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Thesis in a Nutshell

In Chapter 1, the introductions to the basics of the light-matter interaction and the ba-

sics of the subjects of interest in this thesis is presented. In Sec. 1.1, the propagation of

classical electro-magnetic wave, quantum statistical treatment of atomic dynamics and

semi-classical treatment of the atom-electromagnetic wave interaction are discussed.

The key theme of the thesis - atomic coherence is introduced in Sec. 1.2, with examples to

simplest atomic systems. Many different applications of the coherence are discussed.

In Chapter 2, response of an anisotropic medium to a linearly polarized laser field is

discussed. Induced anisotropy in an initially isotropic atomic medium by magnetic

field or laser field, giving rise to rotation of plane polarization of a weak probe field, is

also discussed.

In Chapter 3, laser field induced birefringence in an initially isotropic medium and

its control in a four level cascade system (a model system of �
�
Ca) is demonstrated

using atomic coherence effects. It is also shown that the control laser can be used to

obtain large enhancement of magneto-optical rotation (MOR - the polarization rotation

induced by a magnetic field) by suitably choosing the control field parameters. Further

it is shown that the control field can also produce new frequency regions which show

very significant magneto-optical rotation.

In Chapter 4, control of MOR in an inhomogeneously broadened medium is analyzed.

It shown how control laser can modify the susceptibilities and hence result signifi-

cantly large MOR in frequency regions, where MOR otherwise is small. Analytical

conditions are derived to select the probe frequency regions where one can obtain

large MOR. The claims are substantiated by presenting many numerical results for

many different parameters at different conditions.

In Chapter 5, coherences in spontaneous emission - a coherence produced by an inco-

herent (vacuum) field, known as vacuum induced coherence (VIC), is introduced. A

master equation formalism for the treatment of spontaneous emission is developed.

The origin of VIC and various consequences are discussed. The conditions for VIC to

ix



occur are also discussed with examples.

In Chapter 6, VIC in two radiatively coupled multilevel systems in free space is exam-

ined. It is shown that this radiative coupling between the dipoles can produce new

interference effects, which are especially important when the distance between two

dipoles is less than a wavelength. This possibility is demonstrated by considering two

identical
�

-systems, where the dipole matrix elements are chosen such that they do not

meet the condition for VIC to occur. The choice such dipole matrix elements enables to

isolate the effects of the VIC in the radiative coupling between multilevel atoms with

nearly degenerate transitions. Detailed numerical results are presented to bring out

the role of VIC in multi-atom multilevel systems.

In Chapter 7, the possibility of bypassing the stringent requirement, for VIC to occur, is

examined. It is demonstrated that preselection of polarization can lead to new interfer-

ence effects in spontaneous emission, which otherwise do not occur unless the transi-

tion dipole matrix elements of the atom satisfy the stringent condition. It is shown how

the preselection of polarization can be achieved in a cavity. This is demonstrated in the

context of a four level atomic system in a bimodal cavity in the limit of a bad cavity.

As a result of the new coherence, quantum beat is observed in the atomic populations.

A clear physical picture is presented for these beat structures.

In Chapter 8, restoration of VIC is examined using a laser field. It is shown that the

laser field mixes the atomic energy levels, and thus makes the transition dipole matrix

elements dependent on the strength and frequency of the laser field. The modified

transition dipole matrix elements are shown to meet the condition for VIC occur in the

system. The possibility of laser field induced quantum beats in two-photon correla-

tions in cascade emission is demonstrated. It is also clearly shown that VIC is crucial

for the production of quantum beats.

x



Chapter 1

Introduction

The field of optics is one of the oldest subjects in physical sciences which has consistently

contributed to the excitements of physicists working in many different fields. The turn of

the twentieth century brought a revolution in this field when Max Plank’s postulated to

quantize the energy of harmonic oscillator [1], to account for the spectral distribution of

electromagnetic energy from a thermal source. It is followed by intuitive phenomenolog-

ical predictions of Einstein on the rate of absorption and emission of light by an atom [2].

The absorption and emission probabilities of light by the atoms were thought to be the

properties of the atomic system, that can not be altered. A new era in the field of interac-

tion of radiation with matter emerged when the coherent sources became available in 1960.

The use of coherent radiation sources, its ability to selectively excite atoms, and to prepare

atoms in coherent superposition of their energy eigenstates, have found tremendous appli-

cations in the field of light-matter interaction and has largely contributed to fundamental

understanding of various physical processes and their interactions. In last few decades,

pioneering developments have been made, both theoretically and experimentally, to mod-

ify and control the optical properties (e.g. dispersion, absorption, refractive index, etc.)

of the atoms and the spectral properties of the emitted radiation field. A myriad of new

fascinating phenomena have been observed; to name a few - electromagnetically induced

transparency (EIT), coherent population trapping (CPT), lasing without inversion (LWI),

laser cooling and trapping of neutral atoms, Bose-Einstein condensation, ultra-slow group

velocity of light and more recently superluminal light propagation. Of course this list is

by no means exhaustive. The key to all these exciting developments is the atomic coherence.

This thesis addresses atomic coherence effect in two parts and in two different contexts,
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Introduction 2

namely: (i) laser field induced anisotropy in an isotropic medium, giving rise to coherent

control of magneto-optical rotation; (ii) creation of new coherences in spontaneous emis-

sion and studying its effects.

1.1 Interaction of Radiation with Matter

From the Newtonian particle description of reflection of light, to present day developments

in quantum optics, the understanding of radiation matter interaction has been revolution-

ized. In the studies of interaction of microscopic (atomic or sub-atomic) entities with the

radiation field, the microscopic particle needs to be treated quantum mechanically. But the

field could be either classical or fully quantum mechanical, depending on the nature of the

problem one is interested in. Many features of light and light-matter interaction could be

correctly derived from a classical theory of electromagnetic (EM) field. The Plank’s quan-

tization hypothesis is then included in the classical theory as an additional assumption in

expressing the energy of the EM field.

In this section we present general methods to the basic interaction processes between

EM field and atoms in different formalisms. Without invoking any explicit quantum no-

tion, but only with the assumption that atomic energy levels are discrete, Einstein gave a

simple phenomenological rate equations to describe the absorption and emission of light

by atoms [2]. He introduced the process of induced emission to make his theory consistent

with Plank’s law. And later, this theory became the basis for the lasers. Subsequently,

Einstein’s predictions on the atomic absorption and emission probabilities of atom were

rigorously proved by complete quantum mechanical treatment [3].

In what follows, we will develop the mathematical framework to bring out the com-

plete description of the atom-laser field interaction. In the following sub-section propaga-

tion of a classical field inside an atomic gas medium considered.

1.1.1 Propagation Dynamics of Classical EM Field

We consider propagation of electromagnetic field inside a medium containing neutral gas

of atoms, which are non-conducting and non-magnetic. The propagation of the field inside
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such a medium is governed by the Maxwell equations [4]

���� ������
	
(1.1a)

���� ������
	
(1.1b)

��� �������
� ��
��� ���
	 (1.1c)

���� ���� ��
� ��
��� ���
� (1.1d)

Here
��

and
��

are the macroscopic electric and magnetic field vectors, � is the speed of

light in free space. The electric displacement vector
��

and the magnetic field
��

are the

derived fields given by

���� �������� � !	 ��"� ��#�$�%� �&��
(1.2)

Here
� 

and
�&

represent the macroscopic electric polarization (electric dipole moment

per unit volume) and magnetic polarization vectors (magnetic dipole moment per unit

volume) which are obtained by spatially averaging over their microscopic counter parts.

We note that the contributions from higher order moments (such as electric quadrapole

moments), which are negligibly small compared to the dipole contributions, have been

neglected in (1.2). Further in this thesis, the systems under consideration are non-magnetic

medium, implying
�&'���

; hence
��"� ��

. Using these conditions in Eqs. (1.1) we get

���� ���� ��(�)��+*
� *
��� *
, ��(���%� � .-/���
�

(1.3)

Further in an isotropic medium
��0�21 ��

, where
1

is the permitivity of the medium. Thus

from Eq. (1.1a), we get
���� ������

. Using this condition in the vector triple product of Eq.

(1.3), one gets

� * ��#�3��+*
� * ��
��� * �

�%�
�+*
� * � 
��� *54 (1.4)

The equation (1.4) is a second order inhomogeneous equation which, in general, is difficult

to solve. However, for the class of problems of our interest, one can obtain analytical

solutions.

For example, let us consider a plane wave propagating along 6 -direction in an atomic

gas medium

�� , 6 	 � -/7�89;: , 6 	 � -;<+=?>A@ABC=?DFEG� � � � �H	 (1.5)
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which induces a linear polarization
� 

in the medium

� , 6 	 � -/7�89  �� , 6 	 � -;< =?>A@ B
=?DFE � � � � � � (1.6)

Here : , 6 - is the amplitude of the field with a propagation vector
�� , � ��� �� � -

, central fre-

quency � and the direction of the electric field is given by
89 . Note that for a continous wave

laser, the time dependence of : can be neglected.

Under the approximation that the bound electrons in an atom experience several orders

of magnitude larger electrostatic field ( � � ���
	������������������� ) compared to the field produced

by the external laser field ( � � ����	������������������� for a continuous laser with intensity as large

as � ��������� * ), the induced polarization can be expanded in a Taylor series in powers of the

laser field
��
. The  E"! component of the polarization is

 $# , 6 	 � - 7  $#
%%%'&�( � �*),+.- �  #� �
+0/ %%%�&�( � � + � �132 ) +�4 56- � *  #

� �
+
� �

57/ %%%'&�( � � + � 5 � � � ��� (1.7)

The first term in (1.7) corresponds to the dipole moment per unit volume in the absence of

external field, which is identically zero for our system under consideration. Thus the only

non-zero contributions to the polarization come from the induced dipole moments by the

external laser field. The term in the parenthesis in the second term of Eq. (1.7) represents

the linear susceptibility �98;:=<# + of the medium to the applied electric field. Similarly, higher

order susceptibilities are obtained by the subsequent terms in (1.7). However, the inves-

tigations of interest in this thesis is to determine the response of the medium to a weak

(probe) field. Hence we will deal only with the linear susceptibility, and the corresponding

polarization. Note that any physical system requires a finite time to respond to the exter-

nal field. Thus the polarization observed at time
�

has contributions due to response of the

system to the electric field at all previous times before
�
. Thus we have the general relation

 $# , 6 	 � -/7>)�+@? E
BBA*C�D � # + , � � D -;� + , 6 	 D -+� (1.8)

We substitute the electric field
��

from (1.5) in the above equation, neglecting the explicit

time dependence of : (which is valid for a continous wave laser), and changing the vari-

able of integration to
�=E � � � D in the above equation, we get

 # , 6 	 � -/7 ) + � # + , � - : + , 6 - < =?> @AB
=?DFE � � � � � 4 (1.9)
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where

� # + , � -/7 ? A� C � E � # + , � E -;< =?DFE�� � (1.10)

Here � is the frequency of the laser field. Note that
� 

can be reduced to the form (1.9) only

if field is monochromatic and and has the form in Eq. (1.5). The superscript in � has been

dropped for brevity. Here it may be noted that �
# +

is a tensor of rank two. For an isotropic

medium � # + is diagonal, i.e., �
# + 7�� # + � . Thus (1.9) can be written as

� , 6 	 � - ��89 � , � - : , 6 -;< =?>A@ABC=?DFE � � � � � (1.11)

The susceptibility, in principle could be time dependent. But our concern will be the

steady state situation where � is independent of time. If the medium is anisotropic, the

response of the medium will be different for different components of the electric field, i.e.,
� #�#��� �

+�+
. This asymmetry gives rise to rotation of plane of polarization of the incident

probe field (see Chapter 2). In Chapters 3 and 4 we will discuss in detail such polarization

rotations and their control by a strong (control) field.

Coming back to Eq. (1.4), the propagation equation for the field in (1.5) and correspond-

ing polarization (1.6) becomes
� * ��
� 6 *

� ��+*
� * ��
��� * �

���
�+*
� * � 
��� * � (1.12)

On using Eqs. (1.5) and (1.6) in Eq. (1.12), we get
� :
� 6
� ��

� :
��� � 1 ��� �  $� �

(1.13)

In deriving (1.13), we have made the slowly varying envelope approximation (SVEA) [5], i.e.,
: and

 
are slowly varying functions of position compared to scale of optical wavelength,

and also slowly varying functions of time compared to the optical period of the radiation

field, i.e. %%%% � � :� 6 %%%% � %%%% � * :� 6 * %%%% 	 %%%% � * � :��� %%%% � %%%% � * :��� * %%%% 	
	�� � � *  $��� � %%%% � �  ���� %%%% � %%%% � *  ���� *
%%%% � (1.14)

In the steady state situation,
 � � � , � - : , 6 - [see Eq. (1.11)], Eq. (1.13) reduces to

� :
� 6
� 1 ��� � � , � - : , 6 -+	 (1.15)
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and the solution gives the field at the output

���� � E , 6 ��� -/��89;: , � -;< *�� =?>��
	 < = >�� B
=?DFE � � � � � (1.16)

The measured quantity is � � � E 7 %%% ��� � E %%% * . Clearly, this macroscopic measurement contains

the information of the effects due to the medium via � . For ��� � , which is the case in

the optical frequency domain, the approximate value of linear refractive index � , � - and

absorption coefficient  , � - are given by

� , � - 7 � � 1 ������� � , � -�� 	 (1.17a) , � -/7 ��� ��� ��� � , � -�� � (1.17b)

The output intensity is thus given by

� � � E , 6 ��� -/7 � � � E , �F- < B
# � �

(1.18)

It may be noted that � would also contain information of any other strong control field

present in the medium. Evaluation of � in presence of the control fields and their effects

will be discussed in Chapters 3 and 4.

1.1.2 Quantum Statistical Treatment of Atomic Dynamics

A quantum mechanical state of a system is represented by a state vector
�����

(in Dirac

notation [6]). It obeys the Schrödinger equation

�! " � �������� �$# �����+	
(1.19)

where
#

represents the Hamiltonian of the system that governs the time evolution of the

system. This equation is useful to derive complete information regarding the system if the

initial state of the system is exactly known. However, we often encounter systems where

the initial state of the system is not known in a precise manner. For example, an ensemble

of atoms at a given temperature in an atomic vapor cell - in which the exact momentum

state of each individual atom is impossible to know. But the probability distribution of

momentum states inside the cell is known to follow the Maxwell-Boltzmann distribution.

In such circumstances, a statistical description of the system is given by density matrix

formalism. Further, this formulation can be useful when systems involve many decay and

broadening mechanisms.
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Any arbitrary state
�����

of a system (say an atom) can be expressed in terms of a com-

plete set of orthonormal basis states
� ���

, i.e.,
� � � � � = � = � ��� ; where

� � = � * represents the prob-

ability that the the state
� � �

and
� = � � = � * � � . Often it is useful to take the eigenstates of the

free-atomic Hamiltonian as these basis states. Then the density operator � for the state
� � �

is defined as

� � ������� � �+�>)
=
4 � � = ���� � �������7�?� (1.20)

It can be represented as a matrix whose elements are

� = � �	� ��� � � ��� � � = ���� � (1.21)

Therefore 
�� � � )
=
� = � �= � � 	 (1.22)

which is the statement of conservation of probability. Here

��

represents the trace opera-

tion defined for an arbitrary matrix
&

as

��/& � �� & �

. Further, the expectation value

of any operator � in terms of the density operator can be obtained� � �/�	� � � � ����� � )
=
4 � � �= � � � = � � ) � � )

= � � = � = ��� � ) � , ��� - ��� 7�
�� , ��� -+� (1.23)

Next we consider an ensemble of such identical systems, where different states of the

system are represented by
���  �

(say). In many situations the state of the system is not

known; however, the probability that the system is in a given state
���  �

is known. The

density operator for the ensemble is given by

� � ) ��  ���  ��� �  � 4 ) ��  � � � (1.24)

From Schrödinger equation (1.19), it can be shown that
� ���� ��� � " ��# 	 � � 	 (1.25)

which is known as Liouville equation of motion for the density matrix. Here the density

matrix elements in terms of the � � ����� basis are given by

� = � � ) ��  � = � ��� 	 (1.26)
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and carrying out similar algebra as in (1.23), one gets the ensemble average of the observ-

able corresponding to the operator� � �/� )  � �  � � ���  �/� 
�� , � � -+� (1.27)

Thus it is clear from the above equation that evolution of any observable can be determined

from the evolution of the density matrix.

From Eq. (1.26), one may note the following properties of the density operator � : (a)� is Hermitian, (b) � is non-negative definite, i.e.,

�� , � ����� -�� � for any unitary operator

�
, (c)


�� , � * -�� � , with equality sign holding for pure states. The density matrix elements

(1.26) have the following physical interpretation: The diagonal element � = = , �  �  � � = � * -
represents the ensemble averaged probability for the system to be in energy eigenstate� � �

- often referred as population in state
� ���

. The off-diagonal terms � = � give the ensemble

average of the cross terms �

= �
 �� that represent the coherence between states

� � �
and

� � �
.

This is non-zero if the system exists in a coherent superposition of the states
� � �

and
� ���

.

Since these terms are complex, � = � can also become zero by cancellation of interference

terms in Eq. (1.26), while a non-zero value of � = � would mean a coherent addition of the

cross terms. In the context of atomic states, these matrix elements � = � are referred to atomic

coherences which is the emphasize of this thesis. Explicit evaluation of � in presence of

external laser field(s) will be presented with examples in the following section.

Note that the Liouville equation (1.25) is a more general equation compared to the

Schrödinger equation. Because in addition to the quantum mechanical evolution, it also

derives the statistical information of the system. Further, evolution of systems involv-

ing many broadening and decay mechanisms (e.g. collisional broadening, spontaneous

emission etc.) can be conveniently determined using this density matrix formalism. The

equation (1.25) in such cases is modified to
� ���� ��� � " ��# 	 � �%�
	 � 4 (1.28)

where
	

is the matrix containing the decay terms. The explicit form of
	

can be obtained by

rigorous calculation using the master equation formulation [7], where the system interacts

with a reservoir (could be a background EM field) to decay. In Chapter 5 (Sec. 5.2), we

derive a master equation for the spontaneous emission, which occurs due to interaction of

atom with the vacuum of the EM field.
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1.1.3 Semi-classical Analysis of Laser-Atom interaction

In this section we present the general mathematical framework to describe the interac-

tion of laser with atom. In semi-classical treatment, the laser field is treated as a classical

monochromatic field (given by (1.5)) and the atom is considered to have quantized energy

levels.

The Hamiltonian corresponding to an electron of charge
<

and mass ��� interacting

with an external EM field is given by

# � �1 ��� � �� � � < � �� , �� 	 � -�� * � < �	� , �� 	 � -G� � , � - 	 (1.29)

where
�� � represents the momentum operator corresponding to the electron.

� , � - is the

atomic binding potential. Here
�� , �� 	 � - ( � , �� 	 � - ) represents the vector (scalar) potential for

the external field, where the electric field (
��
) and magnetic field (

��
) are given in terms of�� and � as

������ �� � ����
� ����� 	 (1.30a) 	�� ��#� ���� �� � (1.30b)

In writing above Eq. (1.29), we have already neglected the interaction of magnetic field

part of the external laser field with the spin magnetic moment of the electron. Further we

consider the electron is bound to a nucleus (assumed to be static) which is located at
�� � ,

by a central force potential
� , � - . Thus the entire atom is immersed in a plane EM wave,

which can be described by the vector potential
�� , �� � � �� 	 � - . Here we make electric dipole

approximation [9]
�� � �� � � to get

�� , �� � � �� 	 � - � �� , � - ��
� � � �� � , �� �/� �� -��
� �� , � - ��
� , � �� � �� �+- (1.31)

Thus the dipole approximation amounts to neglecting
�� � �� ( ��� ����� � � in optical domain;

� � is the Bohr radius of the atom and
�

is the wavelength of the external field) in the

expansion of the exponential compared to unity. Physically this approximation would

mean that the wave function of the electron is too localized about the nucleus and thus the

spatial variation of the field of the incident plane wave over the position of the electron

can be ignored. If
��� � , �� 	 � - � is the electron wave function, under this approximation, it will
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satisfy the Schrödinger Eq. (1.19)

�� " ���� ��� � , �� 	 � - �/��� �1 ��� � �� � � < � �� , �� 	 � -�� * � < � � , �� 	 � -G� � , � -�� ��� � , �� 	 � - �+� (1.32)

Note that we are working in radiation gauge, i.e.,

� , �� 	 � -/���
	 
	�� ���� �� ���
� (1.33)

To simplify the above Eq. (1.32) we make a transformation [8] on the electron state vector

to define a new state vector
��� , �� 	 � - � such that��� � , �� 	 � - �/� ��
	��� � <�  " �� , �� � 	 � -/� ��	� �
� , �� 	 � - �+� (1.34)

Substituting this in Eq. (1.32) and with a small algebra Eq. (1.32) takes a simple form

�! " ���� ��� , �� 	 � - � � - � *�1 ��� � � , � - � �C � �� / ��� , �� 	 � - �
� , # � � #��+- ��� , �� 	 � - � 	 (1.35)

where
# �5� � *� � 1 ��� � � , � - is the unperturbed Hamiltonian corresponding to the bound

electron,
#� ��� �C � �� is the interaction Hamiltonian given in terms of gauge independent

field
��

- which we will use in our subsequent studies. Here
�C ��< �� is the induced dipole

moment and
��

is the applied laser field given in (1.5). In deriving (1.35), we have used the

fact that
�� � �"� �� " �� and in radiation gauge

����"� � �� � ��� . Note that the atomic variables

in Eq. (1.35) (e.g. � � , �C ) are to be replaced by the corresponding quantum mechanical

operators to get the semi-classical Hamiltonian for radiation-matter interaction. And the

state vector
�
� , �� 	 � - � can be used in place of

��� , �� 	 � - � to evaluate the expectation values of

any (gauge-invariant) operators.

In next section we will present an explicit example using semi-classical analysis. The

classical treatment of the laser field is quite reliable in such analysis due to the fact that,

lasers have large number of photons per mode. On the other hand, for atom interacting

with fields having very small photon mode density would require a complete quantum

mechanical treatment - e.g., atom interacting with free space vacuum (see Chapter 5), with

the dipole radiation from a neighboring atom (see Chapter 6) or vacuum of cavity field

(discussed in Chapter 7).

Electric Dipole Transition Selection Rule:
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From the interaction Hamiltonian
# �

, one can obtain the dipole transition selection

rules [11] for the atomic states that would interact with the external electric field. A transi-

tion from an initial state
��� = � to a final state

��� � � is given by the transition matrix element
� =�� � 7	� � � � #��� � = � 7�� ��� � � �C � �� � � = �+� (1.36)

Further
�C � ���� �� � �9 7 � # (say), i.e., polarization of the external electric field decides which

component of the transition dipole moment will contribute to
# �

. The angular part of
� =�� �

is ? C � ? C � 		� 	 ��
� ��� � , � 	 � - � # 
 ���� �
, � 	 � - 4 (1.37)

where
� = 	 � = (

� � 	 � � ) are the angular and magnetic quantum number of
��� = � (

��� � � ) respec-

tively,

 ���� �

, � 	 � - (

 � �� � , � 	 � - ) is the spherical harmonic corresponding to

��� = � (
� � � � ). The

above integral can be calculated for different  values and will give non-zero value only if,
� � � � = � � � 	
	�� � � � � = � � 	�� � 4 (1.38)

i.e., the dipole transitions are allowed only between the states of different parity and satisfy

Eq. (1.38). Further if spin-orbit coupling is there in the system, then one has to look for non-

zero matrix elements of
#��

in � ��� 	�� 	���	 � � � � basis instead of � ��� 	 � ��� basis. Here
�� � �� � ��

is the total angular momentum, and
� ���%��� 	 ����� � � 	 � � ����� ��� �?	 � � ��� ��	 � � � � 	 � � ��� .

The transition matrix element (1.36) for this can be shown to give non-zero value only if� � � � = � �
	�� � , ��
 � � ����� � � � = � � � �2�F-+	
� � � � = � � � 	 (1.39)
	�� � � � � = � �
	�� � �

This is known as the electric dipole transition selection rule. Eq. (1.39) is the guiding rule to

select the suitable atomic states and the polarizations of the external fields for the investi-

gations of our interest; e.g., in
�$� ��� � ���

transitions, the states
� � � � 	 � � � � , � � �

� 	 � ��� � � -�� � �5���
	 � ����� can be coupled only by left (right) circularly polarized light.

1.2 Atomic Coherences

In Sec. 1.1.2, we have already introduced atomic coherences. In this section we will de-

scribe how coherence can be created in an atom by the external laser field, considering
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simple atomic schemes. We will discuss how coherence effects particularly in multi-level

systems can be used to manipulate the optical properties.

1.2.1 Induced Coherences in Two level Atoms

Here we implement the general formalism developed in Sec. 1.1 to the simplest quantum

mechanical system - a two-state system, to show how coherence evolves. In the process we

will introduce the major approximations used repeatedly in this thesis. The energy levels

of a real atomic system depend on the couplings between its various electrons and the

nucleus. However in resonant optical processes, it is often sufficient to approximate the

atom to be effectively a two-level (or a few-level) atom. This is so if the frequency of the

laser field is resonant or near-resonant to the atomic transition frequency. This is known as

two-level approximation.

Let us consider a two-level atom with
� < �

(
� � �

) as excited (ground) state. It is excited by

a laser field
�� � � �9A: , 6 -;< =?>A@ B
=?DFE � � � � � . The two-level approximation will be valid only if: (a)

the laser is on resonance or near resonance with the atomic transition under consideration,

i.e., � � � � ( � � is the atomic frequency), and (b) the width of the external field is small

compared to the energy separation between
� < �

and
� < E �

; where
� < E �

could be a neighboring

state of
� < �

to which atom can get excited. In the above approximation the unperturbed

Hamiltonian
# �

in terms of the atomic states is written as

# � �  " � � � � � 4 (1.40)

and the interaction Hamiltonian
# �

is

# � ��� , �C ��� � ��� � �C � � � � � - � �� � , �� 	 � -+� (1.41)

Here
 " � � corresponds to the energy separation between

� < �
and

� � �
, and � = � 7 � �������7�

repre-

sents the atomic transition operator for
� �� �

, and atomic population for
� ���

. In writing

(1.40), the ground state energy is scaled to zero energy. For the interaction Hamiltonian

(1.41), we have replaced
�C in (1.35) by the corresponding operator

�C � )
=
4 � �C = � � = � (1.42)

where
�C = � s’ are the transition dipole matrix elements. The atomic wave function

� � �
will
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satisfy the Schrödinger Eq. (1.19)
� �����
��� ���

�
 " # �����+	 (1.43)

where
# � # � � #��

is the total Hamiltonian of the system. We make a unitary transfor-

mation
���$��
	� , � � � � � � � - on the wave function

��� E �/� � �����
; i.e., we make a transformation

to a frame rotating at the frequency of the laser field � � . Substituting
��� E �

in (1.43) one gets
� � � E �
��� ��� � " #���� � � E � 	

(1.44)

where the effective Hamiltonian is

# ��� �  " � � � � � �  "�� � � � ��� � � E� � � � < * = D�� E�� � � � �	�/	 (1.45)

where
� � � � � � � � is frequency detuning of the laser field from the atomic frequency. The

spatial dependent terms in the Hamiltonian can be dropped for the length of the medium

much smaller compared to the wavelength of the laser field, e.g.,
<�
>��� 
� � � for an optical

laser acting on an atomic beam or a single static atom. However for the laser field interact-

ing with an atom moving at a velocity
�� 1, (

�� � � �� ) has to be replaced by (
�� � � �� � ). The coupling

coefficients in (1.45) are

� � �
�C � : � " < = 
> �  
�  	�� � E� � �C � : �� " < B
= 
> �  
� � (1.46)

It may be noted that the interaction part
# ���

in (1.45) contains two types of terms: the

d.c. terms associated with
� � and rapidly oscillatory terms, oscillating at a frequency

1 � ,

associated with
� E� . For a continuous wave laser working at optical frequencies such that

� E� � 1 � , these rapidly oscillatory terms are unimportant compared to the d.c. terms.

This approximation is known as rotating wave approximation (RWA) [12]. Thus the effective

Hamiltonian becomes

# ��� �  " � � � � � �  " , � � � ��� � � � � � -�� (1.47)

This approximation breaks down when
� E� � � , e.g., when the intensity of the incident laser

field is very high. The coupling coefficient
1 � � is called Rabi frequency [13]. Using (1.47) in

1this case arises when an atomic cell at non-zero temperature is considered. This gives rise to Doppler
broadening, we will consider the broadening effects in Chapter 4.
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Eq. (1.25) the density matrix equations that describe the dynamics of the two-level atom

are

��� � � ��� ��� � � � � � � �� � � � � � �� �� ��� 	��� � � � � � � � �� ��� ��� � � , �� � � � �� � � -+	 (1.48)

where
�� represents the density matrix in the rotated frame. Note that instead of making

the unitary transformation on the wave function, to obtain an effective Hamiltonian (1.47),

one can also make RWA on density matrix elements. For example, one can use
# �

(Eq.

(1.41)) in Eq. (1.25) and then make a transformation � � �� such that

���� � � ��� � 	 ���� � � ��� � <+=?D � E � (1.49)

This would also give Eqs. (1.48). The over-dots in Eq. (1.48) represent the time derivatives.

The solution for the atomic population inversion can be evaluated from Eq. (1.48) with the

condition that initially the atom was in ground state

�� � � � �� � � � � *�� *�
� � � � � � *� *�

� ��	 , � � � - 4 (1.50)

where
� � ��� � *� ��� � � � � * is known as the generalized Rabi frequency. In deriving (1.50), we

have used � � � � � � � < < , which is due to the conservation of total population in the closed

two-level system. It can be clearly seen from (1.50) that the atomic inversion will oscillate

with a frequency
� � . When the control field is on resonance with the atomic transition, the

atomic inversion oscillates between -1 and +1 with a frequency
1 � � . A physical picture of

this Rabi oscillation is provided by drawing an equivalence to Bloch vectors correspond-

ing to spin-1/2 magnetic dipoles undergoing precession in a magnetic field [14, 15]. An

excellent review of optical Rabi oscillation in two-level atoms is given in [16].

The above sets of Eqs. (1.48) are written when the system is not affected by any broad-

ening mechanism. The natural line width due to spontaneous emission can be introduced

phenomenologically in Eq. (1.48) to get

��� � � ��� ��� � � � � 1������� � � � � � �� � � � � � �� �� ��� 	��� � � � � , � � � � � - �� � � � � � � , �� � � � �� � � - 	 (1.51)

where
1��

represents the spontaneous decay rate of the excited state. The spontaneous de-

cay coefficients can be derived rigorously, which will be discussed in Chapter 5. Apart
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from this there could be other broadening mechanisms involved in the system, e.g., colli-

sional broadening, Doppler broadening etc. Due to spontaneous decays in (1.51), the Rabi

oscillations will also decay to a constant value. Thus the system can achieve a steady state,

i.e.,
�� � � . Here we emphasize that from Eq. (1.51) the

����� value is non-zero. This means

that coherence is attained in the medium [as explained in the discussion after (1.27)]. Note

that the induced atomic polarization is related to the coherence by

� #7���� �C �/7�� 
�� , �C � -/7�� , �C � � ��� � � � � � � - 4 (1.52)

where
�

is the atomic number density. Comparing this equation with (1.11) and using the

steady state values of �� � one can get the linear susceptibility of the medium for a weak

probe field

� � �
� �C � � � * " , � � � � � -
�

(1.53)

Clearly the medium properties are modified by the applied field. In the following, we

briefly discuss some interesting manifestation of this coherence in two-level atoms that

exist in the literature.

The first prediction on resonance fluorescence from a two-level atom shined by a mono-

chromatic source was made by Mollow [17]. With his semi-classical calculation he showed

a triplet structure (at � � and � � � � ) in the power spectrum of light scattered by the two-

level atom. Later they were named as Mollow triplet. This structure was experimentally

confirmed by Hartig et al and Grove et al [18]. Further the coherence thus created by a

intense laser can be probed by a weak probe laser, scanning over the probe frequency��� . It was first shown by Mollow [19] that the stimulated absorption and emission spec-

trums of the probe become asymmetric due to the coherence � ��� . He observed gain of the

probe field at certain probe frequencies. An understanding of such behavior was given by

Cohen-Tannoudji and Reynaud [20] by developing a dressed state 2 approach to describe

the atom+field system. The sidebands observed in the Mollow triplet can be understood

as due to the ac Stark splitting resulting in cascade of doublets in the quantum dressed

state picture. Jaynes and Cummings gave the exact solution of the two-level atom inter-

acting with a single mode quantized field [21]. Their model showed nonclassical effects

2the energy eigenstates of the total Hamiltonian of the atom+laser system are called dressed states; e.g., see
Eq. (1.58).
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like collapse and revival in a lossless medium [22]. Many other non-classical effects were

reported; e.g. sub-Poissionian photon statistics was observed by Mandel [23], Kimble et

al reported photon anti-bunching [24], atomic interaction with squeezed vacuum resulting

phase sensitive Mollow triplet [25]. Resonance fluorescence from two-level atom was also

observed to show squeezing [26]. A complete theory for quantum statistical treatment of

the spontaneous emission in two-level atoms (as well as in multi-level systems) was de-

veloped by Agarwal [7, 27]. Many interesting non-linear effects due to the coherences in

two-level atom exist in the literature - two-level atom interacting with strong bichromatic

field showed new features in the spectrum [28], Rabi sideband generation by four wave

parametric interaction in a two-level atom was reported in [29], Agarwal and Harshward-

han [30] have shown existence of population trapping states when a two level atom is

driven by a frequency modulated field.

1.2.2 Coherent Control in Multilevel Systems

The idea of coherence introduced in Sec. 1.2.1 when used for multilevel systems interacting

with monochromatic fields, the coherence effects are greatly enhanced both in terms of

number of possible configurations and also in the number of new effects. In a typical

three-level system, a strong field can be used in one transition that will modify the atomic

behavior - the corresponding field will be called as control field. The changes thus created in

the medium can be probed by a weak laser field which is called as a probe field. Depending

on the level structure and the dipole transitions involved in the interaction, three level

atoms can be of three types as shown in the Fig.(1.1). In absence of the decays, all the

configurations are equivalent. The state
� � �

is coupled to
� � � and

� 1 �
by two laser fields, a

control field with frequency ��� and a probe field with frequency � � . The fields are detuned

from the respective transitions by
�

and
�
. The Rabi frequencies corresponding to the

control (probe) field is � (
�

). We write the effective Hamiltonian in appropriate rotating

frame (three-level equivalent of (1.47)) for a � system as

# ��� �  " , � � � - � :�: �  " � � =?= �  " , � � = * � � � = : �(� � � � -+� (1.54)

The corresponding density matrix equation (see Eq. (1.25)) is

�� � � � " � # ��� 	 � �
� ,�� = � � =?= 	 � �/� � = � � = = 	 � � � 1 � = � =?= � :�: � 1�� = � =?= � *;* -
� ���
	: * , � :�: ��� *;* � � *;* � � :�: - 4 (1.55)
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Figure 1.1: Schematic representation of the possible three-level configurations - (a) a ladder
system (also known as � system), (b) � system, and (c)

�
system.

where
1 � = and

1�� = represent the rates of spontaneous emission from
� � �

to
� � � and

� 1 �
re-

spectively, and
� �
	: * is the rate of dephasing of the ground state coherence � : * - this could

be present due to the collision of the atoms with the wall of the atomic cell. The symbol� � represents the anti-commutators. The steady state (
�� ��� ) solution of the coherence in

the transition coupled by the probe can be calculated to lowest order in probe field
�

in the� � ��� � 1 �
transition

� = * � � � , ���
	: * � � , � � � -;-� � � * � , � = � � = � � � - , ���
	: * � � , � � � -;- � (1.56)

It may be noted that coherence created at the probe transition � = * is a function of inten-

sity (
� � � * ) and frequency of the control laser. This demonstrates the possibility of coherent

manipulation of atomic response to a probe field, what we call here as coherent control. A

myriad of interesting phenomena has been observed using this concept of coherent ma-

nipulation of atomic states in last few decades. It is difficult, and of course out of scope of

this thesis, to list all the discoveries. However we present below a brief survey of some of

the interesting and important developments.

Coherent Population Trapping (CPT)

Alzetta et al [31] discovered that in the interaction of a multimode laser with sodium

vapor, involving a � system, population gets trapped in certain atomic states. There was a

sharp decrease in fluorescence of sodium when the frequency difference of two modes of

the laser field matched the separation between the two ground states of � system. At the

same time, CPT was independently investigated theoretically by Whitley and Stroud [32]

and experimentally (in sodium atom) by Grey et al [33]. This decrease in fluorescence could

be understood by writing the atom-field system in a new basis known as coupled/non-
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coupled basis [34]. For a � system with a configuration shown in Fig. 1.1 (b), the system

could be described by a new basis set � � ���+	 ��� � �+	�� � ��� . If both the laser fields are in same

phase, under Raman resonance condition (
� � � �2�

) the state��� � � � � � � � � � � 1 �� , � ��� � � � * � � � � * -+	 (1.57)

is such that
# � � ��� � � ��� , i.e., electrons in the state

��� � � are uncoupled from the applied field

and hence does not evolve further. Since this state is populated by spontaneous emission

from
� � �

, in the steady state the population is completely trapped in the coherent superpo-

sition state
��� � � . The CPT could also be interpreted as due to the destructive interference

between two different excitation pathways [35, 33]. CPT has been investigated in different

types of systems: e.g. in laser induced molecular excitation and dissociation [36], in atoms

with upper state in continuum [37], in dense atomic system [38]. The role of � -degenerate

levels on CPT is discussed [39]. Recently CPT with incoherent elliptically polarized light

has been reported in [40]. CPT in open systems is discussed by Renzoni et al [41]. Har-

shawardhan and Agarwal [42] showed the possibility of using CPT for optical bistability.

CPT also found applications in metrology [43], in laser cooling [44], in enhancement of

non-linear optical signal generation [45].

Electromagnetically Induced Transparency (EIT)

It is well known in quantum mechanics that, if several transition amplitudes exist for

a transition from a given initial state
� � �

to a given final state
��� �

, then the transition ampli-

tudes can interfere constructively or destructively. Such a phenomena is known as quantum

interference; e.g. Fano interference [46]. However similar interference effect can be deliber-

ately introduced in atomic systems by applying an external control laser field. The external

field creates new absorption pathways for the electron to reach the same final state. For

suitable field parameters, a destructive interference of these transition amplitudes renders

transparency to a weak probe laser in the initially opaque medium. This phenomenon is

known as Electromagnetically Induced Transparency (EIT).

EIT was first demonstrated by Harris and coworkers [47] in a � scheme of
� � using

control field on the
� C�� � : � * � � C�� C : � * transition at 570.3

� � . A probe field acting on
� C�� C : � * � �

�
� � :
	 : transition at 337.1

� � is rendered transparent. EIT can be understood

as due to interference among the dressed states created by the control field. For example,

consider a � scheme as shown in Fig. 1.1 (b). A control field acting on the transition
� � ���
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can create dressed states

� � �
which, for a resonant control field, can be expressed in

terms of the bare states as � � �/7 �
� 1 , � � � � � � �;-G�

(1.58)

In Raman resonance condition (
� ��� �"�

), the transition amplitudes for the absorption

on
� � � � � 1 �

transition interfere destructively, causing an absorption minimum at this

condition. The EIT spectra can be interpreted in terms of Lorentzian contributions from the

new resonances and dispersive contributions from the interference terms [48]. Note that,

for a strong control field ( � � �
) the dressed states

� � �
will give rise to new resonances in

probe absorption. These are well known to occur in the microwave range due to dynamic

Stark effect, known as Autler-Townes (AT) splitting [49]. The first observation of this line

splitting in optical region was reported by Hertz et al [50]. Though transparency also occurs

between the AT resonances, the major different between AT splitting and EIT is - the AT

splitting can occur for very strong control fields ( � � �
), whereas EIT is observed for small

control fields ( � � �
) [51].

EIT has been studied in many different systems [52, 53, 54, 55, 56, 57, 58, 59] and a

comparison of the effect in different configurations are reported in [58]. EIT has been ob-

served in ideal plasma[55], laser cooled systems [56], in a limited number of solid samples

[57] and also in samples kept in cavities [59]. For certain configuration EIT is shown to

be phase dependent [60]. The polarization dependence of the laser fields on EIT has also

been reported in [61]. EIT has found applications in laser pulse matching in pulse propa-

gation [62], isotope separation [63], controlling optical bistability [42], electromagnetically

induced grating [64]. Agarwal and Harshwardhan have generalized the idea to achieve

two-photon EIT and its control [65], and using EIT Harris and Yamamoto [66] have pro-

posed photon switching at a single photon level. Recently the two photon switching has

been observed by Yan et al [67]. Many review articles on this subject now exist in literature

[68].

Lasing Without Inversion

The manifestation of atomic coherence found applications to obtain lasing action with-

out population inversion. The underlying principle of lasing without population inversion

(LWI) is to create asymmetry between the absorption and emission process in an atomic

system. Kocharovskaya and Khanin [69] were first to discover that ultra-short pulses
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get amplified in a � system without population inversion. Harris [70] observed that de-

cay from discrete state to identical continuum causes interference in absorption profile,

whereas stimulated emission remains unchanged - hence could produce LWI. Imamoğlu

and Harris [71] showed such possibility using control field. In another proposal, Scully

and coworkers [72] showed that coherent superposition of ground levels in a � system can

give rise to LWI. In early part of the last decade several theoretical proposals were made

[73] and experiments were carried out [74]. In many of these [70, 72] it was found that,

though there was no population inversion in the bare atomic basis, the inversion existed in

the dressed basis. However in some other schemes [70, 73] population inversion does not

occur in any basis. This was experimentally demonstrated in �
�
Rb (

�
scheme) [75] and in

Na beams ( � scheme) [76]. Agarwal explained this phenomena is due to coherence among

dressed states [77]. It is shown that Lasers operating with LWI can have ultra-narrow

linewidths due to spontaneous emission noise quenching [78]. Menon and Agarwal [79]

have shown that LWI can be observed in a � system due to cross coupling of control and

probe fields on different transitions. Many reviews exist in the literature on LWI [80].

Giant Nonlinearities and Dispersion Control

Many nonlinear optical techniques and devices are available to generate higher har-

monics or subharmonics of an incident laser. The prime requirement for this is large non-

linear susceptibility. In atomic vapors, the nonlinear susceptibilities are very high at the

resonance but associated dispersion and absorption at resonant frequencies are also very

high. Tewari and Agarwal [81] first proposed a method to circumvent this difficulty using

a strong saturating laser field. They found that the field can change the phase matching

conditions in the four wave mixing process and hence radiation in vacuum-ultraviolet

(VUV) could be generated efficiently. Harris et al [82] demonstrated that EIT can be used

to get destructive interference in linear susceptibility � 8;:=< and constructive interference in

the third order susceptibility � 8���< , enhancing the VUV generation. Further, Agarwal and

Tewari [83] showed that using the amplification at the fundamental frequency and EIT

together, much larger enhancement could be obtained in VUV generation. The first exper-

imental demonstration of constructive interference in nonlinear susceptibility was done

by Hakuta et al [84]. They demonstrated that Stark mixing of
1 �

and
1 � states by a dc

field in atomic hydrogen could lead to resonantly enhanced second harmonic generation

with reduced absorption. Later Zhang et al [85] observed that a strong laser coupling, on
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the
1 � � 1 � transitions of hydrogen atom, could produce VUV radiation at 103

� � with-

out suffering resonant absorption and dispersion. Many other experiments followed the

above in which atomic coherence is used to study the non-linear effects: e.g. phase match-

ing condition was achieved in *
�
� Pb using a control laser [86], CPT was used to obtain very

high efficient conversion of light at new frequencies [87] and also giant Kerr nonlinearity

[88], efficient phase conjugation [89] are reported.

Using the idea of atomic coherence, Scully [90] has shown that a large index of re-

fraction can be produced at vanishingly small absorption. This has been experimentally

demonstrated by Zibrov et al [91] in
���

vapour. Such atomic mediums have shown poten-

tial applications in optical magnetometry and enhancement of magneto-optical rotation

(details will be discussed in Chap. 2, 3 and 4). Yet another idea to create large index of

refraction without absorption has been reported by Kocharovskaya, Scully and coworkers

[93], where the dressed states created by a strong field are selectively populated.

Another application of coherent control of dispersion which brought many recent ex-

citement is: control of the group velocity of light in a medium. The group velocity of a

light pulse inside a dispersive medium is

�
�
� �
� � � � ���� D�� 4 (1.59)

where � � � � 1 ������� � , � � -�� is the refractive index of the medium. Near the EIT peak

the susceptibility � � �
, and Re

, � � � � � � - depends on the width of the EIT window. A

weak control field can produce very narrow windows. Hence the slope of � in the de-

nominator of Eq. (1.59) can be made very large slowing down the group velocity in the

medium. In a recent experiment Hau et al [94] demonstrated that using a weak control

field ( � �	� � � � * ) in a Sodium Bose condensate, the group velocity of light can be slowed

down to ��
 � � � < � . As a consequence a 
 �
� � long pulse (in free space) could be com-

pressed to 42 � � inside the medium, and the effective nonlinear refractive index reported

was as high as
�
� ��� � � � � . This is a million time larger compared to that in usual cold

atoms. It followed by reports of slow light in hot gases by Scully’s group [95] and Budker

et al [96], in which they use special anti-relaxation coating on the vapour cell to reduce

the inelastic collisions with the cell wall. Based on the same principle, Fleischhauer, Lukin

and coworkers [97] have shown that light pulses can be decelerated and can be freezed to

a full stop [98]. Using the combination of ultraslow light propagation and EIT technique
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Harris and Hau [99] have shown possibility of carrying out non-linear processes at few

photons per atomic cross section. More recently, in an exciting experiment, Phillips et al

[100] have reported a proof-of-principle demonstration of trapping of light [97] and store

the light pulse for a controlled period of time and then release on demand. They show

that a spatially wide light pulse is compressed into a few centimeters and is converted into

a collective spin excitations in �
�
Rb vapour. After a controllable storage time, the process

is reversed to get the light pulse back. In Another remarkable experiment, Liu et al [101]

reported freezing of light in the cold cloud of sodium atom for up to � � � . They discuss

its potential applications in quantum information processing.

Further it may be noted from Eq. (1.59) that for the spectral range, where
� � � � � ��� � ,

i.e. the dispersion is anomalous, the group velocity can be abnormal (e.g. � ��� � 	�� or -ve)

[102]. Many proposals exit in the literature on the superluminal group velocity of light.

But in most of the cases there are large pulse distortion due to attenuation or amplification

of the signal. Recently it is discovered [103] that a a large anomalous dispersion can occur

in a region between two gain doublets. Wang et al [104] created two such Raman gain

doublets in � � vapour and demonstrated -ve group velocity without much distortion of

the pulse. This phenomena is described by pulse reshaping, i.e., before the peak of the

input pulse enters the medium a new pulse center is formed at the output. They have

reported highest group index � � � � � � � ��� � �F� in the optical region for a Gaussian pulse

of width � �F� �F� 6 . It may be noted that such velocities are not unphysical, and can be

explained within the frame work of special relativity and principle of causality.

1.3 Brief Outline

The atomic coherence, introduced above, is the key to the novel phenomena reported in

this thesis. Here atomic coherence is addressed in two different contexts; namely: (a) field

induced anisotropy and their control via atomic coherence, and (b) coherences in sponta-

neous emission in free space, cavity or induced by a laser. In Chapter 2, we introduce the

induced anisotropy in an initially isotropic medium either by a magnetic field or a laser

field. A novel way to control this anisotropy in a homogeneously broadened medium and

in an inhomogeneously broadened medium is presented in Chapter 3 and Chapter 4 re-

spectively. In Chapter 5, the idea of vacuum induced coherence (VIC) is introduced, and a
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detailed mathematical framework for the treatment of spontaneous emission is presented.

Two radiatively coupled multilevel atoms in free space giving rise to VIC is discussed in

Chapter 6. Cavity induced coherences in spontaneous emission by preselecting polariza-

tion modes of a cavity is demonstrated in Chapter 7. In Chapter 8, laser field induced

coherences in spontaneous emission is investigated and resulting quantum beat in two-

photon correlation in a cascade emission is presented.



Chapter 2

Field Induced Anisotropy

2.1 Introduction

In the previous chapter we described coherent control of atomic absorption and dispersion,

where the polarization states of the laser fields were unimportant. Because, the atomic gas

behaves as an isotropic medium in its response to different polarization components of a

weak incident field. However this symmetry breaks for certain systems. In this chapter

we will consider situations where the fields (magnetic field or a laser field) can induce

anisotropy in the atomic response to different polarization components of a weak probe

field. We discuss the resulting consequences. In the following section we show how polar-

ization state of a probe modifies while passing through an anisotropic medium.

2.2 Response of an Anisotropic Medium to a Linearly Polarized

Light

Let us consider an � -polarized incident probe field
�� =  with frequency � � propagating in

an isotropic medium along 6 direction. The field amplitude can be written as

�� =  , 6 	 � -/� �:
�
, 6 -;< B
=?D�� E���=?> � @ � � � � �F� (2.1)

We resolve the incident field amplitude
�:
� into two circularly polarized ( � � and � B ) com-

ponents

�:
�
��89 � : � � ��89 � B : � B 	 (2.2)

24
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where unit polarization vectors
89 � corresponding to ��� polarization are defined in terms

of unit vectors
8
� and

8� as

89 � � 8
�
��� 8�

� 1 �
(2.3)

The total polarization induced in the atomic medium due to a linearly polarized probe

field can be expressed as [see Eq. (1.9)]

� #� � 89 � � �
, ��� - : � � �#89 B � B , ��� - : � B � < B
=?D � E���=?> � @ � � � � �F	 (2.4)

where � �
, � � - give response of the medium corresponding to ��� components of the elec-

tric field. When
�� =  passes through the anisotropic medium, the different polarization

components : � � , 6 - evolve. This dynamics is governed by Eq. (1.12). Our interest is the

steady state situation, where : � � and � � are independent of time. Further, substituting

(2.4) in Eq. (1.12) and on using SVEA [see Eq. (1.14)] the equations for : � � can be written

as
� :
� �� 6
� 1 ��� �

�
� � : � � 	 (2.5a)

� :
� B� 6
� 1 ��� �

�
� B : � B � (2.5b)

In general, � � are functions of the fields : � � . However here we consider propagation of

a weak probe, where ��� are independent of : � � . Thus the solutions of the wave equation

for : � �

:
� �
, 6 ��� - � :

� �
, �F- ��
� , 1 ��� �

�
� � �
- 	

(2.6a)

:
� B , 6 ��� - � :

� B , �F- ��
� , 1 ��� � � � � B - 4 (2.6b)

that gives the output field amplitude

�: � � E , 6 ��� -/�89 � : � � , � -;< *�� =?> ��� 	�� ��89 B : � B , �F- < *�� = > ��� 	�� � (2.7)

Here
�
is cell length of the medium along 6 . For an � -polarized incident field, say

�: =  �08� : � ,
:
� �
, �F-/� :

� B , �F-/�
: �

� 1 	 (2.8)

and the output field in Eq. (2.7) takes the form

�: � � E �
: �

� 1 � 89 � < *!� =?> � � 	 � ��89 B < *�� =?> � �
	 �
	 � (2.9)
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Thus the output field
�: � � E consists of both � and � -polarization components. The direction

of light polarization rotates with respect to the polarization of the incident light. Exper-

imentally the intensity of transmission through a crossed polarizer at the output gives

the measure of the rotation. In the above case the intensity of transmission through a � -

polarized analyzer is given by

��� � � , �: � � E -�� � *� �: =  � * � �� %%% < *�� =?> � � 	 � � < *�� =?> � � 	 � %%% * 	 (2.10)

where the output intensity is normalized with respect to the input. It may be noted that

for a resonant or near-resonant probe field, � � will be complex and therefore due to large

absorption by the medium, there will be large attenuation of output signal. However

assuming that � � is real, from Eq. (2.9) we get

: �
:�� � ��
	 � � � 
	 � � �

�
� ��� , � B � � �

-�� �
(2.11)

On using the Eq. (1.17a), the rotation
�

can be written as

� � � �
�
� ��� , � B � � �

-
(2.12)

� �
�
�1 , � B � � � - 4 (2.13)

where � � � � � 1 ����� � � is the refractive index of the medium corresponding to the � �
polarization components of the input field. This corresponds to the polarization rotation

in the systems where absorption is small. In the rest of this section, we will discuss how

anisotropy can be created in an isotropic medium.

2.3 Magneto-optical Rotation

An isotropic medium consisting of atoms having � -degenerate sublevels when subjected

to a magnetic field exhibits birefringence1 in its response to a polarized optical field. This

is due to the fact that Zeeman splitting of the magnetic sublevels causes asymmetry in the

refractive indices for left and right circular polarization components of the optical field.

1A medium is called as a birefringent medium if the refractive indices corresponding to different polar-
ization components of an incident EM field are different; and the associated phenomena is known as bire-
fringence. Similarly the phenomenon due to which the different polarization components of the EM field
experience different absorption is known as dichroism.
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Ein
Eout

l

z, B

Figure 2.1: Magneto-optical rotation of a linearly polarized probe field in Faraday configu-
ration. Here the propagation direction of the incident probe field is parallel to the direction
of magnetic field applied.

Therefore the two circular polarization components of the field travel in two different ve-

locities causing a phase shift at the output. The result is magneto-optical rotation (MOR); i.e.,

the plane of polarization of the light emerging out of the medium is rotated with respect

to that of the incident as shown in Fig. 2.1.

The history of MOR can be traced back to the discovery of Faraday rotation [105], which

was the first evidence of connection between light and magnetic field. However our usage

of MOR should be understood as a generalization of the Faraday rotation; e.g., unlike in

Faraday configuration where the magnetic field is parallel to the propagation direction of

the light field, the field configurations in MOR, in principle, can be arbitrary. Moreover the

light source used in MOR, in general, is a coherent field. The amount of rotation observed

in conventional Faraday rotation, is extremely small even in bulk samples. Thus the effect

would seem to be almost impossible to detect in dilute gas samples. But in contrast, large

dispersion that occurs at atomic resonances could cause a large rotation even in dilute

samples, when the MOR is probed with a resonant or near-resonant EM field [106].

The polarization rotation in a magneto-optical system can be clearly understood from

the quantum mechanical response of an atom to a laser field in presence of a magnetic

field. For example consider a
�

-scheme (say
�
�
� � system), with

� : � � as ground state and
� : 	 : as its excited states, is subjected to a magnetic field

��
. See Fig. 2.1. We probe it

by a laser which is linearly polarized and propagating along
��
. Then the susceptibilities

� � and � B corresponding to the right and left circular polarizations would be (a detailed
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calculation is given in Chap. 3)

� � � -  ��� �
�

/ �
, �����5� � � - 	 (2.14)

where
1  " �

is the Zeeman splitting between the levels
� � � 7 � � � � 	 � � � � and

� 1 � 7 � � �
� 	 � �0� � � ; � is detuning between the the probe frequency and the frequency � : � of the� � � � �5���

transition (with zero magnetic field) and is given by

� � � : � � � � � (2.15)

In Eq. (2.14),
1��

is the decay rate of the level
� � � � 	 � � � � � to the level

� � ���
	 � � � � .
The quantity  � gives the probe absorption at the line center and is given by

 � � �%� � � ��� C � * � " � 	
(2.16)

where
�

is the density of atoms and C is dipole matrix element for the transition. It is to

be noticed that � �
� � B for zero magnetic field. For small absorptions, the polarization

rotation is given by [see Eq. (2.12)]

� � -  �1 / � � , � * � � * ��� * -
, � * � � * ��� * - * ��� � * � * � (2.17)

Note that � � depend on the number density of atoms and the oscillator strength of the

transition. Therefore larger is the asymmetry between � � and � B , larger is the rotation.

Clearly, from (2.17),
�

will be large if magnetic field (and hence
1 �

) is large.

Traditionally MOR was used as a tool in polarization spectroscopy using continuum

sources [107]. The interest in MOR was intensified in the atomic and molecular physics

with the availability of intense light sources of definite polarization [108] and frequency

[109]. Several reviews exist in the literature on this subject including several interesting ap-

plications (e.g., see [110]). Using saturating fields the non-linear MOR has also been stud-

ied at length [111, 112, 113, 114]. Recently, combining the ideas of enhancement of refrac-

tive index using atomic coherence [90] and the non-linear MOR, Scully and his coworkers

have investigated a possible application to high-precision optical magnetometry [115, 116].

They have demonstrated this possibility both theoretically [115] and experimentally [116],

considering the rotation of polarization of a strong linearly polarized probe caused by an

optically thick cell containing �
�
Rb vapor. They consider a � configuration with the laser

field tuned to � � 1 � � � � transition absorption line of �
�
Rb
� : . The maximum
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sensitivity reported in their experiment is ��� � � � B : *�� � � ���
, which is superior to other

existing high precision magnetometer, e.g., SQID (superconducting quantum interference

device) magnetometer. Budker et al at Berkeley have also reported high sensitive optical

magnetometry in a series of papers [117], based on the non-linear MOR involving ultra-

narrow resonances ( � 1 � � � ��� Hz). They use special ��� ��� vapor cell with high quality

anti-relaxation paraffin coating that enables the atomic coherence to survive even after a

large number of collisions with the wall. Using a similar configuration, Budker et al have

shown reduction of the group velocity of light to � � � � � < � in a non-linear magneto-

optical system [96]. MOR with a transverse magnetic fields [118] (known as Voigt effect)

and with inclined magnetic fields [119] have also been studied.

2.4 Laser Induced Polarization Rotation

Laser field alone can also break the symmetry in the response of an atomic gas to different

polarization components of a probe field. For example, let us consider
�5��� � � � � tran-

sitions of an atomic gas containing
�

systems. When a linearly polarized weak probe field

passes through the medium, the ��� components of the probe field couple the
� �5���
	 � �����

with the degenerate states
� �5� � 	 � � � � � . The susceptibilities � � of the medium to these

two components ��� are same; i.e., response of the medium is symmetric to both the com-

ponents. This is clear from the discussion in our previous section, particularly when we

put
� � �

in Eq. (2.14). However when a � B polarized strong (control) field is applied

on the
� � �0�
	 � � � � � � � � � 	 � � � � transition, the susceptibility � � is modified by

the control field parameters creating asymmetry between � � and � B . Thus the plane of

polarization of the probe field rotates (as observed in magneto-optical systems). Note that,

this rotation is solely due to the laser field and is a function of control field parameters.

The light-induced polarization rotations were extensively studied in optical pumping

experiments with incoherent light [120]. Resonant birefringence was observed due to op-

tically induced level shift [121]. Liao and Bjorklund [122] were the first to observe polar-

ization rotation in a three level system by resonant enhancement of two-photon dispersion

in the
� � * � :	� * � �

� * � :
� * of sodium vapor. They showed that a linearly polarized probe

laser of frequency � : experiences a polarization rotation by a circularly polarized control

laser of frequency � * , when � : � � * was tuned to the two-photon transition. The rotation is



Field Induced Anisotropy 30

result of the selection rule for the two-photon transition, e.g., for the two-photon transition
� � �

, the photons must have opposite sense of polarization. Hence a � � polarized pump

will affect only � B component of the linearly polarized probe. Thus the dispersive and

absorptive parts of the two-photon susceptibility will cause light-induced birefringence

and dichroism. Hänch and coworkers [123] have used this polarization rotation as a high

resolution spectroscopic technique. Heller et al [124] extended this idea to atomic systems

involving the ionization continuum. Experimental and theoretical work has been reported

by Ståhlberg et al [125] on laser induced dispersion in a three level cascade system of �
<

discharge. Pavon et al [126] introduced the idea of quantum coherence to obtain significant

atomic birefringence in presence of EIT. Winelandy and Gaeta [127] used quantum coher-

ence to control the polarization state of a probe field. They reported a large birefringence

and hence a large polarization rotation in a three-level cascade ( 
 * � :
� * � �
* 	 ��� *

�
�
* � :	� * )

of � � Rb. Using a similar configuration, Fortson and coworkers [128] have showed a possi-

ble utility of the polarization rotation at EIT to measure the atomic parity non-conservation

signal with a better efficiency.

2.5 Summary and Perspectives

In summary, we have shown that a magnetic field or a laser field can create anisotropy in an

isotropic medium. As a result the polarization of a linearly polarized weak probe passing

through the medium rotates. The combined effects of the laser field and the magnetic

field will be interesting to investigate in the context of coherent control of the rotation of

polarization. We consider this coherent control both for the stationary atom and Doppler

broadened medium. in Chapters 3 [129] and in Chapter 4 [130, 131] respectively.



Chapter 3

Laser Field Induced Birefringence and

Enhancement of Magneto-optical Rotation

3.1 Introduction

An initially isotropic medium, when subjected to either a magnetic field or a coherent

field, can induce anisotropy in the medium and can cause the polarization of a probe field

passing through the medium to rotate. Therefore the rotation of probe polarization, due

to magnetic field alone, can be controlled efficiently with the use of a coherent control

field. In this Chapter we investigate the possibility of the enhancement of magneto-optical

rotation (MOR) produced by the control laser. The rotation angle is
� �#� �

�
� ��� , � B � � �

-

for small absorption [see Eq. (2.12)]. Therefore larger the asymmetry between � � and � B ,

larger will be the enhancement of MOR. The present study is motivated by the possibility

that susceptibilities � � can be manipulated by application of a control laser [81, 82, 83, 90,

91, 92, 93, 52]. In a recent experiment, Wielandy and Gaeta [127] demonstrated control of

polarization state of the probe field in an initially isotropic medium. In this Chapter we

demonstrate the laser induced birefringence. And we show that an interplay between the

control laser and magnetic field can produce large enhancement in MOR in the regions -

identified by our analytical results [129].

31
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Figure 3.1: (a) The four-level model scheme (say of
�
�
� � ) having � -degenerate sub-levels

as its intermediate states. The symbols in left hand side denote the energy levels of
�
�
� �

atom.
1 � � and

1�� = are the spontaneous decays,
1 � � (

1 � � ) is Rabi frequency of the probe
(control) field due to coupling of the intermediate states

� ���
with

� � �
(
� < �

). The detuning
of probe (control) field from the center of

� � � and
� 1 �

are represented by
�

(
�

).
1 �

is the
Zeeman splitting between the intermediate states. (b) A block diagram that shows the
configuration under consideration.

��
defines the quantization axis 6 . The input probe

�� = 
is � -polarized and the control field is left circularly polarized. Both the fields propagate
along 6 . After passing through the cell, output is observed through a � -polarized analyzer.

3.2 The Model System and The Dynamical Equations

We consider a model system [see Fig. 3.1] involving, say, cascade of transitions
� �5���
	 � �

���
(level

� � �
)
� � �.� � 	 � � � � � (level

� � � and
� 1 �

)
� � �.���
	 � �2��� (level

� < �
). This scheme

for example will be relevant for expressing
�
�
� � . A weak probe

��
� will act between the

levels
� � �

and
� � � 	 � 1 � . We assume in addition the interaction of a control laser

�� � to be

nearly resonant with the transition
� < � � � � �+	 � 1 � . For simplicity we drop the transition

� ��� � � ��� . We thus assume the loss to � � � state by spontaneous emission could

be pumped back by an incoherent pump. Let � # + be the transition frequency between the
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levels
�  � and

� � �
. The total Hamiltonian of the atom interacting with the control and probe

fields is

# �  " � � � � < ��� <�� �  " � : � � � ��� � �;�$ " � * � � 1 ��� 1 �
� �C � , �� � � ��

�
-+	

(3.1)

where both
�� � and

��
� are given by Eqs. (2.1) and (2.2). We make rotating wave approxi-

mation (see discussion after Eq. (1.46)) and thus we approximate the interaction part of the

Hamiltonian by

�
�C � , �� � � ��

�
-

 " �
� � : � < ��� � � < B
=?D�� E���= >�� @ � � * � < ��� 1 � < B
=?D�� E���= >�� @
� � : � � ��� � � < B
= D � E���= > � @ � � * � 1 ��� � � < BC=?D � E���=?> � @ �(� � � � 	 (3.2)

where
1 � � s and

1 � � s represent Rabi frequencies of the control and the probe laser -

� � � �� � � � �: � " 	 � � � �C � � � �: � " 4 � � � � 	 1 � � (3.3)

In order to proceed further we make the following transformations on the off-diagonal ele-

ments of the density matrix which removes all explicit dependence on the optical temporal

and spatial frequencies

� � � � ���� � < B
=?D � E���=?> � @ 	 � � � � �� � � < B
=?D��+E���=?> �+@ 	� ��� � ���� � < B
= 8 D � ��D�� < E���= 8 > � ��> � < @ � (3.4)

In the following we drop tildes from the density matrix equation. However the full density

matrix in Schrödinger picture is to be obtained by using Eq. (3.4). On introducing the vari-

ous rates of spontaneous emission, we can write the equations for density matrix elements
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as

���� � � � 1 , � : � � * - � � � � � � : � : � � � � � : ��� : ��� �5* �
*�� � � � �* � � * 	�� � : � � , � : � � * � � : � � , � ���%-;- � � : ��� � : , � :�: � � � � - ��� � * � * : � � � �: � � � 	���� * � � , � : � � * � � * � � , � ���%-;- ��� * ��� � * , �C* * � ��� � - ��� � : � : * � � � �* ��� � 	���� � � � , � : � � * � � , � � � -;- ��� � � � � : � : � ��� � * �C* � � � � : ��� : � � � * ��� * 	�� :�: � 1 � : � � � � 1�� : � :�: � � � � : ��� : � � � : � : � ��� � : � � : � � � �: � : � 	 (3.5)
�� : * � � , � : � � * � 1 � �%- � : * � � � � : ��� * ��� � : � � * � � � *�� : � � � � �* � : � 	�� : � � � , � : ��� , � � ��-;- � : � � � � : , � � � � � :�: - � � � � : ��� � � � � * � : * 	��C*;* � 1 � *�� � � � 1�� * �C*;* � � � �* ��� * � � � *��
*�� ��� � * � � * � � � �* �
* � 	�� * � � � , � * ��� , � ����-;- � * � � � � * , � � � � � *;* - � � � �* � � � � � � : � * : 	�� � � � 1�� : � :�: � 1�� * �
*;* ��� � �: � : � � � � : � � : � � � �* �
* � � � � * � � * 	

where the detunings are defined by

� � , � � : � � � ���%- � , � � * � � � ���%-+	 � : * � 1 ��	
(3.6)

� � , � : � � � � ����- � , �/* � � � � � ��-+�
In Eq. (3.5)

1 � � (
1�� � ) represents rate of spontaneous emission from

� < �
to

� � �
(
� � �

to
� � �

).

However in further calculations we assume
� : � � * � � for simplicity. The dipole matrix

elements in (3.3) are given in terms of vectors (2.3) as

�� � : � � ��89 � 	 �� � * ����89 B 	
�C : � � � C 89 B 	 �C * � � C 89 � � (3.7)

Here
�

( C ) denotes the reduced dipole matrix element corresponding to
� < � � � ���

(
� � � �� � �

) transitions. Clearly we also have

� : ��� � : � B " 	 � * �
� : � � " 	

� : � � C : � � " 	 � * � C : � B " �
(3.8)

This should be kept in view to determine the component of circular polarization that con-

nects various transitions.
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3.3 Calculation of ��� and polarization rotation in presence of a con-

trol laser

In Sec. 1.3 we have discussed the polarization rotation of a linearly polarized light - that

could occur while passing through an anisotropic medium. We have also given an example

in Sec. 1.3.2, where we show the anisotropy created by a magnetic field. In what follows

below, we calculate the susceptibilities of our model system to the linearly polarized probe

field (2.1) using the solutions of Eq. (3.5), in presence of the control field.

The induced polarization (i.e. induced dipole moments per unit volume) at frequency��� will be obtained from off-diagonal elements � : � 	 � * � :
� � � 
�� , �C � - ��� , �C � : � : � � �C � * � * � � � � � � -� � , �C � : � : � � �C � * �C* � -;< B
=?D�� E���=?> � @ � � � � �F� (3.9)

The exponential factors in (3.9) come from the transformation in (3.4). As indicated earlier,� : � and � * � will be computed to the lowest order in the probe field. We choose the probe

field polarization such that
� � ���� . Let us define

� : � � - � :� / � � 	 �C* � � - � *� / � B � (3.10)

Comparing the induced polarization in an anisotropic medium given in Eq. (2.4) and (3.9),

and on using (3.7) and (3.10) we get

� � � -  �%� �
�

/ � � 4 (3.11)

where the quantity  � represents the probe absorption at the line center [defined in Eq.

(2.16)] and
� �

represent the normalized susceptibilities corresponding to � � components

of the probe field.

We have been able to obtain analytical solutions for
� �

which we give below -

� � � � ��� � �5* � * � , � � � , � � �%-;- ,�� : � � * ��� , � � � - -��� �5* � * , � ��� , � � ��-;-G� , � � � , � ���%-;- �;� � : � * � , � � � , � � �%-;- , � : � � * � � , � � � -;- �
	

(3.12)

� B � � ��� � � : � * � , � � � , � � �%- - ,�� : � � * � � , � � � -;-��� � : � * , � � � , � ���%-;- � , � ��� , � � �%-;- � � � * � * � , � ��� , � � �%-;- , � : � � * � � , � � � - - �
�

(3.13)
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Note that the analytical results (3.12) and (3.12) have been derived for arbitrary complex

control fields which enter through the Rabi frequencies � : and �5* . However, the final

results do not depend on the phases of � : and �5* . Thus the ellipticity of the control field

plays no role in determining the amount of magneto-optical rotation. Note further that the

results (3.12) and (3.13) reduce to well known results (2.14) in the absence of the control

field [i.e., � : � � * ��� ]. The polarization rotation is obtained by substituting (3.12) and

(3.13) in (2.10)

��� � ��
%%%% ��
� - �  �1 � � / � ��
	� - �  �1 � B / %%%% * � (3.14)

As mentioned earlier, we choose the parameters in such a way that there is maximum

asymmetry between � � and � B . An important case occurs when, say, � * � � , i.e., the

control field is � � polarized ( : � � � � , : � B ����
). Clearly

� B in absence of the control field

becomes

� B � � �
, � � � , � ����-;- 4 (3.15)

whereas
� � is strongly dependent on the strength and frequency of the control field given

by the relation

� �$� � � ,�� : � � * � � , � � � -;-� � : � * � , � � � , � ���%- - ,�� : � � * � � , � � � -;-
�

(3.16)

In absence of the control field, the susceptibilities reduce to

� � � �
, , � � �%-/� � � - 4 (3.17)

which clearly indicates that
� �

are completely symmetric in absence of magnetic field (i.e.� ���
). Most of the MOR studies with a weak coherent field use the susceptibility in (3.17).

However in presence of large control field (large
� � : � ), both real and imaginary parts of

� �

in Eq. (3.16 will show Autler-Townes splitting. Note further that even when no magnetic

field is applied (i.e.,
� ���

),

� B , �.��� - �� � � , �.�2�F-+	 � � �$� � : � ����
� (3.18)

In this case we have control laser induced birefringence. A particularly attractive possibility

is to consider the case when
� � : � is large, and we work in the regime of other parameters

so that
� � � � � � � B � . Under such conditions we will have large MOR or large signal

� �
. The

experiments of Wielandy and Gaeta [127] focus on the laser induced birefringence.
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Figure 3.2: Plots to show the control field induced birefringence in absence of magnetic
field (

� �"�
). Control field is left circularly polarized and is in resonance with

� ���
�

� < �
transition (

� ���
). In the above figure, first row refers to real and imaginary part

� B
(Eq.

(29)) which is independent of the � B control field. The frames ( � � ), (
� � ) and ( � � ) represent

Re
� � , Im

� � and
� �

respectively. Three rows for
�$� � 	 1 	$� correspond to control field

strengths � : � 1 �
	
�
�
	 � �F� respectively. The x-axis represents the detuning of probe laser

with respect to the position of the
�5� � level with zero magnetic field.

3.4 Numerical Results on Laser Induced Birefringence

In this section section we present numerical results to demonstrate the coherent control of
� � and hence the control of polarization rotation of a linearly polarized probe field using

the analytical results obtained earlier. Note that the parameter space is rather large in

(3.12, 3.13) and the results will depend on the choice of
� � : � , � � * � , magnetic field, control

laser detuning, and of course the probe laser detuning. We have carried out the numerical

results for a large range of parameters and present some interesting results below. In all

the numerical results we scale all the frequencies with respect to
� � , � � - and we take the

absorption co-efficient  � as 30. This value would correspond to � � � : � � � � � �,� � � � , for a

typical sample length (
�
) of 5 � � containing

�
�
� � atoms.

In Fig. 3.2 we consider the rotation of plane of polarization in the absence of the mag-

netic field. For no control laser, the rotation vanishes. For non-zero � : , the medium be-

comes anisotropic (Eq. (3.18)), we obtain substantial rotation of the plane of polarization.
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The Fig. 3.2 also shows the real and imaginary part of
� �

.

3.5 Laser Induced Enhancement of Magneto-optical Rotation
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Figure 3.3: Enhancement of MOR by use of a � B control laser with the intermediate levels
being split by a magnetic field with Zeeman splitting

1 �$� � � . The graphs
, � � - and

, � � -
represent the control field induced changes in Re

� � and Im
� � respectively and

, � � - rep-
resents the corresponding

� �
, and

� � � 	 1 	 � refer to the case of resonant control field (i.e.� � �
) with strengths � : �#�
	 1 �
	 � � respectively. Clearly large fields result in significant

enhancement and in addition new regions appear with large MOR. Further enhancement
is observed by use of a detuned laser as seen in frames ( � � ) and ( � � ) which are for � : � 1 �
and control laser detuning

� ��� 1 �
	 � �F�
respectively.

In this section we present numerical results to demonstrate how the MOR can be enhanced.

In Fig. 3.3, we show the results for non-zero value of magnetic field. We find definite en-

hancement in the magneto-optical rotation. The reason for this enhancement can be traced

back to the flipping of the sign of Re � � which is caused by the control field. In addition we can

produce large rotation for probe frequencies in the neighborhood of the frequencies of the
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Figure 3.4: Plots represent MOR enhancement with an elliptically polarized control (i.e.
� * ��3�

) and
� � � �

� . Here we have considered the case of � * � � � . The frames, � � - , , � � - , , � � - , , C � - and
, < � - represent Re

� B
, Im

� B
, Re

� �
, Im

� �
and

���
respectively, and� � � 	 1 	$� correspond to � : ���
	 1 �
	 � � respectively. The off-resonant control field can

also be advantageous (results not shown) as in Fig. 3.3.

Autler-Townes components. In Fig. 3.3 we also show how the non-resonant control field

can produce further enhancement. Our calculations also suggest some interesting domain

in which the probe should be tuned to obtain large MOR. Application of the control laser

permits us to obtain large MOR in totally different frequency regime.

In Fig. 3.4 we show the changes in the transmitted signal if � * ��"� . The absorption

and dispersion profiles now exhibit a triplet structure. As noted earlier, intensity of the

transmitted � -component of the signal depends on the asymmetry between � � and � B .

When asymmetry becomes less, as for example, in the third and fourth row [from ( � * ) to

(
< * )] of Fig. 3.4, then

���
can decrease. In our model the control of � � is

� � �
independent
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Figure 3.5: The enhancement of MOR when the control field and probe field are on two-
photon resonance with

� < � � � � �
transition. The solid lines correspond to � : � 1 �

. All
other lines correspond to the case of no control field. The thick dashed line corresponds to� B and the long dashes lines correspond to

� � . The other parameters used in the plot are� � � � and  � � �
�
.

of each other as we connect to a common final level. Clearly a large enhancement would

be possible if � � could be independently manipulated. The values of different physical

parameters used are the following: the Rabi frequency � � 1 �
would correspond to a laser

intensity of � �
� � � 
 � � � � * , �5� � corresponds to a magnetic field of � � � � � � � � .

3.6 MOR in Two-photon Resonance Condition

In this section we consider the enhancement of MOR when the � � polarized control filed

and the probe field are on two-photon resonance with
� < � � � � �

transition (
� � � �0�

).



Laser Field Induced Birefringence and Enhancement of Magneto-optical Rotation 41

Under this condition, the susceptibility
� �

reduces to

� �
�
� � ���� ����� �

� � � � �
� ��	 � � , � � �%- 4 (3.19)

which is a Lorentzian profile with a width given by
� � ����� �
� � � � �

� � 	
. The width is too large

for a control field � : � �
, causing large power broadening. Thus for small values of

�/� �
,

� � is negligibly small (see Fig. 3.5). However,
� B remains unchanged. Therefore

� �
(in Eq.

(3.14)) reduces to

� � � �� %%% � � < =
	 ���� � %%% * 4 (3.20)

and hence
���

becomes independent of the control field for
� � : � * � � . The

, ��� -
�� � value

thus remains the same for any arbitrary value of
�
; e.g. for � : � 1 �

,
, ��� -

�� � � � ��� for

very large values of
�
. However changing the magnetic field, the

� �
structure shifts along

�
. Thus

, ��� -����
�
can be shifted to the regions where MOR is small and hence get large

enhancement of MOR. For example, at
� � � � �

� MOR is enhanced by a factor of � 1�� � 1
by

the control field.

3.7 Summary

In summary, we have shown how a control laser can produce birefringence in an isotropic

medium to obtain large polarization rotation of a linearly polarized weak probe field. We

have also demonstrated that large enhancement of magneto-optical rotation effect can be

produced by suitably choosing the control field parameters. Further we show that the

control field can also produce new frequency regions which show very significant magneto-

optical rotation. We also show that a large enhancement of MOR can be achieved when

the probe and control field are in two-photon resonance.



Chapter 4

Coherent Control of MOR in Doppler

Broadened Medium

4.1 Introduction

In the previous Chapter we have discussed laser field induced birefringence and control

of MOR in homogeneously broadened medium in the limit of stationary atoms. However

most experiments are carried out at finite temperature where the atoms move inside the

cell randomly. This introduces an additional broadening in the system which is inhomoge-

neous in nature - known as Doppler broadening. Coherent control of atomic dispersion and

absorption in Doppler broadened medium has been studied extensively [52]. Sub-Doppler

resolution has been reported using intense control fields [132].

In this Chapter we generalize our previous study of manipulation of MOR (Chapter 2)

in a Doppler broadened medium [129]. In this case, a large broadening is introduced in

both the susceptibilities ��� . This is desirable to get large MOR for a broad range of probe

frequencies. But on the other hand, broadening reduces the magnitude of rotation con-

siderably. However, one can work with a denser medium to enhance the magneto-optical

effect when the Doppler effect is included in the calculation. With a detailed calculation

and analysis, we identify probe frequency regions to obtain large MOR. We present numer-

ical results to demonstrate how the birefringence can be controlled efficiently, leading to

large enhancement in MOR. We also show that with suitable selection of control field pa-

rameters, one can even realize a magneto-optical switch - that switches the polarization state

of the incident probe field to its orthogonal component [130].

42
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Figure 4.1: The configuration under consideration that gives rise to significantly large
MOR and large enhancements. The direction of magnetic field

��
fixes quantization axis ( 6 -

axis). The control field (
�� � ) and the input probe field (

�� =  ) are counter propagating along
the 6 -axis. The atom in the cell moves with velocity

�� in arbitrary directions. 	 � and 	 �
are � -polarizer at input and � -polarized analyzer at the output respectively.

, �� � � E - � is the
output probe after passing through 	 � .

4.2 The Model and The Susceptibilities

We consider coherent control of MOR in a configuration as depicted in Fig. 4.1. The atoms

move randomly inside the cell with velocity
�� . The probe field and control field are taken

to be counter propagating. The model scheme we consider (Fig. (4.2)) is similar to the

scheme in previous Chapter. Here we have included the spontaneous decays between

� ��� � � �"�
states in the calculation, which was neglected in Chapter 2. The decay

coefficient corresponding to
� < �

�
� � �

(
� � �

�
� � �

) transition is denoted by
1 � �

(
1�� �

). In

what follows below, we outline the calculation of susceptibilities of the atoms, moving at
�� , to the � � components of the probe field.

In the rotating wave approximation, the interaction Hamiltonian
# : corresponding to

the scheme in Fig. 4.2 is

#�� , � -/���  " )
= ( : 4 * � � ����� � � � = < B
=?D�� E ��= 
> �  
� E � � < ��� � � � = < B
=?D � E���= 
> �  
� E � � � � � � 4 (4.1)

where Rabi frequencies
1 � = and

1 � = of the control and probe lasers are given by Eq. (3.8).

In terms of Fig. 4.2, the unperturbed Hamiltonian
# �

is

# � �  " , � � � � � � � -�� < ��� <��;�$ " , � � � � ��-�� � ��� � �;�  " � � � � � ��� � �A�  " , � � � ���%-�� 1 ��� 1 � � (4.2)

Here
 " � � � (

 " � � � ) is the energy separation between
� < �

(
� � �

) and
� � �

, and
1 � � ��� � �  " is

the Zeeman splitting of the degenerate levels, caused by the magnetic field
�

. The atomic
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Figure 4.2: The four-level model scheme having � -degenerate sub-levels
� � � and

� 1 �
as its

intermediate states. The magnetic field
��

gives rise to Zeeman splitting
1 �

. The sponta-
neous decay rates are denoted by

1 � = and
1�� = . The probe field (

��
� ) and the control field (

�� � )
are counter propagating. The Rabi frequencies of the probe field and the control field are
given by

1 � = and
1 � = , corresponding to the

� ��� � � � �
and

� < � � � ���
couplings respectively

(
�.� � 	 1 ). The detunings of the probe and the control fields from the degenerate

� � �
state, in the moving atomic frame of reference, are

�
� and

�
� respectively.

dynamics is described by the master equation

�� � � � " ��# � � #�� , � -+	 � �
� )
= ( � 4 : 4 * ,�� = � � < ��� < � 	 � � � � = � � ����� ��� 	 � � � 1 � = � � � � � � � ��� � 1�� = � = = � � ��� � � -��

(4.3)

The second term under the summation sign represents the natural decays of the system.

The curly bracket represents the anti-commutator. The explicit time dependence can be

eliminated by making a transformation � � �� such that

�� = = � � =?= 	 �� = � � � = � <+=?D � E B
= 
> �  
� E;	
���� = � ��� = < =?D � E B
= 
> �  
� E 	 �� ��� � � ��� < = 8 D�� ��D � < E BC= 8 
> � � 
> � <  
� E � (4.4)

The matrix equation for
�� is found to be

��� � � � " ��# ��� 	 �� � � )
= ( � 4 : 4 * , � = � � < ��� < � 	 �� � � � = � � ����� ��� 	 �� � � 1 � = �� � � � ����� � �+� 1�� = �� = = � � ��� � � -
	 (4.5)
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with the effective Hamiltonian in the transformed frame

# � ��� �  " , �
�
� �

�
-�� < � � < �A�  " , �

�
���%-�� � ��� � � �$ " , �

�
���%-,� 1 ��� 1 �

�  " )
= ( : 4 * , � = � ����� � �;� � = � < ��� ��� �(� � � � - 4 (4.6)

where

�
�
� � � �

�
� @ 	 � � � � � � � � @ � (4.7)

Here
� � � � � � � � 	 � � � � � � � � correspond to the detunings of the probe and control field

when the atom is stationary. Further we assume
�
� �

� � for simplicity. Thus one can write

�
�
� �

� �
� ��� �

(4.8)

Here it may be noted that due to our particular choice of counter propagating probe and

control fields, the two-photon resonant terms can be made independent of atomic velocity

[See e.g. in Eq. (4.12)]. The configuration consisting of counter propagating probe and

control field in ladder system has been shown to be useful in Doppler free polarization

spectroscopy [123], EIT [52] and LWI [132].

The susceptibilities of the medium corresponding to the different polarization com-

ponents of the probe field, can be expressed in terms of the off-diagonal density matrix

elements Eqs. (3.10) and (3.11). Therefore ��� is obtained by solving Eq. (4.5) following

the similar procedure as in Chapter 2. For simplicity, we assume
� : � � * � �

. Under

steady state conditions, we solve Eq. (4.5) to obtain complete analytical solutions for the

susceptibilities � � or the normalized susceptibilities
� �

� � � � � � � � * � * � , � ��� , �
�
���%-;- ,�� � � � : � � * � � , � � � � � -;-��� � * � * , � ��� , �

�
���%-;- � , � � � , �

�
���%- - � � � : � * � , � � � , � � � �%-;- , � � � � : � � * � � , � � ���

�
- -�� 	

(4.9)

� B � � � � � � : � * � , � ��� , �
�
���%-;- ,�� � � � : � � * � � , � � � � � -;-��� � : � * , � ��� , �

�
���%-;- � , � � � , �

�
���%- - � � � * � * � , � � � , � � � �%-;- , � � � � : � � * � � , � � ���

�
- -�� �

(4.10)

In writing (4.9) and (4.10), we have used the condition (4.8). We note that the atomic

velocity dependence of
� �

comes via
�
� . The results presented above are susceptibilities of

the atoms moving at
�� , to the lowest order in the probe field. The response of the medium



Coherent Control of MOR in Doppler Broadened Medium 46

to the input probe field can be obtained by averaging
� �

over the distribution of velocities.

In the limit
�� � �

, Eqs. (4.9) and (4.10) reduce to Eqs. (3.12) and (3.13) respectively.

It may be noted that the parameter space in Eqs. (4.9) and (4.10) is very large. Therefore

we identify a particular configuration of our interest and work only in the region which

gives large asymmetry between
� � � �

and
� � B �

(
���

represents average over the velocity

distribution of atoms inside the cell), and can lead to large MOR. We focus on a particularly

interesting case when � * � � ; i.e., the control field is � � -polarized ( : � 7 : � B �� �
and

: � � �2� ) and it couples to the
� � � � � < �

transition only. Clearly
� B

becomes

� B � � �
, � ��� , �

�
���%-;- 4 (4.11)

which is independent of the control field parameters. Whereas
� � is strongly dependent

on the strength and frequency of the control field and is given by

� � � � � , � � � � : � � * � � , � � � - -� � : � * � , � � � , � � � ��-;- ,�� � � � : � � * ��� , � � � - - � (4.12)

In absence of the control field, the susceptibilities reduce to

� � � �
, , �
�
� �%- � � � - 4 (4.13)

which clearly indicates that
� �

are completely symmetric in absence of magnetic field (i.e.
� ���

). Most of the MOR studies with a weak coherent field use the susceptibility in (4.13).

4.3 Susceptibilities ��� of the Doppler Broadened Medium

Next we calculate the � � of a Doppler broadened medium. Here, as mentioned in Sec. 3.2,

one needs to average
� �

over the atomic velocity distribution �
, � @ - inside the cell to obtain

the response of the medium � � � �/� ? A
B3A � � , � @ - � , � @ - C � @ � (4.14)

It is assumed that at thermal equilibrium, the atoms in the cell follow Maxwell-Boltzmann

velocity distribution

�
, � @ - � , 1 ��� � � �+&#-AB :	� * ��
	� , � & � *@ � 1 � � � -+	 (4.15)
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where mass of the moving atom is
&

, temperature of the cell
�

and
�
� is Boltzmann

constant. For convenience, transforming the integral in Eq. (4.14) from velocity space to

frequency space [133], we get � � � �/� ? A
BBA � � , �

�
-
�
, �
�
- C � � 	 (4.16)

where the � distribution in frequency space is

�
, �
�
-/7 �� 1 � � *� ��
� � � , �

�
� � - * � 1 � *� � 4 � � � � � � , � � � �+& � * - �� � (4.17)

Here � � represents the Doppler width in frequency space. For our case of � � polarized

control field, we substitute
� �

from Eqs. (4.11) and (4.12) in Eq. (4.16) and evaluate the

integral. We could obtain the complete analytical results for the Doppler averaged suscep-

tibilities, in terms of complex error functions [134] as� � B � 7 � � �
� 1 � � *� � - � � � ��� �

� 1 � �
/
4 (4.18)

� � � � 7 � � �
� 1 � � *� � , � - 4 (4.19)

� � �
� 1 � �

� � � ���.� � � � � : � *� � � � � , � �/� � : � � * -
� � (4.20)

The
�

function is defined as

� , 6 - �
�
� ? A
BBA < BCE � C �6 � �

�
(4.21)

It can be written in terms of the error function � � � , 6 - as

� ,  -/��< B # � , � � � � � , � �  - - 4 � � � , 6 -/� 1
� � ? @� < B
E � C � � (4.22)

It may be noted that the argument of
�

function in
� � B � will show usual Doppler pro-

file since it is independent of the control field but the argument of
�

function in
� � � � is

strongly dependent on the strength and frequency of the control field and therefore, the

Doppler profile can be modified with these control field parameters.
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4.4 Condition for Enhancement of MOR

In this section we identify the regions of our interest and discuss how the control field can

be used efficiently to control and hence enhance the MOR. For the Doppler broadened

medium
� �

will be replaced by their averaged values (
� � � �

) in Eq. (3.14) to obtain the

polarization rotation

��� � ��
%%%% ��
	� - �� �1 � � � � / � ��
	� - �� �1 � � B � / %%%% * � (4.23)

From Eq. (2.10), one observes the following:

(i) When
� � � �

�
� � B �

,
� �
�
�
.

(ii) When Re
� � � � � Re

� � B �
but Im

� � � � ��
Im

� � B �
,
���

reduces to

��� � �� %%% < , B 	 ���� ��� � ��� - � < , B 	 ���� ��� � ��� - %%% * � (4.24)

If both
# �* � � � � � � are large,

���
�
�
. However if

# �* � � � � � � is large but
# �* � � � � B � is small (or

vice versa), we obtain

��� � <
# � � ��� � ���
� �

�� 4 (4.25)

which is the rotation due to dichroism only.

(iii) Further when Im
� � � �

� Im
� � B � � �

(say) but Re
� � � � ��

Re
� � B �

, we get

��� � < 8 B # �
+ <

� %%% � � < = 	 ��
	 � 8 � � � � B � � � � < %%% * � (4.26)

If  � � is small,

� � � �� %%% � ��< = 	 ��
	 � 8 � � � � B � � � � < %%% * 	 (4.27)

thus when  �1 ��� , � � B �/� � � � �;-/� , 1 �5� � -;� , � ���
	 � 	 1 	 � �?� -+	 � � � � � (4.28)

This is the most useful region for our system. This rotation is solely due to birefringence.

However if  � � is large then
� �
�
�
. This is because a large attenuation of the MOR signal

occurs. Thus we have identified that the most interesting frequency region corresponds to very

small value of
� � � � � �

and when the asymmetry between
����� � � �

satisfies the condition (4.28).

Therefore our objective is to select proper control field parameters so that above condition

can be achieved.
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Figure 4.3: The enhancements of MOR for a control field tuned to
� < � � � � �

transition
(
� �0�

) with Rabi frequency � : � � �F� . In the plots for
# �* � � � � , the thick-dashed (long-

dashed) lines represent
# �* � � B� � (

# �* � � �� � ) and solid lines represent
# �* � � �� � . In the plot for� �

, dashed (solid) curve represents the rotation without (with) control field. The other
parameters used are � � �

�
� 	 ��� � � and  �!�.� �F�

. All frequencies are scaled with� � � � : � � * � � .

4.5 Numerical Results on Coherent Control of MOR

Based on the above observations, we present some interesting numerical results for differ-

ent parameters to demonstrate the large enhancement of MOR. We define the MOR signal

enhancement factor

� �
, � � - �����( �, ��� - ��� ( � � (4.29)

For a given
�
, � represents the enhancement (if � � � ) or suppression (if � � � ) of MOR

signal by a control field, when compared to the MOR without control field. We use the

notation
� � �� � to represent susceptibilities corresponding to � � components of the probe
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Figure 4.4: Enhancement and suppression of MOR in a denser medium with  � � �F�F� �
.

The legends of the curves used are same as in Fig. 4.3. The magnetic field used in this plot
is
� � 1 �

, the control field Rabi frequency is taken to be � : � � � � and the Doppler width
is � � �

�
�
. A plot of

� �
with

� ���
but with : � ���� (dot-dashed line in the plot for

� �
) is

also presented to isolate the roles of : � and
�

in controlling the MOR. All frequencies are
scaled with

� � � � : � � * � � .

when control field is absent and
� � �� � to represent the susceptibility modified by the control

field. In the following we give some typical values of diffrent various physical parameters

used here: the Doppler width � � �
�
� �

corresponds to
�
�
� � cell at a temprature of �

�
�F� �

. For length of the cell
� �

� � � ,  �.� �F�F�
corresponds to an atomic density of �

� � : * � � � � �,� � � � , a Zeeman splitting of
1 �.� 1 � �

corresponds to a magnetic field of strength� 1 �F� � � � ��� , and � : � � � � � would correspond to a laser field of strength � � �
� � � * .

In Fig. 4.3, we consider the effect of the control field which is on resonance with the

transition
� < ��� � � �

(i.e.
� ���

). We consider density of atoms in the cell such that  �G� �F�F�
.

We observe significant enhancement of MOR for a large range of probe frequencies. (i) We
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get the enhancement factor � � � � � � � � � � for
� ���

. This can be understood as follows:

in the absence of the control field and for
� � �

,
� � � � �� � � � � � � B� � � �

(say) and  � � is

large, leading to
� �

�
�

due to large signal attenuation by absorption [see Eq. (4.27)]. By

application of a control field, the absorption peak (Im
� � �� � ) splits giving rise to Autler-

Townes doublet. The minimum of
� � � � �� � appears at

� � �
. Thus MOR signal at this

frequency is enhanced by suppressing the � B component of the probe field as a result of its

large absorption. (ii) Further large MOR signal
� �

�
1 
 � is observed at

�
�
� � � � � which is

attributed to the flipping of the sign of
����� � � �

causing a larger asymmetry between Re
� � �� �

and Re
� � B� � .

In Fig. 4.4, we consider the control of MOR in a denser medium. Here  �/� �F� �F�
and

the magnetic field is such that
�(� 1 �

. In order to demonstrate the combined effect of
: � and

�
, and then to isolate the contribution of magnetic field in obtaining large

� �
, we

have also plotted
���

for
�0���

but : � ��"� . In the following we discuss the contribution

of : � and
�

in different probe frequency regions. To understand the enhancements and

suppressions of the MOR signal at different probe frequencies, we divide the whole range

of
�

into following four regions:

Region I: For
�
�
� � � � �

�
, Im

� � �� � are large. Thus in the absence of control field,
� �

in this

region is almost zero. However by application of control field, an absorption minimum for

� B polarization component (Im
� � �� � ) occurs due to EIT at

� ���
. Thus a large enhancement

of MOR is obtained when : � ��0� compared to the case of : � �0� . However
� �

value is

only � �
� 1 � of the input probe intensity at
� ���

, because
# �* � � � 	 B� � has a large value and

therefore

���
�
�� %%% < = 	 �� � � �� � %%% * � �� < B

# � � ����� �� � (4.30)

which is a small value and this rotation is solely due to dichroism created by the control

laser. Comparing the
� �

values with
�0� � 	 : � ���� (dot-dashed line) and

� ����
	 : � ��"�

(dashed line), it is clear from the Fig. 4.4 that the magnetic field contribution is very small

in this region.

Region II: In the region
� � �

� � � � � �
�

and �
� � � � � �

�
, there are residual absorptions

at the tail of the Lorentzian Im
� � �� � . Further Im

� � �� � is also large in this region. Therefore

though there is a large asymmetry between Re
� � B� � and Re

� � �� � , very large attenuation

makes the value of
� �

extremely small.
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Region III: In the probe frequency region
� 1 � � � � � � � �

�
and � �

� � � � 1 �F�
, minimum

of Im
� � �� � occurs but Im

� � �� � still has large value in this region. Thus the rotation is large

in absence of : � but with the control field, there occurs a large suppression of the MOR

signal.

Region IV: For
� �F�F� � � � � 1 � � and

1 �F� � � � �F�F�
, we get the most interesting region

because the Im
� � �� � and Im

� � �� � are very small. Thus even though the asymmetry between

Re
� � � �

is small, the birefringence contribution shows up in the form of very large rotation

in the -ve
�

region. For example, the MOR signal at
� � � 1 � � ��� is � � � � � of the input

intensity. However in the +ve
�

region, the asymmetry between
� �%B� � and

� � �� � is decreased,

and hence MOR is suppressed. The comparison of control field induced
� �

in presence and

absence of magnetic field clearly demonstrates that presence of magnetic field causes larger

asymmetry between
� � �� � and

� � B� � in -ve
�

region but reduces the amount of asymmetry

in the +ve
�

region. Hence at
�
�
� �F� �

,
� �

in presence of magnetic field is about 5 times

larger compared to
� �

without magnetic field.

In order to bring out the role of magnetic field in the enhancement of
� �

observed in

this region, we present Fig. 4.5(a) - where
� �

vs magnetic field is plotted with a probe fre-

quency fixed (
� � � 1

�
�
) in the region IV. The figure clearly demonstrates the contribution

of magnetic field and laser field separately in the enhancement of
� �

. For clarity of the

explanation, we have marked some points in the graph. The point � : (
� : ) represents the

rotation due to control field alone with � : � � �F� ( � : � �
�
). The points � * ( � � ) gives the

amount of
���

without (with) the control field for a given value of
��� 1�1 � �

(
� �"�F��� �

� ).

Thus clearly, � � represents enhancement of rotation by a factor of 2.37 due to the magnetic

field with respect to � : , and when compared with � * , the point � � represents enhance-

ment due to the control field by a factor of 2.66. Very large
� � ,

� � � � � � of input intensity)

is obtained for
� � 1 1 � �

. The plot with � : � �
�

shows a large
� �

( �
� �
� � �

of input inten-

sity) value at
� � � ���

�
�

which corresponds to an enhancement of
���
�
� � � � times the value

compared to the point
� : . Similarly large suppression of MOR can be observed when the

magnetic field is flipped (i.e.
�

is negative); e.g., the point � � . The large MOR signals and

enhancements described above are interpreted by the condition (4.28). The points where the

condition (4.28) is satisfied are marked by arrows in Fig. 4.5(b). The Fig. 4.5(b) also depicts

the parameters for which the rotations are optimal. Note that larger magnetic fields can

produce large
� �

. Here in Fig. 4.5 we show that using a small magnetic field and applying
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Figure 4.5: (a) The plot of
� �

as a function of
�

to investigate the role of magnetic field.
This plot corresponds to

�5� � 1
�
�

(in the region IV of Fig. 4.4). All other parameters are
same as in Fig. 4.4. (b) The asymmetry between

� � � � and
� � B � is plotted as a function

of
�

corresponding to the plots of
� �

in (a). The points marked by the arrows satisfy the
condition for maximal rotation (4.28).

the control field one can produce same
� �

. This could be advantageous as it is difficult to

get large magnetic fields in laboratory. Further using the large enhancements ( � ) of MOR

it is possible to realize a magneto-optical switch, that can switch the incident polarization of

the probe to its orthogonal polarization [130].

4.6 MOR in Two-photon Resonance Condition

In this section we consider the enhancement of MOR when the � � polarized control filed

and the probe field are on two-photon resonance with
� < ��� � � �

transition (
� � � � �

). Un-

der this condition
� � � � in Eq. (4.19) is modified which contains the control field parameters

but the
� � B � remains unchanged. The argument of

�
function in Eq. (4.19) would reduce
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Figure 4.6: Enhancement of MOR in a Doppler broadened medium when the control field
and the probe field are on two-photon resonance with

� < � � � � �
transition. The legends

used are same as in Fig. 4.3, the solid line corresponds to � : � 1 �
and the dot dashed line

corresponds to � : � � �F� . Here � : � � � � corresponds to the expansion in (4.33). The other
parameters used in the plot are

�5� � � and  �G� � �F�
.

to

� � �
� 1 � �

� � , � � �%- � � - � � � � : � *� � � � : � � *
/ � � (4.31)

In the limit
� � : � � � � ,

�
�

�
. The asymptotic expansion of

�
function in terms of

�

function for
�'���� � � � �F�7� �

is given by [134]

� , � -/� �
� � � , � � 1 -� � � , � � 1 -

� �
� � � � � � 4 � , 6 - 7 ? A� < B
@ � @ B : C � � (4.32)

Using the expansion (4.32) and retaining only the first order term, we get

�
�
�
� 1
�
� � �
� , � � �%- � � � ����� �

�! � � � � � � � � (4.33)



Coherent Control of MOR in Doppler Broadened Medium 55

Therefore
� � � �

in Eq. (4.19) reduces to� � � �/7	� � �
�
�/� � �

� ����� �
�  � � � � � � � � , � ���%-

�
(4.34)

This value of
� � � �

is equal to the corresponding stationary atom value in
� �

in Eq. (3.19).

However, note that
� � B �

[in Eq. (4.18)] is still velocity dependent. In the above limit, large

power broadening is introduced in
� � � �

and amplitude of
� � �� � is reduced. However, this

turns out to be advantageous, particularly because large asymmetry is created between� � �� � and
� � B � around

�5� �
. And since

� � B � is Doppler broadened and
� � �� � is reasonably

small and flat for a broad range of
�
, one gets large enhancement in of

� �
for a broad range

of probe frequencies compared to the homogeneously broadened case. Further, MOR in

two-photon resonance condition turns out to be advantageous for smaller magnetic fields

where very large enhancement of MOR is obtained.

4.7 Summary

We have shown how a control field can be used to control birefringence and hence enhance

MOR in a Doppler broadened medium. We have shown how control laser can modify

the susceptibilities and hence result significantly large MOR in frequency regions, where

MOR otherwise is small. The key to large enhancement of MOR consists of utilizing EIT

and also using large asymmetry in the susceptibilities at the Autler-Townes components.

We have derived conditions to select frequency regions where one can obtain large MOR.

The most useful regions are the probe at frequencies - where absorptions of both the circu-

larly polarized components are negligible and dispersions of the two circularly polarized

components are quite different. We have substantiated these analytical results using many

numerical plots for many different parameters at different conditions.



Chapter 5

Vacuum Induced Coherences

5.1 Introduction

So far we have discussed how control laser can be used to produce the required coherence

in atomic systems. However in this section we will consider a completely different situ-

ation: to create atomic coherences by the interaction of the atom with the vacuum (zero-

point) fluctuations of EM field. In contrast to the single mode laser field with very large

mode density, vacuum field contains all the modes of the EM spectrum with a fairly flat

mode distribution, and with a very short correlation time. Hence the interaction of an atom

in its excited state with vacuum results an incoherent emission - the spontaneous emission.

Dicke [135] was first to report a coherent radiation by collective interaction of two-level

atoms with the vacuum field, when atoms were prepared in certain specific states. Con-

sidering the entire collection of atoms as single quantum mechanical entity, he found that

the individual atoms cooperate to emit radiation at a rate which is much greater than their

incoherent (spontaneous) emission rate. In Chapter 6, we will discuss the effect of collec-

tive interaction in spontaneous emission in detail, in which we show that such interactions

can produce new coherences in multilevel systems.

A single multilevel atom having closely lying states (with the energy level separation of

the order of natural line width) can also produce quantum coherences in the spontaneous

emission from those closely lying states. This is due to the fact that, both the decay chan-

nels are coupled via the same continuum of vacuum creating interfering path ways. The

resulting coherence in the system is known as vacuum induced coherence (VIC). Occurrence

of this coherence was first shown by Agarwal in his excellent monograph [7]. However

56
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some stringent conditions are required for VIC to occur, which we will discuss in detail in

Sec. 5.4. In the following section we present a master equation technique which will be

used to derive information about spontaneous emission.

5.2 Master Equation Formulation

As mentioned in Sec. 1.1.2, master equation technique is useful to describe the interaction

of atom with a field where the atomic evolution could affect the field state and vice-versa

[136]. We use the Zwanzing projection operator technique [137] to derive the master equation

following the the method developed by Agarwal [7]. Let the density operator for the

statistical states of a collection of atoms + vacuum-field coupled system be ��� ��� , where� corresponds to atomic variables and � corresponds to the field variables of vacuum. In

interaction picture, the operator � � ��� satisfies the Liouville Eq. (1.25)
� ��� ���

, � -
��� ��� � "

� �#
� �
, � -+	 ��� ���

, � -�� ��� � 	 , � - ��� ���
, � -+�

(5.1)

where
	 , � -+� � �
7 , � �  " - � �# � � , � - 	 � � � � is a commutation operator known as Liouville operator.

Here
�#
� � represents the the time dependent vacuum-atom interaction Hamiltonian. Gen-

erally our interest is to obtain useful information about either atom or field evolution. This

is done by projecting out the relevant part from ��� ��� by taking trace over the irrelevant part; e.g.��� 7	
��
� ��� ��� . For this purpose we introduce a time independent projection operator � ,

such that � * � � . Let us choose �
7 � � , �F- 
�� � and write the density operator ��� ��� in

terms of � as ��� ���
, � -/�

� ��� ���
, � - � , � � �

- ��� ���
, � -+�

(5.2)

Clearly the first term in the right hand side � ��� ��� would describe the atomic evolution

and the second terms
, � � � - � � ��� would give the properties of the emitted radiation. Here

we outline the derivation of master equation for ��� ( � ��� ��� ).. We assume that at
� � �

the atom and field are uncoupled ��� ���
, �F- � ��� , �F- � � , � - . For the spontaneous emission

problem, the initial state of the field is given by � � 7 � � � � ��� � � � � , where
� � ��� � represents the

the vacuum of the field. Multiplying � and
, � � �

-
from left hand side of Eq. (5.1), we get

�
� ��� ������ ��� �

�
	 , � -

� ��� ���
, � - � �

�
	 , � - , � � �

- ��� ���
, � -+	

(5.3a)

, � � �
- � ��� ������ � � � , � � �

- 	 , � -
� ��� ���

, � - � � , � � �
- 	 , � - , � � �

- ��� ���
, � -+�

(5.3b)
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Integrating (5.3b) formally and substituting in (5.3a) and on setting

��
	� � � � , � � �
-B?��� C � E 	 , � E - � 7 � , D - 	 (5.4)

we get
�
� ��� ������ ��� �

�
	 , � - ? E� C D � , D - 	 , � � D - � � � ���

, � � D -+� (5.5)

In writing Eq. (5.5), we have used the following relations:
, � � �

- ��� ���
, �F- � �

, and also

because
	

is linear in the creation ( � �> � ) and annihilation ( � > � ) operators of the vacuum

field, �
	 , � -

�
���

. Further Born approximation is made which is due to the weak coupling

of the vacuum field with the atomic transition such that to the lowest order
� , D - � � .

This would physically mean the emitted photon does not react back with the atom. This

approximation, however, is not valid for atom interacting with vacuum of a high
�

cavity.

With the above approximation and in the long time limit we get
� � ���� � � �

 " * � � �E � A ? E� C D 
�� � � �#
� �
, � -+	 � �#

� �
, � � D -+	 � � , �F- � � , � � D -�� � � (5.6)

This is a simplified form of Zwanzing’s master equation. From (5.6) we note that the evolu-

tion of ��� , � - at
�

would depend on its value at all previous times. However since vacuum

field has very short correlation time, we make the Markoff approximation which would

imply replacing � � , � � D - by ��� , � - inside the integral of (5.6). We will derive the explicit

form of master equation for the systems of our interest in Chapters 6 and 7. However, in

next section we present a master equation for a typical three level system to demonstrate

the origin of coherences in spontaneous emission.

5.3 Origin of VIC and The Effects

Let us consider a
�

system with two excited states of the
� � � and

� 1 �
which decay decay to

the common ground state
� � �

. The total Hamiltonian that describes the atom and vacuum

field system is given by

#��$#
�
� #

�
� #

� � (5.7)
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where

#
�
�  " � : � � :�: �  " � * � � *;* 	 (5.8)

#
�
� )

>
4
�
 " � > � � �> � � > � 	 (5.9)

#
� �

� � �C � �� � , �� -/��� , �C : � � : � � �C : � � : � � � �'�F� -/� ��
�
, �� - 4 (5.10)

where � = � and
�C = � represent projection operator and dipole operators respectively, as de-

fined in Sec. 1.2.1. Here the quantized vacuum field
��
�
, �� - is given by

��
�
, �� -/� � )

> �
- 1 �  " � > �

�

/ :	� * 89 > � � > � < = 
>  
� � � � � � 	 (5.11)

where � > � ( � �> � ) denotes the photon annihilation (creation) operator for the
� E"!

mode and

polarization index
�
. The corresponding field polarization vector is

89 > � . The interaction

Hamiltonian in the interaction picture is given by

�#
� �
, � - � < = 8���� � ���B< E ���! # � � < B
= 8���� � ���B< E ���!

� �  " )
> �

� � > � , � :	��
 � : � < = D �� E�� � * ��
 � * � < = D � � E -G�(� � � � � 	 (5.12)

where

� � ��
 ��� - 1 � � > � " �

/ :
� * �C � � �
89 > � < = 
>  
� (5.13)

is often called the vacuum Rabi coupling coefficient corresponding to
� ��� � � � �

transition

and � > � mode. In writing (5.12), we have used the RWA approximation, i.e., we have

ignored terms like � > � � � � and � �> � � � � , which can also be understood as neglecting the

anti-resonant terms in the Hamiltonian. However it may be noted that using RWA on

the Hamiltonian, one looses the information of the Lamb shift associated with the ground

state. Therefore if one is interested to get complete information about the shifts associated

with spontaneous decays, one should make RWA on the final master equation (See ap-

pendix A of [7]). Substituting Eq. (5.12) in Eq. (5.6) and using following trace algebra of

field operators inside the integral of (5.6)
�� � , � � � �> � � > � � � - ���
	�
�� � , � � � > � � �> � � � -/��� >A> � � � � � 	
�� � , � � � > � � > � � � -/��
�� � , � � � �> � � �> � � � -/��� 	 (5.14)
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we get the master equation for our system
� ������ � � )� ( : 4 * � � , � ��� � � 1 � � ��� � � � � � ��� -

� � � , � : *�� � 1 � � ���C* : � � � : * -
< * =�� E�� � � � � � � (5.15)

Here
� � � 1 � �C � � � * � �� � � , �  " � � - denotes the spontaneous decay rates from the states

� ���
to the

state
� � �

and
1 �

is the separation between the excited states. It may be noted that in writing

(5.15) we have dropped the Lamb shift terms associated with the spontaneous emissions.

The coupling coefficient
�

that couples the coherence terms of the density matrix with the

population terms in (5.15) has the form

�$��� )
>
4
�

� :	��
 � �* ��
 � , � � � � > - 4 (5.16)

where � � is the atomic frequency; � : � � � * � 7 � � is assumed. From (5.15), one can write

explicitly the equation for the density matrix element that represent coherence
� � : *��� � � , � : � � * - � : * � � , � :�: � �
*;* - < * =�� E � (5.17)

Clearly if the system is initially prepared in either of the excited states, coherence will

evolve in the system only if the coupling term
�

is non-zero. For example, if the system is

initially in state
� � � , then to lowest order in

�
and for

� � � , the soultion of (5.17 gives

� : * , � -/7 �1 , � : � � �%- � < B * 8
5
� B
=�� < E � � � � (5.18)

Thus it is clear from (5.18) that coherence between the upper states evolve for
� ����

. We

will discuss the physical meaning of this cross coupling term
�

in Sec. 5.4, which puts

certain constraint on the system in which VIC can occur. In the following we discuss the

remarkable consequences of this coherence reported in many recent literatures.

It was first shown by Agarwal [7] that the population gets trapped in degenerate
�

system due to the above mentioned coherences in the decay channels. For non-degenerate
�

systems, Cardimona et al [138] showed that probe absorption at certain frequency can

become zero due to VIC. Recently, there has been renewed interest in this subject particu-

larly in the context of coherently driven systems [138, 139, 140, 141]. Harris and Imamoğlu

were the first to discover the possibility of achieving lasing without population inversion

in systems where two excited states were coupled to a common continuum [70, 142] (See
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also [143, 144]). It has also been observed that narrowing of spontaneous emission can be

obtained by making use of the VIC [139, 145]. Quantum beat has been observed in spon-

taneous emission which showed pronounced beat structures determined by the energy

separation of the closely lying states [146, 147, 148]. The VIC also leads to cancellation of

spontaneous emission [149, 150, 151]. Zhu and coworkers have experimentally demon-

strated the quenching of spontaneous emission in sodium dimers [149]. Further Scully,

Zhu and coworkers proposed many schemes with different configurations demonstrating

the possibility of obtaining quenching of spontaneous emission [150]. It was also reported

that in the presence of VIC, the resonance fluorescence [152, 153] and other spectral line

shapes [141] become sensitive to the phase of the control laser. Knight and coworkers

[153] have demonstrated the possibility of controlling spontaneous emission by varying

the relative phase of two control lasers in a four-level system.

5.4 Condition for VIC to Occur

In the previous section we showed that VIC can occur in a typical
�

system via the cou-

pling coefficient
�

given by Eq. (5.16) Substituting
� � ��
 from (5.13) in Eq. (5.16) and carrying

out the summation over two orthogonal polarization modes, for a given
�

, we get

� � )
�
, �C : � �
89 > � - , �C �* � �
89 �> � -

7 �C : � � �C �* � � (5.19)

The summation over the polarization components in (5.19) are evaluated using the relation)
�
, 89 > � -�� , 89 �> � -�� 7������ � 8� � 8� ��	

(5.20)

where
8� � represents the direction cosine of

�� �B� �� �
along the

� E ! Cartesian axis. From Eq.

(5.19) it is clear that the condition for the VIC to occur is

�C : � � �C �* � ���� 	 (5.21)

i.e., VIC can occur in an atomic system if the transition dipole matrix elements involved

with the decay channels are non-orthogonal. Note that all the above condition is also valid

for VIC to occur in � systems (see for example [141]).
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The question arises - what are the systems for which the condition (5.21) holds ? Con-

sider, for example, the
�!� � � � �#�

transition in an atomic system. Let
� � � , � 1 � and

� � �
in

the above example denote the states
� � � � 	 � � � � , � � � � 	 � �"� � � and

� � ���
	 � �����

respectively. In this case, simple algebra shows that� � 	 �B� �C � � 	 � � � � � 	 � � � �C � �
	 ��� ��� � �C � *1 , 8� � � 8� - � , 8� � � 8� - � ���
	 (5.22)

where C is the reduced dipole matrix element. Thus, the interference between two decay

channels
� � 	 � � � � � 	 ���

and
� � 	 � � � � � �
	A���

will not occur. Several proposals have been

made to achieve the non-orthogonality in atomic dipole matrix elements [147, 148, 149,

151, 154, 155, 156]. Xia et al [149] have found states in sodium dimer where the spin-orbit

coupling makes the dipole matrix elements to satisfy (5.21), Schmidt and Imamoğlu [154]

have shown that the condition (5.21) can be met using a r.f. field, and Berman has shown

this possibility using a d.c. field [151]. In another recent paper Agarwal [155] has shown

that atoms when interact with an anisotropic vacuum can also show VIC, even though the

transition dipole matrix elements do not satisfy (5.21).

5.5 Summary and Perspectives

In summary, we have shown: (a) how vacuum can create coherence in an atom? (b) What

is the origin of this coherence? And (c) what are the conditions required for this coherence

to occur? In the following chapters we will consider VIC in different situations. In Chap-

ter 6 we will consider how radiative coupling between two
�

systems in free space, with

transition dipole matrix elements that do not satisfy (5.21), can also produce VIC [156]. In

Chapter 7 and 8, we will investigate the case of non-orthogonality and resulting coherence

effects in four level atomic system. The system, we consider, consists of a singlet ground

state and a singlet excited state and two closely lying intermediate states - the upper part

is like a � system and lower part is like a
�

system. The motivation for selection of this

particular scheme is: the coherence can be introduced in the upper � part of the system

and its manifestation can be observed in the lower
�

part. Thus the cause and effect channels

are clearly distinguished. We propose methods by which one can bypass [148] the condi-

tion (5.21) [in Chapter 7] or create states [147] that satisfy (5.21) [in Chapter 8] to bring in

coherences in spontaneous emission.



Chapter 6

Vacuum Induced Coherences in Radiatively

Coupled Multilevel Systems

6.1 Introduction

All the studies on VIC [138-155] discussed in the previous chapter, deal with a single mul-

tilevel atom or equivalently with an ensemble of non-interacting multilevel atoms - e.g.,

very low density atomic gas systems. However, VIC in coupled atomic systems has re-

mained unexplored. In this Chapter, we consider the role of VIC in two radiatively cou-

pled multilevel atoms. The average inter-atomic distance, in case of low density atomic gas

systems, is much larger compared to the wavelength of the emitted radiation. However,

when the inter-atomic distance becomes comparable to the wavelength, the dipole-dipole

(dd) coupling between the atoms via vacuum gives rise to collective effects. Our usage

of dd interaction should be understood in the sense of retarded (and complex) dipole-

dipole interaction. The classic example of such collective effect is Dicke superradiance

[135, 157], where the atoms in their excited state decay much faster compared to that of a

single atom. The collective effects in atoms have been extensively studied [157-169]. Re-

cently experiments have been reported to observe collective behavior with two identical

atoms [158, 159]. The dd interaction has been shown to produce two-photon resonance

[160] and frequency shifts in emission [161]. The energy exchange between two coupled

systems is discussed in [162]. Many interesting features of dd interaction in the context of

atoms interacting with a squeezed vacuum [163], and inside bandgap materials [164] have

been reported. Mayer and Yeoman [165] have considered two-atom laser in the presence

63
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Figure 6.1: The two identical
�

systems under consideration. The distance between the
two atoms is

�
. The transition dipole matrix elements

�C : and
�C * are chosen to be orthog-

onal with each other. The energy separation between the excited states is
1  " �

. We discuss
the situation where initially atom � is in excited state

� � � � and atom
�

is in ground state� �
�

�
. Possibility of dd interaction induced excitation in the

� �
�

�
�

� 1
�

�
transition is indi-

cated.

of the atom-atom interaction. Quantum jump from two dipole interacting V-systems giv-

ing rise to new fluorescence periods has been reported by Hegerfeldt and coworkers [166].

Meystre and coworkers [167] found that the dd interaction leads to the occurrence of dark

states in the fluorescence of two moving atoms [168]. Finally note that the local field effects

in a dense media are also due to dd interaction [169]. All the dd interaction related effects

can be understood as a consequence of the exchange of virtual photons between the atoms.

Most of the existing literature concerns two-level atoms.

In this Chapter, we consider two identical
�

-systems having two closely lying excited

states (as shown in Fig. 6.1). The two atoms get coupled by the exchange of radiation. We

would specifically show how the radiative coupling in multilevel systems can lead to a

population transfer from
� � � � to

� 1
�

�
even if the corresponding transition dipole matrix

elements are orthogonal [156].

6.2 Dynamical Evolution of Two V-systems

We consider [Fig. 6.1] two identical V-systems (say A and B) in free space, having two

near-degenerate excited states
� � � � and

� 1 � �
( � � � 	A� ) with the level separation

1  " �
. The

ground states of the atoms are represented by
� � ���

. Let � : � and � * � be the atomic frequen-
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cies corresponding to
� � � � � � � � �

and
� 1 � � � � � � �

transitions respectively. Let the position

vectors of the atoms be
�
� � and

�
� � . Both the atoms couple with the vacuum field, which is

given by

��
�
, �
�
-/� �� 8 � < , �� - � �� 8 B < , �� - 4 (6.1)

where
�� 8 � < , �� 8 B < - represents the positive (negative) frequency part the vacuum field at

�
�

and is defined as

�� 8 � < , �� -/� )
>
4
�
� - 1 �  " � >

�

/ :	� * 8� > � 89 > � < = 
>  
� 	 (6.2)

and
�� 8 B < is the Hermitian conjugate of

�� 8 � < . Here the symbols have the usual meaning as

in Eq. (5.11).

Now let us consider the following physical process: Initially atom � is taken to be

in excited state
� � � � and the second atom in ground state

� �
�

�
. To highlight the effect of

new interference terms, we specifically consider the case when the two transition dipole

matrix elements
�C : and

�C * are orthogonal to each other. In the absence of atom
�

, the

VIC cannot be created in the excited states of atom � because the transition dipole matrix

elements
�C : and

�C * are orthogonal [see Eq. (5.21)]. However, the radiative coupling can

lead to evolution of the excited state coherences. We will also show a manifestation of this

coherence in the dynamical evolution of the atomic population.

The total Hamiltonian for the atoms and the field system is given by

# �$#
�
� #

�
� #

� �
	

(6.3)

where the unperturbed Hamiltonian for the atoms and field are

#
�
�  " )

� ( � 4 � � � : � 8 �� 8 � � � * � 8� �� 8� ��	 	 (6.4)

#
�
� )
> �

 " � > � 8� �> � 8� > � 	 (6.5)

and the interaction Hamiltonian is

#
� �

� � �C � �� �
� � )

� ( � 4 � *) � ( : � �C 8
� <� � � ��

�
, �
�
� -G� � �'�F� � , � � � 	 � -+� (6.6)
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The atomic transition operators introduced in (6.4), are given by

8 � 7 � � � ��� � � �?	 8� � 7 � � � ��� 1 � �?	
8 �� 7 � � � ��� � � �?	 8� �� 7 � 1 � ��� � � �?�

(6.7)

Thus
8 � 	G8 �� (

8� � 	 8� ��
) represent the atomic lowering and raising operators respectively cor-

responding to the
� � � � � � � � �

(
� 1 � � � � � � �

) transition. The dipole matrix elements are

represented by

�C 8 � <� � � �C 8 � <� � ��� ��� � �B�?�
(6.8)

For simplicity we consider a situation where the transition dipole matrix elements of atom� are parallel to the transition dipole matrix elements of atom
�

, i.e.,

�C 8 � <: � � � �C 8 � <: � 
	�� �C 8 � <* � � � �C 8 � <* � �
(6.9)

We also assume that

�C 8 � <: � � �C 8 � < �* � � �
�
(6.10)

Thus the index � in the right hand side of Eq. (6.8) can be dropped and the dipole matrix

elements can be rewritten as

�C 8 � <� � � �C � � � � ��� � � �?� (6.11)

Here we note that
�C � , in general, can be complex (see for example Sec. V). Using Eq. (6.11),

the interaction Hamiltonian in (6.6) can be reduced to

#
� �
� � )

� ( � 4 � � � �C : 8 �� � �C * 8� �� 	 � �� � , �� � - � � �'�F� � �
(6.12)

We work in the interaction picture by transforming (6.12) to

�#
� �
, � - � < ��� 8�� � � � � < E # � �

< B ��� 8�� � � � � < E (6.13)
� � )

� ( � 4 � � � �C : 8 �� < = D �� E � �C * 8� �� < =?D � � E 	 � � �� 8 � < , �� � 	 � -G� �� 8 B < , �� � 	 � - 	 � � � �F� � 4
where,

�� 8 � < , �� � 	 � -/� )
>
4
�
�9- 1 �  " � >

�

/ :	� * 8� > � 89 > � < = 8 
>  
��� B
D � E < 
	�� �� 8 B < , �� � 	 � -/� � �� 8 � < , �� � 	 � -�� � � (6.14)
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Let the density operator of the combined atom-field system in the interaction picture

be represented by � � � � , � - which satisfies the Liouville equation of motion
� � � � ���� ��� � "

� �#
� �
, � -+	 � � � � � � (6.15)

To derive useful information about the evolution of the atomic system, we derive a mas-

ter equation for the reduced atomic operator by using the standard projection operator

techniques [7]. We make following approximations in deriving the master equation: (a) at
� ���

, � � � � , � - can be factorized into a product of atom [ � � ] and field [ � � ] density opera-

tors, i.e., � � � � , �F- 7 � � , �F- � � , �F- . Furthermore, we invoke (b) the Born approximation and

(c) the Markoff approximation. The Born approximation depends on the weak coupling

between the vacuum and the atoms. The Markoff approximation holds because the vac-

uum has fairly flat density of states. Using the above approximations and tracing over the

field states, the density matrix equation for the atoms becomes
� � ���� � � � " * � � �E � A ? E� C D 
�� � � �#

� �
, � -+	 � �#

� �
, � � D - 	 � � , �F- � � � � � (6.16)

The trace over the field operators inside the integral in Eq. (6.16) is calculated using the

relations Eq. (5.14). One also uses the rotating wave approximation (RWA) to drop the

anti-resonant terms like
8 � 8 � ,

8 �� 8 �� ,
8� � 8� �

and
8� �� 8� ��

in (6.16). Using the above conditions

and carrying out a long algebra, we obtain the master equation for the atomic density

operator

� ���� � �
����� � � : )

� ( � 4 � � 8 �� 8 � � � 1 8 � � 8 �� � � 8 �� 8 � 	�� �	 � � � 1 	  � ��
�
� � � :� , 8 �� 8 � � � 1 8 � � 8 �� � � 8 �� 8 �

-G� � �'�F���5� � � 1 	  � � �
� �  � � : �+8 �� 8 �

	 � �%� � �'�F� � � � � 1 	  � � �
(6.17)

� �  � � � � 8� �� 8 � � � 1 8 � � 8� �� � � 8� �� 8 �

	 < B * =�� E�� � � �F���5� � � � �
� �  � � � � � 8� �� 8 �

	 � � < B * =�� E � � � �F��� � � � � � 4



Vacuum Induced Coherences in Radiatively Coupled Multilevel Systems 68

where,

� � � )
>
4
�
- 1 � � > " �

/ ��� , � � � � > -�� �C � �
89 > � � * 	
� � � )

>
4
�
- 1 � � > " �

/ ��� , � � � � > -�� �C � �
89 > � � * < = 
>  
� 	
� � � )

>
4
�
- 1 � � > " �

/ - �� � � � > � �� � � � > / � �C � �
89 > � � * < = 
>  
� 	 (6.18)

�
� � � )

>
4
�
- 1 � � > " �

/ ��� , � � � � > - , �C * �
89 > � - , �C : � 89 > � - � <+= 
>  
� 	
�
� � � )

>
4
�
- 1 � � > " �

/ - �� � � � > � �� � � � > / , �C * �
89 > � - , �C : �
89 > � - � < = 
>  
� �
Here,

�� � �
� �
� �

� � . Since the states
� � � � and

� 1 � �
are closely lying, we have set � : � �� � * � 7� � . The suffix � of � � in Eq. (6.17) has been dropped for brevity. We have also dropped the

Lamb shift terms associated with the spontaneous emission of the individual atoms. The

summation over the polarization components is evaluated using the Eq. (5.20). Taking the

limit
�
�

�
and replacing the summation over

�
by integration over the continuum of

the field modes, the terms in (6.18) become

� � � 1 � �C � � *�  "
� � �� 	 � 	

� � � � " , �C � � � � � � � �C �� -'	 � � � � " , �C � � ����� � � �C �� -+	 (6.19)

�
� � � � " ,

�C * � � � � � � �C � : -'	 �
� � � � " ,

�C * � ����� � � �C � : - 4
where

� � is a tensor whose components are given by

� ��� , �
� �
	 �
� �

	 � � - 7
� � *� � ��� � � *

�
� � �
�
� � �

� < = >�� ��
7 � � � � - � *�� � � � �

� * � �� �
/ � � � � � - � *�� �

� �
� � �
� �

� �
� �

/ � < =?>�� � 4(6.20)

where
� � � � ��� � and

� � � �
� �
� �

� �

�
.

6.3 Interpretation of Different Terms in The Master Equation

The
1�� � in Eq. (6.19) represents the single atom spontaneous decay rate from the state

� ���
to

the state
� � �

. Rest of the coefficients in (6.17) are related to the coupling between the two
�

-
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systems. This coupling is produced by the exchange of a photon between the two systems.

The dipole-dipole interaction manifests itself through the tensor
� � defined by Eq. (6.20).

The tensor
� � # + , �

� �
	 �
� �

	 � - has the following meaning: It represents the  E ! component of

the electric field at the point
�
� � , produced by an oscillating dipole of unit strength along

the direction
�

and located at the point
�
� � [170]. In the limit � � �

(
� �
�
�
), it reduces

to the static dipole-dipole interaction.
� � and

� � represent the dd couplings which are

related to the decay and level shift of the collective atomic states. These coefficients couple

a pair of parallel dipoles and are well known [7], particularly in the context of collective

effects in two level atoms. The new coherence terms
�
� � and

�
� � are the dipole-dipole cross

coupling coefficients, which couple a pair of orthogonal dipoles. The meaning of such terms can

be clearly understood by calculating the evolution of the population in the state
� �
�
	 1

�

�
,

given the initial condition
� � � 	 � �

�
. From the master equation (6.17), one can show that at

�
�
�
,

�
��� � � � 	 � �

� � � � � 	 1 �

�/� � , � �� � � � � �� � - < * =�� E 	 (6.21)

and hence
�
��� � � � 	 1 �

� � � � � 	 1 �

� � � , �
� � � � � � � -;< B * =�� E � � � 	 � �

� � � � � 	 1 �

�
� , � �� � � � � �� � -;< * =�� E � � � 	 1 �

� � � � � 	 � �

�
� � 1 � �

� � � � � � � � * - 		� 	 1 � �1 � / �
(6.22)

Thus to the lowest order in
�
� � and

�
� � , we obtain� �

�
	 1

�

� � � � � 	 1 �

�
�
� � �

� � ��� �
� � � * - 		� 	 * � �� � *

/ �
(6.23)

Therefore the radiative process, in which atom � in the excited state
� � � � loses its excitation

which in turn excites atom
�

to the state
� 1

�

�
, is possible only because of

�
� � and

�
� � terms

in the master equation (6.17). Note further that such terms start becoming insignificant as1  " �
- the energy separation between the two excited states increases. Such interference

terms occur in the master equation even when the transition dipole matrix elements
�C :

and
�C * are orthogonal to each other. Such contributions come from the second term in

Eq. (6.20). In the rest of the paper, we study in detail the various consequences of these

interference terms which could be large and could significantly contribute to the dynamics

of the system when the atomic separation is smaller than
�

.
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Figure 6.2: The geometry under consideration where the dipole matrix elements
�C : and

�C *are taken to be real and aligned along the � and � directions respectively.

Let us consider a geometry where atom � is placed at the origin of a Cartesian co-

ordinate system and the position vector of atom
�

is
��

(as shown in Fig. 6.2).
��

makes an

angle
�

with the 6 axis. Let us assume
�C : � 8

� C and
�C * �)8� C . All the radiative coupling

terms in the master equation can be written down explicitly as

� : � � C � * " � � � � � � � �1 , 	 = � 		� 	 * � � ��	 * � � = -+	 � : � � C � * " ��� � � � � � �1 , 	 � � 	 � 	 * � � ��	 * � � � - 	
� * �

� C � * " � � � � � � � �1 , 	 = � 		� 	 * � 		� 	 * � � = -+	 � * �
� C � * " ��� � � �.� � �1 , 	 � � 		� 	 * � 		� 	 * � � � -

�
� � �

� C � * " � � � � � ��� � �1 		� 	 * � 		� 	 � � � 	 � � = 	 �
� � �

� C � * " ��� � � � ��� � �1 		� 	 * � 	 � 	 � � ��	 � � � 4
(6.24)

where � is defined as in the Fig. 6.2, and

	 � �
� ��	 �
� � 	 � 	 �

� * � � ��	 �
� �

	 � � �
� ��	 �
� � � 		� 	 �� * �6� � ��	 �� �

	

	 = �
		� 	 �
� � � � 	 �

� * � 		� 	 �
� �

	 � = �
		� 	 �
� �*� � ��	 �� * � � 		� 	 �� � 4

� � � � �5�
(6.25)

In the following, we examine the behavior of the cross coupling coefficients responsible

for the new coherence effects in different geometries. In Fig. 6.3 we plot these coefficients

as a function of the distance between the two atoms. In Fig. 6.3(a) we have plotted
� : and

�
� � , and in Fig. 6.3(b) we plot

� : and
�
� � , for comparison. Clearly, the values of the cross
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Figure 6.3: Plots of dd-coupling coefficients as a function of the atomic separation. Here� ���7� 1
, i.e. both the atoms lie on the � � -plane and � ��� � � . The new coherence terms�

� � , � � � are comparable to
� � , � � . All the coefficients are scaled with

�
.

coupling coefficients are comparable with the
� � and

� � values. The value of
�
� � becomes

significantly large for
� � �B� 1

. However for
�
�
�
, the terms

� � 	 � � � diverge, whereas

the terms
� � 	 � � � � � .
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Figure 6.4: The dd-coupling terms as a function of the azimuthal angle � . Here
� ��� � 1

and the atomic separation is taken to be
�3� �

. All coefficients are scaled with
�

.

Further, in Fig. 6.4 we examine the atomic position dependences of these coefficients.

We have plotted the coupling coefficients as a function of � . Here we have fixed
� ���7� 1

;

i.e., both the atoms are lying in the � � -plane. Again for a comparison, we have plotted
� :

and
�
� � in Fig. 6.4(a), and

� : and
�
� � in Fig. 6.4(b). We observe the following special cases:
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Figure 6.5: Time evolution of the coherence in the excited states of atom � with atom�
being in

� �
�

�
. The coherence evolves only for non-zero values of

�
� � and

�
� � . Large

oscillations are seen in � 8 � <: * which is decided by
� � 	 � � � , and

�
. The parameters used are� ���7� 1 	 � ���7� ��	 � � �B� 1 �

and
1 � � � �

.

Case I: If
� � �G�

, then
�
� � � �

� � ��� ; i.e., if
��

is perpendicular to the plane containing
�C :

and
�C * , the interference terms in the master equation vanish.

Case II: When � � �G�7� 1 , the coherence terms
�
� � � �

� � ��� ; i.e. when the second atom is

placed in a position such that
��

is along one of the dipoles
�C : or

�C * , then again the interfer-

ence terms drop out. Thus the interference effects in the radiatively coupled systems are

sensitive to the geometry.

6.4 Numerical Results

In this section we present the numerical results that demonstrate the effect of the interfer-

ence terms on the dynamics of the radiatively coupled multilevel systems. We use fifth

order Runge-Kutta method for the numerical solution of the master equation (6.17). For

numerical solutions we use the initial condition that at
� �"�

, the first atom is in excited

state
� � � � and the second atom is in the ground state

� �
�

�
.

In Fig. 6.5, we have plotted the density matrix element � 8 � <: * 7 � � � � � � �

� � , � -�� 1 � �,� � �

�

which represents the coherence in the excited states of atom � when atom
�

is in ground

state
� �

�

�
. It is clear from Fig. 6.5 that the interference terms

�
� � 	 � � � in the master equation
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Figure 6.6: The time evolution of (a) � ��� * and (b) � *�� � are plotted for different parameters
with the initial condition that atom � is in state

� � � � and atom
�

in
� �

�

�
. In both cases� ���7� 1

and � ���7� � . The values of other parameters are shown as legends.

result in finite coherence in atom � . Otherwise, when
�
� � � �

� � � � , such coherences

vanish. It is important to note that this coherence is produced by the radiative coupling

between two atoms even when the dipole matrix elements
�C : and

�C * are orthogonal.

In Figs. 6.6 and 6.7, we plot the probabilities that atom � is in state
� �
�
�

and atom
�

is

in
� �

�

�
, which we denote by � = � � 7	� �

�
� ���

�

� � , � -,� � � ��� � �

�
. In Fig. 6.6(a), we present � ��� * , � - that

represents the simultaneous probability of atom � being deexcited to state
� �
�
�

and atom
�

being excited to the state
� 1

�

�
. Fig. 6.6(b) is the plot of � *�� � , � - that represents the probability

that the atom � is excited to state
� 1
�
�

with atom
�

being in
� �

�

�
. Obviously both � ��� * and� *�� � become zero if

�
� � � � � � ��� . It is observed that smaller is the atomic separation, larger

is the excitation probability. For atomic separation
��� �B� 1 �

, the excitation probabilities

are very large, e.g., more than
1
�
�

of the population in atom
�

could be excited to state� 1
�

�
at
� � �
��� � � (Fig. 6.6(a)) and, similarly in atom � , about ��� � �

�
population could be

excited to state
� 1
�
�

at
� � �
�

�
� �

. Thus significant amount of energy transfer can take

place between the states
� � � � and

� 1
�

�
, though the corresponding transition dipoles are

orthogonal to each other. Note that the initial evolution of � *�� � is much slower compared

to the evolution of � ��� * . This can be understood as follows: The excitation of atom
�

to the

state
� 1

�

�
can be caused by a single photon transfer from � to

�
[the process

� � � 	 � �

�
�� �

�
	 1

�

�
], whereas the excitation of atom � to the state

� 1
�
�

occurs only through atom
�

and this involves a net transfer of two photons [processes
� � � 	 � �

�
�

� �
�
	 1

�

�
�

� 1
�
	 �

�

�
or
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Figure 6.7: Plot of the probability that both atoms remain in their initial states. This proba-
bility is plotted on a logarithmic scale as a function of time in linear scale. The parameters
used are

� ���7� 1 	 � ���7� ��	 ��� �B� �
and

�5���
.� � � 	 � �

�
�

� �
�
	 � �

�
�

� 1
�
	 �

�

�
]. The oscillatory character of � ��� * and � *�� � comes from non-

vanishing
�

and from the dd-coupling coefficients
� � and

�
� � . The excitation probabilities

are seen to be larger for degenerate excited states (
� �3�

) compared to that with finite

separation between the excited states. For very large
�

( � � �
), this interference effect

disappears.

In Fig. 6.7, we present a comparative study of the probability that atoms remain in their

initial states, i.e. � : � � , in the presence and absence of the dd-coupling terms. The probability

of atom � staying in
� � � � decays exponentially in the absence of atom

�
. However, in

the presence of the second atom, the nature of its decay is significantly modified - large

oscillations are seen in � : � � in the presence of the new coherence terms, which is evident

from Fig. 6.7. The origin of this oscillation is attributed to the large values of
�
� � .

6.5 Two
�

-systems with magnetic sub-levels in the presence of a

magnetic field

In this section we consider the new coherence effects in two
�

-systems with � -degenerate

magnetic sub-levels as excited states. The system could be, for example, a
�
�
Ca system

- where
� : 	 : degenerate sublevels would correspond to the excited states

� � � � 7 � � �
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� 	 � � � � and
� 1 � � 7 � �!� � 	 � ��� � � , and the

� : � � state would correspond to the ground

state
� � � �

. In this case the dipole matrix elements
�C : and

�C * are complex and orthogonal to

each other, and are given by

�C : � � C 89 B 	 �C * � C 89 � 4 89 � � 8
�
��� 8�

� 1 	
(6.26)

where C is the reduced dipole matrix element. The magnetic field produces a Zeeman

splitting
1 �

and fixes the quantization axis ( 6 axis in our case). The geometry can be taken

to be the same as in Fig. 6.2. However in the present case,
�C : and

�C * being complex dipoles,

they are not fixed along the real axes unlike in Fig. 6.2. Using Eq. (6.19), the dd coupling

coefficients for this scheme can be obtained

� : � � * �
� C � *1  " � � , � � � � � � � -/7 � �

� , 1 	 = � 		� 	 * � � = -+	
� : � � * �

� C � *1  " ��� , � � � � � � �F-/7 � �
� , 1 	 � �6	 � 	 * � � � - 	

�
� � � � � C � *1  " � � � , � � � � � � � - � � � � , � � � � � � � -�� 7 � �

� 		� 	 * � < * =�� � = 	
�
� � � � � C � *1  " � ��� , � � � � � � �F- � � ��� , � � � � � � � -�� 7 � �

� 	 � 	 * � < * =�� � � � (6.27)

The 	 s’ and
�

s’ are as defined in Eq. (6.25). In deriving (6.27), we have used the fact that
� � � � � � � . It may be noted that

� = and
� = are real, and are independent of the azimuthal

angle, whereas
�
� � and

�
� � are complex and are functions of � . For

� � �G�
, the coherence

terms disappear in Eq. (6.17). Thus if
��

is perpendicular to the plane containing both the

dipoles, i.e. both atoms lie on the quantization axis ( 6 -axis), the coherence effects vanish.

The solutions of the master equation can be recalculated using the above coefficients

and the analog of all the results presented in Sec. IV can be produced for the present sys-

tem. For completeness, we present the numerical plot that shows the excitation probability� ��� * with the initial condition � : � � , � ���F- � � . The time evolution of � ��� * is similar to the

one in the case of real dipoles (cf. Fig. 6.6(a)).

It may further be noted that � ��� * is independent of � though
�
� � and

�
� � are functions

of � . This is because � ��� * is a function of the absolute values of
�
� � and

�
� � . - which can be

shown from (6.23) and (6.27): to the lowest order in
�
� � and

�
� � ,

� ��� * � � � � � � � � * � � �
� � � * � - 		� 	 * � �� � *

/ �
(6.28)
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Figure 6.8: The time evolution of the probability � ��� * when the dipoles
�C : and

�C * are com-
plex. All the parameters are same as in Fig. 6.6.

We now discuss how the new coherence effect can be monitored experimentally for

the above mentioned system. The dipole transitions
� � � � � � � � �

, in the system described

above, involve photons having � � polarization. Thus the emission from
� � ��� � � � � �

does

not contain any field component in � B polarization. On the other hand, the emission from� 1 � �
�

� � � �
would contain � B component. Thus the signal that one has to look for is -

the intensity of the emitted photon from
� 1 � �

levels in � B polarization, which would a

be measure of the total excitation probability to
� 1 � �

states and hence would confirm the

occurrence of VIC. Another possibility to probe the population in
� 1 � �

will be to excite it

with a circularly polarized radiation to a fourth state � : � � and to monitor the fluorescence

from � : � � .
6.6 Summary

We have shown that the radiative coupling between the multilevel atoms with near-degenerate

transitions can produce new interference effects which are especially important when the

distance between two dipoles is less than a wavelength. We have demonstrated this possi-

bility by considering two identical
�

-systems such that the pair of transition dipole matrix

elements in each system are orthogonal to each other in both the atoms. Such interference
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effects are especially significant in the energy transfer studies. The choice of orthogonal

dipole matrix elements enables us to specially isolate the effects of the vacuum induced co-

herences in the radiative coupling between multilevel atoms with nearly degenerate tran-

sitions. We have presented detailed numerical results to bring out the role of multi-atom

multilevel interference effects.



Chapter 7

Cavity-Vacuum Induced Coherences from

Preselection of Polarization

7.1 Introduction

It is already clear that the vacuum field in free space, interacting with an atomic system,

can create coherence subject to the condition that atomic transition dipoles satisfy the Eq.

(5.21). From Eq. (5.19) one understands that the origin of the condition (5.21) is because

spontaneous emission occurs in two orthogonal modes of polarization. It is desirable to

examine how the condition (5.21) can be bypassed. This could be possible if we preselect the

polarization mode - then we do not need the condition (5.21) for interference to occur in

spontaneous emission. In order to preselect the polarization, we consider the problem of

spontaneous emission in a mode selective cavity. It is of course known that the cavity can

provide a good way to manipulate the spontaneous emission from an excited atom [171].

We demonstrate the possibility of restoring quantum interference effects in spontaneous

emission of an excited atom inside a cavity with its modes selected a priori, and thus avoid

the condition (5.21). A possible configuration is shown in Fig. 7.1.

7.2 Dynamics of a Four Level System in a Cavity

We consider a two-mode cavity containing a four-level atomic scheme with say, two near-

degenerate Zeeman split magnetic sub-levels
� � � 7 � � � � 	 � � � � and

� 1 � 7 � � � � 	 � �
� � � as its intermediate states (shown in Fig. 7.2). The “ � -mode” (“

�
-mode”) couples

� < ���
78
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Figure 7.1: A possible configuration for the preselection of polarizations of the cavity
modes that can give rise to new coherences. The propagation vectors of the cavity modes��
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Figure 7.2: A four-level model scheme (say of
�
�
� � ) with closely lying intermediate levels� � �!7 � � � � 	 � � � � and

� 1 � 7.� ��� � 	 � �3� � � . Here �  , � � - is the frequency of the
cavity field coupling

� < �
to
� � � and

� 1 �
(
� � � and

� 1 �
to the state

� � �
).
1 �

is the spacing between
intermediate levels and the various detunings are defined by

� � � � � � � �  , � E� � � � � � � � .
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(
� ��� � � � �

) transitions (for
� � � 	 1 ). The scheme could be

�
�
� � cascade, as shown by

the symbols in the left hand side of the figure. The total Hamiltonian for the atomic system

and the cavity fields is [see 5.7]

# � #
�
� #

�
� #

� �
	

(7.1)

where,

#
�
�  " , � � � � � � � � : � � :�: � � * � � *;* - 	

#
�
�  " , �  � � � � � � � � �+-+	

#
� �

� � �C � �� �  � (7.2)

� � �� " *) � ( : � � � � � � � � � � � � � � � � � � 	 � � �'�F���
Here � = � and � = � are the atomic operators and the atomic transition frequencies as defined

in Sec. 1.2. And
� �  � is the quantized two mode cavity field given by

�� �  � , �� -/�
�
� - 1 �  " � 

�

/ :	� * 89  � < = 
>��  
� � � � ���!� � �'�F�H�
(7.3)

Here � 	 � ( � � 	 � � ) are annihilation (creation) operators for the cavity field modes with fre-

quencies �  and � � respectively. The atom-cavity mode coupling constants are given by

� � � � - 1 �  " � 
�

/ :	� * �C � � � 89  " 	 � � � � - 1 �  " � �
�

/ :	� * �C � � � 89 � " 	
(7.4)

with
�

being the cavity volume and
89  and

89 � being the polarizations of the cavity modes.

We work in the interaction picture. The Hamiltonian in the interaction picture is given by

�#
� �
, � - � < ��� 8���� � ��� < E # � �

< B ��� 8���� � ���B< E
� � �� " *) � ( : � � � � � � � � � < BC=���� E � � � � � � � � � < B
=�� �� E 	 � � �'�F� 	 �5� � 	 1 4 (7.5)

where,
� � � � � � � �  (

� E� � � � � � � � ) is the cavity mode detuning from the
� < � � � ���

(
� ����� � � �

) transition. The above Hamiltonian describes the reversible interactions between

the atom and the cavity field. However we should also take into account the irreversible

processes due to coupling of the cavity field with the outside world via cavity mirrors.

We denote the leakage rates of the photons in the cavity modes by 	  and 	 � . At optical

frequencies we can neglect the thermal photons. We further work in the bad cavity limit.
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The following density matrix equation in the interaction picture for the combined atom-

field system contains two parts: (a) coherent evolution described by the Liouvillian
	

, and

(b) the field relaxation part described by
	
� [172]:

� ��� ������ � , 	 �
	
�
- ��� ���

	
(7.6)

where,

	 ��� ���
� � �

 "
� �#

� �
, � -+	 ��� ���

� 	
	
� ��� ���

� � 	  , � � � ��� ���
� 1 � � � � � ��� ��� � � � - (7.7)

� 	 � , � � � ��� ���
� 1 � � � � � ��� ���

� � �+-+�

To get useful information about the evolution of the atomic system, we derive the Mas-

ter equation for the reduced atomic operator by approximately eliminating the cavity field

using the standard projection operator techniques [7, 172]. In the following, we outline

some of the important steps. We rewrite Eq. (7.6) as
� �� � ������ � �	 , � - �� � ���

, � -+	
(7.8)

by transforming to a new frame with the transformations,

�� � ��� 72< B�� � E � � ��� 	 �	 72< B�� � E 	 <�� � E;� (7.9)

We define the projection operator to be �
� � �F7 � � , �F- � � � �H� � and write Eq. (7.8) as,

� ���� ������ � �	
�
���� ���

� �	 , � � �
- ���� ���

�
(7.10)

The assumptions that we make are (a) at
� ���

, ��� ���
, � -

can be factorised into a product

of atom and cavity field density operators, (b) the photons emitted can not react back

with the atom i.e., we use the Born approximation and (c) the Markoff approximation

� * 	 B : � 	 ( � refers to vacuum Rabi frequencies) which ensures that the system has a

short memory. Using (7.9) and the above approximations and tracing over the field states

Eq. (7.10) reduces to,
� � ���� ��� � " * � � �E � A ? E� C�D � � � � �#

� �
, � -+	 <�� � � � �# � � , � � D -+	 � � , �F- ��� � � � (7.11)

For convenience,
�� � is replaced by � � in (7.11) and in subsequent calculations.
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The trace over the field operators inside the integral is calculated using the following

relations. For arbitrary field operators � and
�

, simple trace algebra and the definition of

adjoints give

� � � � � < � � � � � � , � -�� �	� � , D - � �+	
� � � � � < � � � � � , �F-;� � � � � � , D - �+� (7.12)

Further, the time correlations for the cavity fields in the absence of the interaction with the

atom are known to be � � � � , D - � �	� � , D - � � �/��< B � � � 	� � � � , D - �/�	� � , D - � � �/��< B ��� � 	 (7.13)

with all other second order correlation functions being zero.

Substituting the complete Hamiltonian from Eq. (7.5) in (7.11) and using the relations

(7.12), the trace inside the integral is expressed in terms of field correlations. Further using

(7.13) and evaluating the integral in Eq. (7.11), we obtain the master equation for the atomic

density operator as
� ������ � � � , � : � � * - � � � � 	 ��� � � � � , � E: � :�: � � E* � *;* -+	 ��� �

� � � : , � � � ��� � 1 � :�: ��� � � ����� � � -G� � E : , � :�: ��� � 1 � � ��� :�: � ����� :�: - � � � 1��
� � 1 � : � � �*�� 	  � � �, 	  ��� � * - , 	  � � � : - � : * � � � < * =�� E � " � � � �
� � 1 � � : � ��+* 	 � � � �, 	 � � � � E * - , 	 � � � � E : - � � ��� : * < B * =�� E�� " � � � � (7.14)

� � � �� : � � * < * =�� E
- �	 � � � � E * � : * ��� � �	 � � � � E : ����� : * / � " � � � �
where,

� � � � � � � � * 	  � , 	 * � � *� -+	 � E� � � � � � � * 	 � � , 	 *� � � E� *+- 	 � � , � : � � � * � -�� 1 	
� � � � � � � � * � � � , 	 * � � *� -+	 � E� � � � � � � * � E� � , 	 *� � � E� * -+	 �5� � 	 1 � (7.15)

Here
�

and
� E

’s represent various decay constants from different levels and
�

and
� E

’s are

the frequency shifts of atomic levels resulting from interaction with the vacuum field in a

detuned cavity. This is the key equation of this chapter and will be used in the subsequent

analysis to study the coherence effects induced by the cavity.
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To understand the meaning of various terms in the Master equation (7.14) we write the

equations explicitly for the density matrix elements:
� � � ���� � � 1 , � : � � * - � � � 	
� � :�:��� � � 1 � E : � :�: � 1 � : � � � � � � �� : � � *	 � � � � E * �C* : < * =�� E � � � � : � ��+*	 � ��� � E * � : * < B * =�� E 	� � : *��� � � � � E : � � E * ��� , � E : � � E* - � � : * � 1 � � : � � �*�� 	  ��� �

, 	  � � � * - , 	  � � � : - ��� � < * =�� E
� � � �� : � � * - �
*;*	 � � � � E * � � :�:	 � � � � E : / < * =�� E 	 (7.16)

� � � ���� � 1 � E : � :�: � 1 � E * � * * � 1 � � � : � ��+* 	 � � � �, 	 � ��� � E * - , 	 � � � � E : - � : * < B * =�� E
� 1 � � �� : � � * 	 � � � �, 	 � � � � E * - , 	 � � � � E : - �C* : < * =�� E �

Equation for
�� *;* is the same as for

�� :�: with � � 1
and

�
�
� �

. Note the presence of

oscillating components in (7.16). If
�

is large compared to damping constants
�

’s or detun-

ings
�
’s, then these exponentials averaged out to zero (shown explicitly in the discussion

following Eq. (7.20) leading to
� ��� ���� � � 1 , � : � � * - � � � 	
� � :�:��� � � 1 � E : � :�: � 1 � : � � � 	 (7.17)
� � : *��� � � � � E : � � E * � � , � E : � � E* - � � : * 	� � � ���� � 1 � E : � :�: � 1 � E * � * * �

These equations can be compared with the equations for emission in free space. Under the

initial condition that the atom is in the state
� < �

, equations (7.17) admit simple solutions:

��� � , � - � ��
� � � 1 , � : � � * - � � 	� :�: , � - � � :� : � � * � � E : � ��
	��� � 1 � E : � � � ��
	���H� 1 , � E : � � E * - � � �/	 (7.18)� � � , � - � � � ��� � � � :�: , � - � �
*;* , � -+	
and �
*;* , � - is same as � :�: , � - with � � 1

.

For
�

comparable to
�

’s and
�

’s, the exponential terms are important. The dynamical

equations involve coupling of populations to coherences and vice-versa. Such couplings
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Figure 7.3: The time evolution of coherence between the intermediate states is plotted.
All frequencies are scaled with 	  � 	 � � 	 . We choose � � � 7 � � � � 	 ,

� E : � � � E * �� � � � : � � * . For � � � , no coherence is produced, and for � � � , as
�

increases, the
frequency of oscillation increases but the amplitude of coherence decreases.

give rise to new coherence effects. Accordingly, we have introduced an interference param-

eter � in Eqs. (7.16), so that � � � , ���F- would refer to the presence (absence) of coherence

effects.

7.3 Cavity Induced Intermediate State Coherence

It is clear from Eq. (7.16) that, for � ��� , the coherence between the intermediate levels is

never established; i.e., � = � �#� for all times. When � is unity, there is a two-fold possibility

for the coherence to evolve - (a) the second term in the equation for
�� : * causes evolution of

coherence due to coupling of the states
� � � and

� 1 �
to the excited state by the cavity vacuum

field “ � ” and (b) the third term that arises from the coupling of
� � � and

� 1 �
to the state

� � �
by the cavity vacuum field “

�
”. The resulting evolution of coherence is shown in Fig. 7.3.

For degenerate intermediate levels
� � � , � � � 	 1 - , and �  (� � ) in resonance with

� < �
�

� ���
(
� ���
�

� � �
) transition, no such oscillation is seen - though coherence evolves.
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7.4 Quantum Beats in Atomic Populations

For � � � , the populations in Eq. (7.16) can be obtained analytically. For simplicity, assume

that
� = 7 � E= 7 �

, � = � 7 � � = 7 � , 	  7 	 � � 	 and the cavity field �  , � � - is tuned to the

center of the two intermediate states and the excited (ground) state. Then, the solution of

Eq. (7.16) is found to be

� =?= , � -/� � - � � 1 �  � *� * � � *
/ < B � � E �@- � � �  � *� *

/ < B * � E
� 1 �  � *� * � � * < B *

� E ��- � *� * � � / � ��	 , 1 � � - � 1 �
� 		� 	 , 1 � � - � 	 � � � 	 1 4 (7.19)� � � , � -/� � � � � � , � -/� 1 � =?= , � -+�

Here, the parameter  � � � � � , 	 ��� ��-
corresponds to the cross terms in Eq. (7.16). It can

therefore be seen that for
�  � � � , Eq. (7.19) reduces to Eq. (7.18). The argument of the

trigonometric functions in Eq. (7.19) gives the beat frequency1 � � 1 � , � E ���%- * � �  � * � :	� * � (7.20)

The condition for the beats to occur is
, � E � �%- * � �  � * . For various values of

�
, we show

the time dependence of � =?= and � � � in Fig. 7.4 assuming
� � � to be of the order of 	 . If the

intermediate levels are degenerate (
� �"�

), then
�

is purely imaginary and therefore the

trigonometric functions in Eq. (7.19) change to hyperbolic functions - ceasing the oscilla-

tions in the populations. Similarly, for
� � 	 ,

�
is imaginary and hence there is no beating.

However, for
� � 	 , the beating in population is prominently seen. An increase in

�
leads

to increase in the beat frequency. For
�

very large compared to 	 , the beat frequency
1 �

is

much larger than 	 - leading to fast oscillations, the average of which results in Eq. (7.18).

Further we note that for
� � � 	 , the ground state population decreases for a small time

interval implying a population transfer to the intermediate levels. It should be borne in

mind that, we work in the low-Q cavity limit where cavity vacuum is not strong enough to

cause the vacuum field Rabi oscillation [21, 173]. To interpret the decrease in population,

we go back to Eq. (7.14). The fourth line of Eq. (7.14) suggests that the ground state popu-

lation couples the intermediate state coherences via � � : � �� * (and � �� : � � * ); e.g., an emission

followed by absorption of the same photon on a different transition. The corresponding

transitions would correspond to
� � � � � � �

�
� 1 �

(and
� 1 �

�
� � �

�
� � � ). The various transi-

tions of � = � � �= � type and various interference paths are illustrated in Fig. 7.5. In particular
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Figure 7.4: The time dependence of the populations in the ground state � � � (represented
by I) and the intermediate states � :�: , � �C* * - (represented by II). The dashed lines represent
� ��� where we see no oscillation. The solid lines represent � � � . The plots for various
values of

�
: (A)

�.���
- no beat structure is seen, (B)

�5���
�
� 	 , (C)

�5� � � � 	 and (D)
�5� �
� � 	

- where the population in the ground state decreases during
� � 	 B : .

from Fig. 7.5(B), one understands the decrease in the ground state population.

7.5 Origin of Cavity Induced Coherences

In this section we examine the question - what leads to such coherences which otherwise

do not occur. It is clear from Eq. (7.16) that, the coherence terms are related to matrix

elements like

� � : � �� * � - 1 � � � " �

/ , �C � : � 89 � - , �C �� * � 89 �� - � (7.21)

For the chosen geometry of Fig. 7.1, Eq. (7.21) reduces to

� � : � �� * � - 1 � � � " �

/ , �C � : - � , �C �� * - � � (7.22)

The later is non-vanishing; as for �
� transitions,

�C � : 7����� * , 8� � � 8� - , �C � * � �� * , 8� � � 8� - [see

Eq. (3.7)]. Note further that if polarization cannot be preselected, then we have to sum Eq.
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Figure 7.5: The various interference paths are shown by considering upper and lower
transitions. (A) The upper � like part: both transitions share a single reservoir of cavity
vacuum - contributing to the coherence between the states

� � � and
� 1 �

. (B) The lower
�

like part: to the lowest order interaction, photons emitted by
� � � � � � �

transition can be
absorbed by

� � � � � 1 �
transition and vice versa - explaining the decrease in population of

state
� � �

.

(7.21) over the two possible polarization modes leading to [see Eq. (5.19)])
�
� �
� � : � �� * � - 1 � � � " �

/ )
�
� �
, �C � : � 89 � - , �C �� * � 89 �� -

� - 1 � � � " �

/ , �C � : � �C ��+* -+� (7.23)

Under these conditions the coherence term can survive only if the dipole matrix elements

are non-orthogonal. It is thus clear that, in order to see the interferences or beats at
1 �

, one

has to make a preselection of polarization so that coherence between
� � � and

� 1 �
can be pro-

duced by spontaneous emission. Note that this is different from the usual quantum beat

spectroscopy [174, 175, 176] where coherence is produced by excitation with an external

field of appropriate band width.

7.6 Summary

To summarize, we have shown: (a) how the preselection of polarization leads to certain

types of interference effects which otherwise are missing unless the dipole matrix elements
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are non-orthogonal; (b) how the preselection of polarization can be achieved in a cavity.

We demonstrate this in the context of a four level atomic system in a bimodal cavity in the

limit of a bad cavity. We show that the new coherences evolve, resulting quantum beats

in the atomic populations. Recently Swain and co-workers [177] have used the cavity

preselection to observe many coherence effects at finite temperature.



Chapter 8

Laser Field Induced Quantum Beats in

Correlations in Cascade Emission

8.1 Introduction

It is well known [178, 179] that V-system can exhibit quantum beats in fluorescence if ini-

tially the system is prepared such that there is coherence between excited states. It is also

known that quantum beats are sensitive to whether one considers a system with upper

state coherence or a system with lower state coherence. For example, a � -system with

initial coherence between two lower states does not lead to quantum beats [178]. One

could thus inquire the possibility of beats in a four level system as shown in Fig. 8.1; if

the system is initially prepared in the excited state
� < �

. The upper part of this system is

like a � -system and lower part like a V-system. Clearly quantum beats at the frequency

separation between the levels
� � � and

� 1 �
will occur if the process of spontaneous emission

from
� < �

to
� � � and

� 1 �
can create coherence between states

� � � and
� 1 �

. The quantum beat will

occur in fluorescence arising from transitions
� � �+	�� 1 � to

� � �
. No quantum beat will occur

in fluorescence arising from the transitions
� < �

to
� � � , � 1 � . However this coherence in the

spontaneous emission can be created only if the transition dipole matrix elements
�C � : and�C � * are non-orthogonal (see condition (5.21)). As noted earlier, most of the naturally occur-

ring systems [e.g., Eq. (5.22)] do not satisfy (5.21). Thus a typical atomic scheme shown in

Fig. 8.1 will not display quantum beats in fluorescence if initially the atom is prepared in

the state
� < �

. Hence one has to explore appropriate ways to satisfy (5.21).

In this Chapter, we consider the possibility of manipulating energy levels using laser

89



Laser Field Induced Quantum Beats in Correlations in Cascade Emission 90

2g

1

e

2

g

γ
e1

γ
e2

γ
1g γ

Figure 8.1: A four level atom with closely lying intermediate levels
� � � and

� 1 �
; a combi-

nation of � like (upper part) and
�

like (lower part) systems. The spontaneous emission
from

� < �
can create coherence between

� � � and
� 1 �

, if system is initially at
� < �

and transition
dipoles

�C � : and
�C � * are non-orthogonal, and hence quantum beats can be seen in fluores-

cence. Here
�

�

represent the spontaneous decay rates.

fields and thereby satisfying the condition (5.21) in a system as shown in Fig. 8.2 [147].

Here the laser fields mix the energy levels and make the dipole matrix elements dependent

on the strength and frequency of the laser field. As a result of the new coherence created by

the laser, quantum beat occurs in the intensity correlation between the two spontaneously

emitted photons in the cascade emission.

8.2 The System and its Dynamics

We consider the scheme shown in Fig. 8.2. This scheme, for example, could refer to levels

in
���

atom. The levels
�  � and

� � �
are coherently driven with a frequency close to

�  ��� � � �
transition frequency. Let � �

�C # + � �� � �  " be the Rabi frequency of the laser field
� � , driving

the transition
�  � � � � �

. The interaction with the laser frequency � � is contained in the

Hamiltonian defined by

#�7  " � � ��� � � �  " � # � � #�# �  " � + � � +�+ �  " � , � + # < B
= D � E�� " � � � -+� (8.1)
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Figure 8.2: A scheme to realize VIC in a system shown in Fig. 8.1. Here laser field mixes the
levels

�  � and
� � �

to make the transition dipole matrix elements non-orthogonal. Symbols
in left hand side are relevant energy levels of Rb atom.

Here � = � and � = � have the same meaning as in Sec. 1.2. Let
1�� = ’s (

� � � 	 1 ) represent

rates of spontaneous emissions as shown in the Fig. 8.1. Then the density matrix equation,

including these decays of the system, is [see e.g., Eq. (1.55) for a lambda system]
� ���� ��� � " ��# 	 � ��� � : � � � � 	 � � � � * � � #�# 	 � � � � � � +�+ 	 � �

� 1�� : ��� � � #�# � 1�� * � #�# � � �
� 1�� � + + � # # � (8.2)

On introducing a canonical transformation

�� � # � � � #C< = D�� 	 E 	 �� � � � � ��� < =?D�� � E 	 �� � + � � � + < = 8 D�� 	 B
D � < E 	
�� # � � � # � < =?D 	 � E 	 �� # + � � # + < =?D � E 	 �� � + � � � + < = 8 D � � B
D�� < E 	 	�� �� � � � � 4 � � � � � < 	  	 � 	 � 	 (8.3)

Eq. (8.2) reduces to

��� 7�� � " ��#���� 	 �� � � � : � � � � 	 �� � � � * � � #�# 	 �� � � � � � +�+ 	 �� �
� 1�� : �� � � � #�# � 1�� * �� #�# � � �

� 1����� +�+ � #�# 4 (8.4)

where the effective Hamiltonian is

# � � 7  "�� � +�+ �  " � , � + # � � # + - (8.5)
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Figure 8.3: (a) The various unperturbed energy levels of the effective Hamiltonian in Eq.
(8.5) with � = 0. (b) The new eigenstates after mixing of energy levels by the laser field. The
various decay paths to

� � �
is shown by the arrows.

� � are the eigenvalues of the effective
Hamiltonian

#����
.

with
� � � # + � � � being the laser detuning. The different unperturbed energy levels will

now appear as shown in the Fig. 8.3(a). The levels  and
�

are mixed by the laser field -

the eigenstates of
#�� �

are given by�� � � �� 1 � �� 7 �� � ��	 � 	 � 	 �
� 	 � 	 � � ��	 � ����� � � ��  �

��
(8.6)

with eigenvalues

� � � � � � � * � � � *1 	 � 
	 � � � � � � * ��� � *1 � �
(8.7)

Thus
#����

can also be written as

# ��� �  " �
�
� � ��� � �;�$ " � B � 1 ��� 1 �?� (8.8)

Thus in the dressed state picture the system in Fig. 8.2 equivalent to Fig. 8.1 with the inter-

mediate states determined by Eq. (8.6).
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8.3 Beat in Photon Correlation in Cascade Emission

In the following we evaluate the two photon correlation [136] function � 8 * < , �� : 	 � 4 �� * 	 � � D -
for detecting a photon from the transition

� < �
�

�  � at space-time
, �� : 	 � : - and another

photon from the transition
�  � � � � �

at
, �� * 	 � � D - . We assume that transition frequen-

cies � � # and � # � are widely different. The frequency of emitted photon is affected by

the laser driving the transition
�  � � � � �

. We further assume that this change in fre-

quency is much smaller than
� � � # � � # � � . Note that we do not spectrally resolve fluores-

cence and such correlations in two photon cascade emission have been extensively stud-

ied [180, 181, 182, 183, 184]. Aspect and coworkers carried out classic experiments on two

photon correlations in the context of Bell’s inequalities [181]. Interference in the cascade

correlation has been investigated using dispersive material [184].

The correlation function � 8 * < , �� : 	 � 4 �� * 	 � � D - is defined by the joint probability of de-

tecting two photons at two different space-time points
, �� : 	 � - and

, �� * 	 � � D - and is given

by

� 8 * < , �� : 	 � 4 �� * 	 � � D -/� � �� B
�
, �� : 	 � - �� B� , �� * 	 � � D - �� �

�
, �� * 	 � � D - �� �

�
, �� : 	 � - � 4 (8.9)

where
�� �
� (

�� B
� ) is the positive (negative) frequency part of the spontaneously emitted

quantized-radiation field. In the far field zone approximation, i.e., if the distance between

the atom and detector is much larger than the inter-atomic distance, then the radiation

field can be expressed in terms of dipole moment operators (see Sec. 7 of [7]) as
�� �
�
, �� = 	 � - � � �� = � # � , � � � = � � - � �� = � �

# , � � � = � � - 4 (8.10)

where
�� = and

�� = are uninteresting constants that depend upon various dipole matrix el-

ements, position of the detectors, the directions of observation, frequencies of transitions.

Using the expression of the far field (8.10) the two photon correlation function (8.9) can be

written as

� 8 * < , �� : 	 � 4 �� * 	 � � D -/7 � 8 * <� � � � # , � - � # � , � � D - � �
# , � � D - � # � , � - �+	 (8.11)

where, � 8 * <� is a function of
� = and

� = . In Eq. (8.11) the dipole operators are denoted as� # + � �  ��� ��� .
We will calculate the two photon correlation function (8.11) from first principles using

the master equation 8.4 and the quantum regression theorem [185]. Here, our model con-

sists of
, � - the spontaneous emission events

� < �
�

�  � , �  � � � � �
;
, �+-

the coherent field
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interacting on the transition
�  � � � � �

, as shown in Fig. 8.2. The correlation function (8.11)

can be calculated using the Eq. (8.4). In order to apply quantum regression theorem we

need most general solution of (8.4) in the form of evolution from some time
�

to a later

time
� � D . Clearly, one can write (8.4) as

��� � � �� 	 (8.12)

where
�

is Liouville operator. Therefore the formal solution of (8.12) can be obtained as

�� , � � D - 7�<�� � �� , � - 	 (8.13)

�� ��� , � � D - 7 )
�
 � ��� �  , D - �� �  , � -+	 (8.14)

with
�
��� �

 , D -/7 � < �
�
�
��� �

 �
(8.15)

From (8.15) we have � � � �
, � � D - �/7 )

�
 � ��� �  , D -�� �  � , � - � 	 (8.16)

and hence � � � # , � - � #�# , � � D - � # � , � - � � )
�
 � # # �  , D - � � � # , � - �  � , � - � # � , � - �

� )
�
 � # # �  , D - � � � � , � - � �  # � � # � (8.17)

Thus � 8 * < becomes

� 8 * < � � 8 * <� � � � � , � - � � #�# #�# , D -/7 � 8 * <� < B *
5
� E � #�# #�# , D -+� (8.18)

The function
� # #�#�# , D - contains all the information about the dynamics of the intermediate

state
�  � . Physically it represents the probability of finding the atom at

� � D in the state
�  �

given that it was in the state
�  � at time t=0. The quantum beat structure of � 8 * < (if any) is

determined by the function
� #�#�#�#

. We have calculated this function using the solution

of (8.4) which has a complicated form, and hence we do not present complete solution.

However, in absence of any decays of the system (
� = ��� ) the function

� # #�#�#
is given by

� #�#�#�# , D -/� �1 � � � � ��	 , 1 � D -�� 4 (8.19)

which shows oscillatory behavior of the correlation function. We display the results in

Figs. 8.4 and 8.5 for both resonant and off-resonant lasers (taking
� : � � * � � � � ). These

figures clearly show the quantum beat structure in the cascade correlation function.
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Figure 8.4: Plot of
� , D -/7 � # #�#�# , D - [Eq. (8.5)] for upper photon of the cascade system being

detected at
�

and lower photon being detected at
� � D with the resonant coupling laser on

the
�  ��� � � �

transition. All
�

’s are taken to be unity.

0.0 0.5 1.0 1.5 2.0
τ

0.0

0.2

0.4

0.6

0.8

1.0

ξ(
τ)

G=0
G=2
G=5
G=10

Figure 8.5: Plot of
� , D - with laser detuning

�
= 3. The correlation amplitude decreases

compared to the case where coupling laser is in resonance.
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8.4 Evolution of Coherence and the Physical Interpretation

We next present a physical picture for the interpretation of the above beat structure. We

work in terms of the eigenstates of
#����

which are displayed in Fig. 8.3(b). The equations

that govern the dynamics in the dressed state basis (for
�

= 0 and � ��
0) are determined

as

���� : � � �1 , 1�� : � � * � � � 1 � � - ��� : � �1 , � � � * - ��� * 	
���� * � � �1 , 1�� : � � * � � � 1 � � - ��� * � �1 , � � � * - ��� : 	
�� :�: � � �1 , 1�� * � � - � :�: � � : ��� � � � 1 �
*;* � � *1 , � : * � �
* : - 	
�� : * � � �1 , 1�� * �*� � ��� � � - � : * � � : � � � � �1 , 1�� � � * - , �
*;* � � :�: -/� � 1 �C* : 	
�� : � � � �1 , � * � � � 1 � � - � : � ���1 , � � � * - � * � 	
��
* � � � �1 , � � � * � 1 � � - �
* � ���1 , � � � * - � : � 	
�� *;* � � �1 , 1�� * � � - � *;* � � : � � � � � 1 � :�: � � *1 , � : * � � * : - 	�� � � � � *1 , �C* * � � : * � �C* : � � :�: -+� (8.20)

The density matrix equations show how the diagonal and off diagonal elements remain

coupled via various spontaneous emission coefficients. These couplings give rise to var-

ious interferences. In Fig. 8.3(b) we also display the two pathways for cascade emission

viz
� < �

�
� � � � � � �

and
� < �

�
� 1 �

�
� � �

. The laser field has mixed the levels
�  � and

� � �
.

This mixing makes the transition dipole matrix elements between
� < � � � � � and

� < � � � 1 �
nonorthogonal as shown below:

�C � : � �C �� * � � � � �C � , � ��	 � � � � � 		� 	 � �  � -+� � , � 		� 	 � � �$�+� � ��	 � �  � -�� �C � < � �� 		� 	 � � ��	 � �C � # � �C # �� 		� 	 � � ��	 � � �C � # � * ����
� (8.21)

The occurrence of beat in the photon correlations shown in the previous section will

depend on the coherence between
� � � and

� 1 �
. In Fig. 8.6 we show that the coherence � : *

indeed develops in time, given that the atom was initially in the state
� < �

.
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Figure 8.6: The evolution of the coherence � : * is shown for various values of the Rabi
frequency of a resonant laser; which otherwise is zero in absence of the laser field.

8.5 Summary

To summarize, we have demonstrated the possibility of laser field induced quantum beats

in two-photon correlations in cascade emission - which, otherwise, is an exponentially

decaying function. The laser field, which couples the intermediate state of the cascade

system with a fourth state, mixes the energy levels. Thus the transition dipole matrix

elements depend on the strength and frequency of the laser field. The modified transition

dipole matrix elements are shown to satisfy the condition (5.21) causing VIC to occur in the

system. This coherence between the two intermediate levels is crucial for the production

of quantum beats. The frequency of quantum beat depends on the intensity and frequency

of the laser field.



Conclusions and Future Outlook

In conclusion, this thesis reports novel optical phenomena occurring in atomic medium

using external laser fields. It also reports possibility of creating new coherences in spon-

taneous emission and discusses interesting consequences. The main underlying theme of

this thesis is atomic coherences. The new findings are described with analytical results and

are substantiated by presenting extensive numerical results. In the following we present a

brief summary of important conclusions of each chapter and discuss some future outlook

of the problems.

In Chapter 2, we have shown how anisotropy can be induced in an initially isotropic

atomic medium by a magnetic field (called as magneto-optical rotation (MOR)) or a laser

field. This results in rotation of plane of polarization of a probe field passing through

the medium. This study gave rise to the interesting possibility - coherent control of the

polarization rotation caused by magnetic field using a laser field. In Chapter 3, we have

discussed laser field induced birefringence and hence rotation of plane of polarization of a

probe field passing through the medium. Also we have shown that using a strong control

laser we can achieve large enhancement of the MOR. By suitably choosing the control laser

parameters, we have shown that new probe frequency regions are created to obtain large

MOR, where the rotations, otherwise, are very small. This work is followed by a more

general study of coherent control of MOR in an inhomogeneously broadened medium

in Chapter 4. In this chapter we have made detailed analysis of the conditions under

which one can achieve large enhancement of MOR. We demonstrated that an interplay

between the magnetic field and laser field can be used to obtain significantly large MOR,

which gives rise to possibility of using it as a magneto-optical switch. Further investigations

are needed on different interesting possibilities such as using the control field induced

enhancements to measure small magnetic fields.

In Chapter 5, we have introduced coherences in spontaneous emission, that is induced

98



Conclusions and Future Outlook 99

by an incoherent (vacuum) field, known as vacuum induced coherence (VIC). We have

discussed the origin of such coherences and shown that certain stringent conditions are re-

quired for such coherences to occur in atomic systems. In Chapter 6, we have reported VIC

in radiatively coupled multilevel multi-atom systems. We have shown that the radiative

coupling between the dipoles can produce new interference effects, which are especially

important when the distance between two dipoles is less than a wavelength. We have es-

pecially chosen the transition dipole matrix elements of the atomic systems such that they

do not meet the condition for VIC to occur. This choice has enabled us to isolate the effects

of the VIC in the radiative coupling between multilevel atoms. We have done detailed

analysis of this effect both analytically and numerically. Nevertheless further investiga-

tions are needed to study the consequences of this new coherence effect; to give an exam-

ple, it would be interesting to investigate the role of the new coherence in the context of

superradiance in the multilevel atoms. Further in Chapter 7, we have examined the pos-

sibility of bypassing the stringent requirement for VIC to occur. We have demonstrated

that preselection of polarization of cavity vacuum can lead to new interference effects in

spontaneous emission, which otherwise do not occur unless the transition dipole matrix

elements of the atom satisfy the stringent condition. We have reported this possibility in

the context of a four-level atomic system in a bimodal cavity in the limit of a bad cavity.

We have shown that as a result of the new coherence, quantum beat occurs in the atomic

populations. This study has led to further investigations on the effect of the new coher-

ence at finite temperature by many other researchers. However it would be interesting to

investigate this coherence effect by preselecting the polarization in a good cavities, where

one would expect an enhanced coherence effect. Finally in Chapter 8, we have examined

restoration of VIC using a laser field. We have demonstrated that the laser field mixes

the atomic energy levels, and thus makes the transition dipole matrix elements dependent

on the strength and frequency of the laser field. This modified transition dipole matrix

elements are shown to meet the condition for VIC to occur in the system. We have also

demonstrated the possibility of laser field induced quantum beats in two-photon correla-

tions in cascade emission. The emission spectrum of such a system would be interesting

to examine, which is also expected to show the effect of such laser induced coherences.
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