x0

z

kx20
],

Ay(y, z) = Ai(
y

y0
− (

z

2ky20
)2 +

iaz

ky20
)

exp[
ay

y0
− a

2
(
z

ky20
)2 − i

12
(
z

ky20
)3 +

ia2

2

z

ky20
+

iy

2y0

z

ky20
]. (1.30)

In above equations, Ai is the Airy function, a is the aperture parameter and

k is the wave number. x0 and y0 are the width of main lobe of Airy beams

along x-axis and y-axis respectively. The propagation dynamics of Airy beams

is shown in Fig. 1.8.
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1.7 Fresnel Diffraction Integral

Fresnel diffraction integral is the another way to calculate the propagation of

complex field amplitude through homogeneous media. Using Huygens’ prin-

ciple one can derive this formula. The Huygens’ principle states that if an

incident field distribution A0(x1, y1, z1) is present over some closed surface Σ,

then each point on that surface acts as the source of a uniform spherical wave

or “Huygens’ wavelet” which radiates from that point on the surface as shown

in Fig. 1.9. At a point P away from the surface, the field is the summation of

the fields due to all these Huygens’ wavelets coming from all the points on the

surface Σ [1,2, 6, 50].

Figure 1.9: Geometry for calculation of Fresnel integral.

Mathematically, one can write this principle as,

A(x2, y2) =
k

2πi

∫∫
Σ

A0(x1, y1)
exp[ik(r2 − r1)]

r2 − r1
cosθds. (1.31)

where ds represents the infinitesimal element of area Σ and r2− r1 denotes the

distance between an observation point to the source point,

r2 − r1 =
√
(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2. (1.32)

In power series, one can expand the above equation as,

r2 − r1 = z2 − z1 +
(x2 − x1)

2 + (y2 − y1)
2

2(z2 − z1)
+ ........ (1.33)
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After dropping higher order terms other than quadratic in the above expression

and substituting in Eq. (1.30) with L = z2 − z1, we get

A(x2, y2) =
k

i2πL

∫∫
A0(x1, y1)exp[

ik

2L
(2L2 + (x1 − x2)

2 + (y1 − y2)
2)]dx1dy1.

(1.34)

After simplification,

A(x2, y2) =
k

i2πL
exp[

ik

2L
(2L2 + x22 + y22)]

∫∫
A0(x1, y1)

exp[
ik

2L
((x21 + y21)− 2(x1x2 + y1y2))]dx1dy1. (1.35)

The Eq. (1.35) is called as Fresnel diffraction integral. In this thesis work, we

have used this integral to calculate beam propagation in free space.

1.8 Aim of the Thesis

Since different beams discussed above have importance in various applications

which include optical tweezing, optical communication, and quantum optics,

therefore, the study of their dynamics both through linear as well as nonlinear

media becomes necessary. In this thesis work we have tried to find out their

dynamics in the PR nonlinear media along with free space. One can think this

exercise as finding new solutions for PWE with PR nonlinearity.

We consider PR media for following reasons- 1) It requires a beam power of

µW only for PR media to show a nonlinear change in index of refraction ∆n.

2) This change depends on space charge field which one can control through

an external field in the PR media. 3) Also one can do fine tuning of ∆n by

controlling the ratio of input peak intensity to background illumination.

1.9 Thesis Overview

Chapter 1 contains the basic mathematical expressions and review of the back-

ground material. The expressions of PWE for inhomogeneous media and Fres-
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nel integral formula are derived in this chapter. The solutions of PWE for

both, the linear and the nonlinear cases are discussed. Chapter 2 is devoted

for the generation and characterization of engineered beams. It describes the

computer-generated holography technique for generation of these beams. The

new methods for the characterization of OAM state of light, proposed by us,

are explained over here. Chapter 3 focuses on physics of the PR nonlinearity.

The expression for the change in index of refraction in the PR media is derived

from the material equations.

Chapter 4 and 5 discuss our observations on propagation of engineered

beams through the PR media. We have divided engineered beams into two

categories- diffraction broadened and diffraction-free beams. Chapter 4 covers

the propagation dynamics of diffraction broadened beams. We consider dipole

and quadrupole vortex beams, HG beams, LG beams, and ring lattice beams.

The nonlinear dynamics of diffraction-free beams are explained in Chapter

5. Under this category, the propagation of Airy beams and Bessel beams are

examined in the PR media. The last chapter gives the summary and scope for

future work.





Chapter 2

Generation and

Characterization of Engineered

Beams

We have seen in the first chapter that the PWE supports different beam so-

lutions like optical vortices, LG, HG, Bessel and Airy beams. Amongst these

beams, HG and LG beams can be generated using laser cavity, however, they

can not be controlled and modified in real time. The laser cavity can generate

only one beam profile at a time. To change the laser mode or beam profile, one

has to modify the cavity. To overcome these problems, we have used computer-

generated holography technique for generation of these beams. This technique

involves phase engineering, therefore, we called these beams as the engineered

beams. The computer generated hologram (CGH) modifies the phase of input

Gaussian beam in such a way that the diffracted beam from hologram acquires

the desired beam profile. The technique incorporates spatial light modulator

(SLM) to do phase modulation in real time. It allows to change the beam

profile along with the topological charge carried by the beam, number of edge

dislocations and screw dislocations in real time. There are some beams like

Airy beams, Bessel beams, dipole and quadrupole vortex beams which can not

be generated using laser cavity, however, these beams can be produced using

computer-generated holography.

23
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In this chapter, we study the method for generation of engineered beams

along with their characterization. Section 1 starts with the basic principle

of conventional holography. The computer generated holography technique is

introduced in Section 2. The detailed discussion on generation of engineered

beams is in Section 3. In Section 4, we describe the characterization of engi-

neered beams that includes two new methods for measurement of topological

charge or OAM state of singular beams.

2.1 Holography

Gabor proposed a lensless imaging technique now called as holography [3,6,50].

This technique stores both the amplitude and phase of scattered light coming

from an object unlike photography. It involves two steps - construction of

hologram and reconstruction of image of the object. The hologram can be

formed by recording interference pattern generated with scattered light from

object and reference wave. An illumination of hologram with reference wave

reconstructs the object’s image.

2.1.1 Construction of hologram

Figure 2.1 shows the setup for construction of hologram. The light beam from

the laser is divided into two parts. First part illuminates the object to be

recorded, which scatters the light to form object wave. Second part acts as

Figure 2.1: Construction of hologram. BS, beam splitter; L1,L2, lens.
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a reference wave, which interferes with the object wave. This interference

pattern is recorded on some recording material (e.g. photographic plate, PR

material). If this pattern is recorded on the photographic plate, then hologram

is formed after development of the plate.

Let us consider field distribution for object wave as,

Ao(x, y) = ao(x, y)exp[−iφo(x, y)], (2.1)

where ao and φo are the amplitude and the phase of the object wave respec-

tively. In the same way, ar and φr are the amplitude and the phase of the

reference wave. The field distribution for reference wave is written as,

Ar(x, y) = ar(x, y)exp[−iφr(x, y)]. (2.2)

The interference of object and reference wave is,

I(x, y) = |Ao + Ar|2,

= a2o + a2r + aoarexp[−i(φo − φr)] + aoarexp[i(φo − φr)], (2.3)

= a2o + a2r + 2aoarcos[φo − φr]. (2.4)

The above equation indicates that both the amplitude and the phase are pre-

sented in the interference pattern. The different types of hologram can be

made depending on the development technique. They are mainly two types-

1) amplitude hologram and 2) phase hologram.

In amplitude hologram, the amplitude of diffracted light from hologram is

proportional to the intensity of the recorded light. However, phase hologram

just modulates the phase of input beam. The phase hologram can be produced

by changing the refractive index or thickness of material in proportion to the

intensity of the interference pattern.

The general transmittance function for hologram is written as [51],

T (x, y) =
∞∑

q=−∞

tqexp[−iq(φo − φr)],

= to +
∞∑
q=1

tqexp[−iq(φo − φr)] +
∞∑
q=1

t−qexp[iq(φo − φr)]. (2.5)
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The transmittance coefficient tq depends on the type of hologram. For an

amplitude hologram, q varies from -1 to +1, therefore, Eq. (2.5) becomes,

T (x, y) = t0 + t1exp[−i(φo − φr)] + t−1exp[i(φo − φr)]. (2.6)

where t0 = a2o+a
2
r, and t1 = t−1 = aoar. So it is clear from above equation that

the transmittance of hologram is proportional to the intensity of interference

pattern for amplitude hologram. For a phase hologram, tq = Jq(M) where Jq

is the qth order Bessel function of first kind. M represents the amplitude of

phase modulation.

2.1.2 Reconstruction of Object

The setup for reconstruction of object’s image is shown in Fig. 2.2. Here,

the hologram is illuminated by the wave which is identical to the reference

wave previously used for the construction of hologram. In case of amplitude

hologram, two images are formed. One is a virtual image and other is a real

image of the object. The virtual image has all the features of the object which

includes parallax and depth. By using CCD camera, one can capture real

image without lens.

Let us first consider amplitude hologram and field distribution for trans-

mitted wave that is written as,

Et(x, y) = T (x, y)Er(x, y), (2.7)

= (a2o + a2r)arexp[−iφr] + aoa
2
rexp[−iφo],

+aoa
2
rexp[i(φo − 2φr)]. (2.8)

The first term represents the incident reference wave with amplitude modula-

tion due to a2o. The second term represents object wave which forms virtual

image of an object. The last term has phase which is complex conjugate of

object wave with extra phase modulation of exp[−i2φr]. This term forms the

real image.

In case of phase hologram field distribution for transmitted wave is written
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Figure 2.2: Reconstruction of object’s image.

as,

Et(x, y) =
∞∑

q=−∞

tqexp[−iq(φo − φr)]arexp[−iφr],

= J0(M)arexp[−iφr] +
∞∑
q=1

Jq(M)arexp[−iq(φo)]

+
∞∑
q=1

J−q(M)arexp[iq(φo − 2φr)]. (2.9)

The first term represents the incident reference wave without any modulation

unlike amplitude hologram. The second term has q orders with each order

forming a virtual image. The real images are represented by the last term.

As one moves from first to higher order, the intensity of both virtual and real

images are diminished.

2.2 Computer-Generated Holography

The computer-generated holography is the method in which construction of

hologram can be done without optics [50]. The hologram is constructed using

a computer program or an algorithm. Therefore, the generated hologram is

called as a computer-generated hologram (CGH). The technique involves the

generation of object wave for a desired object. One can take objects that have

no existence in real world. The CGH formation can be done in three steps.

These are as follows:
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1) Calculation of Scattered Field of Object

First step involves computation of object wave and its propagation towards

hologram plane. The propagation of object wave can be calculated by Fourier

transform or Fresnel Transform. Using these two transforms, one can form two

holograms called Fourier hologram and Fresnel hologram.

2) Encoding of Field into a Hologram Transmittance

Once the complex field of object at hologram plane is computed, next step

involves its representation in hologram. There are different methods to form

different types of CGH for example detour-phase hologram, kinoform, and

phase contour interferogram.

The kinoform is a hologram which is created by considering phase of the

Fourier transform field of object. The encoding of this kind of hologram should

be made in the phase range of (0, 2π). As the kinoform is pure phase holo-

gram, its diffraction efficiency is very high. The disadvantage of this hologram

is its formation of bright spot due to phase mismatching. Phase contour in-

terferogram is formed by interfering object and reference wave digitally. The

efficiency of this hologram can be increased by making it blazed. In this thesis

work, we have produced this kind of CGH for generation of engineered beams

excluding Airy beams.

3) Fabrication of CGH

The third step consists of plotting or transferring of above encoded represen-

tation to a holographic sheet or a SLM. The transmittance of these CGHs

depends on the plotting devices and the way they are encoded. The process

of object reconstruction is same as the conventional holography.

2.3 Generation of Engineered Beams

To generate engineered beams we have used computer-generated holography

technique. Since the information about an object wave is needed to form a
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hologram in both conventional as well as computer-generated holography, we

have taken an equation of complex field amplitude for engineered beams as the

object wave to form a CGH. And the tilted plane wave is used as our reference

wave. By interfering engineered beam with tilted plane wave, we have created

interferogram using a LabView program. This interferogram acts as the CGH.

The CGH formation for optical vortex beams using LabView is shown in

Fig. 2.3. There are two holograms in the Figure. First hologram is formed by

just interfering vortex beam with the tilted plane wave. To avoid extra phase

shift due to curvature and Guoy phase, we have chosen interference plane at

z = 0. Also, amplitude of both the beams are taken as unity for good visibility

of interference pattern. The complex field amplitude of vortex beam at z = 0,

A(x, y) =

(
x+ sgn iy

w0

)l

exp[−(x2 + y2)

w2
0

],

= (
r

w0

)lexp[sgn ilφ]exp[−(
r

w0

)2]. (2.10)

Figure 2.3: CGH for second order optical vortex beam.
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The field for tilted plane wave is written as,

Ap = exp[ikxcos(θ)] = exp[i
2πnx

Np
], (2.11)

where θ is the tilted angle from the optical axis i.e. z axis and n is the number

of fringes. N and p are the total number of pixels and pixel size of the CGH

respectively. Now we interfere these two fields,

I(x, y) = |A+ Ap|2,

= 1 + (
r

w0

)2lexp[−2(
r

w0

)2]

+(
r

w0

)lexp[−(
r

w0

)2]exp[i(
2πnx

L
+ sgn ilφ)]

+(
r

w0

)lexp[−(
r

w0

)2]exp[−i(2πnx
L

+ sgn ilφ)], (2.12)

where L (=Np) be the length of hologram. It is clear from the above equation

that the present hologram not only modulates phase but also intensity of the

input light beam due to presence of Gaussian terms in diffracted order.

The second hologram is a blazed hologram which has ideally 100% effi-

ciency. The blazed hologram can be formed by considering phases of engi-

neered beam and tilted plane wave. The equation of blazed hologram for case

of a vortex beam is written as

I(x, y)blazed =Mod[
2πnx

L
+ sgn lφ, 2π]. (2.13)

The blazed hologram is pure phase hologram. Their transmittance function is

represented by Eq. (2.9). To form optical vortex, one can take print out of the

CGH shown in Fig. 2.3 on a holographic sheet. However, we have used SLM

in this thesis work.

2.3.1 Spatial Light Modulator

As its name, SLM modulates light field spatially [50]. There are two types

of SLM- 1) Electrically addressed SLM and 2) Optically addressed SLM. The

electrically addressed SLM is a device with an array of pixels which modulate

light spatially according to value of the voltage applied on it. Each pixel
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Figure 2.4: a) P512-0532 Spatial Light Modulator (left side) b) LC-R2500
Spatial Light Modulator (right side).

consists of liquid crystal cell sandwiched between two electrodes. The SLM is

further divided into two types- A) Reflective type SLM and B) Transmissive

type SLM. We have two SLMs both electrically addressed reflective types- I)

LC-R2500 Spatial Light Modulator from Holoeye, Germany and II) P512-0532

Spatial Light Modulator from Boulder Nonlinear Systems, USA. The images

of these SLMs are shown in Fig. 2.4. The SLM is a versatile device which has

uses in beam shaping, data processing, creation of spatial filter and holographic

optical tweezer. We have used SLM for generation of engineered beams in this

thesis work. One can send the image of CGH directly to the SLM using same

computer which generates the CGH. In the SLM, phase range (0, 2π) of the

CGH converts into voltage range. It has maximum voltage for zero phase,

whereas zero voltage for 2π phase. When maximum voltage is applied to a

pixel, there is no phase delay for an incident light, however, it experiences 2π

phase shift in the absence of voltage in case of P512-0532 SLM.

2.3.2 Experimental Setup for Generation of Engineered

Beams

Figure 2.5 shows typical experimental setup for generation of engineered beams.

The laser beam having Gaussian distribution is illuminated on SLM. The CGH,

like the vortex’s CGH shown in Fig 2.3, is sent to the SLM using computer.
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Figure 2.5: Experimental Setup. L, laser; BS, beam-splitter; SLM, spatial
light modulator; L1, lens; CCD, camera; PC1, PC2, Computer.

As the CGH is for second order optical vortex beam, this beam is generated

in the first diffracted order, that is selected by an aperture. A lens is used to

form beam waist at the focus, so that one can study the propagation dynamics

of beam from focus. The images of beam can be taken by a CCD camera.

2.4 Characterization of Engineered Beams

It is necessary to confirm that the generated beam is our desired beam. By

recording the intensity profile, one can identify the HG beams, Airy beams, and

zeroth order Bessel beam. However, it is difficult to recognize the topological

charge or OAM for the beams with phase singularity. In recent years, a lot

of attention is being given to the measurement of OAM states of light field

due to their application in communication and quantum cryptography [35,

36]. Recently, the triangular aperture, annular aperture, and axicon have

been used to identify the topological charge of the vortex [52–56]. Apart

from these techniques, the spatial light modulator (SLM) has been utilized for

discriminating the charge of the vortex [57–59]. Our group has shown that

the Fourier transform of the intensity distribution of the vortex, its spatial
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correlation function, and the Wigner distribution function can also provide

information about the topological charge of the vortex [60,61].

In this thesis work we have proposed two new techniques to calculate the

OAM of light field. We have applied these techniques to optical vortices only,

however, one can use it for LG beams and higher order Bessel beams which

also contain singularities.

2.4.1 Measurement of the Orbital Angular Momentum

using Quadratic Phase Mask

In this technique we construct a quadratic phase mask (QPM) using the same

SLM which is used to generate optical vortices [62]. A vortex diffracted through

this mask shows very interesting dynamics that is found to be different in

positive (+) and negative (-) first order diffraction. In (-) diffracted order, the

optical vortex beam with topological charge l transforms into l + 1 intensity

components. Therefore, by measuring the number of intensity components, one

can determine the topological charge of vortex while the orientation of these

components can provide us with the sign of vortex. This kind of transformation

is not observed in (+) diffraction for the same distance of propagation. The

above method of charge determination does not require optical elements and

their alignment unlike interferometry. which has been the technique in vogue

for finding the charge of vortices.

Theory

The optical vortex has complex field amplitude

A(x1, y1) =

(
x1 + sgn iy1

w0

)l

exp[−(x21 + y21)

w2
0

], (2.14)

where w0 is the beam radius at z = 0 and sgn denotes the sign of topolog-

ical charge which is +1 for positive and -1 for negative. By using Binomial

expansion, Eq. (2.14) becomes,

A(x1, y1) =
l∑

n=0

l!

wl
0(n!(l − n)!)

xl−n
1 (sgn iy1)

nexp[−(x21 + y21)

w2
0

]. (2.15)



34 Chapter 2. Generation and Characterization of Engineered Beams

The transmittance function of QPM is given by

t(y1) = exp

[
iM

2
cos

[
4π

3w2
f

(y1 − y0)
2

]]
, (2.16)

where y0 is the shift from center maxima. wf is the full width at half maxima

of argument of the above function. M is the peak to peak excursion of the

phase delay. Using Jacobi-Anger expansion [63], one can write Eq. (2.16) as,

t(y1) =
∞∑

q=−∞

iqJq[M/2]exp

[
iq

f 2
(y1 − y0)

2

]
, (2.17)

where f =
√
3w2

f/4π. The field at QPM (z = 0)

At(x1, y1) = t(y1)A(x1, y1). (2.18)

After substituting value of t(y1) and A(x1, y1) in the above equation, we

get

At(x1, y1) =
∞∑

q=−∞

iqJq[M/2]exp

[
iq

f 2
(y1 − y0)

2

]

×
l∑

n=0

l!

wl
0(n!(l − n)!)

xl−n
1 (sgn iy1)

nexp[−(x21 + y21)

w2
0

].(2.19)

The field distribution at a distance z = L from the SLM can be calculated

using Fresnel diffraction integral (Eq. (1.35)),

A(x2, y2) =
k

i2πL
exp[

ik

2L
(2L2 + x22 + y22)]

∫∫
At(x1, y1)

×exp[
ik

2L
((x21 + y21)− 2(x1x2 + y1y2))]dx1dy1. (2.20)

Putting Eq. (2.19) in Eq. (2.20), we obtain

A(x2, y2) =
k

i2πL
exp[

ik

2L
(2L2 + x22 + y22)]

∞∑
q=−∞

iqJq[M/2]exp[
iqy20
f 2

]

×
l∑

n=0

insgnnl!

wl
0(n!(l − n)!)

∫∫
yn1x

l−n
1 exp[−(x21 + y21

w2
0

]exp[
ik

2L
(x21 + y21)]

×exp[
−ik
L

(x1x2 + y1y2)]exp

[
iq

f 2
(y21 − 2y0y1)

]
dx1dy1. (2.21)
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Let us first consider an integration with respect to x,

Ix =

∫
xl−n
1 exp[−(

x21
d2x

− 2kx1x2
i2L

)]dx1, (2.22)

where
1

d2x
=

1

w2
0

− ik

2L
. (2.23)

To solve the above integral we have used the following standard integral [64],∫
xnexp[−(x2 − 2xB)]dx =

√
π

(2i)n
Hn[iB]exp[B2]. (2.24)

Using above standard integral, we get

Ix =
dl−n+1
x

√
π

(2i)l−n
Hl−n[

kdxx2
2L

]exp[−(
kdxx2
2L

)2]. (2.25)

Now, consider an integration with respect to y,

Iy =

∫
yn1 exp[−(

y21
d2y

− 2ky1ys
i2L

)]dy1, (2.26)

where
1

d2y
=

1

w2
0

− ik

2L
− iq

f 2
, ys = y2 +

2Lqy0
kf 2

. (2.27)

Again using standard integral (Eq. (2.24)), we get

Iy =
dn+1
y

√
π

(2i)n
Hn[

kdyys
2L

]exp[−(
kdyys
2L

)2]. (2.28)

After Substituting Eqs. (2.25) and (2.28) in Eq. (2.21), we obtain

A(x2, y2) =
k

2L(2w0)l

∞∑
q=−∞

iqJq(M/2)exp[
i4πqy20
3w2

f

]exp[−(
x22
w2

x

+
(y2 + by0)

2

w2
y

)]

×exp[
ik

2
(2L+

x22
Rx

+
y22
L

− (y2 + by0)
2

Ry

)]
l∑

n=0

l!sgnn(−i)l−n+1

n!(l − n)!

×dl−n+1
x dn+1

y Hl−n[
kdxx2
2L

]Hn[
kdy(y2 + by0)

2L
], (2.29)

where

zr =
kw2

0

2
, b =

8πLq

3kw2
f

, Rx = L+
z2r
L
,Ry =

L

(1 + b)
[(1 + b)2 + (

L

zr
)2], (2.30)
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wx = w0

√
1 + (

L

zr
)2, wy = w0

√
(1 + b)2 + (

L

zr
)2, (2.31)

dx =
w0√
1− i zr

L

, dy =
w0√

1− i(1 + b) zr
L

. (2.32)

In Eq. (2.29), Hn is the Hermite polynomial of order n. wx, Rx and wy, Ry

are the beam radius and the radius of curvature along the x and y axes respec-

tively. Equation (2.31) shows that the beam radius along the x axis remains

the same for both the orders. However, the beam radius along the y axis being

dependent on q, the order of diffraction, is different for different orders. More-

over, due to the quadratic phase variation in the phase mask, phase shifts will

be different for wavefronts propagating in (+) and (-) diffracted orders [65].

This diffraction order dependence is responsible for different dynamics between

positive and negative diffraction orders. A careful observation of Eq. (2.29)

will show that the vortex becomes elliptical as it propagates under quadratic

phase transformation. It should be noted that if t(y1) in Eq. (2.16) is replaced

by its complex conjugate, positive diffraction orders become negative and vice

versa. However, the respective dynamics remains the same.

Experimental Setup

The experimental setup is shown in Fig. 2.6. We have used an intensity

stabilized He-Ne laser (Spectra-Physics, Model 117A) as the light source. The

screen of the SLM (Holoeye, LCR-2500) is divided into two parts, one for

a forked grating to make vortices and the other for the QPM (wf = 0.61

mm), which is shown in the inset. The grayscale of the QPM represents phase

modulation. By illuminating the part of the SLM that contains the forked

grating with the laser beam, the optical vortex is generated as a diffracted

order in the reflection. A biconvex lens (f = 50 cm) is used to focus the vortex

beam on the other part of the SLM where the QPM is situated. This helps to

create the waist (w0 = 0.35 mm) at the phase mask, i.e., z = 0 with a view

to study the propagation dynamics. The CCD camera (Media Cybernetics,

Evolution VF cooled color camera) is used to capture the images at various
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Figure 2.6: Experimental Setup: BS, beam-splitter; SLM, spatial light modu-
lator; M1, M2, mirrors; CCD, camera; QPM, quadratic space mask; FG, fork
grating.

propagation distances.

Results and Discussion

The propagation dynamics of diffracted vortex beams formed in (+) and (-

) orders are shown in Fig. 2.7 for a negatively charged vortex with l = 2.

At z = 20 cm, diffracted vortices become elliptical in both of the diffraction

orders but with different beam radii. As the distance increases, ellipticity in the

diffracted beams increases, which leads to the formation of secondary vortices

in both the orders. One can see that in the (-) diffraction order, the secondary

vortices form at smaller values of z compared to the (+) diffraction order.

The observed results are due to dependence of wy on the diffraction order,

as shown in Eq.(2.31). In the (-) diffracted order, the diffracted vortex beam

breaks into three intensity components at larger values of z. And the single

charged secondary vortices are seated between the intensity components [66].

Figure 2.8 shows theoretical results for the propagation dynamics of diffracted

vortices both negative and positive orders. Note that the pitchfork hologram

does not produce pure LG modes; rather, it is a superposition of infinite LG

modes [51]. However, as shown by our experiments [60, 61], the first-order
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Figure 2.7: Experimental intensity profiles of negative (first row) and positive
(second row) diffraction order at different distance z.
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z=40 cm z=60 cm z=100 cm

Figure 2.8: Theoretical intensity profiles of negative (first row) and positive
(second row) diffraction order at different distance z.

diffraction will have a dominant mode according to the fork hologram used.

In the present experiment also, although there is a difference in the shape

and size of the spots between the theory and the experiment due to the pres-

ence of other modes, the number of spots characteristically remains the same.

Although the diffraction pattern looks like HG modes obtained through a cylin-

drical lens mode converter (CLMC) [38], unlike CLMC, the QPM does not act

as a mode converter. It transforms primary vortices into secondary vortices

under quadratic phase transformation [66]. The transformation changes the
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Figure 2.9: Experimental intensity profiles of positively (first row) and nega-
tively (second row) charged vortices at distance z = 110 cm.
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Figure 2.10: Theoretical intensity profiles corresponding to experimental in-
tensity profiles in Fig. 2.9

nature of dislocations that depend on the parameters of the input beam as

well as of the phase mask.

Figure 2.9 shows the intensity distribution of the (-) diffracted order gen-

erated from the QPM for different topological charges of the vortex, both

positive and negative, at z = 110 cm, i.e., in the far field. It is observed that

the vortex of charge l breaks into l + 1 intensity components with a certain

orientation. Therefore, by looking at the intensity components, one can easily

recognize the topological charge of the optical vortex beam or the OAM state
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of the beam. The orientation of intensity components flips by 90◦ for a change

in the sign of charge of the vortex. For the positively charged vortex, intensity

components align themselves in the second and fourth quadrant whereas for

the negatively charged vortex, it is in the first and third quadrant, as shown

in Fig. 2.9. We could identify the topological charge along with its sign for

vortices up to l = 10. The corresponding theoretical intensity distributions

obtained from Eq. (2.29), for the same values of the topological charge are

shown in Fig. 2.10. This is in good agreement with the experiment. We have

verified our results with the complex conjugate of the transmittance function

t(y1) as well. It simply replaces positive diffraction orders with negative and

vice versa however, the respective dynamics remains the same.

2.4.2 Measurement of the Orbital Angular Momentum

using Simple Biconvex Lens

In this technique, we have utilized a simple spherical biconvex lens to char-

acterize the sign and the magnitude of charge of the optical vortices. The

optical vortices of different orders are generated using the SLM and propa-

gated through a lens. As the lens rotates around the y1-axis, an lth order

vortex beam breaks into l + 1 intensity spots and their orientation gives the

sign of the topological charge of vortex.

Theory

The complex field distribution of an optical vortex embedded in a Gaussian

beam at z = z1 can be written as (Eq. (1.25)

A(x1, y1, z1) = (x1 + sgn iy1)
l w0

wl+1
exp[−(x21 + y21)

w2
]

×exp[ik
(x21 + y21)

2R
]exp[ikz1 − iψ], (2.33)

where

w = w0

√
1 + (

z1
zr
)2, ψ = tan−1(

z1
zr
), R =

z21 + z2r
z1

.

Now, consider a spherical lens with focal length f , tilted with an angle θ
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along the y1- axis. The phase factor for such a tilted lens is written as [50]

L(x1, y1) = exp[− ik

2f
(x′21 + y′21 )], (2.34)

where (x′1, y
′
1, z

′
1) are the new coordinates for the tilted lens which can be

written in terms of old coordinates (x1, y1, z1),

x′1 = x1cosθ + z1sinθ, y
′
1 = y1, z

′
1 = −x1sinθ + z1cosθ. (2.35)

By substituting Eq. (2.35) into Eq. (2.34), the phase factor of lens becomes,

L(x1, y1) = exp[− ik

2f
((x1cosθ)

2 + (z1sinθ)
2 + 2x1z1cosθsinθ + y21)]. (2.36)

Let the optical vortex beam pass through the tilted spherical lens at z = z1

plane. Therefore, the complex field amplitude at a point (x1, y1) in a plane

transverse to z = z1 can be written as

A1(x1, y1) = A(x1, y1)L(x1, y1). (2.37)

First we put Eq. (2.33) and (2.36) in Eq. (2.37), then putting Eq. (2.37) in

Eq. (2.20), we obtain

A(x2, y2) =
kw0

i2πLwl−1
exp[

ik

2L
(2L2 + x22 + y22)]exp[ikz1 − iψ − ikz21sin

2θ]

2f
]

×
l∑

n=0

(isgn)l−nl!

(n!(l − n)!)

∫∫
xn1y

l−n
1 exp[−(x21 + y21

w2
+
ik(x21 + y21

2R
]

×exp[
−ik
2f

(x21cos
2θ + y21 + 2x1z1sinθcosθ)]

×exp[
ik

2L
((x21 + y21)− 2(x1x2 + y1y2))]dx1dy1. (2.38)

We have used Binomial expansion in above equation. Let us first consider an

integration with respect to x,

Ix =

∫
xn1exp[−(

x21
l2x

− 2kx1x
′
2

i2L
)]dx1, (2.39)

where

1

l2x
=

1

w2
− ik

2R
− ik

2L
+
ikcos2θ

2f
, x′2 = x2 +

Lz1
f

cosθsinθ. (2.40)
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Using standard integral (Eq. (2.24)), we get

Ix =
ln+1
x

√
π

(2i)n
Hn[

klxx
′
2

2L
]exp[−(

klxx
′
2

2L
)2]. (2.41)

Now, consider an integral with respect to y,

Iy =

∫
yl−n
1 exp[−(

y21
l2y

− 2ky1y2
i2L

)]dy1, (2.42)

where
1

w2
y

=
1

w2
− ik

2R
+
ik

2f
− ik

2L
. (2.43)

Again using standard integral (Eq. (2.24)), we obtain

Iy =
ll−n+1
y

√
π

(2i)l−n+1
Hl−n[

klyy2
2L

]exp[−(
klyy2
2L

)2]. (2.44)

After Substituting Eq. (2.41) and (2.44) in Eq (2.38), we get

A2(x2, y2) =
kw0

(2w)l+1L
exp[−(

k

2L
)2((lxx

′
2)

2 + (lyy2)
2)]

×exp[
ik

2L
(x22 + y22)− i(l + 1)ψ]exp[ik(z1 + L− (z1sinθ)

2

2f
)]

×
l∑

n=0

l!sgnn(−i)l−n+1

n!(l − n)!
ln+1
x ll−n+1

y Hn[
k

2L
lxx

′
2]Hl−n[

k

2L
lyy2].

(2.45)

In above equation, Hn is the Hermite polynomial of order n. At θ = 0

i.e. when there is no tilt, there is no change in the input optical vortex. But

as the angle of rotation increases, the phase between two terms of the series

in Eq. (2.45) changes which results into two intensity lobes for l = 1 at the

focus. Similar behavior is observed for higher order vortices also. A vortex

of order l breaks into l + 1 intensity components. The 45o oriented Hermite-

Gaussian (HG) mode will be formed, if phase difference between the successive

terms in Eq. (2.45) becomes zero. However, a small phase difference is always

there for all rotation angles, so no pure HG mode will be formed in our case. It

should be noted that the two cylindrical lens system has been used to convert a

Laguerre-Gaussian (LG) mode containing a vortex into 45◦ oriented HG mode

and vice versa [38].
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Experimental Setup

The experimental setup is shown in Fig. 2.5. The phase masks for vortex

beams of different orders are constructed using computer generated holography

technique and sent to the SLM (Holoeye, LCR-2500) via a computer. The SLM

illuminated by a He-Ne Laser (Spectra-Physics, Model 117A) of wavelength

632.8 nm provides us with the desired vortex. Our experimental proposal is

implemented using a spherical biconvex lens of focal length f = 50 cm. The

vortex beam is passed through the lens and recorded with a CCD camera

(MediaCybernetics, Evolution VF cooled Color Camera) at the focal point of

lens. The lens is kept on a rotation stage (least count of 0.1◦). The rotation is

performed around y1-axis with z1-axis as the optical axis of lens.

Results and Discussion

Figure 2.11 shows the intensity distribution of optical vortex with unit charge

at the focal point of lens for different values of rotation angles. The experi-

mental results displayed in the first row are for positively charged vortex while

the second row for negatively charged. It can be seen that for θ = 0, the

optical vortex remains as it is. At small rotation angles, the optical vortex

becomes elliptical. As we increase the angle, optical vortex starts breaking.

0° 8° 15° 24°

Figure 2.11: Experimental intensity distributions at the focus for the first order
vortex - positively charged (top) and negatively charged (bottom), for different
rotation angles.
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0° 8° 15° 24°

Figure 2.12: Theoretical intensity distributions corresponding to experimental
intensity distributions in Fig. 2.11

At the rotation angle of 15◦ we observe that a single charge vortex breaks into

two parts. The break away parts align themselves either clockwise or counter-

clockwise depending on the sign of topological charge of the vortex. We have

verified experimental results with theoretical calculations using experimental

parameters (w0 = 0.16 mm, z1 = 120 cm and L = 90 cm). The experimental

results are in good agreement with the theoretical results.

We have repeated the process for higher order vortices also. Figure 2.13

shows results for vortices up to fourteenth order, both positive and negative

charge, keeping lens rotation angle as 15◦. By counting the number of peaks

in the intensity distribution one can easily recognize the charge of input vortex

beam, for a vortex of charge l, it was always been found to be l + 1.

The above setup breaks optical vortex into intensity components at the

focal point. As one moves away from the focus the optical vortex reappears.

However, one can use another lens to create magnified image of the intensity

components on a screen. It must be pointed out that a similar break up of

vortices has been observed in the context of lens astigmatism [38,66–68].

The triangular aperture could find the topological charge of optical vortex

upto the eighth order only [52–54]. As the order of vortex increases further, it

becomes difficult to resolve the spots, moreover, there is problem of alignment.

If alignment is not proper then the measurement of intensity spots becomes
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Figure 2.13: Experimental intensity distributions at the focus for vortices of
different topological charges.

+4 +7 +10 +14
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Figure 2.14: Theoretical intensity distributions corresponding to experimental
intensity distributions in Fig. 2.13.

critical. However, in our case it is the misalignment that leads to the formation

of intensity components. If one can generate a higher order vortex then its

charge can be measured by this technique.

We have generated the optical vortices of different orders, both positive and

negative charges, using the SLM. We have given methods to find out the OAM

states of light, using the QPM and a simple biconvex lens. By our techniques

one can measure the sign as well as the magnitude of the OAM states of the

vortices.





Chapter 3

Physics of Photorefractive

Nonlinearity

In 1966 at the Bell Laboratories, when researchers were studying the transmis-

sion of laser beams through Lithium Niobate crystal, it was found that crystal

became “optically damaged” after irradiation by a laser beam. This turned

out to be the spatial variation of index of refraction which caused a distortion

in the wave-front and the effect is now known as photorefractive effect. Two

years later scientists at the same laboratory found that these refractive index

changes are of interest for applications in holographic data storage [7].

Since the first observation of the PR effect, this effect has been found in

many electro-optic materials which includes lithium niobate (LiNbO3), stron-

tium barium niobate (SBN), barium titanate(BaTiO3), potassium niobate

(KNbO3), bismuth silicon oxide (BSO), bismuth germanium oxide (BGO),

and gallium arsenide (GaAs). Apart from these inorganic materials, the PR

effect is observed in organic materials also [69].

In addition to holographic data storage, PR materials also have applica-

tions in two-wave mixing, four-wave mixing, phase conjugation, ring resonator,

optical interconnect, and neural network [7]. The PR materials can be used

for slow as well as fast light generation [70].

In this chapter, we introduce the physics behind the PR nonlinearity. Sec-

tion 1 describes the basics of PR effect. This effect is very well explained by

47



48 Chapter 3. Physics of Photorefractive Nonlinearity

a band transport model, which is discussed in Section 2. The isotropic and

anisotropic approximations are also presented in the same section. Section 3

focuses on refractive index modulation in the PR media.

3.1 Basics of Photorefractive Effect

When PR material is exposed to light beam, free charge carriers are generated

at the rate proportional to an input optical power. These charges move away

from the high intensity region due to diffusion or drift or both, leaving behind

the fixed charges of opposite sign. The free charge carriers are trapped by

ionized impurities at other locations where intensity is low or zero, depositing

their charge as they recombine. The result is the formation of a space charge

field which modulates local refractive index via linear electro-optic effect or

Pockels effect.

Total four basic processes are involved which cause the PR effect in a

medium. These are 1) Photogeneration of charges, 2) Transportation of charges

due to drift or diffusion 3) Trapping of charges and formation of space-charge

field 4) Modulation of index of refraction via electro-optic effect.

3.2 Band Transport Model

Most of the observed properties (e.g. absorption, conductivity, charge carrier

mobility) in a PR medium could be explained by a band transport model de-

veloped by Kukhtarev et al [7,71]. According to this model, in the PR material

there exist impurities or imperfections. All donor impurities are assumed to be

identical and have energy state middle of a bandgap as shown in Fig. 3.1. For

simplicity, one can consider an electron as a sole charge carrier. When light

illuminates on the PR material, the photons are absorbed by these impurities

and photoionization takes place with the emission of electrons. Let ND be

the number density of donor with N i
D being the ionized donor. The rate of

photoionization is proportional to the light intensity It which is the sum of
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Figure 3.1: Band transport model.

light intensities illuminating the medium. The sum includes the intensity of

input light beam Iin, the intensity Ib due to an uniform background light, and

the dark intensity Id due to a thermal effect.

It = Iin + Ib + Id. (3.1)

In all oxide and sillenite PR materials, Id is very small i.e. of the order of

mW/cm2. As the dielectric relaxation time is inversely proportional to the

sum of the optical and the dark intensity, the presence of this dark intensity

without Ib causes very long response time in the PR media. Additional uniform

illumination Ib not only increases the response of PR media but also provides

an additional control over the PR nonlinearity. As Ib � Id, Eq. (3.1) becomes

It ≈ Iin + Ib. (3.2)

The rate of generation of electron due to It is written as

G = s(Iin + Ib)(ND −N i
D), (3.3)

where s is the cross section for photoexcitation. The electrons in a conduc-

tion band can move at some other place where intensity is low or zero and
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trapped by an ionized impurity. Their recombination rate depends on the

electron number density N and ionized donor density N i
D. Hence, the rate of

recombination of electron is

R = γNN i
D. (3.4)

Here, γ is the probability of recombination of electron and ion. Since ions are

fixed but electrons can move in the conduction band, therefore, the rate of

generation of ionized donor can be written as,

∂N i
D

∂t
= s(Iin + Ib)(ND −N i

D)− γNN i
D. (3.5)

The electrons in conduction band can experience three different transport

processes. These process are 1) Diffusion, 2) Drift due to the electric field E,

and 3) Photovoltaic or photogalvanic field. Thus, the resulting current density

is written as

J = Jdrift + Jdiff + Jpv,

= eµNE + µKbT∇N + βph(ND −N i
D)ecIin, (3.6)

where e, µ, T and Kb are the elementary charge, mobility of electron, absolute

temperature and Boltzmann constant respectively. ec denotes the unit vector

along the c-axis of the crystal. The input intensity of light beam is repre-

sented by Iin. βph is the photovoltaic tensor which represents the strength of

photovoltaic field. This tensor has the largest component along the c-axis for

LiNbO3. Therefore, in this thesis work we have chosen polarization of the input

light beam parallel to the c-axis, to utilize maximum value of βph. The c-axis

of the crystal remains parallel to the y-axis, with the z-axis as the propagation

direction of light beam in our coordinate system.

To maintain the charge neutrality, the acceptor impurities must be present

in a PR medium. They are assumed to be ionized and denoted by NA. The

total space charge density can be written as

ρ = e(N i
D −N −NA). (3.7)
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Due to this space charge density, space charge field Esc is formed inside the

PR material. This space charge potential and field must satisfy Gauss law and

continuity equation. Using Gauss law, one can write,

∇(εε0Esc) = ρ = e(N i
D −N −NA), (3.8)

and continuity equation takes form

∂ρ

∂t
= −∇ · J. (3.9)

The space charge field Esc, responsible for change in refractive index in the

PR media, can be calculated using two models - the isotropic model [72] and

the anisotropic model [73]. These models are discussed below.

3.2.1 Isotropic Model

The isotropic model assumes that the change in index of refraction is symmetric

to the propagation axis. Therefore, it is suitable for circularly symmetric

solutions due to a symmetric nature of the change in index of refraction. This

model is best suited for one dimensional (1D) beam propagation. In the two

dimensional (2D) case, it shows results which are in good agreement with

experimental results for short propagation distances only [74].

In this model, following approximation is used

N i
D, NA � N (3.10)

From this approximation one can derive Esc using equations of band transport

model [26,72],

Esc = E0
1

1 + I
− Ep

I

1 + I
(3.11)

where E0 is the applied field, Ep =
βphγNA

eµs
is the photovoltaic field and I =

Iin/Ib is the input intensity normalized by the intensity of background light.

3.2.2 Anisotropic Model

It requires considering an anisotropic model that takes into account nonlocal

response specific to the PR media and could explain the results for 1D as well
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as 2D beam propagation at all distances [73, 75]. In the anisotropic model,

the change in index of refraction is asymmetric. In the present thesis work,

we have studied the propagation of engineered beams through an anisotropic

PR media. As our aim is to study the effect of anisotropy on the propagation

dynamics of these beams, we have used the anisotropic model to explain our

experimental results.

At steady state, the model assumes that ionized acceptors are comparable

with ionized donors i.e. NA = N i
D. With this assumption, Eq. (3.5) can be

written as

N =
sIb
γNA

(ND −NA)(1 + I). (3.12)

The electric field E can be expressed in the terms of potential which consists

of light induced space charge potential and potential due to applied electric

field.

φt = φ− E0y,

∇φt = ∇φ− E0,

E = Esc + E0. (3.13)

In above equations, we have applied the dc electric field externally along the

y-axis i.e. the c-axis of the crystal. The choice of the c-axis is discussed in the

next section.

Now consider continuity equation at steady state

∇ · J = −eµ∇ · (N∇φt) + µKbT∇ · ∇N + βph(ND −NA)∇ · ecIin,

0 = −eµ(N∇2φt +∇φt · ∇N) + µKbT∇2N + βph(ND −NA)
∂Iin
∂y

.

(3.14)

Substituting Eq. (3.12) in Eq. (3.14), we obtain

∇2φt +∇φt · ∇ ln(1 + I) = Ep
∂ ln(1 + I)

∂y
+
KbT

e

∇2(1 + I)

I + I
. (3.15)

Substituting Eq. (3.13) in Eq. (3.15), we get

∇2φ+∇φ · ∇ ln(1 + I) = (E0 + Ep)
∂ ln(1 + I)

∂y
+
KbT

e

∇2(1 + I)

I + I
. (3.16)



3.3. Change in Index of Refraction 53

The last term in Eq. (3.16) is due to diffusion effect that is responsible for the

spatial soliton bending [75]. One can neglect this term and write Eq. (3.16)

as

∇2φ+∇φ · ∇ ln(1 + I) = (E0 + Ep)
∂ ln(1 + I)

∂y
. (3.17)

We have used above equation i.e. Eq. (3.17) through out the thesis work. The

finite difference method is used to solve Eq. (3.17) numerically. This method

is discussed in Appendix B. Once, the space charge potential is known, one

can calculate space charge field from the following expression,

Esc = −∇φ. (3.18)

The space charge field modifies the index of refraction which is discuss in next

section.

3.3 Change in Index of Refraction

There are certain materials in which index of refraction is modified by an

electric field. This effect is called as electro-optic effect [6, 7, 76]. The change

in refractive index depends on two ways,

• If the modified index of refraction is proportional to the strength of the

applied electric field, then it is called as linear electro-optic effect or

Pockels effect.

• If the index of refraction is modified in proportion to the square of the

applied electric field, then it is called as quadratic electro-optic effect or

Kerr effect.

The PR materials are electro-optic in nature. In these materials, a space

charge field is generated in response to the input light beam, which alters the

refractive index via linear electro-optic effect or Pockels effect. Traditionally,

this linear electro-optic effect is written in terms of the change in imperme-

ability tensor

∆ηij = ∆

(
1

n2

)
ij

= rijkEk, (3.19)
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where rijk is the linear electro-optic coefficient. Ek is the component of the

electric field with k = x, y, z and the summation over repeated indices is as-

sumed.

Most of the PR crystals are anisotropic electro-optic crystals having ten-

sorial nature of ε. The rank of this tensor is two and it is written in principal

coordinates as

ε =


εx 0 0

0 εy 0

0 0 εz

 = ε0


n2
x 0 0

0 n2
y 0

0 0 n2
z

 ,

where εx, εy, εz represent the principal dielectric constants, and nx, ny, nz

are the principal indices of refraction. When any two principal indices of

refraction of the crystal are equal then it is called as uniaxial crystal. However,

if all principal indices of refraction are different, then it is termed as biaxial

crystal. The uniaxial crystal has one optic axis whereas biaxial has two optic

axes. When light travels along this axis, there is no change in its polarization.

For the crystal having tetragonal and hexagonal symmetry, the optic axis

coincides to the c-axis of the crystal. We have used lithium niobate (LiNbO3)

and strontium barium niobate (SBN) crystal in our work, both are uniaxial in

nature with hexagonal symmetry.

The electro-optic tensor for SBN and LiNbO3 in contracted notation is

written as

rSBN =



0 0 r13

0 0 r13

0 0 r33

0 r42 0

r42 0 0

0 0 0


, rLiNbO3 =



0 −r22 r13

0 r22 r13

0 0 r33

0 r51 0

r51 0 0

−r22 0 0


.

An input light with polarization perpendicular and parallel to the c-axis, is

termed as an ordinary and extraordinary polarized respectively. The nonlinear

change in index of refraction in both the crystals, for the ordinary polarized
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and the extraordinary polarized light beams, is obtained from Eq. (3.19) and

written as

∆no = −1

2
n3
or13Esc,

∆ne = −1

2
n3
er33Esc. (3.20)

In both the crystals, r33 � r13, therefore we have chosen polarization of an

input beam and applied field along the c-axis of the crystal through out the

thesis. The sign of Esc decides the presence of self-focusing or self-defocusing

nonlinearity in the crystal. Advantage of using external potential is that the

sign of Esc can be controlled by changing the polarity of applied field. In SBN,

there is no photovoltaic field therefore it is easy to control the nonlinearity

by applying a field. However, one has to cancel photovoltaic field in case of

LiNbO3. It should be noted that when external field is absent, LiNbO3 shows

defocusing nonlinearity only.





Chapter 4

Propagation Dynamics of

Diffraction Broadened Beams

We have divided the beams engineered by us into two categories: the beams

which do not diffract while propagation in linear medium i.e. non-diffracting

beams and the beams which show diffraction under the same condition. The

evolution of non-diffracting beams will be considered in the next chapter.

In this chapter, we have studied propagation dynamics of diffraction broad-

ened beams which include HG beams, LG beams, ring lattice beams, dipole

and quadrupole vortex beams. These beams are produced using computer-

generated holography technique as discussed in Chapter 2. The numerical

model described in Chapter 3, Appendix A and B have been used to compare

experimental results for their propagation dynamics in the PR media. The evo-

lution of dipole and quadrupole vortex beams in free space have been examined

experimentally along with their evolution through an analytical expression de-

rived by us. The dipole itself and pair of dipoles in the quadrupole, annihilate

to form crescent kind structure. We have used the Poynting vector to study

the flow of energy in the dipole and quadrupole vortices as they propagate.

The evolution of these beams in a photovoltaic PR medium have also been

studied. It is observed that they form a stable dipole or quadrupole struc-

ture in the PR medium with defocusing nonlinearity unlike their free space

propagation. We have used a LiNbO3 crystal as our PR medium for all the

57



58 Chapter 4. Propagation Dynamics of Diffraction Broadened Beams

experiments mentioned in this chapter. The experimental results are verified

with the numerical simulations.

Since the propagation dynamics of the HG and LG beams are well known

in free space or in a linear medium, we have studied their spatial evolution

through a photovoltaic PR medium. A dark stripe beam is generated by

using HG modes to study its propagation dynamics. Instead of forming dark

soliton, the dark stripe undergoes through instability in a LiNbO3. We have

produced beams with dark rings using LG modes and studied their propagation

through the LiNbO3. We observe that the dark rings, instead of forming

dark ring solitons, break into vortex-antivortex pairs, forming quadrupoles.

The experimental results could be taken as a consequence of modulational

instability during beam propagation that is revealed through our numerical

analysis.

We generate experimentally optical ring lattice structures which are the

superposition of two coaxial LG modes with common waist position and waist

parameter. Some of these beams have rotational dynamics. It is observed that

this dynamics depends on the indices of LG beams which superpose to generate

these structures. We have examined their dynamics through a defocusing

PR medium. It is found that the lattice beams with rotational dynamics

can convert their edge dislocation into a screw dislocation while propagating

through the PR medium. The beams which do not have rotational dynamics

undergo defocusing.

In Section 1, we discus about the dipole and quadrupole vortex beams

along with their spatial evolution in free space and through a defocusing PR

medium. The analytical expression to study free space propagation for these

beams has been derived in the same section. The evolution of dark stripe

beams generated through HG modes is described in Section 2. In Section 3,

we focus on the nonlinear dynamics of dark ring beams generated from the LG

beams. The rotational dynamics of the ring lattice beams in free space and

through the PR medium are presented in Section 4.



4.1. Dipole and Quadrupole Vortex Beams 59

4.1 Dipole and Quadrupole Vortex Beams

The optical vortex is the singularity in a light field having phase variation from

0 to 2πl (l is the topological charge) within the period of λ (λ is the wavelength

of light) [32]. This singularity can be embedded in a Gaussian beam using a

phase mask. The evolved light beam has helical wavefront that causes orbital

angular momentum to this beam [33]. The helical wavefront is twisted in a

clock-wise or an anticlockwise sense which is decided by the sign of vortex

i.e. sign of the topological charge. The unique behavior of the vortex results

in a variety of its applications in the fields of optical tweezing [34], optical

communication [35], as well as in quantum information [36].

The nonlinear dynamics of optical vortex through the PR media is well

studied. It is observed that the vortex beam with high topological charge

decays into unit charges in the PR media with defocusing nonlinearity [77,78].

The time evolution of the optical vortex shows charge-dependent stretching

and rotation in the PR medium [79]. The propagation of the optical vortex

in lithium niobate is also influenced by the propagation direction and the

polarization of the input beam [80].

One can incorporate a number of vortices in a single host beam to study

their dynamics [81–87]. Indebetouw [81] have theoretically investigated the

propagation dynamics of an array of vortices embedded in a Gaussian beam.

The opposite charges annihilate each other whereas same charge vortices just

rotate around the axis of beam. A pair of two oppositely charge vortices embed-

ded in the Gaussian host beam form an optical vortex dipole. The propagation

of such a vortex dipole have been studied in both linear [81–86] and nonlinear

media [87]. In the linear media, the vortices of dipole annihilate each other

during the propagation. This leads to the formation of crescent like structure.

However, they remain separated depending upon the strength of nonlinear-

ity in a defocusing PR medium [87]. This is true only if the line joining the

two vortices in the dipole is perpendicular to the applied field which induces

nonlinearity. Otherwise they follow the dynamics similar to the linear regime.
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For a quadrupole, each vortex has nearest neighbor with opposite sign of the

topological charge, thus having dipole distribution in the transverse directions.

Such a quadrupole can be generated by a linearly polarized Gaussian beam

propagating along the optic axis or the c-axis of the uniaxial crystal [88,89] or

through the computer-generated holography technique.

It is observed that the stable dipoles are formed when dark stripe under-

goes to snake instability in the PR media [90, 91]. It is also found recently

that the dark rings generated from LG modes form quadrupole vortex while

propagating through the PR media [92]. These results suggest that the dipole

and quadrupole may be the solution of nonlinear paraxial wave equation with

PR nonlinearity.

In this work we have studied propagation of quadrupole and dipole vortices

in free space as well as through a photovoltaic PR medium. We generate these

vortex beams using computer generated hologram (CGH). The dipole and the

quadrupole vortices are observed to be unstable in free space and form crescent

kind of structures. We have verified our experimental results with theoretical

results from exact analytical expression. The energy flow during propagation

of these beams are plotted by using Poynting vector.

To study their nonlinear propagation dynamics we have used a LiNbO3 crystal

as a PR medium. In the linear regime, the dipole and the quadrupole vortices

are observed to be unstable. However, we have observed that they become sta-

ble in the PR crystal for a particular orientation of the dipole or quadrupole

in an input Gaussian host beam. It is seen that the formation of stable dipole

as well as quadrupole in the nonlinear medium is decided by the formation of

crescent structure in its linear counterpart.

4.1.1 Linear Dynamics

Theory

The optical dipole with the vortices separated by a distance “a” from beam

axis has complex field amplitude at z = 0

A0(x1, y1) =

(
x1 + a+ iy1

w0

)(
x1 − a− iy1

w0

)
exp[−(x21 + y21)

w2
0

], (4.1)



4.1. Dipole and Quadrupole Vortex Beams 61

where w0 is the beam radius of Gaussian host beam at z = 0. After simplifi-

cation one can write above equation as

A0(x1, y1) =

(
x21 + (y1 − ia)2

w2
0

)
exp[−(x21 + y21)

w2
0

]. (4.2)

The field distribution at a distance z = L from the z = 0 can be calculated

using Fresnel diffraction integral (Eq. (1.35)),

A(x2, y2) =
k

i2πL
exp[

ik

2L
(2L2 + x22 + y22)]

∫∫
A0(x1, y1)

×exp[
ik

2L
((x21 + y21)− 2(x1x2 + y1y2))]dx1dy1. (4.3)

After substituting Eq. (4.2) in Eq. (4.3), we get

A(x2, y2) =
k

i2πLw2
0

exp[
ik

2L
(2L2 + x22 + y22)](Ia + Ib), (4.4)

where

Ia =

∫
x21exp[−

x21
w2

0

+
ik

2L
x21 −

ik

L
x1x2]dx1

×
∫

exp[− y21
w2

0

+
ik

2L
y21 −

ik

L
y1y2]dy1,

Ib =

∫
exp[− x21

w2
0

+
ik

2L
x21 −

ik

L
x1x2]dx1

×
∫

(y1 − ia)2exp[− y21
w2

0

+
ik

2L
y21 −

ik

L
y1y2]dy1. (4.5)

Using standard integral (Eq. (2.24)), we get

Ia = −d
3
√
π

4
H2[

kdx2
2L

]exp[−(
kd

2L
)2(x22 + y22)].

Ib = −d
3
√
π

4
H2[

a

d
+
kdx2
2L

]exp[−(
kd

2L
)2(x22 + y22)], (4.6)

where

d =
w0√

1− i
kw2

0

2L

.

Substituting Eqs. (4.6) in Eq. (4.4), we obtain

A(x2, y2, L) =
ikd3

8πLw2
0

exp[ikL+
k

2R
(x22 + y22)]exp[−

x2 + y2
w2

]

×
(
H2[

kdx2
2L

] +H2[
a

d
+
kdy2
2L

]

)
, (4.7)
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where

R = L+
z2r
L
,w = w0

√
1 + (

L

zr
)2, zr =

kw2
0

2
.

In above equations, Hn is the Hermite polynomial of order n. w and R are

the beam radius and the radius of curvature respectively which represent the

Gaussian beam parameters. The propagation dynamics of dipole vortex in free

space can be calculated by using (Eq. (4.7)) which is the mathematical expres-

sion for dipole vortex. The last term in the parentheses contains dipole vortex

field with the Guoy phase whereas remaining terms belong to the Gaussian

beam field.

The quadrupole with the vortices separated from each other by a distance

“2a” has complex field amplitude at z = 0

A0(x1, y1) = ((x1 + a) + i(y1 + a))((x1 − a) + i(y1 − a))((x1 − a)− i(y1 + a))

×((x1 + a)− i(y1 − a))
exp[− (x2

1+y21)

w2
0

]

w4
0

.

=
(
(x41 + 2x21y

2
1 + y41)− 2a2i(x21 − y21)− 4a4

) exp[− (x2
1+y21)

w2
0

]

w4
0

. (4.8)

After substituting Eq. (4.8) in Eq. (4.3), we get

A(x2, y2) =
k

i2πLw4
0

exp[
ik

2L
(2L2 + x22 + y22)]

×(I1 + 2I2 + I3 − 2a2i(Ia − I4)− 4a4I5), (4.9)

where

I1 =

∫
x41exp[−

x21
w2

0

+
ik

2L
x21 −

ik

L
x1x2]dx1

∫
exp[− y21

w2
0

+
ik

2L
y21 −

ik

L
y1y2]dy1,

I2 =

∫
x21exp[−

x21
w2

0

+
ik

2L
x21 −

ik

L
x1x2]dx1

∫
y21exp[−

y21
w2

0

+
ik

2L
y21 −

ik

L
y1y2]dy1,

I3 =

∫
exp[− x21

w2
0

+
ik

2L
x21 −

ik

L
x1x2]dx1

∫
y41exp[−

y21
w2

0

+
ik

2L
y21 −

ik

L
y1y2]dy1,

I4 =

∫
exp[− x21

w2
0

+
ik

2L
x21 −

ik

L
x1x2]dx1

∫
y21exp[−

y21
w2

0

+
ik

2L
y21 −

ik

L
y1y2]dy1,

I5 =

∫
exp[− x21

w2
0

+
ik

2L
x21 −

ik

L
x1x2]dx1

∫
exp[− y21

w2
0

+
ik

2L
y21 −

ik

L
y1y2]dy1.

(4.10)
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Using standard integral (Eq. (2.24)), we obtain

I1 = −d
6π

24
H4[

kdx2
2L

]exp[−(
kd

2L
)2(x22 + y22)],

I2 = −d
6π

24
H2[

kdx2
2L

]H2[
kdy2
2L

]exp[−(
kd

2L
)2(x22 + y22)],

I3 = −d
6π

24
H2[

kdy2
2L

]exp[−(
kd

2L
)2(x22 + y22)],

I4 = −d
3
√
π

4
H2[

kdy2
2L

]exp[−(
kd

2L
)2(x22 + y22)],

I5 = −d
6π

24
exp[−(

kd

2L
)2(x22 + y22)]. (4.11)

Substituting Eqs. (4.11) in Eq. (4.9), we obtain

A(x2, y2) =
−ik
2Lw4

0

exp[ikL+
k

2R
(x22 + y22)]exp[−

x2 + y2
w2

]

×(
d6

24
(H4[

kdx2
2L

] +H4[
kdy2
2L

] + 2H2[
kdx2
2L

]H2[
kdy2
2L

])

+ia2d4(H2[
kdx2
2L

]−H2[
kdy2
2L

])− 4d2a4). (4.12)

This is an expression for the quadrupole vortex. The propagation dynamics of

quadrupole vortex in free space can be calculated by this expression. Again

the last term in the parentheses contains quadrupole field with the Guoy phase

whereas remaining terms stand for a Gaussian beam field in Eq. (4.12).

The formation of crescent structures in dipole and quadrupole can be under-

stood by monitoring energy flow of the field during propagation. The Poynting

vector indicating the energy flow of the optical field is defined as [47]

S = Sz + S⊥ =
1

2η0
[|u|2ẑ + i

2k
[u∇⊥u

∗ − u∗∇⊥u]], (4.13)

where η0 =
√
µ0/ε0 is the impedance of free space. Sz and S⊥ are the longi-

tudinal and transverse components of the Poynting vector.

Experiment

Figure 4.1 shows the experimental setup. We generate CGHs for the dipole

and the quadrupole vortex beams with different configuration of vortices. The

CGHs are sent to an SLM interfaced with computer. We have used an intensity

stabilized He-Ne laser (Spectra-Physics, Model 117A) having wavelength 632.8
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Figure 4.1: Experimental Setup. L, laser; BS1, beam-splitter; SLM, spatial
light modulator; P, Polarizer; L1, Fourier lens; L2, imaging lens; and CCD,
camera.

nm. After illuminating the SLM with laser, the desired beam is generated in

the first diffracted order. As this beam propagates in free space, the opposite

charges annihilate each other to form a crescent at the far field. We use Fourier

transform property of a lens (focal length f = 50 cm) to generate dipole or

quadrupole at the focus from this crescent structure. We assume this focus

point as the z = 0. The waist size of Gaussian beam at this focus point is

0.15 mm. The CCD camera (MediaCybernetics, Evolution VF cooled Color

Camera) and imaging lens is used to grab the images at different propagation

distances.

Results and Discussion

Let us consider the propagation of dipole vortex beam in free space. The

vortices of dipole are separated from the beam axis by a distance of w0/2 i.e.

a = w0/2. The experimental intensity distributions at different propagation

distances are shown in Fig 4.2. At z = 0 cm, the dipole has two vortices

of opposite sign. As the beam propagates, both the vortex cores undergo a

natural diffraction as seen at z = 5 cm. Consequently, both vortices come

closer to each other and annihilate that leads to a dark region sandwiched

between the two bright lobes. At z = 15 cm, the dark region forms a crescent

structure.

To explain the formation of crescent from the dipole vortex beam, we have

plotted theoretical intensity profiles at different propagation distances using
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z=0 cm

100 µ m

z=5 cm

z=10 cm z=15 cm

Figure 4.2: Experimental propagation dynamics of dipole vortex.

Eq. (4.7) in Fig. 4.3. The arrows in figure are Poynting vectors which represent

flow of energy. At z = 0 cm, Poynting vectors curl around the center of the

vortices. This implies that left vortex rotates in an anticlockwise sense whereas

right has a clockwise sense of rotation. Due to this rotation, the energy of

the system moves away from the center and creates an expanded region of

darkness as the beam propagates that can be seen in Fig. 4.3 at z = 10 cm.

This darkness forms a crescent structure.

The similar measurements have been done by reversing the sign of vortices

in dipole. One can do this by taking complex conjugate of the Eq. (4.1).

Here, left vortex rotates in a clockwise sense whereas right has an anticlockwise

sense of rotation. This is exactly opposite to the previous case. Therefore, the

crescent structure is formed at upper side instead of lower side in a free space
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z=0 cm

100 µ m

z=5 cm

z=10 cm z=15 cm

Figure 4.3: Theoretical propagation dynamics of dipole vortex.

propagation.

Now consider the case of quadrupole vortex. Any vortex in this system

is separated from its nearest neighbor by a distance of w0. The experimental

results on the propagation dynamics of this quadrupole are shown in Fig.

4.4. The quadrupole shown at distance z=0 cm, undergoes to diffraction as it

propagates. At distance z=5 cm, the vortices belonging to the first and the

second quadrant as well as the vortices belonging to the third and the fourth

quadrant approach each other. This leads to the annihilation of these vortices

to form two crescents on the lower and the upper side as shown at distance

z=15 cm.

The theoretical intensity profiles plotted from analytical expression for

quadrupole with Poynting vectors are shown in Fig. 4.5. The energy of the
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z=15 cmz=10 cm

z=5 cmz=0 cm

100 µ m

Figure 4.4: Experimental propagation dynamics of quadrupole vortex.

vortices in the first and the third quadrant curl around the center of vortex

in a clockwise sense, whereas in an anticlockwise sense for the vortices in the

second and the fourth quadrant. As the beam propagates, energy concentrates

along the x-axis at the center, lower and upper borders of the beam as seen

at z =5 cm. At z=10 cm, this creates darkness at the sandwiched regions

between the center, lower and upper border of the beam. These regions of

darkness form two crescents as seen at z=15 cm.

We also study the case in which the quadrupole shown in Fig. 4.4 are

rotated by 90◦. This is equivalent to inversion of the sign of vortices, which can

be done by taking complex conjugate of the Eq. (4.8). In this case, the vortices

in the first and the third quadrant rotate in an anticlockwise sense, whereas

the vortices in the second and the fourth quadrant rotate in a clockwise sense.
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z=10 cm z=15 cm

z=5 cmz=0 cm

100 µ m

Figure 4.5: Theoretical propagation dynamics of quadrupole vortex.

Therefore, the crescent structure is generated at left and right sides instead

of upper and lower sides. Since each vortex of the quadrupole has its nearest

neighbor with opposite sign, vortex can annihilate with any one of its neighbor.

However, the above results show that the annihilation of vortices take place

according to the flow of energy.

Conclusion

In conclusion, we have studied the propagation dynamics of vortex dipole

and quadrupole in free space. It is observed, both theoretically as well as

experimentally, that dipole and quadrupole annihilate to form crescents while

propagating. This annihilation can be explained by analyzing the flow of

energy obtained with the help of Poynting vector. Our results show that the
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annihilation of vortices is governed by internal flow of energy associated with

the individual vortex.

4.1.2 Nonlinear Dynamics

Numerical Model

We have already discussed about numerical model for beam propagation through

the PR media in the last chapter. Here, we again briefly introduce it for com-

pleteness.

The spatial evolution of optical beam with field distribution A(x, y) inside

the PR medium can be calculated by solving the nonlinear PWE in normalized

form (Eq. 1.17),

∂A(x, y)

∂z
=
i

2
∇2A(x, y) + in0k

2
0w

2
0∆nA(x, y), (4.14)

where ∆n is the change in index of refraction, written as

∆n =
1

2
n3
0reff

∂φ

∂y
. (4.15)

Here, k0 is the wave number of light in free space and w0 is the beam waist size.

n0 and reff are the refractive index in the absence of light and the effective

electro-optic coefficient of the PR material respectively. The transverse coor-

dinates x, y are scaled by w0 whereas the propagation coordinate z is scaled by

the diffraction length k0n0w
2
0. The space charge potential φ can be calculated

by using following potential equation (Eq. 3.17)

∇2φ+∇φ∇[ln(1 + I)] = (E0 + Ep)
∂ln(1 + I)

∂y
. (4.16)

In the above equation, Ep is the photovoltaic field and I is the intensity of

input beam, which is normalized by the background illumination. We have

kept applied electric field E0 equal to zero throughout the present chapter.

We have used LiNbO3 crystal in all experiments mentioned in this chapter.

For LiNbO3 , n0 = 2.2, reff=32 pV/m, and Ep =-27 kV/cm. Equations (4.14)

and (4.16) are solved by the split-step Fourier transform method and the finite
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difference method which are explained in the Appendix A and B respectively.

Experiment

Figure 4.6 shows the experimental setup. The generation of dipole and quadrupole

vortex beams are similar to the free space. The LiNbO3 crystal (20 x 20 x 20

mm, 0.1% Fe-doped) is placed at the focus of the lens. The CCD camera

(MediaCybernetics, Evolution VF cooled Color Camera) and imaging lens are

used to grab the images at the back surface of the crystal. The extra beam

Figure 4.6: Experimental Setup. L, laser; BS1, BS2, beam-splitter; SLM,
spatial light modulator; P, Polarizer; L1, Fourier lens; L2, imaging lens; M1,
M2, mirror; PR, photorefractive crystal; W, white light source and CCD,
camera.

from mirror is used for an interferometry. The polarization of the input light

beam is kept along the c-axis of the crystal using a polarizer. This configura-

tion induces a photovoltaic current and field along the c-axis. A white light

source is used for background illumination.

Results and Discussion

We first propagate a dipole vortex beam through the PR crystal. Consider

the case in which the line joining a pair of vortices is along the x-axis. The

complex field distribution of such a dipole at the input of PR medium is given

by

A(x, y, z = 0) =
√
Im(x+ 0.5 + iy)(x− 0.5− iy)exp[−(x2 + y2)], (4.17)
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TheoreticalTheoreticalExperimentalExperimental

20 µm

Figure 4.7: Input intensity profiles of dipole with line joining the pair oriented
along the x-axis (first and third column) and corresponding interferograms
(second and fourth column).

With NonlinearityWithout NonlinearityWith NonlinearityWithout Nonlinearity

50 µm

Figure 4.8: Experimental (first and second column) and numerical (third and
fourth column) intensity profiles at back surface of the crystal for the dipole
shown in Fig. 4.7 as an input beam (first row) and corresponding interfero-
grams (second row).

where Im is the normalized peak intensity having value 0.5 in our experiments.

The vortices of dipole are separated by a normalized distance of unit beam

waist. By interfering the field given by Eq. (4.17) with tilted plane wave,

we have generated CGH that produces the dipole. The experimental and

the theoretical intensity distributions produced at the input of the crystal are

shown in Fig. 4.7 along with their interferograms.

Figure 4.8 shows the experimental and the numerical results for the prop-

agation of above mentioned dipole through a PR medium, at the back surface

of the crystal. In the absence of nonlinearity, left vortex rotates in a clockwise
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sense whereas right with an anticlockwise sense of rotation. Because of this,

both vortices come closer to each other and annihilate that creates a dark

region sandwiched between two bright lobes. The dark region has a crescent

kind of structure. The interference pattern shows that the two bright lobes

have a phase shift of π. There is no indication for the presence of vortex. As

the dipole propagates inside the crystal, it generates space charge field which

increases the nonlinearity of the crystal with time. At steady state, this non-

linearity forces the crescent to form two separate vortices with opposite sign.

The presence of vortices are confirmed through the fork pattern observed in

the interferograms shown in Fig. 4.8. The experimental results are in good

agreement with the numerical results.

We also make measurements by reversing the sign of vortices in a dipole.

One can do this by taking complex conjugate of the Eq. (4.17). Here, left

vortex rotates in an anticlockwise sense whereas right has a clockwise sense

of rotation. This is exactly opposite to the previous case. Therefore, the

crescent structure is formed at upper side instead of lower side in the absence of

nonlinearity. Once again two vortices are formed in the presence of nonlinearity

at the steady state.

We have studied propagation of a dipole in which line joining a pair of

vortices is along the y-axis as well. The complex field distribution of such a

dipole at the input of PR medium can be written as,

A(x, y, z = 0) =
√
Im(x+ i(y + 0.5))(x− i(y − 0.5))exp[−(x2 + y2)]. (4.18)

Figure 4.9 shows experimental and theoretical intensity distributions at

the input of the crystal along with their interferograms. The corresponding

experimental and numerical intensity profiles with interferograms at the back

surface of the crystal are shown in Fig. 4.10. The pair of charges annihilate

and form crescent structure when the nonlinearity is absent. This structure

undergoes self-defocusing in the presence of nonlinearity. However, the charges

instead of remaining separated lose their sign unlike the previous case. This is

confirmed by interferograms shown in Fig. 4.10. The interferogram shows π
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Theoretical TheoreticalExperimentalExperimental

20 µm

Figure 4.9: Input intensity profiles of dipole with line joining the pair oriented
along the y-axis (first and third column) and corresponding interferograms
(second and fourth column).

Without Nonlinearity

50 µm

With Nonlinearity Without Nonlinearity With Nonlinearity

Figure 4.10: Experimental (first and second column) and numerical (third
and fourth column) intensity profiles at back surface of the crystal for the
dipole shown in Fig. 4.9 as an input beam (first row) and corresponding
interferograms (second row).

phase shift between the two intensity lobes and no fork pattern. The observed

experimental results are verified by numerical results.

Above results indicate that the formation of stable dipole in a PR medium

depends on its behavior in the absence of nonlinearity. When crescent is formed

perpendicular to the photovoltaic field then vortices remain separated, how-

ever, for the field being parallel, they loose their sign. The dipole dynamics

is observed to remain unaffected by the exchange of vortex with its complex

conjugate.

Now consider the case of the quadrupole vortex. The complex field distri-
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bution of quadrupole at the input of PR medium is given by

A(x, y, z = 0) =
√
Im((x+ 0.5) + i(y + 0.5))((x− 0.5) + i(y − 0.5))

×((x+ 0.5)− i(y − 0.5))((x− 0.5)− i(y + 0.5))

×exp[−(x2 + y2)]. (4.19)

The experimental and theoretical intensity distributions at the input of the

crystal with their interferograms are shown in Fig. 4.11. Here, each vortex

is separated from its nearest neighbor by a normalized distance equal to unit

beam waist i.e. the beam waist of a Gaussian host beam.

Experimental

20 µm

Experimental Theoretical Theoretical

Figure 4.11: Input intensity profiles of quadrupole (first and third column)
and corresponding interferograms (second and fourth column).

Without Nonlinearity

50 µm

With Nonlinearity Without Nonlinearity With Nonlinearity

Figure 4.12: Experimental (first and second column) and numerical (third and
fourth column) intensity profiles at back surface of the crystal for quadrupole
(first row) and corresponding interferograms (second row).
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The experimental and numerical results after the propagation of quadrupole

through the PR crystal are shown in Fig. 4.12. In the absence of nonlinearity,

the vortices in the first and the third quadrant rotate in a clockwise sense,

whereas the vortices in the second and the fourth quadrant rotate in an anti-

clockwise sense. Therefore, the vortices belonging to the first and the second

quadrant come closer and annihilate to form crescent on the upper side. Sim-

ilarly, the vortices belonging to the third and the fourth quadrant approach

each other and annihilate to form crescent on the lower side. In the presence

of field, induced nonlinearity creates two separate vortices from each crescent.

Thus, a stable quadrupole is generated at the steady state. The presence of

vortices are confirmed through the interferograms shown in Fig. 4.12.

One can form a quadrupole by reversing the sign of vortices as well, which

can be done by taking complex conjugate of the Eq. (4.19). This is equivalent

to rotation of the quadrupole shown in Fig. 4.11 by 90◦. In this case, the

vortices in the first and the third quadrant rotate in an anticlockwise sense,

whereas the vortices in the second and the fourth quadrant rotate in a clockwise

sense in the absence of nonlinearity. Therefore, the crescent structure is formed

With NonlinearityWithout NonlinearityWith NonlinearityWithout Nonlinearity

50 µm

Figure 4.13: Experimental (first and second column) and numerical (third and
fourth column) intensity profiles at back surface of the crystal for complex
conjugated quadrupole (first row) and corresponding interferograms (second
row).



76 Chapter 4. Propagation Dynamics of Diffraction Broadened Beams

at left and right sides instead of upper and lower sides. Here, crescents are

parallel to the direction of photovoltaic field of the nonlinear crystal. In the

presence of the nonlinearity, both the crescents merge with each other due to

the defocusing and produce an elliptical dark ring at the steady state. This is

shown experimentally and numerically in Fig. 4.13.

The results show that the exchange of vortices with their complex conju-

gates in a quadrupole will change the orientation of crescents. Therefore, it

will affect the dynamics of vortices unlike vortex dipole. For crescents being

perpendicular to the photovoltaic field, one obtains a stable quadrupole struc-

ture while an elliptical dark ring is observed for crescents being parallel to the

field.

Conclusion

In conclusion, we have studied the orientation dependent propagation of the

dipole and the quadrupole through a photovoltaic PR medium with defocusing

nonlinearity. The formation of stable dipole as well as quadrupole in the PR

medium is decided by the orientation of crescent structure formed in the linear

regime. There is a stable dipole or quadrupole formation if the crescent formed

without nonlinearity is perpendicular to the photovoltaic field of the nonlinear

crystal. Our results demonstrate that the dipole and the quadrupole are the

solutions of nonlinear PWE with the defocusing PR nonlinearity.

4.2 Hermite-Gaussian Beams

Since the last two decades, the self-focusing and self-defocusing nonlinearity

are used to generate bright and dark soliton in the PR materials respectively.

The dark soliton is formed through the propagation of dark band or notch

embedded in a uniform background light through the PR media. Two types

of dark solitons are observed in the PR media, 1) Dark screening solitons [30]

and 2) Dark photovoltaic solitons [24]. These solitons can be used to form X

and Y junctions waveguides [18].
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However, dark solitons are observed to be unstable. They go under the

transverse instability during propagation. This instability leads to formation

of optical vortices, a phase singularity in the light field [90,91]. It was proposed

that the transverse instability can be suppressed by bending the dark stripe

to form a dark ring [18,93]. We will study propagation of the dark ring beam

in the next section.

In this work, we have generated dark stripe or band using HG modes. The

HG modes contain dark stripes with π phase jump which act as edge dislo-

cations. We have studied propagation of these stripes through the defocusing

PR media.

Numerical Model

To study propagation of dark stripe through a photovoltaic PR medium, we

have used an HG mode having complex field distribution

A(x, y, z = 0) =
√
Imexp[−(x2 + y2)]Hm[

√
2x]Hn[

√
2y], (4.20)

where, Im is the peak intensity normalized by the background illumination.

We have used numerical model as explained in Section (4.1.2) to study the

propagation of field given by Eq. (4.20).

Experiment

The experimental setup is shown in Fig. 4.6. We have done same experiment

as mentioned in the last section (4.1.2) by replacing a CGH of dipole vortex

with the CGH of HG beam.

Results and Discussion

Figure 4.14 shows experimental observation of nonlinear propagation of dark

stripe beam generated from HG beam with m=0 and n=1. In this case, the

dark stripe is perpendicular to the y-axis i.e. the c-axis of the crystal. In the

absence of nonlinearity, the beam diffracts naturally. As the beam propagates,

a space charge field starts to build up with time and at steady state it forms
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Output

With Nonlinearity

Output

Without Nonlinearity

Input

100 µm

Figure 4.14: Experimental propagation dynamics of HG beam with m=0 and
n=1

Input

100 µm

Output

Without Nonlinearity

Output

With Nonlinearity

Figure 4.15: Numerical propagation dynamics corresponds to Fig. 4.14

a strong nonlinearity. Two lobes of the HG beam get defocused due to this

nonlinearity, which leads to the self focusing of the dark stripe sandwiched

between them, and develops transverse instability, consequently [90, 91]. The

radiated waves formed over the bright lobes due to instability, decay while

propagating away from the center. It seems that the dark stripe looses its

energy in the form of these radiated waves. However, we could not observe

any sign of vortices unlike for the case of dark stripe generated from glass

slides [24]. The observed experimental results match with numerical results.

Now we consider the case of HG beam with m=1 and n=0. In this case,

the dark stripe is parallel to the c-axis of the crystal. The experimental results

for this beam propagation through the PR crystal are shown in Fig. 4.16. In

the absence of nonlinearity, the beam diffracts naturally. In the presence

of nonlinearity, two lobes of the HG beam are defocused along the c-axis,

therefore, there is no self-focusing of the dark stripe. The experimental results

are verified numerically.
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Input

100 µm

Output

Without Nonlinearity

Output

With Nonlinearity

Figure 4.16: Experimental propagation dynamics of HG beam with m=1 and
n=0

Output

With Nonlinearity

Output

Without Nonlinearity

Input

100 µm

Figure 4.17: Numerical propagation dynamics corresponds to Fig. 4.16

Conclusion

We conclude that when a dark stripe beam produced from an HG beam is

perpendicular to the c-axis of the crystal, the radiated waves are formed over

the bright lobes due to instability, however, they decay while propagating away

from the center.

4.3 Laguerre-Gaussian Beams

An optical dark ring beam forms a ring dark soliton, which is a special class

of the dark solitons, while propagating through Kerr media [93–95]. The con-

cept of ring dark solitons has also been studied in Bose-Einstein condensates

(BECs), where they split into cluster of vortex pairs [96]. Recently, a compar-

ative numerical study has been made on the dynamics of ring dark solitons in

BECs and nonlinear optics [97].

In the present work, instead of Kerr media, we have taken a photovoltaic
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photorefractive (PR) medium with defocusing nonlinearity. It is observed that

the dark ring undergoes a modulation instability called snake instability as it

propagates through the PR medium. Unlike forming a dark soliton in the case

of Kerr media, this instability leads to formation of a quadrupole that remains

stable while propagating through the PR medium.

We generate dark rings using LG modes since LG beams contain dark

rings in their intensity profiles with a π phase jump, which are defined by the

radial index p. In addition, they have a twist of 2πl in their wavefront due

to azimuthal phase term exp[ilφ]. The azimuthal index l is called topological

charge of the beam. The twist generates screw dislocation, while the π phase

jump generates edge dislocation. Thus, LG beams have the advantage that

one can obtain dark rings with and without topological charge.

We construct the LG beams with different radial and azimuthal indices

by using a computer generated hologram (CGH). We observe that the LG

beam with zero topological charge gains topological charge in the form of a

quadrupole, while propagating through the lithium niobate crystal [92]. It is

observed that the LG beam with unit topological charge breaks to form a pair

of bright lobes, whereas the beam with high topological charge decays into unit

charges in the PR medium with defocusing nonlinearity [77,87]. However, the

breakup of a single charge vortex can be suppressed by the hybrid nonlinearity

that is generated using nonconventional biasing in the PR medium [78].

Numerical Model

To study propagation of a dark ring through a photovoltaic PR medium, we

have used a LG mode having complex field distribution

A(x, y) =
√
Im(

√
2(x2 + y2))lexp[−(x2 + y2)]exp[ilθ]Ll

p[2(x
2 + y2)], (4.21)

at the input of the PR medium. In Eq. (4.21) θ = arctan(y/x), Ll
p is the

associated Laguerre polynomial and Im is the initial peak intensity.

Figure 4.18 shows spatial dynamics of an LG beam having a single dark ring

(p = 1 and l = 0) through the photovoltaic PR media with w0= 26 µm, Im=



4.3. Laguerre-Gaussian Beams 81

z = 0 mm

50 µm

z = 0 mm

z = 2 mm

z = 2 mm

z = 4 mm

z = 4 mm

z = 20 mm

z = 20 mm

z = 10 mm

z = 10 mm

z = 6 mm

z = 6 mm

Figure 4.18: Numerical intensity distributions (first and second row) and cor-
responding interferograms (third and fourth row) at different propagation dis-
tances for LG beam with p = 1 and l = 0.

1 and Ep= -27 kV/cm. As the beam propagates, both the center lobe and the

bright ring experience self-defocusing, consequently the sandwiched dark ring

goes through self-focusing. Since the crystal is anisotropic, the self-focusing of

the ring occurs asymmetrically. The self-focusing is more along the c-axis (y-
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axis in our case), as seen in the image at z = 2 mm (Fig. 4.18). The radiated

waves can be seen over the bright ring at z = 2 and 4 mm, which decay while

propagating away from the center. A similar decay is observed for the case of

a dark stripe beam [90, 91]. As the beam propagates, two vortex-antivortex

pairs are generated along the c-axis to form a quadrupole that diffracts with

distance. The above results show that the single edge dislocation of the dark

ring converts into multiple screw dislocations in the form of quadrupole as the

beam propagates in the PR material.

Experiment

The experimental setup is shown in Fig. 4.6. In the current experiment, we

have generated LG beams instead of dipole vortex.

Results and Discussion

Figure 4.19 shows experimental and numerical results for propagation of the

dark ring, the LG beam with unit radial index, through the PR crystal. In the

absence of nonlinearity, there is a natural diffraction for the input dark ring.

With NonlinearityWithout NonlinearityWith NonlinearityWithout Nonlinearity

50 µm

Figure 4.19: Experimental (first and second column) and numerical (third and
fourth column) intensity profiles at back surface of the crystal for LG beam
with p = 1 and l = 0 (first row) and corresponding interferograms (second
row).
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As the beam propagates, a space charge field starts to build up with time,

which increases the nonlinearity of the crystal. The center lobe and the bright

ring of the LG beam are defocused by the generated field that leads to the

self-focusing of the dark ring. However, instead of forming a dark ring soliton,

it evolves into vortex-antivortex pairs, forming a quadrupole.

This kind of quadrupole generation has been observed in uniaxial crystals,

for a linearly polarized Gaussian beam propagating along the optic axis or

the c-axis [88, 89]. However, in our case, we have sent the LG beam with

a single dark ring perpendicular to the c axis. It should be noted that the

cause of formation of the quadrupole is different in the two cases. In our

case, it is the defocusing nonlinearity, while it is polarization singularities in

the case of uniaxial crystals. The presence of vortices are confirmed through

the interferograms shown in Fig. 4.19. The experimental results are in good

agreement with the numerical results.

We have studied the propagation of an LG beam with two dark rings, p = 2,

as well. The intensity profiles and the interferograms at the back face of the

crystal are shown in Fig. 4.20. At steady state, one observes four vortex and

With NonlinearityWithout NonlinearityWith NonlinearityWithout Nonlinearity

50 µm

Figure 4.20: Experimental (first and second column) and numerical (third and
fourth column) intensity profiles at back surface of the crystal for LG beam
with p = 2 and l = 0 (first row) and corresponding interferograms (second
row).
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Without Nonlinearity With NonlinearityWithout Nonlinearity

50 µm

With Nonlinearity

Figure 4.21: Experimental (first and second column) and numerical (third and
fourth column) intensity profiles at back surface of the crystal for LG beam
with p = 1 and l = 2 (first row) and corresponding interferograms (second
row).

antivortex pairs. As we increase the number of dark rings by increasing the

value of p in the LG beam, each of the ring ends up in a quadrupole.

We have also considered experimentally and numerically the case of a dark

ring with doubly charged vortex at the center. To form such a structure, one

produces an LG beam with radial mode index p = 1 and azimuthal index l = 2.

Figure 4.21 shows experimental and numerical results at the back face of the

PR crystal. As the beam propagates, the nonlinearity increases. Because of

nonlinearity, the center lobe containing a topological charge (l = 2) breaks

into two unit charge vortices. At the same time, the dark ring breaks to form

a quadrupole. Therefore, at steady state, an LG beam with p = 1 and l = 2

forms a system of six vortices, as shown in Fig. 4.21. The unit charges at the

center align perpendicular to the c axis of the crystal [77,78]. We have observed

that, at higher values of p and l, the dark rings break to form quadrupoles, but

the high topological charge at the center decays into an array of vortices with

unit charge. It should be noted that this dynamics becomes more complicated

at higher nonlinearity.

The anisotropic nonlinearity of the photovoltaic PR crystal plays a crucial
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role in the present experiment, which results in instability for the dark ring

propagation [90, 91]. When the light beam propagates through this crystal, a

photovoltaic field starts to build up along the c axis and consequently develops

transverse modulation instability. The dark rings of an LG beam are subjected

to this instability and they are distorted to form a quadrupole vortex. It should

be noted that the same instability is responsible for distortion of the self-

trapped vortex in the photovoltaic PR crystal [98]. Along with the modulation

instability, the photovoltaic-field-induced nonlinearity in the crystal results in

stretching of the beam that gives ellipticity to the input beam. Because of

this ellipticity, high charge vortices of the LG beam break into single charge

vortices [99,100]. We would like to emphasize that any distortion to the high-

charge-carrying symmetric vortex beam results in the breaking of the high

charge vortex into unit vortices in linear [100] as well as nonlinear media [77,78].

It would be worthwhile to compare our results with propagation of a dark

stripe beam in PR media. In contrast to a dark stripe breaking into a number of

vortices [90,91], we have observed that the dark ring breaks into just two pairs

of vortex-antivortex and forms a quadrupole in the defocusing PR medium.

One can compare our results with instability of the ring dark soliton in a BEC,

where it breaks into a necklace array consisting of vortex-antivortex pairs, but

in multiples of four [96], and also with a Kerr medium, where it forms a stable

dark ring soliton [93–95].

Conclusion

In conclusion, we have studied the propagation of dark rings, with and with-

out topological charge, in a photovoltaic PR medium. We observe, for the first

time to the best of our knowledge, the formation of quadrupoles in a photo-

voltaic PR medium. In this process, the edge dislocation converts into screw

dislocations. We expect that Bessel beams that carry edge dislocations will

show a similar formation of quadrupoles when they propagate through such a

nonlinear medium.
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4.4 Ring Lattice Beams

The superposition of two LG beams with different radial and azimuthal in-

dices, but having the same waist position and waist parameter, generates in-

teresting light structures. In literature, these structures have been called by

various names such as composite vortex beam [101], Ferris wheel [102], com-

bined beams [103], spiral beams, and linear azimuthons [104]. They show

diffraction broadening with some of them showing a rotational dynamics as

well [103–105]. These beams preserve their shape, like Gaussian beams.

The Bessel beam and the Airy beams which are also solutions of the

paraxial diffraction equation, are non-diffracting, unlike the beams discussed

above. It has been observed that these diffraction-free beams show the self-

reconstruction or self-healing property [40,47]. However, the ring lattice beams,

the superposition of LG beams which are diffracting in nature also show self-

healing property [106].

The superposed structures generated from LG beams have been studied

in highly nonlocal nonlinear media [107, 108] and BEC [109]. However, in

this work, we have studied their dynamics in a PR medium with defocusing

nonlinearity. We generate the optical ring lattice by using a CGH, which is

formed by interference of the plane wave and the two superposed LG beams

with different azimuthal index l. For simplicity, radial index p of the beams

has been taken as zero. In this work we have examined the rotational dynamics

of ring lattice beams in both linear as well as nonlinear medium.

4.4.1 Linear Dynamics

Theory

The complex field amplitude of LG beams are written as (Eq. (1.27))

Al
p(r, φ, z) =

1

w

√
2p!

π(p+ |l|)!
(
r
√
2

w
)|l|exp[− r2

w2
]exp[− ikzr2

2(z2 + z2R)
]

×Ll
p(
2r2

w2
)exp[−ilφ]exp[i(2p+ l + 1)ψ]. (4.22)
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When two LG beams having indices (p, l) and (p′, l′), are superposed with

common waist and waist parameter, they form a field amplitude written as

A(r, φ, z) = Al
p + Al′

p′ . (4.23)

The above superposed field gives an intensity distribution whose azimuthal

orientation changes with z as [103–105]

φ = φ0 +Bψ (4.24)

where B is a constant and defined as

B =
2(p− p′) + |l| − |l′|

l − l′
. (4.25)

The sign of B decides the sense of rotation of the superposed structure (it is

optical ring lattice in our case).

Experiment

To produce the ring lattice in our laboratory, we have employed a computer

generated holography technique which is discussed in the second chapter. We

make an interferogram with Eq. (4.23) and plane wave exp[ikxx]. This interfer-

ogram is imprinted on the spatial light modulator (SLM) (Holoeye, CR-2500)

via a computer.

The experimental setup is shown in Fig. 2.5. We have used a stabilized He-

Ne laser (Spectra-Physics, Model 117A) as the light source. By illuminating

the SLM with the laser beam, the ring lattice is generated as a diffracted order

in the reflection. A biconvex lens (f = 50 cm) is used to create the waist with

a view to study the propagation dynamics, taking (f = 50 cm)at the waist.

The CCD camera (MediaCybernetics, Evolution VF cooled Color Camera) is

used to capture the images at various propagation distances.

Results and Discussion

The rotational dynamics of the ring lattice in free space are shown in Fig. 4.22

at different z distances. In the case of l = 3 and l′ = −3, there is no rotation
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because B = 0 for this case. The superposed beams form a bright ring lattice

with 2l petals which show diffraction while propagating in free space.

Now we study the case where l and l′ are different. Let us take l = −3 and

l′ = 4. The superposition of these LG beams again forms bright ring lattice

with |l| + |l′| petals which show rotational dynamics along with diffraction.

However, when we take l = −1 and l′ = −6, i.e., the initial LG beams hav-

ing the same sign of the azimuthal index, the superposition results into the

dark ring lattice. For this case, B = −1, which implies the opposite sense of

rotation. We have also verified that as the formed ring lattice propagates, its

angular speed decreases [103–105]. In Fig. 4.23, we have shown the theoretical

results obtained from (Eq. (4.23)).

l=4,l=−3

z=200 cmz=100 cmz=0 cm

l=3,l=−3

l=−6,l=−1

Figure 4.22: Experimental intensity profile. For reference, the horizontal arrow
has been placed to visualize the rotation.



4.4. Ring Lattice Beams 89

z=200 cmz=100 cmz=0 cm

l=3,l=−3

l=4,l=−3

l=−6,l=−1

Figure 4.23: Theoretical intensity profile for the same z values as in Fig. 4.22.

4.4.2 Nonlinear Dynamics

Numerical Model

The complex field distribution of lattice beams at z = 0 is written as

A(x, y, z = 0) =
√
Im((

√
2r)lLp

l [2r
2]exp[−ilφ] + (

√
2r)l

′
Lp
l′ [2r

2]exp[−il′φ])

×exp[−(x2 + y2)]. (4.26)

Here, r is normalized by w0. We have used same numerical model as explained

in Section (4.1.2) to study the field propagation given by Eq. (4.26).

Experiment

The experimental setup is shown in Fig. 4.6. We repeat the same experiment

as mentioned in Section (4.1.2). However, instead of dipole vortex beam we



90 Chapter 4. Propagation Dynamics of Diffraction Broadened Beams

have taken ring lattice beam. The beam waist w0 of a Gaussian beam in which

the ring lattices are embedded, is 50 µm. The peak intensity Im is 0.05.

Results and Discussion

Figure 4.24 shows propagation of ring lattice beam with l = 3 and l′ = −3.

From interferogram, it is clear that there are π phase jumps between any two

petals of the ring lattice considered. These phase jumps form edge dislocations.

In the absence of nonlinearity, there is a natural diffraction for the input ring

lattice beam. As this beam propagates, a space charge field builds up in time.

At steady state, these fields generate nonlinearity which causes defocusing of

the ring lattice. Since there is no fork pattern in the interferogram shown in

Fig. 4.24, conversion of edge dislocations to screw dislocations, unlike dark

ring beam, does not happen for this ring lattice. The experimental results are

verified with numerical results shown in Fig. 4.24.

Now consider the ring lattice beam which has rotational dynamics. The

propagation dynamics of ring lattice beam with l = −3 and l′ = 4 is shown

in Fig. 4.25. The edge dislocations are present between any two petals of

Without Nonlinearity

50 µ m

Experimental Experimental

With Nonlinearity Without Nonlinearity

Numerical Numerical

With Nonlinearity

Figure 4.24: Experimental (first and second column) and numerical (third and
fourth column) intensity profiles at back surface of the crystal for ring lattice
beam with l = 3 and l′ = −3 (first row) and corresponding interferograms
(second row).
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Without Nonlinearity

50 µ m

Experimental Experimental

With Nonlinearity Without Nonlinearity

Numerical

With Nonlinearity

Numerical

Figure 4.25: Experimental (first and second column) and numerical (third and
fourth column) intensity profiles at back surface of the crystal for ring lattice
beam with l = −3 and l′ = 4 (first row) and corresponding interferograms
(second row).

the ring lattice similar to the previous case. In the absence of nonlinearity,

there is a natural diffraction for the ring lattice beam along with rotation.

As the beam propagates, a space charge field starts to build with time which

increases the nonlinearity in the crystal. In the presence of nonlinearity, at

the steady state, the defocusing of this ring lattice creates singularities in the

form of screw dislocations in the region between the petals. We have observed

fork patterns in the interferogram which confirm that there is a transition

from edge dislocations to screw dislocations. These experimental results are

in agreement with numerical results shown in Fig. 4.25.

Conclusion

It is clear from the above results that if the ring lattice beam has rotational

dynamics then only edge dislocations of that beam convert into screw dislo-

cations. For ring lattice with zero rotation, the petals are defocused in the

defocusing PR media, however, the edge dislocations between them remain as

it is.





Chapter 5

Nonlinear Dynamics of

Non-Diffracting Beams

There are certain beams which are immune to diffraction. They propagate

in linear media or free space without changing their beam shape, such beams

are called as non-diffracting or diffraction-free beams. Airy beams and Bessel

beams are examples of these beams. In this chapter, we have discussed phe-

nomena arising due to propagation of these beams in the PR media.

We have experimentally generated Airy beams to study their propagation

through a PR medium in the presence of an external applied field. As we

increase the external field, energy from the bottom lobes is transferred to the

upper lobes of Airy beams. The direction of energy transfer is along the c-axis

of the crystal. We compare the isotropic and the anisotropic models for the

PR materials in the case of Airy beams’ propagation.

In the last chapter, we have found that a dark ring beam having edge dis-

locations, forms quadrupole while passing through a PR medium. The Bessel

beams ideally have infinite number of such dark rings. We have examined

that these rings of the Bessel beam also form quadrupole in the defocusing PR

medium.

Since the propagation dynamics of Airy and Bessel beams in a linear

medium are well understood, we present results on their nonlinear propaga-

tion. In Section 1, we discuss about Airy beams’ interaction in the PR media.

93
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The formation of quadrupole from Bessel beam is described in Section 2.

5.1 Airy Beams

Airy beams are one of the non-diffracting solutions of the PWE. It was first

realized by Berry and Balazs in the context of quantum mechanics that the

Airy wave packet could be solution of the Schrödinger equation [44]. Due to

similarity of the Schrödinger equation with the PWE, the Airy wave packet can

be observed as the Airy beams in optics, forming 1D as well as 2D beams [4].

Apart from non-diffracting nature and consequent self-healing property, Airy

beams show acceleration even in free space. Due to their peculiar properties,

Airy beams find applications which include optical trapping [48], and plasma

wave-guiding [49].

Recently, it has been shown numerically that Kerr, quadratic and PR non-

linearities can support 1D self-accelerating self-trapped optical beams [110].

Before that, the diffusion trapped 1D Airy beams were observed in the PR

media [111]. The behavior of 2D Airy beams propagating from a nonlinear

medium to a linear medium have also been studied recently [112]. These re-

sults were explained using the isotropic model [72].

In the present work, we have studied the propagation of 2D Airy beams

through a PR medium in the presence of an external applied field. We observe

deacceleration of the Airy beams in the form of energy transfer among the lobes

of the Airy beams. We have compared our experimental results with numerical

models, both the isotropic [72] and the anisotropic [73]. Our experimental

results of Airy beams propagation through the PR media under an external

applied field were observed to follow the anisotropic model.

Theoretical Background

The field amplitude of Airy beams can be written as (Eqs. 1.29-1.30),

A(x, y, z) = Ax(x, z)Ay(y, z), (5.1)
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where

Ax(x, z) = Ai[
x

xo
− (

z

2kx2o
)2 +

iaz

kx2o
]

exp[
ax

xo
− a

2
(
z

kx2o
)2 − i

12
(
z

kx2o
)3 +

ia2

2

z

kx2o
+

ix

2xo

z

kx2o
], (5.2)

Ay(y, z) = Ai[
y

yo
− (

z

2ky2o
)2 +

iaz

ky2o
]

exp[
ay

yo
− a

2
(
z

ky2o
)2 − i

12
(
z

ky2o
)3 +

ia2

2

z

ky2o
+

iy

2yo

z

ky2o
] (5.3)

The Fourier transform of Eq. (5.1), at z = 0 is

A(kx, ky) = exp[−a(k2x + k2y)]exp[i(k
3
x + k3y)]. (5.4)

where kx and ky are the spatial frequencies. The equation (5.4) contains two

terms, first one is a Gaussian and another is a cubic phase term. It implies

that the Airy beams can be formed by Fourier transformation of the Gaussian

beam with a cubic phase factor.

Numerical Model

We have employed both the isotropic and the anisotropic model of the PR

media. In the case of isotropic model, the change in refractive index in the PR

media is given by (Eq. (3.11) and (3.19))

∆n = −1

2
n3
0reffE0

1

1 + I
, (5.5)

where n0 is the refractive index in the absence of light and E0 is the applied

electric field. The input beam intensity I is normalized by a background

illumination. However, the change in index of refraction ∆n, in the anisotropic

model is written as (Eq. (3.17) and (3.19))

∆n =
1

2
n3
0reff

∂φ

∂y
. (5.6)

The space charge potential φ can be calculated using following equation,

∇2φ+∇φ · ∇[ln(1 + I)] = E0
∂ln(1 + I)

∂y
. (5.7)
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Equation (5.7) can be solved numerically as shown in Appendix B.

The complex field distribution of Airy beams at the input of the PR crystal

can be written as

A(x, y) =
√
ImAi[

x

w0

]exp[
ax

w0

]Ai[
y

w0

]exp[
ay

w0

], (5.8)

where Ai is the Airy function and a is the aperture parameter. w0 and Im are

the full width half maxima of the main lobe and the input intensity normalized

by a background illumination. The experimental value of these parameters are

w0= 11 µm and Im = 15.

The field distribution A(x, y) inside the PR material can be calculated by

solving the nonlinear PWE (Eq. (4.14)),

∂A(x, y)

∂z
=
i

2
∇2A(x, y) + in0k

2
0w

2
0∆nA(x, y). (5.9)

We have solved Eq. (5.9) as discussed in Appendix A.

Experiment

We have generated Airy beams by using a cubic phase mask [4] which is shown

in Fig. 5.1. The cubic phase mask is constructed through a cubic phase term

from Eq. (5.4). The experimental setup, to generate the Airy beams and to

study their propagation dynamics through the PR crystal is shown in Fig. 5.2.

1D 2D

Figure 5.1: Cubic phase mask for Airy beams generation
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Figure 5.2: Experimental Setup. HWP, half-wave plat; PBS, Polarizing beam-
splitter; BS, beam-splitter; L1, L2, L3 lens; M, mirror; SLM, spatial light
modulator; PR, photorefractive crystal; CCD, camera

A cubic phase mask which is used to form the Airy beams, is sent to a SLM

(P512-0532 Spatial Light Modulator from Boulder Nonlinear Systems, USA)

via computer. We have used a solid state pump laser (Coherent, Verdi V10) as

light source. The laser beam is divided into two parts using polarizing beam-

splitter. The intensity ratio between two beams is controlled by a half-wave

plate. One of the beams illuminates the SLM which contains cubic phase mask

for generation of the Airy beams. A biconvex lens (f = 15 cm) is used as a

Fourier lens. The PR crystal, cerium doped strontium barium niobate (SBN,

5 mm x 5 mm x 10 mm), is placed at the focus because the Airy beams are

formed at the focus. A CCD camera (MediaCybernetics, Evolution VF cooled

Color Camera) and an imaging lens are used to capture the images at the back

surface of the crystal. An external dc field is applied along the c-axis of the

crystal. The polarization of input light field is kept along the c-axis. Another

beam acts as a background illumination.

Results and Discussion

Figure 5.3 shows experimental observation of Airy beams after propagation

through the PR crystal. Figure 5.3a shows the intensity distribution of the

Airy beams when no voltage is applied. In this case, the Airy beams show same

behavior as in a linear medium. Applying external voltage along the crystal
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a

10 µ m

b

c d

Figure 5.3: Experimental intensity distribution at back surface of the crystal
a) 0V, b) 200V, c) 300V, d) 400V.

increases the nonlinearity, which causes focusing of the Airy beams. This leads

to the interaction between main lobe and its nearest neighbor situated along

the c-axis. With further increase in the applied voltage, the energy of main

lobe is transferred to its nearest neighbor along the c-axis of the crystal, i.e.

the direction of applied field (Fig. 5.3c and 5.3d). Similar energy transfer

occurs for the lobes which are at left of the main lobe. However, due to low

intensity it is not visible. Overall, the energy of bottom lobes is transferred

towards the upper lobes of Airy beams along the c-axis. It seems that Airy

beams deaccelerate along the c-axis. It shows that the results for 1D-self-

trapped self-accelerated beams cannot be extended for 2D beams in the PR

media [110].
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ba

10 µ m

c d

Figure 5.4: Numerical intensity distribution (isotropic model) at back surface
of the crystal a) 0V, b) 200V, c) 300V, d) 400V.

Figure 5.4 shows numerical intensity distribution of the Airy beams at

the back face of the crystal, calculated by using the isotropic model. The

experimental parameters for the results shown in Fig. 5.3 are used for the

numerical calculation. As the applied field increases, the energy of main lobe

is transferred to its nearest neighbors. Similar results are observed in Ref. [112].

Further increase in the field, causes energy transfer towards the lobes which

are in the path of axis of symmetry. In this case the beams deaccelerate in the

direction opposite to the direction of original acceleration. But these numerical

results do not match with our experimental findings.

Using anisotropic model, the output intensity distribution of Airy beams

at the back plane of the crystal are shown in Fig. 5.5. It is found that the
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c d

a

10 µ m

b

Figure 5.5: Numerical intensity distribution (anisotropic model) at back sur-
face of the crystal a) 0V, b) 200V, c) 300V, d) 400V.

energy of lobes at the bottom is transferred towards the upper lobes with

increase in the applied field. Numerical results from the anisotropic model are

in good agreement with the experimental results. It is also noted that the

beam radius, the input beam intensity and the applied field play a crucial role

in the interaction of Airy beams. The interaction amongst the lobes slows

down as we increase the input beam radius. For an increase in the applied

field interaction becomes more prominent.

Conclusion

In conclusion, our experimental results show that the anisotropic model is a

better model to explain Airy beams propagation in the PR media. It is not
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possible to observe 2D self-trapped self-accelerated beam in the PR media as

the lobes of Airy beams start interacting with each other.

5.2 Bessel Beam

Bessel beams were first observed by Durnin et al [39]. These beams preserve

their shape during propagation, therefore, these beams are called as diffraction-

free. These beams also show self-healing or self-reconstruction property i. e.

when some portion of these beams is blocked, they reconstruct after certain

propagation [40]. These beams have applications in various fields which include

nonlinear optics [42], and optical manipulation [43].

The Bessel beams are used to form light induced lattice inside the PR

media [113–115]. These lattices support bright solitons [113], and discrete

solitons [114]. The interaction of bright solitons and their planet like orbiting

is observed in these lattices [113]. This orbiting of solitons depends on their

initial phase difference. The experimental observation of self-focusing and

localization of light in azimuthally modulated Bessel lattices have also been

studied [115].

Since all the above mentioned studies were done in SBN with a focusing

nonlinearity. In this work, we have made a numerical study of a Bessel beam

propagating through a defocusing PR medium using parameters of LiNbO3.

We have found that the dark rings of Bessel beam break to form quadrupoles

like LG beams [92].

Numerical Model

The complex field distribution of Bessel beams at z = 0 is written as (Eq.

(1.28))

A(r, φ, z) =
√
Im Jn[r]exp[inφ]. (5.10)

We have used the same numerical model as explained in section (4.1.2).

We keep Im=1 and w0=16 µm in the numerical calculations.
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Without Nonlinearity

100 µ m

With Nonlinearity

Figure 5.6: Numerical intensity profiles at back surface of the crystal for zeroth
order Bessel beam (first row) and corresponding interferograms (second row).

Results and Discussion

Figure 5.6 shows numerical results for the propagation of a zeroth order Bessel

beam through the PR crystal. In the absence of nonlinearity, there is no change

in its profile. An interferogram shown in Fig. 5.6 confirms that there is a π

phase jump at dark rings of this beam. As the beam propagates, space charge

field develops with time which causes nonlinearity via electro-optic effect. In

the presence of nonlinearity, at the steady state, the center lobe and the bright

rings of the Bessel beam are defocused to form a quadrupole vortex like an LG

beam with dark rings [92]. The presence of vortices are confirmed through the

interferogram shown in Fig. 5.6

It is noted that all the dark rings of Bessel beam do not form quadrupole.
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The reason is that the intensity of the beam decreases as one moves away from

center which causes poor nonlinearity away from the center.

Conclusion

We conclude that the dark rings of Bessel beam behave similar to the dark

rings of LG beam. In both the cases, the dark ring undergoes to instability to

form a quadrupole in a defocusing PR medium.





Chapter 6

Summary and Scope for Future

Work

This thesis deals with the propagation dynamics of different engineered beams

in the PR media. These engineered beams are generated by using computer-

generated holography technique. New methods for characterization of topo-

logical charge or OAM state of these beams have been proposed and verified

experimentally. We have studied the effect of PR nonlinearity on the dynamics

of these beams. The dipole and quadrupole vortices are found to be unstable

in free space. The dipoles merge together and form crescent like structure

as the beam propagates in free space. We have observed that these vortices

become structurally stable in the defocusing PR medium. On the other hand,

the dark ring beams generated from LG modes are found to be unstable while

propagating through the defocusing PR media. They experience snake insta-

bility during propagation and form a quadrupole. These results show that

dipole and quadrupole vortices are solutions of the nonlinear PWE with the

PR nonlinearity. The rotational dynamics of ring lattice beams generated from

the superposition of LG beams are examined in both the linear and the non-

linear media. It is found that for the beams having rotational velocity the edge

dislocations change into screw dislocations. We have also studied the propaga-

tion dynamics of diffraction-free beams such as Airy beams and Bessel beams

through the PR media. It is seen that the Airy beams’ lobes interact with

105
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each other and exchange energy while propagating through the PR medium.

We have compared our experimental results with numerical results obtained

from isotropic as well as anisotropic model. A study of zeroth order Bessel

beam propagating through the defocusing PR media shows that the dark ring

convert to the quadrupole vortex. The results were similar to the LG beam

with dark rings.

Chapter 1 gives elementary mathematical background for the work pre-

sented in the thesis. We have derived the PWE from Maxwell’s equation

for an inhomogeneous media. Since there are a number of nonlinear process

which can create inhomogeneity in the medium, we have explained different

nonlinearities with an emphasis on PR nonlinearity. The soliton solution of

the nonlinear PWE with the PR nonlinearity has also been described. The

various solutions of linear PWE which include Gaussian Beams, HG beams,

LG beams, Bessel beams and Airy beams are discussed in this chapter.

In Chapter 2, we have discussed generation and characterization of engi-

neered beams. The computer-generated holography technique have been em-

ployed for generation of these beams. The conventional holography have been

introduced briefly with explanation of different types of holograms. The steps

of computer-generated holography are presented in the same chapter. We have

described our experimental technique for generation of the engineered beams

in which a SLM is the key element. The working principle of the SLM has been

highlighted with a description of various types of SLM. We have proposed new

techniques for the measurement of OAM or topological charge of vortex. The

analysis is done with a vortex embedded in a Gaussian beam i.e. pure vortex

mode, however, these methods can be used for the LG and Bessel beams with

phase singularities also. First method involves a QPM whereas a simple bicon-

vex lens is used in the second method. It is observed that the propagation of

optical vortex beams under quadratic phase depends on the topological charge

of vortex beam. In the second method, the lens is tilted in such a way that

it breaks the input optical vortex of topological charge l into l + 1 intensity

spots. In both the methods, sign of charge can be found by looking at the
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alignment of break away intensity components.

Chapter 3 describes physics of PR nonlinearity. The basics of PR effect

have been introduced. The band transport model of PR media is employed to

derive the material equations. The isotropic and the anisotropic models are

discussed for calculation of space charge field from material equations. The

electro-optic effect which is responsible for the change in index of refraction in

the PR media are also presented in the same chapter.

In Chapter 4, we have studied propagation dynamics of diffraction broad-

ened beams through the photovoltaic PR media. All along the chapter, nonlin-

earity has been taken as the defocusing PR nonlinearity. To delineate the effect

of nonlinearity, we have studied the propagation dynamics of vortex dipole and

quadrupole in free space along with in the defocusing PR medium. It is found,

both theoretically as well as experimentally, that dipole and quadrupole an-

nihilate to form crescents while propagating in free space. Our results have

shown that the annihilation of vortices is governed by the internal flow of en-

ergy associated with the individual vortex. In the PR media, we have observed

the orientation dependent propagation of the dipole and the quadrupole. We

have found that there is a stable dipole or quadrupole formation if the cres-

cent formed without nonlinearity is perpendicular to the photovoltaic field of

the nonlinear crystal. Our results have demonstrated that the dipole and the

quadrupole are the solutions of the nonlinear PWE with the defocusing PR

nonlinearity. We have also propagated HG beams through the PR medium

with a view to study its dynamics. We have observed that when a dark stripe

beam produced from the HG beam is perpendicular to the c-axis of the crystal,

the radiated waves are formed over the bright lobes due to instability, however,

they decay while propagating away from the center.

In the same chapter we have studied the propagation of dark rings produced

from an LG beam, with and without topological charge, in a photovoltaic PR

medium. We have observed the formation of quadrupoles in the PR medium.

It is found that an edge dislocation of the dark ring converts into screw dis-

locations. We have also examined the propagation dynamics of ring lattice
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beams formed from the superposition of two LG beams. It is clear from our

results that if ring lattice beam has rotational dynamics then only edge dis-

locations of that beam convert into screw dislocations. For ring lattice with

zero rotation, the petals are defocused in the defocusing PR media, however,

the edge dislocations between them remain as it is.

Chapter 5 is devoted to the study of nonlinear propagation of diffraction-

free beams which include Airy and Bessel beams. We have observed that the

Airy beams’ lobes start interacting in the presence of an applied field while

propagating through a PR medium with focusing nonlinearity. Therefore, it is

not possible to observe 2D self-trapped self-accelerated beam in the PR media.

It is also found that the anisotropic model is a better model to explain the Airy

beams’ propagation in the PR media. We have also examined the nonlinear

propagation of dark rings of a Bessel beam in the PR media. They behave like

the dark rings of LG beam in the defocusing PR media. In both cases, the

dark ring undergoes to instability to form a quadrupole.

Scope for Future Work

In this thesis work, we have used LiNbO3 crystal for our experiments which

shows only defocusing nonlinearity. However, one can study propagation of

engineered beams through the PR media with focusing nonlinearity also. We

have done some numerical calculations for this nonlinearity using SBN crys-

tals’ parameter. In future, we would implement these numerical simulations

experimentally.

First we would study the propagation of ring lattice beam through a fo-

cusing PR medium. We have planned to study self-trapping of these beams in

the focusing PR media. For example, the optical azimuthons are self-trapped

beams with azimuthal phase modulation, which have been observed recently

in a saturable medium. We are expecting the observation of these beams in

the PR medium. We will form azimuthons by propagating ring lattice beams

having azimuthal phase variation through the PR crystal.
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We have also planned to study the property of light induced ring lattices

in a PR medium with the help of another probe beam. Our numerical results

have shown that a bright soliton formed in bright ring lattice oscillates within

the single petal throughout its journey. It is also observed that these oscilla-

tions depend on the position of petals of the ring lattice. One can also study

propagation of an optical vortex as a probe beam through such ring lattices.

Since these lattices have rotational dynamics, it will affect the dynamics of

vortex beam.

Our next plan is to induce Airy beams’ lattice in a PR medium and study

its lattice property. We are expecting the self-trapped self-accelerated beam

in this lattice. The work regarding the propagation of Airy beams in presence

of defocusing nonlinearity is going on. Our numerical results show that the

dark region of 1D Airy beam can be self-trapped by defocusing nonlinearity.

We are trying to implement this numerical result experimentally.





Appendix A

Split-Step Fourier Transform

Method

In this section, we have presented the Split-Step Fourier Transform method

(SSFT) to study the propagation dynamics of engineered beams through the

PR media. This method is observed to be fast compared to finite differnce

method as it uses Fast Fourier Transform (FFT) algorithm [14,15].

First we consider Eq. (1.17) that can be written in a normalized form as

∂A(x, y)

∂z
=
i

2
∇2A(x, y) + in0k

2
0w

2
0∆nA(x, y), (A.1)

where ∆n is the change in index of refraction, from Eq. (3.20),

∆n = −1

2
n3
0reffEsc. (A.2)

Here, n0 is the refractive index in the absence of light, k0 is the wave number

of light in free space, w0 is the beam waist size, Esc is the space charge field

and reff is the effective electro-optic coefficient of the PR material. For all

experiments mentioned in this thesis, we have chosen direction of polarization

of an input beam along the c-axis of the crystal. Therefore, in our case, reff =

r33. The transverse coordinates x, y are scaled by w0 and the propagation

coordinate z is scaled by the diffraction length k0n0w
2
0.

Let us write Eq. (A.1) in the following form

∂A

∂z
= [D̂ + N̂ ]A, (A.3)
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where D̂ and N̂ are the differential and nonlinear operators respectively. D̂

represents diffraction of a light beam in linear medium, however, effects of

nonlinearity is governed by N̂ . These operators are written as,

D̂ =
i

2
∇2,

N̂ = in0k
2
0w

2
0∆n. (A.4)

In general, a light beam experiences both diffraction and nonlinearity si-

multaneously while propagating through the PR medium. However, they act

independently one after another in this method. The whole length of crystal

is divided into small steps of distance dz. The propagation from z to z+ dz is

written as

A(x, y, z + dz) = exp[(D̂ + N̂)dz]A(x, y, z). (A.5)

Now using Baker-Hausdorff formula for noncommuting operators D̂ and N̂ ,

we get

exp[(D̂ + N̂)dz] = exp

[
(D̂ + N̂)dz +

1

2
[D̂, N̂ ]dz2 + ...........

]
, (A.6)

where [D̂, N̂ ] = D̂N̂ − N̂D̂ denotes the commutation relation between D̂ and

N̂ . The SSFT ignores the noncommuting nature of these operators. With this

assumption Eq. (A.5) can take the form

A(x, y, z + dz) = exp[D̂dz]exp[N̂dz]A(x, y, z). (A.7)

The first operator represents the effect of nonlinearity in spatial domain. The

second operator accounts for diffraction which carries out its operation in

Fourier domain in the following way

exp[D̂dz]exp[N̂dz]A(x, y, z) = F−1{exp[ i
2
(k2x+ k2y)dz]F{exp[N̂dz]A(x, y, z)}},

(A.8)

where kx and ky are the spatial frequencies in the Fourier domain. F de-

notes the Fourier transform operation which is performed using the FFT algo-

rithm. The dominant error in the SSFT method comes from the commutator

[D̂, N̂ ]dz2/2 which is second order in step size dz . Hence, the accuracy of
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method can be increased by keeping dz small. Moreover, it can be improved

further by considering nonlinear operator sandwiched between diffraction op-

erator, which is written as

A(x, y, z + dz) = exp[D̂
dz

2
]exp[N̂dz]exp[D̂

dz

2
]A(x, y, z). (A.9)

As exponential operators form a symmetry in this method, this is called as

symmetrized SSFT. Here, the error is of third order in step size dz that can

be verified from the Baker-Hausdorff formula.





Appendix B

Solving Potential Equation

using Finite Difference Method

Consider the potential equation from Eq. (3.17)

∇2φ+∇φ · ∇ ln(1 + I) = (E0 + Ep)
∂ ln(1 + I)

∂y
. (B.1)

We have solved this equation using finite difference method. A finite difference

method involves the following steps [116]:

1. Generation of computational grid.

2. Substitution of finite difference approximation in the place of derivatives

in a partial differential equation (PDE) to form a linear system of alge-

braic equations.

3. Formulation of matrix to solve the system of algebraic equations.

4. Implementation of computer code.

First we generate a computational grid. Since dimension of our crystals are

same along the x- and y- axis, the grid can be formed by dividing interval [p, q]

and [r, s] into N equal step size h. We assume that,

q − p

N
=
s− r

N
= h.

Let (xj, yk) be the point on the computational grid with xj = p + jh and

yj = s+ kh for j = 0, 1, 2, ....., N and k = 0, 1, 2, ....., N .

Now we use the following notation,

uij = φ(x, y), aij =
∂ ln(1 + I)

∂x
, bij =

∂ ln(1 + I)

∂y
, fij = (E0 + Ep)

∂ ln(1 + I)

∂x
,
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and substitute finite difference approximation in the place of derivatives in Eq.

(B.1),

uj−1,k − 2uj,k + uj+1,k

h2
+
uj,k−1 − 2uj,k + uj,k+1

h2

+aj,k
uj+1,k − uj−1,k

2h
+ bj,k

uj,k+1 − uj,k−1

2h
= fjk. (B.2)

We have assumed that the beam enters into a crystal almost at the center.

Therefore, space charge potential is zero at the crystal boundary as there is

no space charge present. This boundary condition implies that,

u0,0 = uj,0 = u0,k = uN,N = 0. (B.3)

By applying boundary condition, we get

4ujk −
(
1− ajkh

2

)
uj−1,k −

(
1 +

ajkh

2

)
uj+1,k

−
(
1− bjkh

2

)
uj,k−1 −

(
1 +

bjkh

2

)
uj,k+1 = −h2fjk. (B.4)

Above equation is linear with the unknowns, hence, it can be written in matrix

form. Let us consider number of intervals as N = 4 for simplification. The

matrix form of Eq. (B.4) is written as

Au = B, (B.5)

where u, B and A have following form,

u =



u11

u21

u31

u12

u22

u32

u13

u23


, B =



−h2f11
−h2f21
−h2f31
−h2f12
−h2f22
−h2f32
−h2f13
−h2f23
−h2f33


,

Since this matrix equation can be generalized for any N , by solving this

matrix equation numerically, one can find out the value of u i.e space charge

potential φ.
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