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Abstract

The Standard Model (SM) of particle physics and Einstein’s theory of General Rel-

ativity (GR) are the two most important theories that can explain the four fundamental

forces governing the interactions between the particles in nature. Since, gravitational

interaction is not quantized, it cannot be accomodated in the SM of particle physics that

deals with strong, electromagnetic, and weak interactions. The classical GR theory ex-

plains the gravitational interaction between massive objects very well. In fact, these

two theories can explain a wide range of observational and experimental results with

a high level of accuracy. However, there are theoretical, and experimental motivations

for studying physics Beyond Standard Model (BSM) of particle physics and physics

beyond Einstein’s GR theory. The most prominent BSM signatures are the existence

of dark matter, neutrino mass, matter-antimatter asymmetry etc. There are motivations

to go beyond Einstein’s GR theory as well to explain phenomena such as the massive

gravity theory, fifth force, singularity problem, dark energy etc.

In this thesis, we have studied light particles such as axions (spin-0), light gauge

bosons (spin-1), massive gravitons (spin-2), and sterile neutrinos (spin-1/2) to explore

the unknown dark sector of the universe such as dark matter, neutrino mass, massive

gravity, and fifth force. We obtain bounds on the properties of these particles through

orbital period loss of compact binary systems (Neutron Star-Neutron Star (NS-NS),

Neutron Star-White Dwarf (NS-WD)), gravitational light bending, Shapiro time delay,

perihelion precession test, and neutrino experiments.

If a compact star such as NS or WD is immersed in a low mass axionic potential

then it can develop a long range axion hair outside of the compact star. Here, we have

considered several compact binary systems like NS-NS and NS-WD and calculated the

inverse of their orbital time period which is ∼ 10−19 eV or less. This mass range is in

the ballpark of Fuzzy Dark Matter (FDM) which includes Axion Like Particles (ALPs).

The orbital period loss of the compact binary systems is mainly due to the gravitational

wave radiation. The orbital period can also decay due to the radiation of ultralight

ALPs if its mass is smaller than the orbital frequency of the binary system. We consider

four compact binary systems such as PSR J0348+0432, PSR J1738+0333, PSR J0737-

3039, and PSR B1913+16. Comparing with the experimental data, we obtain bounds
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on the axion decay constant fa . O(1011 GeV) with axion mass ma . O(10−19 eV).

The result suggests that if ALPs are FDM, then they do not couple with quarks. If the

NS is a pulsar, it can also emit electromagnetic radiation. The long range axion hair

from a pulsar can change the polarization of the electromagnetic radiation which is

called the birefringent effect. We calculate the birefringent angle due to the interaction

of long range axions with the electromagnetic radiation as 0.42◦. This value is within

the accuracy of measuring the linear polarization angle of pulsar light. This value holds

for the axions of mass ma < 10−11 eV which is constrained by the radius of the pulsar

and axion decay constant fa . O(1017 GeV) which is constrained by the requirement

that the axions are sourced by pulsars. Like NS, WD, pulsars, the celestial objects like

earth and Sun can also mediate long range axion hair outside of these massive bodies.

The range of the axion mediated Yukawa type fifth force is constrained by the distance

between earth and Sun which sets the upper bound on the axion mass ma . 10−18 eV.

The contribution of axionic Yukawa potential is within the experimental uncertainties

in the measurement of light bending and Shapiro time delay. We have calculated the

amount of light bending and Shapiro time delay due to the axion emission and by

comparing with the experimental data, we obtain bounds on axion decay constant. The

Shapiro delay puts the stronger bound on axion decay constant as fa . 9.85×106 GeV.

The result also implies if ALPs are FDM, then they do not couple with quarks.

We have also attempted to probe gauged U(1)Li−Lj scenario from orbital period

loss of compact binary systems and perihelion precession of planets. Due to large

chemical potential of degenerate electrons, the NS contains lots of muons and hence

the compact binary systems can mediate gauged U(1)Lµ−Lτ force. The vector gauge

bosons of U(1)Lµ−Lτ type can radiate from the binary systems and its contribution is

within the experimental uncertainty in the measurement of orbital period loss of the

compact binary systems. The mass of the gauge boson is constrained by the orbital

frequency of the binary system and for the radiation of gauge bosons, the mass is re-

stricted byMZ′ < 10−19 eV. Comparing with the experimental data, we obtain a bound

on U(1)Lµ−Lτ gauge coupling as g < O(10−20). Presence of electrons in the Sun and

Planets is also responsible for the mediation of long range Yukawa U(1)Le−Lµ,τ type of

gauge force between the planets and the Sun. The mass of theU(1)Le−Lµ,τ gauge boson
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is constrained by the distance between the Sun and the planets that puts the stronger

bound on the gauge boson mass as MZ′ < 10−19 eV. The contribution of U(1)Le−Lµ,τ

gauge bosons is within the experimental uncertainty in the measurement of the perihe-

lion precession of planets. We calculate the perihelion precession of planets due to the

mediation of U(1)Le−Lµ,τ gauge bosons and by comparing with the experimental data,

we obtained a bound on U(1)Le−Lµ,τ gauge coupling as g . O(10−25). We find that

the planet Mars puts the stronger bound on coupling.

Next, we have calculated the energy loss due to massless graviton radiation in Ein-

stein’s GR theory for a single graviton vertex process using Feynman diagram tech-

niques. This gives the same result as one obtains from the quadrupole formula. Fol-

lowing the same technique, we have calculated the energy loss due to massive graviton

radiaiton for several massive gravity theories such as Fierz-Pauli (FP) theory, Dvali-

Gabadadze-Porrati (DGP) theory, and modified Fierz-Pauli theory. Theories of mas-

sive graviton has a peculiarity that at zero graviton mass limit, the massive graviton

propagator does not go to the massless graviton propagator. This is called vanDAM-

Veltman-Zakharov (vDVZ) discontinuity. We study the vDVZ discontinuity in these

massive gravity theories. We also obtain bounds on the graviton mass in these massive

theories from the binary pulsar timing.

Lastly, we analyze the effect of sterile neutrino on the effective Majorana mass

(mββ) governing neutrino-less double beta decay (0νββ) for Dark Large Mixing An-

gle (DLMA) solution. The later arises in presence of neutrino non standard interaction

and admits a solution for the solar mixing angle θ12 > 45◦. We have checked that the

MSW resonance in the sun can take place in the DLMA parameter space in the 3+1

scenario. Next, we investigate how the values of the solar mixing angle θ12 correspond-

ing to the DLMA region alter the predictions of mββ by including a sterile neutrino in

the analysis. We also compare our results with three generation cases for both stan-

dard large mixing angle (LMA) and DLMA. Additionally, we evaluate the discovery

sensitivity of the future 136Xe experiments in this context.

Keywords: Dark matter, Neutrino mass, Gravitational waves, Modified gravity,

Fuzzy dark matter, Axions, ultralight Gauge bosons, Graviton, Sterile neutrino, neutri-

noless double beta decay.
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Chapter 1

Introduction

The proding curiosity to fully comprehend the universe has been prevailing since his-

toric times. Several observations and experiments have confirmed the existence of

four fundamental forces in nature. These are the gravitational force that acts between

any two massive particles in the universe, the electromagnetic force which combines

electricity and magnetism in the same framework, the weak nuclear force, which is

responsible for β decay and the strong nuclear force, which is responsible for the nu-

cleons to bind together. The fundamental forces of interactions are mediated by the

exchange of particles which are called the gauge bosons. The gravitational interaction

is mediated by spin-2 gauge boson, called graviton, the elctromagnetic interaction is

mediated by spin-1 gauge boson which is called photon, the weak nuclear force is car-

ried by spin-1 W±, Z0 gauge bosons and the strong nuclear force is carried by spin-1

gluons. Except for the graviton, all the other gauge bosons have been experimentally

confirmed.

The standard model (SM) of particle physics is a very successful theory that ex-

plains the strong, electromagnetic, and weak interactions between particles. However,

the gravitational interaction cannot be explained by SM. The prescription which can

explain the gravitational interaction is Einstein’s general relativity (GR) theory. It re-

lates the curvature of the spacetime with the matter-energy density. Einstein’s GR

theory is a massless spin-2 graviton theory and there are lots of observations that vali-

date Einstein’s GR theory with great accuracy. Despite the tremendous success of SM

in particle physics and GR theory, there are observations and experiments that motivate

1



2 Chapter 1. Introduction

one to look beyond the standard picture. Also, the gravitational observations provide

excellent appreciative checks to several particle physics models. Therefore, combined

results of particle physics and gravity can serve as a unique probe to understand the

physics beyond SM and Einstein’s gravity.

In this introductory chapter, we first briefly discuss the standard model of particle

physics and its shortcomings in Section 1.1. Next, we discuss Einstein’s GR theory

and its shortcomings in Section 1.2. After that, we give a brief introduction to the

neutrino mass, neutrino oscillation, non-standard interaction, and neutrinoless double

beta decay in Section 1.3. In Sections 1.4 and 1.5 we discuss salient features of the

dark matter (DM) and the massive gravity theory respectively. We also explain the fifth

force in Section 1.6. Finally, we discuss the thesis overview in Section 1.7.

1.1 The Standard Model and Its Shortcomings

Figure 1.1: Standard Model of particle physics https://en.wikipedia.org/

wiki/Standard_Model.

The SM of particle physics is a local gauge theory that is based on the symmetry

group SU(3)c × SU(2)L × U(1)Y , where c stands for a color quantum number, L

https://en.wikipedia.org/wiki/Standard_Model
https://en.wikipedia.org/wiki/Standard_Model
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stands for left-handed fermions, transforming as a doublet under SU(2), and Y stands

for the hypercharge. Each generator of the gauge group corresponds to a gauge boson

which acts as the mediator of the respective fundamental force. Figure 1.1 denotes the

building block of the SM. The matter particles consist of quarks and leptons and each

of them contains three generations. The fourth column denotes the gauge bosons of the

three fundamental interactions. The last column stands for Higgs that gives mass to the

matter particles except neutrino. The charge, mass, and spin of all those particles are

given in the figure. The SM gauge group breaks into SU(3)c × U(1)Q (Q denotes the

electromagnetic charge), when the Higgs boson gets the non-zero vacuum expectation

value and the fermions, gauge bosons, and Higgs boson become massive. The photon,

gluons, and neutrinos remain massless in SM. The discovery of the Higgs boson at the

LHC in 2012 [1, 2] was considered the last missing piece in the SM theory. However,

still, there are experimental evidences and theoretical motivations to look beyond the

SM. In SM, neutrinos are massless, however, neutrino oscillation experiments have

confirmed that neutrinos have mass. Also, the present energy density of the universe

contains about 5% of visible matter, and the rest about 95% is unknown to us. Among

the 95%, about 27% is dark matter (DM) and the remaining is dark energy [3]. Fig.1.2

illustrates the energy density of the universe contributed by visible matter, DM, and

dark energy. Baryon asymmetry in the universe is another experimental motivation that

require physics beyond the SM. There are other theoretical motivations for studying

beyond standard model (BSM) physics such as gauge unification, hierarchy problem,

presence of a large number of free parameters in SM, etc. Therefore, widening our

perspective beyond SM theory is a necessity. This is done in two ways- either by

enhancing just the particle content and/or extending the model by additional symmetry

operations.

1.2 Einstein’s General Theory of Relativity and Its Short-

comings

Einstein’s GR theory is a theory of gravity that explains gravity is not a force but a

mere geometry of spacetime. It connects the curvature of spacetime with matter and
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Figure 1.2: Energy density of the universe. https://nataliebhogg.com/

research/.

radiation. Newton’s theory of gravitational force cannot explain several observations

like the orbital period loss of binary systems, perihelion precession of planet Mercury,

the bending of light due to the presence of a massive object, the Shapiro time delay,

etc. All these can be well explained by Einstein’s GR theory. Also, the recent grav-

itational wave events such as GW150914 [4], and GW170817 [5] observed by LIGO

and Virgo detectors validate Einstein’s GR theory with great accuracy. However, there

are theoretical and observational motivations such as singularity problem, dark matter,

dark energy, etc. for which one can look beyond Einstein’s GR theory. Also, the orbital

period loss of the binary systems due to the GW radiation measured by pulsar timing

arrays (PTAs) matches Einstein’s GR theory with an uncertainty of < 1% [6, 7]. The

perihelion precession measurements of Mercury planet by the MESSENGER mission

[8, 9] match the GR result, however, it has O(10−3) uncertainty in the measurement.

There are other tests of Einstein’s GR theory like gravitational light bending, Shapiro

time delay, etc. whose precision measurements by different observations open up a

new way to study physics beyond the standard GR theory. Another motivation for

studying beyond Einstein’s theory is to realize a quantized version of gravity which

https://nataliebhogg.com/research/
https://nataliebhogg.com/research/
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helps to construct a mathematical framework to unify all four fundamental forces of

nature. To resolve these shortcomings, one need to extend the standard GR theory.

Such extensions include adding some new fields or the nonlinear terms, going to the

higher dimensions etc.

In this thesis, we will try to encounter some of these shortcomings in particle

physics and gravity sectors and enlighten the universe beyond the standard picture. We

also highlight how the gravity sector can put complementary bounds on BSM physics.

In the following, we discuss some of the beyond standard picture phenomena such as

neutrino mass, dark matter, massive gravity theory, and fifth force in more detail.

1.3 Neutrino mass and Oscillation

Neutrino is an elementary spin-1/2 particle that does not carry any electric charge and

belongs to the lepton family which obeys Fermi-Dirac statistics. In SM, neutrinos are

massless. There are three flavors of neutrinos in SM corresponding to the charged

leptons e−, µ−, and τ−. These are called electron neutrino (νe), muon neutrino (νµ),

and tau neutrino (ντ ) respectively. They have also their anti-particles. Neutrinos are

only taken part in weak interaction. Experiments by Wu [10] confirm that parity is

violated in the weak interaction. The experiment by Goldhaber et al. [11] confirms

that SM neutrinos are entirely left-handed.

However, several solar, atmospheric, reactor, and accelerator neutrino experiments

[12–31] have confirmed that neutrinos oscillate among their flavor eigenstates. This

phenomenon is called neutrino oscillation where the neutrino flavor eigenstates can be

expressed as a linear superposition of the mass eigenstates (propagating eigenstates,

where the Hamiltonian of the neutrino evolution equation is diagonalized) as

|νl >=
3∑

α=1

Ulα|να > (1.1)

where l = e, µ, τ denote the flavor eigenstates and α = 1, 2, 3 denote the mass eigen-

states. The 3 × 3 unitary matrix U is called the Pontecorvo-Maki-Nakagawa-Sakata

(UPMNS) matrix which transforms the flavor eigenstates into mass eigenstates. Since

the neutrino is electrically neutral, it can be its own antiparticle. In that case the neu-

trino is called a Majorana neutrino, otherwise, it is called a Dirac neutrino. If the
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neutrino is a Dirac particle, then UPMNS contains three mixing angles and one Dirac

CP (charge conjugation-parity) phase and if the neutrino is a Majorana particle, then

UPMNS contains three mixing angles, two Majorana phases, and one Dirac CP phase.

One can parametrize the UPMNS matrix as

UPMNS =


c12c13 s12c13 s13e

−iδ

−c23s12 − s23s13c12e
iδ c23c12 − s23s13s12e

iδ s23c13

s23s12 − c23s13c12e
iδ −s23c12 − c23s13s12e

iδ c23c13

P, (1.2)

where cij = cos θij , sij = sin θij , and P = diag(1, eiβ2 , ei(β3+δ)) contains the Majorana

phases. The Dirac CP phase is denoted by δ and the Majorana CP phases are β2 and

β3. In vacuum, we can write the flavour transition probability as

Pνl→νm = δlm − 4
∑
l>m

Re(U∗lαUmαUlβU∗mβ) sin2
(∆m2

αβL

4E

)
+2
∑
l>m

Im(U∗lαUmαUlβU∗mβ) sin2
(∆m2

αβL

2E

)
,

(1.3)

where L denotes the distance between the source and the detector and E denotes the

energy of the neutrino. The oscillation probability is sensitive to ∆m2
αβ and the mixing

angles characterizing the UPMNS matrix. The standard three generation picture of neu-

trino oscillation is well established and the oscillation parameters are being measured

with increased precision. Such high precision experiments can also help in probing

signatures of physics beyond SM, such as- neutrino mass ordering, sterile neutrino,

non-standard interaction, CPT violation, long range forces, neutrino decay, etc. Apart

from the above, there are other unknown issues in neutrino physics, such as the nature

of neutrino: Dirac/Majorana, mechanism of neutrino mass generation, absolute neu-

trino mass, etc. In the following, we have discussed some of the signatures beyond the

standard picture which would be relevant for this thesis.

1.3.1 Neutrino mass ordering

The oscillation probability of flavor transition changes due to charge current (νe) and

neutral current (νe, νµ, ντ ) interactions of neutrinos with the matter. This is called

Mikhaev-Smirnov-Wolfenstein (MSW) effect. The matter effect of the solar neutrino

oscillation confirms that ∆m2
21 > 0. However, the mass squared difference (∆m2

31



1.3. Neutrino mass and Oscillation 7

Figure 1.3: Neutrino mass ordering: Normal Hierarchy and Inverted Hierarchy

https://neutrinos.fnal.gov/mysteries/mass-ordering/.

or ∆m2
32) observed by the atmospheric neutrino oscillation experiments are still un-

known. This implies that there can be two possible hierarchies of the light neutrino

mass eigenstates (Fig.1.3). They are normal hierarchy (NH) where,

m1 < m2 < m3, ∆m2
21 > 0, ∆m2

31 > 0,

m2 =
√
m2

1 + ∆m2
21, m3 =

√
m2

1 + ∆m2
31, (1.4)

and inverted hierarchy (IH) where,

m3 < m1 < m2, ∆m2
21 > 0, ∆m2

32 < 0,

m2 =
√
m2

3 + ∆m2
23, m1 =

√
m2

3 + ∆m2
23 −∆m2

21. (1.5)

The 3σ ranges of all the oscillation parameters are given in Chapter 5.

1.3.2 Non-Standard Interaction (NSI) of neutrinos and DLMA so-

lution

The neutral current non-standard interaction (NSI) Lagrangian for neutrinos in matter

is [32]

LNSI = −2
√

2GF ε
fP
αβ (ν̄αγ

µνβ)(f̄γµPf), (1.6)

where P = L,R denotes the projection operator, f denotes the fermion, and εfPαβ

denotes the NSI parameters which characterizes the deviation of neutrino interaction

https://neutrinos.fnal.gov/mysteries/mass-ordering/


8 Chapter 1. Introduction

from the standard picture. The neutral current NSI parameters affect the propagation

of neutrinos through vector coupling with the matter. It is also well known that in the

presence of non-standard interactions (NSI), solar neutrino data admits a new solution

for θ12 > 45◦, known as the dark large mixing angle (DLMA) solution [32–34]. This

is nearly a degenerate solution with ∆m2
21 ' 7.5 × 10−5 eV2 and sin2 θ12 ' 0.7. The

DLMA parameter space was shown to be severely constrained by neutrino-nucleus

scattering data from the COHERENT experiment [35]. However, the bound depends

on the mass of the light mediator [36]. Thus if neutrinos have non-standard interactions

(NSI) [34, 37], then there is a degeneracy in the solar neutrino solution corresponding

to the solar mixing angle > 45◦. This solution is called the dark large mixing angle

(DLMA) solution.

1.3.3 Neutrinoless double beta decay (0νββ)

The transition probability for the neutrino oscillation does not tell anything about the

nature of the neutrino, i.e; whether it is a Dirac particle or Majorana particle. Also,

the oscillation experiments are insensitive to the absolute neutrino mass. The β de-

cay experiments put bounds on the absolute neutrino mass [38–41], however, the

stronger bound on the sum of the neutrino mass is obtained from cosmology which

gives
∑

mν < 0.12 eV [3]. The nature of neutrinos is still unknown, i.e; whether it

is a Dirac particle or Majorana particle. The neutrinoless double beta decay (0νββ)

is a direct experimental probe of this. It is a very rare process (XA
Z → XA

Z+2 + 2e−),

where the lepton number is violated by two units which establish the Majorana nature

of the neutrino [42, 43]. The rate of (0νββ) process is given by

Γ0νββ

ln 2
= G0ν(Q,Z)|Mν |2

|mββ|2

m2
e

, (1.7)

where the phase space factor is denoted by G0ν . Z denotes the atomic number of the

isotope, and Q = Mi −Mf − 2me. Mi,f denote the mass of the initial and final nuclei

and me denotes the mass of the electron. Mν denotes the nuclear matrix element,

and the effective Majorana mass is denoted by mββ = |
∑

U2
eimi|. So, 0νββ is also

sensitive to the absolute neutrino mass through the effective Majorana mass. The best

limit of the half-life of 0νββ is obtained from the KamLAND-Zen experiment using
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136Xe and the lower bound of the half-life is T1/2 > 1.07×1026 years [44] which gives

a bound on the effective Majorana mass as

mββ ≤ 0.061− 0.165 eV, (1.8)

where the range corresponds to the uncertainty in the nuclear matrix elements.

1.4 Dark Matter

Figure 1.4: Galactic rotation curve of Messier 33 spiral galaxy. https://en.

wikipedia.org/wiki/Galaxy_rotation_curve.

There is far more non-luminous matter in the universe than visible matter. This

non-luminous matter is called dark matter which only has gravitational interaction.

The existence of DM was first predicted by Fritz Zwicky in 1933 from the observation

of the Coma cluster. Zwicky estimated the mass of the Coma cluster based on the

motion of galaxies and compared it to an estimate based on the brightness and num-

ber of galaxies. He obtained 400 times more mass than that of visible matter. This is

called the missing mass problem. Later in 1970, Vera Rubin observed several galaxies

and plotted the rotation curve. The observation suggested that most of the mass of

the galaxy is in the central hub and the stars are in the hand of the spiral galaxy. The

stars can rotate around the central hub similar to the planets rotating around the Sun

in the solar system. The centripetal force of the stars is balanced by the gravitational

force for the rotation of the star which demands that the velocity of the star should

decrease with distance. In practice, the velocity remains constant with distance after a

https://en.wikipedia.org/wiki/Galaxy_rotation_curve
https://en.wikipedia.org/wiki/Galaxy_rotation_curve
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certain galactic scale [45, 46]. This is called the galactic rotation curve which is shown

in Fig.1.4. The mismatch between the expectation and observation implies that there

is more non-luminous matter in the galaxy than luminous matter, and their distribu-

tion is more like a halo over the visible galaxy. Most of the DM in the universe is

now non-relativistic and they are called cold dark matter (CDM). The velocity distri-

bution of DM is Maxwellian. It was also observed by the Chandra X-ray observatory

in 2006 through gravitational lensing that when two giant clusters were collided then

there were more matter present than luminous matter. The luminous matter after col-

lisions were diffused and were stuck together and heated up while the non-luminous

matter was almost collisionless and surrounded the visible baryonic matter. In Fig.1.5

Figure 1.5: Bullet cluster observation https://www.esa.int/ESA_

Multimedia/Images/2007/07/The_Bullet_Cluster2.

we have shown the X-ray map for the Bullet cluster from Chandra Observatory [47].

The red region corresponds to the luminous matter and the blue region corresponds to

the non-luminous (dark) matter which has been confirmed from gravitational lensing.

These observations are the evidence of DM at the galactic scale. At the cosmolog-

ical scale, the evidence of DM can be explained by the temperature anisotropies in

the cosmic microwave background radiation (the last scattering surface from which

photons decouple from the thermal plasma when the temperature of the universe is

about 3000 K), angular power spectrum, and the large scale structure of the universe.

Planck satellite estimates the energy budget of the universe as Ωb = 0.0490± 0.0003,

https://www.esa.int/ESA_Multimedia/Images/2007/07/The_Bullet_Cluster2
https://www.esa.int/ESA_Multimedia/Images/2007/07/The_Bullet_Cluster2
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ΩCDM = 0.2607± 0.002, ΩΛ = 0.6889± 0.056 at 68% C.L within the standard model

of cosmology (also called the ΛCDM model) [3]. Here, b, CDM, and Λ denote the

baryonic matter, Cold Dark Matter, and the dark energy respectively. A DM parti-

cle should be massive since it has only gravitational interaction. It does not interact

with light and is hence non-luminous. The DM should be non-relativistic or cold to

form structures in the universe and it should also be stable. The DM mass range can

vary from a very few eV to several GeV. One of the promising candidates of DM is

the weakly interacting massive particle (WIMP) which is theorized in supersymme-

try (SUSY) theory [48]. There are many experiments that are trying to look for DM.

Several direct detection experiments like CDMS [49], LUX [50], XENON [51], etc.

where the DM can scatter with the SM particles and can produce signals in the detec-

tors. There are other indirect detection experiments like PAMELA [52], Fermi-LAT

[53], AMS-02 [54], etc. where the DM particles annihilate to produce SM particles,

and collider experiments where SM particles collide to produce DM. None of the ex-

periments have given any evidence for the existence of WIMP DM which put stringent

constraints on DM mass > 1 GeV [50, 51, 55]. In Fig.1.6, we have shown the bounds

of the WIMP-nucleon scattering cross section from direct detection experiments [56].

However, to evade the direct detection bounds, one can explore parameter spaces of

Figure 1.6: Bounds on WIMP nucleon scattering cross section from direct detection

experiments.

DM candidates other than WIMPs and can construct alternative DM models such as
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feebly interacting massive particles (FIMPs) [57], strongly interacting massive parti-

cles (SIMPs) [58], fuzzy dark matter (FDM) [59], etc., where particles such as sterile

neutrino [60], axions or axion like particles [61–63], ultralight particles [64–66] etc.,

can be the possible dark matter candidates [67]. Some compact objects like primordial

black holes [68–70] can also be a candidate for dark matter. So far we have discussed

the particle nature of DM. In the following, we discuss the alternative prescription of

DM-modified gravity.

1.4.1 Gravity as a Dark Matter

It is still an open question whether the DM has a particle nature or it is a modification

of gravity in the outer part of the galaxy. The alternative to the DM particle theory

is the Modified Newtonian Dynamics (MOND) which is one of the modified gravity

theories that alters Newton’s law at the outer regions of the galaxy to explain the galac-

tic rotation curve. The idea was first proposed by Mordehai Milgrom in 1983 [71].

Newton’s law is well tested in the solar system or earth, however, in the outer part of

the galaxy, where the acceleration is less, there can be a modification of Newton’s law.

This theory is an alternative to DM because it can fit the rotation curve very well, better

than the DM model. According to Milgrom’s law of MOND theory, either the grav-

itational force experienced by a star in the outer part of the galaxy is proportional to

the square of its centripetal acceleration or Newton’s second law of motion is propor-

tional to the square of the acceleration in the low acceleration region. However, large

scale observations like CMB, structure formation, etc. cannot be explained by MOND

theory. The bullet cluster experiment strongly supports the particle nature of DM. A

recent study has found some galaxies which consist of only baryonic matter and lack

DM [72]. If MOND is a valid universal theory then it should be true for all the galaxies

at all scales where we have a flat rotation curve. But observation of baryonic galaxies

and hence a falling rotation curve strongly disfavors MOND theory. On the other hand,

it is possible that some galaxies do not have DM because they gravitationally scatter

off from the galaxy. However, there are theories that are trying to solve the large scale

observations by modifying the MOND theory.
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1.4.2 Small Scale Structure, Problems, and solutions

Another motivation for studying non-WIMP dark matter candidates is explaining the

small scale structure problems [73, 74]. The evolution and present state of the universe

can be well explained by the standard model of cosmology (ΛCDM) where the large

scale structure (& 1 Mpc) observations are fitted nicely. However, some of the small

scale structure (∼ galactic scale) problems like core-cusp problems, missing satellite

problems, and too big to fail problems cannot be explained by this model [75].

At the galactic scale (below 1 kpc), observations predict a core like structure with

a constant density however, the CDM simulations predict a cuspy nature of the DM

density profile. This is called the core-cusp problem [76]. In Fig.1.7, it has been ob-

Figure 1.7: The core-cusp problem from the dwarf galaxy survey [76].

served from the dwarf galaxy survey that within one-third kiloparsec of the galaxy has

a constant density core instead of a cuspy profile as predicted from CDM simulations.

One solution to this problem is the baryonic feedback which can erase the cuspy den-

sity and results in central core structure in the inner part of the galaxy. The SIDM [77]

or the FDM [59] models can also resolve these problems.

It was predicted from the CDM simulations that there are too many satellite galax-
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ies with masses large enough to allow for galaxy formation (> 107 M�) than that

observed in our Milky Way galaxy with masses as low as 300 M� within 300 kpc [78].

This is called the missing satellite problem. As the galaxy can form due to the infall of

the baryonic matter in the DM potential well, one solution to the missing satellite prob-

lem could be that the galaxy formation becomes extremely inefficient as the halo mass

drops and the DM halos have failed to form galaxies. However, recent studies from the

Sloan Digital Sky Survey (SDSS) with a corrected detection efficiency count an equal

number of satellite galaxies that are predicted from the CDM simulations [79].

Another small scale structure problem is that the local universe contains fewer

galaxies with large central densities (1010 M�) than expected from the CDM simu-

lations [78]. The DM subhalos are too massive to have failed to form stars. This is

called the too-big-to-fail problem. Possible solutions for this problem are alternative

DM models like the Warm Dark Matter (WDM) model [80], Self Interacting Dark

Matter (SIDM) model [77], and the FDM model. In the following, we particularly

discuss the FDM model in some detail.

1.4.3 Fuzzy Dark Matter

Fuzzy dark matter (FDM) is one of the alternative DM models that can solve both the

small scale structure problems of the universe and evade the direct detection bounds. In

this thesis, we obtain bounds from several observations and experiments on axions and

ultralight gauge bosons that are promising candidates of FDM. The very small mass

(10−21− 10−22 eV) of the FDM candidate makes its de-Broglie wavelength of the size

(∼ 1 kpc) of the dwarf galaxy. The ultralight axion like particles (ALPs) that arise

due to string compactification [81] (detailed studies of axions and ALPs are discussed

in Chapter 2) can be good candidates for FDM. The ALP DM which can erase the

problems at small scale can be treated as a DM fluid. We can write the action for the

ALP field (φ) as

S =

∫
d4x
√
−g
[1

2
gµν∂µφ∂νφ−

1

2
m2φ2

]
, (1.9)

where gµν denotes the Friedman-Robertson-Walker (FRW) metric, and the last term

is the mass term for the axion field. Solving the action, we will get the equation of
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motion

φ̈+ 3Hφ̇− ∇
2φ

a2
+m2φ = 0, (1.10)

where a denotes the scale factor, and H denotes the Hubble parameter of the axion

field which at late time redshifts like a cold DM. The number density of such bosonic

particles is very large and lots of such particles can stay in the same state. Hence, we

can treat those particles as classical fields. Also one can calculate the matter power

Figure 1.8: Variation of matter power spectrum with length scale for different ultra-

light axion mass [82]. Ωa denotes the axion relic density, Ωd denotes the total dark

matter density, and ma denotes the axion mass.

spectrum for FDM particles and it has been observed that the power at the small length

scale is suppressed as we decrease the FDM mass which is shown in Fig.1.8 [82]. It

has also been checked that FDM with a lower mass satisfies the core-cusp problem in

a better way which is shown in Fig. 1.9 [83]. However, there is a strong constraint on

FDM mass (m > 10−21 eV) from Lyman-α forest [84]. In Chapters 2 and 3 we have

discussed the FDM model in more detail.
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Figure 1.9: Dark matter density profile with radius [83] .

1.5 Massive Gravity Theory

The massive gravity theory is a modification of Einstein’s GR theory where the media-

tor of the gravitational interaction, i.e; the spin-2 graviton takes a non zero mass. Ein-

stein’s GR theory which connects the curvature of spacetime with matter and radiation

field contains two constants, the universal gravitational constant G and the cosmologi-

cal constant Λ which is responsible for the accelerated expansion of the universe and is

associated with the dark energy. It was earlier believed, that the sum of the zero point

energy at every space time point results in the vacuum energy density. However, there

is a strong disagreement (60−120 orders of magnitude) between the observed value of

the vacuum energy density Λ and the theoretical large value of the quantum mechan-

ical zero point energy. This is called the cosmological constant problem or vacuum

catastrophe [85]. One of the motivations of studying massive gravity theories (such as

bigravity theory) is that it gives natural solution to the cosmological constant problem

and it does not require any dark energy for the accelerated expansion of the universe.

Another motivation is to find an alternative to DM. Since, DM only has gravitational

interaction, and since, we do not have any evidence of particle DM candidate till now,

it is believed that modified gravity can explain the observations where DM is needed

to explain those phenomena.
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The graviton can be realized as the perturbations (κhµν) in the flat Minkowski

spacetime background and we can use the linearized theory of Einstein’s gravity in the

limit κhµν � 1, where κ =
√

32πG. However, nonlinearities in GR come into play

at different length scales. If we have a massive object of mass M then we can use

the linearized gravity theory for the distance r > Rs, where Rs is the Schwarzschild

radius. For Sun, the Schwarzschild radius is 3 km and Einstein’s linear equation is

applicable in the entire solar system. In the length scale RPlanck < r < Rs, classi-

cal non-linearities appear, where RPlanck ∼ 10−35 m is called the Planck scale. In

this region, we can still ignore the quantum corrections. This region corresponds to

the near black hole region. If r < RPlanck, then quantum corrections become impor-

tant which corresponds to the region near the singularity. There exists another limit

r > rV where perturbative theory is still valid, where rV is called the Vainshtein ra-

dius (the minimum radius above which the linear approximation is valid). Physicists

have started to construct massive theories of gravity since the twentieth century. A

brief overview of massive gravity theories are discussed in [86] and in the references

therein. The first massive gravity theory was proposed by Fierz and Pauli (FP) by

considering massive graviton propagating in a flat spacetime [87]. However, this the-

ory faced a serious problem because of the existence of pathological ghosts. There

is another problem with building massive gravity theory which is popularly known as

van-Dam-Veltman-Zakharov (vDVZ) discontinuity. The massive theory can go to the

massless theory in the zero graviton mass limit in the action level, however, we cannot

derive the massless theory from the massive theory in the zero graviton mass limit at

the propagator level. This is simply because the massless graviton has two states of

polarization whereas the massive graviton has five states of polarization. Basically, the

scalar degree of freedom of the massive theory contributes to the vDVZ discontinuity.

There were many models that were derived over the years to eliminate such loopholes

which are Dvali Gabadadze Porrati (DGP) theory [88] which is a five dimensional

theory, modified Fierz-Pauli theory where the ghosts cancel the scalar degrees of free-

dom etc. However, these theories either simultaneously do not solve the appearance of

ghosts and vDVZ discontinuity, or there are certain assumptions. The work by Clau-

dia deRham, Gabadadze and Tolley in 2010 can solve all of these problems in four
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and higher dimensions. This model is popularly called the dRGT model [89]. Other

models of massive gravity theories like bimetric gravity [90] has its own importance in

solving the cosmological constant problem. The speed of graviton in the massive grav-

ity theories should be less than that of light. Different experiments have put bounds

on the mass of graviton. GW170104 event puts the upper bound on graviton mass as

7.7× 10−23 eV [91]. In Chapter 4, we have elaborately discussed the FP theory, DGP

theory, and modified FP theory. We have also put bounds on the mass of the graviton

in these massive gravity theories from the orbital period loss of binary systems.

1.6 Fifth Force

In nature, there are four observed fundamental forces or interactions, gravity, elec-

tromagnetic force, strong nuclear force, and weak nuclear force. However, there are

theories and experiments which suggest a new kind of force coined as the fifth force.

The first indication of the fifth force was in 1986 from the reanalysis of the Eötvös

experiment of measuring accelaration of different composition of the earth [92]. Later

other experiments have also suggested hints for the fifth force. However, till now there

is no direct evidence of a fifth force. Recently in 2015, the ATOMKI group has claimed

an existence of a new particle X17 which is a light boson of mass 17 MeV due to nu-

clear transition which can mediate a short range fifth force [93]. In 2021, Fermilab

has also suggested the existence of a new force while measuring the muon g − 2 [94].

The fifth force can be mediated by ultra-light scalar, or vector particles and it has a

Yukawa behaviour. The deviation from the Newtonian inverse square law of force in

any experiment suggests evidence for the presence of a fifth force. The fifth force is

characterized by two parameters, its strength and its range. The strength of the fifth

force is similar to or less than the gravitational force otherwise we would realize the

force till now. The range of this new force can be as small as in millimetre scale or less

or can be as large as the cosmological scale. The interesting feature of the fifth force is

that it can interact with the dark sector viz, DM and dark energy. It is also believed that

the missing mass problem of the universe is due to some fifth force. Also, the acceler-

ated expansion of the universe could be due to the quintessence dark energy which can
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be a fifth force. Due to these several implications, physicists are now trying to hunt

for this fifth force. There are several types of fifth forces, like long range, short range,

composition dependent, composition independent. Another type of fifth force that can

arise in extra-dimensional Kaluza-Klein theory, string theory, supergravity theory has

a Yukawa behaviour. In Chapters 2 and 3 we have elaborately discussed the search for

the long range fifth force from orbital period loss of binary systems, perihelion preces-

sion of planets, gravitational light bending, and Shapiro time delay which is mediated

by either ultra-light axions or ultra-light gauge bosons.

1.7 Thesis Overview

In this thesis, we have considered axion (spin-0), light gauge boson (spin-1), mas-

sive graviton (spin- 2), and sterile neutrino (spin-1/2) and constrain the dark sector

using these light particles. We have considered several laboratory and astrophysical

observations, and experiments that can measure the orbital period loss of compact bi-

nary systems, perihelion precession of planets, birefringence effect, gravitational light

bending, Shapiro time delay, and several neutrinoless double beta decay experiments.

From such measurements, we obtain bounds on these light particles. Some of the

bounds that we have discussed in this thesis are combined analyses from both grav-

ity and particle physics sectors that are the complementary checks of several particle

physics models. In the following, we summarize the content of each chapter.

• In Chapter 2, we have considered several compact binary systems like neu-

tron star-neutron star (NS-NS) and neutron star-white dwarf (NS-WD) binary

systems. The inverse of the orbital time period of these compact bianries is

∼ 10−19 eV or less. This mass range is in the ballpark of Fuzzy Dark Matter

(FDM). It is observed that the orbital period decreases with time mainly due

to the gravitational wave radiation. There is less than one per cent uncertainty

in the measurement of orbital period loss of these binary systems. If the axion

like particles (ALPs) have couplings with nucleons then the dipole radiation of

ALPs can contribute to the orbital period loss within the experimental uncer-

tainty. Comparing with the observational data, we obtain constraints on mass
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and couplings of ALPs. We find that these values do not satisfy the constraints

coming from relic density, if ALPs are FDM. Thus we conclude that if ALPs are

FDM then they do not couple with quarks.

If the NS is a pulsar, it can also emit electromagnetic radiation. The long range

axion hair from pulsar can change the polarization of the electromagnetic radi-

ation. This is called the birefringent effect. We have calculated the birefringent

angle due to the interaction of long range axions with the electromagnetic radi-

ation. Comparing with the experimental results, we obtain bounds on the axion

parameters.

We have also discussed if celestial objects like the earth and the Sun contain lots

of axions, their emission can contribute to the measurement of light bending and

Shapiro time delay within the experimental uncertainty. We have calculated the

amount of light bending and Shapiro time delay due to the axion emission and

by comparing with the experimental data, we obtain bounds on axion mass and

axion decay constant. The result also disfavors ALPs as FDM. The Shapiro time

delay puts a stronger bound on the axion parameters than the gravitational light

bending and orbital period loss.

• In Chapter 3, we obtain bounds for several particle physics models from the

astronomical observations. we have attempted to probe gauged Lµ−Lτ scenario

from orbital period loss of binary systems. The NS contains lots of muons and

hence, the binary systems can mediate gauged Lµ − Lτ force. The vector gauge

bosons of Lµ − Lτ type can radiate from the binary systems and contribute to

the orbital period loss within the experimental uncertainty. Comparing with the

experimental data, we obtain a bound on Lµ − Lτ gauge coupling. The mass of

the gauge boson is constrained from the orbital frequency of the binary systems.

We have also seen, due to the presence of electrons in the Sun and planets, long

range Le−Lµ,τ type of gauge force can mediate between the planets and the Sun.

The mediation of Le − Lµ,τ gauge bosons can contribute to the measurement of

the perihelion precession of planets within the experimental uncertainty. We

calculate the perihelion precession of planets due to the mediation of Le − Lµ,τ
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gauge bosons and by comparing with the experimental data, we obtained a bound

on Le − Lµ,τ gauge coupling. The planet Mars puts the stronger bound on cou-

pling.

• In Chapter 4, we have developed massive graviton theories from Feynman di-

agram techniques. we study the vanDAM-Veltman-Zakharov (vDVZ) disconti-

nuity in Fierz-Pauli theory, Dvali-Gabadadze-Porrati theory, and modified Fierz-

Pauli theory, and the presence of vDVZ discontinuity can be realized from the

orbital period loss of compact binary systems. We have calculated the energy

loss due to the massive graviton radiation in these three massive graviton theo-

ries. We also put bounds on the graviton mass in those theories from the binary

pulsar timing.

• In Chapter 5, we have analyzed the effect of the Dark Large Mixing Angle

(DLMA) solution on the effective Majorana mass (mββ) governing neutrinoless

double beta decay (0νββ) in presence of a sterile neutrino. We consider the 3+1

picture and check that the Mikheyev-Smirnov-Wolfenstein (MSW) resonance in

the Sun can take place in the DLMA parameter space in this scenario. We have

also investigated how the values of the solar mixing angle θ12 corresponding

to the LMA and DLMA solutions alter the prediction of mββ in presence of a

sterile neutrino. We also evaluate the discovery sensitivity of the future 136Xe

experiment in this context.

• Finally, in Chapter 6, we have summarized our conclusions and discussed the

implications of the results obtained in this thesis.





Chapter 2

Axion (Spin 0):

Dark Matter, Long Range Force,

Precision tests of Einstein’s General

Relativity Theory, and its Searches

2.1 Introduction

Axion was first introduced to solve the strong CP problem [95–98]. The theory of

strong interaction is governed by Quantum Chromodynamics (QCD) and we can write

the QCD Lagrangian

L = −1

4
Ga
µνG

aµν +
n∑
i=1

[q̄ii /Dqi − (miq̄iqi + h.c)] + θ
g2
s

32π2
Ga
µνG̃

aµν , (2.1)

where the dual of the gluon field strength tensor is,

G̃µν =
1

2
εµνγδGγδ, (2.2)

where εµνγδ denotes the four dimensional Levi-Civita symbol. The last term in the

QCD Lagrangian violates the discrete symmetries P, T, and CP . Since all the quark

masses are non-zero, the θ term in the Lagrangian must be present. The QCD depends

on θ through some combination of parameters, θ̄ = θ + arg(det(M)), where M is

the quark mass matrix [99]. The most stringent probe of the strong CP violation is

23
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the electric dipole moment of the neutron. The neutron electric dipole moment (EDM)

depends on θ̄ and from chiral perturbation theory, we can obtain the neutron EDM as

dn ' 10−16θ̄ e.cm. However, the current experimental constraint on the neutron EDM

is dn < 10−26 e.cm, which implies θ̄ . 10−10 [100]. The smallness of θ̄ is called the

strong CP problem.

(a) Water molecule (b) Neutron

Figure 2.1: (a)Structure of a water molecule (https://www.sciencephoto.

com/media/9556/view/water-molecule). (b) Quark content of neutron

(http://www.sci-news.com/physics/article00400.html).

The dipole moment (d =
∑
i

qiri) is defined as the sum of the product of charges

(qi) and distances (ri) of individual particles of a system. For example, the water

molecule (H2O) consists of two hydrogen atoms and one oxygen atom Fig.2.1(a).

The size of an atom or molecule is roughly 10−8cm. Hence, one can estimate the

dipole moment of the water molecule as dH2O =
∑
i

qiri ∼ 10−8 e.cm which matches

with the current experimental data [101]. Similarly, we can try to measure the dipole

moment of the neutron classically. A neutron consists of three quarks, two down quarks

and one up quark Fig.2.1(b). The up quark has the charge +
2

3
e and the down quark

has the charge −1

3
e. The nuclear size is ∼ 10−13 cm. Hence, one can estimate the

dipole moment of the neutron as dn ∼ 10−13
√

1− cos θ e.cm [102], where θ is the

angle between the up and the down quark. The dipole moment of the neutron can be

calculated from the Larmor precession. Neutrons with all spins pointing in the same

https://www.sciencephoto.com/media/9556/view/water-molecule
https://www.sciencephoto.com/media/9556/view/water-molecule
http://www.sci-news.com/physics/article00400.html
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direction can be placed in electric and magnetic fields where the electric and magnetic

fields are parallel to each other. After some time, some of the neutrons will rotate

along the direction of the field and the number can be calculated from the Larmor

precessional frequency f1 ∝ |µB + dE|. In the next round, one can flip the direction

of the magnetic field so that the electric and magnetic fields become antiparallel to

each other. In this setup, the Larmor precessional frequency of the neutron becomes

f2 ∝ |µB − dE|. Taking the difference between f1 and f2, one can calculate the

dipole moment of the neutron. The recent best measured value of neutron electric

dipole moment is dn < 10−26 e.cm [103–105] which implies θ < 10−13. Classically,

the extremely small value of θ implies that all the three quarks are in a straight line.

This is called the strong CP problem. There are two symmetry operations that can set

the neutron electric dipole moment to zero. These are the parity (P) and the charge

conjugation times parity (CP) symmetry or the time reversal symmetry (T) (CPT is

good symmetry of nature). The P symmetry transforms ~x→ −~x. Suppose the spin (s)

and the dipole moment (d) of a neutron are parallel to each other. Under P operation,

s → s and d → −d. Hence, after the P operation, s and d are antiparallel to each

other. Since, under P, the neutron will not loss its identity, so one way to make them

equal is that d = 0 if parity is a good symmetry of nature. Similarly, under CP/T

operation, the dipole moment remains the same whereas the spin vector flips its sign.

From the same argument, d = 0 if CP is a good symmetry of nature. However, CP and

P symmetries are badly broken in nature (P symmetry is badly broken by the weak

interactions and CP symmetry is badly broken due to the CP violating phase (∼ π/3)

in the Cabibbo-Kobayashi-Maskawa (CKM) matrix) and we cannot have zero dipole

moment solution of the neutron from the symmetry solution. Another solution is if all

the quark masses vanish which is not possible in SM. Hence, the remaining solution is

the axion which can solve the strong CP problem. To solve this, Peccei and Quinn, in

1977 [95], came up with an idea that θ̄ is not just a parameter but it is a dynamical field

driven to zero by its own classical potential. They postulated a global UPQ(1) quasi

symmetry which is a symmetry at the classical level but explicitly broken by the non

perturbative QCD effects which produces the θ term, and spontaneously broken at a

scale fa. Thus, the pseudo-Nambu-Goldstone bosons appear and these are known as
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Figure 2.2: Variation of the axion potential and dipole moment with θ =
a

fa

the axions. The strong force generates the generic axion potential as

V (a) ≈ 1

2
Λ4
QCD

[
1− cos

( a
fa

)]
. (2.3)

The second derivative of Eq.2.3 yields the axion mass ma ∼
Λ2
QCD

fa
=
mπfπ
fa

. Hence,

ma = 5.7 × 10−12 eV
(1018 GeV

fa

)
, where mπ is the pion mass and fπ is the pion

decay constant. So if we need axion decay constant less than the Planck scale (Mpl)

then the mass of the axion is ma & 10−12 eV [106]. In Fig.2.2, we have shown the

variation of the axion potential and the neutron dipole moment with θ =
a

fa
. The θ can

take values from −π to +π. At the very early universe (∼ 1016 GeV), the axions are

created massless due to global U(1)PQ symmetry breaking. As the universe expands,

the temperature drops and at T ∼ ΛQCD, the strong force confines and the axion get

mass due to non perturbative QCD effects. As the axions become massive, it rolls

down to the bottom of the potential and subsequently today the dipole moment of the

neutron becomes zero.

Also, there are other pseudo scalar particles that are not the actual QCD axions,

but these particles have many similar properties to the QCD axions. These are called

axion like particles (ALPs). For ALPs, the mass and decay constant are independent

of each other. These ALPs are motivated by the string theory [81]. The interaction of
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ALPs with the standard model particles is governed by the Lagrangian [107]

L =
1

2
∂µa∂

µa− αs
8π
gag

a

fa
Gµν
a G̃

a
µν −

α

8π
gaγ

a

fa
F µνF̃µν +

1

2

1

fa
gaf∂µaf̄γ

µγ5f, (2.4)

where g’s are the coupling constants which depend on the model. The first term is

the dynamical term of ALPs. The second, third, and last terms denote the coupling

of ALPs with the gluons, photons, and fermion fields respectively. ALPs couple with

the SM particles very weakly because the couplings are suppressed by
1

fa
, where fa is

called the axion decay constant and for ALPs, it generally takes larger value.

The axions or ALPs can also couple with the nucleons or quarks through the elec-

tric and magnetic dipole moment operators described by the terms gEDMaN̄σµνγ5NF
µν

and gMDMaN̄σµνNF
µν respectively.

ALPs are pseudo-Nambu Goldstone bosons which have a spin-dependent coupling

with nucleons so that, in an unpolarized macroscopic body, there is no net long range

field for ALPs outside the body. However, if the ALPs also have a CP violating cou-

pling, then they can mediate long range forces even in unpolarized bodies [108, 109].

Besides solving the strong CP problem, the axion can be a good candidate of dark

matter. Explaining the nature of dark matter and dark energy is a major unsolved

problem in modern cosmology. An interesting dark matter model is the fuzzy dark

matter (FDM)[59, 64]. The FDM is axion like particles (ALPs) with mass(10−21 eV−

10−22 eV) such that the associated de Broglie wavelength is comparable to the size of

the dwarf galaxy (∼ 2 kpc). Axions and ALPs can be possible dark matter candidates

[61] or can be dynamical dark energy [110]. Axions can also form clouds around black

hole or neutron star from superradiance instabilities and change the mass and spin of

the star [111, 112]. Cold FDM can be produced by an initial vacuum misalignment

and, to have the correct relic dark matter density, the axion decay constant should be

fa ∼ 1017 GeV [64]. This ultra light FDM can solve the small scale structure problems

of the universe [61, 113–115].

In the beginning of the universe, we can write the action of the dynamical axion

field as

S =

∫
d4x
√
−gL =

∫
d4x
√
−g
[1

2
∂µa∂

µa− V
( a
fa

)]
, (2.5)

where g = det(gµν) is the determinant of the metric and the axion field evolves with a
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periodic potential

V
( a
fa

)
= m2

af
2
a

[
1− cos

( a
fa

)]
. (2.6)

Using Eq.(2.6), we can solve the action Eq.(2.5) to obtain the equation of motion of

the axion field in Friedman-Robertson-Walker (FRW) spacetime in Fourier space as

äk + 3Hȧk +
k2

R2
ak +m2

aak = 0, (2.7)

whereH is the Hubble parameter,R(t) is the scale factor in FRW spacetime. In Fourier

space, all the modes decouple and for non relativistic or zero modes, we can omit the

third term in Eq.(2.7). Hence, the axionic field has a damped harmonic oscillatory

solution. If H & ma, then the axion field takes a constant value a0 = θ0fa which

fixes the initial misalignment angle θ0. After that, the axion starts oscillating with a

frequency ∼ ma. The oscillation starts at H ∼ ma and the energy density of the

axion field is damped as
1

R3
. Hence, at the late time the axion field varies as a ∝

T
3
2 cos(mat), where T =

1

R
is the temperature of the universe at that epoch and the

axion field energy density redshifts like a cold dark matter. If Tosc is the temperature at

which the oscillation starts and H ∼ ma then [64]

T 2
osc

Mpl

= ma, (2.8)

where Mpl = 2.435 × 1018 GeV is the Planck mass. At this oscillation temperature

Tosc, the radiation energy density is of order T 4
osc and the matter energy density is of

orderm2
aa

2
0. With the expansion of the universe, the ratio of the energy densities of dark

matter and radiation increases as
1

T
(∝ R) and at T ′ ∼ 1 eV, the two energy densities

are supposed to be equal and the universe becomes matter dominated. Hence,

m2
aa

2
0Tosc

T 4
oscT

′ ∼ 1. (2.9)

Using Eq.(2.8) in Eq.(2.9), we obtain the initial axion field as

a0 ∼
M

3
4
plT
′
1
2

m
1
4
a

∼ 0.5× 1017 GeV, (2.10)

with ma = 10−22eV. Hence, the axionic FDM relic density (normalized by the critical

density) becomes

ΩFDMh
2 ∼ 0.12

( a0

1017 GeV

)2( ma

10−22 eV

) 1
2
. (2.11)



2.1. Introduction 29

For ALPs of massma = 10−22 eV, the oscillation temperature becomes Tosc ∼ 500 eV

(using Eq.(2.8)). The temperature is after nucleosynthesis which is roughly at 1MeV.

So at this temperature, the radiation is the dominant one and the axion energy density

is the subdominant one oscillating in the background. This axion oscillation starts

dominating at Tosc ∼ 500 eV. Hence, this type of dark matter is a late appearance

of dark matter and at this temperature, the coherent oscillation of dark matter starts.

The initial misalignment angle can take values from −π to +π. The coupling of ALPs

with matter is proportional to
1

fa
. Hence, large values of fa correspond to the weaker

coupling of axions with the matter. Any value of fa other than 1017 GeV requires fine

tuning of θ0 which can take values −π < θ0 < π.

The axion field can oscillate with time as a(t) ∼
√

2ρDM
ma

sin(mat), where ρDM is

the dark matter energy density. Axion can also form topological defects like cosmic

strings and domain walls [116–118]. They can also behave as dark radiation [119–

124].

Strong dipolar magnetic field induces E.B density outside a pulsar which can also

be a source of pseudoscalar axion and can rotate the polarization vector of the electro-

magnetic radiation [125]. There can also be a galactic axion dark matter background

which can rotate the polarization of the pulsar light [126]. The ALP dark matter back-

ground also rotates the CMB modes which constrain the mass of the axion and axion

photon coupling constant [127]. There is also a study where photon can change its po-

larization when it passes through neutrino gas [128]. Axions can also be probed from

superradiance phenomena in a polarimetric measurement for a black hole [129, 130].

Constraints on the rotation of the polarization angle can also be obtained from the

protoplanetary disk polarimetry [131], the active galactic nuclei [132], and quasar po-

larization [133].

There is no direct evidence of axions in the universe. However, there are lots of

experimental and astrophysical bounds on axion parameters. There are some ongoing

searches for solar axions which correspond to fa ∼ 107 GeV having sub-eV masses

[134, 135]. If solar axions were there, then from the supernova 1987A result we obtain

fa & 109 GeV. Axions with fa . 108 GeV provide the component of hot dark

matter[136–138]. Large value of fa is allowed in the anthropic axion window and can
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be studied by isocurvature fluctuations [139]. The laboratory bounds for the axions are

discussed in [140–147]. The cosmological bounds for the cold axions are produced by

the vacuum realignment mechanism are discussed in[148, 149]. The bounds on axion

mass and decay constant are discussed in [150–152], if cold axions are produced by

the decay of axion strings.

There are a few experiments like ABRACADABRA [153, 154], CASPEr [155–

158], GNOME [159–161] which are looking for axions using magnetometers [162].

Storage rings can also be used for the detection of axions [163]. Constraints on axion

mediated force from torsion pendulum experiment is discussed in [164].

This chapter is organized as follows. In Section2.2, we discuss the constraints

on ultralight axions from indirect evidence of gravitational waves by calculating the

orbital period loss of compact binary systems due to the quadrupole radiation of gravi-

tational waves and the Larmor radiation of axions. This is based on [62]. In Section2.3,

we discuss the constraints on ultralight axions from birefringence effect of pulsars by

calculating the birefringent angle due to the interaction of axions with photons which

is based on the work discussed in [165]. In Section2.4 we discuss the constraints on

ultralight axions from gravitational light bending and Shapiro time delay by calculat-

ing the light bending and time delay in presence of axion field which is based on [63].

Finally, in Section 2.5, we conclude the chapter with the important results.

2.2 Constraints on Ultralight Axions from the Indirect

Evidence of Gravitational Waves

It has been observed by Hulse and Taylor that the orbital period loss of the compact bi-

nary system (consists of one pulsar and one neutron star) decreases over a long period

of time which is the indirect evidence of gravitational waves emission. The pulsar can

behave as an atomic clock and the radio antennas on the earth can collect the signal

emitted from the Hulse-Taylor (HT) binary system at regular intervals. Fig.2.3(a) de-

notes the pictorial representation of Hulse Taylor binary system and the orbital period

loss diagram is shown in Fig.2.3(b).

If there is no gravitational wave emission then the orbital period of the binary
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(a) Hulse Taylor binary system (b) orbital period loss

Figure 2.3: (a)Hulse-Taylor binary system consists of one neutron star and

one pulsar (http://hyperphysics.phy-astr.gsu.edu/hbase/Astro/

pulsrel.html). (b) Orbital period loss of the HT binary system. The straight

line parallel to time axis defines that there is no GW emission or orbital period loss

(https://en.wikipedia.org/wiki/Hulse-Taylor_binary).

system would remain constant. However, experimentally it was found that the orbital

period decays over a large period of time and for this discovery, Hulse and Taylor won

the Noble prize (1993). Although the first direct evidence of gravitational wave was

confirmed from the event GW150914 (2015) which was a merger event of two stellar

mass black holes. The quadrupole formula for the gravitational wave radiation is

P =
G

5

(d3Qij

dt3
d3Qij

dt3
− 1

3

d3Qii

dt3
d3Qjj

dt3

)
, (2.12)

where P stands for emitted power for the GW radiation, G denotes the Newton’s uni-

versal gravitational constant, and Qij stands for the quadrupole moment of the GW

radiation field. In 1963, Peters and Mathews calculated the energy loss for arbitrary

eccentric Keplerian orbit as

dE

dt
=

32G

5
Ω6
( m1m2

m1 +m2

)2

a4(1− e2)−7/2
(

1 +
73

24
e2 +

37

96
e4
)
, (2.13)

where m1 and m2 denote the masses of the two stars in the binary system, Ω is the

orbital frequency, and a denotes the semi major axis of the elliptic orbit with e as the

http://hyperphysics.phy-astr.gsu.edu/hbase/Astro/pulsrel.html
http://hyperphysics.phy-astr.gsu.edu/hbase/Astro/pulsrel.html
https://en.wikipedia.org/wiki/Hulse-Taylor_binary
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eccentricity. The orbital period loss is related with the energy loss as

Ṗb = 6πG−
3
2 (m1m2)−1(m1 +m2)−

1
2a

5
2

(dE
dt

)
. (2.14)

The orbital period loss for the HT binary system from general relativistic (GR) calcu-

lation is ṖbGR = −2.4025 × 10−12 s s−1 whereas Ṗbobserved = −2.4225 × 10−12s s−1

[6, 166]. The observed orbital period loss value matches quite well with the GR pre-

dicted value. This is an indirect evidence of GW. However, there is less than 1%

uncertainty in the measurement. The orbital period of the HT binary system is ∼ 8 h

and the corresponding frequency is 10−19 eV which is in the ballpark of fuzzy dark

matter. Hence, particles with this small mass or even less can emit from the binary

systems and contribute to the orbital period loss within the experimental uncertainty

limit.

It has been pointed out recently [167] that if a compact star is immersed in an

axionic potential (which will take place if the ALPs are FDM candidates), a long range

field is developed outside the star.

The ALPs can be sourced by compact binary systems such as neutron star-neutron

star (NS-NS), neutron star-white dwarf (NS-WD), and can have very small mass (<

10−19 eV). They can be possible candidates of FDM. The FDM density arises from

a coherent oscillation of an axionic field in free space. If such axionic FDM particles

have a coupling with nucleons, then the compact objects (NS, WD) immersed in the

dark matter potential develop a long range axionic hair. When such compact stars are

in a binary orbit, they can lose the orbital period by radiating the axion hair in addition

to the gravitational wave[167, 168].

2.2.1 The Long Range Axion Profile

Effective Potential of Axion in Vacuum

The interaction of axion with other standard model particles below the Peccei Quinn

(PQ) and electroweak (EW) symmetry breaking scales is governed by the Lagrangian

[106]

L =
1

2
∂µa∂

µa+
a

fa

αs
8π
GµνG̃

µν +
1

4
ag0

aγγFµνF̃
µν +

∂µa

2fa
jµa,0, (2.15)
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where the kinetic term of the axion field is denoted by the first term, the coupling

of axion with the gluon field is denoted by the second term, the third term denotes

the axion field couples with the photon field and the last term denotes the derivative

coupling of axion field with the quark field q through an axial vector current jµa,0 =

g0
q q̄γ

µγ5q. The axion photon coupling is defined as g0
aγγ =

α

2πfa

E

N
, where α is the

electromagnetic fine structure constant, E/N is the ratio of the electromagnetic to the

color anomaly. Note, the coupling of axion with the other standard model fields are

inversely proportional to fa.

We can give a chiral rotation to the quark field q → eiγ5
a
fa
Qaq so that derivative

coupling disappears from the quark mass term, where q = (u, d), and trQa = 1.

Hence Eq. (2.15) becomes

L =
1

2
∂µa∂

µa+
1

4
agaγγFµνF̃

µν +
∂µa

2fa
jµa − q̄LMaqR + h.c. (2.16)

The new axion photon coupling constant becomes

gaγγ =
α

2πfa

[E
N
− 6tr(QaQ2)

]
, (2.17)

and the axial current density is

jµa = jµa,0 − q̄γµγ5Qaq. (2.18)

The quark mass matrix in the new mass basis becomes

Ma = ei
a
fa
QaMqe

i a
fa
Qa , (2.19)

where Mq =

mu 0

0 md

, and Q =

2

3
0

0 −1

3

, mu and md are the masses of the up

and down quarks respectively.

Such chiral transformation of the quark field helps to move all the non derivative

coupling into the two lightest quarks. Hence, we can integrate out all the other quarks

and can work in the two flavour effective theory. Ma contains non derivative couplings

on the axions. So in the chiral expansion at the leading order, all the non derivative

couplings of axions is contained in the pion mass term of the Lagrangian

Lπ ⊃ 2B0
f 2
π

4
< UM †

a +MaU
† >, (2.20)
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where

U = e
iΠ
fπ , Π =

 π0
√

2π+

√
2π− −π0

 . (2.21)

Here fπ is the pion decay constant and, B0 is related to the chiral condensate. To

derive the effective axion potential to the leading order, we only consider the neutral

pion sector. Choosing Qa proportional to the identity matrix, we can write

V (a, π0) = −B0f
2
π

[
mu cos

(π0

fa
− a

2fa

)
+md cos

(π0

fa
+

a

2fa

)]
, (2.22)

or,

V (a, π0) = −m2
πf

2
π

√
1− 4mumd

(mu +md)2
sin2

( a

2fa

)
cos
(π0

fπ
− φa

)
, (2.23)

where

tanφa =
mu −md

mu +md

tan
( a

2fa

)
, (2.24)

where mπ is the pion mass. On the vacuum, the neutral pion gets a vev and trivially be

integrated out. Hence, the effective axion potential becomes

V ≈ −m2
πf

2
π

√
1− 4mumd

(mu +md)2
sin2

( a

2fa

)
. (2.25)

The minimum of the potential is at < a >= 0 i.e; θ̄ = 0 and solves the strong CP

problem. The second derivative of the potential gives the axion mass

m2
a =

mumd

(mu +md)2

m2
πf

2
π

f 2
a

. (2.26)

We want to probe the axions whose mass is lighter than that obtained from Eq. (2.25)

by a factor of
√
ε and we consider the parameter space ε . 0.1. For these axions, the

potential becomes

V ≈ −εm2
πf

2
π

√
1− 4mumd

(mu +md)2
sin2

( a

2fa

)
, (2.27)

and consequently in the mu = md limit, the mass of the axion becomes

ma =
mπfπ
2fa

√
ε. (2.28)
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Effective axion potential at finite density

We are considering the astrophysical and celestial objects like neutron stars, white

dwarfs, pulsars, and planets which are made of non relativistic matter mostly like

neutrons and protons. The axion potential comes from the quark mass term. From

Feynman-Hellmann theorem, one can develop the quark condensate in the medium. If

H(λ) denotes a Hermitian operator which depends on a real parameter λ and operates

on a normalized eigenvector |ψ(λ) > with eigenvalue E(λ) then [169]

H(λ)|ψ(λ) >= E(λ)|ψ(λ) > . (2.29)

Hence, from Feynman-Hellmann theorem, we can write

< ψ(λ)| d
dλ
H(λ)|ψ(λ) >=

d

dλ
< ψ(λ)|H(λ)|ψ(λ) > . (2.30)

The chiral symmetry is explicitly broken by the quark mass term which is governed by

the Hamiltonian

Hmass = muūu+mdd̄d+mss̄s+ ..., (2.31)

wheremu,md, andms denote the quark mass terms correspond to the quark fields u, d,

and s respectively. The dots denote the similar contributions from the heavier quarks.

We can write Eq. (2.31) as

Hmass = 2mq q̄q −
1

2
δmq(ūu− d̄d) +mss̄s+ ..., (2.32)

where we define q̄q =
1

2
(ūu+ d̄d), mq =

1

2
(mu +md) and δmq = md −mu. Putting

H →
∫
d3xHQCD and λ→ mq in the Feynman-Hellmann theorem, we obtain

2 < ψ(mq)|
∫
d3xq̄q|ψ(mq) >=

d

dmq

< ψ(mq)|
∫
d3xHQCD|ψ(mq) > . (2.33)

Multiplying both sides by mq, we obtain from Eq. (2.33)

2mq < ψ(mq)|
∫
d3xq̄q|ψ(mq) >= mq

d

dmq

< ψ(mq)|
∫
d3xHQCD|ψ(mq) > .

(2.34)

Here, we neglect the isospin breaking terms, though it is not necessary.

Consider two cases, |ψ(mq) >= |nN > and |ψ(mq) >= |0 > in Eq. (2.34). |nN >

denotes the ground state with nucleon density nN and |0 > denotes the vacuum state.
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Taking the differences of this two cases, we obtain

2mq(< q̄q >nN − < q̄q >0) = mq
dξ

dmq

. (2.35)

The nuclear matter energy density ξ is given by

ξ = MNnN + δξ, (2.36)

where δξ contributes to the energy density from nucleon kinetic energy and nucleon

nucleon interaction. The quark condensate at low density can be expressed by nucleon

σ term, σN which is defined as

σN = 2mq

∫
d3x(< N |q̄q|N > − < 0|q̄q|0 >). (2.37)

From Eq. (2.34) we obtain

σN = mq
dMN

dmq

. (2.38)

Combining Eq. (2.35), Eq. (2.36) and Eq. (2.38) we obtain

2mq(< q̄q >nN − < q̄q >0) = σNnN + ... (2.39)

From Gell-Mann-Oakes-Renner relation, we can write

2mq < q̄q >0= −m2
πf

2
π . (2.40)

In the effective two flavour theory, we define the effective up and down quark mass as

meff
u,d = mu,d

[
1−

∑
σu,dN nN
m2
πf

2
π

mu +md

mu,d

]
. (2.41)

From Eq. (2.25), in mu = md limit, the effective axion potential at finite density

becomes

V = −m2
πf

2
π

{(
ε− σNnN

m2
πf

2
π

)∣∣∣ cos
( a

2fa

)∣∣∣+O
((σNnN

m2
πf

2
π

)2)}
. (2.42)

2.2.2 The Axion Profile for an Isolated Neutron Star/White Dwarf

It has been pointed out in [167] that, if we consider ALPs which couple to nucleons,

then compact stars such as neutron stars and white dwarfs can be the source of long

range axionic force. The reason for this long range force is as follows. In the vacuum,

the potential for the ALPs is Eq.(2.27) and the mass of the ALP is Eq. (2.28) .
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Inside a compact star, the quark masses are corrected by the nucleon density and

the potential inside the star is Eq.2.42. We have chosen the nucleon σ term as σN ∼

59MeV from lattice simulation [170] and we consider the parameter space where ε ≤

0.1[167]. The tachyonic mass of the ALPs is the square root of the second derivative

of the potential Eq. (2.42) at a = 0. Inside of the neutron star, σNnN/m2
πf

2
π is not

equal to zero and mT & ma. Thus the magnitude of the tachyonic mass of the ALPs

inside the compact star becomes

mT =
mπfπ
2fa

√
σNnN
m2
πf

2
π

− ε, r < rNS, (2.43)

where rNS is the radius of the compact star. The sign change of the axion potential

at high nucleon density allows axions to be sourced by compact stars. Inside of the

compact star, the axion field is tachyonic and resides on one of the local maxima of the

axion potential as shown in Fig.2.4(a). Inside the compact star, the axion field takes a

constant value a = 4πfa. Now we compare the gradient energy f 2
a/r

2 required to move

the axion from its unstable solution with the gain in potential energym2
πf

2
π

(
ε−σNnN

m2
πf

2
π

)
by putting a = 4πfa in the expression of the effective axion potential Eq. (2.42). When

the gain in potential energy is greater than the gradient energy then the axion field rolls

down asymptotically to a = 0 at r →∞. Hence,

m2
πf

2
π

(
ε− σNnN

m2
πf

2
π

)
>
f 2
a

r2
c

,

The ALPs can be sourced by compact objects if its size is larger than the critical size

given by [167]

rc &
1

mT

. (2.44)

For a typical neutron star and white dwarf, the condition Eq. (2.44) is satisfied. By

matching the axionic field solution inside and outside of the compact star, we get the

long range behaviour of the axionic field. The axionic potential has degenerate vacua

and this degeneracy can be weakly broken by higher dimensional operators suppressed

by the Planck scale [171]. The degeneracy can also be broken by a finite density

effect like the presence of a NS and WD. At the very high nuclear density, the axionic

potential changes its sign which allows the ALPs to be sourced by the compact stars.

Due to the very small size of the nuclei, it cannot be the source of the ALPs and long
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range axion fields arise only in large sized objects like NS and WD. Using Eq. (2.28)

in Eq. (2.43) we can write the tachyonic mass as

m2
T = σNnN/4f

2
a −m2

a (2.45)

Putting values of all the parameters and ma ∼ 10−19 eV, we get the upper bound of

the axion decay constant (using Eq. (2.44)) as fa . 2.636 × 1017 GeV. Axions can

never be sourced by neutron star if fa is greater than this upper bound. Similarly, the

white dwarf cannot be the source of axions if fa & 9.95× 1014 GeV.

Compact stars with large nucleon number density can significantly affect the axion

potential. The second derivative of the potential Eq. (2.42) with respect to the field

value is

∂2V

∂a2
= m2

πf
2
π

{(
ε− σNnN

m2
πf

2
π

) 1

4f 2
a

cos
( a

2fa

)
+O

((σNnN
m2
πf

2
π

)2)}
. (2.46)

Outside of the compact star, σN = 0 which implies that

∂2V

∂a2
= m2

πf
2
π

{
ε

1

4f 2
a

cos
( a

2fa

)
+O

((σNnN
m2
πf

2
π

)2)}
. (2.47)

Therefore, outside of the compact star (r > rNS), the potential attains minima (
∂2V

∂a2
>

0) corresponding to the field values a = 0,±4πfa, ... and maxima (
∂2V

∂a2
< 0) corre-

sponding to the field values a = ±2πfa,±6πfa... etc.

Inside of the compact star (r < rNS), σN 6= 0 and
σNnN
m2
πf

2
π

> ε. Therefore, inside of

the compact star, the potential has maxima at a = 0,±4πfa, ... and minima at the field

values a = ±2πfa,±6πfa... etc.

The axionic field becomes tachyonic inside of a compact star and resides on one

of the local maxima of the axionic potential and, outside of the star, the axionic field

rolls down to the nearest local minimum and stabilizes about it. The axionic field

asymptotically reaches zero value a = 0 at infinity. Therefore, throughout the interior

of the compact star the axionic field assumes a constant value a = 4πfa, the nearest

local maximum.

For an isolated compact star of constant density the equation of motion for the

axionic field is [167]

∇µ∇µ

(
θ

2

)
=


−m2

T sin

(
θ

2

)
sgn{cos

(
θ

2

)
} (r < rNS),

m2
a sin

(
θ

2

)
sgn{cos

(
θ

2

)
} (r > rNS),

(2.48)
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where θ = a/fa. The sgn function is required to take care of the absolute value

| cos(θ/2)| in the potential. Note that the equation of motion for the axionic field

inside the compact star is satisfied by the field value a = 4πfa.

Assuming the exterior spacetime geometry due to the compact star to be Schwarzschild,

the axionic field equation Eq. (2.48) becomes (see Appendix A.1)(
1− 2GM

r

)
d2a

dr2
+

2

r

(
1− GM

r

)
da

dr
= m2

aa, (2.49)

whereM denotes the compact star mass, and we use the approximation sin(θ/2) ≈ θ/2

for small θ.

At a large distance (r >> 2GM ) from the compact star, the axionic field Eq. (2.49)

becomes
d2a

dr2
+

2

r

da

dr
= m2

aa. (2.50)

Assuming a = ξ(r)/r, the above equation reduces to ξ′′ − m2
aξ = 0 (where prime

denotes derivative with respect to r). This has the solution ξ = C1e
mar + C2e

−mar.

Since a → 0 in the limit r → ∞, C1 = 0. Thus, a behaves as a ∼ qeffe
−mar/r,

where we rename the integration constant C2 as qeff . Further, for sufficiently light

mass (ma << 1/D << 1/rNS) where D is the distance between the stars in a bi-

nary system), the scalar field has a long range behaviour with an effective charge qeff .

For scalar Larmor radiation, the orbital frequency (ω) of the binary pulsar should be

greater than the mass of the particle that is radiated (i.e. ω > ma). This translates the

mass spectrum of radiated ALPs for a typical neutron star- neutron star (NS-NS) or

a neutron star- white dwarf (NS-WD) binary system into ma . 10−19 eV. Also, the

axion Compton wavelength should be much larger than the binary distance in order

to use the massless limit in the computation of scalar radiation and effective charge,

i.e. m−1
a >> D. The critical value of axion mass required for the scalar radiation and

the binary distance for four compact binary systems are given in Table 2.1 which is

consistent with the assumption of ma . 10−19 eV. Consequently, the axion Compton

wavelength (inverse of axion mass) is larger than the binary distance and, hence, the

size of the star (size of NS is 1020 GeV−1 and size of WD is 1023 GeV−1).

To identify the effective charge qeff , we exploit the continuity of the axion field

across the surface of the compact star. Therefore, we solve Eq. (2.49) in the massless
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Table 2.1: Summary of the axion Compton wavelength (m−1
a ) and binary distance D

for all the four compact binaries. All relevant parameters for the numerical calculation

are given in section 2.2.4.

Binary system Critical value of m−1
a (GeV−1) binary separation D (GeV−1)

PSR J0348+0432 2.14× 1027 4.64× 1024

PSR J0737-3039 2.08× 1027 4.83× 1024

PSR J1738+0333 7.41× 1027 9.65× 1024

PSR B1913+16 6.76× 1027 1.08× 1025

limit (ma → 0), i.e. (
1− 2GM

r

)
d2a

dr2
+

2

r

(
1− GM

r

)
da

dr
= 0. (2.51)

Integrating Eq. (2.51) we get a′ = −C3/r
2(1− 2GM/r) and further integration yields

a = − C3

2GM
ln (1− 2GM/r) + C4, where C3 and C4 are integration constants. For

r >> 2GM limit, a → qeff/r and, therefore, C3 = qeff and C4 = 0. Therefore, we

get the axionic field profile outside the compact star

a = − qeff
2GM

ln

(
1− 2GM

r

)
. (2.52)

The behaviour of the axionic potential as a function of the distance are illustrated in

Fig.2.4(b). The nature of the axionic field as we go from inside to the outside of a

compact star is also shown in Fig.2.4(c). Variation of the effective charge to mass ratio

of a compact star is shown in Fig.2.4(d) as a function of the mass to radius ratio for

different decay constants. At the surface of the compact star, a(rNS) = 4πfa. Thus we

identify

qeff = − 8πGMfa

ln
(

1− 2GM
rNS

) . (2.53)

If
GM

rNS
<< 1, qeff ∼ 4πfarNS [167]. However, for a typical neutron star (M =

1.4M� and rNS = 10 km) the above correction is not negligible. For white dwarf the

effect is negligible. The charges can be both positive as well as negative depending on

the sign of the axionic field values at the surface of the compact star. If q1 and q2 are

the charges of two compact stars, then if q1q2 > 0 the two stars attract each other and,
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Figure 2.4: (a) plot of the axionic potential V as the function of the axionic field. We

assume m2
T/m

2
a = 2. The black dashed line corresponds to σN 6= 0 (i.e; inside the

compact star) and the red solid line corresponds to σN = 0. Note that the axionic

field evolves from the local maximum a = 4πfa inside a compact star to nearest local

minimum a = 0 outside the compact star. (b) The plot of V as the function of r inside

and outside of the neutron star. Note that there is discontinuity in V (r) at r = rNS

due to sign change in the potential. (c) plot of the axionic field a as the function of r.

We assume neutron star as the example of the compact object in the plots. The typical

mass and radius of a neutron star are M = 1.4M� and rNS = 10 km respectively. (d)

The variation of effective charge to mass ratio of the neutron star with the ratio of mass

to radius for different values of axion decay constant. We can also obtain similar type

of profiles for white dwarfs as well.
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Figure 2.5: plot of the axion field a as the function of r. The blue curve stands

for the axion field a ∼ qeff/r and the red curve stands for the axion field a ∼

−qeff/2GM ln(1 − 2GM/r) outside of the neutron star. For blue curve, the effec-

tive axion charge is qeff = 4πfarNS and for the red curve qeff is given by Eq.(2.53).

if q1q2 < 0, then they repel each other [167]. For neutron star, the new effective axion

charge Eq. (2.53) is smaller than 4πfarNS by 21.46%. The effect of the new axion

charge is illustrated in Fig. 2.5(a) where the plot of the axion profile inside and outside

of a neutron star is shown.

2.2.3 Axionic fifth force and the scalar radiation for the compact

binaries

Such a long range axionic field mediates a “fifth” force (in addition to the Newtonian

gravitational force) between the stars of a binary system (NS-NS or NS-WD),

F5 =
q1q2

4πD2
, (2.54)

where q1,2 are effective charges of the stars in the binary system. Due to the presence

of this scalar mediated fifth force the Kepler’s law is modified by [172]

ω2 =
G(m1 +m2)

D3
(1 + α), (2.55)

where α =
q1q2

4πGm1m2

is the ratio of the scalar mediated fifth force to the gravitational

force, and µ = m1m2/(m1 +m2) is the reduced mass of the binary system. There are



2.2. Constraints on Ultralight Axions from the Indirect Evidence of Gravitational
Waves 43

constraints on the fifth force from either scalar-tensor theories of gravity [172–174] or

the dark matter components [174–176]. In this section, we show that the constraint on

α from time period loss by scalar radiation is more stringent than the measured change

in orbital period Eq. (2.55) due to fifth force.

The orbital period of the binary star system decays with time because of the energy

loss primarily due to the gravitational quadrupole radiation and about one per cent due

to ultra light scalar or pseudoscalar Larmor radiation. The total power radiated for such

quasi-periodic motion of a binary system is

dE

dt
= −32

5
Gµ2D4ω6(1− e2)−

7
2

(
1 +

73

24
e2 +

37

96
e4
)
− ω4p2

24π

(1 + e2/2)

(1− e2)
5
2

, (2.56)

where e is the eccentricity of the elliptic orbit and E is the total energy of the binary

system. The gravitational quadrupole radiation formula [168, 175] is given by the

first term in the right hand side of Eq.2.56 and the second term is the massless scalar

dipole radiation formula [7, 167, 168]. There is the radiation of the ALPs if the orbital

frequency is greater than the mass of the ALPs. The dipole moment in the centre of

mass frame of the binary system can be written as

p = q1r1 − q2r2 = q1
µD

m1

− q2
µD

m2

, (2.57)

or,

p = 8πGfaµD

 1

ln
(

1− 2Gm2

rNS

) − 1

ln
(

1− 2Gm1

rNS

)
 , (2.58)

where r1,2 are the radial distances of the stars in the binary system from the centre of

mass along the semi-major axis. For nonzero scalar radiation, the charge-to-mass ratio

(q/m) should be different for two stars. Thus for the companion star in a binary system

with an equal effective charge, there should be some mass difference between the two

stars. The decay of the orbital time period is given by[168, 177]

Ṗb = 6πG−
3
2 (1 + α)−

3
2 (m1m2)−1(m1 +m2)−

1
2D

5
2

(dE
dt

)
, (2.59)

where Pb = 2π/ω (see Appendix A.2). NS-NS binaries (with different mass compo-

nents) as well as NS-WD binaries are the sources for the scalar Larmor radiation and

also for the axion mediated fifth force. On the other hand, NS-BH systems can be the
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source of scalar radiation but there is no long range fifth force in between, as the scalar

charges for the black holes (BH) are zero[178].

In the next section, we consider four compact binaries and put constraints on fa.

2.2.4 Constraints on axion parameters of different compact bina-

ries

PSR J0348+0432

This binary system is consist of a neutron star and a low mass white dwarf companion.

The orbital period of the quasi-periodic binary motion is Pb = 2.46 h. The mass of the

neutron star in this binary system is Mp = 2.01M� and the mass of the white dwarf is

MWD = 0.172M�. The radius of the white dwarf is rWD = 0.065R� and we assume

the radius of the neutron star rNS = 10 km. We compute the semi-major axis of the

orbit using Kepler’s law Eq. (2.55). The observed decay of the orbital period is Ṗb =

0.273 × 10−12 s s−1[179]. This is primarily due to gravitational quadrupole radiation

from the binary NS-WD system. The contribution from the radiation of some scalar or

pseudoscalar particles must be within the excess of the decay of the orbital period, i.e.

Ṗb(scalar) 6 |Ṗb(observed)− Ṗb(gw)|. If ALPs are emitted as scalar Larmor radiation, then

we can find the upper bound on the axion decay constant. Using Eqs. (2.55),(2.56),

(2.58) and (2.59) and taking the ALPs as massless, we obtain an upper bound on the

axion decay constant as, fa . 1.66 × 1011 GeV. The ratio of the axionic fifth force

and the Newtonian gravitational force between the stars in this system comes out to be

α . 5.73× 10−10 .

PSR J0737-3039

It is a double neutron star binary system whose average orbital period is Pb = 2.4 h.

Its observed orbital period decays at a rate Ṗb = 1.252 × 10−12 s s−1. The pulsars

have masses M1 = 1.338M� and M2 = 1.250M�. The eccentricity of the orbit is e =

0.088[180]. Using Eqs. (2.55), (2.56), (2.58), and (2.59) we obtain the upper bound

on the axion decay constant as fa . 9.76 × 1016 GeV. Besides the axion radiation,

axion mediated fifth force arises in this binary system. We obtain the value of α .
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9.21× 10−3 .

PSR J1738+0333

This pulsar-white dwarf binary system has an average orbital period Pb = 8.5 h and

the orbit has a very low eccentricity e < 3.4 × 10−7. The mass of the pulsar is Mp =

1.46M� and the mass of the white dwarf is MWD = 0.181M�. The radius of the

white dwarf is rWD = 0.037R�. The rate of the intrinsic orbital period decay is Ṗb =

25.9 × 10−15s s−1[181]. Using this system, we obtain the upper bound on the axion

decay constant as fa . 2.03×1011 GeV. The value of α comes out to be. 8.59×10−10.

PSR B1913+16: Hulse Taylor binary pulsar

The observed orbital period of the Hulse Taylor binary decays at the rate of Ṗb =

2.40 × 10−12 s s−1. The masses of the stars in this binary system are m1 = 1.42M�

and m2 = 1.4M�[168]. The eccentricity of the orbit is e = 0.617127 and the average

orbital frequency is ω = 0.2251 × 10−3 s−1. For this system, we obtain the upper

bound on the decay constant as fa . 2.12×1017 GeV. We obtain the value of α for this

system . 3.4× 10−2. Note that the binary orbit of this system is highly eccentric. As

a result, the contributions of the eccentricity factors in the radiation formula Eq. (2.56)

are important. For the GW radiation, the eccentricity factor is 11.85 and, for the scalar

radiation, it is 3.94.

In Table 2.2, we have obtained the upper bound of the axion decay constant and

the relative strength of axion mediated force for the four compact binaries [62].

Table 2.2: Summary of the upper bounds on the axion decay constant fa of ALPs

radiated from compact binaries. For all the binaries we assume ma < 10−19 eV.

Compact binary system fa (GeV) α

PSR J0348+0432 . 1.66× 1011 . 5.73× 10−10

PSR J0737-3039 . 9.76× 1016 . 9.21× 10−3

PSR J1738+0333 . 2.03× 1011 . 8.59× 10−10

PSR B1913+16 . 2.12× 1017 . 3.4× 10−2
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2.2.5 Implication for the axionic Fuzzy dark matter (FDM)

we have discussed that ultralight axions or ALPs can be possible candidates of FDM

whose mass is O(10−21 eV − 10−22 eV), the axion decay constant fa ∼ 1017 GeV,

and has a de Broglie wavelength of order kpc scale.

For the NS-WD binaries PSR J0348+0432 and PSR J1738+0333, the bound on the

axion decay constant (fa . O(1011 GeV)) is well below the GUT scale and this gives

the stronger bound. The mass of the axions is ma . 10−19 eV. This implies that if

the ultra-light ALPs has to be FDM then they do not couple with quarks as it will not

satisfy the FDM relic density (Eq.(2.11)).

2.3 Constraints on Ultralight Axions from Birefringence

Effect

As described in Section.2.2.2 for NS and WD, the pulsars can also behave as a source

of axions due to the sign change in the axion potential from the coupling to gluons

at large densities. The coherent oscillation of the axion potential in free space pro-

duces the axionic density. Similar to the NS and WD, the pulsars immersed in the

axionic potential also develop a long-range axion hair due to the coupling of axions

with nucleons. Since, the dipole axis is not aligned along the spin axis, the pulsar can

also emit electromagnetic radiation. As the dipole axis precesses around the spin axis,

there is a synchrotron radiation along the magnetic poles appears as the pulsed signal

in a cone swept out by the radio beam. When the electromagnetic radiaiton from the

pulsar passes through the long range axion hair emitted from the same pulsar then the

axion hair rotates the polarization of the electromagnetic radiation and produces bire-

fringence. A typical pulsar of mass M = 1.4M� and radius R = 10 km can be a

source of axions if Eq. (2.44) is satisfied which gives the upper bound on the axion

decay constant, fa . 4.41 × 1017 GeV. The radius of the pulsar (10 km) constrains

the mass of the axion that results ma < 10−11 eV.

In the Schwarzschild spacetime background and in the non zero axion mass limit,

we cannot analytically solve the Klein-Gordon equation for a massive Yukawa axion
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field

∇µ∇µa = m2
aa. (2.60)

To solve Eq. (2.60), we expand the axion field in a perturbative way where the pertur-

bation parameter is GM/R and the leading order term is the long range Yukawa term.

Suppose the axion field is

a(r) = a0(r) +
GM

R
a1(r) +O

(GM
R

)2

, (2.61)

where a0(r) = qa
e−mar

r
is the leading order Yukawa term. Hence, the axion field

solution becomes

a(r) =
qae
−mar

r

[
1+

GM

r
{1−mar ln(mar)+mare

2marEi(−2mar)}
]
+O

((GM
R

)2)
,

(2.62)

where Ei is the exponential integral function. From the continuity of axion field at the

surface of the pulsar, we obtain the effective axion charge

qa = 4πfaRe
maR

[
1 +

GM

R
{1−maR ln(maR) +maRe

2maREi(−2maR)}
]−1

+

O
((GM

R

)−2)
.

(2.63)

In the limit GM/R� 1 and ma → 0, we obtain qa ∼ 4πfaR [167].

Therefore, outside of the pulsar, the axion field solution becomes

a =
qae
−mar

r

[
1 +

GM

r
{1−mar ln(mar) +mare

2marEi(−2mar)}
]

+O
((GM

R

)2)
,

r > R,

(2.64)

whereas inside of the pulsar, the solution becomes

a = 4πfa, r < R. (2.65)

We assume that the spacetime metric outside the pulsar is Schwarzchild because, for a

typical pulsar (M = 1.4M�, R = 10 km), GM/R is not very much small. The plot of

axion field and axion potential inside and outside of a pulsar and the variation of axion

charge with axion mass is shown in Fig.2.4.
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Figure 2.6: (a)Variation of axion charge with mass. (b)Variation of the axion field as a

function of distance obtained numerically and analytically and for different spacetimes.

In Fig.2.6(a), we obtain a variation of axion charge with mass. We also obtain

the axion field as a function of distance both numerically and analytically for differ-

ent spacetimes, shown in Fig.2.6(b). The red curve denotes the axion field by solving

Eq. (2.64) analytically. The blue curve denotes its numerical solution. The green

curve denotes the axion field profile in a flat spacetime for non zero axion mass. The

cyan curve denotes the axion profile for the massless axion in the Schwarzschild back-

ground.

The spacetime outside of a pulsar is described by the approximate form of the Kerr

metric,

ds2 =
(

1− 2GM

r

)
dt2−

(
1− 2GM

r

)−1

dr2−r2(dθ2+sin2 θdφ2)− 4GMj

r
sin2 θdφdt.

(2.66)

Where j is the angular momentum per unit mass and this approximation is valid as

long as j � GM . For a typical pulsar j = 10−6 km, GM = 1.5 km, and we can

neglect the last term. Hence, in this limit, the metric outside of the pulsar effectively

becomes Schwarzschild [125].

2.3.1 Photon propagation through an axionic hair: Birefringence

When a linearly polarized pulsar light passes through a long range axionic hair which

is originated from the same pulsar then due to their dispersion relations the left and the

right circular polarization modes will attain opposite corrections. This effect is called

birefringence.
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The Lagrangian which describes the interaction between the axion couples with

two photons is

L =
1

2
(∂µa)(∂µa)− 1

4
F µνFµν −

1

4
gaγγaFµνF̃

µν . (2.67)

Here gaγγ is given as

gaγγ =
cαem
2πfa

, (2.68)

where c is a model dependent parameter of order unity and αem is the electromagnetic

fine structure constant. The modified Maxwell’s field equations in presence of axion

coupling become [125]

∇.E = −gaγγ(∇a).B, (2.69)

∇× B− ∂E
∂t

= gaγγ

[
(∇a)× E + B

∂a

∂t

]
, (2.70)

∇.B = 0, (2.71)

∇× E +
∂B
∂t

= 0, (2.72)

where E and B are the electric and magnetic field vectors of the electromagnetic radia-

tion. Since, the long range Yukawa type axion field has only r dependence, the second

term in the r.h.s of Eq. (2.70) is zero. Taking curl of Eq. (2.70) and using Eq. (2.71)

and Eq. (2.72), we obtain

∇µ∇µB = −gaγγ(∇a)× ∂B
∂t
. (2.73)

Suppose this magnetic field has a harmonic variation and we can write

B(x, t) = Beiφ(x,t), (2.74)

where B is the magnitude of the magnetic field of electromagnetic radiation and φ is

the phase. A linearly polarized wave is an equal admixture of right and left circularly

polarized waves. So we can write the transverse magnetic field as

B± = Bi ± iBj, (2.75)

where Bi and Bj are the components of B along êi and êj orthogonal to r̂. In the

Fourier space we can write Eq. (2.73) as

kµk
µB = igaγγ(∇a× ωB), (2.76)
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where kµ = (ω,k) is the photon four momentum. Eq. (2.76) decouples for the two

circularly polarized modes and we obtain

kµk
µB± ∓ gaγγ(∂ra)ωB± = 0. (2.77)

Hence, the dispersion relation for the two circularly polarized modes due to different

phase velocities propagating radially from the poles of the pulsar is [125]

ω2
(

1− 2GM

r

)−1

− k2
r

(
1− 2GM

r

)
= ±gaγγ(∂ra)ω. (2.78)

Therefore, we can write the propagation vector from Eq. (2.78) as

kr = ω
(

1− 2GM

r

)−1

∓ gaγγ
2

(∂ra). (2.79)

So the phase shift between the left and the right circularly polarized modes is

∆φ =

∫ ∞
R

(k+
r − k−r )dr. (2.80)

Using Eq. (2.79) we can rewrite the phase shift as

∆φ = gaγγ[a(∞)− a(R)]. (2.81)

The axion field has a long range behaviour outside of the pulsar. Using Eq. (2.64),

Eq. (2.68), and Eq. (2.81) we can write the phase difference as

∆φ = −cαem
2πfa

qae
−maR

R

[
1 +

GM

R
{1−maR ln(maR) +maRe

2maREi(−2maR)}
]
,

(2.82)

where the axion field goes to zero at infinity. A Positive sign of phase shift implies

anti clockwise rotation and a negative sign of phase shift implies clockwise rotation by

looking down the light path.

The observed birefringent angle which is the angle of rotation of the linear polar-

ization (∆θ) is half the phase shift ∆φ between the two circular polarization modes.

Using Eqs. (2.63), and Eqs. (2.82) we obtain

∆θ = −cαem, (2.83)

where, c is a model dependent parameter of O(1) (exact value of c depends on the

ratio of the electromagnetic and the color factor anomaly E/N , which depends on
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Figure 2.7: The brown shaded region is excluded by SN1987A, the blue shaded re-

gion is excluded by direct measurement of the earth, and the yellow shaded region is

excluded by direct measurement of Sun. The grey shaded region is excluded by black-

hole superradiance measurements. The green dotted line denotes the reduced Planck

scale. The black continuous line denotes the constraints from BBN if axion is the dark

matter. The violet dotted line corresponds to QCD axions. Our result of the birefrin-

gent angle can probe the red shaded region.

what model we are choosing) and αem = 1/137. Hence we obtain the birefringent

angle

∆θ = 7.299× 10−3 radian = 0.42◦. (2.84)

Any systematic deviation (≤ 1.0◦ [126, 131, 182]) in the linear polarization angle can

be due to the long range axion hair. The External magnetic field can also give rise

to such type of rotation of the polarization vector which is called the Faraday effect.

The primary difference between the optical rotation by long range axion hair and the

Faraday effect is that for the Faraday effect the birefringent angle is proportional to

λ2, where λ is the wavelength of the electromagnetic wave and for our case i.e; the

optical rotation by axion field, the birefringent angle is independent of λ. The existing

constraints ([183, 184], [185]) on axion parameters and the region in which our result

is valid are shown in Fig.2.7 [165].
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2.4 Constraints on Ultralight Axions from Gravitational

Light Bending and Shapiro Time Delay

If celestial bodies like Sun, Earth etc., are immersed in a low mass axionic FDM po-

tential and if the axions have coupling with nucleons then the coherent oscillation of

the axionic field results in a long range axion hair outside of those objects similar to

the neutron stars, white dwarfs, and pulsars. The long range Yukawa type of axionic

potential between the Sun and Earth changes the effective gravitational potential and

affects the measurement of bending of light and Shapiro time delay.

The bending of light or the gravitational lensing [186, 187] is one of the tests of

Einstein’s general theory of relativity (GR) along with the perihelion precession of

Mercury planet and the gravitational redshift [188]. When a light ray from a distant

star passes through a massive object like Sun then the speed of light decreases due to

the presence of increasing gravitational potential. In other words, massive objects with

higher gravity distort the spacetime geometry and bend the light. In 1915, Einstein

became the first person to calculate the amount of bending of light near the Sun which

is 1.75 arcsec based on equivalence principle. This value agrees well with the exper-

iment to an uncertainty of ∼ 10−4 arcsec [189]. Another test of Einstein’s GR theory

is the Shapiro time delay which was predicted by Irwin Shapiro in 1964 [190, 191].

When a radar signal is sent from Earth to Venus and it reflects back from Venus to

Earth, then the time taken for the round trip is delayed by the presence of strong grav-

itational potential near the Sun. The calculated amount of time delay is 2 × 10−4 sec

which agrees well with the experiment to an uncertainty of ∼ 10−5 sec [192]. Gravita-

tional waves, high energy neutrinos etc., also have this Shapiro time delay from which

one can constrain the violation of the weak equivalence principle [193, 194].

The Earth and Sun which can be the sources of axions, mediate a long range

Yukawa type of potential and result in an axionic fifth force between those massive

objects. This long range Yukawa potential affects the effective gravitational potential

between Earth and Sun and contribute to the bending of light and Shapiro time delay

within the experimental uncertainty.

The parameters that we have chosen in our following analysis are: the radius of the
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Figure 2.8: Variation of the axion field with distance for earth

Sun R� ∼ r0 ∼ b = 6.96 × 1010 cm = 3.52 × 1024 GeV−1, the radius of the Earth

R⊕ = 6.38 × 108 cm = 3.22 × 1022 GeV−1, the distance between Earth and Sun is

D = re = 1.49× 1013 cm = 7.52× 1026 GeV−1, the distance between Sun and Venus

is rv = 1.08×1013 cm = 5.47×1026 GeV−1, the mass of Sun M = M� = 1057 GeV,

the mass of Earth Mp = M⊕ = 3.35× 1051 GeV, G = 10−38 GeV−2.

2.4.1 Celestial objects as the sources of ALPs

A celestial object like Earth or Sun can be the source of axions if its size is greater

than the critical size which is given by Eq.(2.44). Using the values of σN = 59 MeV

from lattice simulation [170], ma . 1.333× 10−18 eV and other parameters we obtain

the upper bounds on fa for which the axions can be sourced by Earth and Sun as

fa . 1.91× 1013 GeV and fa . 1015 GeV respectively (using Eq.2.45). The mass of

the axion is constrained by the distance between Earth and Sun.

In other words, Earth and Sun can be the sources of axions if the following two

conditions are satisfied,

ρR & m2
af

2
a ,

1

R
.
√
ρR

fa
, (2.85)

where ρR is the mass density of the celestial body of radius R. We have checked that

the ma and fa values that we obtain later in Section.2.4.4 satisfy Eq.(2.85). Hence, the

Sun and the Earth are in fact the sources of axions. If q1 and q2 are the axion charges

of Sun and Earth respectively, then the potential energy act between Sun and Earth is

V =
q1q2

4πr
e−mar which is long range Yukawa type. Hence, there is a long range axion

mediated fifth force act between the Earth and the Sun. The two massive objects attract

each other if q1q2 > 0 and repel each other if q1q2 < 0.
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In Fig.2.8 we have shown the variation of axion field with the distance for the earth.

For Earth
M

R
≡ GM

R
= 1.04 × 10−9 and for Sun

M

R
≡ GM

R
= 2.84 × 10−6 which

are much smaller than unity. Hence, we use the axion charge for Earth and Sun as

qa = 4πfaR and the axion field outside of the compact object as a(r > R) =
qae
−mar

r
.

2.4.2 Light bending due to long range axionic Yukawa potential in

the Schwarzschild background

The trajectory of light or photon follows null geodesic which is given by

gµνV
µV ν = 0, (2.86)

where V µ =
dxµ

dλ
is the tangent vector of a curve which is a parametrized path through

spacetime xµ(λ), where λ is the affine parameter that varies smoothly and monoton-

ically along the path and xµ = (t, r, θ, φ) are the coordinates of the Schwarzschild

spacetime which is defined by the metric gµν whose line element is

ds2 =
(

1− 2M

r

)
dt2 −

(
1− 2M

r

)−1

dr2 − r2dΩ2, (2.87)

where we put Newton’s universal gravitation constant G = 1 for convenience and

dΩ2 = dθ2 + sin2 θdφ2. M is the mass of the Sun outside of which Einstein’s field

solution is defined. For planar motion θ =
π

2
and the conserved quantities are E =(

1− 2M

r

)
ṫ and L = r2φ̇. E and L are interpreted as the energy per unit mass and the

angular momentum per unit mass of the system which are constants of motion.

Using Eq.(2.86) and Eq.(2.87) we can write for null geodesic(
1− 2M

r

)
ṫ2 −

(
1− 2M

r

)−1

ṙ2 − r2φ̇2 = 0. (2.88)

Expressions of L and E reduce Eq.(2.88) to

E2

2
=

ṙ2

2
+
L2

2r2

(
1− 2M

r

)
=

L2

2

(du
dφ

)2

+
L2u2

2
(1− 2Mu), (2.89)

where we use ṙ =
dr

dλ
=
L

r2

dr

dφ
and u =

1

r
is the reciprocal coordinate. The right hand

side of Eq.(2.89) is the effective potential of the system. As we have already discussed
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that the Sun and the Earth can be the sources of axions, the long range axion field

mediates a Yukawa type fifth force (in addition to the gravitational force) between the

Sun and the Earth which changes the effective potential per unit mass of the system as

Veff =
L2

2

(du
dφ

)2

+
L2u2

2
(1− 2Mu)− q1q2u

4πMp

e−
ma
u , (2.90)

where q1 and q2 are axion charges of the Sun and the Earth respectively, ma is the mass

of the axion and Mp is the mass of the Earth. Hence, from Eq.(2.89) and Eq.(2.90) we

obtain
E2

2
=
L2

2

(du
dφ

)2

+
L2u2

2
(1− 2Mu)− q1q2u

4πMp

e−
ma
u . (2.91)

Differentiating Eq.(2.91) with respect to φ, we get

0 =
d2u

dφ2
+ u− 3Mu2 − q1q2

4πMpL2
e−

ma
u − q1q2ma

4πMpL2u
e−

ma
u . (2.92)

Expanding Eq.(2.92) up to the leading order of ma, we obtain

d2u

dφ2
+ u = 3Mu2 +

q1q2

4πMpL2
− q1q2m

2
a

8πMpL2u2
, (2.93)

where the first term in r.h.s of Eq.(2.93) arises in Einstein’s standard GR calculation

which causes the light bending and the last two terms contribution is within the exper-

imental uncertainty in the measurement of light bending. This arises due to long range

axion mediated Yukawa type fifth force between the celestial objects which change the

effective potential.

Suppose the solution of the Eq.(2.93) is u(φ) = u0(φ) + ∆u(φ), where u0(φ) is

the solution for the homogeneous equation of Eq.(2.93) and ∆u(φ) is the solution due

to GR correction and the Yukawa contribution. Thus we can write

d2u0

dφ2
+ u0 = 0. (2.94)

The solution of Eq.(2.94) is u0 =
sinφ

b
, where b denotes impact parameter and

d2∆u

dφ2
+ ∆u = 3M

sin2φ

b2
+

q1q2

4πMpL2
− q1q2m

2
ab

2

8πMpL2 sin2 φ
. (2.95)

The solution of Eq.(2.95) becomes

∆u(φ) =
3M

2b2

(
1 +

1

3
cos 2φ

)
+

q1q2

4πMpL2
− q1q2m

2
ab

2

8πMpL2
[cosφ ln |cosecφ+ cotφ| − 1].

(2.96)
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Therefore, the total solution of Eq.(2.93) is

u =
sinφ

b
+

3M

2b2

(
1+

1

3
cos 2φ

)
+

q1q2

4πMpL2
− q1q2m

2
ab

2

8πMpL2
[cosφ ln |cosecφ+cotφ|−1].

(2.97)

Far from the Sun, u→ 0 as φ→ 0. Hence, from Eq.(2.97) we can write the change in

the angular coordinate φ is

δφ =

−2M
b2
− q1q2

4πMpL2 (1− 0.347m2
ab

2)

1
b

+ q1q2m2
ab

2

8πMpL2

. (2.98)

The contribution to δφ before and after the turning point are equal from symmetry.

Hence the total light bending is

∆φ = −2δφ =

4M
b2

+ q1q2
2πMpL2 (1− 0.347m2

ab
2)

1
b

+ q1q2m2
ab

2

8πMpL2

. (2.99)

In absence of long range axion mediated Yukawa type of force (q1 = q2 = 0), the

deflection of light can be written from Eq.(2.99) as

∆φ =
4M

b
=

4GM

R�c2
= 1.75 arcsec, (2.100)

which is the standard GR result. We assume b ∼ R� as the solar radius, c is the speed

of light in vacuum. We replace M → GM and b → R�c
2 in the last step to write the

deflection in SI system of units.

2.4.3 Shapiro time delay due to long range axionic Yukawa poten-

tial in the Schwarzschild background

To calculate the Shapiro time delay due to long range axion mediated Yukawa poten-

tial, we can write Eq.(2.91) as

E2

2
=
ṙ2

2
+
L2

2r2

(
1− 2M

r

)
− q1q2

4πMpr
e−mar, (2.101)

where ṙ =
dr

dλ
=
dr

dt

dt

dλ
=

E(
1− 2M

r

) dr
dt

. Thus, Eq.(2.101) becomes

E2

2
=

E2

2
(

1− 2M
r

)2

(dr
dt

)2

+
L2

2r2

(
1− 2M

r

)
− q1q2

4πMpr
e−mar. (2.102)
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For the closest approach of light,
dr

dt
= 0 at r = r0. Hence, from Eq.(2.102) we can

write
L2

E2
=
(

1 +
q1q2e

−mar0

2πMpE2r0

) r2
0(

1− 2M
r0

) . (2.103)

In absence of axion mediated Yukawa potential, Eq.(2.103) becomes
L2

E2
=

r2
0(

1− 2M
r0

)
which is the standard result in GR. Hence using Eq.(2.103), we can write Eq.(2.102)

as

E2

2
=

E2

2
(

1− 2M
r

)2

(dr
dt

)2

+
1

2r2

(
1−2M

r

) E2r2
0(

1− 2M
r0

)(1+
q1q2e

−mar0

2πMpE2r0

)
− q1q2

4πMpr
e−mar.

(2.104)

We can obtain the rate of change of r from Eq.(2.104) as

dr

dt
=
(

1−2M

r

)[
1− 1

r2

(
1−2M

r

) r2
0(

1− 2M
r0

)(1+
q1q2e

−mar0

2πMpE2r0

)
− q1q2

2πMpE2r
e−mar

] 1
2
.

(2.105)

The time taken by the light to reach from r0 to r is

t =

∫ r

r0

dt

dr
dr. (2.106)

Hence, using Eq.(2.105) we obtain,

t =

∫ r

r0

dr
1(

1− 2M
r

)[1− r2
0

r2

(
1− 2M

r

)
(

1− 2M
r0

)(1 +
q1q2e

−mar0

2πMpE2r0

)
− q1q2

2πMpE2r
e−mar

]− 1
2
.

(2.107)

If there is no massive gravitating body between Earth and Venus, then we can put

M = 0 in Eq.(2.107) and the required time becomes

t = t1 =
√
r2 − r2

0 −
1

2

a0

r
(−r2

0 + 2r2)− b0e
−c0rr2

0

48r4
[−36r2(−1 + c0r)+

r2
0(6− 2c0r + c2

0r
2)] +

b0

48
(48 + 36c2

0r
2
0)Ei(−c0r) +O(c3

0),

(2.108)

where a0 =
q1q2e

−mar0

4πMpE2r0

, b0 =
q1q2

4πMpE2
, and c0 = ma. Ei(x) is the exponential

integral function which is defined as Ei(x) = −
∫ ∞
−x

e−t

t
dt.

Now if there is a massive gravitating body- the Sun between Earth and Venus then

M 6= 0 and from Eq.(2.107) we obtain the required time after expanding and linearis-
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ing in M as

t = t2 =
√
r2 − r2

0 + 2M ln

√
r2 − r2

0 + r

r0

+M
(r − r0

r + r0

) 1
2 − (2M + r0)a0r0√

r2 − r2
0

+

b0

2

[√
r2 − r2

0

{
2c0(−1 + c0M) +

c2
0r

2
+

2M

r2
+

2

r
− 4c0M

r

}]
.

(2.109)

Hence, if there is no massive gravitating body between Earth and Venus then the total

time taken by the signal to go from Earth to Venus and then comes back to the Earth

in r � r0 limit is

T1 = 2t1 = 2
[√

r2
e − r2

0 +
√
r2
v − r2

0 − a0re − a0rv +
b0

48
(48 + 36c2

0r
2
0){Ei(−c0re)+

Ei(−c0rv)}
]
,

(2.110)

where re is the distance between Earth and Sun and rv is the distance between Venus

and Sun. Similarly the time taken by the signal to go from Earth to Venus and returns

to Earth in presence of the Sun in r � r0 limit is

T2 = 2t2 = 2
[√

r2
e − r2

0 +
√
r2
v − r2

0 + 2M ln
(2re
r0

)
+ 2M ln

(2rv
r0

)
+ 2M+

b0c0re(−1 + c0M) + b0c0rv(−1 + c0M) + b0 − 2c0Mb0 +
b0c

2
0

4
(r2
e + r2

v)
]
.

(2.111)

Therefore, the excess time due to GR correction and the axion mediated fifth force is

∆T = T2 − T1 = 4M
[

ln
(4rerv

r2
0

)
+ 1
]

+ 2b0c0(−1 + c0M)(re + rv) +
b0c

2
0

2
(r2
e + r2

v)+

2b0 − 4c0Mb0 + 2a0(re + rv) +
b0

24
(48 + 36c2

0r
2
0)[Ei(−c0re) + Ei(−c0rv)].

(2.112)

In absence of axion mediated fifth force, a0 = 0, b0 = 0, c0 = 0 and from Eq.(2.112)

we get back the standard GR result

∆T =
4GM

c3

[
ln
(4rerv

r2
0

)
+ 1
]

= 2× 10−4sec, (2.113)

where we reinsert G and c.
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2.4.4 Constraints on Axion Mass and Decay Constant from Light

Bending and Shapiro Time Delay Measurements

The contribution of axions in the light bending must be within the excess of the GR

prediction which implies (∆φ)obs−∆φGR ≥ ∆φaxions. Hence, from Eq.(2.99) we can

write

∆φaxions =

4M
b2

+ q1q2
2πMpL2 (1− 0.347m2

ab
2)

1
b

+ q1q2m2
ab

2

8πMpL2

− 4M

b
, (2.114)

where q1 = 4πfaR�, q2 = 4πfaR⊕, L2 = MD(1 − e2). The parameters b ∼ R�

and R⊕ are the solar radius and Earth radius respectively. D is the semi major axis of

Earth’s orbit and e is the orbital eccentricity. Now the uncertainty in the measurement

of light bending from the GR prediction is 10−4 arcsec which puts upper bound on the

axion decay constant fa from Eq.(2.114) as

fa . 1.58× 1010 GeV. (2.115)

Similarly, the contribution of axions in the Shapiro time delay must be within the

excess of GR result which yields (∆T )axions from Eq.(2.112) as

∆Taxions = 2b0c0(−1 + c0M)(re + rv) +
b0c

2
0

2
(r2
e + r2

v) + 2b0 − 4c0Mb0+

2a0(re + rv) +
b0

24
(48 + 36c2

0r
2
0)[Ei(−c0re) + Ei(−c0rv)].

(2.116)

Now the uncertainty in the measurement of Shapiro time delay from the GR result is

2× 10−5 s which puts upper bound on the axion decay constant by using Eq.(2.116) as

fa . 9.85× 106 GeV. (2.117)

Hence, Shapiro time delay gives the stronger bound on axion decay constant fa. The

mass of the axion is constrained by the distance between the Earth and Sun which

gives
1

D
= ma . 1.33× 10−18 eV. Since, the separation between the massive objects

is greater than the sizes of the individual objects, ma .
1

D
gives the stronger bound.

In Fig.2.9 we numerically solve Eq.(2.92) and Eq.(2.107) and show the bounds on

axion parameters obtained from light bending and Shapiro time delay. The red and

blue curves denote the variation of fa with ma for light bending and Shapiro time

delay measurements respectively. The regions above those curves are excluded. The
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Figure 2.9: Exclusion plot in ma − fa plane. The regions above these lines are ex-

cluded.

Shapiro time delay puts the stronger bound on fa compared to the gravitational light

bending and orbital period loss of compact binary systems. This bound is also stronger

than SN1987A and other astrophysical bounds in the parameter space of interest, since

we have obtained upper bound on fa. Also, our bounds are consistent with Lyman-α

constraints, disfavour ALPs as FDM candidates.

We obtain the upper bounds on the ratio of axionic fifth force to the gravita-

tional force as α =
q1q2

4πGm1m2

. 10−2 from light bending and α =
q1q2

4πGm1m2

.

4.12 × 10−9 from Shapiro time delay. The Shapiro time delay puts a stronger bound

on α. Hence the axionic fifth force is weaker than the gravitational force by a factor of

roughly 109. In Table 2.3 we summarize the bounds on fa and ma from light bending

and Shapiro time delay [63].

In Fig.2.10 we plot Eq.(2.90) and show the variation of effective potential with dis-

tance. The nature of the effective potential does not change from its standard GR result

in presence of long range axionic Yukawa potential. We have the circular unstable orbit

at r = 3M .
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Table 2.3: Summary of axion decay constant (fa) and the ratio of axionic fifth force

to gravity (α) obtained from light bending and Shapiro time delay for ALPs of mass

ma . 1.33× 10−18 eV.

Experiments axion decay constant (fa) α

Light bending . 1.58× 1010 GeV . 10−2

Shapiro time delay . 9.85× 106 GeV . 4.12× 10−9

0 2×1019 4×1019 6×1019 8×1019 1×1020

-6×106

-4×106

-2×106

0

r(GeV-1)

V
e
ff

Figure 2.10: Variation of effective potential with distance.
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The earth and Sun can behave as the sources of axions of mass ma ∈ (10−21 eV −

10−22 eV) and they can be the candiates of FDM if fa isO(1017 GeV) and θ0 ∼ O(1).

Any value of fa other than 1017 GeV requires fine tuning of θ0 which can take values

−π < θ0 < π. The Shapiro time delay gives the stronger bound on fa as fa .

9.85× 106 GeV and Eq.(2.11) implies that if the ultralight ALPs have to satisfy FDM

relic density, then the ALPs do not couple with quarks.

2.5 Discussions

In this chapter, we have discussed the prospects for light axion searches from the or-

bital period loss of compact binary systems, birefringent effect from the pulsars, gravi-

tational light bending, and Shapiro time delay. We have discussed if ALPs are sourced

by compact stars such as neutron stars and white dwarfs then the axionic field has a

long range behaviour over a distance between the binary companions. Due to such

axionic field, the binary system will emit scalar Larmor radiation. Although the grav-

itational quadrupole radiation mainly contributes to the decay of orbital period, the

contribution of scalar radiation is not negligible. However, its contribution must be

within the excess value of the observed decay in the orbital period. For the NS-NS

and NS-WD binary systems, an additional axionic “fifth” force arises which is not

relevant as much as the scalar radiation in our study. We have obtained the axionic

profile for an isolated compact star assuming it to be a spherical object of uniform

mass density. We have identified the form of effective axionic charge of the compact

star [167] and its GR correction. We have also considered the eccentricity of the orbit

of the binary system– a generalization of the previous results for axionic scalar radi-

ation [167]. Using the updated formula for the total power radiated, we have studied

four compact binary systems: PSR J0348+0432, PSR J0737-3039, PSR J1738+0333,

and PSR B1913+16 (Hulse-Taylor binary pulsar). The upper bound on the axion de-

cay constant fa is found as fa . O(1011 GeV). The bound fa . O(1011 GeV) from

NS-WD binaries do not favour ALPs as the FDM.

If the pulsar is immersed in a low mass axionic potential, then it can also develop

a long range axion hair outside of the pulsar which can rotate the polarization of the
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electromagnetic radiation emitted from the same pulsar. Here we do not need any

external magnetic field for the optical rotation. The birefringent angle that we have first

derived is independent of the angular frequency of rotation, the radius of the pulsar, the

mass of the axion, and the axion photon coupling constant. Our result is true for axions

of mass ma < 10−11 eV and fa . O(1017 GeV). We obtain the birefringent angle as

0.42◦ if the pulsar has a long range axionic hair. The derived birefringent angle due to

axion photon interaction may contribute to the systematic deviation of measuring the

linear polarization angle of pulsar light which is ≤ 1.0◦.

Like neutron stars, white dwarfs, and pulsars, celestial objects like planets and Sun

can also be the source of axions. The Shapiro time delay gives the stronger bound

on the axion decay constant as fa . 9.85 × 106 GeV. The sign change of the axion

potential due to high nucleon density causes the Sun and the Earth to the possible

sources of ALPs. The mass of axion is constrained by the distance between Earth and

Sun which gives the upper bound on the mass of axion as ma . 1.33 × 10−18 eV.

The ultralight nature of axions results in a long range Yukawa behaviour of axion field

over the distance between Earth and the Sun. The presence of long range Yukawa type

axion mediated fifth force changes the effective gravitational potential between Earth

and Sun and contributes to the time dilation along with the GR effect. The long range

axionic fifth force is 109 times smaller than the gravitational force. The upper bounds

on ma and fa disfavour ALPs as FDM candidates. Also, the FDM model is in strong

tension from Lyman-α forest [84, 195]. Observation of the Milky Way substructure

also puts a lower bound on the mass of FDM asmFDM & 5.2×10−21 eV [196] and the

constraint is slightly weaker than the Lyman-α constraint. The Shapiro time delay puts

the stronger bound on fa compared to the gravitational light bending and orbital period

loss of compact binary systems. This bound is also stronger than SN1987A and other

astrophysical bounds in the parameter space of interest, since we have obtained upper

bound on fa. Also, our bounds are consistent with Lyman-α constraints, disfavour

ALPs as FDM candidates. The ultralight ALPs can also be probed in the precision

measurements of light bending and Shapiro time delay.





Chapter 3

Light Gauge Bosons (Spin 1):

Long Range Force, Precision tests of

Einstein’s General Relativity Theory,

and its Searches

3.1 Introduction

The standard model (SM) of particle physics is a gauge theory of SU(3)c×SU(2)L×

U(1)Y that remains invariant under four global symmetries corresponding to the lep-

ton numbers of the three lepton families and the baryon number. These symmetries

are called the accidental symmetries. The conservation of baryon number implies that

the proton is stable and the conservation of lepton number demands that the nature

of neutrino is Dirac type. The SM is an effective field theory and these four global

symmetries are approximate in a sense that they are expected to break by higher di-

mensional operators or high energy scales. One can construct three combinations of

these four global symmetries in an anomaly free way and they can be gauged in the

SM. These are U(1)B−L, U(1)Le−Lµ , and U(1)Lµ−Lτ (U(1)Le−Lτ is a linear combi-

nation of U(1)Le−Lµ and U(1)Lµ−Lτ ) [197–199]. The gauge bosons associated with

these symmetries have interesting phenomenology and one can constrain the gauge

boson mass and coupling from different experiments. Such U(1) gauge theories can

65
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explain several BSM physics such as neutrino mass, dark matter etc [200–204]. If the

mass of the gauge boson is very small, then it can mediate long range force, where the

range of the force is determined by the inverse of the gauge boson mass. The Li − Lj
type of long range force can also act as a fifth force and the studies of fifth force can

provide complementary checks of such particle physics models. The Le − Lτ and

Le −Lµ long range forces from the electrons can be probed in neutrino oscillation ex-

periments [205–208]. The Lµ − Lτ gauge force cannot be generated in a macroscopic

celestial bodies and cannot be probed in the neutrino oscillation experiments. How-

ever, if there is an inevitable Z − Z ′ mixing then Lµ − Lτ gauge force can be probed

from the neutrino oscillation experiments [209].

The light gauge bosons can also serve as a background oscillating dark matter

fields. The origin of vector gauge boson mass is model dependent where the mass can

either be produced from the Stueckelberg mechanism or from the Higgs mechanism.

Such small Z ′ mass (< 10−19 eV) can be produced from the Fayet Ilioupoulous term

in the SUSY theory or from the clockwork mechanism. The light vector dark matter

is mainly produced through freeze-in, misalignment, and quantum fluctuations during

inflation. As we have discussed in Chapter 2, the misalignment mechanism was first

introduced for axions. Unlike axions, for vector particles, in the limit H � MZ′ ,

the energy density redshifts as ρZ′ ∝ a−2. Thus the initial energy density dilutes

during inflation and the misalignment mechanism for vector DM fails. This problem

can be avoided by considering O(1) nonminimal coupling to gravity which makes the

vector conformally invariant and is not affected by the expansion of the universe. In

the Lµ − Lτ model, the interaction Lagrangian describing the interaction of Z ′ gauge

boson with the leptons in the weak basis can be written as

L ⊃ g′Z ′µ(µ̄γµµ− τ̄ γµτ + ν̄µγ
µLνµ − ν̄τγµLντ ), (3.1)

where L = (1− γ5)/2. Similarly, for Le − Lτ model, the interaction Lagrangian is

L ⊃ g′Z ′µ(ēγµe− τ̄ γµτ + ν̄eγ
µLνe − ν̄τγµLντ ). (3.2)

The other bounds on Li − Lj force are discussed in [210, 211]. B − L symmetry

can also be gauged in an anomaly free way and it can mediate long range force. The
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bounds on ultralight B − L gauge bosons is discussed in [212]. Constraints on long

and short range forces mediated by scalars and vectors are discussed in [213, 214].

In this chapter, we will discuss the phenomenology of ultralight vector gauge

bosons of these symmetries in particular U(1)Lµ−Lτ , U(1)Le−Lτ , and U(1)Le−Lµ sym-

metries. We obtain bounds on the gauge bosons associated with these symmetries from

the orbital period loss of compact binary systems and perihelion precession of planets.

Particularly, we calculate the energy loss due to radiation of U(1)Lµ−Lτ type of gauge

bosons for the orbital period loss of compact binary systems and obtain bound on the

gauge coupling. We also calculate the contribution of U(1)Le−Lµ,τ gauge bosons be-

tween the planets and Sun in the measurements of the perihelion precession of planets

and obtain bounds on gauge coupling. We have also studied that these gauge bosons

can also mediate Yukawa type fifth force between the compact/celestial objects.

The chapter is organized as follows. In Section 3.2, we discuss the constraints on

ultralight Lµ − Lτ type of vector gauge boson obtained from the orbital period loss of

the compact binary systems. This section is based on [65]. In Section 3.3, we discuss

the constraints on ultralight Le−Lµ,τ type of vector gauge bosons from the perihelion

precession of planets which is based on the work done in [66]. Finally, in Section 3.4

we conclude the chapter with the important results.

3.2 Constraints on Vector Gauge Boson of Lµ−Lτ type

from Compact Binary Systems

In this section, we point out that neutron star (NS) can have a large number of muons

and, therefore, the neutron star-neutron star (NS-NS) binaries and neutron star-white

dwarf (NS-WD) binaries can radiate ultralight Lµ − Lτ vector gauge bosons.

Besides muons, there are electrons, protons and neutrons inside a neutron star.

There is around 1055 muons compared to about 1057 neutrons [215, 215–219] in a

typical old neutron star.

For massive vector gauge boson radiation from the NS-NS, and NS-WD binaries,

the orbital frequency of the binary orbit should be greater than the mass of the particle

which restricts the mass spectrum of the massive gauge boson to MZ′ < 10−19 eV. A
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Lµ − Lτ gauge boson (Z ′) exchange between muons of the neutron star gives rise to

the Yukawa type potential V (r) =
g2

4πr
e−MZ′r. The range λ of the force is determined

by λ =
1

MZ′
. For the emission of this ultra light vector gauge boson of mass MZ′ <

10−19 eV from NS-NS and NS-WD binaries, the lower bound of the range of this

force is λ = 1/MZ′ > 1012 m. This ultra light mass or nearly massless gauge boson

can mediate long range fifth force between the neutron stars of the binary system.

Since there is no muon charge for white dwarf, the fifth force for NS-WD binaries are

zero. In the following, we calculate the orbital energy loss due to radiation of proca

vector boson and massive vector gauge boson of Lµ − Lτ anomaly free gauge theory

[197, 220–222] from the four compact binary (NS-NS, NS-WD) systems.

3.2.1 Calculation of the fraction of muons inside a compact star

The chemical potential of relativistic degenerate electrons in NS is

µe = (m2
e + k2

fe)
1
2 =

[
m2
e + (3π2ρYe)

2
3

] 1
2
, (3.3)

where me is the mass of the electron, kf is the Fermi momentum, ρ is the nucleon

number density and Ye is the electron fraction. From the charge neutrality of the neu-

tron star, Yp = Ye + Yµ and Yn + Yp = 1. Above the nuclear matter density, when µe

exceeds the mass of muon (∼ 105 MeV, non-relativistic), electrons can convert into

muons at the edge of the Fermi sphere. So e− → µ−+νe+ ν̄µ, p+µ− → n+νµ, and

n → p + µ− + ν̄µ maybe energetically favourable. Hence, both muons and electrons

can stay in neutron star and stabilize through beta equilibrium. Thus the β stability

condition becomes

µn − µp = µe = µµ =
[
m2
µ + (3π2ρYµ)

2
3

] 1
2
, (3.4)

where Yµ is the muon fraction inside the neutron star [223]. Muon decay (µ− →

e− + ν̄e + νµ) inside the neutron star is prohibited by Fermi statistics. The Fermi

energy of the electron is roughly 100 MeV (relativistic) whereas the Fermi energy of

the muon is roughly 30 MeV (non relativistic). Hence the muon decay cannot take

place as the energy levels of the electron are all filled up to the Fermi surface and the

final state electron is Fermi blocked. For white dwarf, the Fermi energy of muon is
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very small (∼ 1 eV) and Fermi suppression does not really apply. Thus muon decay is

not obstructed in white dwarfs.

From the beta equilibrium condition the chemical potentials of muons and electrons

inside the neutron star are equal which implies,

ρµ =
m3
e

3π2

[
1 +

(3π2ρYe)
2
3

m2
e

−
m2
µ

m2
e

] 3
2
. (3.5)

The electron fraction (Ye) is given as [215]

Ye =
p1 + p2ρ+ p6ρ

3/2 + p3ρ
p7

1 + p4ρ3/2 + p5ρp7
, (3.6)

where p’s are the parameters which can take different values for different QCD equa-

tion of states. Assuming there are 1057 nucleons, the nucleon number density is

ρ = 0.238 fm−3 and Ye = 0.052 (here we put the values of p parameters for BSK24

[215] equation of state). From Eq. (3.5) we obtain the muon number density ρµ =

3.11 × 104 MeV3. Hence, the total number of muons inside the neutron star is ρµ ×
4

3
πR3 = 1.67 × 1055, where we assume the radius of the neutron star is R = 10 km.

In the following, we take the muon number as N = 1055.

3.2.2 Energy loss due to massive proca vector field radiation

If there is a mismatch between the observed period loss of the binary system and its

theoretical prediction from the gravitational quadrupole radiation, then other particles

may also be radiated from the binaries which give hints for new physics. Neutron stars

have a large number of muon charges (N ≈ 1055) and Z ′ massive proca vector boson

can be emitted from the NS in addition to the gravitational radiation, contributing

to the observed orbital period decay. Since, the Compton wavelength of radiation

(λ = 1012 m) is much larger than the size of NS (10 km), one can treat the NS as

a point source. We will treat the radiation of massive Z ′ vector bosons from the NS

classically. The classical current of muons Jµ in the NS is determined from the Kepler

orbits and assuming the interaction vertex as gZ ′µJ
µ, where g is the coupling constant.

Therefore, the rate of massive Z ′ boson radiation is given by

dΓ = g2

3∑
λ=1

[Jµ(k′)Jν∗(k′)ελµ(k)ελ∗ν (k)]2πδ(ω − ω′) d3k

(2π)32ω
, (3.7)
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where the Fourier transform of Jµ(x) is Jµ(k′) and ελµ(k) denotes the polarization

vector of massive vector gauge boson. The polarization sum is

3∑
λ=1

ελµ(k)ελ∗ν (k) = −gµν +
kµkν
M2

Z′
. (3.8)

Therefore, the emission rate is

dΓ =
g2

2(2π)2

∫ [
− |Jµ(ω′)|2 +

1

M2
Z′

(
|J0(ω′)|2ω2 + J i(ω′)J j∗(ω′)kikj+

2J0(ω′)J i∗(ω′)k0ki

)]
× δ(ω − ω′)ω

(
1− M2

Z′

ω2

) 1
2
dωdΩk.

(3.9)

The momentum four vector of theZ ′ boson is kµ = (ω,−~k), ki = |~k|n̂i and kj = |~k|n̂j .

The third term in the first bracket will not contribute anything because∫
n̂idΩk = 0,

∫
n̂in̂jdΩk =

4π

3
δij. (3.10)

Therefore, the rate of energy loss due to massive Z ′ boson radiation is

dE

dt
=
g2

2π

∫ [
− |J0(ω′)|2 + |J i(ω′)|2 +

ω2

M2
Z′
|J0(ω′)|2 +

ω2

3M2
Z′
|J i(ω′)|2

(
1− M2

Z′

ω2

)]
× δ(ω − ω′)ω2

(
1− M2

Z′

ω2

) 1
2
dω.

(3.11)

The current density for the binary stars is written as

Jµ(x) =
∑
a=1,2

Qaδ
3(x− xa(t))uµa , (3.12)

where a = 1, 2 denotes labelling of the two stars in the binary system. Qa denotes the

total charge of the NS due to presence of muons and xa(t) is the location of the NS.

uµa = (1, ẋa, ẏa, 0) denotes the non relativistic four velocity of the Keplerian orbit in

the x-y plane. In the parametric form, a Kepler orbit in the x-y plane can be written as

x = a(cos ξ−e), y = a
√

1− e2 sin ξ, Ωt = ξ−e sin ξ, (3.13)

where e is the eccentricity, a is the semi major axis of the elliptic orbit, and the fun-

damental frequency is denoted as Ω =
[G(m1 +m2)

a3

] 1
2
. In an eccentric orbit, the

angular velocity is not constant, that means the Fourier expansion must sum over the
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harmonics nΩ of the fundamental. The Fourier transform of Eq. (3.12) for the spatial

part of Jµ(ω′) with ω′ = nΩ is

J i(ω′) =

∫
1

T

∫ T

0

dteinΩtẋia(t)
∑
a=1,2

Qad
3x′e−ik

′.x′δ3(x′ − xa(t)). (3.14)

We expand eik
′.x′ = 1+ ik′.x′+ ... and retain the leading order term as k′.x′ ∼ Ωa� 1

for Keplerian orbits of compact binary systems. Hence, we can write Eq. (3.14) as

J i(ω′) =
Q1

T

∫ T

0

dteinΩtẋi1(t) +
Q2

T

∫ T

0

dteinΩtẋi2(t). (3.15)

In the centre of mass (c.o.m) coordinates we have xi1 =
m2xi

m1 +m2

=
M

m1

xi and xi2 =

− m1xi

m1 +m2

= −M
m2

xi. M = m1m2/(m1 + m2) denotes the reduced mass of the

binary system. Hence, in terms of the reduced mass, the spatial part of the current

density becomes

J i(ω′) =
1

T

(Q1

m1

− Q2

m2

)
M

∫ T

0

dteinΩtẋi(t). (3.16)

The Fourier transform of the velocity is

ẋn =
1

T

∫ T

0

eiΩntẋdt

=
Ω

2π

∫ 2π

0

ein(ξ−e sin ξ)(−a sin ξ)dξ, (3.17)

where T = 2π/Ω and, from Eq. (3.13), we have used the fact that ẋdt = −a sin ξdξ.

Similarly,

ẏn =
1

T

∫ T

0

eiΩntẏdt. (3.18)

From Eq. (3.13) we use the fact that ẏdt = a
√

1− e2 cos ξdξ and we obtain

ẏn =
Ωa
√

1− e2

2π

∫ 2π

0

ein(ξ−e sin ξ) cos ξdξ

=
Ωa
√

1− e2

2πe

∫ 2π

0

ein(ξ−e sin ξ)dξ. (3.19)

Using the identity of the Bessel function

Jn(z) =
1

2π

∫ 2π

0

ei(nξ−z sin ξ)dξ, (3.20)

in Eqs. (3.17) and (3.19), we obtain the velocities in Fourier space as

ẋn = −iaΩJ ′n(ne), ẏn =
a
√

1− e2Ω

e
Jn(ne), (3.21)
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where the prime denotes the derivative of the Bessel function with respect to the argu-

ment. Hence, we have

Jx(ω′) = Ω
(Q1

m1

− Q2

m2

)
M

1

2π

∫ T

0

dteinΩtẋi(t)

= −iaΩ
(Q1

m1

− Q2

m2

)
MJ ′n(ne). (3.22)

Similarly,

Jy(ω′) = Ω
(Q1

m1

− Q2

m2

)
M
a
√

1− e2

e
Jn(ne). (3.23)

Hence, the square of the spatial part of Jµ(ω′) becomes

|J i(ω′)|2 = |Jx(ω′)|2 + |Jy(ω′)|2

= a2Ω2M2
(Q1

m1

− Q2

m2

)2[
J ′

2

n (ne) +
(1− e2)

e2
J2
n(ne)

]
. (3.24)

From Eq. (3.12), we have the temporal component of Jµ(ω′) as

J0(ω) =
1

2π

∫
eik
′.x′e−iωt

∑
a=1,2

Qaδ
3(x′ − xa(t))d3x′dt. (3.25)

In the centre of mass frame, the integral results in

J0(ω) = (Q1 +Q2)δ(ω)+ iM

(
Q1

m1

− Q2

m2

)
(kxx(ω)+kyy(ω))+O((k.r)2), (3.26)

where the Fourier transforms of the orbital coordinates are x(ω) = aJ ′n(ne)/n and

y(ω) = ia
√

1− e2Jn(ne)/ne. The first term in Eq. (3.26) is the delta function δ(ω)

and hence does not contribute. Hnece, the second term is the leading order term and

we obtain

|J0(ω)|2 =
1

3
a2M2Ω2

(
1− M2

Z′

n2Ω2

)(
Q1

m1

− Q2

m2

)2(
J ′2n (ne) +

1− e2

e2
J2
n(ne)

)
,

(3.27)

where we have used < k2
x >=< k2

y >= k2/3 and ω = nΩ. Using Eqs. (3.24) and

(3.27) in Eq. (3.11), we obtain energy loss rate as

dE

dt
=

g2

3π
a2M2

(Q1

m1

− Q2

m2

)2
[

Ω6

M2
Z′

∑
n>n0

n4
[
J ′

2

n (ne) +
(1− e2)

e2
J2
n(ne)

](
1− n2

0

n2

) 3
2

+Ω4
∑
n>n0

n2
[
J ′

2

n (ne) +
(1− e2)

e2
J2
n(ne)

](
1− n2

0

n2

) 1
2
(

1 +
1

2

n2
0

n2

)]
, (3.28)

where n0 = MZ′/Ω < 1.
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We define

K1(n0, e) =
∑
n>n0

n4
[
J ′

2

n (ne) +
(1− e2)

e2
J2
n(ne)

](
1− n2

0

n2

) 3
2
, (3.29)

and

K2(n0, e) =
∑
n>n0

n2
[
J ′

2

n (ne) +
(1− e2)

e2
J2
n(ne)

](
1− n2

0

n2

) 1
2
(

1 +
1

2

n2
0

n2

)
, (3.30)

and use these notations to rewrite Eq. (3.28) as

dE

dt
=
g2

3π
a2M2

(Q1

m1

− Q2

m2

)2

Ω4
( Ω2

M2
Z′
K1(n0, e) +K2(n0, e)

)
. (3.31)

This is the energy loss due to radiation of proca vector massive boson from NS-NS

binaries. For NS-WD binaries, the energy loss is same as Eq. (3.31) with Q2 = 0

because white dwarfs do not have any muon charges.

3.2.3 Energy loss due to massive Lµ − Lτ gauge boson radiation

If the Z ′ is a gauge boson, then from the gauge invariance condition kµJµ = 0. Con-

sequently, the kµkν term in the polarization sum of Eq. (3.8) will not contribute to the

energy loss formula. Using the same procedure that has been described in the previous

section, we derive the energy loss rate

dE

dt
=
g2

6π
a2M2

(Q1

m1

− Q2

m2

)2

Ω4
∑
n>n0

2n2
[
J ′

2

n (ne) +
(1− e2)

e2
J2
n(ne)

](
1− n2

0

n2

) 1
2×

(
1 +

1

2

n2
0

n2

)
.

(3.32)

or
dE

dt
=
g2

3π
a2M2

(Q1

m1

− Q2

m2

)2

Ω4K2(n0, e), (3.33)

where K2(n0, e) is defined earlier in Eq. (3.30). Since K2(n0, e)n0=0 ≥ K2(n0, e)n0 6=0

the massless limit gives a stronger bound on the energy loss. This is the energy loss

due to massive vector gauge boson radiation, which has a similar form to the one

previously obtained in [166]. Our method in obtaining the formula is different, where

we can differentiate between the radiation rate of massive vector gauge bosons from

the massive Proca fields.
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The orbital period loss and the enrgy loss are related by

dPb
dt

= −6πG−3/2(m1m2)−1(m1 +m2)−1/2a5/2
(dE
dt

+
dEGW
dt

)
, (3.34)

where
dEGW
dt

denotes the energy loss rate due to gravitational radiation and is given as

[177]
dEGW
dt

=
32

5
GΩ6M2a4(1− e2)−7/2

(
1 +

73

24
e2 +

37

96
e4
)
. (3.35)

In the massless limit of the vector gauge boson (i.e; MZ′ = 0 implies n0 = 0), the rate

of energy loss from Eq. (3.32) becomes

dE

dt
=

g2

3π
a2M2

(Q1

m1

− Q2

m2

)2

Ω4

∞∑
n=1

n2
[
J ′

2

n (ne) +
(1− e2)

e2
J2
n(ne)

]
=

g2

6π
a2M2

(Q1

m1

− Q2

m2

)2

Ω4 (1 + e2

2
)

(1− e2)
5
2

. (3.36)

If the orbit is circular then the angular velocity is a constant over the orbital period and

the Fourier expansion of the orbit contains only one term for ω = Ω. In an eccentric

orbit the angular velocity is not constant and that means the Fourier expansion must

sum over the harmonics nΩ of the fundamental.

Next, we will put constraints on the mass of the vector gauge boson and on the

Lµ−Lτ coupling constant from the decay of the orbital period of four compact binary

systems using Eq. (3.33), Eq. (3.34) and Eq. (3.35).

3.2.4 Constraints on gauge boson mass and its coupling for differ-

ent compact binaries

Here we consider the same four compact binary systems, PSR B1913+16, PSR J0737-

3039, PSR J0348+0432, and PSR J1738+0333 that we have taken in the earlier chap-

ter. The ultralight Lµ − Lτ gauge boson radiation is only possible if the stars of the

binary contain different charge to mass ratios. For PSR B1913+16, Hulse-Taylor bi-

nary pulsar, (Q1/m1 − Q2/m2) = 10−4 GeV−1 where Q = N , N is the number

of muons which is roughly 1055 [219]. For PSR J0737-3039, (Q1/m1 − Q2/m2) =

5.27×10−4 GeV−1. The white dwarfs do not contain any muon charge. Hence, for the

pulsar-white dwarf binaries, PSR J0348+0432, and PSR J1738+0333, Q2 = 0 and the

charge to mass ratio are 4.97× 10−3 GeV−1 and 6.85× 10−3 GeV−1 respectively. The
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contribution from the radiation of some vector gauge boson particles must be within

the excess of the decay of the orbital period, i.e Ṗb(vector) 6 |Ṗb(observed)−Ṗb(gw)|. Since

K2(n0, e)n0=0 > K2(n0, e)n0 6=0, the massless limit gives the stronger bound.

In Table 3.1 we show the bounds on g from fifth force and orbital period decay for

the four compact binary systems having gauge boson mass M ′
Z < 10−19 eV [65].

Table 3.1: Summary of the upper bounds on gauge boson-muon coupling g for PSR

B1913+16, PSR J0737-3039, PSR J0348+0432, and PSR J1738+0333. We take the

mass regime as M ′
Z < 10−19 eV.

Compact binary system g(fifth force) g(orbital period decay)

PSR B1913+16 ≤ 4.99× 10−17 ≤ 2.21× 10−18

PSR J0737-3039 ≤ 4.58× 10−17 ≤ 2.17× 10−19

PSR J0348+0432 − ≤ 9.02× 10−20

PSR J1738+0333 − ≤ 4.24× 10−20

In Fig.3.1 we show the exclusion plots to constrain the coupling g for the gauge

field and the proca field using Eq. (3.31) in a gauged Lµ − Lτ scenario for four com-

pact binary systems. The regions above the coloured lines are excluded for the corre-

sponding binary systems. Here, a larger parameter space of g is excluded for the proca

field.

Fig.3.1(a) shows that for gauge boson, the coupling g is almost constant in the

mass range M ′
Z < 10−19 eV. The coupling g will increase with MZ′ in the mass range

MZ′ > 10−19 eV, as only higher modes (n > n0 > 1) contribute to K2(n0, e). For low

eccentric binary orbits, the rise in g with respect to MZ′ is sharp. Note that for circular

binary orbit only the n = 1 mode can contribute. As a result for MZ′ > Ω, there is

no constraint on g. In Fig.3.1(b), g varies linearly with respect to MZ′(< 10−19 eV)

due to the contribution of Ω2/M2
Z′K1(n0, e) term for the proca field. We obtain the

upper bounds on
MZ′

g
for a proca field in the small MZ′ limit. From the orbital period

decay, for PSR B1913+16, we get MZ′/g ≤ 0.306 eV, for PSR J0737-3039, we get

MZ′/g ≤ 2.307 eV, for PSR J0348+0432, the bound is MZ′/g ≤ 5.13 eV and for PSR

J1738+0333, the bound is MZ′/g ≤ 3.19 eV.
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PSR B1913+16
PSR J0737-3039
PSR J0348+0432

PSR J1738+0333
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(a) g vs. MZ′
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(b) g vs. MZ′

Figure 3.1: (a) Exclusion plots to constrain the coupling of the gauge field and (b) the

proca field in a gauged Lµ−Lτ scenario for four compact binary systems. The regions

above the coloured lines are excluded.
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3.3 Constraints on Gauge Bosons of Le−Lµ,τ type from

Perihelion Precession of Planets

It is well known that a deviation from the inverse square law force between the Sun and

the planets results in the perihelion precession of the planetary orbits around the Sun.

One of the most prominent example is the case of Einstein’s general relativity (GR)

which predicts a deviation from Newtonian 1/r2 gravity. In fact, one of the famous

classical tests of GR was to explain the perihelion advancement of the Mercury. There

was a mismatch of about 43 arc seconds per century from the observation [224] which

could not be explained by Newtonian mechanics by considering all non-relativistic ef-

fects such as perturbations from the other Solar System bodies, oblateness of the Sun,

etc. GR explains the discrepancy with a prediction of contribution of 42.9799′′/Julian

century [9]. However, there is an uncertainty in the GR prediction which is about

10−3 arc seconds per century [8, 9, 224–226] for the Mercury orbit. The current most

accurate detection of perihelion precession of Mercury is done by the MESSENGER

mission [8]. In the near future, more accurate results will come from the BepiColombo

mission [227]. Other planets also experience such perihelion shifts, although the shifts

are small since they are at a larger distance from the Sun [228, 229]. The uncertainty in

GR prediction opens up the possibility to explore the existence of Yukawa type poten-

tial between the Sun and the planets leading to the fifth force which is a deviation from

the inverse-square law. Here, we consider the vector gauge boson mediated Yukawa

type potential which arises in a gauged Le−Lµ,τ scenario and we calculate the perihe-

lion shift of planets (Mercury, Venus, Earth, Mars, Jupiter, and Saturn) due to coupling

of the ultralight vector gauge bosons with the electron current of the macroscopic ob-

jects along with the GR effect. As the Sun and the planets contain lots of electrons

and the number of electrons is approximately equal to the number of baryons, we can

probe Le − Lµ,τ long range force from the Solar System. The number of electrons

in i’th macroscopic object (Sun or planet) is given by Ni = Mi/mn, where Mi is

the mass of the i’th object and mn is the mass of nucleon which is roughly 1 GeV.

Le−Lµ,τ gauge boson is mediated between the classical electron current sources: Sun

and planet as shown in Fig.3.2. This causes a fifth force between the planet and the Sun
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along with the gravitational force and contributes to the perihelion shift of the planets.

The Yukawa type of potential in such a scenario is V (r) ' g2

4πr
e−MZ′r, where g is the

constant of coupling between the electron and the gauge boson and MZ′ is the mass of

the gauge boson. The distance between the Sun and the planets constrain the mass of

the gauge boson and the strongest bound on the gauge boson mass is MZ′ < 10−19 eV.

Therefore, the lower bound of the range of this force is given by λ =
1

MZ′
> 109 km.

Le−Lµ,τ long range force can also be probed from MICROSCOPE experiment [230–

232]. In this mass range the vector gauge boson can also be a candidate for fuzzy dark

matter (FDM), although FDM is usually referred to as ultralight scalars [59, 64].

3.3.1 Perihelion precession of planets due to long range Yukawa

type of potential in the Schwarzschild spacetime background

Z′￼

e−

e−

e−

e−

Sun Planet

Figure 3.2: Mediation of Le − Lµ,τ vector gauge bosons between planet and Sun.

The dynamics of a Sun-planet system in presence of a Schwarzschild spacetime

background and a non gravitational long range Yukawa type Le − Lµ,τ force is given

by the following action:

S = −Mp

∫ √
−gµν ẋµẋνdτ − g

∫
AµJ

µdτ, (3.37)

where “˙” (overdot) denotes the derivative with respect to the proper time τ , gµν de-

notes the metric tensor for the background spacetime, Mp is the mass of the planet,

g is the gauge coupling constant which couples the classical current Jµ = qẋµ of the

planet with the Le−Lµ,τ gauge field Aµ due to the Sun, and q is the total charge due to
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the presence of electrons in the planet. We obtain the equation of motion of the planet

by varying the action Eq. (3.37) as

ẍα + Γαµν ẋ
µẋν =

gq

Mp

gαµ(∂µAν − ∂νAµ)ẋν . (3.38)

In Appendix B.1, we show the detailed calculation of Eq. (3.38). For the static case

Aµ = {V (r), 0, 0, 0}, where V (r) is the potential leading to a long range Le − Lµ,τ

Yukawa type force. Γαµν denotes the Christoffel symbol for the background spacetime.

For the Sun-Planet system, the background is a Schwarzschild spacetime outside the

Sun and it is described by the line element

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dθ2 + r2 sin2 θdφ2, (3.39)

where M denotes the solar mass. The Christoffel symbols for the metric Eq. (3.39) are

given in Appendix B.2.

Hence, to obtain the solution for the temporal part of the Eq. (3.38), we write

ẗ+
2M

r2
(

1− 2M
r

) ṙṫ =
gq

Mp

(
1− 2M

r

) dV
dr
ṙ. (3.40)

Integrating Eq. (3.40) once, we get

ṫ =

(
E + gqV

Mp

)
(

1− 2M
r

) , (3.41)

where E is a constant of motion. E is interpreted as the total energy per unit rest mass

for a timelike geodesic relative to a static observer at infinity.

Similarly, the φ part of Eq. (3.38) is

φ̈+
2

r
ṙφ̇ = 0. (3.42)

After integration, we get

φ̇ =
L

r2
, (3.43)

where L is the angular momentum of the system per unit mass, which is also a constant

of motion.

The radial part of Eq. (3.38) is

r̈− Mṙ2

r2
(

1− 2M
r

) +
M
(

1− 2M
r

)
r2

ṫ2− r
(

1− 2M

r

)
φ̇2 =

gq

Mp

(
1− 2M

r

)dV
dr
ṫ. (3.44)
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Using Eqs. (3.41) and (3.43) in Eq. (3.44), we obtain

r̈+
M

r2
(

1− 2M
r

)((E+
gqV

Mp

)2

− ṙ2
)
−L

2

r3

(
1− 2M

r

)
=

gq

Mp

(
E+

gqV

Mp

)dV
dr
. (3.45)

Again, for a timelike particle gµν ẋµẋν = −1 and this gives(
E + gqV

Mp

)2

− 1

2
=
ṙ2

2
+
L2

2r2
− ML2

r3
− M

r
. (3.46)

Using Eq. (3.46) in Eq. (3.45), we get

r̈ +
3ML2

r4
+
M

r2
− L2

r3
=

gq

Mp

(
E +

gqV

Mp

)dV
dr
. (3.47)

We can also obtain Eq. (3.47) by directly differentiating Eq. (3.46).

The potential V (r) is generated due to the presence of electrons in the Sun and it

is given as V (r) ' gQ

4πr
e−MZ′r +O

(M
R

)
, where R is the radius of the Sun. Note that

we keep only the Yukawa term in the form of V (r) as we are interested in the leading

order contribution only (see Appendix B.3). Hence, from Eq. (3.46) we write

E2 − 1

2
=
ṙ2

2
+
L2

2r2
− ML2

r3
− M

r
− g2N1N2E

4πMpr
e−MZ′r, (3.48)

where we have neglectedO(g4) term because the coupling is small and its contribution

will be negligible. Here Q = N1 is the number of electrons in the Sun and q = N2

is the number of electrons in the planet. For planar motion, Lx = Ly = 0, and

θ = π/2. The orbit of the planet is stable when E < 1. In the presence of gravitational

potential and fifth force, the total energy of the system per unit mass becomes E '

1−M
2a

+
g2Qq

4πMp

(
u+u

2
−e
−MZ′/u+ − u2

+u−e
−MZ′/u−

u2
+ − u2

−

)
, which is explained in Appendix

B.4.

The first term on the right hand side of Eq. (3.48) represents the kinetic energy

part, the second term is the centrifugal potential part, and the fourth term is the usual

Newtonian potential. Due to the general relativistic
ML2

r3
term, there is an advance-

ment of the perihelion motion of a planet. The last term arises due to the exchange of

a U(1)Le−Lµ,τ gauge bosons between electrons of a planet and the Sun. Here, MZ′ is

the mass of the gauge boson. MZ′ is constrained from the range of the potential which

is basically the distance between the planet and the Sun. Using ṙ =
L

r2

dr

dφ
, we write
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Eq. (3.48) as[ d
dφ

(1

r

)]2

+
1

r2
=
E2 − 1

L2
+

2M

r3
+

2M

L2r
+
g2N1N2E

2πL2rMp

e−MZ′r. (3.49)

Applying
d

dφ
on both sides and using the reciprocal coordinate u =

1

r
we obtain from

Eq. (3.49)

d2u

dφ2
+ u =

M

L2
+ 3Mu2 +

g2N1N2

4πL2Mp

e−
MZ′
u +

g2N1N2EMZ′

4πL2Mpu
e−

MZ′
u . (3.50)

As E appears as a multiplication factor in Eq. (3.50), we take E ≈ 1 as other terms are

very small. Hence, expanding Eq. (3.50) up to the leading order of MZ′ , we get

d2u

dφ2
+ u =

M

L2
+ 3Mu2 +

g2N1N2

4πL2Mp

− g2N1N2M
2
Z′

8πL2Mpu2
, (3.51)

where for non circular orbit
d

dφ

(1

r

)
6= 0. The first term on the right hand side

of Eq. (3.51) is the usual term that comes in Newton’s theory. The second term is the

general relativistic term which is a perturbation of Newton’s theory. The last two terms

arise due to the presence of long range Yukawa type potential in the theory.

We write Eq. (3.51) as

d2u

dφ2
+ u =

M ′

L2
+ 3Mu2 − g2N1N2M

2
Z′

8πL2Mpu2
, (3.52)

where M ′ = M + g2N1N2/4πMp.

We assume that u = u0(φ) + ∆u(φ), where, u0(φ) is the solution of Newton’s

theory with the effective mass M ′ and ∆u(φ) is the solution due to general relativistic

correction and Yukawa potential. Thus we write

d2u0

dφ2
+ u0 =

M ′

L2
. (3.53)

The solution of Eq. (3.53) is

u0 =
M ′

L2
(1 + e cosφ), (3.54)

where e is the eccentricity of the planetary orbit. The equation of motion for ∆u(φ) is

d2∆u

dφ2
+ ∆u =

3MM ′2

L4
(1 + e2 cos2 φ+ 2e cosφ)

− g2N1N2M
2
Z′L

4

8πL2MpM ′2(1 + e2 cos2 φ+ 2e cosφ)
. (3.55)
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The solution of Eq. (3.55) is

∆u =
3MM ′2

L4

[
1 +

e2

2
− e2

6
cos 2φ+ eφ sinφ

]
− g2N1N2M

2
Z′L

4

8πL2MpM ′2

[
− cosφ

e(1 + e cosφ)
+

sin2 φ

(1− e2)(1 + e cosφ)
− e

(1− e2)3/2
sinφ cos−1

( e+ cosφ

1 + e cosφ

)]
.

(3.56)

When ∆u increases linearly with φ, it contributes to the perihelion precession of plan-

ets. Therefore, we identify only the related terms in Eq. (3.56), neglect all other terms,

and rewrite ∆u as

∆u =
3MM ′2

L4
eφ sinφ+

g2N1N2M
2
Z′L

2

8πMpM ′2
e

(1− e2)(1 + e)
φ sinφ, (3.57)

where we have used cos−1
( e+ cosφ

1 + e cosφ

)
'
√

1− e2

1 + e
φ+O(φ2).

Using Eqs. (3.54) and (3.57), we get the total solution as

u =
M ′

L2
(1 + e cosφ) +

3MM ′2

L4
eφ sinφ+

g2N1N2M
2
Z′L

2

8πMpM ′2
e

(1− e2)(1 + e)
φ sinφ,

(3.58)

or,

u =
M ′

L2
[1 + e cosφ(1− α)], (3.59)

where,

α =
3MM ′

L2
+
g2N1N2M

2
Z′L

4

8πMpM ′3
1

(1− e2)(1 + e)
. (3.60)

Under φ → φ + 2π, u is not same. Hence, the planet does not follow the previous

orbit. So the motion of the planet is not periodic. The change in azimuthal angle after

one precession is

∆φ =
2π

1− α
− 2π ≈ 2πα. (3.61)

The semi major axis and the orbital angular momentum are related by a =
L2

M ′(1− e2)
.

Using this expression in Eq. (3.61) we get

∆φ =
6πM

a(1− e2)
+
g2N1N2M

2
Z′a

2(1− e2)

4MpM ′(1 + e)
. (3.62)

In natural system of units Eq. (3.62) is

∆φ =
6πGM

a(1− e2)
+

g2N1N2M
2
Z′a

2(1− e2)

4Mp(GM + g2N1N2

4πMp
)(1 + e)

. (3.63)
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The energy due to gravity is much larger than the energy due to long range Yukawa

type force. The last term of Eq. (3.63) indicates that long range force, which arises

due to U(1)Le−Lµ,τ gauge boson exchange between the electrons of composite objects,

contributes to the perihelion advance of planets within the permissible limit.

3.3.2 Constraints on U(1)Le−Lµ,τ gauge coupling for planets in So-

lar system

The contribution of the gauge boson must be within the excess of perihelion advance

from the GR prediction, i.e; (∆φ)obs − (∆φ)GR ≥ (∆φ)Le−Lµ,τ . The first term in the

right hand side of Eq. (3.63) is (∆φ)GR and the second term is (∆φ)Le−Lµ,τ . Putting the

observed and GR values for (∆φ), we can constrain the U(1)Le−Lµ,τ gauge coupling

constants for all the planets in our Solar System. For Mercury planet, we write

g2N1N2M
2
Z′a

2(1− e2)

4Mp(GM + g2N1N2

4πMp
)(1 + e)

(century

T

)
< 3.0× 10−3arcsecond/century, (3.64)

where 3 × 10−3 arcsecond/century is the uncertainty in the perihelion advancement

from its GR prediction and put upper bound on the gauge coupling. T = 88 days

is the orbital time period of Mercury. Similarly, we can put upper bounds on g for

other planets. In this section, we constrain the U(1)Le−Lµ,τ gauge coupling from the

observed perihelion advancement of the planets in the Solar System. We consider six

planets: Mercury, Venus, Earth, Mars, Jupiter, and Saturn. Here, we take the mass

of the Sun as M = 1057 GeV. Using Eq. (3.63), we put an upper bound on g from

the uncertainty of their perihelion advance. In Table 3.2, we obtain the upper bound

on masses of the gauge bosons which are mediated between the Sun and the planets

and, in Table 3.3, we show the constraints on the gauge coupling constants from the

uncertainties [233, 234] of perihelion advance.

We can write from the fifth force constraint

g2N1N2

4πGMMp

< 1. (3.65)

This gives the upper bound on g as g < 3.54× 10−19 for all the planets. In Fig.3.3 we

show the values of gauge coupling of the planets corresponding to the planet-Sun dis-

tance. For U(1)Le−Lµ,τ vector gauge bosons exchange between the planet and the Sun,
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Table 3.2: Summary of the masses, eccentricities (https://solarsystem.

nasa.gov/planets/mercury/by-the-numbers/) of the orbits, perihelion

distances from the Sun and upper bounds on gauge boson mass MZ′ which are medi-

ated between the planets and Sun in our Solar System.

Planet Mass Mp(GeV) Eccentricity (e) Perihelion distance a (AU) MZ′(eV)

Mercury 1.84× 1050 0.206 0.31 ≤ 4.26× 10−18

Venus 2.73× 1051 0.007 0.72 ≤ 1.83× 10−18

Earth 3.35× 1051 0.017 0.98 ≤ 1.35× 10−18

Mars 3.59× 1050 0.093 1.38 ≤ 9.56× 10−19

Jupiter 1.07× 1054 0.048 4.95 ≤ 2.67× 10−19

Saturn 3.19× 1053 0.056 9.02 ≤ 1.46× 10−19

Table 3.3: Summary of the uncertainties in the perihelion advance in arcseconds per

century and upper bounds on gauge boson-electron coupling g for the values of MZ′

discussed in Table3.2 for planets in our Solar System.

Planet Uncertainty in perihelion advance (as/cy) g from perihelion advance

Mercury 3.0× 10−3 ≤ 1.055× 10−24

Venus 1.6× 10−3 ≤ 1.377× 10−24

Earth 1.9× 10−4 ≤ 6.021× 10−25

Mars 3.7× 10−5 ≤ 3.506× 10−25

Jupiter 2.8× 10−2 ≤ 2.477× 10−23

Saturn 4.7× 10−4 ≤ 5.040× 10−24

https://solarsystem.nasa.gov/planets/mercury/by-the-numbers/
https://solarsystem.nasa.gov/planets/mercury/by-the-numbers/
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Figure 3.3: Values of the gauge coupling of each planets corresponding to the Sun-

planet distance obtained from Table3.3. Violet dot is for Jupiter planet, blue dot is for

Mercury planet, black dot is for Venus, cyan dot is for Saturn, green dot is for Earth

and yellow dot is for Mars. The yellow shaded region is excluded from the torsion

balance experiments.
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the mass of the gauge boson is MZ′ ≤ O(10−19) eV. In Fig.3.4, we obtain the exclu-

sion plots of gauge boson electron coupling for the six planets by numerically solving

Eq. (3.50). There is an extra multiplicative factor exp
[−M ′

ZL
2

M ′

]
in the expression of

α if we solve Eq. (3.50) numerically in order to incorporate the exponential suppre-

sion due to higher values of MZ′ . The regions above the coloured lines corresponding

Mercury

Venus

Earth

Mars

Jupiter

Saturn

10
-23
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-22
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-21
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-15
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g

Figure 3.4: Plot of coupling constant g vs the mass of the gauge bosons M ′
Z for all the

planets. Violet line is for Jupiter planet, red line is for Mercury planet, black line is for

Venus, cyan line is for Saturn, green line is for Earth and yellow line is for Mars.

to every planet are excluded. Eq. (3.63) suggests that the perihelion shift due to the

mediation of Le − Lµ,τ gauge bosons is proportional to the square of the semi major

axis. This is completely opposite to the standard GR result where the perihelion shift

is inversely proportional to a for small MZ′ . However, for higher values of MZ′ , the

exponential suppression starts dominating. So the contribution of the gauge boson me-

diation for perihelion shift is larger for outer planets. However, it also depends on the

available uncertainties for perihelion precession of the planets and other parameters

like orbital time period and eccentricity. From Table 3.3, we obtain the stronger bound

on the gauge boson coupling as g ≤ O(10−25). From Fig.3.4 it is clear that Mars gives

the strongest bound among all the planets considered. As we go to the lower mass

region, the exponential term in the potential will become less effective and the Yukawa
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potential effectively becomes Coulomb potential at MZ′ → 0. Thus it will be degen-

erate with 1/r2-Newtonian force and will not contribute to the perihelion precession

of planets at all [66]. So as we go to the lower mass (< 10−19 eV) region, we get

a weaker bound on g. On the other hand, for the higher mass region (> 10−19 eV)

the long range force theory breaks down and, thus we can not go arbitrarily for higher

masses.

3.4 Discussions

In this chapter, we have discussed the constraints on ultralight vector gauge bosons of

Li−Lj type obtained from the indirect evidence of GW, and the perihelion precession

of planets. Due to the presence of a significant number of muons in the neutron stars,

we can put bounds on the ultra light vector gauge boson mass in the gauged Lµ − Lτ
scenario and on the gauge coupling from the observations of the orbital period decay

of the four compact binary systems. Mainly the gravitational quadrupole radiation

contributes to the decay in the orbital period. The radiation by other ultra light particles

also contribute to the orbital period decay to less than 1%. From the decay of orbital

period, we obtain the Lµ−Lτ gauge coupling for PSR B1913+16 as g ≤ 2.21×10−18,

for PSR J0737-3039, it is g ≤ 2.17 × 10−19, for PSR J0348+0432, the coupling is

g < 9.02 × 10−20 and, for PSR J1738+0333, the coupling is g < 4.24 × 10−20 in the

massless limit and is true up to M ′
Z < 10−19 eV. Due to the fact of K2(n0, e)n0=0 ≥

K2(n0, e)n0 6=0, the massless limit gives the stronger bound for the radiation of massive

vector gauge boson. The radiation of vector gauge boson particles is possible if the

charge to mass ratio is different for two neutron stars. We have shown the exclusion

plots of g vs MZ′ for the radiation of massive vector gauge boson and proca field from

the NS-NS and NS-WD binaries. The main uncertainty of the gauge coupling bound

comes from the number of muons in the neutron star which depends on different QCD

equation of states [219, 235, 236].

Since, the Sun and the planets contain a significant number of electrons, long range

Yukawa type fifth force can be mediated between the electrons of the Sun and planet in

a gauged Le−Lµ,τ scenario. Also, there can be the dipole radiation of the gauge boson
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for the planetary orbits. Following our previous work on compact binary systems in

a gauged Lµ − Lτ scenario, the energy loss due to dipole radiation is proportional to

the fourth power of the orbital frequency. The orbital frequency of the Sun-Mercury

binary system is Ω ∼ 8.79 × 10−31 GeV which is roughly three orders of magnitude

smaller than the orbital frequency of neutron star-neutron star and neutron star-white

dwarf binary systems (Ω ∼ 10−28 GeV). The dipole radiation is also proportional to

the square of the difference in the charge to mass ratio of the binary system. For the

Sun-Planet binary system, the charge to mass ratio is negligibly small and hence, the

dipole radiation is negligible.

Due to the presence of electrons in Earth and Moon, there can be a mediation of

Le − Lµ,τ type of gauge bosons and the mass of the gauge boson is constrained by the

distance between the Earth and the Moon which yields MZ′ < 5.15 × 10−16 eV. Due

to this large gauge boson mass, we will have loose bound on the gauge coupling and it

is subdominant since we are considering the mass range MZ′ < 10−19 eV and probing

the ultralight gauge boson from perihelion precession measurements. However, due to

the presence of different electron number densities in the Earth and the Moon, there is

a differential accelaration of the Earth-Moon system towards the Sun. The presence of

electrons in the Sun at the solar distance causes a Le−Lµ,τ type of potential and it puts

a bound on the gauge coupling g < 6.4× 10−25 with the range ∼ 1013 cm (Earth-Sun

distance)[206, 237, 238].

This ultralight vector gauge bosons mediated between the Sun and the planets can

contribute to the perihelion shift in addition to the GR prediction. From the perihelion

shift calculation in presence of a long range Yukawa type potential, we obtain an upper

bound on the gauge coupling g ≤ O(10−25) in a gauged Le−Lµ,τ scenario. The mass

of the gauge bosons is constrained by the distance between the Sun and the planet

which gives MZ′ ≤ O(10−19)eV. The electron-gauge boson coupling obtained from

perihelion shift measurement is six orders of magnitude more stringent than our fifth

force constraint Eq. (3.65). From Eq. (3.63) we conclude that, while the precession of

perihelion due to GR is largely contributed by the planets close to Sun, the contribution

of vector gauge bosons in perihelion precession is dominated by the outer planets.

The non-universal neutrino masses will explicitly break the LA − LB where A 6=
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B = e, µ, τ as pointed out by [210]. For such light Z ′ the best bounds on the leptonic

gauge couplings come from neutrino decays νi → νjZ
′. The decay of neutrino to the

longitudinal component of Z ′ is equivalent to the decay into the Goldstone boson with

coupling to the neutrinos gij = g′mν/M
′
Z . Such decays are suppressed by neutrino

masses but enhanced by the small Z ′ mass and the best bounds on light Z ′ couplings

come from constraints on neutrino decays.

The coupling constant of long range forces is constrained to be small ( g′ from fifth

force and neutrino oscillation experiments). The Higgs field which gives mass to the

Z ′ boson need not be the same as the fields whose vacuum expectation values give

masses to neutrinos. There are several mechanisms for explaining the smallness of the

long range gauge coupling g′ compared to the other couplings of the standard model.

For instance, the Z ′ mass may arise in a SUSY theory from the Fayet-Ilioupoulous

(FI) term and the smallness of MZ′ can then be related to the GUT scale vev of the FI

term as motivated by inflation [231, 239]. Such a small value of coupling can also be

generated by clockwork mechanism [240].

The bound on coupling g that we have obtained is not only as good as the torsion

balance [241] or the neutrino oscillation experiment [206], but also our results possess

additional importance for the following reasons:

(a) Our analysis of the perihelion precession is sensitive to the magnitude of the

potential and the nature of the potential, i.e. the deviation from the inverse square

law.

(b) In our analysis, we are probing a larger distance (up to the planet Saturn) com-

pare to the Earth-Sun distance.

(c) Since the perihelion shift depends on the value of uncertainty in GR prediction,

the future BepiColombo mission [227] can give more accurate results and the

bound on coupling will become even stronger. The mission has an accuracy of

measuring the perihelion shift at a few parts in 106[227] which will make our

bound roughly one or two orders more stringent than our present bound in the

mass range that we are considering (at MZ′ ∼ O(10−18) eV, then the gauge

coupling will be g ∼ O(10−26)) and the bound will be as good as neutrino
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decay[210]. Note that, in our analysis, the mass of the gauge boson cannot be

very small, otherwise, it will be degenerate with the Coulomb potential. Also,

the mass cannot be very large, otherwise the long range force theory breaks

down.

Moreover, we emphasize the novel physics behind the work which suggests that we can

study the gauge boson electron coupling in a gauged Le − Lµ,τ scenario by planetary

observations and we can constrain the long range force from perihelion precession of

planets. These gauge bosons (MZ′ ≤ 10−19 eV) can be a possible candidate for fuzzy

dark matter and can be probed from the precision measurements of planetary orbits.



Chapter 4

Massive Graviton (Spin 2):

A Simple extension of General

Relativity, and its Searches

4.1 Introduction

Einstein’s general relativity (GR), since its inception in 1916, has passed all experimen-

tal tests [242]. To move towards the correct quantum theory of gravity, it is important

to test which variations of classical GR fail the experimental tests or have some the-

oretical inconsistencies. The two main motivations for studying the massive gravity

theory are solving the cosmological constant problem and the dark matter. There are

many types of massive gravity theory (modifying Einstein’s GR theory). One such

variation of GR which has been widely studied is the Fierz-Pauli (FP) theory of mas-

sive gravity [87]. In a scalar or vector field theory, an exchange of a massive particle of

mass mg gives rise to a (1/r)e−mgr Yukawa potential which goes to the 1/r potential

in the mg → 0 limits. The FP massive gravity theory has a peculiarity that in the zero

graviton mass limit, the action of the theory goes to that of Einstein-Hilbert linearized

theory however, due to the contribution of extra scalar mode, the propagator for the

massive theory does not match with that of Einstein-Hilbert theory. Hence, in FP the-

ory, the Newtonian potential becomes 4/3 times larger in the zero graviton mass limit.

This peculiarity of the FP theory where the action goes to the EH theory in the zero

91
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mass limit but the graviton propagator does not was first pointed out by van Dam and

Veltman [243] and independently by Zakharov [244] and this feature which arises in

most massive gravity theories [86, 245–247] is called the van Dam-Veltman-Zakharov

(vDVZ) discontinuity (however, in the nonlinear FP theory, a proper decoupling limit

will display the vDVZ discontinuity already in the action). Experimental constraints

on the graviton mass are listed in [248]. However, there are few nonlinear ghost free

massive gravity theories like dRGT, bimetric gravity, and multi gravity theory which

are discussed in [89, 90, 245, 249, 250]. In some of the massive gravity theories,

the massive graviton can serve as a dark matter and can also explain the accelerated

expansion of the universe.

In the following, we have considered a one vertex graviton process like gravita-

tional wave radiation for massive gravity theories instead of a graviton exchange dia-

gram. It is interesting to check whether the prediction of gravitational wave radiation

in standard GR theory matches that of massive gravity theories in mg → 0 limits and

a manifestation of vDVZ discontinuity can be looked at such type of phenomenon.

In the weak field limit, GR can be treated as a quantum field theory of spin-2

fields in the Minkowski spacetime [251–255]. Any classical gravity interaction like

Newtonian potential between massive bodies or bending of light by a massive body

can be described by a tree level graviton exchange diagram. The result of the tree

level diagrams should match the weak field classical GR results. The gravitational

wave radiation from a compact binary system is equivalent to a tree level one graviton

vertex process. The energy loss calculation for massless graviton radiation has been

performed in [168, 256] using Feynman diagram techniques and the results match with

the result of Peter and Mathews [177] who used the quadrupole formula of classical

GR.

The first indirect evidence of Gravitational Wave (GW) was obtained from the or-

bital period loss of the Hulse -Taylor binary system [257–259]. The orbital period loss

of the compact binary system confirms Einstein’s GR [177] to∼ 0.1% accuracy [260].

Following the Hulse-Taylor binary, there have been other precision measurements from

compact binary systems [179–181].

Compact binary systems can also radiate other ultra-light particles like axions and
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gauge bosons. The orbital frequency of binary systems is about Ω ∼ 10−19 eV and

particles with a mass lower than Ω can be radiated like the radiation of gravitational

waves. The Feynman diagram method is pedagogically simpler to generalize the cal-

culation of scalars and gauge bosons. Calculations of radiation of ultra-light scalars,

axions, and gauge bosons have been discussed with this method in Chapter 2, and

Chapter 3 and compared with experimental observations of compact binary systems

(neutron star-neutron star, neutron star-white dwarf binaries). This enables us to probe

the couplings of ultra-light dark matter [59, 64] which are predicted to be in the mass

range ∼ 10−21 − 10−22 eV to be probed with orbital period loss measurements.

In this chapter, we study massive graviton theories with a single graviton vertex

process namely graviton radiation from compact binary systems and we consider three

models (1) the Fierz-Pauli ghost free theory which has a vDVZ discontinuity in the

propagator, (2) a modification of Fierz-Pauli theory where there is a cancellation be-

tween the ghost and the scalar degrees so that there is no vDVZ discontinuity [261–

264] and (3) the Dvali-Gabadadze-Porrati (DGP) theory [88, 265, 266] which is a

ghost-free theory but the extra scalar degree of freedom gives rise to the vDVZ dis-

continuity. The mass term in DGP gravity is momentum dependent which serves the

purpose of suppressing the long range interactions in a virtual graviton exchange pro-

cess. For real gravitons the graviton mass is tachyonic. We compare our results with

orbital period loss observations and put limits on the graviton mass allowed in each of

these theories.

We also compare our results with the earlier classical field calculations in massive

gravity theories [262, 267–271]. There are several existing bounds on graviton mass

from the tests of Yukawa potential, modified dispersion relation, fifth force constraints,

etc. (see [248] for review). The Vainshtein screening at the non-linear scales of the

massive theories of gravity has already ruled out a range of mg in various systems. For

example, from the Lunar Laser Ranging experiments for the Earth-Moon system, the

graviton mass range 10−32 eV < mg < 10−20 eV is ruled out [272]. For any theory

containing the cubic Galileon in the decoupling limit (i.e. the Vainshtein screened

regime), from the Hulse-Taylor binary system the mass range 10−27 eV < mg < 10−24

eV is ruled out [270]. In this chapter, we investigate the complementary regime, i.e.
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the unscreened linear regime and, hence the mass ranges greater than the Vainshtein

threshold value for the compact binary systems.

This chapter is based on [273] and is organized as follows. In Section 4.2 we dis-

cuss the Fierz-Pauli theory and derive the formula for energy loss by graviton radiation

using the Feynman diagram method. In Section 4.3 we do the same study for the

modified FP theory without the vDVZ discontinuity and in Section 4.4 we study the

DGP theory. In Section 4.5, we compare the results with observations from the Hulse-

Taylor binary (PSR B1913+16) and pulsar white dwarf binary (PSR J1738+0333) and

put limits on the graviton mass for each of the massive gravity theories discussed. We

also discuss the limits of applicability of the perturbation theory from the Vainshtein

criterion and the corresponding limits on the range of graviton mass established from

binary systems. In Section 4.6, we summarise the results and discuss future direc-

tions. In Appendix C.1, we derive the energy loss of massless graviton radiation for

a one graviton vertex process using Feynman diagram technique in comparison with

massive gravity theory results discussed in this chapter.

4.2 Fierz-Pauli theory

The action of the Fierz-Pauli theory [87] is

S =

∫
d4x
[
− 1

2
(∂µhνρ)

2 +
1

2
(∂µh)2 − (∂µh)(∂νhµν ) + (∂µhνρ)(∂

νhµρ)

+
1

2
m2
g

(
hµνh

µν − h2
)

+
κ

2
hµνT

µν
]

=

∫
d4x

[
1

2
hµνEµναβhαβ +

1

2
m2
ghµν(η

µ(αηβ)ν − ηµνηαβ)hαβ +
κ

2
hµνT

µν

]
,(4.1)

where the operator Eµναβ is given in Eq.C.4. The mass term breaks the gauge symmetry

hµν → hµν − ∂µξν − ∂νξµ. We will assume that the energy-momentum is conserved,

∂µT
µν = 0.

The equation of motion from Eq.4.1 is(
�+m2

g

)
hµν−ηµν

(
�+m2

g

)
h−∂µ∂αhαν−∂ν∂αhαµ+ηµν∂

α∂βhαβ+∂µ∂νh = −κTµν .

(4.2)

Taking the divergence of Eq.4.2 we have

m2
g (∂µhµν − ∂νh) = 0. (4.3)
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These are 4 constraint equations that reduce the independent degrees of freedom of the

graviton from 10 to 6.

Using Eq.4.3 in Eq.4.2 we obtain

�hµν − ∂µ∂νh+m2
g (hµν − ηµνh) = −κTµν . (4.4)

Taking the trace of this equation we obtain the relation

h =
κ

3m2
g

T. (4.5)

Therefore trace h is not a propagating mode but is determined algebraically from the

trace of the stress tensor. This is the ghost mode as the kinetic term for h in Eq.4.2

appears with the wrong sign. Therefore in the Fierz-Pauli theory, the ghost mode does

not propagate. The number of independent propagating degrees of freedom of the

Fierz Pauli theory is therefore 5. These are 2 tensor modes, 2 three-vector degrees of

freedom that do not couple to the energy-momentum tensor and 1 scalar that couples

to the trace of the energy-momentum tensor.

The propagator in the FP theory is given by

[
Eµναβ +m2

g

(
ηµ(αηβ)ν − ηµνηαβ

)]
D

(m)
αβρσ(x− y) = δµ(ρδ

ν
σ)δ

4(x− y). (4.6)

Using Eq.4.6, we can find D(m)
αβρσ(k) by going to the momentum space (∂µ → ikµ).

Hence, the Pauli-Fierz massive graviton propagator becomes

D
(m)
αβρσ(k) =

1

−k2 +m2
g

(
1

2
(PαρPβσ + PασPβρ)−

1

3
PαβPρσ

)
, (4.7)

where

Pαβ ≡ ηαβ −
kαkβ
m2
g

. (4.8)

For a tree level graviton exchange process between two conserved currents, the

amplitude is

AFP =
κ2

4
TαβD

(m)
αβµνT

′µν . (4.9)

The propagator for the FP theory can be written as

D
(m)
µναβ(k) =

1

−k2 +m2
g

(
1

2
(ηαµηβν + ηανηβµ)− 1

3
ηαβηµν + (k−dependent terms)

)
.

(4.10)
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When the graviton is treated as a quantum field, the Feynman propagator is defined as

in the massless theory (Eq.C.16),

D
(m)
µναβ(x− y) = 〈0|T (ĥµν(x)ĥαβ(y))|0〉

=

∫
d4k

(2π)4

1

−k2 +m2
g + iε

eik(x−y)
∑
λ

ελµν(k)ε∗λαβ(k). (4.11)

Comparing Eq.4.10 and Eq.4.11 we can write the polarisation sum for the FP massive

gravity theory as∑
λ

ελµν(k)ε∗λαβ(k) =
1

2
(ηµαηνβ +ηναηµβ)− 1

3
ηαβηµν +(k−dependent terms). (4.12)

Hence, for a single graviton vertex process, the amplitude square will have the form

|M|2 =

(
κ2

4

)∑
λ

|ελµν(k)T µν(k′)|2 =

(
κ2

4

)∑
λ

ελµν(k)ε∗λαβ(k)T µν(k′)T ∗αβ(k′).

(4.13)

The conservation of the stress tensor demands kµT µν = kνT
µν = 0. Hence, for

tree level calculations one may drop the momentum dependent terms in Eq.4.10 and

Eq.4.12 for the calculations of diagrams with graviton emission from external legs as

we will do in this chapter.

We see that when the propagator ( Eq.C.11) and polarisation sum (Eq.C.17) of the

massless graviton theory are compared with the corresponding quantities Eq.4.6 and

Eq.4.12, the massive theory differs from the massless theory even in the mg → 0

limits. There is an extra contribution of (1/6)T ∗T ′ to the amplitude (Eq.4.9) in the FP

theory. This is the contribution of the scalar degree of freedom of gµν which does not

decouple in the mg → 0 limits.

Consider the Newtonian potential between two massive bodies. The amplitude for

the diagram with one graviton exchange in GR is

AGR =
κ2

4
T µνD

(0)
µναβ(k)T ′αβ . (4.14)

The stress tensor for massive bodies at rest in a given reference frame is of the form

T µν = (M1, 0, 0, 0) and T ′αβ = (M2, 0, 0, 0) and the massless graviton propagator in

GR is Eq.C.11. The potential derived from Eq.4.14 has the usual Newtonian form

VGR =
κ2

4

∫
d3k

(2π)3
eik·r

1

−k2

(
Tµν −

1

2
ηµνT

α
α

)
T ′µν
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=
GM1M2

r
, (4.15)

where κ =
√

32πG, and G stands for universal gravitational constant. On the other

hand in the Fierz-Pauli theory, the one graviton exchange amplitude Eq.4.9 is

AFP =
κ2

4

1

−k2 +m2
g

(
Tµν −

1

3
ηµνT

α
α

)
T ′µν , (4.16)

and the gravitational potential between two massive bodies in the FP theory is

VFP = =
κ2

4

∫
d3k

(2π)3
eik·r

1

−k2 +m2
g

(
Tµν −

1

3
ηµνT

α
α

)
T ′µν

=

(
4

3

)
GM1M2

r
e−mgr. (4.17)

The FP theory of massive gravity gives rise to a Yukawa type of potential. However,

in mg → 0 limits of FP massive gravity theory, the gravitational potential between two

massive bodies becomes 4/3 times larger than the usual Newtonian potential arising

from standard GR theory. This is ruled out from solar system tests of gravity [274]

even in the mg → 0 limits. We note here that the bending of light by massive bodies

is unaffected (in mg → 0 limits) as the stress tensor for photons T µν = (ω, 0, 0,−ω)

is traceless and the scattering amplitudes AFP (mg → 0) = AGR. Experimental ob-

servations [189] of the bending of radio waves by the Sun match GR to 1%. The two

observations together imply that the extra factor of (4/3) in the Newtonian potential of

FP theory cannot be absorbed by redefining G.

The fact that the FP theory action Eq.4.1 goes to the Einstein-Hilbert action Eq.C.3

in the mg → 0 limits while the propagator for the FP theory Eq.4.10 does not go to

the Einstein-Hilbert propagator Eq.C.11 is called the vDVZ discontinuity which was

pointed out by van Dam and Veltman [243] and independently by Zakharov [244].

It has been pointed out by Vainshtein [275, 276] that the linear FP theory breaks

down at distances much larger than the Schwarzschild radius Rs = 2GM below which

the linearised GR is no longer valid (κhµν ∼ 1 (below this distance)). The scalar

mode in FP theory becomes strongly coupled with decreasing mg and the minimum

radius from a massive body at which the linearised FP theory is valid is called the Vain-

shtein radius and is given by RV = (Rs/m
4
g)

1/5. In Section 4.5.1, we will discuss the

Vainshtein radius of different massive gravity theories in this chapter and also obtain
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Figure 4.1: Emission of graviton from a classical source.

the theoretical bound on the mass of the graviton for these theories considering two

compact binary systems.

4.2.1 Graviton radiation from compact binary systems in Fierz-

Pauli theory

We derive the graviton radiation from the compact binary systems using Feynman

diagram techniques. This is equivalent to a tree level one graviton vertex process.

The pictorial representation of graviton emission from a classical source is shown in

Fig.4.1. The classical graviton current T µν is determined from Kepler’s orbit and the

interaction vertex is
1

2
κhµνT

µν , where hµν is the graviton field and κ =
√

32πG. Here

we use linearized gravity formulation with an extension of non zero graviton mass

term Eq.4.1 to calculate the energy loss of a compact binary system due to graviton

emission.

From the interaction Lagrangian between the gravity and source
(1

2
κhµνT

µν
)

, one

can calculate the graviton emission rate as

dΓ =
κ2

4

∑
λ

|Tµν(k′)εµνλ (k)|22πδ(ω − ω′) d3k

(2π)3

1

2ω
, (4.18)
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where Tµν(k′) denotes the classical graviton current in the momentum space. We can

write Eq.4.18 by expanding the modulus squared as

dΓ =
κ2

8(2π)2

∑
λ

(
Tµν(k

′)T ∗αβ(k′)εµνλ (k)ε∗αβ(k)
)d3k

ω
δ(ω − ω′). (4.19)

Using the polarization sum of FP massive gravity theory Eq.4.12, the graviton emission

rate becomes

dΓ =
κ2

8(2π)2

∫ [
Tµν(k

′)T ∗αβ(k′)
][1

2
(ηµαηνβ + ηµβηνα − ηµνηαβ) +

1

6
ηµνηαβ

]
×

d3k

ω
δ(ω − ω′)

(4.20)

The extra (1/6)ηµνηαβ term compared to the standard GR case is the contribution of

the scalar mode in FP theory. Simplifying we obtain

dΓ =
κ2

8(2π)2

∫ [
|Tµν(k′)|2 −

1

3
|T µµ(k′)|2

]
δ(ω − ω′)ω

(
1−

m2
g

ω2

) 1
2
dωdΩk,(4.21)

where we have used d3k = k2dkdΩ and the dispersion relation k2 = (ω2 − m2
g).

Hence, using Eq.4.21 we can calculate the rate of energy loss due to massive graviton

radiation as

dE

dt
=

κ2

8(2π)2

∫ [
|Tµν(k′)|2 −

1

3
|T µµ(k′)|2

]
δ(ω − ω′)ω2

(
1−

m2
g

ω2

) 1
2
dωdΩk. (4.22)

The dispersion relation for the massive graviton is

|k|2 = ω2
(

1−
m2
g

ω2

)
. (4.23)

The direction of the massive graviton momentum is governed by the unit vector k̂i =
ki

ω

√
1− m2

g

ω2

. Using the fact of the conservation of stress tensor kµT µν = 0 and Eq.4.23,

we can write the T00 and Ti0 components of the stress tensor in terms of Tij as follows

T0j = −
√

1−
m2
g

ω2
k̂iTij, T00 =

(
1−

m2
g

ω2

)
k̂ik̂jTij. (4.24)

Therefore, we can write[
|Tµν(k′)|2 −

1

3
|T µµ(k′)|2

]
≡ Λij,lmT

ij∗T lm, (4.25)
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where,

Λij,lm =
[
δilδjm − 2

(
1−

m2
g

ω2

)
k̂j k̂mδil +

2

3

(
1−

m2
g

ω2

)2

k̂ik̂j k̂lk̂m −
1

3
δijδlm+

1

3

(
1−

m2
g

ω2

)(
δij k̂lk̂m + δlmk̂ik̂j

)]
.

(4.26)

Hence, we can write Eq.4.22 as

dE

dt
=

κ2

8(2π)2

∫
Λij,lmT

ij∗T lmδ(ω − ω′)ω2
(

1−
m2
g

ω2

) 1
2
dωdΩk. (4.27)

We can do the angular integrals using the relations C.26 and obtain∫
dΩkΛij,lmT

ij∗(ω′)T lm(ω′) =
8π

5

([
5

2
− 5

3

(
1−

m2
g

ω′2

)
+

2

9

(
1−

m2
g

ω′2

)2
]
×

T ijT ∗ij +

[
−5

6
+

5

9

(
1−

m2
g

ω′2

)
+

1

9

(
1−

m2
g

ω′2

)2
]
|T ii|2

)
,

(4.28)

Hence, the rate of energy loss becomes

dE

dt
=

8G

5

∫ [{
5

2
− 5

3

(
1−

m2
g

ω′2

)
+

2

9

(
1−

m2
g

ω′2

)2
}
T ijT ∗ij +

{
− 5

6
+

5

9

(
1−

m2
g

ω′2

)
+

1

9

(
1−

m2
g

ω′2

)2
}
|T ii|2

]
δ(ω − ω′)ω2

(
1−

m2
g

ω2

) 1
2
dω.

(4.29)

In the massless gravity theory the prefactors of T ijT ∗ij and |T ii|2 are 1 and −1/3 re-

spectively. Note that the mg → 0 limits of Eq.4.29 gives different prefactors. In the

massive graviton limit, all the five polarization components contribute to the energy

loss instead of two as in the massless limit. Therefore, from Eq.4.29, we will not ob-

tain the energy loss for massless limit by simply putting mg → 0. In AppendixC.1 we

obtain the energy loss due to massless graviton radiation from compact binary systems.

In massive gravity theories, the Newtonian gravitational potential takes a different form

than GR. As a result, the Keplerian orbits are also affected. For, FP theory the potential

energy for the binary system takes the form of Yukawa-type with 4/3 extra pre-factor

as discussed in Eq. (4.17) when there is no screening. However, for GW emission we

must have n0 = mg/Ω < 1 which implies that a < RV and therefore the Newtonian

potential for the orbital motion of the binary system is Vainshtein screened. There will
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be corrections in the Newtonian gravitational potential energy from the screened scalar

mode.

Concretely, to see the effects of the scalar polarisation in this a < RV limit one can

split the massive h into h̃ + ∂A/mg + ∂∂φ/m2
g such that h̃µν now enjoys a gauge in-

variance and carries only the two tensor modes, while φ carries the scalar mode (the

vector modeAµ can be consistently set to zero for this matter configuration). After h̃µν

and φ, the action in the decoupling limit is [277],

S =

∫
d4x

[
1

2
h̃µνEµναβh̃αβ −

1

2
φ�φ+

1

2Mpl

h̃µνT
µν +

1

2Mpl

φT + Lint

]
(4.30)

The precise interactions will depend on specific massive gravity theory. For FP theory,

there will be non-linearities like,

Lint ∼
[
α(�φ)3 + β�φφ,µνφ

,µν
]
, (4.31)

where α and β are model dependent coefficients. At r = a << RV , deep inside the

Vainshtein region, the equation of motion for φ gives,

φ

Mpl

∼ m2
g

√
Rsa3 ∼ n0

h

Mpl

from balancing Lint ∼ φ3/(Mplm
4
gr

6) against φT/Mpl ∼ φM/(Mplr
3). Here, a de-

notes the semi major axis of the binary orbit. So the scalar mediated fifth force is

suppressed by n0 relative to the Newtonian force.

However, we neglect the corrections as they are small and will not affect our order of

magnitude results and, therefore, we only consider the GW stress-energy tensor. Thus

our results are approximate and not valid for all orders of n0.

From Eq.C.47 we get[
Tij(ω

′)T ∗ji(ω
′)− 1

3
|T ii(ω′)|2

]
= 4µ2ω′

4
a4f(n, e). (4.32)

where n0 =
mg

Ω
, and

f(n, e) =
1

32n2

{
[Jn−2(ne)− 2eJn−1(ne) + 2eJn+1(ne) +

2

n
Jn(ne)− Jn+2(ne)]2+

(1− e2)[Jn−2(ne)− 2Jn(ne) + Jn+2(ne)]2 +
4

3n2
J2
n(ne)

}
.

(4.33)



102
Chapter 4. Massive Graviton (Spin 2):

A Simple extension of General Relativity, and its Searches

The final expression of dE/dt for massive theory can be written in the compact

form as

dE

dt
=

32G

5
µ2a4Ω6

∞∑
n=1

n6

√
1− n2

0

n2

[
f(n, e)

(
19

18
+

11

9

n2
0

n2
+

2

9

n4
0

n4

)
+

5J2
n(ne)

108n4
×

(
1− n2

0

n2

)2
]
.

(4.34)

We can split Eq.4.34 as

dE

dt
=

32G

5
µ2a4Ω6

∞∑
n=1

n6

√
1− n2

0

n2

[
f(n, e)

(
1 +

4

3

n2
0

n2
+

1

6

n4
0

n4

)
− 5J2

n(ne)

36n4

n2
0

n2
×

(
1− n2

0

4n2

)]
+

32G

5
µ2a4Ω6

∞∑
n=1

n6

√
1− n2

0

n2

[
1

18
f(n, e)

(
1− n2

0

n2

)2

+
5J2

n(ne)

108n4
×

(
1 +

n2
0

2n2

)2
]
,

(4.35)

where the first term in Eq.4.35 denotes the energy loss in the massive gravity theory

without vDVZ discontinuity (Eq.4.53) and the second term denotes the contribution

due to the scalar mode associated with
1

6
ηµνηαβ . We can also write Eq.4.35 to the

leading order in n2
0 as

dE

dt
' 32G

5
µ2a4Ω6

[ ∞∑
n=1

(19

18
n6f(n, e) +

5

108
n2J2

n(ne)
)

+ n2
0

∞∑
n=1

(25

36
n4f(n, e)−

25

216
J2
n(ne)

)]
+O(n4

0).

(4.36)

The rate of energy loss in the Keplerian orbit gives rise to the decrease in the orbital

period at a rate

Ṗb = −6πG−
3
2 (m1m2)−1(m1 +m2)−

1
2a

5
2

(dE
dt

)
. (4.37)

The energy loss or the power radiated from the binary system increases with in-

creasing the eccentricity as it is clear from Fig.4.2, since the energy loss in the first

term is proportional to n6f(n, e). The radiation is dominated by the higher harmonics

for e ≈ 1. The radiation has a peak at some particular value of n for a given eccentric

orbit.
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Figure 4.2: Variation of n6f(n, e) with n for different orbital eccentricity.

4.3 Massive gravity theory without vDVZ discontinuity

In the action of the linearized massive gravity FP theory Eq.4.1, the relative coeffi-

cient between the terms h2 and hµνhµν is −1 which results in no ghosts in the theory.

Generalising the theory beyond this point at which the relative coefficient between the

terms h2 and hµνhµν are different from −1 leads to the appearance of ghosts. There is

a special choice (−1/2) of the relative coefficient between the two terms for which the

ghost mode cancels the scalar degree of freedom and there is no vDVZ discontinuity

[263, 264]. Due to the modification of the FP action, the vDVZ discontinuity disap-

pears from the theory. Phenomenologically this theory has the generalisation of spin-2

graviton with two polarizations and the theory obeys the massive graviton dispersion

relation k2
0 = |~k|2 +m2

g. Consider the one parameter generalisation of the FP theory

S =

∫
d4x

[
1

2
hµνEµναβhαβ +

1

2
m2
ghµν

(
ηµ(αηβ)ν − (1− a)ηµνηαβ)

)
hαβ+

κ

2
hµνT

µν

]
,

(4.38)

where at a = 0 limits, the action Eq.4.38 reduces to that of FP theory Eq.4.1. In the

following, we solve the action to get the equation of motion for a massive graviton

field with a 6= 0. We will also see which values of a can solve the problem of vDVZ

discontinuity which is generic in massive gravity theories.
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The equation of motion from Eq.4.38 is(
�+m2

g

)
hµν − ηµν

(
�+m2

g(1− a)
)
h− ∂µ∂αhαν − ∂ν∂αhαµ + ηµν∂

α∂βhαβ+

∂µ∂νh = −κTµν .

(4.39)

The divergence of Eq.4.39 yields

m2
g (∂µhµν − (1− a)∂νh) = 0. (4.40)

These are 4 constraint equations that reduce the independent degrees of freedom of the

graviton from 10 to 6.

Using Eq.4.40 in Eq.4.39 we obtain

(�+m2
g)hµν − aηµν�h− (1− 2a)∂µ∂νh−m2

gηµν(1− a)h = −κTµν . (4.41)

Taking the trace of this equation we get

− 2a�h− (3m2
g − 4m2

ga)h = −κT. (4.42)

We see that the h is now a propagating field if a 6= 0. The kinetic term for h appears

with a minus sign so h is a ghost field. The homogenous equation for h can be written

as

�h−m2
hh = 0 (4.43)

with the ghost mass given by

m2
h =

m2
g

2

(
1 + 3

(
1− 1

a

))
. (4.44)

The propagator of the modified FP theory Eq.4.38 is given[
Eµναβ +m2

g

(
ηµ(αηβ)ν − ηµνηαβ(1− a)

)]
D

(a)
αβρσ(x− y) = δµ(ρδ

ν
σ)δ

4(x− y). (4.45)

Eq.4.45 can be inverted to obtain the propagator D(a)
αβρσ(k) in momentum space as

D
(a)
αβµν(k) =

1

−k2 +m2
g

(
1

2
(ηαµηβν + ηανηβµ)− 1

3
ηαβηµν

)
+

i

k2 +m2
h

×(
1

6
ηαβηµν

)
+ (k−dependent terms).

(4.46)

Hence, there are two types of contributions to the propagator, helicity-2 states of spin-2

massive gravitons (there are also helicity-1 and helicity-0 states) and a massive scalar
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with massmh. This part is identical to the propagator of the FP theory. In Eq.4.46 there

is an additional contribution from the ghost mode with the kinetic operator k2 with the

wrong sign and mass mh given in Eq.4.44. The remaining 3 vector degrees of freedom

do not couple to the energy momentum tensor and we ignore their contribution here.

Now for the choice of the parameter a = 1/2, the mass of the ghost mode Eq.4.44

becomes m2
h = −m2

g. The ghost mode for a = 1/2 becomes tachyonic. Substituting

m2
h = −m2

g in Eq.4.46 we see that the propagator becomes

D
(1/2)
αβµν(k) =

1

−k2 +m2
g

(
1

2
(ηαµηβν + ηανηβµ)− 1

2
ηαβηµν

)
+ (k−dependent terms).

(4.47)

The ghost term with the tachyonic mass cancels the contribution from the scalar degree

of freedom. Hence, we are left with the same tensor structure of the propagator as in

the case of massless graviton Eq.C.11 but the dispersion relation is the same as for

massive graviton k2
0 = |~k|2 + m2

g. In the massless graviton limit, the polarization sum

Eq.4.47 for the modified FP theory takes the same form as for massless theory Eq.C.17

and there is no vDVZ discontinuity.

In modified FP theory with no vDVZ discontinuity, the gravitational potential be-

tween two massive bodies take the Yukawa behaviour

V (1/2)(r) =
GM1M2

r
e−mgr. (4.48)

The extra 4/3 multiplicative factor which was there in the FP theory (Eq.4.17) is ab-

sent in modified FP theory where the scalar mode cancels the ghost contribution in

the propagator. The Yukawa corrections to the 1/r potential will give rise to a perihe-

lion precession in planetary orbits [66]. Constraints on the Yukawa potential between

compact binary systems give bounds in the mass of the exchanged particle that has

been discussed in [65, 66]. The long range Yukawa potential caused by axions can

also affect the gravitational light bending and Shapiro time delay which is discussed in

[63].

The modified FP theory with no vDVZ discontinuity is phenomenologically the

most acceptable. The classical calculation of energy loss due to massive graviton ra-

diation from the compact binary system in the modified FP theory was done by Finn

and Sutton [262]. Here we calculate the gravitational radiation due to massive graviton
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from the Feynman diagram technique which is equivalent to a massive graviton emis-

sion from a one graviton vertex process. We find that our result matches the result of

Finn and Sutton [262] at the leading order.

The direct detection of the gravitational wave was first confirmed from the gravita-

tional wave event GW150914 by LIGO and Virgo which gives the upper bound on the

mass of the graviton mg < 1.2× 10−22 eV.

4.3.1 Graviton radiation in massive gravity theory without vDVZ

discontinuity

In the limit, a < RV , the Keplerian orbits are also Vainshtein screened similar to

FP theory as discussed before and there will be corrections at O(n0) in Newtonian

potential. Therefore, we consider GR stress-tensor in this case as well.

Following Appendix C.1, we calculate the rate of energy loss due to the massive

graviton radiation as

dE

dt
=

κ2

8(2π)2

∫ [
|Tµν(k′)|2 −

1

2
|T µµ(k′)|2

]
δ(ω − ω′)ω2

(
1−

m2
g

ω2

) 1
2
dωdΩk(4.49)

=
κ2

8(2π)2

∫
Λ̃ij,lmT

ij∗T lmδ(ω − ω′)ω2
(

1−
m2
g

ω2

) 1
2
dωdΩk, (4.50)

where

Λ̃ij,lm =
[
δilδjm − 2

(
1−

m2
g

ω2

)
k̂j k̂mδil +

1

2

(
1−

m2
g

ω2

)2

k̂ik̂j k̂lk̂m −
1

2
δijδlm+

1

2

(
1−

m2
g

ω2

)(
δij k̂lk̂m + δlmk̂ik̂j

)]
.

(4.51)

After computing the angular integration, we obtain the rate of energy loss as

dE

dt
=

8G

5

∫ [{
5

2
− 5

3

(
1−

m2
g

ω′2

)
+

1

6

(
1−

m2
g

ω′2

)2
}
T ijT ∗ij+

{
− 5

4
+

5

6

(
1−

m2
g

ω′2

)
+

1

12

(
1−

m2
g

ω′2

)2
}
|T ii|2

]
δ(ω − ω′)ω2

(
1−

m2
g

ω2

) 1
2
dω.

(4.52)
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Simplifying Eq.4.52 we get

dE

dt
=

32G

5
µ2a4Ω6

∞∑
n=1

n6

√
1− n2

0

n2

[
f(n, e)

(
1 +

4

3

n2
0

n2
+

1

6

n4
0

n4

)
− 5J2

n(ne)

36n4

n2
0

n2
×

(
1− n2

0

4n2

)]
.

(4.53)

To the leading order in n2
0, we can express Eq.4.53 as

dE

dt
' 32G

5
µ2a4Ω6

[ ∞∑
n=1

n6f(n, e) + n2
0

∞∑
n=1

(5

6
n4f(n, e)− 5

36
J2
n(ne)

)]
+O(n4

0).

(4.54)

We note that the expression reduces to that of GR in the limit n0 = 0. Thus there

is no vDVZ discontinuity. To the leading order in n2
0 this agrees with the result of the

classical calculation of Finn and Sutton [262].

4.4 Dvali-Gabadadze-Porrati (DGP) theory

The nonlinear GR theory obeys diffeomorphism invariance. However, in massive grav-

ity theories, this symmetry is broken. In FP theory, if the graviton is expanded around

curved spacetime, a ghost degree of freedom appears [278]. To get a consistent ghost

free massive gravity theory, one can go to a higher dimension. One such massive

gravity theory in higher dimensions using a braneworld model framework is the DGP

theory [88, 265, 266, 279]. In the higher dimensions, the massless theory has a general

covariance symmetry. The number of polarisation states of the massless graviton in

5-dimensions is 5. When the extra dimension compactifed, the number of degrees of

freedom for a massive graviton in 4-d remains 5 and there is no (Boulware Deser) BD

ghost. One advantage of the DGP theory is that it can account for the cosmological

constant [280]. The mass of graviton is momentum dependent so that one can modify

the infrared theory (at cosmological scales) while retaining Newtonian theory at solar

system scales. However, the scalar degree of freedom still remains in the theory which

contributes to the vDVZ discontinuity that creates problems for the phenomenological

study of DGP theory [279]. In the following, we calculate the rate of energy loss due

to massive graviton radiation in DGP theory.
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4.4.1 Graviton radiation in DGP theory

In the five dimensional DGP theory, the matter field is localized in a four dimensional

braneworld that leads to an induced curvature term on the brane. M5 and Mpl de-

note the Planck scales of the five dimensional DGP theory and the four dimensional

braneworld respectively. The five dimensional DGP massive gravity theory action

[88, 265, 266] with the matter field localized in the four dimensional braneworld at

y = 0 is

S ⊃
∫
d4xdy

(M3
5

4

√
−(5)g(5)R + δ(y)

[√
−g

M2
pl

2
R[g] + Lm(g, ψi)

])
, (4.55)

where ψi denotes the matter field with the energy stress tensor Tµν in the braneworld.

The modified linearized Einstein equation on the y = 0 brane is [86]

(�hµν − ∂µ∂νh)−m0

√
−� (hµν − hηµν) = −κ

2
Tµν(x), (4.56)

wherem0 =
M3

5

M2
pl

,M2
pl = 1/8πG = 4/κ2. Here, the Fierz-Pauli mass term (hµν−hηµν)

appears naturally from the higher dimensional DGP theory. This corresponds to the

linearized massive gravity with a scale-dependent effective mass m2
g(�) = m0

√
−�.

The propagator is

D
(5)
αβµν(k) =

i

(−ω2 + |k|2) +m0(ω2 − |k|2)1/2

(
1

2
(ηαµηβν + ηανηβµ)− 1

3
ηαβηµν

)
.

(4.57)

The terms in the brackets represent the polarization sum which is identical to that of

the FP theory (Eq.4.12). In the m0 → 0 limits, the DGP propagator does not go to the

massless form (Eq.C.11) and the DGP theory also has the vDVZ discontinuity.

The dispersion relation corresponding to real gravitons in the DGP model is given

by the pole of the propagator (Eq.4.57),

ω2 = |k|2 −m2
0, (4.58)

where |k| is the magnitude of the propagation vector. In the DGP model, the graviton

has a tachyonic mass.

Following the same steps for FP theory, we write down the rate of energy loss in

DGP theory due to massive graviton radiation. All the expressions in DGP theory
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differ from those of the FP theory by replacing m2
g → −m2

0 and ñ2
0 = m2

0/Ω
2 = −n2

0,

i.e.

dE

dt
=

κ2

8(2π)2

∫ [
|Tµν(k′)|2 −

1

3
|T µµ(k′)|2

]
δ(ω − ω′)ω2

(
1 +

m2
0

ω2

) 1
2
dωdΩk. (4.59)

The components of the stress tensor in x− y plane is given in Eq.C.47. The direc-

tion of the massive graviton momnetum in the DGP theory is k̂i =
ki

ω

√
1 +

m2
0

ω2

. The

other components of Tµν can be obtained by using kµT µν = 0 which yields,

T0j = −
√

1 +
m2

0

ω2
k̂iTij, T00 =

(
1 +

m2
0

ω2

)
k̂ik̂jTij. (4.60)

Hence, in terms of the projection operator Λ̃ij,lm, the term in the third bracket of

Eq.4.59 can be written as[
|Tµν(k′)|2 −

1

3
|T µµ(k′)|2

]
= Λ̃ij,lmT

ij∗T lm, (4.61)

where

Λ̃ij,lm =
[
δilδjm − 2

(
1 +

m2
0

ω2

)
k̂j k̂mδil +

2

3

(
1 +

m2
0

ω2

)2

k̂ik̂j k̂lk̂m −
1

3
δijδlm+

1

3

(
1 +

m2
0

ω2

)(
δij k̂lk̂m + δlmk̂ik̂j

)]
.

(4.62)

In DGP theory, there will be corrections to the Newtonian gravitational potential at

O(n0) in the a < RV region where Vainshtein screening is active. We can arrive at

this fact by following the similar analysis as described in the FP theory. However, in

the action Eq.4.30, there will be non-linearities like [270],

Lint ∼
1

Mplm2
g

(∂φ)2�φ. (4.63)

At r = a << RV , deep inside the Vainshtein region, the equation of motion for φ

gives,

φ

Mpl

∼ mg

√
a3

Rs

Rs

a
∼ n0

h

Mpl

(4.64)

from balancing Lint ∼ φ3/(Mplm
2
gr

4) against φT/Mpl ∼ φM/(Mplr
3), and so the

fifth force mediated by the scalar polarisation is only suppressed by n0 relative to the

Newtonian force. As before we neglect the correction and consider the GR stress-

energy tensor in the calculation of graviton emission rate.
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Finally, we can write the rate of energy loss due to the massive graviton radiation

in the DGP theory as

dE

dt
=

32G

5
µ2a4Ω6

∞∑
n=1

n6

√
1 +

ñ2
0

n2

[
f(n, e)

(
19

18
− 11

9

ñ2
0

n2
+

2

9

ñ4
0

n4

)
+

5J2
n(ne)

108n4

(
1 +

ñ2
0

n2

)2
]
.

(4.65)

We can write Eq.4.65 to the leading order in n2
0 as

dE

dt
' 32G

5
µ2a4Ω6

[ ∞∑
n=1

(19

18
n6f(n, e) +

5

108
n2J2

n(ne)
)
−

ñ2
0

∞∑
n=1

(25

36
n4f(n, e)− 25

216
J2
n(ne)

)]
+O(ñ4

0).

(4.66)

4.5 Constraints from observations

Table 4.1: Summary of the measured orbital parameters and the orbital period deriva-

tive values from observation and GR for PSR B1913+16 [260] and PSR J1738+0333

[181]. The uncertainties in the last digits are quoted in the parenthesis.

Parameters PSR B1913+16 PSR J1738+0333

Pulsar mass m1 (solar masses) 1.438± 0.001 1.46+0.06
−0.05

Companion mass m2 (solar masses) 1.390± 0.001 0.181+0.008
−0.007

Eccentricity e 0.6171340(4) (3.4± 1.1)× 10−7

Orbital period Pb (d) 0.322997448918(3) 0.3547907398724(13)

Intrinsic Ṗb(10−12 ss−1) −2.398± 0.004 (−25.9± 3.2)× 10−3

GR Ṗb(10−12 ss−1) −2.40263± 0.00005 −27.7+1.5
−1.9 × 10−3

In this section, we obtain bounds on the graviton mass for three above mentioned

massive gravity theories from the orbital period loss of compact binary systems such as

Hulse -Taylor binary system (PSR B1913+16) and a pulsar white-dwarf binary system

(PSR J1738+0333). The orbital parameters and the orbital period derivative values

from observation and GR for the two compact binary systems are given in Table 4.1.

From the field theoretic approach of calculating the one graviton vertex process, we

derive the rate of energy loss due to massless graviton radiation for a compact binary
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Figure 4.3: Variation of F (e) with the eccentricity.

system Eq. C.51 that agrees with the Peters Mathews formula [177]. The variation of

F (e) = (1− e2)−7/2
(

1 +
73

24
e2 +

37

96
e4
)

with the eccentricity is shown in Fig.4.3. The

energy loss due to the GR value is largely enhanced by the eccentricity enhancement

factor F (e). Its value is always greater than one for non zero eccentric orbits. Large

eccentric Keplerian orbit has strong speed variation as it moves from periastron to

apiastron which leads to produce a large amount of radiation in higher harmonics of

orbital frequency. In the following, we compare three massive theories of gravity and

find bounds on the graviton mass for PSR B1913+16 and PSR J1738+0333.

4.5.1 Vainshtein radius and limits of linear theory

For calculating the graviton emission, we have used the leading order perturbation of

the metric. We can use the perturbation theory in linearised Einstein’s gravity as long

as κhµν � 1. This implies that perturbation theory breaks down at a radius smaller

than the Schwarzschild radius Rs = 2GM of the source. If the Fierz-Pauli and no-

vDVZ theories are effective field theories describing gravity, with a non-linearly re-

alised diffeomorphism symmetry, then there will inevitably be interactions below the

scale Λ5 ∼ (m4
gMpl)

1/5 and that will set the Vainshtein limit of this linearised mas-

sive gravity theories [277]. Therefore, the smallest radius until which the perturbation

theory can be applied is the Vainshtein radius [275] (RV ) and that is given by

RV =

(
Rs

m4
g

)1/5

. (4.67)
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The Vainshtein radius is much larger than the Schwarzschild radiusRs and perturbative

calculations of the Fierz-Pauli theory are valid in regions with r > RV away from the

source. In our application of massive graviton radiation from compact binary systems,

classically the gravitational field is evaluated at the radiation zone such that RV < λ

(where λ ∼ π/Ω is the wavelength of the gravitational waves radiated). Hence, in the

FP theory, we must have

λ ∼ πΩ−1 > RV =

(
Rs

m4
g

)1/5

. (4.68)

We obtain a lower bound on the graviton mass from the Vainshtein limit above which

the perturbative calculations are valid, given by

mg >
Ω5/4

π5/4
(2GM)1/4 (4.69)

Hence, using the numbers as shown in Table.4.1 and Vainshtein limit for FP the-

ory, we obtain theoretical lower bounds on the mass of the graviton as mg > 3.06 ×

10−22 eV for PSR B1913+16 and mg > 2.456× 10−22 eV for PSR J1738+0333.

The Vainshtein radius for DGP theory is given by [88, 276]

RV =

(
Rs

m2
g

)1/3

. (4.70)

Again we must have λ ∼ πΩ−1 > RV which yields a lower bound on the graviton

mass in the DGP theory above which the perturbative calculation is valid, given by

mg >
Ω3/2

π3/2
(2GM)1/2 . (4.71)

This number is 7.84 × 10−24 eV for PSR B1913+16 and 1.406 × 10−24 eV for PSR

J1738+0333.

4.5.2 Constraints from observation for FP Theory

The massive graviton has five states of polarization and of these the scalar and the

tensor modes couple to the energy momentum tensor. These modes contribute to the

energy loss of the compact binary systems for massive theories. In the massless limit

mg → 0 of the FP theory, the scalar mode contributes to the vDVZ discontinuity.

In Fig.4.4(a) and Fig.4.4(b), we show the variation of the orbital period loss with the
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Figure 4.4: In the upper panel, we have shown (a) the Variation of orbital period loss

with graviton mass and (b) comparing the theoretical value for the orbital period loss

with observation for PSR B1913+16 in FP theory. In the lower panel (c) and (d) we

have shown the same variation as above for PSR J1738+0333.



114
Chapter 4. Massive Graviton (Spin 2):

A Simple extension of General Relativity, and its Searches

graviton mass for PSR B1913+16. Similarly, in Fig.4.4(c) and Fig.4.4(d) we obtain

the same variation for PSR J1738+0333. The dotted lines denote the corresponding

Vainshtein limit for the two binary systems. The red line denotes the analytical result

of orbital period loss in FP theory as obtained above whereas the blue line denotes

the corresponding GR value. The grey band denotes the allowed region of the orbital

period loss from observation.

In the region mg ∼ Ω, the phase space of graviton momentum shrinks and the

energy loss falls with increasing mg. There is a region where the theoretical red curve

goes through the observational grey band as shown in Fig.4.4(b) and Fig.4.4(d) where

the variation of the time derivative of the orbital period is shown with the observational

uncertainty for the two compact binary systems.

The range of the graviton mass corresponds to mg ∈ (6.88 − 6.96) × 10−19 eV

(Fig.4.4(b)) for PSR B1913+16 andmg ∈ (2.31−2.48)×10−19 eV for PSR J1738+0333.

There is no common mass range in the overlap region where the red line passes through

the grey band for the two compact binary systems for any value of mg.

Therefore, for the FP theory the limit on graviton mass comes from the theoretical

Vainshtein limit mg > 3.06× 10−22 eV.

4.5.3 Constraints from observation for DGP Theory

In DGP theory, the massless limit m0 → 0 of the DGP theory does not simply give

the massless result and here also one encounters vDVZ discontinuity due to the con-

tribution of the scalar gravitons. In Fig.4.5(a) and Fig.4.5(b), we show the variation of

the orbital period loss with m0 for PSR B1913+16 and in Fig.4.5(c) and Fig.4.5(d) we

obtain the same for PSR J1738+0333. The dotted lines denote the corresponding the-

oretical Vainshtein limit for the two binary systems which are mg > 7.84 × 10−24 eV

for PSR B1913+16 and mg > 1.406× 10−24 eV for PSR J1738+0333.

As in FP theory, the DGP theory also has some regions where the theoretical

prediction crosses the observed band value which corresponds to the graviton mass

m0 ∈ (2.45 − 2.47) × 10−19 eV (Fig.4.4(b)) for PSR B1913+16 and m0 ∈ (0.31 −

1.41) × 10−19 eV for PSR J1738+0333. Since for DGP theory, there is no common

mass range in the overlap region for the two compact binary systems, we obtain the
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Figure 4.5: In the upper panel, we have shown (a) the Variation of orbital period loss

with graviton mass and (b) comparing the theoretical value for the orbital period loss

with observation for PSR B1913+16 in DGP theory. In the lower panel (c) and (d) we

have shown the same variation as above for PSR J1738+0333.
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graviton mass bound from the Vainshtein limit as m0 > 7.84× 10−24 eV.

4.5.4 No vDVZ discontinuity theory
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(c) Comparing the theoretical value for the

orbital period loss with observation for PSR

B1913+16 in massive gravity theory without

vDVZ discontinuity for lower graviton mass

Figure 4.6: We have plotted the variation of orbital period loss with graviton mass

for PSR B1913+16 in massive gravity theory without vDVZ discontinuity in (a). In

(b) and (c) we have compared the theoretical value for the orbital period loss with

observation for PSR B1913+16 in massive gravity theory without vDVZ discontinuity

for higher graviton mass and lower graviton mass respectively.

Section 4.3 is the modified FP theory without vDVZ discontinuity at linear order. If

one tunes the Fierz-Pauli term (hµνh
µν−h2) to (hµνh

µν− 1

2
h2) then at the linear order

the ghost term with tachyonic mass cancels the scalar contribution to the propagator.

Hence, we are left with the tensor structure of the propagator similar to the massless
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Figure 4.7: We have plotted the variation of orbital period loss with graviton mass for

PSR J1738+0333 in massive gravity theory without vDVZ discontinuity in (a). In (b)

we have compared the theoretical value for the orbital period loss with observation for

PSR J1738+0333 in massive gravity theory without vDVZ discontinuity.

graviton but having dispersion relation to that of a massive graviton. Due to the can-

cellation of scalar with the ghost, there is no vDVZ discontinuity in the n0 → 0 limits.

All our calculations in this chapter are in linear order. However, if we include the

non-linear terms in the action, there are interactions that will not eliminate the vDVZ

discontinuity and the ghost will remain in the theory.

In modified FP theory without vDVZ discontinuity, the scalar mode is cancelled

by the ghost mode. However, there will be a bound on graviton mass from Vainshtein

limit in the theory similar to FP theory as mentioned in Eq. (4.67).

In Fig.4.6 and Fig.4.7, we show the variation of orbital period loss with the graviton

mass for the two compact binary systems. It is clear that in the low graviton mass limit,

the orbital period loss for this theory and massless theory become degenerate.

There exist two regions where the theoretical prediction agrees with the observa-

tional band. For PSR B1913+16 this corresponds to the graviton mass mg ∈ (6.32 −

6.50) × 10−19 eV and mg < 1.81 × 10−20 eV (Fig.4.6). For PSR J1738+0333,

the corresponding graviton mass range are mg ∈ (2.18 − 2.34) × 10−19 eV and

mg < 5.29× 10−20 eV (Fig.4.7). Here, for the two compact binary systems, we find a

common graviton mass region where there is an agreement with both observations and
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the bound on graviton mass is mg < 1.81× 10−20 eV.

All the bounds derived in this chapter are at 68% C.L.

4.6 Discussions

In this chapter, we obtain bounds on the graviton mass for three massive gravity theo-

ries from binary pulsar observations. We show that the bounds on graviton mass from

binary observations are highly model dependent as the predictions for the gravitational

luminosity for different graviton mass models have significant differences.

In massive gravity theories like FP and DGP with an extra propagating scalar, the

contribution of the extra scalar to the energy loss is of the same order as that of the

tensor gravitational waves and the region mg < Ω is ruled out from orbital period

loss observations. As the graviton mass approaches and becomes larger than Ω the

energy radiated drops with increasing graviton mass. For each compact binary sys-

tem, there is therefore a range of graviton mass where the theoretical predictions are

within observational limits. We found that the allowed ranges of graviton mass from

PSR B1913+16 and PSR J1738+0333 do not have any overlap. Therefore, combining

observations from the two compact binary systems, we see that no range of graviton

mass is consistent with both binary systems observations. In these theories, the linear

order calculation breaks down below the Vainshtein radius.

The bound on graviton mass from the Vainshtein limit is a theoretical bound.

Whereas, we describe an independent method of obtaining the graviton mass bound

from the observation of orbital period loss of binary systems.

In this chapter, we have chosen two binary systems PSR B1913+16 and PSR

J1738+0333 and computed the orbital period loss for the three massive gravity the-

ories viz, FP theory, DGP theory and modified FP theory. Compared the observational

data, we do not find any overlapping region of graviton mass for FP and DGP theory.

For example, in DGP theory, the allowed ranges of mass are (2.45− 2.47)× 10−19 eV

for PSR B1913+16 and (0.31 − 1.41) × 10−19 eV for PSR J1738+0333. So, there is

no common allowed mass range valid for both the compact binary systems and we can

not give a universal graviton mass from the observation in DGP theory. Similarly, it is



4.6. Discussions 119

the case for FP theory as well. Therefore, we conclude that for FP and DGP theory, we

obtain the stronger bound on the graviton mass from the Vainshtein limit.

Before comparing the observational data with our calculation, we cannot tell whether

the Vainshtein limit puts a stronger limit on graviton mass or not. Although for mod-

ified FP theory with no vDVZ discontinuity, we found a common mass region for the

two binary systems and obtain a bound on the graviton mass by comparing the obser-

vational data with our analytical calculations.

To summarise, observations from PSR B1913+16 and PSR J1738+0333 rule out

all values of graviton mass and from the Vainshtein limit we can put the lower bounds

mg > 3.06 × 10−22 eV for the FP theory and m0 > 7.84 × 10−24 eV for the DGP

theory. For the No-vDVZ discontinuity theory, the upper bound from combined PSR

B1913+16 and PSR J1738+0333 data is mg < 1.81× 10−20 eV. All bounds quoted in

this chapter are with 68% C.L [273].

In [262] the authors used the method of a classical multipole expansion of the

metric perturbation and kept the term in the expression of the energy loss up toO(m2
g).

However, in our chapter, we use the effective field theoretic approach where we treat

the graviton as the quantum field and the binary stars as its classical source and we

compute the graviton emission rate for a one graviton vertex process. The graviton

emission is not possible for Ω < mg and this is taken care of by the factor (1 −

m2
g/Ω

2)1/2 in the expression of the rate of energy loss.

In our study the hierarchy of scales is

a2

λ2
∼ Rs

a
<<

a2

R2
V

<< 1 <<
RV

RS

, (4.72)

where Rs ∼ 2M/M2
pl and RV are the usual Schwarzschild and Vainshtein radii around

a compact object of mass M , a is the orbital separation of the binary, and λ is the

wavelength of the emitted GW radiation. The condition for graviton emission Ω > mg

implies that a < RV . This corresponds to a region of space screened by Vainshtein

mechanism. Therefore, we can use the Keplerian orbit in GR in their evaluation of

stress-energy tensor Tµν . Thus we neglect the corrections in the gravitational potential

energy from the screened scalar mode, which are of O(n0) for FP and DGP theo-

ries. Therefore, our results are approximate and not valid for all orders of n0. These

corrections in the Newtonian gravitational potential might change some order unity nu-
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merical factors but the order of magnitude of bounds on the graviton mass is expected

to be the same as we have obtained.

In [270], the objective of the paper is different from ours. In this paper, the de-

coupling limit of the DGP theory has been considered, i.e. Mpl → ∞ and mg → 0

keeping m2
gMpl fixed, where the helicity-2 modes are decoupled from the helicity-0

mode. However, we keep mg finite. The key difference in our analysis is that we

explore the complementary regime ΩRV << 1, so that the radiation is described by

the linear theory whereas the paper [270] uses the opposite ΩRV >> 1 so that the

radiation is Vainshtein screened. Also, there the authors used the classical multipole

expansion method to obtain monopole, dipole, and quadrupole corrections at the lead-

ing and subleading orders. Therefore, our field theoretic method as mentioned earlier

is quite different from theirs.

It should be noted that the upper bound on the graviton mass depends on the length

scale of the observation. In fact, for DGP theory the mass of the graviton is scale

dependent. Naturally, different observation will give different bound on the mass of the

graviton. The bounds on the graviton mass mentioned in [248] and [271] are obtained

for cubic galileon model which was originally derived from the decoupling limit of

the DGP model. However, in our work, we have considered the actions for FP, DGP

and modified FP theories from the first principle and calculate the energy loss from

the binary system using Feynman diagram techniques at the tree level. The bounds

on graviton mass that we have obtained are weaker than that for the cubic galileon

models however our results are comparable with the LIGO bound for direct detection

of gravitational waves.

Moreover, the calculations for energy loss that we have derived from Feynman

diagram techniques are novel and provide interesting results.

There are other massive gravity theories like Lorentz violating gravitational mass

[281–283] and more general Lorentz violating graviton bilinear terms [284, 285] which

we have not covered in the Lorentz covariant calculation in this chapter. We will

address these theories in future work.

This diagrammatic method can also be used for computing the wave-form of grav-

itational waves observed in direct detection experiments like LIGO and VIRGO [286,
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287] for massive gravity theories. The gravitational wave from the extreme mass ratio

mergers in massive graviton theories can also constrain the mass of the graviton [288].

It will be interesting to test massive gravity theory predictions [268, 269] with direct

observations and in particular to constrain the scalar and vector modes of gravity from

direct detection [289].





Chapter 5

Sterile Neutrino (Spin 1/2):

Dark Large Mixing Angle Solution

and Neutrinoless Double Beta Decay

5.1 Introduction

The standard three flavour neutrino oscillation picture has been corroborated by the

data from decades of experimentation on neutrinos. However some exceptions to this

scenario have been reported over the years, calling for the necessity of transcending

beyond the three neutrino paradigm. The first among these signatures came from the

LSND ν̄µ → ν̄e oscillation data [290], which could be explained by invoking additional

neutrino states (sterile) that mix with active neutrinos [291–295]. This result was sup-

ported by the hints obtained : from the appearance data of ν̄µ → ν̄e and νµ → νe

at MiniBooNE experiment [296–300], from the reactor neutrino anomaly [301, 302]

where a deficit in the ν̄e reactor flux has been reported by short baseline(SBL) oscil-

lation data and also from the missing neutrino flux at GALLEX [303–305] and SAGE

[306] source experiments. However, accelerator experiments like KARMEN [307],

ICARUS [308], NOMAD [309] have not found a positive signal. There are also disap-

pearance experiments using reactors and accelerators as neutrino sources which have

not reported any evidences of sterile neutrino [310]. The allowed region from the

global analysis including all these data have been obtained in [311, 312]. Recently,

123
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analysis from MicrobooNE suggests no low energy excess of νe events [313–316].

However, their studies are model dependent and thus presence of light sterile neutrino

is not completely ruled out [317, 318]. Several new experiments are planned to test the

sterile neutrino hypothesis [319].

The basic question whether the neutrinos are Dirac particles or lepton number vi-

olating Majorana particles (for which particles and antiparticles are the same) remains

as a major puzzle in neutrino physics. Since oscillation experiments do not help us

to determine the nature of the neutrinos, one has to rely on studying the processes in

which total lepton number is violated. In this regard, neutrino-less double beta decay

(0νββ) process ( XA
Z → XA

Z+2 + 2e−) stands as a promising probe to establish

the Majorana nature of neutrinos. 0νββ decay has not been observed so far and there

are several ongoing and upcoming experiments that search for this signal. The best

limit on the half life of 0νββ decay is T1/2 > 1.07 × 1026 years coming from the

KamLAND-Zen experiment using 136Xe [44]. This gives a bound on the effective

Majorana mass (mββ) as,

mββ ≤ 0.061− 0.165 eV.

The range corresponds to the uncertainty in nuclear matrix elements (NME).

This process is suppressed by the proportionality of the transition amplitude to the

effective Majorana mass mββ , which in turn depends on the lowest neutrino mass,

neutrino mass ordering, mixing angles and Majorana phases. However, the predic-

tions for mββ are known to change substantially in a 3+1 mixing scenario when an

additional sterile neutrino is introduced [320–329]. It is also well known that in the

presence of non-standard interactions (NSI), solar neutrino data admits a new solution

for θ12 > 45◦, known as the dark large mixing angle (DLMA) solution [32–34]. This

is nearly a degenerate solution with ∆m2
21 ' 7.5 × 10−5 eV2 and sin2 θ12 ' 0.7. The

DLMA parameter space was shown to be severely constrained from neutrino-nucleus

scattering data from COHERENT experiment [35]. However the bound depends on

the mass of the light mediator [36]. In this context, the effect of the DLMA solution on

0νββ for the standard three generation picture has been studied recently in ref. [330]

where it was shown that the prediction for mββ remains unchanged for the inverted

mass scheme whereas for normal hierarchy, it becomes higher for the Dark-LMA pa-



5.1. Introduction 125

rameter space and shifts to the “desert region” between the two. This region can be

tested in the next generation experiments.

In this chapter, we have studied the implications of the DLMA solution to the solar

neutrino problem for 0νββ in the presence of a fourth sterile neutrino as introduced to

explain the LSND/MiniBooNE results (see references [310, 331] for recent reviews on

the status of eV scale sterile neutrinos.). In this case, the effective Majorana mass mββ

governing 0νββ depends on the third mass-squared difference ∆m2
LSND, the mixing

angle θ14 and an additional Majorana phase γ/2, in addition to the two mass squared

differences ∆m2
21 and ∆m2

31, two mixing angles θ12 (degenerate LMA or DLMA so-

lutions) and θ13 and the Majorana phases α/2 and β/2. Depending on the values of

these parameters, there can be enhancement or cancellation of the 0νββ decay rate.

It has to be noted that the sum of masses of all the neutrino species is highly

constrained from cosmology, which does not allow an eV scale sterile neutrino (see

[331] for a recent review on the status of light sterile neutrinos and the cosmological

bounds). To avoid the cosmological constraints, one can invoke “secret neutrino in-

teractions” which can dynamically suppress the production of sterile neutrinos in the

early universe by finite temperature effects [332]. One may also avoid the cosmologi-

cal constraints by assuming a very low reheating temperature (∼MeV ) after inflation

[333–335].

The rest of the chapter is organized as follows. In the next section, we discuss the

DLMA solution and the MSW resonance condition in the presence of a fourth sterile

neutrino. In section-5.3, we discuss the implications of the sterile neutrino and the

DLMA solution for 0νββ process. The discovery sensitivity of 0νββ process in the

the new allowed parameter space is discussed in section-5.4 in the context of 136Xe

based experiments. In Section- 5.5 we briefly discuss the cosmological constraints

on eV scale sterile neutrino. Finally, we summarize our results in section-5.6. This

chapter is based on [336]
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5.2 DLMA solution in 3+1 neutrino framework

In the 3+1 neutrino framework, the neutrino mixing matrix U is a 4 × 4 unitary ma-

trix which can be parametrized by three active neutrino mixing angles θ12, θ13, θ23,

three active-sterile mixing angles θ14, θ24 and θ34 and the Dirac CP violating phases

δCP , δ14, δ24. Hence, the 4× 4 unitary matrix is given by,

U = R34R̃24R̃14R23R̃13R12P, (5.1)

where P = diag(1, eiα/2, ei(β/2+δCP ), ei(γ/2+δ14)), and α/2, β/2, γ/2 are the Majorana

phases. The Dirac CP phases δCP , δ14 and δ24 are associated with R̃13, R̃14 and R̃24

respectively. The Majorana phases can take values in the range 0 − π. The rotation

matrices R and R̃ are given in the Eq.(15) of reference [337]. The Majorana phase

matrix comes into play while studying 0νββ process, but they are not relevant for

oscillation studies. In Table 5.1, we have given the 3σ ranges of the mixing angles

and mass squared differences in the three generation [338] as well as four generation

schemes[311]. Similar analysis can also be found in references [339, 340] for three

generation case and in [312] for the four generation case.

The neutral current Lagrangian for NSIs in matter is given by the effective dimen-

sion 6 four fermion operator as [341],

LNSI = −2
√

2GF

∑
f,P,α,β

εfPαβ (ν̄αγ
µνβ)(f̄γµPf), (5.2)

where f is the charged fermion, P is the projection operator (left and right), and εfPαβ

are the parameters which govern the NSIs. The NSI affects the neutrino propagation

in matter through vector coupling and we can write εfPαβ = εfLαβ + εfRαβ .

If we assume that the flavour structure of neutrino interaction is independent of

charged fermion type, then one can write

εfPαβ = εηαβξ
f,P , (5.3)

where εηαβ denotes the coupling to the neutrino term and ξf,P denotes the coupling to

the charged fermion term. Hence, Eq. (5.2) can be written as

LNSI = −2
√

2GF

∑
α,β

εηαβ(ν̄αγ
µνβ)

∑
f,P

ξf,P (f̄γµPf). (5.4)
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Parameter NH IH

∆m2
sol/10−5eV 2 6.79→ 8.01 6.79→ 8.01

∆m2
atm/10−3eV 2 2.432→ 2.618 2.416→ 2.603

sin2 θ12 0.275→ 0.350 0.275→ 0.350

sin2 θ23 0.427→ 0.609 0.430→ 0.612

sin2 θ13 0.02046→ 0.02440 0.02066→ 0.02461

δCP 0.783π → 2.056π 1.139π → 1.967π

sin2 θ14 0.0098→ 0.0310 0.0098→ 0.0310

sin2 θ24 0.0059→ 0.0262 0.0059→ 0.0262

sin2 θ34 0→ 0.0396 0→ 0.0396

δ14 0→ 2π 0→ 2π

δ24 0→ 2π 0→ 2π

Table 5.1: The oscillation parameters in their 3σ range, for NH and IH as given by the global

analysis of neutrino oscillation data with three light active neutrinos [338] and one extra sterile

neutrino [311].

it is convenient to write

εfαβ = εηαβξ
f with, ξf = ξf,L + ξf,R. (5.5)

We can parametrize the quark coupling in terms of η as

ξu =

√
5

3
(2 cos η − sin η), ξd =

√
5

3
(2 sin η − cos η). (5.6)

The normalization constant is chosen in such a way that η ≈ 26.6◦ corresponds to

ξu = 1 and ξd = 0, which defines NSI with up quark and η ≈ 63.4◦ corresponds

to ξu = 0 and ξd = 1, which defines NSI with down quark. Under η → η + π,

ξu and ξd flip sign so it is sufficient to consider the parameter space −π
2
≤ η ≤ π

2
.

For −38◦ ≤ η ≤ 87◦ the DLMA solution is allowed at 3σ [35]. In Table-5.2, we

have chosen the parameter space for sin2 θ12 corresponding to both LMA and DLMA

solution obtained from global oscillation analysis data at 3σ [35]. In Table 5.1, all the

neutrino oscillation parameters except sin2 θ12 are robust in their 3σ range.

The total matter potential including standard and non-standard interactions is gov-
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erned by the Hamiltonian,

Hsterile+NSI
mat =

√
2GFNe(r)


1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

+
GFNn√

2


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

+

√
2GF

∑
f=e,u,d

Nf (r)


εfee εfeµ εfeτ 0

εf∗eµ εfµµ εfµτ 0

εf∗eτ εf∗µτ εfττ 0

0 0 0 0

 ,
(5.7)

where, Ne, Nn and Nf are the number densities of electron, neutron and the fermion

f in the sun. Here, we have neglected non-standard interactions in the sterile sector 1.

Following the same approach as in [35] for three generation, we can now construct the

Hamiltonian in an effective 2× 2 model as Heff = Heff
vac +Heff

mat where,

Heff =
∆m2

21

4E

− cos 2θ12 sin 2θ12

sin 2θ12 cos 2θ12

+ Ai

c2
13c

2
14 0

0 0

+ Aj

−k1 k2

k∗2 k1

+

Ai
∑

f=e,u,d

Nf

Ne

−εfD εfN

εf∗N εfD

 .
(5.8)

Here, Ai =
√

2GFNe, Aj =
GFNn√

2
and we have taken θ34 = 0 (see Appendix

D for detailed discussions). Now the new parameters εfD, ε
f
N are related to the old

parameters εfαβ through the following equations :

εfD = c13s13Re[e
iδCP (s23c24c14ε

f
eµ + c14c23ε

f
eτ )]− (1 + s2

13)c23s23c24Re(ε
f
µτ )

−c
2
13

2
(εfeec

2
14 − εfµµc2

24) +
s2

23 − s2
13c

2
23

2
(εfττ − c2

24ε
f
µµ) + c2

13c14s14s24Re(ε
f
eµe

i(δ14−δ24)

−c13c23s14s24s13Re(ε
f
µτe

i(δCP−δ14+δ24))− εfµµs13c24s23c13s14s24Re(e
i(δCP−δ14+δ24))

−
εfµµ
2
s2

14s
2
24c

2
13

(5.9)

and

εfN = c13[c14c24c23ε
f
eµ − c14s23ε

f
eτ ] + s13e

−iδCP [εfµτs
2
23c24 − c2

23c24ε
f∗
µτ

+c23s23(εfττ − εfµµc2
24)] + e−i(δ14−δ24)c13s14s24(εfµτs23 − εfµµc23c24)

. (5.10)

1Studies including non-standard interactions of sterile neutrinos have been discussed in [342].
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k1 and k2 are defined as,

k1 =
1

2
(c2

23s
2
24−c2

13c
2
24s

2
14−s2

13s
2
23s

2
24)+s13s23s24c13c24s14Re(δ14−δCP−δ24), (5.11)

k2 = ei(δ24−δ14)c23s24c13c24s14 − e−iδCP s13s23s
2
24c23. (5.12)

In the absence of sterile neutrino ( θi4 = 0 and δi4 = 0 where i = 1, 2 )implying

k1 = k2 = 0, we get back the expressions of εfD and εfN of [343].

Now we define δ =
∆m2

21

2E
, αf =

Nf

Ne

, and rewrite Eq. (5.8) as,

Heff =
δ

2

− cos 2θ12 sin 2θ12

sin 2θ12 cos 2θ12

+ Ai

c2
13c

2
14 0

0 0

+ Aj

−k1 k2

k∗2 k1

+

Ai
∑

f=e,u,d

αf

−εfD εfN

εf∗N εfD

 .
(5.13)

Diagonalizing the above effective Hamiltonian gives the matter mixing angle θM as,

tan 2θM =
δ sin 2θ12 + 2Aiαfε

f
N + 2Ajk2

δ cos 2θ12 + 2Aiαfε
f
D − Aic2

13c
2
14 + 2Ajk1

. (5.14)

Hence, the resonance occurs when,

δ cos 2θ12 + 2αfAiε
f
D = Aic

2
13c

2
14 − 2Ajk1, (5.15)

i.e.,

∆m2
21 cos 2θ12 +Bk1 = A[c2

13c
2
14 − 2αfε

f
D]. (5.16)

Here, A = 2
√

2GFNeE and B = 2
√

2GFNnE.

It is crucial to ensure the occurrence of solar neutrino resonance with DLMA so-

lution in a 3+1 neutrino scenario before we proceed to study the implications in 0νββ

process. Keeping this in mind, we have used the resonance condition in Eq. (5.16) and

obtained the neutrino energies at which the solar neutrino resonance occurs. For this

study we have only considered εuee to be non-zero while setting other NSI parameters to

be 0 for simplicity. In Fig.5.1, we have plotted the energy for which MSW resonance

occurs for different values of εee for both LMA (purple line) and the DLMA (green

line) solutions. The figure shows that for sin2 θ12 in the DLMA region, resonance con-

dition can be obtained for different values of εuee, but for a lower energy. The chosen

values of εuee are within the range allowed by the constraints from the COHERENT

data as given in reference [344].
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Figure 5.1: The energies corresponding to resonance for different values of εuee for

LMA (purple line) and DLMA (green line) solutions.

5.3 0νββ in 3+1 scenario

The half life for 0νββ in the standard scenario with light neutrino exchange is given

by [345, 346],

(T1/2)−1 = G
∣∣∣Mν

me

∣∣∣2m2
ββ, (5.17)

where G is the phase space factor, Mν is the nuclear matrix element and me is the

electron mass. The expression for the effective Majorana mass mββ is given by,

mββ = |U2
eimi|, (5.18)

where i runs from 1 to 3 (4) in the case of three (four) generations. mi denotes the

mass eigenstates and U is the unitary PMNS matrix as given in Eq. 5.1.

Thus, in 3+1 scheme,

mββ = |m1c
2
12c

2
13c

2
14 +m2s

2
12c

2
13c

2
14e

iα +m3s
2
13c

2
14e

iβ +m4s
2
14e

iγ|, (5.19)

where we have used the usual convention with cij = cos θij and sij = sin θij . The

above expression for mββ in the case of four generation is related to that in the case of
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three generation as,

mββ4gen = |c2
14 mββ3gen +m4s

2
14e

iγ|. (5.20)

Thus, themββ in the case of four generation depends on three extra parameters : the

mixing angle θ14, the third mass squared difference ∆m2
LSND (m4 =

√
m2

1 + ∆m2
LSND)

and the Majorana phase γ/2. Depending on the values of these parameters, there can

be additional enhancement or cancellation in the predictions of mββ compared to that

in the three generation case.

In this chapter, we denote the standard LMA solution as θ12 and the DLMA solution

as θD12. The 3σ ranges of these two parameters are shown in Table-5.2.

sin2θ12 sin2θD12 cos2θ12 cos2θD12 sin2θ13

Maximum 0.356 0.745 0.57 −0.296 0.024

Minimum 0.214 0.648 0.29 −0.49 0.020

Table 5.2: The 3σ ranges of different combinations of oscillation parameters relevant for

understanding the behavior of the effective mass in different limits.[35]

mββ is highly sensitive to the mass hierarchy of the light neutrinos, i.e; whetherm1

or m3 is the lowest mass eigenstate.

For normal hierarchy (NH), m1 is the lowest mass eigenstate (m1 < m2 << m3) and

we can express the other mass eigenstates in terms of m1 as

m2 =
√
m2

1 + ∆m2
sol m3 =

√
m2

1 + ∆m2
atm m4 =

√
m2

1 + ∆m2
LSND. (5.21)

For inverted hierarchy (IH), m3 is the lowest mass eigenstate (m3 << m1 ≈ m2) and

the other mass eigenstates in terms of m3 are,

m1 =
√
m2

3 + ∆m2
atm ,m2 =

√
m2

3 + ∆m2
sol + ∆m2

atm ,

m4 =
√
m2

3 + ∆m2
atm + ∆m2

LSND.
(5.22)

Here, ∆m2
sol = m2

2−m2
1, ∆m2

atm = m2
3−m2

1(m2
1−m2

3) for NH (IH) and ∆m2
LSND =

m2
4 −m2

1.

In Figs. 5.2 and 5.3 we have shown the predictions for mββ as a function of the

lightest neutrino mass for two different values of the third mass squared difference,
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Figure 5.2: mββ vs mlightest for NH (left) and IH (right) for ∆m2
LSND = 1.3 eV2.

The pink and the red regions represent the predictions for the standard LMA as well

as the DLMA solutions for θ12 respectively. The gray shaded region represents the

current upper bound of mββ obtained from the combined results of KamLAND-Zen

and GERDA experiments and the band defined by the two horizontal black dashed lines

represents the future 3σ sensitivity of the nEXO experiment. The black solid lines and

the blue dotted lines represent the predictions with the standard three neutrino case for

the standard LMA and the DLMA solutions respectively.
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Figure 5.3: mββ vs mlightest for NH (left) and IH (right) for ∆m2
LSND = 1.7 eV2.

The pink and the red regions represent the predictions for the standard LMA as well

as the DLMA solutions for θ12 respectively. The gray shaded region represents the

current upper bound of mββ obtained from the combined results of KamLAND-Zen

and GERDA experiments and the band defined by the two horizontal black dashed lines

represents the future 3σ sensitivity of the nEXO experiment. The black solid lines and

the blue dotted lines represent the predictions with the standard three neutrino case for

the standard LMA and the DLMA solutions respectively.
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i.e., ∆m2
LSND = 1.3 eV2 and 1.7 eV2. The left panels are for NH whereas the right

panels are for IH. In plotting these figures, we have varied the oscillation parameters

in their 3σ ranges [35, 338], the Majorana phases in the range 0 − π and the mixing

angle θ14 in the range θ14 ∼ 0.08− 0.17 radian.

In these plots, the pink and the red regions represent the predictions for the standard

LMA as well as the DLMA solutions for θ12 respectively. The gray shaded region

in the range between 0.071 eV and 0.161 eV represents the current upper bound of

mββ obtained from the combined results of KamLAND-Zen and GERDA experiments

[347]. This is a band due to the NME uncertainties [347–349]. The region above

this band is disallowed. The band defined by the two horizontal black dashed lines

represents the future 3σ sensitivity of the nEXO experiment : T1/2 = 5.7 × 1027

years [350], which, has been converted to mββ = 0.007 − 0.018 eV using Eq. 5.17

by including the NME uncertainties. The black solid lines and the blue dotted lines

represent the predictions for mββ with the standard three neutrino case for the standard

LMA and the DLMA solutions respectively [330].

From Figs. 5.2 and 5.3, we can see that in the case of IH, the predictions of mββ

remains same for both LMA and DLMA solutions and this is true for both the three

generation as well as four generation cases. In addition, these predictions are indepen-

dent of the values of ∆m2
LSND that we have considered. Also, complete cancellation of

mββ can occur for the entire range of m3 in the presence of the fourth sterile neutrino,

unlike in the three generation case where there is no cancellation region for IH at all.

In addition, the maximum predicted values for mββ are higher in the case of the four

generation. Also, one can see that even though the non-observation of a positive signal

for 0νββ in the future nEXO experiment will rule out the IH scenario in the case of

three generation, it can still be allowed in the presence of the fourth sterile neutrino

for both LMA and DLMA solution. In fact, the maximum value of mββ in this case is

already in the region disallowed by the present results on 0νββ, subject to the NME

uncertainty. This can be used to constrain the θ14 mixing angle [337] .

In the case of NH, complete cancellation can occur for certain values ofm1 for both

the standard LMA as well as the DLMA solutions in the four generation case, whereas

for the three generation case, there is no cancellation region for the DLMA solution.
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The values of mlightest for which complete cancellation of mββ occurs is larger for the

DLMA solution. There is more cancellation region for ∆m2
LSND = 1.3 eV2 compared

to that for ∆m2
LSND = 1.7 eV2. For ∆m2

LSND = 1.3 eV2 with the standard LMA

solution, cancellation is possible in the entire range of mlightest as in the case of IH.

But for the DLMA solution cancellation is possible only for higher values of mlightest.

Another important point to be noted is that for the sterile neutrino scenario, there is no

desert region between NH and IH unlike in the standard three generation picture [330].

This is true for both LMA and DLMA solutions. Also, the maximum allowed values

of mββ is higher in the case of the four generation picture and is almost independent of

whether one take the standard LMA or the DLMA solution. However, as compared to

the three generation DLMA, the predictions for the maximum value of mββ are higher

for the sterile neutrino case. The prediction of mββ for three neutrino DLMA picture

is in the range (0.004-0.0075) eV while for the sterile DLMA (and LMA) this spans

(0.004 - .04) eV (for mlightest . 0.005 eV) for NH. The new allowed region of 0.0075-

0.04 eV in the case of NH with four generation is in the complete reach of the future

nEXO experiment.

The behavior of the effective Majorana mass mββ for the two different mass order-

ings can be understood by considering various limiting cases.

• Inverted Hierarchy: We discuss the following limiting cases:

Case I : For m3 <<
√

∆m2
atm,m1 ≈ m2 ≈

√
∆m2

atm and m4 =
√

∆m2
LSND

the effective mass parameter from Eq. 5.19 becomes,

mββIO ≈ |
√

∆m2
atmc

2
13c

2
14(c2

12 + s2
12e

iα) +
√

∆m2
LSNDs

2
14e

iγ|. (5.23)

Here we take the representative values of ∆m2
atm = 2.5×10−3 eV2 and ∆m2

LSND =

1.3 eV2. The above equation can lead to cancellation if we choose the fol-

lowing approximations c2
13 ∼ c2

14 ∼ 1, s2
12 ∼ 0.35, c2

12 ∼ 0.65,
√

∆m2
atm ∼

0.05,
√

∆m2
LSND ∼

√
1.3 ∼ 1.140. It implies,

mββ = 0.0322 + 0.0178eiα + 1.14s2
14e

iγ. (5.24)

So the cancellation region corresponds to α ∼ π, γ ∼ π and s2
14 ∼ 0.0126. The

cancellation is achieved due to large value of
√

∆m2
LSND. In three generation
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case, such cancellation is not there because of the absence of large valued term

which can counter the first positive large term. In this region, the effective mass

parameter is independent of the lightest neutrino mass eigenstate (Eq. 5.23) and

is bounded from above and below by,

mββIOmax = |
√

∆m2
atmc

2
13c

2
14 +

√
∆m2

LSNDs
2
14|; (α = 0, 2π; γ = 0, 2π),

(5.25)

mββIOmin = |
√

∆m2
atmc

2
13c

2
14 cos 2θ12 −

√
∆m2

LSNDs
2
14|; (α = π; γ = π).

(5.26)

The maximum value of mββ is independent of θ12 whereas the minimum value

of mββ depends on θ12. But the minimum value of mββ is of the order of∼ 10−4

and hence, this difference is not much pronounced.

Case II : As m3 approaches to
√

∆m2
atm, the other mass states are m1 ≈ m2 ≈√

2∆m2
atm, m4 ≈

√
∆m2

LSND and mββ from Eq. 5.19 becomes

mββ = |
√

2∆m2
atmc

2
13c

2
14(c2

12+s2
12e

iα)+
√

∆m2
atms

2
13c

2
14e

iβ+
√

∆m2
LSNDs

2
14e

iγ|.

(5.27)

Using the same values of those parameters as in case I and s2
13 ∼ 0.024 we have,

mββ = 0.0455 + 0.0252eiα + 1.2× 10−3eiβ + 1.14s2
14e

iγ. (5.28)

Here the cancellation occurs for α ∼ β ∼ γ ∼ π and s2
14 ∼ 0.017. In three

neutrino mixing the cancellation is not possible due to the absence of high m4.

Eq. 5.27 is maximum for α, β, γ = 0, 2π and is independent of θ12. Since the

value of s2
13 is small, the minimum value of mββ is independent of β. Hence the

minimum value of mββ corresponds to α ∼ π and γ ∼ π. The minimum value

of mββ becomes

mββIOmin = |
√

2∆m2
atmc

2
13c

2
14 cos 2θ12 −

√
∆m2

LSNDs
2
14|. (5.29)

• Normal Hierarchy: We consider the following limiting cases:

Case I: Ifm1 << m2 ≈
√

∆m2
sol << m3 ≈

√
∆m2

atm, thenmββ can be written
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from Eq. 5.19 as

mββ =
√

∆m2
atm

∣∣∣s2
13c

2
14e

iβ +

√
∆m2

sol√
∆m2

atm

s2
12c

2
13c

2
14e

iα +

√
∆m2

LSND√
∆m2

atm

s2
14e

iγ
∣∣∣.

(5.30)

Taking the same representative values as we have used in IH discussion, we have

mββ =
√

∆m2
atm|s2

13c
2
14e

iβ + 0.172s2
12c

2
13c

2
14e

iα + 22.80s2
14e

iγ|, (5.31)

or,

mββ =
√

∆m2
atm|0.024eiβ + 0.059eiα + 22.80s2

14e
iγ|. (5.32)

We take the value of sin θ14 in the range 0.08 to 0.17 which implies for small m1

there is no cancellation as the value of m4 is very large. The maximum value

of mββ corresponds to α, β, γ = 0, 2π and the minimum value corresponds to

γ = 0 and α, β = π. mββ is higher for higher value of sin2 θ12. This implies that

mββ for the DLMA solution is higher in this region.

Case II: Now as m1 ∼
√

∆m2
atm, then Eq. 5.19 becomes

mββ = |
√

∆m2
atmc

2
12c

2
13c

2
14 +

√
∆m2

atms
2
12c

2
13c

2
14e

iα +
√

2∆m2
atms

2
13c

2
14e

iβ+√
∆m2

LSNDs
2
14e

iγ|.

(5.33)

Using the representative values as earlier, we obtain

mββ =
√

∆m2
atm |0.644 + 0.356eiα + 0.034eiβ + 22.80s2

14e
iγ|. (5.34)

So in this case the cancellation occurs since, sin θ14 can take values in the range

0.08− 0.17.

5.4 Sensitivity in the future experiments

The future generation 0νββ experiments are intending to probe the region mββ ∼

10−2 eV. These experiments include LEGEND, SuperNEMO, CUPID, CUORE, SNO,

KamLAND-Zen, nEXO, NEXT, PandaX etc. (See [351] for a review). A positive

signal in these experiments could be due to IH (three generation or 3+1 generation)

or due to NH (3+1 picture) for both LMA and DLMA solutions. If these experiments
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give a negative result, the next generation of experiments have to be designed with a

sensitivity range of 10−3 eV [352, 353].

In this section, we calculate the sensitivity in the future 136Xe experiments for

which we have adopted the method discussed in reference [351]. The value of T1/2

for which an experiment has a 50% probability of measuring a 3σ signal above the

background is defined as the 3σ T1/2 discovery sensitivity. It is given as,

T1/2 = ln2
NAε

maS3σ(B)
. (5.35)

In this equation, NA is the Avogadro number, ma is the atomic mass of the isotope,

and B = βε is the expected background where, ε is the sensitive exposure and β is the

sensitive background. S3σ is the value for which half of the measurements would give

a signal above B for a Poisson signal and this can be obtained from the equation,

1− CDF Poisson(C3σ|S3σ +B) = 50%.

C3σ stands for the number of counts for which the cumulative Poisson distribution with

mean as B obeys,

CDFPoisson(C3σ|B) = 3σ.

We use the normalized upper incomplete gamma function to define CDFPoisson as a

continuous distribution in C as follows,

CDFPoisson(C|µ) =
Γ(C + 1, µ)

Γ(C + 1)
.

This avoids the discrete variations that would arise in the discovery sensitivity if C3σ

is restricted to be integer valued. Using the above equations, we have calculated the

T1/2 discovery sensitivities of 0νββ as a function of ε for various values of β for 136Xe

nucleus and the results are shown in Fig.5.4.

In this plot, the red shaded band corresponds to the new allowed region of mββ ∼

0.008 − 0.04 eV for the DLMA solution for the NH case with a sterile neutrino. This

band in mββ which is due to the variation of the parameters in the PMNS matrix, is

converted to a band in T1/2 using Eq. 5.17, by taking into account the NME uncertainty

as given in Table 5.3. The dotted black line corresponds to the future 3σ sensitivity of

nEXO, which is T1/2 = 5.7×1027 years [350]. The yellow, black, brown and blue lines
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Figure 5.4: 136Xe discovery sensitivity as a function of sensitive exposure for different

sensitive background levels. The yellow, black, brown and blue lines correspond to

four different values of the sensitive background levels as shown in the figure.
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correspond to four different values of the sensitive background levels of 0, 10−5, 10−4

and 10−3 cts/(kgisoyr) respectively. From the figure, we can see that a large part of

this newly allowed region for NH is in the reach of the nEXO experiment. With lower

background levels and/or higher sensitive exposure, the next generation experiments

can probe this entire region.

In Table 5.3, we have given the T1/2 ranges corresponding to the new allowed

region of mββ for the DLMA solution for the NH case with a sterile neutrino , i.e.,

mββ = 0.008− 0.04 eV for three different isotopes.

Note that even if one obtain a better limit on T1/2 or even a measurement of T1/2

from the future experiments, we have to convert this into mββ to get hints about the

corresponding particle physics model and this will have uncertainties due to the NME

elements. To calculate the matrix element, one can use different models like shell

model, quasiparticle random-phase approximation (QRPA), interacting boson model

(IBM), etc., and each model has their own advantages and disadvantages [348]. The

inverse half life also depends on the fourth power of the weak axial vector (gA). Hence

a small uncertainty in gA can lead to a large change in the value of mββ . It depends

on the mass number of the nucleus and the momentum transfer. The quenching of gA

from its free nucleon value arises due to nuclear medium effects and nuclear many body

effects. The detail study of gA and its possible uncertainties are discussed in [354]. In

this chapter, we have used those values of Mν for which gA = 1.25 [347, 348].

Isotope NME (Mν) G(10−15year−1) T1/2 range (years)
136Xe 1.6− 4.8 14.58 1.87× 1026 − 4.20× 1028

76Ge 2.8− 6.1 2.363 7.13× 1026 − 8.47× 1028

130Te 1.4− 6.4 14.22 1.08× 1026 − 5.63× 1028

Table 5.3: The T1/2 ranges corresponding to the DLMA region mββ = 0.008− 0.04 eV, the

new allowed region for the DLMA solution for the NH case with a sterile neutrino for different

isotopes. The NME values [347, 348] and the phase space factors [349] used in the calculation

are also given.
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5.5 Cosmological constraints on eV scale sterile neu-

trino

The LSND-MiniBooNE collaborations have reported possible evidence for a light ster-

ile neutrino of eV mass scale. However, such a state would be directly in conflict with

Planck measurement of Neff from BBN and standard cosmology. So if we include

an eV scale sterile neutrino with the standard three flavours picture, the Neff value

will increase which is highly constrained by BBN (Neff ∼ 3.046) [355, 356]. So to

account for an eV scale sterile neutrino, different models are proposed to evade the

cosmological bound.

An eV scale sterile neutrino will require a reducing value of Neff . One possibility

is to allow for new interactions (secret interactions) of sterile neutrinos so that the

active-sterile mixing becomes very less and eventually Neff becomes less, evading the

cosmological bounds. In the secret interaction picture, sterile state can interact with

some other bosonic particles in the model [357] or they can have self interactions

[358]. In 1 + 1 flavour approximation, the active sterile mixing angle in a thermal νs

background is given as [332]

sin2 2θm =
sin2 2θ0

(cos 2θ0 + 2E
∆m2Veff)2 + sin2 2θ0

, (5.36)

where the effective potential Veff depends on the interaction between sterile neutrino

and the new gauge boson in the model. One can parametrize Veff ∼ T n where n is a

positive number (∼ 2− 4). At very high temperature, the effective potential increases

and the value of the active sterile mixing angle decreases. However, later in time, when

the universe expands, the temperature decreases and active sterile mixing increases to

the present constraints on mixing obtained from oscillation experiments (Ue4 ∼ 0.1).

This mechanism generates a larger mass for νs in the high temperature phase of the

scalar potential, precluding efficient νs production. After a late phase transition in

the scalar sector, the sterile neutrino mass is reduced to the value observed today. In

addition, if there are more number of sterile neutrinos in the picture, or if the sterile

decays at late time, one can also evade the cosmological constraints [331].

The physical effects of non relativistic free streaming particles (after photon de-

coupling) on the cosmological background and perturbation evolution depend on the
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parameters ∆Neff , ωs, and < vs >, defined below [359].

• ∆Neff: The contribution of sterile neutrino to the relativistic density before the

photon decoupling is parametrized by an effective neutrino number ∆Neff which

is defined as the relativistic density of neutrino species and one massless neutrino

family in the instantaneous decoupling (id) limit,

∆Neff =
ρrel
s

ρν
, (5.37)

where ρν denotes the energy density of neutrino and can be expressed as

ρν =
7

8

π2

30
gT idν

4
, (5.38)

where g is the internal degree of freedom and T idν = (4/11)1/3Tγ . The energy

density of the sterile neutrino having momentum distribution f(p) is given by

ρs =
g

(2π)3

∫
E(p)f(p)d3p. (5.39)

Hence, the effective neutrino number is

∆Neff =
1
π2

∫
p3f(p)dp

7
8
π2

15
T idν

4 , (5.40)

since, for relativistic neutrinos, E = p.

• ωs: The presence of extra massive free streaming particles can affect the current

energy density budget of the universe and the amplitude in the small scale matter

power spectrum. Its effect is parametrized by a dimensionless parameter ωs

defined as

ωs = Ωsh
2 =

ρsc
ρ0
c

h2 = m

∫
g

(2π)3
f(p)d3p

h2

ρ0
c

, (5.41)

since, ρ = mn and n =
g

(2π)3

∫
f(p)d3p. Therefore, we can write,

ωs =
m

π2

∫
p2f(p)dp× h2

ρ0
c

, (5.42)

where ρ0
c is the critical density today and h is the reduced Hubble parameter.

• < vs >: The comoving free streaming length of sterile neutrino is related with

the small scale matter power spectrum by its average velocity which in the non

relativistic regime is given as

< vs >=
p2dp p

m
f(p)∫

p2dpf(p)
. (5.43)
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Hence, we can write,

< vs >=
7

8

π2

15

( 4

11

)4/3T 4
CMBh

2

ρc

∆Neff

ωs
= 5.618× 10−6 ∆Neff

ωs
, (5.44)

where we have taken TCMB = 2.726 K. So the above three parameters satisfy

the constraint Eq. 5.44. Hence, one needs to calculate ∆Neff , ωs and < vs > to

see the effects of sterile neutrino on cosmology. For a light thermal relic sterile

neutrino with Fermi-Dirac distribution and a different sterile temperature Ts, the

three parameters are

∆Neff =
( Ts
T idν

)4

, ωs =
ms

94.05 eV

( Ts
T idν

)3

, < vs >=
0.5283 meV

ms

( Ts
T idν

)
.

(5.45)

The CMB analysis in ΛCDM +r0.05 +Neff +ms
eff model using Planck data gives

Neff < 3.78 and ms
eff < 0.78eV. r0.05 denotes the tensor to scalar ratio at the

pivot scale of k∗ = 0.05h Mpc−1. The effective neutrino mass ms
eff is related

with the physical mass ms as ms
eff = ∆N

3/4
eff ms, where ∆Neff = Neff − 3.046

or in terms of temperature ∆Neff =
( Ts
T idν

)4

[360]. For our case, ∆m2
LSND =

1.3 eV2, the physical mass is m4 = ms = 1.14 eV. Hence, to be consistent

with cosmology, we must have
Ts
T idν

< 0.88, where we have chosen the lightest

mass eigenstate m1 = 0. Similarly, for ∆m2
LSND = 1.7 eV2, ms = 1.30 eV and

Ts
T idν

< 0.84.

5.6 Discussions

In this chapter, we have studied the implications of the DLMA solution to the

solar neutrino problem for 0νββ in the 3+1 scenario, including an additional

sterile neutrino. We have verified that even in the presence of sterile neutrino,

the MSW resonance can take place in the DLMA region. Next, we have studied

how for these values of θ12, the predictions for 0νββ in 3+1 picture is changed as

compared to the predictions for 3+1 scenario assuming ordinary LMA solution.

We also compare with the predictions of mββ for the three generation picture.

We find that for IH, there is no change in mββ predictions as compared to the

3+1 case assuming θ12 to be in the standard LMA region. This is because in this
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case, the maximum value of mββ is independent of θ12 and the minimum value

of mββ is of the order of ∼ 10−4 eV where the difference is not very evident.

In particular, the cancellation region which was reported earlier for 3+1 sterile

neutrino picture also continues to be present for the DLMA parameter space due

to the contribution from the fourth mass eigenstate. This conclusion is similar to

the conclusion obtained for the three generation case, for which also the LMA

and DLMA solutions gave same predictions for mββ in the case of IH.

In the case of NH, cancellation can occur for certain values of mlightest and

the values for which this happens is higher for the DLMA solution. Also, the

maximum value of mββ is same for the standard LMA and DLMA solutions in

the 3+1 scenario and unlike the three generation case there is no desert region

between NH and IH. However, the maximum value is higher than that for the

three generation DLMA case.

If future experiments with sensitivity reach of ∼ 0.015 eV observe a positive

signal for 0νββ then it could be due to IH (three generation or 3+1 generation)

or due to NH (3+1 picture) for both LMA and DLMA solutions. If however,

no such signal is found then for three generation picture 0νββ experiments can

disfavor IH and one moves to the next frontier of 0.001 eV [352, 353]. In this

regime a demarcation between LMA and DLMA is possible for three generation

picture if a signal is obtained for mββ & 0.004 eV [330]. However, if the sterile

neutrino hypothesis is true then distinction between NH and IH is not possible

from 0νββ experiments. This also spoils the sensitivity to demarcate between

LMA and DLMA solutions. If however, the current indication of NH from accel-

erator experiments is confirmed by future data then the next generation of 0νββ

experiments with sensitivity reach up to 10−3 eV can distinguish between LMA

and DLMA solution in presence of a sterile neutrino for mlightest . 0.005 eV.



Chapter 6

Summary and Conclusions

The standard model of particle physics and Einstein’s theory of general relativ-

ity are very successful theories that can explain a wide range of experimental

results with a high level of accuracy. However, there are both observational and

theoretical motivations to go beyond these. In this thesis, we have considered

light particles of different spins such as spin-0 axion, spin-1 vector gauge boson,

spin-2 graviton, and spin-1/2 sterile neutrino to illuminate the universe unknown

to us. We obtain bounds on the properties of these light particles from several as-

trophysical, and laboratory experiments such as orbital period loss of the binary

systems which is the indirect evidence of gravitational waves, birefringence phe-

nomena, perihelion precession of planets, gravitational light bending, Shapiro

time delay, and 0νββ experiments.

After a brief introduction, in Chapter 2 we have focussed on spin-0 axions, and

have obtained constraints on these particles from the orbital period loss of com-

pact binary systems, birefringence from pulsars, gravitational light bending, and

Shapiro time delay. The key findings of this chapter are as follows. We have

derived bound on axion decay constant as fa . O(1011) GeV for axion mass

ma . 10−19 eV from the pulsar timing data which disfavors axion like particles

as fuzzy dark matter candidate. Secondly, we have also obtained the parameter

space (fa . O(1017) GeV,ma . 10−11 eV) for probing axions from birefrin-

gence effect of pulsars. Next, we have presented bounds on axion parameters
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from gravitational light bending (fa . 1.58 × 1010 GeV,ma . 10−18 eV) and

Shapiro time delay (fa . 9.85×106 GeV,ma . 1.33×10−18 eV). The Shapiro

time delay puts stronger bound than the gravitational light bending. The result

from Shapiro time delay also disfavors axion like particles as fuzzy dark matter

candidate. We have also delineated that these ultralight axions can mediate a

long range fifth force between the compact/celestial objects.

Next in Chapter 3, we have discussed spin-1 ultralight gauge bosons and have

obtained bounds on the parameters of these particles from pulsar timing data,

and perihelion precession of planets. Through these astrophysical observations,

we have also constrained U(1)Li−Lj models. The key findings of this chapter are

as follows. We constrain gauged U(1)Lµ−Lτ model from orbital period loss of bi-

nary systems and obtain bound on gauge coupling g . 4.24×10−20 for the gauge

boson of mass MZ′ . 10−19 eV. We have also constrained gauged U(1)Le−Lµ,τ

model from perihelion precession of planets and have gleaned bound on the

gauge coupling as g . 3.506 × 10−25 for the gauge boson of mass MZ′ .

10−19 eV. These ultralight gauge bosons can also mediate long range fifth force.

In Chapter 4, we have discussed massive spin-2 graviton in several massive grav-

ity theories, such as Fierz-Pauli (FP) theory, Dvali-Gabadadze-Porrati (DGP)

theory, modified Fierz-Pauli theory and obtained bounds on the graviton mass

from the pulsar timing data. The key findings of this chapter are as follows.

We have calculated the obital period loss due to massive graviton radiation for

these three massive gravity theories. We have followed the Feynman diagram

technique-a field theoretic approach to calculate the energy loss. The orbital pe-

riod loss of compact binary systems cannot give a universal graviton mass bound

for the FP and DGP theories. Hence, we have derived bounds on those two theo-

ries from Vainshtein radius. From the Vainshtein limit, we have given the gravi-

ton mass boundmg > 3.06×10−22 eV for FP theory, andmg > 7.84×10−24 eV

for DGP theory. However, for modified FP theory, we have obtained the univer-

sal graviton mass bound mg < 1.81 × 10−20 eV from the orbital period loss of

binary systems.

Lastly in chapter 5, we have studied the spin-1/2 sterile neutrino and its impli-
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cations in 0νββ for the Dark Large Mixing Angle (DLMA) solution which is

present if there is Non Standard Interaction (NSI) leading to an extra solution

for the solar mixing angle as θ12 > 45◦. The key findings of this chapter are as

follows. In the case of IH, the prediction ofmββ remains same for both LMA and

DLMA solutions and this is true for both the three as well as four generations.

The predictons are independent of the values of ∆m2
LSND = m2

4−m2
1. The com-

plete cancellation of the effective majorana mass can occur for the entire range

of m3 in the presence of fourth sterile neutrino, unlike in the three generation

case where there is no cancellation region for IH at all. The maximum values for

mββ are higher in the case of four generations. For the 3+1 scenario, there is no

desert region between NH and IH unlike in the standard three generation picture.

This is true for both LMA and DLMA solutions. Even the non observation of

a positive signal for 0νββ in the future nEXO experiment will rule out the IH

scenario in the case of three generation, it can still be allowed in the presence

of the fourth sterile neutrino for both LMA, and DLMA. The prediction of mββ

for three neutrino DLMA picture is in the range (0.004 − 0.0075) eV while for

the sterile DLMA, this spans (0.004 − 0.04) eV (for mlightest . 0.005 eV) for

NH. The new allowed region of 0.0075 − 0.04 eV in the case of NH with four

generations is in the complete reach of the future nEXO experiment.

As a general summary of the thesis, we have tried to explore the dark universe

through light particles, such as axions (splin-0), gauge bosons (spin-1), mas-

sive graviton (spin-2) and sterile neutrinos (spin-1/2). We obtain constraints

on the properties of these light particles from several observations and exper-

iments such as pulsar timing data, perihelion precession of planets through the

MESSENGER mission, Shapiro time delay, and gravitational light bending from

Cassini spacecraft, VLBA, and results from several 0νββ experiments. Some of

these light particles are good candidates of dark matter. The axions, ultralight

gauge bosons, massive gravitons can put imprints on the gravitational wave-

forms, and from the future LIGO-Virgo data, we can obtain improved bounds

on those light particles. Moreover future spacecraft missions can play important

roles in obtaining better results to constrain the properties of ultralight particles.
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Also several future generation 0νββ experiments are trying to find the nature of

neutrino. More precise data from future experiments and observations will im-

prove the perspectives to probe the dark universe using the light particle sector.



Appendix A

Long Range Axion Hair

A.1 Equation of Motion of Long Range Axion Hair

The equation of motion of long range axion hair is∇µ∇µa = m2
aa. Hence,

∇µ∇µa = gµν∇µ∇νa

= gµν [∂µ(∂νa)− Γρµν∂ρa]

= gµν∂µ∂νa− gµνΓρµν∂ρa

= grr
d2a

dr2
− gµνΓrµν

da

dr

=
(

1− 2M

r

)d2a

dr2
− (grrΓrrr + gttΓrtt + gθθΓrθθ + gφφΓrφφ)

da

dr
.

Putting the Christoffel symbols for the Schwarzschild metric and the components

of gµν we obtain

∇µ∇µa =
(

1− 2M

r

)d2a

dr2
−
[(

1− 2M

r

) M

2Mr − r2
+

r

2M − r
M(r − 2M)

r3
+

1

r2
(2M − r) +

1

r2 sin2 θ
(2M − r) sin2 θ

]da
dr
.

Hence,

∇µ∇µa =
(

1− 2M

r

)d2a

dr2
+

2

r

(
1− M

r

)da
dr
.

Therefore, the equation of motion of long range axion hair becomes(
1− 2M

r

)d2a

dr2
+

2

r

(
1− M

r

)da
dr

= m2
aa. (A.1)
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A.2 Relation Between the Orbital Period Loss and

Energy Loss

If we denote the orbital frequency of a binary system as Ω, consisting of two

masses m1 and m2 then Ω2 =
G(m1 +m2)

a3
and P 2

b =
4π2

Ω2
=

4π2a3

G(m1 +m2)
.

Taking time deriative of P 2
b , we obtain

ȧ =
G(m1 +m2)

6π2a2
PbṖb.

The total energy of the binary system is E = T + V = −1

2
V + V =

1

2
V =

−Gm1m2

2a
, where we have used the virial theorem < T >= −1

2
< V >. The

time derivative of the total energy yields,

dE

dt
=
Gm1m2

2a2
ȧ =

G3/2

6π
a−5/2(m1m2)(m1 +m2)1/2Ṗb.

Hence, the orbital period loss related with the energy loss as

Ṗb = 6πG−3/2(m1m2)−1(m1 +m2)−1/2a5/2dE

dt
. (A.2)



Appendix B

Planet in Presence of a Yukawa

Potential

B.1 Equation of motion of a planet in presence of a

Schwarzschild background and a non gravitational

Yukawa type of potential

The action which describes the motion of a planet in Schwarzschild background

and a non gravitational long range Yukawa type of potential is given by Eq. (3.37).

Suppose S1 = Mp

∫ √
−gµν ẋµẋνdτ . For this action, the Lagrangian is

L = Mp

√
gµν

dxµ

dτ

dxν

dτ
. (B.1)

Hence, the equation of motion is

d

dτ

( ∂L
∂
(
∂xσ

∂τ

))− ∂L
∂xσ

= 0, (B.2)

or,

1

L
dL
dτ
gµσ

dxµ

dτ
= gµσ

d2xµ

dτ 2
+ ∂αgµσ

dxα

dτ

dxµ

dτ
− 1

2
∂σgµν

dxµ

dτ

dxν

dτ
. (B.3)

Multiplying gρσ we have,

d2xρ

dτ 2
+ gρσ∂νgµσ

dxν

dτ

dxµ

dτ
− gρσ 1

2
∂σgµν

dxµ

dτ

dxν

dτ
=

1

L
dL
dτ

dxρ

dτ
, (B.4)
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or,

d2xρ

dτ 2
+

1

2
gρσ(∂νgµσ + ∂µgνσ − ∂σgµν)

dxµ

dτ

dxν

dτ
=

1

L

(dL
dτ

)dxρ
dτ

, (B.5)

or,
d2xρ

dτ 2
+ Γρµν

dxµ

dτ

dxν

dτ
=

1

L
dL
dτ

dxρ

dτ
, (B.6)

where, Γρµν =
1

2
gρσ(∂νgµσ+∂µgνσ−∂σgµν) is called the Christoffel symbol. We

can choose τ in such a way that
dL
dτ

= 0. This is called affine parametrization.

So,
d2xρ

dτ 2
+ Γρµν

dxµ

dτ

dxν

dτ
= 0. (B.7)

Suppose S2 = gq

∫
Aµ

dxµ

dτ
dτ = gq

∫
Aµdx

µ. Hence,

δS2 = gq

∫
δAµdx

µ + gq

∫
Aµδ(dx

µ), (B.8)

or,

δS2 = gq

∫
∂Aµ
∂xν

δxνdxµ + gq

∫
Aµd(δxµ). (B.9)

Using integration by parts and using the fact that the total derivative term will

not contribute to the integration, we can write

δS2 = gq

∫
∂Aµ
∂xν

δxνdxµ − gq
∫
dAµδx

µ. (B.10)

or,

δS2 = gq

∫
∂Aµ
∂xν

δxνdxµ − gq
∫
∂Aµ
∂xν

dxνδxµ. (B.11)

Since µ and ν are dummy indices, we interchange µ and ν in the first term.

Hence, we can write

δS2 = gq

∫
(∂µAν − ∂νAµ)dxνδxµ

= gq

∫
(∂µAν − ∂νAµ)

dxν

dτ
δxµdτ. (B.12)

Imposing the fact δS1 + δS2 = 0 and using Eq. (3.37), Eq. (B.7) and Eq. (B.12)

we can write

ẍρ + Γρµν ẋ
µẋν =

gq

Mp

gρµ(∂µAν − ∂νAµ)ẋν , (B.13)

which matches with Eq. (3.38).
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B.2 Christoffel symbols for the Schwarzschild met-

ric

The christoffel symbols for the Schwarzschild metric defined in Eq. (3.39) are

Γtrt =
M

r2
(

1− 2M
r

) , Γrtt =
M

r2

(
1− 2M

r

)
, Γrrr = − M

r2
(

1− 2M
r

) , Γrθθ = −r
(

1− 2M

r

)
,

Γrφφ = −r sin2 θ
(

1− 2M

r

)
, Γθrθ =

1

r
, Γθφφ = − sin θ cos θ, Γφφr =

1

r
, Γφθφ = cot θ.

(B.14)

B.3 Equation of motion for the vector field Aµ

The vector field Aµ satisfies the Klein-Gordon equation

�Aµ = M2
Z′Aµ. (B.15)

Now, for the static case, Aµ = {V (r), 0, 0, 0}. Hence,

�V (r) = M2
Z′V (r). (B.16)

In the background of the Schwarzschild spacetime, Equation (B.16) becomes(
1− 2M

r

)d2V

dr2
+

2

r

(
1− M

r

)dV
dr

= M2
Z′V (r). (B.17)

So, in the Schwarzschild background, V (r) will not satisfy the Klein-Gordon

equation. So we expand V (r) in a perturbation series where the perturbation

parameter is
M

R
, and the leading order term is the Yukawa term. Let,

V (r) = V0(r) +
M

R
V1(r) +O

(M
R

)2

, (B.18)

where

V0(r) = c
e−M

′
Zr

r
, c =

g2N1N2

4π
, (B.19)

such that
d2V0

dr2
+

2

r

dV0

dr
= M2

Z′V0. (B.20)

Inserting Eq. (B.18) in Eq. (B.17), we get the equation for V1(r)

1

R

d2V1

dr2
+

2

rR

dV1

dr
=
M2

Z′V1

R
+

2

r

d2V0

dr2
+

2

r2

dV0

dr
. (B.21)
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Let,

V1(r) = χ(r)
e−M

′
Zr

r
. (B.22)

Now, Eq. (B.21) becomes

1

R

d2χ

dr2
− 1

R
2M ′

Z

dχ

dr
= 2c

(M2
Z′

r
+

1

r3
+
M ′

Z

r2

)
. (B.23)

Integrating Eq. (B.23) once we get

dχ

dr
− 2M ′

Zχ = 2cR
[
M2

Z′ ln(M ′
Zr)−

1

2r2
− M ′

Z

r

]
+ k1R, (B.24)

where k1 is the integration constant. Eq. (B.24) can be written as

d

dr

(
e−2M ′Zrχ

)
= 2cRe−2M ′Zr

[
M2

Z′ ln(M ′
Zr)−

1

2r2
− M ′

Z

r

]
+ k1Re

−2M ′Zr.

(B.25)

From Eq. (B.25), we can write

e−2M ′Zrχ(r) = 2cR
[
M2

Z′

∫ r

∞
e−2M ′Zx ln(M ′

Zx)dx

−
∫ r

∞

e−2M ′Zx

2x2
dx−

∫ r

∞

M ′
Ze
−2M ′Zx

x
dx
]
− k1R

2M ′
Z

e−2M ′Zr + k2, (B.26)

where k2 is an integration constant. Doing integration by parts, Eq. (B.26) be-

comes

χ(r) = cR
[
−M ′

Z ln(M ′
Zr) +

1

r
+M ′

Ze
2M ′ZrEi(−2M ′

Zr)
]
− k1R

2M ′
Z

+ k2e
2M ′Zr,

(B.27)

where Ei(x) is a special function called the exponential integral function which

is defined as

Ei(x) = −
∫ ∞
−x

e−t

t
dt. (B.28)

We chose k2 = 0 as e2M ′Zr diverges. We also chose k1 = 0 as we are looking for

particular integral. Hence, from Eq. (B.27) we get

V1(r) =
cRe−M

′
Zr

r

[1

r
−M ′

Z ln(M ′
Zr) +M ′

Ze
2M ′ZrEi(−2M ′

Zr)
]
. (B.29)

So the total solution of the potential is

V (r) =
ce−M

′
Zr

r

[
1+

M

r
{1−M ′

Zr ln(M ′
Zr)+M

′
Zre

2M ′ZrEi(−2M ′
Zr)}

]
+O

(M2

R2

)
.

(B.30)

We take the leading order term which is the Yukawa term in our calculation. The

higher order terms are comparatively small.
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B.4 Total energy of the binary system due to grav-

ity and long range Yukawa type potential

For Newtonian gravity, we can write

E2 − 1

L2
= − 1

a2(1− e2)
,

2M

L2
=

2

a(1− e2)
. (B.31)

Dividing the above two expression, we obtain

E2 − 1

M
= −1

a
, (B.32)

or,

E '
√

1− M

a
≈ 1− M

2a
. (B.33)

In presence of long range Yukawa potential, we obtain E from the condition
du

dφ
= 0 at u = u+ = 1/a(1 + e) (aphelion) and u = u− = 1/a(1− e) (perihe-

lion),

E ' 1− M

2a
+
g2Qq

4πMp

(
u+u

2
−e
−MZ′/u+ − u2

+u−e
−MZ′/u−

u2
+ − u2

−

)
(B.34)

where 1 in the right hand side is the rest energy per unit mass in the Minkowski

background. The second term is ≈ 10−8 and the third Yukawa term is smaller

than the Newtonian term.



Appendix C

Energy Loss from a Binary system

Due to Massless Graviton Radiation

C.1 ENERGY LOSS BY MASSLESS GRAVITON

RADIATION FROM BINARIES

The action for the graviton field hµν is obtained by starting with the Einstein-

Hilbert action for gravity and matter fields

SEH =

∫
d4x
√
−g
[
− 1

16πG
R + Lm

]
, (C.1)

and expanding the metric gµν = ηµν + κhµν to the linear order in hµν , where

κ =
√

32πG is the gravitational coupling. For consistency the inverse metric

gµν and square root of determinant
√
−g should be expanded to quadratic order

gµν = ηµν + κhµν ,

gµν = ηµν − κhµν + κ2hµλhνλ +O(κ3) ,

√
−g = 1 +

κ

2
h+

κ2

8
h2 − κ2

4
hµνhµν +O(κ3), (C.2)

where ηµν = diag(1,−1,−1,−1) is the background Minkowski metric and h =

hµµ. Indices are raised and lowered by ηµν and ηµν respectively.

The linearised Einstein-Hilbert action for the graviton field hµν is then given by

SEH =

∫
d4x

[
−1

2
(∂µhνρ)

2 +
1

2
(∂µh)2 − (∂µh)(∂νhµν ) + (∂µhνρ)(∂

νhµρ) +
κ

2
hµνT

µν

]
156
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=

∫
d4x

[
1

2
hµνEµναβhαβ +

κ

2
hµνT

µν

]
, (C.3)

where the kinetic operator Eµναβ has the form

Eµναβ =
(
ηµ(αηβ)ν − ηµνηαβ

)
�− ηµ(α∂β)∂ν − ην(α∂β)∂µ + ηαβ∂µ∂ν+

ηµν∂α∂β,

(C.4)

and indices enclosed by brackets denote symmetrisation, A(µBν) =
1

2
(AµBν +

AνBµ). The massless graviton propagator D(0)
µναβ is the inverse of the kinetic

operator Eµναβ

EµναβD(0)
αβρσ(x− y) = δµ(ρδ

µ
σ)δ

4(x− y) . (C.5)

The massless graviton action Eq.C.3 has the gauge symmetry hµν → hµν −

∂µξν−∂νξµ due to which the operator Eµναβ cannot be inverted so the propagator

cannot be determined from the relation Eq.C.5. To invert the kinetic operator we

need to choose a gauge. The gauge choice for which the propagator has the

simplest form is the de-Dhonder gauge choice in which,

∂µhµν −
1

2
∂νh = 0, (C.6)

where h = hαα. We can incorporate this gauge choice by adding the following

gauge fixing term to the Lagrangian Eq.C.3,

Sgf = −
∫
d4x

(
∂µhµν −

1

2
∂νh

)2

. (C.7)

The total action with the gauge fixing term turns out to be of the form

SEH + Sgf =

∫
d4x

(
1

2
hµν�h

µν − 1

4
h�h+

κ

2
hµνT

µν

)
=

∫
d4x

(
1

2
hµνKµναβhαβ +

κ

2
hµνT

µν

)
, (C.8)

where Kµναβ is the kinetic operator in the de Donder gauge given by

Kµναβ =

(
1

2
(ηµαηνβ + ηµβηνα)− 1

2
ηµνηαβ

)
� . (C.9)

The propagator in the de Donder gauge is the inverse of the kinetic operator

Eq.C.9 and is given by

KµναβD(0)
αβρσ(x− y) = δµ(ρδ

µ
σ)δ

4(x− y) . (C.10)
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This relation can be used to solve for D(0)
αβρσ which in the momentum space

(∂µ = ikµ) is then given

D
(0)
µναβ(k) =

1

−k2

(
1

2
(ηµαηνβ + ηµβηνα)− 1

2
ηµνηαβ

)
. (C.11)

We treat the graviton as a quantum field by expanding it in terms of creation and

annihilation operators,

ĥµν(x) =
∑
λ

∫
d3k

(2π)3

1√
2ωk

[
ελµν(k)aλ(k)e−ik·x + ε∗λµν(k)a†λ(k)eik·x

]
.

(C.12)

Here ελµν(k) are the polarization tensors which obey the orthogonality relation

ελµν(k)ε∗λ
′µν

(k) = δλλ′ , (C.13)

while aλ(k) and a†λ(k) are graviton annihilation and creation operators which

obey the canonical commutation relations[
aλ(k), a†λ′(k

′)
]

= δ4(k − k′)δλλ′ . (C.14)

The Feynman propagator of gravitons is defined as the time ordered two point

function

D
(0)
µναβ(x− y) ≡ 〈0|T (ĥµν(x)ĥαβ(y))|0〉, (C.15)

which may be evaluated using Eq.C.12 to give

D
(0)
µναβ(x− y) =

∫
d4k

(2π)4

1

−k2 + iε
eik(x−y)

∑
λ

ελµν(k)ε∗λαβ(k). (C.16)

Comparing Eq.C.11 and Eq.C.16 we have the expression for the polarization

sum of massless spin-2 gravitons

2∑
λ=1

ελµν(k)ε∗λαβ(k) =
1

2
(ηµαηνβ + ηµβηνα)− 1

2
ηµνηαβ. (C.17)

This will be used in the computation of massless graviton radiation from classical

sources.

We now calculate the energy loss due to the radiation of massless graviton from

compact binary systems [168, 256] by evaluating the Feynman diagram shown

in Fig.4.1. We treat the current Tµν of the binary stars as classical source and
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the gravitons as quantum fields. From the interaction Lagrangian Eq.C.8 we see

that the interaction vertex is
1

2
κhµνTµν , therefore we can write the emission rate

of massless gravitons with polarisation tensor εµνλ (k′) from the classical source

Tµν(k) as

dΓ =
κ2

4

2∑
λ=1

|Tµν(k′)εµνλ (k)|22πδ(ω − ω′) d3k

(2π)3

1

2ω
. (C.18)

Expanding the modulus squared in Eq.C.18, we can write

dΓ =
κ2

8(2π)2

2∑
λ=1

(
Tµν(k

′)T ∗αβ(k′)εµνλ (k)ε∗αβλ (k)
)d3k

ω
δ(ω − ω′). (C.19)

Using the polarization sum of massless spin-2 gravitons from Eq.C.17, we can

write the emission rate as

dΓ =
κ2

8(2π)2

∫ [
Tµν(k

′)T ∗αβ(k′)
][1

2
(ηµαηνβ + ηµβηνα − ηµνηαβ)

]d3k

ω
δ(ω − ω′) .

=
κ2

8(2π)2

∫ [
|Tµν(k′)|2 −

1

2
|T µµ(k′)|2

]
δ(ω − ω′)ωdωdΩk, (C.20)

where we use d3k = k2dkdΩ. Thus, the rate of energy loss due to massless

graviton radiation becomes

dE

dt
=

κ2

8(2π)2

∫ [
|Tµν(k′)|2 −

1

2
|T µµ(k′)|2

]
δ(ω − ω′)ω2dωdΩk. (C.21)

Using the conserved current relation kµT µν = 0, we can write the T 00 and T i0

components of the stress tensor in terms of the T ij components,

T0j = −k̂iTij, T00 = k̂ik̂jTij. (C.22)

Therefore, we can write[
|Tµν(k′)|2 −

1

2
|T µµ(k′)|2

]
= Λ0

ij,lmT
ij∗T lm, (C.23)

where,

Λ0
ij,lm =

[
δilδjm − 2k̂j k̂mδil +

1

2
k̂ik̂j k̂lk̂m −

1

2
δijδlm +

1

2

(
δij k̂lk̂m + δlmk̂ik̂j

)]
.

(C.24)

We do the angular integrals∫
dΩkΛ

0
ij,lmT

ij∗(ω′)T lm(ω′) =
8π

5

(
Tij(ω

′)T ∗ji(ω
′)− 1

3
|T ii(ω′)|2

)
, (C.25)
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using the relations∫
dΩk̂ik̂j =

4π

3
δij,

∫
dΩk̂ik̂j k̂lk̂m =

4π

15
(δijδlm+δilδjm+δimδjl). (C.26)

The stress tensor or the current density for this compact binary system is

Tµν(x
′) = µδ3(x′ − x(t))UµUν , (C.27)

where µ =
m1m2

m1 +m2

is the reduced mass of the binary system and m1 and m2

are the masses of the two stars in the binary system. Uµ = (1, ẋ, ẏ, 0) is the non

relativistic four velocity of the reduced mass of the binary system in the x − y

plane of the Keplerian orbit.

This stress energy tensor only corresponds to the matter fields but not the effec-

tive stress-energy tensor which, in general, is Tµν = Tmatterµν + TGWµν , Tmatterµν

is the usual stress-energy tensor for matter fields and TGWµν corresponds to the

energy content of the gravitational waves. The expression for the TGWµν is

TGWµν = 〈hαβ,µhαβ,ν −
1

2
h,µh,ν〉. (C.28)

Now at the tree-level, from the equation of motion for hαβ , we can write

hαβ ∼
1

Mpl

(�−m2
g)
−1Tmatterαβ . (C.29)

Therefore,

TGWµν (kα) ∼ 1

M2
pl

(
(Tmatterαβ )2 − (Tmatter)2

2

)(
kµkν

(kαkα −m2
g)

2

)
. (C.30)

Thus in the radiation zone, i.e. far from the source, TGWµν is suppressed by the fac-

tor of 1/M2
pl in comparison with the part (Tmatterµν ) from the matter field. There-

fore, for gravitational radiation from compact binaries, Tµν ' Tmatterµν .

We can write the Keplerian orbit in the parametric form as

x = a(cos ξ − e), y = a
√

(1− e2) sin ξ, Ωt = ξ − e sin ξ, (C.31)

where a and e are the semi-major axis and eccentricity of the elliptic orbit re-

spectively. Since the angular velocity of an eccentric orbit is not constant, we
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can write the Fourier transform of the current density in terms of the n harmon-

ics of the fundamental frequency Ω =
[
G

(m1 +m2)

a3

] 1
2
. Using Eq.C.31, we can

write the Fourier transforms of the velocity components in the Kepler orbit as

ẋn =
1

T

∫ T

0

einΩtẋdt = −iaΩJ ′n(ne), (C.32)

and

ẏn =
1

T

∫ T

0

einΩtẏdt =
a
√

(1− e2)

e
ΩJn(ne), (C.33)

where we use T = 2π/Ω, and the Bessel identity Jn(z) =
1

2π

∫ 2π

0

ei(nξ−z sin ξ)dξ.

The prime over the Bessel function denotes the derivative with respect to the ar-

gument. Hence the Fourier transforms of the orbital coordinates become

xn =
ẋn
−iΩn

=
a

n
J ′n(ne), yn =

ẏn
−iΩn

=
ia
√

1− e2

ne
Jn(ne). (C.34)

Now we will calculate the Fourier transforms of different components of the

stress tensor with ω′ = nΩ as below. Thus,

Tij(k′, ω′) =
1

T

∫ T

0

∫
Tij(x, t)e−i(k′·x−ω′t)d3xdt

=

∫
Tij(x, ω′)e−ik

′·xd3x. (C.35)

Expanding e−ik
′.x ≈ 1− ik′.x− · · · and retaining the leading order term k′.x ∼

Ωa� 1 for binary orbit, we can write Eq.C.35 as

Tij(k′, ω′) ' Tij(ω
′) =

∫
Tij(x, ω′)d3x. (C.36)

From conservation of the stress-energy tensor, i.e. ∂µT µν(x, t) = 0, we get

∂i∂jTij(x, ω′) = −ω′2T00(x, ω′). (C.37)

Multiplying both side of the Eq.C.37 by xkxl and integrating over all x we get

Tkl(ω
′) = −ω

′2

2

∫
T00(x, ω′)xkxld3x (C.38)

= −µω
′2

2T

∫ T

0

∫
δ3(x′ − x(t))eiω

′txkxld
3xdt (C.39)

= −µω
′2

2T

∫ T

0

x′k(t)x
′
l(t)e

iω′tdt, (C.40)
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where in the Eq.C.39 we have used the Eq.C.27. Doing integration by parts

of Eq.C.40 and using the Bessel function identities1, we can write the different

components of stress tensor in the x − y plane. The xx-component of stress

tensor in the Fourier space is

Txx(ω
′) = −µω

′2

2T

∫ T

0

x2(t)eiω
′tdt

= −µω
′2

4π

∫ 2π

0

a2(cos ξ − e)2einβdβ, (C.41)

where we used Eq.C.31 and ω′ = nΩ, β = Ωt, and T = 2π/Ω. Doing integra-

tion by parts of Eq.C.41 we get

Txx(ω
′) =

µω′2

4πin

∫ 2π

0

einβ
d

dβ
(cos ξ − e)2 dβ

=
µω′2

2πin

∫ 2π

0

sin ξ(cos ξ − e)einβdξ

= −µω
′2

8πn

∫ 2π

0

[
(e2iξ − e−2iξ)− 2e(eiξ − e−iξ)

]
einβdξ

= −µω
′2

4n
[Jn−2(ne)− 2eJn−1(ne) + 2eJn+1(ne)− Jn+2(ne)] ,(C.42)

where in the last step we used the definition of the Bessel function and β = Ωt =

ξ − e sin ξ.

Similarly,

Tyy(ω
′) = −µω

′2

2T

∫ T

0

y2(t)eiω
′tdt

= −µω
′2(1− e2)

4π

∫ 2π

0

a2 sin2 ξ einβdβ. (C.43)

Adding Eq.C.41 and Eq.C.43 we get

Tyy(ω
′) + Txx(ω

′) = −µω
′2a2

4π

∫ 2π

0

(1− e cos ξ)2einβdβ

=
µω′2a2e

2πin

∫ 2π

0

sin ξ einβdβ,

=
µω′2a2

2πn2

∫ 2π

0

e cos ξ einβdξ,

=
µω′2a2

2πn2

∫ 2π

0

einβdξ =
µω′2a2

n2
J2
n(ne). (C.44)

1Jn−1(z)− Jn+1(z) = 2J ′n(z), Jn−1(z) + Jn+1(z) =
2n

z
Jn(z)



C.1. ENERGY LOSS BY MASSLESS GRAVITON RADIATION FROM
BINARIES 163

Therefore

Tyy(ω
′) = −Txx(ω′) +

µω′2a2

n2
J2
n(ne)

=
µω′2a2

4n

[
Jn−2(ne)− 2eJn−1(ne) +

4

n
Jn(ne) + 2eJn+1(ne)−

Jn+2(ne)
]
. (C.45)

The xy-component of the stress tensor in the Fourier space is

Txy(ω
′) = −µω

′2

2T

∫ T

0

x(t)y(t)eiω
′tdt

= −µω
′2
√

1− e2

4π

∫ 2π

0

a2(cos ξ − e) sin ξ einβdβ

=
µω′2a2

√
1− e2

4πin

∫ 2π

0

(cos(2ξ)− e cos ξ) einβdξ,

= −iµω
′2a2
√

1− e2

4πn

∫ 2π

0

(cos(2ξ)− 1) einβdξ

= −iµω
′2a2
√

1− e2

4n
[Jn+2(ne)− 2Jn(ne) + Jn−2(ne)](C.46)

For convenience we summarize the final expressions of Tij(ω′) as

Txx(ω
′) = −µω

′2a2

4n

[
Jn−2(ne)− 2eJn−1(ne) + 2eJn+1(ne)− Jn+2(ne)

]
,

Tyy(ω
′) =

µω′2a2

4n

[
Jn−2(ne)−2eJn−1(ne)+

4

n
Jn(ne)+2eJn+1(ne)−Jn+2(ne)

]
,

Txy(ω
′) =

−iµω′2a2

4n
(1− e2)

1
2

[
Jn−2(ne)− 2Jn(ne) + Jn+2(ne)

]
. (C.47)

Using Eq.C.47, we get two useful results

Tij(ω
′)T ij∗(ω′) =

µ2ω′4a4

8n2

{
[Jn−2(ne)− 2eJn−1(ne) + 2eJn+1(ne) +

2

n
Jn(ne)−

Jn+2(ne)]2 + (1− e2)[Jn−2(ne)− 2Jn(ne) + Jn+2(ne)]2 +
4

n2
J2
n(ne)

}
= 4µ2ω′4a4

(
f(n, e) +

J2
n(ne)

12n4

)
, (C.48)

where

f(n, e) =
1

32n2

{
[Jn−2(ne)− 2eJn−1(ne) + 2eJn+1(ne) +

2

n
Jn(ne)− Jn+2(ne)]2+

(1− e2)[Jn−2(ne)− 2Jn(ne) + Jn+2(ne)]2 +
4

3n2
J2
n(ne)

}
(C.49)
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and

|T ii|2 =
µ2ω′4a4

n4
J2
n(ne). (C.50)

Thus the energy loss due to massless graviton radiation becomes

dE

dt
=

κ2

8(2π)2

∫
8π

5

[
Tij(ω

′)T ∗ji(ω
′)− 1

3
|T ii(ω′)|2

]
δ(ω − ω′)ω2dω,

=
32G

5

∞∑
n=1

(nΩ)2µ2a4(nΩ)4f(n, e)

=
32G

5
Ω6
( m1m2

m1 +m2

)2

a4(1− e2)−7/2
(

1 +
73

24
e2 +

37

96
e4
)
. (C.51)

This expression is called Einstein’s quadrupole gravitational radiation which

matches with the Peters-Mathews result [177]. From the energy loss formula

we can calculate the change in time period (Pb = 2π/Ω). From Kepler’s law

Ω2a3 = G(M1 + M2) we have ȧ/a = (2/3)(Ṗb/Pb) . The gravitational energy

is E = −GM1M2/2a which implies ȧ/a = −(Ė/E). Using these two relations

we get Ṗb/Pb = −(3/2)(Ė/E).



Appendix D

Hamiltonian of neutrino evolution

equation in presence of Non

Standard Interaction (NSI) and a

sterile state

D.1 Two flavours neutrino evolution in vacuum and

matter

The three neutrino flavour eigenstates (νe, νµ, ντ ) can be expressed as a quantum

superposition of three mass eigenstates (ν1, ν2, ν3) with masses mi. The evolu-

tion equation of neutrinos in vacuum in the mass eigenstate basis can be written

as

i

ν̇1

ν̇2

 =

E1 0

0 E2

ν1

ν2

 , (D.1)

where we consider the two flavour case and the Hamiltonian is diagonalized in

the mass eigenstate basis. We can also write

iU

ν̇1

ν̇2

 = U

E1 0

0 E2

UTU

ν1

ν2

 , (D.2)
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Chapter D. Hamiltonian of neutrino evolution equation in presence of Non Standard

Interaction (NSI) and a sterile state

where U is called the transformation matrix or the lepton mixing matrix which

transforms a mass state of neutrino to its flavour state. Hence, we can write

Eq.D.2 as

i

ν̇e
ν̇µ

 = U

E1 0

0 E2

UT

νe
νµ

 , (D.3)

where we choose the orthogonal mixing matrix U as

U =

 cos θ sin θ

− sin θ cos θ

 . (D.4)

Now, we can write

U

E1 0

0 E2

UT = U

p+
m2

1

2E
0

0 p+
m2

2

2E

UT

= U

m
2
1

2E
0

0
m2

2

2E

UT

= U

δ1 0

0 δ2

UT , (D.5)

where we use the dispersion relation E = p +
m2

2p
≈ p +

m2

2E
, in the ultra

relativistic limit. We extract the constant phase as it does not contribute to the

transition probability, δi =
m2
i

2E
and δ = δ2 − δ1 =

∆m2
21

2E
. Inserting D.4 in

Eq.D.5 we obtain cos θ sin θ

− sin θ cos θ

δ1 0

0 δ2

cos θ − sin θ

sin θ cos θ

 =
(δ1 + δ2)I

2
+
δ

2

− cos 2θ sin 2θ

sin 2θ cos 2θ

 ,

(D.6)

where the first term with the identity matrix I is again the cosntant phase part

and has no contribution in the transition probability. So the evolution equation

becomes

i

ν̇e
ν̇µ

 =
δ

2

− cos 2θ sin 2θ

sin 2θ cos 2θ

νe
νµ

 . (D.7)

Hence, the two flavour Hamiltonian in vacuum becomes

Hvac =
∆m2

21

4E

− cos 2θ12 sin 2θ12

sin 2θ12 cos 2θ12

 . (D.8)
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In presence of matter, the corresponding Hamiltonian becomes

Hvac+matt =

−
∆m2

21

4E
cos 2θ12 +

√
2GFNe −

GFNn√
2

∆m2
21

4E
sin 2θ12

∆m2
21

4E
sin 2θ12

∆m2
21

4E
cos 2θ12 −

GFNn√
2

 ,

(D.9)

since the electron neutrino has both charge and neutral current interactions whereas

the muon neutrino has only the neutral current interaction. The total matter po-

tential of electron neutrino is Vνe =
√

2GFNe−
GFNn√

2
, and the matter potential

for muon neutrino is Vνµ = −GFNn√
2

. Hence, the term
GFNn√

2
behaves as the

constant phase part in the evolution equation and has no contribution in the tran-

sition probability. Hence, the two flavour neutrino evolution equation becomes

i

ν̇e
ν̇µ

 =

−∆m2
21

4E
cos 2θ12 +

√
2GFNe

∆m2
21

4E
sin 2θ12

∆m2
21

4E
sin 2θ12

∆m2
21

4E
cos 2θ12


νe
νµ

 . (D.10)

D.2 Three flavours neutrino evolution in presence

of non standard interaction (NSI)

In the three flavour scenario, the Hamiltonians for neutrino and anti neutrino

flavour states are given as

Hν = Hvac +Hmatt, (D.11)

and

H ν̄ = (Hvac −Hmatt)
∗, (D.12)

where the Hamiltonian in vacuum is given as

Hvac = UvacDvacU
†
vac, (D.13)

with

Dvac =
1

2E
diag(0,∆m2

21,∆m
2
31), (D.14)

where ∆m2
ij = m2

i −m2
j , and U is the 3× 3 orthogonal mixing matrix.
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Including the Non Standard Interaction (NSI), the total potential can be parametrized

as

Hm = Hmatt+HNSI =
√

2GFNe(r)


1 0 0

0 0 0

0 0 0

+
√

2GF

∑
f=e,u,d

Nf (r)


εfee εfeµ εfeτ

εf∗eµ εfµµ εfµτ

εf∗eτ εf∗µτ εfττ

 ,

(D.15)

where the first term in the right hand side corresponds to the matter Hamiltonian

and the second term denotes the Hamiltonian for NSI.

The neutral current Lagrangian for the NSI in matter which affects the neutrino

propagation is given by the effective four fermion operator

LNCNSI = −2
√

2GF ε
fP
αβ (ν̄αγ

µνβ)(f̄γµPf), (D.16)

where f is the charged fermion, P is the projection operator (left and right), and

εfPαβ are the NSI parameters which governs the deviation from the standard inter-

actions. NSI affects the neutrino propagation in matter through vector coupling

and we can write the NSI parameters as εfαβ = εfLαβ + εfRαβ .

D.2.1 Effective Hamiltonian for atmospheric and Long base-

line (LBL) neutrinos

For different charged fermions, we have different NSI parameters in the general-

ized potential. However, for the propagation of atmospheric and LBL neutrinos,

the neutrino to electron ratio (Yn) is almost constant all over the earth. This

implies that those oscillations are only sensitive to the sum of these interactions

weighted with the relative abundance of each particle. Hence, we can define

εαβ =
∑

f=e,u,d

〈Yf
Ye

〉
εfαβ = εeαβ + Yuε

u
αβ + Ydε

d
αβ. (D.17)

From the PREM model we can write the values of Yn = 1.012 in the mantle

and Yn = 1.137 in the core, with an average value Yn = 1.051 all over the

earth. A proton has two up quarks and one down quark, a neutron has one up

quark and two down quarks, and neutral matter obviuosly has the same number
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of protons and electrons (Yp = 1). So we have Yu = 2 + Yn = 3.051 and

Yd = 1 + 2Yn = 3.102 in the earth. So the total Hamiltonian including the

matter and NSI effects can be expressed as

Hm =
√

2GFNe(r)


1 + εee εeµ εeτ

ε∗eµ εµµ εµτ

ε∗eτ ε∗µτ εττ ,

 (D.18)

where the “1+” term in the ee entry is due to for the standard interaction term.

Since, Hm is Hermitian and its trace is irrelevant for oscillation, so we are left

with eight parameters.

D.2.2 Effective Hamiltonian for solar and KamLAND neutri-

nos

For these types of neutrino propagation, we work in the limit ∆m2
31 →∞ which

effectively means GF

∑
f

Nf (r)ε
f
αβ �

∆m2
31

E
. In this approximation, the sur-

vival probability can be written as

Pee = c4
13Peff + s4

13. (D.19)

Hence, the total Hamiltonian (vacuum+matter) including the NSI effect is

Hν = R23R̃13R12DvacR
†
12R̃

†
13R

†
23 +Hm, (D.20)

where Uvac = R23R̃13R12 and,

R12 =


c12 s12 0

−s12 c12 0

0 0 1

 , (D.21)

R̃13 =


c13 0 s13e

−iδCP

0 1 0

−s13e
iδCP 0 c13

 , (D.22)

R23 =


1 0 0

0 c23 s23

0 −s23 c23

 , (D.23)
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and

Dvac =
1

2E


0 0 0

0 ∆m2
21 0

0 0 ∆m2
31

 . (D.24)

Hence, from Eq.D.20 we can write

H ′ν = R12DvacR
†
12 + R̃†13R

†
23HmR23R̃13. (D.25)

The first term of Eq.D.25 becomes

R12DvacR
†
12 =

1

2E


∆m2

21

2
(1− cos 2θ12)

∆m2
21

2
sin 2θ12 0

∆m2
21

2
sin 2θ12

∆m2
21

2
(1 + cos 2θ12) 0

0 0 ∆m2
31

 .

(D.26)

We are looking for solar resonance in 1 − 2 plane and from Eq.D.26, we can

see that the third component is decoupled and we are left with effective 2 × 2

traceless matrix. After removing the constant phse part, we can write Eq.D.26

as

Heff
vac =

∆m2
21

4E

− cos 2θ12 sin 2θ12

sin 2θ12 cos 2θ12

 . (D.27)

Similarly, in the effective 2×2 model, we can write the matter+NSI Hamiltonian

as

Heff
m =

√
2GFNe(r)

c2
13 0

0 0

+
√

2GF

∑
f

Nf (r)

−εfD εfN

εf∗N εfD

 . (D.28)

The new parameters εfD and εfN are related to the original parameters εfαβ by the

following relations

εfD = c13s13Re[e
iδCP (s23ε

f
eµ + c23ε

f
eτ )]− (1 + s2

13)c23s23Re(ε
f
µτ )−

c2
13

2
(εfee − εfµµ)+

s2
23 − s2

13c
2
23

2
(εfττ − εfµµ),

(D.29)

and

εfN = c13(c23ε
f
eµ−s23ε

f
eτ )+s13e

−iδCP [s2
23ε

f
µτ−c2

23ε
f∗
µτ+c23s23(εfττ−εfµµ)]. (D.30)
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Hence, effectively the oscillation probabilities depend on the following real pa-

rameters ∆m2
21, θ12, θ13, one real matter parameter εfD and one complex matter

parameter εfN for each f . The matter chemical composition of the Sun varies

substabtially along the neutrino production region. The values of Yn in the cen-

tre is 1/2 and 1/6 at the border of the solar core. So like earth, it is not pos-

sible to introduce a common set of parameters for all the different f . Hence,

in the analysis of solar data, one should consider only one particular choice of

f = e, f = u, f = d at a time.

D.3 Incorporating the effect of sterile neutrino

Now if we add an extra sterile neutrino state, then the Hamiltonian becomes

Hν = R34R̃24R̃14R23R̃13R12DvacR
†
12R̃

†
13R

†
23R̃

†
14R̃

†
24R

†
34 +Hm, (D.31)

Hence,

H ′ν = R12DvacR
†
12 + R̃†13R

†
23R̃

†
14R̃

†
24R

†
34HmatR34R̃24R̃14R23R̃13, (D.32)

where

Dvac =
1

2E


0 0 0 0

0 ∆m2
21 0 0

0 0 ∆m2
31 0

0 0 0 ∆m2
41.

 (D.33)
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The total matter potential including standard and non-standard interactions is

governed by the Hamiltonian,

Hsterile+NSI
mat =

√
2GFNe(r)


1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

+
GFNn√

2


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

+

√
2GF

∑
f=e,u,d

Nf (r)


εfee εfeµ εfeτ 0

εf∗eµ εfµµ εfµτ 0

εf∗eτ εf∗µτ εfττ 0

0 0 0 0

 ,

(D.34)

where we assume that there is no NSI parameters for sterile neutrinos. Following

the same procedure for three flavours, we can construct the effective 2×2 model

and the corresponding Hamiltonian Heff = Heff
vac +Heff

m is given as

Heff =
∆m2

21

4E

− cos 2θ12 sin 2θ12

sin 2θ12 cos 2θ12

+

Aic2
13c

2
14 0

0 0

+ Aj

−k1 k2

k∗2 k1

+

Ai
∑

f=e,u,d

Nf

Ne

−εfD εfN

εf∗N εfD

 ,

(D.35)

where the parameters Ai, Aj, k1, k2, ε
f
D, ε

f
N are defined in Chapter 5.
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