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Abstract

The work presented in this thesis concerns cavity quantum electrodynamics techniques for

generating quantum entanglement and interference effects in various atom-cavity systems

for application in quantum computation and quantum optics.

In chapter 1, we present a brief introduction to field quantization and interaction of

a quantized field with matter. We discuss phase space description of quantum states in

terms of quasiprobability distributions.

In chapter 2, we propose cavity quantum electrodynamics schemes to generate super-

position of four coherent states

|ψ〉 ∼ |α〉+ |iα〉+ | − α〉+ | − iα〉. (0.1)

We use resonant as well as dispersive interaction between atoms and the field inside the

cavity. We discuss the nonclassical character of these states in terms of quasi-probability

distributions [M. Hillery, et al, Phys. Rep. 106, 121(1984)]. We also show that these super-

position states can exhibit regions in phase space with sub-Planck structures [W. H. Zurek,

Nature (London) 412, 712 (2001)], i.e. the area of the variations of the two quadratures

can be much smaller than the Planck’s constant ~. These structures are direct signatures of

quantum coherence and are formed as a result of interference between two superposed cat

states. We discuss decoherence of such superposition due to the leakage of photons from

the cavity. We discuss methods for monitoring these superposition states.

In chapter 3, we study Ramsey interferometer [N. F. Ramsey, Phys. Rev. 78, 695, (1950)]

with quantized fields and discuss the effects of field statistics on the visibility of interfer-

ence fringes. In our scheme, we replace two Ramsey zones with two identical high quality
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cavities and field is treated quantum mechanically. We find that interferences do not oc-

cur if the fields in two Ramsey zones have precise number of photons i.e. in Fock states.

However, by passing two atoms one by one it is shown how an analog of Hanbury-Brown

Twiss photon-photon correlation interferometry can be used to restore interferences as the

two independent Ramsey zones get entangled by the passage of first atom. We also dis-

cuss interferences at a single photon level. Though interferences are absent with precise

number of photons in Ramsey zones but for states like 1/
√

2(|0〉 + |1〉) interferences are

restored. This occurs because of lack of information about the cavity in which atom makes

transition. We also discuss generation of various maximally entangled states as well as the

transfer of entanglement from atoms to photons and vice versa using Ramsey interferom-

eter.

In chapter 4, we report an unusual cooperative effect in two photon processes in two

atoms. Earlier studies of two-photon processes in two atoms deal with cooperative effect

in the presence of strong dipole-dipole interaction between the atoms. Such interaction

is significant only when the inter-atomic separation is less than the wavelength of the ra-

diation [G. V. Varada, and G. S. Agarwal, Phys. Rev. A 45, 6721 (1992); C. Hettich et al.,

Science 298, 385 (2002)]. We show that it is advantageous to use a cavity for the study of

such two photon processes as one would not be constrained by the requirement of small

inter-atomic separation. In high quality cavities inter-atomic interactions can arise when

different atoms interact with a common quantized field and thus these interactions do not

depend on the inter-atomic separation. We demonstrate that the two-atom two-photon

resonant effect could be very large thus opening up the possibility of a variety of multi-

photon cooperative phenomena in non-resonant cavities. The two photon transition occurs

as a result of simultaneous excitation or de-excitation of both atoms with two photon res-

onance condition ω1 + ω2 ≈ ωa + ωb, where ω1, ω2 are the atomic transition frequencies

and ωa, ωb are the frequencies of the emitted photons. We study such two-photon resonant

processes in two different systems (1) two identical atoms interacting with field in a two

mode cavity, (2) two nonidentical atoms in a single mode cavity.

In chapter 5, we show how a possible control of spontaneous emission can be obtained

in a cavity by using dc-fields. We find that in the presence of dc-fields in the cavities the

spontaneous emission of atoms can be modified significantly as a result of dc-field in-

duced stark shifts. Further, the change in spontaneous emission depends on the square of

viii



applied dc-field. We find that in the case of cavities resonant to atomic transition sponta-

neous emission can be inhibited significantly using dc-fields. In the case of cavities having

negligible mode density around atomic frequency the presence of dc field shows signifi-

cant inhibition or enhancement of spontaneous emission depending on whether the cavity

is tuned below the atomic transition frequency or above the transition frequency.

In chapter 6, we show how quantum random walk can be realized in cavities. Using

resonant interaction between atoms and the field in a high quality cavity, we present a

scheme for realizing quantum random walk. The atoms are driven strongly by a classical

field. Under conditions of strong driving field we could realize an effective interaction of

the form iSx(a − a†) in terms of the spin operator Sx associated with the two level atom

and the field operators a and a† [E. Solano et al., Phys. Rev. Lett. 90, 027903 (2003)]. This

effective interaction generates displacement in wavefunction of the field depending on the

state of the atom. Measurements of the state of the atom would then generate effective

state of the field. Thus in our scheme, measurement of atomic states is corresponding

to the flipping of the coin while the field inside the cavity acts as a walker. Using the

homodyne technique, state of the quantum random walker can be monitored. We also

discuss the decoherence effects and the time scales at which quantum nature of random

walks persists.

Finally, we present conclusions and future outlook.
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CHAPTER 1

Introduction

Cavity quantum electrodynamics (cavity-QED) [1] deals with the interaction of few atoms

with few photons inside a high quality cavity. Thus the effects of quantization of electro-

magnetic field become significant. In this chapter, quantization of electromagnetic field

is discussed and the interaction of a single atom with quantized field inside the cavity is

described. The phase space description for quantum states is presented.

1.1 Quantization of Electromagnetic Field in a Cavity

The classical description of electromagnetic field [2] is given by Maxwell’s equations

~∇. ~E = 0 (1.1)

~∇. ~B = 0 (1.2)

~∇× ~E = −∂ ~B

∂t
(1.3)

~∇× ~B = µ0ε0
∂ ~E

∂t
(1.4)

where ~E(~r, t) and ~B(~r, t) are electric and magnetic field vectors and ε0 and µ0 are the free

space permittivity and permeability, respectively. Now taking the curl of Eq. (1.3) and

using Eqs. (1.1) and (1.4), it follows that the electric field vector ~E(~r, t) satisfies the wave

equation

∇2 ~E − µ0ε0
∂2 ~E

∂t2
= 0. (1.5)

1



Introduction 2

Solution to the Eq.(1.5) can be written as

~E(~r, t) = ~E+(~r)e−iωt + ~E−(~r)eiωt (1.6)

where ω is frequency of the field and ( ~E+(~r))∗ = ~E−(~r) is spatial part of the electric field.

A similar description can be found for magnetic field ~B(~r, t).

For quantization of electromagnetic field [3], consider the field inside a cavity of length

L along z-axis and transverse area A. We assume that the field is linearly polarized in

x-direction. The field inside the cavity can be expanded in terms of the modes of cavity as

Ex(z, t) =
∑
n

Cnqn(t) sin(knz), (1.7)

where qn(t) is amplitude of the n-th cavity mode, kn = nπ/L is corresponding propagation

vector, and the expansion coefficients are given by

Cn =

√
2ω2

n

ALε0
, with ωn = knc, (1.8)

where c = (µ0ε0)−1/2 is velocity of light in vacuum. Using Eqs. (1.7) and (1.4), the nonva-

nishing component of magnetic field By inside the cavity is given by

By(z, t) =
∑

n

µ0ε0Cn
q̇n

kn
cos(knz). (1.9)

The Hamiltonian H for the field is given by

H =
1
2

∫

V
dτ

(
ε0E

2
x +

B2
y

µ0

)
, (1.10)

where the integration is over the volume of the cavity. Now substituting values of Ex and

By from Eqs. (1.7) and (1.9) in Eq. (1.10),

H =
1
2

∑
n

(ω2
nq2

n + q̇2
n) (1.11)

=
1
2

∑
n

(ω2
nq2

n + p2
n), (1.12)

where pn = q̇n is the canonical momentum of the nth mode. From Eq. (1.12), it is clear that

each mode of electromagnetic field inside the cavity is equivalent to a harmonic oscillator

of unit mass. Thus the electromagnetic field inside the cavity can be quantized by identi-

fying two quadratures qn and pn as operators which satisfy the commutation relations,

[qn, pm] = i~δmn, [qn, qm] = [pn, pm] = 0. (1.13)
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From the analogy to the harmonic oscillator it is convenient to choose the operators qn and

pn in the form

ane−iωnt =
1√

2~ωn
(ωnqn + ipn) (1.14)

a†neiωnt =
1√

2~ωn
(ωnqn − ipn), (1.15)

where an and a†n are annihilation and creation operator for field in nth mode and satisfy

the commutation relations

[an, a†m] = i~δmn, [an, am] = [a†n, a†m] = 0. (1.16)

In terms of a and a†, the Hamiltonian (1.12) becomes

H = ~
∑

n

ωn

(
a†nan +

1
2

)
. (1.17)

Now the electric field (1.7) and the magnetic field (1.9) inside the cavity can be expanded

in terms of an and a†n as

Ex(z, t) =
∑

n

En(ane−iωnt + a†neiωnt) sin(knz), (1.18)

By(z, t) = −iµ0ε0c
∑
n

En(ane−iωnt − a†neiωnt) cos(knz), (1.19)

where En =
√
~ωn/ε0V has the dimension of electric field.

For quantization of electromagnetic field in free space, the classical electric and mag-

netic field are expanded in terms of the plane waves as follow

~E(~r, t) =
∑

k

n̂kEkαke
−iωkt+i~k.~r + c.c., (1.20)

~B(~r, t) =
∑

k

~k × n̂k

ωk
Ekαke

−iωkt+i~k.~r + c.c., (1.21)

where the summation is over the discrete values of wave vector ~k = {kx, ky, kz}, αk is a

dimensionless amplitude and n̂k is unit vector along the direction of polarization and

Ek =
√
~ωk

2ε0V
. (1.22)

The value of different components of wave vector ~k are given by periodic boundary con-

ditions over the length L as follow

kx =
2πnx

L
, ky =

2πny

L
, kz =

2πnz

L
, (1.23)
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where kx, ky and kz are integers (0,±1,±2....). The particular set of values of nx, ny, and

nz defines a mode of the field.

Now, similarly to the quantization in the cavity, the amplitudes αk can be transformed

to the annihilation operator ak for quantization. The electric and magnetic field compo-

nents takes the form

~E(~r, t) =
∑

k

n̂kEkake
−iωkt+i~k.~r + H.c., (1.24)

~B(~r, t) =
∑

k

~k × n̂k

ωk
Ekake

−iωkt+i~k.~r + H.c., (1.25)

where H.c. stands for Hermitian conjugate.

1.2 Interaction of Radiation with Matter

Classically, the electromagnetic field is treated by Maxwell’s equations while the atom is

considered to have quantized energy levels and the dynamics is given by the Schrödinger

equation. For simplicity, let us assume the atom has a single electron of charge e and mass

m interacting with an external electromagnetic field. The interaction between atom and

field is described by the following Hamiltonian [4]

H =
[~P − e ~A(~r, t)]2

2m
+ eΦ(~r, t) + V (r), (1.26)

where ~P is the momentum of the electron, ~A(~r, t) and Φ(~r, t) are the vector and scaler

potentials of the external field respectively. Here V (r) is a central potential experienced by

the bound electron due to the presence of motionless nucleus. Quantization of the electron

motion can be done by replacing the classical variable with operators, e.g.,

~P −→ −i~~∇, H −→ i~∂/∂t. (1.27)

Here ~ = h/2π, where h is the Planck’s constant. Therefore, the motion of electron is

described by the Schrödinger equation

i~
∂|Ψ(~r, t)〉

∂t
=

{
[−i~~∇− e

c
~A(~r, t)]2

2m
+ V (r) + eΦ(~r, t)

}
|Ψ(~r, t)〉

= (H0 + HI)|Ψ(~r, t)〉, (1.28)
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where the unperturbed Hamiltonian is given by

H0 = − ~
2

2m
~∇2 + V (r) + eΦ (1.29)

and the interaction Hamiltonian involves only the vector potential ~A:

HI =
e

2mc

[
2i~ ~A(~r, t) · ~∇+ i~~∇ · ~A(~r, t)

]
+

e2

2mc2
~A(~r, t) · ~A(~r, t) (1.30)

In passing we note that, the transformations ~A −→ ~A
′
= ~A+ ~

e
~∇χ and Φ −→ Φ

′
= Φ− ~

e
∂χ
∂t ,

leave the ~E and ~B as invariant quantities which are thus gauge independent [2]. Here, χ

is any arbitrary scalar function. This allows one to choose a suitable gauge to simplify the

problem. Here we are working in the radiation gauge in which Φ(~r, t) = 0 and ~∇ · ~A = 0.

Under the radiation gauge condition, the interaction Hamiltonian becomes

HI =
ie~
mc

~A(~r, t) · ~∇+
e2

2mc2
~A(~r, t) · ~A(~r, t) (1.31)

The dipole moment approximation is often used in quantum optics [2], which simplifies

the interaction Hamiltonian term. This approximation assumes that the whole atom is

submerged in a plane electromagnetic wave described by a vector potential, ~A(~r + ~r0, t),

which is assumed to have no spatial variation in the vicinity of the atom whose nucleus is

located at ~r0. For such a case,

~A(~r + ~r0, t) = ~A(t)exp
[
i~k · (~r + ~r0)

]

= ~A(t) exp(i~k · ~r0)(1 + i~k · ~r + · · · ) (1.32)

Taking ~k · ~r ¿ 1, we obtain

~A(~r + ~r0, t) ≈ ~A(t)exp(i~k · ~r0). (1.33)

Using the unitary transformation |Ψ(~r, t)〉 = e
ie
~ ~r· ~A0 |ψ(~r, t)〉 in Eq. (1.28), we get

i~
∂|ψ(~r, t)〉

∂t
=

{
~2

2m
~∇2 + V (r)− e~r · ~E(t)

}
|ψ(~r, t)〉

= (H0 + HI)|ψ(~r, t)〉 (1.34)

The atom-field interaction Hamiltonian in the semiclassical picture is given by

HI = −e~r · ~E = −~d · ~E (1.35)
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where the dipole moment operator ~d is e~r. A significant contribution towards understand-

ing radiation-matter interaction was given by Einstein [5, 6]. He employed the basic ideas

of quantum mechanics to lay the foundation for the quantitative analysis of the absorption

and emission of light by atoms. Later this simple theory has been extensively verified by

rigorous quantum mechanical calculations.

From the above discussion, the complete Hamiltonian for the interaction of radiation

with a single electron atom under the dipole approximation can be written as

H = HA + HF − e~r. ~E, (1.36)

where HA and HF are the energies of the atom and radiation field respectively, and−e~r. ~E

is interaction between the atom and the radiation.

For atomic energy, let us assume that {|i〉} represents the complete set of energy eigen-

states of the atom such that

∑

i

|i〉〈i| = 1, (1.37)

HA|i〉 = Ei|i〉, (1.38)

where Ei is the energy eigenvalue of ith atomic state. It follows that

HA =
∑

i

Ei|i〉〈i| (1.39)

The Hamiltonian for electromagnetic field in terms of operators is given by

HF =
∑

n

~ω
(

a†nan +
1
2

)
. (1.40)

Now the interaction part can also be rewritten in the form

HI = −

∑

i,j

e|i〉〈i|~r|j〉〈j|

 ~E (1.41)

= −

∑

i,j

Pij |i〉〈j|

 ~E. (1.42)

Here e〈i|~r|j〉 = Pij is transition dipole matrix element. For simplicity, if we assume that

initially (t = 0) atom is placed at origin, the electric field ~E from Eq.(1.24) takes the form

~E =
∑

k

n̂kEk(ak + a†k). (1.43)
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Using Eqs. (1.39), (1.40), (1.42), and (1.43), the Hamiltonian (1.36) takes the form

H =
∑

i

Ei|i〉〈i|+
∑

k

~ω
(

a†kak +
1
2

)
+ ~

∑

i,j,k

gij
k |i〉〈j|(ak + a†k), (1.44)

with gij
k = −Pij .n̂kEk

~
. (1.45)

The coupling gk
ij between field and atom depends on the field amplitude Ek and the tran-

sition dipole matrix. In the case of superconducting cavities strong coupling has been

achieved by using Rydberg atoms [7] which have large values of transition dipole mo-

ment.

1.3 Jaynes Cummings Interaction

The simplest model, for radiation-matter interaction, is the interaction of a two level atom

with single mode radiation field, which has been solved exactly by Jaynes and Cummings

[8]. Consider a two level atom with upper energy level |e〉 and lower energy level |g〉 inter-

acts with a single mode electromagnetic field of frequency ω. In this case the Hamiltonian

(1.44) takes the form

H = ~(ωe|e〉〈e|+ ωg|g〉〈g|) + ~ω
(

a†a +
1
2

)
+ ~g(|e〉〈g|+ |g〉〈e|)(a + a†), (1.46)

where ~ωe and ~ωg are the energies of the upper and the lower atomic levels and a and

a† are annihilation and creation operators for the single mode field. We have assumed

coupling constant to be real, geg = gge = g. The first term in (1.46) can be simplified as

~(ωe|e〉〈e|+ ωg|g〉〈g|) = ~
(ωe − ωg)

2
(|e〉〈e| − |g〉〈g|) + ~

(ωe + ωg)
2

(1.47)

=
~ω0

2
(|e〉〈e| − |g〉〈g|), (1.48)

where we use ωe−ωg = ω0 and the completeness condition |e〉〈e|+ |g〉〈g| = 1. The constant

energy term ~(ωe + ωg)/2 has been ignored. In the Hamiltonian (1.46) the interaction part

has four terms. The terms |e〉〈g|a† and |g〉〈e|a are corresponding to the atomic transition

from lower energy level to higher energy level followed by the emission of one photon and

the transition from higher level to lower level followed by the absorption of one photon, re-

spectively. These processes are energy nonconserving and thus can be dropped. Other two

terms are energy conserving and photon is emitted when atom makes transition from up-

per level to lower level and photon is absorbed when transition occurs from lower level to
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higher level. Following the above conventions and simplifications the Hamiltonian (1.46)

takes the form

H =
~ω0

2
(|e〉〈e| − |g〉〈g|) + ~ω

(
a†a +

1
2

)
+ ~g(a|e〉〈g|+ a†|g〉〈e|), (1.49)

The Hamiltonian (1.49) can be diagonalized in the basis of atom-field states |e, n〉 and |g, n+

1〉, where n represents the photon numbers in the field. The eigenstates of the Hamiltonian

H are given by

|+, n〉 = cos θn|e, n〉+ sin θn|g, n + 1〉, (1.50)

|−, n〉 = cos θn|g, n + 1〉 − sin θn|e, n〉, (1.51)

where tan 2θn = 2g
√

n + 1/∆ and ∆ = ω0 − ω is detuning of the cavity field to the atomic

transition. The corresponding eigenvalues are

E±,n = ~ω(n + 1)± ~Ωn/2; Ωn =
√

∆2 + 4g2(n + 1). (1.52)

Clearly the atom and the photons inside the cavity behave as a composite system after they

have interacted and are generally entangled. As a remark, we note that the advances of

the Jaynes Cummings interaction are extensively reviewed in the literature [1, 9, 10].

1.4 Quantum Entanglement in Cavity QED

Entanglement can be defined as a quantum correlation between two subsystems of a com-

posite system. For example, in the case of atom-field system the state of the atom and the

field after interaction remains no more separable as a tensor product of atomic states and

the field states. The measurement of atomic states can project the information about the

field and viceversa. Historically, the concept of entanglement came after Einstein, Podol-

sky, and Rosen (EPR) paradox [11], in which they discussed the state of a composite system

of two spin half particles,

|ψEPR〉 =
1√
2
(|+1,−2〉 − |−1, +2〉), (1.53)

where |±i〉, i = 1, 2, represents the spin eigen states of particle 1 and 2, respectively. The

state (1.53) is superposition of the states of composite system of two particles which is

not separable as a tensor product of eigen states of the particles. Clearly the measure-

ment of the spin of one particle provides complete information about the spin of the other.
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Entanglement is at the heart of quantum information and has applications in quantum

cryptography, teleportation of quantum states, and realization of various quantum log-

ics. In quantum information a two state quantum system is used as quantum bit (qubit).

The entanglement generated between two qubits, after they have interacted, can be used

for realizing various quantum logic conditions [7] or cryptographic key distribution [12].

Further entanglement is nonlocal correlation and can exist between two widely separated

quantum systems. These nonlocal features have been used for teleporting quantum states

between two distant places [13].

In cavity-QED experiments, atoms are passed from one side of the cavity and detected

on the other side after they have interacted with the field stored inside the cavity. The inter-

action between the atoms and the field is given by the Hamiltonian (1.44). For simplicity,

we consider the case of two level atoms passing through a single mode cavity one by one

and the cavity mode is resonant with the atomic transition (ω0 = ω). The hamiltonian in

this case becomes

H = ~ω(|e〉〈e| − |g〉〈g|) + ~ωa†a + ~g(a|e〉〈g|+ a†|g〉〈e|), (1.54)

where we have neglected the constant energy term ~ω/2. The evolution of atom-cavity

system is given by

|g, n〉 → cos(gt
√

n)|g, n〉 − i sin(gt
√

n)|e, n− 1〉 (1.55)

|e, n− 1〉 → cos(gt
√

n)|e, n− 1〉 − i sin(gt
√

n)|g, n〉 (1.56)

where |g, n〉 [|e, n− 1〉] represents that atom is in its lower [higher] energy state and cavity

has n [(n− 1)] photons.

Let us consider first an atom comes in its higher energy state |e1〉 and there is no photon

inside the cavity. The initial state of the atom-cavity system will be |e1, 0〉. If the atom

interacts with the field for time t1 inside the cavity. The final state of the system after

passage of the atom is given by

|ψ1〉 = cos(gt1)|e1, 0〉 − i sin(gt1)|g1, 1〉. (1.57)

By selecting velocity of the atom properly, the value of interaction time t1 can be fixed

arbitrarily. For example, if we choose interaction time such that gt1 = π/4 then the state

(1.57) becomes

|ψ1〉 =
1√
2
(|e, 0〉 − i|g, 1〉) (1.58)
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The state (1.58) is an entangled state of the atom and the field. If the atom is detected in

state |e1〉 that reflects that the field has no photon, on the other hand, if the measured state

of atom is |g1〉 the field has one photon. Now, if we pass second atom coming in its ground

state |g2〉 and select the interaction time t2 such that gt2 = π/2. The atom undergoes

transition from its lower state |g2〉 to higher state |e2〉 with 100% probability if photon is

present in the cavity and will leave in the same state |g2〉 if there is no photon. Finally, the

cavity will have no photon after passage of the second atom and the state of the atoms is

given by

|ψ2〉 =
1√
2
(|e1, g2〉 − |g1, e2〉). (1.59)

Clearly both atoms are in entangled state similar to the EPR state (1.53). Thus cavity works

as an entangling machine for atoms and photons [7].

1.5 Quasi-Probability Distributions and Phase Space Description

In classical physics, the state of a system is characterized by the position x and the mo-

mentum p, which is represented by a point in the phase space. In the case of ensemble

of large number of systems, x and p follow a well defined probability distribution P (x, p)

statistically. The average of any function f(x, p) is expressed as

〈f〉classical =
∫

dx

∫
dpf(x, p)P (x, p). (1.60)

In quantum physics, because of introduced uncertainty, the two quadratures x and p can

not be measured simultaneously, i.e., one can not define a true phase space probability

distribution. A quantum system is described by a density matrix ρ̂ and the average of a

function of the position and momentum operators, f̂(x̂, p̂) is defined by

〈f̂〉quantum = Trace(f̂ ρ̂). (1.61)

The quasiprobability distributions provide the way to express Eq.(1.61)in the form of Eq.(1.60).

The average value of any quantum mechanical operator, in terms of quasiprobability dis-

tributions PQ(x, p), is defined in a way similar to classical physics

〈f̂〉quantum =
∫

dx

∫
dpf(x, p)PQ(x, p), (1.62)

where the function f(x, p) can be derived from the operator f̂(x̂, p̂) by well defined corre-

spondence rules and PQ(x, p) is derived from the density matrix ρ̂. Thus quasiprobability
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distributions provide correspondence between quantum physics and classical physics and

have proven to be a useful tool for studying many quantum systems.

1.5.1 Wigner distribution

Historically, Wigner function was defined in terms of position x̂ and momentum p̂ [14] in

the form

W (x, p) =
1
π~

∫
dy〈x− y|ρ|x + y〉e−2ipy/~. (1.63)

Here |x〉 is eigenstate of the quadrature operator x̂. In coherent state representation the

definition (1.63) can be expressed as [3]

W (α) =
2e2|α|2

π2

∫
〈−β|ρ̂|β〉e2(αβ∗−α∗β)d2β. (1.64)

Wigner function is widely used in quantum optics for visualizing coherence character of

the states. It is well behaved function for all quantum mechanical states. In Fig. 1.1, we

show wigner distribution for Schrödinger cat state N(|β〉+ | − β〉), where N is normaliza-

tion constant. In the central region there are interference fringes which show the coherence

in the superposition. The Wigner function have negative values in this region which in-

dicates that this state has nonclassical nature. Here it should be noted that in coherent

state representation, real part of α and imaginary part of α correspond to two independent

quadratures.

There is lot of progress for measuring Wigner function in quantum optics. Vogel and

Risken [15] first showed, that for propagating fields Wigner function can be reconstructed

by using quantum tomography methods. In quantum tomography, quadrature amplitude

distributions are measured by using homodyne techniques [16] in which field is superim-

posed on a strong coherent field. By changing amplitude and phase of the coherent field,

quadrature distribution is measured in the different location in phase space. If the two

quadratures are

x̂ =
1√
2
(a + a†) (1.65)

p̂ =
1

i
√

2
(a− a†). (1.66)
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Figure 1.1: The Wigner distribution for the state N(|β〉+ | − β〉) for β = 3.

The measured values of quadratures at phase angle φ are given by

x̂φ = x̂ cosφ + p̂ sinφ

p̂φ = p̂ cosφ− x̂ sinφ. (1.67)

The Wigner function W (x, p) is the joint probability distribution of measuring both quadra-

tures thus the probability of measuring quadrature amplitude xφ is

P (x, φ) =
∫ ∞

−∞
W (x̂φ cosφ− p̂φ sinφ, p̂φ cosφ + x̂φ sinφ)dpφ. (1.68)

The Wigner function is then reconstructed from the measured values of P (x, φ) by invert-

ing Eq.(1.68) using numerical algorithms of Radon transform. Raymer and coworkers [16]

have reconstructed Wigner function for vacuum and a squeezed state of single mode field

using quantum tomography methods. Further, a direct measurement of Wigner function

for vacuum and weak coherent states has been done by Wodkiewicz group [17] using pho-

ton counting. Since the early work of Vogel and Risken, the mapping of the full quantum

state has become a subject by itself [18]. In the case of field states in cavities, Lutterbach

and Davidovich [19] have proposed a simple scheme for measuring Wigner function of the

field in a cavity which has been implemented by Bertet et al. [20] for single photon Fock

state. Their method is based on an operational definition of Wigner function [21], which is
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written as, for the state having density matrix ρ

W (α) =
2
π

Tr[D(−α)ρD(α)(−1)a†a], (1.69)

where D(α) ≡ eαa†−α∗a is displacement operator. The Eq.(1.69) is nothing but the expec-

tation value of the parity operator after displacing the cavity field by −α. The parity of

displaced field state has been measured by passing an atom through the cavity in the dis-

persive regime. For the final remark, the work on radiation fields has been extended to

determine the quantum state of an ion trapped in a potential [22].

1.5.2 P-distribution

For establishing equivalence between classical and quantum statistics of electromagnetic

fields, Sudarshan [23] introduced a diagonal representation of density matrix in the basis

of coherent states [24],

ρ̂ =
∫

d2αP (α)|α〉〈α|. (1.70)

Here P (α) is P-distribution in coherent state representation and |α〉 is coherent state. This

description of density matrix is particularly interesting in the case of operators Ô(a, a†)

expanded in the normal order,

Ô =
∑
n,m

cn,m(a†)nam. (1.71)

Here cn,m are expansion coefficients and a and a† are annihilation and creation operators

for electromagnetic field. Let us calculate the average value of operator Ô, it follows that

Trace(Ôρ̂) =
1
π

∫
d2β

∫
d2αP (α)〈β|Ô|α〉〈α|β〉 (1.72)

=
∫

d2αP (α)O(α, α∗) (1.73)

where

1
π

∫
d2β|β〉〈β| = 1 (1.74)

O(α, α∗) =
∑
n,m

cn,m(α∗)nαm. (1.75)

The Eq.(1.73) is similar to the classical description of average value, and the operator

Ô(a, a†) is associated with O(α, α∗) in this representation.
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Figure 1.2: The Q-distribution for the state |β〉 for β = 1− i.

Now, we derive the expression for P (α) from density matrix ρ̂ in the following. Let |β〉
and |−β〉 are the coherent states with eigenvalues β and−β of the operator a, respectively.

Then calculate the value

〈−β|ρ̂|β〉 =
∫

d2αP (α)〈−β|ρ|β〉, (1.76)

= e−|β|
2

∫
d2α

{
P (α)e−|α|

2
}

eβα∗−β∗α. (1.77)

From Eq.(1.77), it is clear that 〈−β|ρ|β〉 is two dimensional Fourier transform of P (α)e−|α|2 .

Thus inverse Fourier transform of Eq.(1.77) gives expression for P (α)

P (α) =
e|α|2

π2

∫
d2β〈−β|ρ̂|β〉e|β|2eαβ∗−βα∗ . (1.78)

The Eq.(1.78) is the required expression of P-distribution.

1.5.3 Q-distribution

The Q-distribution is defined for antinormally ordered operators Ôa(a, a†),

Ôa =
∑
n,m

dn,man(a†)m. (1.79)
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The function corresponding to the operator Ôn can be calculated similar to Eq.(1.75),

Oa(α, α∗) =
∑
n,m

dn,mαn(α∗)m. (1.80)

Let us calculate the average value of operator Ôa in a state characterized by density matrix

ρ̂,

〈Ô〉 = Trace

[∑
n,m

dn,m(ana†)mρ̂

]
,

=
∑
n,m

dm,nTrace

[
1
π

∫
an|α〉〈α|(a†)mρ̂d2α

]
,

=
∑
n,m

dn,m
1
π

∫
αn(α∗)m〈α|ρ̂|α〉d2α,

=
∫

Oa(α, α∗)Q(α)d2α, (1.81)

where we get the expression for Q-distribution as

Q(α) =
1
π

∫
〈α|ρ̂|α〉. (1.82)

In Fig. 1.2, we show Q-distribution for a coherent state |β〉. We note that in Ref.[25], it is

shown that the experiments performed for phase measurement of the radiation field are

equivalent to the measurement of Q function. The measured probability distribution for

the joint measurement of the two quadratures x and p, is directly proportional to the Q

function.



CHAPTER 2

Generation of Superposition of multiple Mesoscopic States

In quantum mechanics, a system can exist in a superposition of its eigenstates while in

the classical world no such superposition of states exists and the system always stays in

one of its states precisely. This has been pointed out as ”cat paradox” by Schrödinger

in his famous paper [26]. Mesoscopic states are the states of a system, which is larger

than the microscopic systems and smaller than the macroscopic systems, thus are interface

between the classical and the quantum world i.e. macroscopic and microscopic world. In

recent times superposition of mesoscopic states has attracted a great deal of attention as

these superpositions exhibit very important interference effects [27, 28, 29] many of which

have now been realized experimentally [30, 31, 32, 33, 34]. It has been proposed earlier that

these superposition states can be produced by passing a single mode field through a Kerr

medium [35, 36, 37]. However, an efficient production of such states would require large

Kerr nonlinearity which is not available though some proposals for the enhancement of

the Kerr nonlinearity exist [38]. The existence of such superpositions is closely connected

to the occurrence of fractional revivals in the nonlinear dynamics of quantum systems

[34, 39, 40, 41].

We note that many authors [31, 32, 29, 42] have shown how cavities, which are far

detuned from the atomic transitions, can be used to produce a superposition of two meso-

scopic states. It turns out that one can have fairly large dispersive interaction in high

quality cavities. This high dispersion has been utilized in many other experiments [43, 20].

Eiselt and Risken [44] had discovered that if a cavity contains a coherent field with

16
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large photon numbers, say of the order of 10, then the state of the field for certain times

splits into two parts. Each part can be characterized approximately by a coherent state.

Several authors have studied many aspects of such splittings [45, 30]. Auffeves et al. [30]

made a successful observation of this splitting and realized Schrödinger cat state in a high

quality cavity.

The simplest superposition would consist of two coherent states one centered at α and

the other at−α, which is known as Schrödinger cat state. Further, the studies of the super-

positions of more than two coherent states have found many novel features. For example,

Zurek [46] noticed that such superpositions lead to structures in phase space which are

smaller than Planck’s constant. In this chapter, we show how to prepare superpositions

of four coherent states by using dispersive as well as resonant interaction in a high qual-

ity cavity. We discuss the nonclassical character of these states in terms of negativity of

the Wigner function [21] as well as zeros of Q-distribution [21]. We discuss methods for

monitoring these superposition states. Using homodyne techniques, one can detect the

phase space position of the coherent states in the generated superposition. We discuss

decoherence of such superposition due to the leakage of photons from the cavity.

2.1 Compass State of the Electromagnetic Field

Let |α〉 be a coherent state for the field with amplitude α. The most commonly studied

superpositions are of the form

|ψ〉 ∼ |α〉+ |eiθα〉. (2.1)

Here θ is an arbitrary phase. Extensive literature on this state exists. It is well known [27,

28] that the quantum character of this state is reflected in the regions of phase space where

the Wigner function becomes negative. The area of the negative region is of the order of

Planck constant. There are several methods of producing such a state [29, 33, 34, 35]. Zurek

[46] has studied a superposition state of four Gaussian wave packets

ψ(x) ∼ exp

{
−(x− x0)2

ξ2
+

ip0x

~

}
, (2.2)

with one each placed in the east, west, north and south direction in the phase space and

calculated the Wigner function for such a state, defined by

W (x, p) =
1

2π~

∫
eipy/~ψ

(
x− y

2

)
ψ∗

(
x +

y

2

)
dy. (2.3)
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He found that it exhibits negative regions in phase space as well as structures with areas

which could be much smaller than Planck’s constant. Since coherent states correspond

to Gaussian wave packets, in the following we consider a superposition of four coherent

states of the form

|φ〉 = N (|α〉+ |iα〉+ | − α〉+ | − iα〉) , (2.4)

where N is the normalization constant and α is complex. Because of the positions of the

coherent states in the superposition (2.4) along four directions in the phase space, Zurek

named the state (2.4) as ”compass state”. The Wigner function for any state |φ〉 can be

obtained using coherent states as [21]

W (γ, γ∗) =
2
π2

e2|γ|2
∫
〈−β|φ〉〈φ|β〉e−2(βγ∗−β∗γ)d2β. (2.5)

For the state (2.4) the Wigner function is found to be

W (γ, γ∗) = |N |2 4e−2|γ|2

π
×

[
2e−2|α|2 cosh {(1 + i)αγ∗ + (1− i)α∗γ} cosh {(1− i)αγ∗ + (1 + i)α∗γ}

+2 cos {(1 + i)αγ∗ + (1− i)α∗γ} cos {(1− i)αγ∗ + (1 + i)α∗γ}
+e−(|α|2−(1+i)αγ∗−(1−i)α∗γ) cos

{|α|2 − (1 + i)αγ∗ − (1− i)α∗γ
}

+e−(|α|2−(1−i)αγ∗−(1+i)α∗γ) cos
{|α|2 − (1− i)αγ∗ − (1 + i)α∗γ

}

+e−(|α|2+(1+i)αγ∗+(1−i)α∗γ) cos
{|α|2 + (1 + i)αγ∗ + (1− i)α∗γ

}

+e−(|α|2+(1−i)αγ∗+(1+i)α∗γ) cos
{|α|2 + (1− i)αγ∗ + (1 + i)α∗γ

}]
. (2.6)

Each cosine term in Eq. (2.6) arises from the interference of a pair of coherent states in

the superposition state (2.4). The sub-Plank structures arise from further interference of

two cosine terms which come from the diagonal pairs. The first two terms in Eq. (2.6) are

such terms coming from the diagonal pairs |α〉, | − α〉 and |iα〉, | − iα〉. The first term is

significant for smaller values of |α| and shows exponential decrease in the Wigner function

away from the center and the second term which is significant for larger values of |α| shows

the interference pattern in the central region (γ → 0). In Figs. 2.1 and 2.2, we plot the

Wigner function for some typical values of |α|. We found that for smaller values of |α| (Fig.

2.1), the central part has a continuum and no other structures appear but for larger values

of |α| (Fig. 2.2), a chess board pattern as noticed earlier by Zurek appears in the central

region. The reason for the disappearance of the interference pattern in the central region
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Figure 2.1: The Wigner function for mesoscopic superposition state N (|α〉+ | − α〉+ |iα〉+ | − iα〉) for
|α| = 1.
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Figure 2.2: The Wigner function for mesoscopic superposition state N (|α〉+ | − α〉+ |iα〉+ | − iα〉) for
|α| = 5.
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for smaller values of |α| is because in this case the coherent states overlap to a large extent

so the interference effects are not visible.

2.2 Generation of the Superposition of multiple Mesoscopic States

using Dispersive Interaction between Atoms and Cavity

Consider a single mode high quality cavity containing a small amount of a coherent field

so that the initial state of the cavity field is |α〉. Let ωc be the cavity frequency. Consider the

passage of a two level atom with the excited and ground states |e〉 and |g〉 with transition

frequency ω. The atom is initially prepared in a superposition state

|Φ〉 = ce|e〉+ cg|g〉. (2.7)

The Hamiltonian of the atom-cavity system is given by

H = ~ωca
†a +

~ω
2

(|e〉〈e| − |g〉〈g|) + ~g(|e〉〈g|a + |g〉〈e|a†). (2.8)

In a frame rotating with the atomic transition frequency ω, the interaction Hamiltonian is

given by

H = ~δa†a + ~g(|e〉〈g|a + |g〉〈e|a†), δ = (ωc − ω). (2.9)

We assume that the cavity is far detuned from the atomic transition frequency so that δ >>

g. We can do a second order perturbation calculation and obtain an effective Hamiltonian

H ' ~δa†a + φ0~a†a|g〉〈g| − φ0~aa†|e〉〈e|, (2.10)

where the parameter φ0 is equal to g2/δ. Physically it gives the shift of the excited state

in the absence of any cavity field. Under the effect of the Hamiltonian (2.10), the states

evolve as

|g, n〉 → e−inφ0τ−inδτ |g, n〉
|e, n〉 → ei(n+1)φ0τ−inδτ |e, n〉, (2.11)

where τ is the interaction time. Using (2.11), we easily obtain the evolution of a field in a

coherent state |α〉

|g, α〉 → |g, αe−iφ−iδτ 〉
|e, α〉 → eiφ|e, αeiφ−iδτ 〉, φ = φ0τ. (2.12)
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Therefore the atom field system in the state |Φ, α〉 will evolve into

|Φ, α〉 → cee
iφ|e, αeiφ−iδτ 〉+ cg|g, αe−iφ−iδτ 〉. (2.13)

The probability of detection of the atom in the state |ψ〉 = ψe|e〉+ ψg|g〉 will be

Pψ = ||ceψ
∗
ee

iφ|αeiφ−iδτ 〉+ cgψ
∗
g |αe−iφ−iδτ 〉||2 (2.14)

= |ceψ
∗
e |2 + |cgψ

∗
g |2 + 2 Real

(
c∗gψgceψ

∗
ee

iφ〈αe−i(φ+δτ)|αei(φ−δτ)〉
)

. (2.15)

The last term in Eq. (2.15) yields the interference fringes. For the special case of the ini-

tial state and the detection state having equal superposition of the ground and the excited

states |c∗gψgceψ
∗
e | = 1/4. The visibility depends on the scalar product of two coherent

states that are shifted in phase by 2φ. The phase shift is a measure of the cavity interac-

tion. Haroche and coworkers have used the above for the production and detection of

mesoscopic superposition of the field states. In the present case the generated mesoscopic

superposition is the state

ceψ
∗
ee

iφ|αeiφ−iδτ 〉+ cgψ
∗
g |αe−iφ−iδτ 〉. (2.16)

We next demonstrate how the compass state can be produced by following similar

ideas. Let us write the state (2.13) in the form

|Φ, α〉 = fe|e〉|αe〉+ fg|g〉|αg〉. (2.17)

Let us consider the passage of two atoms labeled as A and B in succession through the

cavity. After the passage of the atom A we get the state (2.17). Clearly the net state of the

system consisting of two atoms A, B and the cavity field would have the structure

|Ψ〉 = fehe|eA, eB〉|αee
′ 〉+fehg|eA, gB〉|αeg

′ 〉+fghe|gA, eB〉|αge
′ 〉+fghg|gA, gB〉|αgg

′ 〉. (2.18)

The joint detection of the atoms in the state |χ〉 ≡ χee
′ |eA, eB〉+χeg

′ |eA, gB〉+χge
′ |gA, eB〉+

χgg′ |gA, gB〉 will project state(2.18) to (unnormalized state)

〈χ|Ψ〉 ≡ |C〉 = feheχ
∗
ee′ |αee′ 〉+ fehgχ

∗
eg′ |αeg′ 〉+ fgheχ

∗
ge′ |αge′ 〉+ fghgχ

∗
gg′ |αgg′ 〉. (2.19)

Clearly such a conditional detection reduces the state of the cavity field to a state which in

general would be a mesoscopic superposition of four coherent sates |αij〉. The value of αij
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can be read from Eq. (2.13),

αee
′ = α0e

iφ+iφ
′
, αeg

′ = α0e
iφ−iφ

′
, αge

′ = α0e
−iφ+iφ

′
, αgg

′ = α0e
−iφ−iφ

′
; (2.20)

φ =
g2
AτA

δ
, φ

′
=

g2
BτB

δ
; α0 = αe−iδτ−iδτ

′
. (2.21)

Clearly by varying φ and φ
′

we can produce a variety of superpositions. Consider, for

example, φ = π/4 and φ
′
= π/2, then

αee′ = α0e
3iπ/4, αeg′ = α0e

−iπ/4, αge′ = α0e
iπ/4, αgg′ = α0e

−3iπ/4, (2.22)

so the state (2.19) is a compass state. The expansion coefficients in (2.19) depend on the

initial preparation of the atoms A and B and the detection of these atoms.This is usually

done by using two Ramsey zones before and after the cavity. Let us for simplicity assume

that

|Φj〉 =
1√
2

(
eiηj |e〉+ eiθj |g〉

)
; j = A, B,

|χ〉 = |Φ′
A〉|Φ

′
B〉, (2.23)

where |Φ′
j〉 is obtained from |Φj〉 by using ηj → η

′
j and θj → θ

′
j . Substituting values of αij

from (2.22) we rewrite (2.19) as

|C〉 =
1
4

(
ei(η1+η2+3π/4)| − α〉+ ei(η1+θ2+π/4)|α〉+ ei(θ1+η2+π/2)|iα〉

+ei(θ1+θ2)| − iα〉
)

, (2.24)

η1 = ηA − η
′
A, η2 = ηB − η

′
B, θ1 = θA − θ

′
A, θ2 = θB − θ

′
B,

we have also set α0 = αeiπ/4. For θ1 = η1 + π/4 and θ2 = η2 + π/2 the state (2.24) becomes

the compass state (2.4)

|C〉 =
1
4
ei(η1+η2+3π/4) (| − α〉+ |α〉+ |iα〉+ | − iα〉) . (2.25)

It is clear that the probability of joint measurements on the atoms A and B would be

P = Trc〈χ|ψ〉〈ψ|χ〉, (2.26)

where Trc stands for tracing over the cavity field. Using Eq(2.19) and Eq(2.23), we find the

result

P =
1
4

+
1
8
Real

(
ei(θ2−η2−π/2)〈−α|α〉+ ei(θ1−η1−π/4)〈−α|iα〉

+ei(θ1+θ2−η1−η2−3π/4)〈−α| − iα〉+ ei(θ1−η1−π/4)〈α| − iα〉
+ei(θ1+η2−η1−θ2+π/4)〈α|iα〉+ ei(θ2−η2−π/2)〈iα| − iα〉

)
≡ 〈C|C〉. (2.27)
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Figure 2.3: The probability P for |α|2 = 1 is plotted with phases of the initial atomic state and the detected
state. The scale along x axis and y axis is in units of π.

In Fig. 2.3, we show P as a function of phases of initial atomic state and the detected

atomic state for |α| = 1. These interferences become less prominent for larger values of |α|.
The exact nature of interferences depends on the choice of the phase factors ηj and θj .

2.3 Generation of the Superposition of multiple Mesoscopic States

using Resonant Interaction Between Atoms and Cavity

In a recent experiment, Auffeves et al. [30] have observed a superposition of two distin-

guishable states of the field in a high quality cavity using resonant interaction between an

atom and the field inside the cavity. This observation is in agreement with the theoretical

prediction of Eiselt and Risken [44]. When a two level Rydberg atom interacts with a mi-

crowave field, it splits the field into two parts whose phases move in opposite directions.

If the interaction time is chosen such that the phase difference between the split parts be-

comes π, then the cavity field can be projected into a superposition similar to a cat state,

|α〉+ | − α〉.
In this section, we show that the above method can be used for the preparation of a

superposition of four mesoscopic states of the field. We consider a two level Rydberg atom
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having its higher-energy state |e〉 and lower-energy state |g〉 and the cavity has a strong

coherent field |α〉. The atom passes through the cavity and interacts resonantly with the

field. The Hamiltonian for the system in the interaction picture is written as

H = ~g
(
|e〉〈g|a + a†|g〉〈e|

)
, (2.28)

where g is the coupling constant for the atom with the cavity field, and a (a†) is the anni-

hilation (creation) operator. The state of the atom-cavity system is written as

|ψ(t)〉 =
∑
n

(cen(t)|e, n〉+ cgn(t)|g, n〉) . (2.29)

Using Hamiltonian (2.28), the Schrödinger equation in terms of cen and cgn is

ċen−1 = −ig
√

ncgn, (2.30)

ċgn = −ig
√

ncen−1. (2.31)

We assume that the atom enters the cavity in its lower state |g〉 and after interacting with

the field for time t1, it is detected in the same state |g〉. Thus, effectively, the atom absorbs

no photon but it projects the cavity field into the state

|ψc〉 =
∑

n

cn cos(g
√

nt1)|n〉, (2.32)

=
1
2

∑
n

cneig
√

nt1 |n〉+ cne−ig
√

nt1 |n〉, (2.33)

cn =
αn

√
n!

e−|α|
2/2.

As a result, the cavity field splits into two parts whose phases move in directions opposite

to each other. Now we consider the passage of a second identical atom through the cavity.

The second atom enters the cavity in its lower state |g〉 and, after interacting with the field

for time t2, is detected in the same state |g〉. The state of the field inside the cavity after

passing the second atom is

|ψ′c〉 =
∑

n

cn cos(g
√

nt1) cos(g
√

nt2)|n〉, (2.34)

=
1
4

∑
n

cn

[
eig

√
n(t1+t2)|n〉+ e−ig

√
n(t1+t2)|n〉+ eig

√
n(t1−t2)|n〉

+e−ig
√

n(t1−t2)|n〉
]
. (2.35)
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Thus after passing second atom, the state of the field inside the cavity splits into four parts.

In the coherent state |α〉, the photon distribution follows Poisson statistics, so in Eq.

(2.35), most of the contribution to the summation comes from the terms n ≈ |α|2. Thus

we can expand
√

n in phase terms around the average number of photons n̄ = |α|2 in Eq.

(2.35). In fact for n̄ ∼ 10, only the terms up to second order in (n − n̄) are significant and

other terms are negligible,

√
n =

√
n̄ +

n− n̄

2
√

n̄
− (n− n̄)2

8n̄3/2
. (2.36)

If we substitute the value of
√

n from Eq. (2.36) in Eq. (2.35), the term proportional to n

will change the phase of the coherent field while the second- and higher-order terms in

(n − n̄) will distort the shape of the coherent state in phase space. For simplification, in

order to understand the nature of the generated superposition state, we do not consider

the distortion in the coherent state. Then Eq. (2.35) can be approximated by

|ψ′c〉 =
1
4

[
ei(η1+η2)|αei(θ1+θ2)〉+ e−i(η1+η2)|αe−i(θ1+θ2)〉+

ei(η1−η2)|αei(θ1−θ2)〉+ e−i(η1−η2)|αe−i(θ1−θ2)〉
]
; (2.37)

ηi =
gti
√

n̄

2
, θi =

gti

2
√

n̄
, i = 1, 2 (2.38)

If we choose interaction times t1 and t2 such that θ1 = π/2 and θ2 = π/4, we get the

superposition of four mesoscopic coherent states placed in the east, west, north and south

directions in phase space,

|ψ′c〉 =
1
4

[
e−i(η1−η2)|α′〉+ ei(η1+η2)| − α′〉+ ei(η1−η2)|iα′〉+ e−i(η1+η2)| − iα′〉

]
; (2.39)

where we set α = α′eiπ/4.

Now we calculate the Wigner distribution for the state (2.34). The density matrix ρc for

state (2.34) in terms of number states is

ρc =
∑
n,m

αnα∗m√
n!m!

e−|α|
2
cos(gt1

√
n) cos(gt2

√
n) cos(gt1

√
m) cos(gt2

√
m)|n〉〈m|. (2.40)

Using equations (2.5) and (2.40), the Wigner distribution for the state (2.34) is

W (γ) =
2e2|γ|2

π2

∑
n,m

αnα∗m

n!m!
e−|α|

2
cos(gt1

√
n) cos(gt2

√
n) cos(gt1

√
m)×

cos(gt2
√

m)
∫

(−β∗)nβme−|β|
2
exp[−2(βγ∗ − β∗γ)]d2β. (2.41)
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Figure 2.4: The Wigner distribution W (γ) for (a) the generated state (2.35) and (b) the approximated state
(2.37), using parameters α = 4, gt1 = 3.7π, gt2 = 1.9π.
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Figure 2.5: The Q-distribution function Q(γ) for (a) the generated state (2.35) and (b) the approximated
state (2.37), using same parameters as in Fig. 1.
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Figure 2.6: The Q-distribution function Q(γ) for the generated state after passing three atoms through the
cavity, for α = 8. The interaction times for the first atom, second atom and the third atom are chosen such
that gt1 = 8π, gt2 = 4π, gt3 = 2π.

After evaluating the integral, Eq. (2.41) is simplified to the form

W (γ) =
2e2|γ|2

π

∑
n,m

(−1)n+mαnα∗m

2n+mn!m!
e−|α|

2
cos(gt1

√
n)×

cos(gt2
√

n) cos(gt1
√

m) cos(gt2
√

m)
∂n+m

∂γn∂γ∗m
e−4|γ|2 . (2.42)

In the Fig. 2.4, we show the Wigner distributions for the generated superposition state

(2.35) as well as for the approximated state (2.37) using some typical values of parameters.

There are four patches at the corners corresponding to four mesoscopic states of the field

and between each pair of states of the field there are interference fringes indicating the co-

herence between the states. In the central part, there are subplanck structures as noticed by

Zurek [46] which form as a result of quantum interference between the two diagonal pairs.

The comparison of Figs. 2.4 (a) and (b) shows that a significant squeezing perpendicular

to the arc of the circle |z| = |α| occurs due to the effects of the higher order terms in (n− n̄)

(see Eq. (2.36)). Squeezing in the resonant Jaynes-Cummings model [47] has been studied

very well earlier. As a result of small differences in the field statistics, there are differences

in the interference patterns. In Fig. 2.5, the Q-distributions for the states (2.35) and (2.37)

are shown with the same parameters used in Fig. 2.4. We select the interaction times such
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that there is no overlapping between two states of the field. A comparison of Figs. 2.5 (a)

and (b) shows that the states of the field corresponding to the phases ±g
√

n(t1 + t2) [see

(2.35)] in the generated mesoscopic state have more spread along the circle |z| = |α| and

squeezing perpendicular to it in phase space because of larger distortion terms. Thus the

split states of the field in the generated superposition state are situated at the same position

as in the approximated state but with changed shape.

We further mention that after passing N atoms through the cavity and properly select-

ing the interaction times, we can generate the superposition of 2N mesoscopic states of the

field placed along the arc of a circle of radius |α| in phase space. In Fig. 2.6, we show the

Q-distribution for the generated state of the field after passing three atoms through the

cavity. It is clear that the generated state is a coherent superposition of eight mesoscopic

states.

In this method of preparing superposition of mesoscopic field states, most of the time

atoms are in their ground states, thus decoherence effects due to atomic damping are neg-

ligible. Only the decoherence of the generated superposition states after passage of first

atom may lead to the generation of undesirable statistical mixture of states [29, 31, 32]. The

mesoscopic states in the generated superposition after passage of first atom lie on the circle

of radii |α| in the phase space. Thus they decohere as exp(−2|α|2κt) [c.f. Eq. (2.61)]. The

required interaction time for first atom is given by gt1 ≈ π|α|. The required interaction

time for the next atom is half the interaction time for the previous atom. We assume that

all atoms come in a proper sequence so that total time in the generation of the state is equal

to the total interaction time of the cavity field with the atoms. Then the time required after

passage of the first atom in the preparation of 2N mesoscopic states, for large N , is given

by
t1
2

+
t1
4

+
t1
8

+ ..(N− 1)term.. ≈ t1. (2.43)

Thus the probability of generating the desired state, for large N , is reduced by the factor

exp(−2|α|2t1/tcav), where tcav = 1/κ is the life time of the field in the cavity. In the case

of good cavities, gtcav ≈ 400 is feasible. The probability of generating state (2.34) in these

cavities, for |α|2 ∼ 10, will be more than 80%.

The relation between the Q-distribution and the P-distribution for a state, [21], is given

by

Q(γ) =
∫

P (α)e−|α−γ|2d2α. (2.44)
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From Eq. (2.44), it is clear that for Q = 0 the P-distribution will oscillate between +ve and

−ve values. The negative value of P is a signature of the nonclassical nature of the state.

Thus the exact zeros of the Q-distribution are also signatures of nonclassical nature. Here

it will be interesting to analyze the exact zeros of the Q-distribution of the approximated

state (2.39). The Q-distribution for state (2.39) is

Q(γ) =
1
π

∣∣∣〈γ|α′〉e−i(η1−η2) + 〈γ| − α′〉ei(η1+η2) + 〈γ|iα′〉ei(η1−η2) + 〈γ| − iα′〉e−i(η1+η2)
∣∣∣
2
.

(2.45)

The exact zeros of Q(γ) will be given by
∣∣∣〈γ|α′〉e−i(η1−η2) + 〈γ| − α′〉ei(η1+η2) + 〈γ|iα′〉ei(η1−η2) + 〈γ| − iα′〉e−i(η1+η2)

∣∣∣ = 0. (2.46)

Thus the Q-distribution shows nonclassical behavior at all phase points γ satisfying the

condition (2.46). For example, if we take α′ to be real and observe the Q-distribution along

the line γ = |γ|eiπ/4 in phase space, the condition for nonclassicality (2.46) simplifies to

e
− |γ|α′√

2 cos
[
η1 + η2 +

|γ|α′√
2

]
+ e

|γ|α′√
2 cos

[
η1 − η2 +

|γ|α′√
2

]
= 0. (2.47)

For |γ| = 0 the condition (2.47) becomes cos η1 cos η2 = 0. For |γ| 6= 0, using the values of

η1 = π|α′|2/2, η2 = π|α′|2/4 (see Eq. (2.38)), the condition (2.47) can be rewritten as the

simultaneous equations

|γ|√
2α′

+
3π

4
= (2n1 + 1)

π

2α′2
,

|γ|√
2α′

+
π

4
= (2n2 + 1)

π

2α′2
; ni = 1, 2, .. (2.48)

The solution of the equations (2.48) gives α′2 = 2(n1−n2), thus α′2 must be an even integer

and the values of |γ| are given by

|γ| = π

2
√

(n1 − n2)
(3n2 − n1 + 1); n1 > n2. (2.49)

In the above paragraph, we have outlined an analytical approach for getting informa-

tion about the non classical behavior of a state by finding exact zeros of Q function. It is

quite clear from the above that a simple analysis of the Q function can provide informa-

tion of the nonclassical behavior of the state. Thus this is an alternate analytical approach

for checking nonclassical behavior of the state. In general, analyzing zeros of Q function

is easier than looking for −ve value of Wigner function. In Ref.[25], it is shown that the

experiments performed for phase measurement of the radiation field are equivalent to the

measurement of Q function.
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2.4 Detection of the Generated Superposition of Mesoscopic States

In the previous sections, we have shown how the cavity field can be projected into a super-

position of four mesoscopic states of the field after passing two atoms through the cavity.

In order to explore the characteristics of the state (2.4), we have to bring a third atom C

and examine the probability of its detection in a given state. This would be similar to what

was done in the experiment of Brune et al. [31] to study the cat state. In fact, the compass

state can be detected using the methods sensitive to its field statistics. For the compass

state photon distribution is very special, it has number states having photon number in

the integral multiple of four. The state (2.4) can be expressed in terms of number states as

follow

|φ〉 = N
∑

p

α4p

√
(4p)!

e−|α|
2/2|4p〉, (2.50)

where p is an integer. We propose a simple method for detecting the compass state using

a two level atom interacting resonantly with the cavity field as a probe. The Hamiltonian

for resonant interaction is given by (2.28). We can calculate the probabilities of detection

for the atom in its different states after passing through the cavity. The probabilities of

detection if atom enters the cavity in its lower state |g〉 and detected in its state |g〉 and |e〉,
P g

g and P e
g respectively are

P g
g =

∑
p

|N α4p

√
(4p)!

e−|α|
2/2 cos(2gt

√
p)|2, (2.51)

P e
g =

∑
p

|N α4p

√
(4p)!

e−|α|
2/2 sin(2gt

√
p)|2. (2.52)

In the Fig. 2.7, we show the comparison of detection probabilities for cavity field in com-

pass state, Schrödinger cat state N0(|α〉 + | − α〉), and coherent state |α〉. We observe that

the revival time is larger for cat state than the revival time for compass state and revival

time is larger for coherent state than the revival time for cat states. The reduction in revival

times is because of increasing granular nature of photon distribution from coherent state

to compass state.

2.4.1 Homodyne detection of the generated superposition state

An elegant method for detecting the generated superposition can also be homodyne detec-

tion [30], which can be implemented in the same experimental set up. After preparing the
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Figure 2.7: The probability of detection of the atom in its ground state |g〉 for cavity field in (a) compass
state, (b) Schrödinger cat state N0(|α〉+ | − α〉), and (c) coherent state |α〉, for |α|2 = 16 .

cavity in the desired superposition state, a resonant external coherent field |β〉 is injected

into the cavity. After adding the external field, the state of the resultant field in the cavity

is

|Ch〉 = ND(β) [|α〉+ |iα〉+ | − α〉+ | − iα〉]
= N

∑
m

〈m|D(β) [|α〉+ |iα〉+ | − α〉+ | − iα〉] |m〉,

=
∑
m

Fm|m〉 (2.53)

Fm = N〈m|D(β) [|α〉+ |iα〉+ | − α〉+ | − iα〉] , (2.54)

where D(β) ≡ eβa†−β∗a is displacement operator. Now we bring the third atom in its lower

energy state |g〉 to probe the cavity field. The probability of detecting the probe atom in its

lower state |g〉 after crossing the cavity in time tp is

Pg =
∑
m

|Fm|2 cos2(gtp
√

m). (2.55)

The interaction time tp for the probe atom is selected such that if there are photons in the

cavity it leaves the cavity, in its higher energy state |e〉 with larger probability. We have

shown in the earlier section that all the states of the field in the superposition lie on a circle

of radius |α|, so if we choose the external field |β〉 having amplitude |α| and phase φ, the

probe atom will leave the cavity in its ground state with larger probability when the value

of π + φ will match to the phases of the states of the field in the generated superposition.

Thus the probability of the probe atom leaving the cavity in its lower state |g〉 would, as a

function of φ, have peaks corresponding to the positions of the centers of the superposed
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Figure 2.8: The probability of detecting probe atom in its ground state as a function of φ for the generated
superposition (2.4). The interaction time for the probe atom is selected such that gtp = π.

mesoscopic states. In Fig. 2.8, we plot the probability of detecting the probe atom in its

lower state with φ. It shows four peaks at the positions of the four states of the field in the

generated superposition state.

2.5 Effects of non-unity Detection Efficiency

In this section, we follow the argument of Davidovich et. al. [29] to show that the detection

efficiency is not a serious issue in the generation of state (2.4). After passing the first atom

A through the cavity, the field state is projected

|CA〉 = N
(
eiη1+π/4|αeiπ/4〉+ eiθ1 |αe−iπ/4

)
, (2.56)

where the velocity of atom A is selected such that the phase change in the cavity field

φ = π/4. If one atom similar to atom A passes through the cavity undetected, the combined

state will be

|ψ′〉 = Nei(η1+π/4)
(
eiη1+π/4|α′eiπ/2〉+ eiθ1 |α′

)
|e〉

+ Neiθ1

(
eiη1+π/4|α′〉+ eiθ1 |α′e−iπ/2

)
|g〉, (2.57)



Generation of Superposition of multiple Mesoscopic States 34

where α′ = αe−iδt1 . We trace out the atomic state as the atom passes undetected, the cavity

field will be in the state

|C ′
A〉 = N ′

[
eiη1+π/4(|α′〉+ |iα′〉) + eiθ1(|α′〉+ | − iα′〉)

]
. (2.58)

Now if the second atom B enters the cavity and detected after passing the cavity in earlier

defined states. The velocity of second atom is chosen such that it changes phase of cavity

field by π/2. The detection of second atom will project the cavity field in the state

|CB〉 =
N ′

2

[
eiη1+η2+3π/4(|α′′eiπ/2〉+ |iα′′eiπ/2)

+ei(θ1+η2+π/2)(|α′′eiπ/2〉+ | − iα′′eiπ/2〉)
+eiη1+θ2+π/4(|α′′e−iπ/2〉+ |iα′′e−iπ/2)

+ei(θ1+θ2)(|α′′e−iπ/2〉+ | − iα′′e−iπ/2〉)
]
, (2.59)

where α′′ = α′e−iδt2 . For earlier defined conditions on phases in the method for preparing

the compass state (2.4), θ1 = η1 + π/4 and θ2 = η2 + π/2 the state (2.59) becomes same as

state (2.25). In a similar way one can see that the prepared state will be a compass state if

one atom similar to atom B passes undetected between the atoms A and B.

2.6 Decoherence of the Generated Superposition State

Next we study the decoherence of the generated superposition state (2.4). This can be done

using the master equation

ρ̇ = −κ

2
(a†aρ− 2aρa† + ρa†a), (2.60)

where κ is cavity field decay parameter and we carry analysis in the absence of thermal

photons. For initial state (2.4), we find the density matrix after time t

ρ(t) =
1
16

[(|αt〉〈αt|+ | − αt〉〈−αt|+ |iαt〉〈iαt|+ | − iαt〉〈−iαt|)
+ e−2|α|2(1−e−κt) (|αt〉〈−αt|+ | − αt〉〈αt|+ |iαt〉〈−iαt|+ | − iαt〉〈iαt|)
+ e−|α|

2(1−i)(1−e−κt) (|αt〉〈iαt|+ | − iαt〉〈αt|+ | − αt〉〈−iαt|+ |iαt〉〈−αt|)
+ e−|α|

2(1+i)(1−e−κt) (|iαt〉〈αt|+ |αt〉〈−iαt|+ | − iαt〉〈−αt|+ | − αt〉〈iαt|)
]
; (2.61)

αt = αe−κt/2.
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Figure 2.9: The decoherence of the state (2.4) in terms of Wigner function at different times, (a) for κt = 0,
(b) for κt = 1/2|α|2, (c) for κt = 1/|α|2, (d) for κt = 2/|α|2, for |α| = 4.
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In Eq. (2.61), the second, third, and the fourth terms reflect the coherent character of the

superposition. These are the terms which decohere due to interaction with the environ-

ment. The contribution to the Wigner function from the second term in Eq. (2.61) is

e−2|γ|2−2|α|2(1−e−κt)

4π
{cos[i(αγ∗ − α∗γ)] + cos[(αγ∗ + α∗γ)]} , (2.62)

which decays as e−2|α|2(1−e−κt) ≈ e−2|α|2κt for κt << 1. This term arises from the coher-

ence between the pair |α〉, | − α〉 and the pair |iα〉, | − iα〉, and is responsible for the cen-

tral sub-Planck structures. The term in curly bracket can be written as {cos[2α|γ| sin θ] +

cos[2α|γ| cos θ]}. Thus in any direction θ 6= nπ/2 one has an interference pattern which

arises from two cosine terms with different periodicity. Thus the sub-Planck structures de-

cohere as e−2|α|2κt. The third and the fourth terms in Eq. (2.61) show the coherence between

other pairs of coherent states, and decay as e−|α|2κt. In Fig. 2.9, we plot the decoherence

of the state (2.4) in terms of the Wigner function at different times. As time progresses in

Fig. 2.9 from (a) to (d), the central interference patterns decay faster and disappear earlier

than the interference fringes between the coherent states, say |α〉 and |iα〉, disappear. This

is clear from the equation (2.61) that the central interference patterns decohere two times

faster than the interference fringes between the coherent states like |α〉 and |iα〉.

2.7 Summary

We have discussed the properties of the compass state for radiation field and the meth-

ods of generating a compass state using the dispersive as well as resonant interaction be-

tween atoms and field inside the cavity. The conditional measurements enable one to study

some aspects of the mesoscopic superposition of coherent states. We have shown that the

nonunity detection efficiency in the preparation of the compass state is not a serious issue.

We have discussed the properties of the quasi-probability distributions of the generated

state. We have discussed the time scale over which the state decoheres and discussed the

methods for monitoring the generated state. Another way to detect such superposition is

by doing tomography [48] of such states.



CHAPTER 3

Ramsey Interferometry with Quantized Field

Entanglement is one of the most interesting phenomena in quantum mechanics. A large

number of methods exist for generating various types of entangled states [7, 11, 49, 50].

Many of these states have been implemented in quantum information processing [12, 13,

51, 52]. In chapter 1, we have discussed nonlocal characteristics [53] of entanglement and

shown how cavities can be used to generate atom-atom and atom-field entangled states.

In this chapter, we discuss how one can generate entangled state of two spatially sepa-

rated cavities. We note that entanglement between two modes in a single cavity has been

reported by Rauschenbeutel et al [54]. Further, in a recent experiment, the entangled spin-

state of two macroscopic atomic samples has been realized by passing a polarized light

pulse [55].

We consider two spatially separated high quality cavities aligned along their axis and

atoms are passed one by one through the cavities. Thus, our arrangement is equivalent

to the Ramsey interferometer [56]. We discuss the role of quantum statistics of the fields

in Ramsey interferometry and examine the conditions on the fields so that interference

fringes are obtained. In the case of fixed number of photons in the cavities, interference

does not occur in the excitation probability of a single atom [57]. We show how the in-

terference can be restored by passing successively two atoms through the cavities and

measuring atom-atom correlations [58]. We generate various entangled states by passing

a single or two atoms through cavities and show entanglement can be transferred from

fields to atoms and viceversa.

37
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Figure 3.1: Ramsey interferometry with two spatially separated fields.

3.1 Ramsey Interferometry

Ramsey proposed a new technique of doing molecular beam resonance experiments [56].

He used two spatially separated fields instead of using uniform single field as shown in

Fig. 3.1. Ramsey technique has advantage of higher precision measurement over an exper-

iment with continuous single field. The higher precision in Ramsey technique is due to the

occurrence of sharper resonance curves with two spatially separated fields. It was origi-

nally proposed as a technique in the microwave domain [56] which was then extended to

studies in optical domain [59]. Achieving higher resolution by using two separated fields

in molecular or atomic beam experiments can be understood as follows.

Consider a two level atom having upper level |e〉 and lower level |g〉. The state of the

atom at anytime t is given by

|ψa(t)〉 = ce(t)|e〉+ cg(t)|g〉. (3.1)

The field in each Ramsey zones is E(t) = E cosωt. When an atom enters in the field, the

atom-field interaction is given by

HI = −(Peg|e〉〈g|+ Pge|g〉〈e|)E cos(ωt),

= −~(ΩR|e〉〈g|+ Ω∗R|g〉〈e|) cos(ωt), (3.2)

where Peg = P∗ge, are transition dipole matrix elements and |ΩR| = |PegE/~| is Rabi fre-

quency. Thus the Hamiltonian of the atom-field system is given by

H = ~ωe|e〉〈e|+ ~ωg|g〉〈g| − ~(ΩR|e〉〈g|+ Ω∗R|g〉〈e|)(eiωt + e−iωt), (3.3)
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Figure 3.2: Comparison between resonance curves using single field and Ramsey method of two spatially
separated fields.

where ωe and ωg are frequencies corresponding to the higher and the lower energy levels,

respectively. Using interaction picture and rotating wave approximation, the Hamiltonian

H reduces to

H = −~
2
(ΩRei∆t|e〉〈g|+ Ω∗Re−i∆t|g〉〈e|), where ∆ = (ωe − ωg)− ω. (3.4)

Therefore, the Hamiltonian for Ramsey method is given by

H = −~
2
(ΩRei∆t|e〉〈g|+ Ω∗Re−i∆t|g〉〈e|), for 0 < t ≤ τ, T + τ < t ≤ T + 2τ (3.5)

H = 0, for τ < t ≤ T + τ.

Using atomic state (3.1) and Hamiltonian (3.5), Schrödinger equation takes the form

ċe(t) =
iΩR

2
ei∆tcg(t), ċg(t) =

iΩ∗R
2

e−i∆tce(t), in Ramsey zones, (3.6)

ċe(t) = ċg(t) = 0 every where else.

Using differential equation (3.6), the evolution of the atomic state can be calculated. The

probability of detecting the atom in a particular state |ψf 〉 after total time T + 2τ is defined
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as

Pfa = 〈ψf |ψa(T + 2τ)〉〈ψa(T + 2τ)|ψf 〉. (3.7)

If an atom is coming in lower state |g〉, the probability of detecting the atom in the upper

state |e〉 is found to be, for spatially separated fields

Peg =
|ΩR|2
Ω2

sin2

(
Ωτ

2

) {
cos2

(
Ωτ

2

)
cos2

(
∆T

2

)
+

∆2

Ω2
sin2

(
Ωτ

2

)
sin2

(
∆T

2

)}
, (3.8)

and for single field

Peg =
|ΩR|2
Ω2

sin2

(
Ωτ

2

)
. (3.9)

Here Ω =
√

∆2 + Ω2
R. Generally Ωτ is a small number, so we can drop the terms having

sin4(Ωτ/2) and the expression (3.8) simplifies to

Peg ≈ |ΩR|2
Ω2

sin2

(
Ωτ

2

)
cos2

(
∆T

2

)
. (3.10)

In Fig. 3.2, we show the transition probabilities Peg, for the two separated fields and for

the single field, defined by equations (3.9) and (3.10). Clearly, the presence of cosine term

in (3.10) modulates the transition probability and the resolution in the resonance curves

becomes proportional to 1/∆T .

In an interferometer interference occurs when two monochromatic coherent waves

travel to the detector through two different ways. In Ramsey method of two separated

fields, a particular transition in atomic states occurs through two different ways and inter-

ference fringes appear in the transition probability similar to wave interferometer. For the

transition of an atom from its lower state |g〉 to higher state |e〉 in Ramsey interferometer,

the atom follows two different paths

|g〉 first zone−−−−−−→ |g〉 second zone−−−−−−−→ |e〉, (3.11)

|g〉 first zone−−−−−−→ |e〉 second zone−−−−−−−→ |e〉. (3.12)

The existence of fringes in the transition probability has been interpreted as due to quan-

tum interference between the transition amplitudes [56], therefore Ramsey method is a

way of doing atomic interferometry.

More recently, Ramsey interferometry has been used very successfully in the studies

of quantum entanglement resulting from the interaction of atoms with radiation in a high

quality cavity. Haroche and coworkers [7, 60, 61] have detected a variety of cavity-QED
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effects [62] using Ramsey interferometry. Other potential applications of Ramsey interfer-

ometry are in the context of quantum nondemolition measurements [43], complementarity

test [61], quantum gates [51], EPR states [7] etc. Ramsey technique has also been suggested

for the measurement of phase diffusion in a micromaser [63]. Most of these studies con-

sider the field in each Ramsey zone as a coherent field which does not evolve even though

it is interacting with the atom.

3.2 Ramsey Interferometry with Quantized Fields

These days interference effects at a single photon or few photon levels are becoming quite

common [64, 65, 66, 67], it is natural to enquire how the results of Ramsey interferometry

would be modified if the coherent field in each Ramsey zone is replaced by a quantized

field [68].

We consider a high quality cavity [62] as the Ramsey zone of quantized field. If the

number of photons in the cavity is large and the field has a well-defined phase, then it

would approach to the classical Ramsey interferometry. We thus consider the situation

shown in the Fig. 3.3. An atom with two levels |e〉 and |g〉, with frequency separation ω0,

interacts with two single-mode cavities with identical frequencies ω. Let the annihilation

and creation operators in the i-th cavity be denoted by ai and a†i , respectively. For the

situation shown in the Fig. 3.3, the Hamiltonian in the interaction picture is

H1 = ~g1(|e〉〈g|a1e
i∆t + a†1|g〉〈e|e−i∆t) 0 < t ≤ τ1 ,

H1 = 0 τ1 < t ≤ T + τ1 , (3.13)

H1 = ~g2(|e〉〈g|a2e
i∆t + a†2|g〉〈e|e−i∆t) T + τ1 < t ≤ T + τ1 + τ2 .

Here ∆ = ω0 − ω and gi is the coupling constant of the atom with the vacuum in the i-

th cavity. Let us consider an initial state with atom in the lower state |g〉 and the fields

characterized by the state
∑

n,µ Fn,µ|n, µ〉. Here |n〉(|µ〉) represents the Fock state in first

(second) cavity and Fn,µ is photon distribution function. Let φe, φg be the phase shifts in |e〉
and |g〉, which we might introduce using some external perturbation between the cavities.

Using the interaction Hamiltonian (3.13), the time evolution of the state can be calculated.
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Figure 3.3: A schematic arrangement for Ramsey interferometry with quantized fields. Each classical Ram-
sey zone is replaced by a cavity. There is a phase change between two cavities as |e〉 → e−iφe |e〉 and
|g〉 → e−iφg |g〉.

The state of the atom and cavity fields is found to be

|ψ(τ1 + T + τ2)〉 =
∑
n,µ

[Fn,µCn−1(τ1)Cµ−1(τ2) exp (−i∆(τ1 + τ2)/2− iφg)

+ Fn+1,µ−1Sn(τ1)Sµ−1(τ2) exp (−i∆(τ1 + τ2 + 2T )/2− iφe)] |g, n, µ〉
+

∑
n,µ

[
Fn+1,µS∗n(τ1)C∗

µ(τ2) exp (i∆(τ1 + τ2)/2− iφe)

+ Fn,µ+1Cn−1(τ1)S∗µ(τ2) exp (i∆(τ1 + τ2 + 2T )/2− iφg)
] |e, n, µ〉,(3.14)

where

Cα(τ) = cos (Ωατ/2) +
i∆
Ωα

sin (Ωατ/2)

Sα(τ) =
2igα

√
α + 1

Ωα
sin (Ωατ/2) ,

Ωα ≡
√

(∆2 + 4g2
α(α + 1) , (3.15)

α = n, µ and gn = g1, gµ = g2.

The functions Cα and Sα describe the dynamics of the atom interacting with a single mode

cavity with initial state as a Fock state . Note that Cα(Sα) gives the probability amplitude

of finding the atom in the excited (ground) state given that it was in the excited state at

time t = 0.

The structure of the state clearly suggests that a given final state is reached in two dif-

ferent ways. Consider a measurement in which the outgoing atom is found in the excited

state. The probability of excitation Peg defined by

Peg = Trfield〈e|ψ(T + τ1 + τ2)〉〈ψ(T + τ1 + τ2)|e〉 (3.16)
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can be calculated using Eq. (3.14). We find the result

Peg =
∑
n,µ

|Fn+1,µXn+1,µ + ei∆T+iφFn,µ+1Yn,µ+1|2 , (3.17)

where

φ = φe − φg

Xn+1,µ = S∗n(τ1)C∗
µ(τ2)

Yn,µ+1 = Cn−1(τ1)S∗µ(τ2) . (3.18)

A similar result is obtained for Pge, i.e., the probability of finding the atom in the

ground state if initially the atom is in the excited state,

Pge =
∑
n,µ

|Fn−1,µX∗
n,µ−1 + e−i∆T+iφFn,µ−1Y

∗
n+1,µ|2 . (3.19)

Results (3.17) and (3.19) are important for understanding Ramsey interferometry with

quantized fields. These give rise to a number of important consequences as far as the

fundamentals of atom-field interaction are concerned. For classical fields, result (3.19) can

be modified, since probability amplitude functions Fn,µ is peaked around average number

of photons n̄ and µ̄. So in the summation, we can replace

Xn,µ−1 → Xn̄,µ̄,

Yn+1,µ → Yn̄,µ̄. (3.20)

Further for large n and µ, make the following replacements:

Fn−1,µ+1 → Fn,µ

Fn,µ−1 → Fn,µ. (3.21)

For normalized photon probability amplitude functions Fn,µ, Eq. (3.19) reduces to

Pge = |X∗
n̄,µ̄ + e−i∆T+iφY ∗

n̄,µ̄|2 . (3.22)

Equation (3.22) is the result for classical fields.
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3.3 Dependence of the fringes on quantum statistics of the fields

We now examine the consequences of the quantized nature of the field and, in particular,

investigate when the interferences are most pronounced. From result(3.17), we see there

are two paths which contribute to the amplitude for detecting the atom in excited state:

|g, n, µ〉 → |e, n− 1, µ〉 → |e, n− 1, µ〉 ,

|g, n, µ〉 → |g, n, µ〉 → |e, n, µ− 1〉 . (3.23)

The interference between these two paths depends on the nature of the photon statistics,

i.e., on the functions Fn,µ. Clearly, if the field in each cavity is in a Fock state |n0, µ0〉, then

the interference terms in (3.17) drop out and the two paths (3.23) become independent.

This happens even for Fock states with large number of photons. Interferences are ob-

tained as long as the photon statistics is such that the cross terms in (3.17) are nonzero.

Consider a situation where detuning ∆ can be ignored while considering evolution in

Ramsey zone, i.e., in each cavity. It can be shown that the cross terms in (3.17) are nonzero

if the field statistics is such that,

〈a†1
1√
a1a

†
1

sin(g1τ1

√
a1a

†
1) cos(g1τ1

√
a†1a1) cos(g2τ2

√
a2a

†
2)

1√
a2a

†
2

sin(g2τ2

√
a2a

†
2)a2〉 6= 0 ,

(3.24)

which for small interaction times reduces to

〈a†1a2〉 6= 0 . (3.25)

Thus, the nature of interference depends on the quantum statistics of the fields in the two

Ramsey zones. The conditions (3.24) and (3.25) imply that if the cavities are independent,

then the field in each cavity must have a well defined phase for interference to occur. The

interference would also not occur if one cavity has a definite number of photons and the

other has a field in coherent state. However, interference is obtained if fields in the two

cavities are entangled even though the field in each cavity does not have a well-defined

phase. In Fig. 3.4, results for classical as well as quantized fields are plotted when each

Ramsey zone has a coherent field with average number of photons (|α|2 = 5). Interference

fringes for classical fields show higher visibility than in the case of quantized fields.
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Figure 3.4: Interference fringes in the probability of detecting a single atom in the excited state when the atom
is initially in the ground state for quantized (solidlines) and classical (dashedlines) fields. The parameters are
(a) gτ = π, ∆/g = 10, φ = 0, Vq = 0.68 (b) ∆ = 0, gτ = π/8, Vq = 0.96 (c) ∆ = 0, gτ = π/4, Vq =
0.14E − 01 and (d) ∆ = 0, gτ = π/2, Vq = 0.16. The common parameters for above graphs are |α|2 = 5,
τ1 = τ2 = τ , g1 = g2 = g, Vc = 1.00 . Vc, Vq are the visibilities for classical fields and quantized fields.
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3.3.1 Ramsey fringes with fields at single photon level

Having shown that Ramsey fringes vanish if each cavity contains one photon, the next

question is what happens if the field in each cavity is at single photon level [65]? For this

purpose, we consider a case where each cavity is pumped by a weak coherent state so that

the initial state of the cavities is

|ψcavities〉 ∼= 1
(1 + |α|2)(|0〉+ α|1〉)(|0〉+ αeiθ|1〉). (3.26)

In this case, the result (3.17) leads to

Peg =
4|α|2

(1 + |α|2)2
∣∣∣∣
g1

Ω0
sin(Ω0τ1/2)

(
cos(Ω0τ2/2)− i∆

Ω0
sin(Ω0τ2/2)

)

+
g2

Ω0
sin(Ω0τ2/2) exp[i{∆(T + τ1/2) + θ + φ}]

∣∣∣∣
2

+ O(|α|4) , (3.27)

which for ∆ = 0 and g1τ1 =
√

2g2τ2 = π/2 reduces to

Peg =
|α|2

(1 + |α|2)2
(
1 + sin(π/

√
2) cos(θ + φ)

)
. (3.28)

This leads to high visibility for the fringes (about80%) though the absolute value of the

signal is small. It is clear that the interference in Eq. (3.27) arises from the cross terms in

Eq. (3.26), as such cross terms lead to the same final state via two different pathways:

|g, 1, 0〉 → |e, 0, 0〉 → |e, 0, 0〉 ,

|g, 0, 1〉 → |g, 0, 1〉 → |e, 0, 0〉. (3.29)

The other terms in Eq. (3.26) do not result in interference, since |1, 1〉 leads to different

final states and |0, 0〉 can not produce excitation. It should be noted that Eq. (3.27) is

different from the result obtained for classical fields, i.e., when one ignores the back-action

of atoms on the field. Recently, an arbitrary superposition of |0〉 and |1〉 states |ψn〉 =
1√

1+|α|2 (|0〉+α|1〉) has been realized [66, 67]; here the parameter α need not be small. Such

a state is highly nonclassical and is quite distinct from a coherent state with very small

excitation. This nonclassical state also has the important characteristics that the average

value of the field is nonzero and thus the off-diagonal elements of the density matrix are

nonzero. For such a nonclassical state and for ∆ = 0, the Ramsey fringes are given by

Peg =
|α|2

(1 + |α|2)2 |sin(g1τ1) cos(g2τ2) + sin(g2τ2) exp{iφ}|2

+
|α|4

(1 + |α|2)2
{

sin2(g1τ1) cos2(g2

√
2τ2) + cos2(g1τ1) sin2(g2τ2)

}
(3.30)
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Figure 3.5: The visibility of interference fringes vs. |α| for weak coherent fields (solidline) and for a nonclas-
sical state (dashedline) 1√

1+|α|2 (|0〉+ α|1〉), with parameters gτ1 = g
√

2τ2 = π/2 and ∆ = 0.

For g1τ1 = g2

√
2τ2 = π/2, it reduces to the previously derived result (3.28). Remarkably,

the visibility from result(3.30) does not depend on α. We show in the Fig. (3.5) a compar-

ison of the visibility in the case of coherent field and a nonclassical field. It may be noted

that for the state |0〉+α|1〉, the P-distribution is highly singular. We note that in the context

of cavity quantum electrodynamics the state |ψn〉 can be produced by following scheme

[69]. We could consider a resonant cavity in vacuum state. If a two level atom in the su-

perposition state 1√
1+|α|2 (|g〉 + α|e〉) is sent through the cavity with the interaction time

adjusted so that the atom can emit one photon in the cavity, then the state of the cavity

would be |ψn〉.

3.3.2 Photon-photon interaction mediated by a single atom and quantum entan-

glement of two cavities

It is well known in nonlinear optics in a macroscopic system that the fields effectively inter-

act and one knows many examples of three wave and four wave interactions in a medium.

Such interactions are significant at macroscopic densities of atoms. In this section, we

demonstrate a rather remarkable result that a single atom in a high quality cavity can pro-

duce photon-photon interaction. For this purpose, consider an atom in the ground state

passing through the two cavity system. We calculate the state of the two cavity system
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subject to the condition that the atom at the output is detected in the ground state. Such a

conditional field state is found to be

|ψc,g〉 = 〈g|ψ(T + τ1 + τ2)〉 ,

= Cn−1(τ1)Cµ−1(τ2) exp (−i∆(τ1 + τ2)/2− iφg) |n, µ〉
+ Sn−1(τ1)Sµ(τ2) exp (−i∆(τ1 + τ2 + 2T )/2− iφe) |n− 1, µ + 1〉 . (3.31)

This involves a linear combination of states |n, µ〉 and |n − 1, µ + 1〉 leading to the entan-

glement of two cavities. We note that the entanglement of two macroscopically separated

cavities was proposed by Meystre [70]. In addition, the passage of one atom transfers one

photon from the first cavity to the second cavity. The transfer from one cavity to the other

will be complete if Cn−1(τ1) = Cµ−1(τ2) = 0. Other entangled states are also possible; for

example, if the atom was initially in the ground state and if it is detected in the excited

state, then the conditional state of the cavities is,

|ψc,e〉 = 〈e|ψ(T + τ1 + τ2)〉 ,

= S∗n−1(τ1)C∗
µ(τ2) exp (i∆(τ1 + τ2)/2− iφe) |n− 1, µ〉

+ Cn−1(τ1)S∗µ−1(τ2) exp (i∆(τ1 + τ2 + 2T )/2− iφg) |n, µ− 1〉 . (3.32)

We may also note that the entanglement of two modes in the same cavity has been achieved

by Rauschenbeutel etal [54].

3.4 Two Atom Interferometry

In previous section, we considered the possibility of producing entanglement between

the two cavities by conditional detection of the atomic state [50]. We next examine how

such entanglement (3.32) can be detected. From our previous discussion leading to Eq.

(3.17) and Eq. (3.24) it is clear that if we send a second atom and measure its excitation

probability, then such a probability would exhibit interference fringes.

For a second atom coming in the ground state |g〉 and detected in the excited state,
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following are the possible pathways:

|n− 1, µ〉|g〉 → |n− 1, µ〉|g〉 → |n− 1, µ− 1〉|e〉 ,

|n, µ− 1〉|g〉 → |n− 1, µ− 1〉|e〉 → |n− 1, µ− 1〉|e〉 ,

|n− 1, µ〉|g〉 → |n− 2, µ〉|e〉 → |n− 2, µ〉|e〉 ,

|n, µ− 1〉|g〉 → |n, µ− 1〉|g〉 → |n, µ− 2〉|e〉 .

(3.33)

In summary, the system as a whole starting with an initial state |n, µ, g1, g2〉 has two differ-

ent pathways leading to the detection of the atom-cavity system in state |n−1, µ−1, e1, e2〉.

|n, µ, g1, g2〉 → |n− 1, µ, e1, g2〉 → |n− 1, µ− 1, e1, e2〉 ,

|n, µ, g1, g2〉 → |n, µ− 1, e1, g2〉 → |n− 1, µ− 1, e1, e2〉 .

(3.34)

The joint probability of detecting both atoms in the excited state P e1e2
g1g2

can be used for

doing atomic interferometry even if each cavity is in Fock state. This is reminiscent of

photon-photon correlation measurements with light produced in the process of down con-

version. Mandel and coworkers [71] carried out a series of measurements with photons

from a down converted source where they reported no interferences in the measurement

of mean intensities, whereas photon-photon correlation exhibited a variety of interference

phenomena. In the context of Ramsey interferometry with quantized fields, we suggest a

measurement of the atom-atom correlation. An explicit form of the joint detection proba-

bility can be obtained following Jaynes-Cummings dynamics. A long calculation leads to

the following expression for the joint probability if the initial state of the cavities is |n, µ〉:

P e1e2
g1g2

=
∣∣∣Sn−1(τ1)Sn−2(τ

′
1)C

∗
µ(τ2)C∗

µ(τ
′
2)

∣∣∣
2
+

∣∣∣Cn−1(τ1)Cn−1(τ
′
1)Sµ−1(τ2)Sµ−2(τ

′
2)

∣∣∣
2

+
∣∣∣Sn−1(τ

′
1)Cn−1(τ1)Sµ−1(τ2)C∗

µ−1(τ
′
2) + Sn−1(τ1)Cn−2(τ

′
1)Sµ−1(τ

′
2)C

∗
µ(τ2)

exp[i(∆(T
′ − T ) + φ

′ − φ)]
∣∣∣
2
. (3.35)

Here, we allow the possibility of different interaction times and phases (denoted by a dash)

for the second atom. In the special case where ∆ = 0, g1 = g2, τ1 = τ2 = τ
′
1 = τ

′
2 and

gτ = π/4 and when initially cavities are in state |1, 1〉, the joint detection probability has
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the form

P e1e2
g1g2

=
1
16

+
1
4

cos2(π/2
√

2) +
1
4

cos(π/2
√

2) cos(φ
′ − φ)

= 0.1118 + 0.1110 cos(φ
′ − φ). (3.36)

Interference fringes with almost 100% visibility are obtained. Thus, two atom interferom-

etry could produce perfect visibility in the situations where single atom interferometry

exhibits no interferences. Other joint detection probabilities like finding one atom in the

excited state and the other in the ground state also display interference fringes. An inter-

esting situation also corresponds to sending both atoms in the excited state and measuring

the final states of the two atoms. In the case when initially cavities are in the state |0, 0〉
and ∆ = 0, the expression for the probability of detecting both the atoms in their ground

states has the form

P g1g2
e1e2

= sin2(g1τ1) sin2(g1

√
2τ

′
1) + sin2(g2τ2) sin2(g2

√
2τ

′
2) cos2(g1τ1) cos2(g1τ

′
1) +

∣∣∣cos(g1τ1) sin(g1τ
′
1) sin(g2τ2) cos(g2τ

′
2) + sin(g1τ1) cos(g1

√
2τ

′
1) sin(g2τ

′
2)e

i(φ−φ
′
)
∣∣∣
2

. (3.37)

Consider the case when g1

√
2τ

′
1 = g2

√
2τ

′
2 = π and g1τ1 = g2τ2 = π/4. The probability of

detecting both atoms in the ground states is given by

P g1g2
e1e2

=
1
2

∣∣∣∣
1√
2

sin
π√
2

cos
π√
2
− sin

π√
2

exp[i(φ− φ
′
)]

∣∣∣∣
2

,

= 0.4327 + 0.3835 cos(φ− φ
′
). (3.38)

The visibility of fringes in two atom interferometry is quite significant. We next show how

two atom interferometry can be used to produce a variety of entangled states.

3.4.1 Preparation of the entangled state α|2, 0〉+ β|0, 2〉

Consider the situation when two identical atoms are coming in their excited states and

each cavity is in vacuum state. The mode of each cavity is in resonance with the atomic

transition frequency. If after passing through the cavities both atoms are detected in their
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ground states, the state of the field inside the cavities is given by

|Φ(τ1 + T + τ2)〉 = sin(g1τ1) sin(g1

√
2τ

′
1) exp{−i(φg + φ

′
g)}|2, 0〉

+ cos(g1τ1) cos(g1τ
′
1) sin(g2τ2) sin(g2

√
2τ

′
2) exp{−i(φe + φ

′
e)}|0, 2〉

+
[
cos(g1τ1) sin(g1τ

′
1) sin(g2τ2) cos(g2τ

′
2) exp{−i(φe + φ

′
g)}

+ sin(g1τ1) cos(g1

√
2τ

′
1) sin(g2τ

′
2) exp{−i(φg + φ

′
e)}

]
|1, 1〉 . (3.39)

The |1, 1〉 component drops out for g1τ
′
1 = g2τ

′
2 = π and the cavities will be in the entangled

state

|Φ(τ1 + T + τ2)〉 = sin(g1τ1) sin(π
√

2) exp[−i(φg + φ
′
g)]|2, 0〉

− cos(g1τ1) sin(g2τ2) sin(π
√

2) exp[−i(φe + φ
′
e)]|0, 2〉. (3.40)

This entangled state is very interesting; we can change the degree of entanglement by

changing the value of g1τ1 and g2τ2. The state will be maximally entangled for g1τ1 = π/4

and g2τ2 = π/2. This can be seen as first atom comes in excited state |e〉, interacts with the

first cavity for a time such that g1τ1 = π/4. The interaction is like an interaction with a π/2

pulse; the state of the system evolves into

|e, 0, 0〉 → 1√
2
(|e, 0, 0〉 − i|g, 1, 0〉). (3.41)

In the second cavity, the interaction is a π pulse interaction and then the state of the total

system becomes,

1√
2
(|e, 0, 0〉 − i|g, 1, 0〉) → − i√

2
(|g, 1, 0〉+ |g, 0, 1〉). (3.42)

Thus, after passing the first atom, the state of the fields in the cavities is

|ψ1〉 = − i√
2
(|1, 0〉+ |0, 1〉). (3.43)

The second atom comes in the excited state |e〉, interacts with the fields inside the cavities

for times τ
′
1 and τ

′
2 such that g1τ

′
1 = g2τ

′
2 = π, and after passing through the cavities the

atom is detected in the ground state |g〉, so the atom can follow the two paths. The first

path is

|e〉|1, 0〉 → cos(π
√

2)|e, 1, 0〉 − i sin(π
√

2)|g, 2, 0〉 → −i sin(π
√

2)|g, 2, 0〉 − cos(π
√

2)|e, 1, 0〉,
(3.44)
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The second path is

|e〉|0, 1〉 → −|e, 0, 1〉 → i sin(π
√

2)|g, 0, 2〉 − cos(π
√

2)|e, 0, 1〉. (3.45)

Thus, passing both the atoms initially in the excited states and subsequently detecting

them in their ground states, we obtain a maximally entangled state

|ψ2〉 =
1√
2

sin(π
√

2)
(
exp[−i(φg + φ

′
g)]|2, 0〉 − exp[−i(φe + φ

′
e)]|0, 2〉

)
, (3.46)

of the fields inside the cavities. The phase terms in Eq. (3.46) come from the phase change

in the region between the cavities. Now, if we pass another atom initially in the excited

state |e〉 through the cavities having field in state (3.46) and the atom is detected in its

ground state |g〉 after passing through the cavities, an entangled state of three photons is

generated. The degree of entanglement is controlled by the selection of interaction times

in the cavities. For a special case, a three photons maximally entangled state,

|ψ3〉 = − i√
2

sin(π
√

2) sin(π
√

3)
[
e−i(φg+φ

′
g+φ

′′
g )|3, 0〉+ e−i(φe+φ

′
e+φ

′′
e )|0, 3〉

]
, (3.47)

is generated if we choose interaction times τ
′′
1 and τ

′′
2 for third atom such that g1τ

′′
1 =

g2τ
′′
2 = π.

3.4.2 Entanglement Transfer from Fields to Atoms

Here we show how entanglement of fields [50, 55] is transferred to the atoms. For this

purpose, consider the fields inside the cavities are in an entangled state:

|ψcf 〉 = α|0, 1〉+ β|1, 0〉. (3.48)

An atom initially in the ground state |g〉 is passed through the cavities and the fields inside

the cavities are in resonance with atomic transition frequency; then the state of the cavity-

atom system is

|ψ4〉 =
{

α cos(g2τ2)e−iφg − β sin(g1τ1) sin(g2τ2)e−iφe

}
|g, 0, 1〉+ β cos(g1τ1)e−iφe |g, 1, 0〉

− i
(
α sin(g2τ2)e−iφg + β sin(g1τ1) cos(g2τ2)e−iφe

)
|e, 0, 0〉. (3.49)

If another atom coming in the ground state |g〉, interacts with the fields in both the cavities

for the times τ
′
1 and τ

′
2 such that g1τ

′
1 = g2τ

′
2 = π/2, then the state of the cavity-atom system
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is

|ψ5〉 = −i
(
α sin(g2τ2)e−i(φg+φ

′
g) + β sin(g1τ1) cos(g2τ2)e−i(φe+φ

′
g)

)
|e, g〉|0, 0〉

− i
(
α cos(g2τ2)e−i(φg+φ

′
g) + β sin(g1τ1) sin(g2τ2)e−i(φe+φ

′
g)

)
|g, e〉|0, 0〉

− β cos(g1τ1)e−i(φe+φ
′
g)|g, g〉|1, 0〉. (3.50)

If we choose the interaction time for first atom in first cavity such that g1τ1 = π/2, the state

(3.50) becomes

|ψ6〉 = −i
(
α sin(g2τ2)e−i(φg+φ

′
g) + β cos(g2τ2)e−i(φe+φ

′
g)

)
|e, g〉|0, 0〉

− i
(
α cos(g2τ2)e−i(φg+φ

′
g) + β sin(g2τ2)e−i(φe+φ

′
g)

)
|g, e〉|0, 0〉. (3.51)

State (3.51) shows that the atoms are now in entangled state and fields are in independent

states, so the entanglement of fields has been transferred to the atoms.

3.5 Summary

We have discussed in detail the theory of Ramsey interferometry with quantized fields.

The interference is very sensitive to the quantum statistics of the fields in the two Ramsey

zones. We have derived general conditions for interference to occur. We have shown

how an analog of Hanbury-Brown Twiss photon-photon correlation interferometry can be

used to discern a variety of interference effects even in situations where the single atom

detection probabilities do not exhibit interferences. We have demonstrated atoms acting

as a mediator for photon-photon interaction between two cavities and entanglement can

be transferred from fields to atoms. We have generated entangled state of two and three

photons by passing two and three atoms through the cavities.



CHAPTER 4

Multi-photon Processes in Cavities

In high quality cavities most of the studies deal with the interaction of single atom with

field [72, 73]. On the other hand, the investigations of cooperative effects such as optical

bistability [74] involve a large number of atoms. In this chapter, we discuss cooperative

two-photon processes in two atoms in a cavity. Earlier studies of two-photon processes

in two atoms deal with cooperative effect in the presence of strong dipole-dipole interac-

tion between the atoms [75, 76]. Such interaction is significant only when the inter-atomic

separation is less than the wavelength of the radiation. These dipole-dipole induced two

photon processes involving two atoms in free space are widely studied theoretically [75] as

well as experimentally [76]. We show that it is advantageous to use a cavity for the study

of such two photon processes as one would not be constrained by the requirement of small

inter-atomic separation [77, 78]. In high quality cavities inter-atomic interactions can arise

when different atoms interact with a common quantized field and therefore, these inter-

actions do not depend on the inter-atomic separation. We demonstrate that the two-atom

two-photon resonant effect could be very large, thus opening up the possibility of a va-

riety of multi-photon cooperative phenomena in non-resonant cavities. The two photon

transition occurs as a result of simultaneous excitation or de-excitation of both atoms with

two photon resonance condition ω1 + ω2 ≈ ωa + ωb, where ω1, ω2 are the atomic transition

frequencies and ωa, ωb are the frequencies of the emitted photons. The actual resonance

condition depends on the vacuum Rabi couplings. We study such two-photon resonant

processes in two different systems: (i) two identical atoms interacting with field in a two

54



Multi-photon Processes in Cavities 55

e1

g1

ωb

ωa

ωa

ωb

ωb

ωa

∆

(a)

e

g

2

2

δ

1

e1

1

ee1

e

2

g2

g 2

g g2

(b)

or

Figure 4.1: (a)The system of two identical atoms interacting with two modes of the vacuum. (b) Two
pathways for two atom two photon emission.

mode cavity (see Fig. 4.1), (ii) two nonidentical atoms in a single mode cavity (see Fig. 4.2).

4.1 Two Photon Processes

In a single two level atom, two-photon transitions between the excited state |e〉 and the

ground state |g〉 occur at a frequency given by ωeg = 2ω, where ωeg is the atomic transition

frequency and ω is the frequency of the photons. The process proceeds via intermediate

states |i〉, which are away from a single photon resonance and thus no population is trans-

ferred to the intermediate states in the process. We note that the two photon micromaser

in a single mode cavity has been realized [79].

Now consider a cooperative two photon emission process involving two two-level

atoms with distinct transition frequencies ω1 and ω2 such that ω1 − ω and ω2 − ω are large,

so that single photon transitions in individual atoms are negligible. However, a two pho-

ton resonant process such that ω1 + ω2 = 2ω, as shown in Fig. 4.2(a), can dominate in

such systems. The composite system of two two-level atoms is equivalent to a four level

atomic system as shown in Fig. 4.2(b). The two photon emission from state |e1, e2〉 to

|g1, g2〉 occurs through two possible pathways via intermediate states |e1, g2〉 and |g1, e2〉.
The interaction Hamiltonian for the system can be written as

HI = H+e−iωt + H−eiωt, (4.1)

where H+ (H−) is the interaction corresponding to the absorption (emission) of a photon.
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Figure 4.2: (a) Two nonidentical atoms interacting with a single mode vacuum. (b) Two pathways for two
atom two photon emission corresponding to two possible intermediate states |e1, g2〉 and |g1, e2〉.

The second order perturbation theory leads to the following expression for the rate of two

photon emission

Rc =
2π

~2

∣∣∣∣
〈g1, g2|H−|g1, e2〉〈g1, e2|H−|e1, e2〉

~(ω1 − ω)
+
〈g1, g2|H−|e1, g2〉〈e1, g2|H−|e1, e2〉

~(ω2 − ω)

∣∣∣∣
2

×
δ(ω1 + ω2 − 2ω). (4.2)

Surprisingly Rc = 0, as the two terms in the expression cancel each other when ω1 + ω2 =

2ω. This can be explained as the two paths for two photon emission interfere destruc-

tively. Therefore, it is necessary to include inter-atomic interactions [75, 76] for nonzero

two photon emission. However, these interactions are significant only if the inter-atomic

separation is less than a wavelength. Thus, it imposes a nontrivial constrain to study two

atom two photon processes in free space, as it is not easy to resolve the spectrum of such

closely placed atoms. Though a beautiful demonstration of such two photon cooperative

effects in solids is given in a recent work [76], using very sophisticated techniques. Similar

results apply to the case of two photon emission by two identical atoms if the photons of

frequencies ωa and ωb are emitted (see Fig. 4.1), such that

ωa + ωb = 2ω0. (4.3)

We examine such two photon emission processes in a cavity. We demonstrate that in

high quality cavities such processes lead to a large two photon Rabi oscillation [80, 81, 82,

83] involving two atoms.
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4.2 Two Photon Emission in two Identical Atoms in a two Mode

Cavity

Let us consider two identical two level atoms, with transition frequency ω0, interacting

with two modes of the vacuum having frequencies ωa and ωb in a cavity as shown in Fig.

4.1. The Hamiltonian for the system is

H = ~ωaa
†a + ~ωbb

†b +
∑

i=1,2

~
[ω0

2
(|ei〉〈ei| − |gi〉〈gi|) + |ei〉〈gi|(g1a + g2b) + |gi〉〈ei|(g1a

† + g2b
†)

]
, (4.4)

where a and a† (b and b†) are annihilation and creation operators for the first (second) mode

of the cavity, g1 and g2 are the coupling constants. In a frame rotating with frequency ω0,

the Hamiltonian (4.4) becomes

H = −~∆a†a− ~δb†b +
∑

i=1,2

~
[
|ei〉〈gi|(g1a + g2b) + |gi〉〈ei|(g1a

† + g2b
†)

]
, (4.5)

∆ = ω0 − ωa, δ = ω0 − ωb.

We consider the special case of two photon emission when both atoms are in their excited

states and there is vacuum inside the cavity. Thus the initial state of the atom-cavity system

is

|ψ(0)〉 = |e1, e2, 0, 0〉. (4.6)

Considering all possible states of the system in evolution, the state of the system at time t

can be written as

|ψ(t)〉 = c1(t)|e1, e2, 0, 0〉+
1√
2

(|e1, g2〉+ |g1, e2〉) {c2(t)|1, 0〉+ c3(t)|0, 1〉}
+|g1, g2〉{c4(t)|1, 1〉+ c5(t)|2, 0〉+ c6(t)|0, 2〉}. (4.7)

Different terms in the wave function (4.7) correspond to no photon emission, one photon

emission, and two photon emission. The photon emission can take place in either mode.

Here we are interested in a resonant two photon emission i.e., when one photon is emitted

in each mode. A very interesting aspect of the state (4.7) is its entangled nature. This pro-

vides a method of producing entangled states, say, entanglement of two cavity modes [54].

Now using Schrodinger equation and Hamiltonian (4.5), the time dependent amplitudes
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ci(t) are determined by

ċ1 = −ig1

√
2c2 − ig2

√
2c3

ċ2 = i∆c2 − ig1

√
2c1 − ig2

√
2c4 − 2ig1c5

ċ3 = iδc3 − ig2

√
2c1 − ig1

√
2c4 − 2ig2c6

ċ4 = i(∆ + δ)c4 − ig2

√
2c2 − ig1

√
2c3

ċ5 = 2i∆c5 − 2ig1c2

ċ6 = 2iδc6 − 2ig2c3. (4.8)

In order to understand the nature of the two atom two photon resonance we present nu-

merical as well as approximate analysis which can capture the physics of the cooperative

process. We consider the case when detunings to the cavity field are much larger than the

couplings, i.e., |∆| , |δ| >> g1 , g2 but |∆ + δ| is small, keeping in mind that the condition

for two photon resonance is ∆ + δ = 0. In such a case cooperative two photon process

should dominate and single photon processes would be insignificant. The results of nu-

merical integration of Eq. (4.8) are plotted in Fig. 4.3. In the case when g1 6= g2 a novel

resonance is achieved. The probability of two photon emission at resonance is quite high.

The resonance is shifted from the position ∆+δ = 0. This shift is due to the strong coupling

to the vacuum field in the cavity. For g2/g1 = 1.5 and ∆ = −5g1 maximum two photon

emission probability is approximately 0.9 and the interaction time required for achieving

maximum probability is given by g1t ≈ 6π.

Having established numerically that the two photon resonance can be large in cavities,

we present approximate analysis to demonstrate it. Under the above mentioned condi-

tions for two photon resonance we can eliminate fast oscillating variables c2, c3, c5, c6 and

effectively reduce the dynamics in terms of slowly oscillating variables c1 and c4. We note

that in an adiabatic approximation, where one sets ċ2 = ċ3 = ċ5 = ċ6 = 0, does not yield

the correct physics of the two atom two photon emission. We relegate the procedure for

eliminating fast oscillating variables to the appendix-A. The reduced form of the Eq. (4.8),

in terms of slowly oscillating variables, is written as

ċ1 = −i

(
2g2

1∆
∆2 − 2g2

1

+
2g2

2δ

δ2 − 2g2
2

)
c1 + 2ig1g2

(
∆

∆2 + 2g2
1

+
δ

δ2 + 2g2
2

)
c4,

ċ4 = 2ig1g2

(
∆

∆2 + 2g2
1

+
δ

δ2 + 2g2
2

)
c1 + i

(
∆ + δ − 2g2

1δ

δ2 − 2g2
2

− 2g2
2∆

∆2 − 2g2
1

)
c4 .(4.9)
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Figure 4.3: Two atom two photon emission probability, |c4(t)|2 in a system of identical atoms interacting
with vacuum in a two mode cavity, for g2/g1 = 1.5 and ∆/g1 = −5.0.

The solution of Eq. (4.9) gives

|c4(t)|2 =
4G2

4G2 + Ω2
sin2

√
4G2 + Ω2t

2
, (4.10)

with G = 2g1g2

(
∆

∆2 + 2g2
1

+
δ

δ2 + 2g2
2

)
, (4.11)

Ω = ∆ + δ + 2(g2
1 − g2

2)
(

∆
∆2 − 2g2

1

− δ

δ2 − 2g2
2

)
. (4.12)

Note that in the limit g1 = g2 and ∆ + δ = 0, the probability amplitude c4 for two photon

emission tends to zero, as both Ω and the numerator in Eq. (4.10) become proportional to

(∆ + δ). Thus when couplings to the modes are same, two photon emission probability

has no resonance. In this case the transitions from |e1, e2, 0, 0〉 to |g1, g2, 1, 1〉 via states
1√
2
(|e1, g2〉+ |g1, e2〉)|1, 0〉 and 1√

2
(|g1, e2〉+ |e1, g2〉)|0, 1〉 interfere destructively. We further

note that to order g2
1g

2
2 the two photon resonance does not occur

|c4(t)|2 =
16g2

1g
2
2

δ2∆2
sin2 δt

2
sin2 ∆t

2
. (4.13)
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The usual second order perturbation theory cannot lead to inter-atomic two photon reso-

nance. One has to consider higher order terms in g1 and g2. However, then the excitation

itself would be negligible. Therefore one needs high quality cavities. The probability of
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Figure 4.4: The maximum value of the two atom two photon emission probability, |c4(t)|2 in the system of
two identical atoms interacting with vacuum in a two mode cavity, is plotted with respect to (a) detuning δ
and (b) time, for g2/g1 = 1.5 and ∆ = −10g1. The solid line is corresponding to approximate result and the
dotted line (...) corresponding to exact numerical result.

cooperative emission of two photons in different modes is a periodic function of time. In

Fig. 4.4(a), we plot the maximum value of |c4(t)|2 as a function of δ and in Fig. 4.4(b) as a

function of time t, for fixed values of g1, g2, and ∆. At two photon resonance the probabil-

ity corresponding to two photon emission in one of the two modes is much smaller than

the probability of two photon emission in different modes. From Eqs. (4.10) and (4.12) it

is clear that the two photon resonance occurs at ∆ + δ + 4
(
g2
1/∆ + g2

2/δ
) ≈ 0. Thus the

interaction with the cavity modifies the condition of two photon resonance. This is seen
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quite clearly in Fig. 4.4(a). We note the connection of the resonance frequency Ω to the one

photon Stark shifts. It is well known that the shift in the frequency of a two level atom in

the presence of a field with n photons is given by 2g2(n+1)/∆ which is equal to 4g2/∆ for

n = 1. Thus the change 4
(
g2
1/∆ + g2

2/δ
)

is equal to the frequency shift of both the atoms

due to the presence of a single photon. However, it should be borne in mind that the ex-

act result is not periodic and exhibits rapid variations though the envelop agrees with the

result (4.10). The above mentioned approximate results are valid for larger values of de-

tunings but for larger values of detunings a large interaction time is required to reach the

maximum of two atom two photon transition probability. This should be possible with the

recently developed method of trapping atoms in a cavity [84]. The other possibility is to

work under the conditions of the Fig. 4.3.

4.3 Two Photon Emission in two Nonidentical Atoms in a Single

Mode Cavity

In this section we analyze a system of two nonidentical atoms interacting with a single

mode vacuum field in a cavity (Fig. 4.2). Consider two nonidentical two level atoms

having their excited states |e1〉, |e2〉 and their ground states |g1〉, |g2〉 interacting with a

single mode cavity-field of frequency ω. The Hamiltonian of this system is

H = ~
[ω1

2
(|e1〉〈e1| − |g1〉〈g1|) +

ω2

2
(|e2〉〈e2| − |g2〉〈g2|) + ωa†a

]

+~g1

(
|e1〉〈g1|a + a†|g1〉〈e1|

)
+ ~g2

(
|e2〉〈g2|a + a†|g2〉〈e2|

)
, (4.14)

where ω1 (ω2) is transition frequency for first (second) atom, a and a† are annihilation and

creation operators for the field, and g1 (g2) is the coupling constant to the cavity mode with

first (second) atom. In a rotating frame the Hamiltonian H can be written as

H = −~∆|g1〉〈g1| − ~δ|g2〉〈g2|+ ~g1

(
|e1〉〈g1|a + a†|g1〉〈e1|

)
+ ~g2

(
|e2〉〈g2|a + a†|g2〉〈e2|

)
,

(4.15)

where ∆ = ω1−ω, δ = ω2−ω. Let us consider an initial state |ψ(0)〉 = |e1, e2, 0〉 with both

atoms in the excited state and cavity in the vacuum state. The state of the system at time t

can be written as

|ψ(t)〉 = c1(t)|e1, e2, 0〉+ c2(t)|e1, g2, 1〉+ c3(t)|g1, e2, 1〉+ c4(t)|g1, g2, 2〉, (4.16)
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where the expansion coefficients ci satisfy

ċ1 = −ig2c2 − ig1c3,

ċ2 = iδc2 − ig1

√
2c4 − ig2c1,

ċ3 = i∆c3 − ig2

√
2c4 − ig1c1,

ċ4 = i (∆ + δ) c4 − ig1

√
2c2 − ig2

√
2c3. (4.17)

The two photon resonance condition for this system would be ∆ + δ = 0. For couplings

g1 , g2, much smaller than |∆|, |δ|, the solution of Eq. (4.17) gives

c4(t) = −4g1g2

√
2

δ∆
sin

δt

2
sin

∆t

2
+ higher order terms. (4.18)

The first term in Eq. (4.18) represents independent emission by each atom. Clearly, to

lowest order in g1g2 no two photon resonance occurs. Such a resonance can come from

the terms of the higher order. Assuming that |∆| and |δ| are large but |∆ + δ| is small, we

eliminate fast oscillating variables c2 and c3 in a way similar to the previous case and the

Eq. (4.17), in terms of slowly oscillating variables reduces, to

ċ1 = −i

(
g2
1

∆
+

g2
2

δ

)
c1 + ig1g2

√
2

(
∆

∆ + 2g2
1

+
δ

δ + 2g2
2

)
c4,

ċ4 = ig1g2

√
2

(
∆

∆ + 2g2
1

+
δ

δ + 2g2
2

)
c1 + i

(
∆ + δ +

2g2
1

∆
+

2g2
2

δ

)
c4. (4.19)

We find the approximate result for the two photon emission probability

|c4(t)|2 =
4G′2

4G′2 + Ω′2
sin2

√
4G′2 + Ω′2t

2
, (4.20)

with G′ =
√

2g1g2

(
∆

∆2 + 2g2
1

+
δ

δ2 + 2g2
2

)
, Ω′ = ∆ + δ + 3

(
g2
1

∆
+

g2
2

δ

)
. (4.21)

For large |∆| and |δ|, the Eq. (4.20) shows two photon resonance at ∆+δ+3(g2
1/∆+g2

2/δ) ≈
0. Further such two atom two photon resonance appears for g1 6= g2, which disappears

when g1 = g2. In the latter case the antisymmetric state (|g1, e2, 1〉 − |e1, g2, 1〉) /
√

2 is de-

coupled from |e1, e2, 0〉 and |g1, g2, 2〉. We present numerical results in Fig. 4.5 . The graph

shows two photon resonance for g1 6= g2. It is clear that the position of resonance is shifted

from ∆ + δ = 0. This shift in the position of resonance is due to larger values of g1 and

g2, and depends on the ratio g2/g1. There is a large enhancement in the probability of two

photon resonant emission in a high quality cavity. It is expected that such effects can be

studied by placing the system used by Hettich et al. [76] in a cavity.
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Figure 4.5: Two atom two photon emission probability, |c4(t)|2 in a system of nonidentical atoms interacting
with vacuum in a single mode cavity, for ∆/g1 = −5.0 and g2/g1 = 2.0.

4.4 Effects of Cavity Damping

In this section, we examine the effect of cavity decay on two atom two photon vacuum

Rabi oscillations. We do a calculation based on master equation. Let 2κa and 2κb be the

rate of loss of photons from the first mode and the second mode, respectively. The density

matrix of the system of two atoms interacting with two mode field in the cavity will evolve

according to the master equation

ρ̇ = − i

~
[H, ρ]− κa

(
a†aρ− 2aρa† + ρa†a

)
− κb

(
b†bρ− 2bρb† + ρb†b

)
. (4.22)

The density matrix for this system can be expressed in terms of all the states which are

generated by the combined effect of H and dissipation. Because of the cavity decay, many

more states are involved in the dynamics. For example, for identical atoms interacting

in a bimodal cavity, the relevant states are |e1, e2, 0, 0〉, |g1, e2, 0, 0〉, |g1, e2, 1, 0〉, |g1, e2, 0, 1〉,
|e1, g2, 0, 0〉, |e1, g2, 1, 0〉, |e1, g2, 0, 1〉, |g1, g2, 0, 0〉, |g1, g2, 0, 1〉, |g1, g2, 1, 0〉, |g1, g2, 0, 2〉, |g1, g2, 1, 1〉,
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Figure 4.6: Periodic behavior of two atom two photon emission probability |c4(t)|2, for identical atoms
interacting with vacuum in a bimodal cavity, for δ = 3.5g1, ∆ = −5g1, g2 = 1.5g1 and cavity damping
constants, (a) κa = κb = 0.00, (b) κa = κb = 0.03g1, (c) κa = κb = 0.1g1.

and |g1, g2, 2, 0〉. For this system density matrix is expressed as

ρ ≡
1∑

i′,j′,i,j=0

i′+j′∑

k′=0

i+j∑

k=0

i′+j′−k′∑

l′=0

i+j−k∑

l=0

ρ(i′, j′, k′, l′, i, j, k, l)|i′, j′, k′, l′〉〈i, j, k, l| . (4.23)

Here i, i′ (j, j′) represent states of the first (second) atom with the convention |0〉 corre-

sponding to excited state and |1〉 corresponding to ground state, the indices k, k′ (l, l′)

represent the number of photons in the first (second) mode. Thus the dissipation requires

considerable numerical work. Results for two identical atoms in a bimodal cavity are

shown in Fig. 4.6. We show results for optical cavities with g/κ ≈ 30 in Fig. 4.6(b) and for

currently realizable cavities (g/κ = 10) in Fig. 4.6(c). The two atom two photon vacuum

Rabi oscillations survive in the limit of small damping g/κ ≈ 30 but for larger damping

(g/κ = 10) die fast. Similar results are found for two nonidentical atoms in a single mode

cavity.
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4.5 Summary

We have reported large two atom two photon vacuum Rabi oscillations in two systems,

one having two identical atoms in a two-mode cavity and another having two nonidentical

atoms in a single-mode cavity. We have shown that for asymmetric couplings (g1 6= g2), the

probability of two photon emission is quite large but for symmetric couplings (g1 = g2), the

two photon emission probability is very small. Further, we have shown that the condition

of two photon resonance in the case of strong atom-field interaction is modified from its

free-space form (∆+δ = 0). These two photon transitions involving two atoms can be used

for generating and detecting different types of entanglement between two field modes and

two atoms [85].



CHAPTER 5

Manipulation of Atomic Lifetime in Cavities Using dc-Fields

It is well known that vacuum field drives excited atoms to their ground states in sponta-

neous emission. The rate of spontaneous decay Γ for a two level atom can be obtained

with the help of Fermi golden rule

Γ =
2π

~2
|Veg|2ρ(ωeg), (5.1)

where Veg is atomic dipole matrix element corresponding to the transition from the excited

state |e〉 to the ground state |g〉 and ρ(ωeg) is the vacuum mode density around atomic

transition frequency ωeg. The mode density ρ(ωeg) can be changed by putting boundaries

around the atom. Cavity structures are most suitable for changing local field density. In-

hibition [86, 87, 88, 89] and enhancement [89, 90, 91] of the spontaneous decay in cavities

has been studied in detail and realized experimentally. If the cavity is detuned to atomic

transition frequency, spontaneous decay is inhibited significantly and enhanced in the case

of the resonant cavity.

Typically, there are two regimes according to the atom-field interaction [92, 93, 94],

weak coupling regime and strong coupling regime. The weak coupling regime is char-

acterized by the exponential decay and decay rate is enhanced or inhibited from its free

space value depending on cavity is resonant or detuned to the transition frequency ωeg.

On the other hand, strong coupling regime is characterized by reversible Rabi oscillations

where spontaneous decay becomes reversible. The basic difference in both the regime is

weak coupling regime occurs in low quality cavities while strong coupling regime can oc-

cur in high quality cavities, where cavity decay is negligible. A lot of literature is available

66
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on cavity-modified atomic decay [95, 96, 97, 98, 99, 100]. All these theoretical as well as

experimental results provide strong base to the cavity quantum electrodynamics.

There are not only static effects for modifying spontaneous emission but few dynamic

effects have also been reported to suppress spontaneous emission [101, 102, 103, 104, 105].

A strong resonant driving field can decouple the atom from the vacuum. Lange and

Walther [102] in their experiment found that if an external resonant field is injected in

to the cavity, spontaneous decay can be almost completely suppressed.

In many experiments of modern quantum optics viz quantum computation, lasing

without inversion, atom interferometry where long lived excited atomic states and coher-

ence is required, spontaneous emission controls the results and appears as a limiting factor.

In such experiments suppression of spontaneous emission is essential. In this chapter, we

show how a possible control of spontaneous emission can be obtained by using dc-fields.

We find that in the presence of dc-fields in the cavities the spontaneous emission of atoms

can be modified significantly as a result of dc-field induced stark shifts which provides an

additional control over life time of the atom. Further, the change in spontaneous emission

depends on the square of applied dc-field. We find that in the case of cavities resonant to

atomic transition, spontaneous emission can be inhibited significantly using dc-fields. In

the case of cavities having negligible mode density around atomic frequency the presence

of dc field shows significant inhibition or enhancement of spontaneous emission depend-

ing on whether the cavity is tuned below the atomic transition frequency or above the

transition frequency.

5.1 Spontaneous Decay of an Atom inside the Cavity

We consider a two level atom of transition frequency ω0 placed in a single mode cavity.

The Hamiltonian for the atom-cavity system is

H = ~ωa†a + ~ω0S
z + ~g(S+a + a†S−), (5.2)

where Sz = 1
2(|e〉〈e| − |g〉〈g|) and S+ = (S−)† = |e〉〈g| are spin operators associated with

the two level atom. We consider that the cavity has finite quality thus there is leakage

through the mirrors. The cavity relaxation is described by the master equation for the
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density matrix ρ of the atom-cavity system

dρ

dt
= − i

~
[H, ρ] + Lρ, (5.3)

Lρ = −κ(a†aρ− 2aρa† + ρa†a), (5.4)

where we have assumed that the cavity is nearly at zero temperature so that there are no

thermal photons. The constant κ is the damping rate of the photon number in the cavity.

It is related to the cavity Q via κ = ωc/2Q. We work in the interaction picture. The density

matrix in interaction picture is given by

ρ̃ = ei(ω0Sz+ωa†a)t/~ρe−i(ω0Sz+ωa†a)t/~. (5.5)

The Hamiltonian (5.2) in interaction picture takes the form

HI = ~g(S+aei∆t + a†ei∆tS−), (5.6)

where ∆ = ω0 − ω. The master equation (5.3) in this picture becomes

dρ̃

dt
= − i

~
[HI , ρ̃] + Lρ̃. (5.7)

We now eliminate the cavity field adiabatically. By adiabatic elimination we obtain the

equation of motion for the reduced density matrix ρ̃a of the atom

ρ̃a = Trcρ̃, (5.8)

where Trc stands for trace over cavity field.

For adiabatic elimination of field variables we proceed as follows. We make transfor-

mation to new density matrix ρ′ defined by

ρ′ = e−Ltρ̃. (5.9)

On using (5.6) and (5.9), the Eq. (5.7) takes the form

dρ′

dt
= − i

~
[H̄I , ρ

′], (5.10)

where

H̄I = ~g(S+a(t)ei∆t + a(t)†ei∆tS−), (5.11)

a(t) = e−LtaeLt.
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Note that Eq. (5.11) involves only the cavity-atom interaction. Now we assume that the

cavity is overdamped i.e., g << κ. In bad cavity limit, we can do second order perturba-

tion calculation with respect to g, which is Born approximation. Further, using Markov

approximation, Eq. (5.10) leads to

dρ̃a

dt
= −

∫ ∞

0
dτTrc

[
H̄I(t), [H̄I(t− τ), ρc(0)ρ̃a(t)]

]
, (5.12)

where ρc(0) = ρ̃c(0) is the density matrix of the cavity in the absence of the atom, and

ρ̃a(t) = Trcρ
′(t) = Trcρ̃(t). Now substituting (5.11) in (5.12), we get terms involving

correlation functions of the cavity field. These correlations can be derived from the master

equation for cavity relaxation [95]. They are

Trca(t)a†(t− τ)ρc ≡ 〈a(t)a†(t− τ)〉 = (n̄ + 1)e−κτ , (5.13)

Trca
†(t)a(t− τ)ρc ≡ 〈a†(t)a(t− τ)〉 = n̄e−κτ , (5.14)

where n̄ is the average number of thermal photons inside the cavity. On using correlations

(5.13) and (5.14), Eq. (5.12) reduces to

˙̃ρa = −i[δ0S
z, ρ̃a]− Γ0

(
S+S−ρ̃a − 2S−ρ̃aS

+ + ρ̃aS
+S−

)
, (5.15)

where

Γ0 =
g2κ

κ2 + ∆2
, δ0 =

g2∆
κ2 + ∆2

. (5.16)

Now transferring result (5.15) to original frame, we get

ρ̇a = −i [(ω0 + δ0)Sz, ρa]− Γ0

(
S+S−ρa − 2S−ρaS

+ + ρaS
+S−

)
. (5.17)

For resonant cavity ωc = ω0, δ0 = 0 and the decay rate Γ0 = g2/κ. There is cavity induced

enhancement if g2/κ is greater than the free space decay rate. Note that as the cavity is

detuned (∆ 6= 0), Γ0 decreases which is Kleppner’s result for a single mode cavity. The

first experimental observation of the Purcell effect was made by Goy et al [87]. Next we

investigate the effect of the applied dc or low frequency field.

5.2 Manipulation of Atomic Lifetime Using dc-Fields

We consider a two level atom placed in a cavity, and a dc field (or low frequency field) is

injected inside the cavity . The Hamiltonian of the system can be written as

HE = ~ω0S
z + ~ωca

†a + ~g
(
aS+ + S−a†

)
+ ~E cosΩt

(
S+ + S−

)
, (5.18)
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where ω0 is atomic transition frequency, ωc is cavity mode frequency, and g is the atom

cavity coupling constant. The term E cos Ωt corresponds to a low frequency field, if Ω

is chosen to be very small. Note that E has dimensions of frequency. We perform master

equation calculation for atom-cavity system. The density matrix of the system ρ will evolve

as

ρ̇ = − i

~
[HE , ρ]− κ

(
a†aρ− 2aρa† + ρa†a

)
. (5.19)

We will work in a frame rotating with atomic frequency ω0. The density matrix in this

frame is given by

ρ̃ = eiω0(Sz+a†a)t/~ρe−iω0(Sz+a†a)t/~. (5.20)

Using Eqs. (5.19) and (5.20) we obtain the equation for ρ̃

˙̃ρ = − i

~
[Ha, ρ̃]− κ

(
a†aρ̃− 2aρ̃a† + ρ̃a†a

)
− i

~
[Hd, ρ̃], (5.21)

where

Ha = −~∆a†a + ~g
(
aS+ + S−a†

)
,

Hd = ~
E
2

{
S+

(
ei(ω0+Ω)t + ei(ω0−Ω)t

)
+ S−

(
e−i(ω0+Ω)t + e−i(ω0−Ω)t

)}
, (5.22)

and ∆ = ω0−ωc is the detuning. We note that the experiments of Lange and Walther [102]

correspond to using a microwave field, and thus Ω ∼ ω0. Note that the last term in the

master equation (5.21) is highly oscillating. We do time averaging for this, as such terms

oscillating at the cavity frequency would not be normally observed. The time averaging is

well justified here, as all other relevant time scales g−1, κ−1, ∆−1 are much larger than (ω0±
Ω)−1. The inequality ω0 >> g, κ, ∆ enables us to do the time averaging in a much simpler

fashion, i.e., we can essentially ignore the terms having Ha and κ in (5.21). We relegate the

details of time averaging to the appendix-B. The calculation leads to the following time

averaged master equation

˙̃ρ = i
[
∆ea

†a, ρ̃
]
− ig

[(
aS+ + S−a†

)
, ρ̃

]
− κ

(
a†aρ̃− 2aρ̃a† + ρ̃a†a

)
, (5.23)

where

∆e = ∆ + 2ω0E2/(ω2
0 − Ω2). (5.24)

We note that the dc field contributes to the Stark shift of the two levels in question. We

further note that these two atomic levels can also be shifted because of the interaction of
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Figure 5.1: The probability of the atom remaining in its excited state, ρee ≡ 〈e, 0|ρ|e, 0〉 vs time, for κ = 5g,
∆ = 0, Ω = 0, and for the different values of the dc field Ed.

the dc field with other levels. These can be accounted for by introducing the polarizabilities

αe and αg of the levels |e〉 and |g〉 [106, 107]. We can rewrite Eq. (5.24) as

∆e = ∆ + α0E2
d , α0 = αe − αg , (5.25)

where Ed is now the dc field in esu. The formulation of the appendix-B can also be used to

produce the well known expressions for the α,s. The value of α0 is known for many low

lying as well as Rydberg transitions. The values of α0 have been calculated in the literature

by converting infinite sums into the solution of differential equations.

The Eq. (5.23) can be solved, assuming that the atom is initially excited and the cavity

field is in vacuum state. The Eq. (5.23) can be converted into a set of coupled equations

in terms of the states |e, 0〉 , |g, 1〉, and |g, 0〉. The results of the numerical integration are

shown in the Fig. 5.1 for different values of the parameter ∆e. Clearly there is inhibition
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as ∆e increases. The effective detuning ∆e changes due to the applied dc field . For a fixed

cavity detuning ∆ the dc field can make ∆e larger or smaller depending on the sign of ∆.

The results can be understood by deriving analytical results in the bad cavity limit g << κ

(and more precisely g2 << κ2 + ∆2
e). In this limit we can obtain a simpler equation for the

atomic density matrix ρ̃a defined by Eq. (5.8). The final result for the atomic system is

˙̃ρa = −i[δeS
z, ρ̃a]− Γe

(
S+S−ρ̃a − 2S−ρ̃aS

+ + ρ̃aS
+S−

)
, (5.26)

where

Γe =
g2κ

κ2 + ∆2
e

, δe =
g2∆e

κ2 + ∆2
e

. (5.27)

Here, Γe is the dc field modified decay parameter and δe is the net frequency shift. The

ratio η of the decays in the presence and absence of dc field is given by

η =
Γe

Γ0
=

κ2 + ∆2

κ2 + ∆2
e

. (5.28)

Clearly the dc field modifies the decay rate, which depends on the detuning. For the cavity

resonant to the atomic transition (∆ = 0), using Eq. (5.24), η reduces to

η =
κ2

κ2 + α2
0E4

d

≈
(

1 +
4E4

κ2ω2
0

)−1

, for Ω = 0. (5.29)

It is clear from the Eq. (5.29) that dc field inhibits the decay rate. Note that the inhibition

starts becoming significant for

α0E2
d ∼ κ. (5.30)

Let us estimate the condition (5.30) for Na Rydberg transition 23S1/2 → 22P3/2, whose

frequency is 340GHz . For the sake of argument, we also assume α0E2
d ∼ 2E2/ω0. This

transition has a dipole moment d ∼ 10−15esu. The atom is placed in the cavity having one

mode resonant to the atomic transition. Let us choose the cavity decay rate κ = 1MHz.

The condition (5.30) then leads to a Rabi frequency E of the order 400MHz, which in turn,

requires a dc field of the order of 10−2esu. We note that the required dc field is small

enough, so that the perturbative results for the Stark shift hold. We further note that the

scalar and tensor polarizabilities are available for some S and P levels of Na [106, 107],

though the absolute values for both 23S1/2 and 22P3/2 level are not available in Fabre et

al. [106]. However, the reported polarizabilities for say, 23P level, are of the order of
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few MHz/(V olt/cm)2. Thus the condition (5.30) is realistic, and our finding that the dc

field can be used to control spontaneous emission, can be implemented by the appropriate

choice of the Rydberg transitions. We emphasize that we are discussing the inhibition or

enhancement of spontaneous emission on a given transition which is resonant with the

cavity. This, for example, is the transition 23S → 22P in the experiments of Goy et al.

[87]. It must be noted that the field ionization techniques enable one to study transitions

selectively [108].

In the case of cavities detuned from the atomic transition, spontaneous decay is smaller

and the decay rate is given by Γ = g2κ/
(
κ2 + ∆2

)
. Further inhibition of decay rate is pos-

sible by applying dc field. When cavity is tuned below the atomic transition frequency (∆

is positive), then there is significant inhibition of spontaneous decay, which increases fur-

ther as the applied dc field is increased. On the other hand, when cavity is tuned above the

atomic frequency (∆ is negative), there is enhancement in the atomic decay, i.e., on increas-

ing the value of applied dc field, the atom decays faster. In Fig5.2 we show the behavior

of the factor η as a function of ∆ for different values of the dc field. The enhancement, as

well as inhibition of spontaneous decay, occurs depending on whether the cavity is tuned

above or below the atomic frequency. The results shown in the Fig. 5.2 are consistent with

the results obtained by direct solution of the Eq. (5.23).

5.3 Summary

We find that in presence of dc field, spontaneous emission can be inhibited significantly in

the case of cavities resonant to atomic transition. In the case of cavities having negligible

mode density around atomic frequency, spontaneous emission itself is smaller, and the

presence of dc field shows significant inhibition or enhancement depending on cavity is

tuned below the atomic transition frequency or above the transition frequency.
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Figure 5.2: The ratio (η) of the decays in the presence and the absence of dc field vs ∆/κ . The parameters
are ω0 = 3.4× 105κ and Ω = 0.



CHAPTER 6

Quantum Random Walk of Photons in High Quality Cavity

In classical random walk, a walker flips a coin, and moves one step forward or backward

depending on the outcome of the coin [109]. The probability of finding the walker at posi-

tion m after n such steps is given by the binomial distribution

P (m) =
n!(

n+m
2

)
!
(

n−m
2

)
!

(
1
2

)n

. (6.1)

For large values of N , the probability distribution (6.1) tends to the Gaussian

P (m) =

√
2

πn
e−m2/2n. (6.2)

Thus, the probability of finding the walker at its initial position is always maximum. In

quantum random walk, a system is assigned one additional quantum mechanical degree

of freedom, like spin of the particle, and the motion of the system is controlled by this

additional degree of freedom. After few steps, the state of the system is exceptionally

displaced from the initial position. This exceptional displacement occurs as a result of

quantum interference between various states generated in intermediate steps. Quantum

random walk is one of the phenomena which are strikingly different from their classical

counter parts. In a very interesting paper Aharonov et al. [110] found that the walker’s

distribution could shift by an amount which could be much larger than the classically

possible displacement. Several proposals [110, 111, 112, 113, 114, 115, 116, 117] exist for

realizations of the quantum random walk. For example, Aharonov et al gave a cavity

QED model where the photon number distribution can get displaced. Sanders et al. [111]

75
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considered a dispersive interaction in the cavity of the form Sz(a + a†) and considered

the random walk of the field on states on a circle. Other interesting theoretical schemes

for implementing quantum walks have been suggested in ion-traps [113] and in optical

lattices [114]. Knight et al. [115] further showed that an earlier experiment [116] was a

realization of quantum random walk. A scheme using linear optical elements has been

recently implemented [117].

In this chapter, we show how quantum random walk can be realized in microcavities.

Using resonant interaction between atoms and the field in a high quality cavity, we present

a scheme for realizing quantum random walk. The atoms are driven strongly by a classical

field. Under conditions of strong driving field, we could realize an effective interaction of

the form iSx(a − a†) in terms of the spin operator Sx associated with the two level atom

and the field operators a and a†. This effective interaction generates displacement in the

wavefunction of the field depending on the state of the two level atom. Measurements of

the state of the two level atom would then generate effective state of the field. Thus in our

scheme, measurement of atomic states is corresponding to the flipping of the coin, while

the field inside the cavity acts as a walker. Using the homodyne technique, state of the

quantum random walker can be monitored. We also discuss the decoherence effects and

the time scales at which quantum nature of random walk persists.

6.1 Cavity-QED Model for Quantum Random Walk

We consider a two level Rydberg atom having its higher energy state |e〉 and lower energy

state |g〉 interacting with a single mode of the electromagnetic field in a cavity. The atom

passes through the cavity and interacts resonantly with the field. Further, the atom is

driven by a strong classical field. For simplicity we choose atomic transition frequency,

the cavity frequency, and the frequency of the driving field to be same. The schematic

arrangement is shown in Fig. 6.1. The Hamiltonian for the system in the interaction picture

is written as

H = −i~g
(
S+a− a†S−

)
+ ~

(
S+E + S−E∗) , (6.3)

where g and E are the coupling constants of the interaction of the atom with the cavity field

and with the deriving field. We have chosen g as real and E as complex. The annihilation

(creation) operator for the field in the cavity is a(a†) and S+, S− are atomic spin operators.
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The last term in Eq. (6.3) is the interaction with the external field. We further rewrite the

above Hamiltonian in a picture in which the interaction with the external field has already

been diagonalized :

|ψ̄〉 = eiht|ψ〉; h = S+E + S−E∗, (6.4)

where |ψ̄〉 is transformed atomic state in new picture from old atomic state |ψ〉. The Hamil-

tonian in this picture is

H̄ = −i~geiht(S+a− S−a†)e−iht, (6.5)

eiht ≡ cos(|E|t) +
ih

|E| sin(|E|t). (6.6)

The atomic spin operators S± transform as

eihtS+e−iht ≡ S+ cos2(|E|t) +
E∗2
|E|2 sin2(|E|t)S− − 2iE∗

|E| Sz sin(|E|t) cos(|E|t), (6.7)

eihtS−e−iht ≡ S− cos2(|E|t) +
E2

|E|2 sin2(|E|t)S+ +
2iE
|E| S

z sin(|E|t) cos(|E|t). (6.8)

Using Eqs.(6.7) and (6.8), Eq. (6.5) becomes

H̄ = −i~g
(

S+ cos2(|E|t) +
E∗2
|E|2 sin2(|E|t)S− − 2iE∗

|E| Sz sin(|E|t) cos(|E|t)
)

a−H.c. (6.9)

We note that the Hamiltonian of the above form has been previously used to treat the

inhibition of the spontaneous emission [118] and for the production of mesoscopic super-

position states [119, 120]. We assume that the atom is driven strongly so that |E| is large

and hence we drop rapidly oscillating terms from Eq. (6.9) i.e. e±2i|E|t ⇒ 0. Then Eq. (6.9)

reduces to

H̄ = − i~g
2

(
S+ +

E∗2
|E|2 S−

)
a−H.c. (6.10)

We choose E∗2/|E|2 = 1; in general, this can also be done by adjusting phases with atomic

operators. Then the Eq. (6.10) takes the form

H̄eff = ~gSx

(
a− a†

i

)
. (6.11)

Note the appearance of the well known displacement D(α) = exp(a†α − aα∗) in the evo-

lution operator e−iHt/~ for Hamiltonian (6.11). Further it should also be noted that h as

defined by Eq. (6.4) commutes with H̄eff . In the original interaction picture the Hamil-

tonian for our model will be

Heff = ~gSx

(
a− a†

i

)
+ 2~|E|Sx. (6.12)
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Figure 6.1: The schematic arrangements for realizing quantum random walks. A continuous strong driving
field inside the cavity can be applied by an external source. The time interval between two atoms in the atomic
beam is selected larger than the interaction time in the cavity so that only one atom is presented inside the
cavity at a time. The atoms are detected at the exit of the cavity by a state selective detector.

In the effective Hamiltonian (6.12) field displacement operator appears with atomic oper-

ator, which can produce a displacement in field state depending on the atomic state.

6.2 Quantum Random Walk of Photons

We next discuss the possible realization of quantum random walks in the system of the

two level atom and the field inside the cavity. In Fig. 6.1 we show a schematic diagram

for realizing quantum random walks. In our scheme atom passes through the cavity and

is detected at the exit of the cavity. A continuous strong driving field is applied by using

an external source. Let us consider that, initially, the atom is in the superposition state

|Φ〉 = (c1|e〉 + c2|g〉) and the field inside the cavity is in a coherent state |α〉. Using Eq.

(6.12) the combined state of the atom-cavity system after time t is given by

|ψ(t)〉 = exp
[
gtSx(a† − a)− 2i|E|tSx

]
|Φ〉|α〉, (6.13)

=
c+e−iφ

2
(|g〉+ |e〉) |α + gt/2〉+

c−eiφ

2
(|g〉 − |e〉) |α− gt/2〉, (6.14)

= |g〉
[
c+e−iφ

2
|α + gt/2〉+

c−eiφ

2
|α− gt/2〉

]

+ |e〉
[
c+e−iφ

2
|α + gt/2〉 − c−eiφ

2
|α− gt/2〉

]
; (6.15)

φ =
(
|E|+ g

2
Im(α)

)
t; (6.16)
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where c+ = c1 + c2 and c− = c1 − c2. Using normalization of atomic states we can select

c−/c+ = tan θ. Thus the detection of the atom in state |e〉 or |g〉 leaves the cavity field in a

superposition of states |α+ gt/2〉 and |α− gt/2〉. For small values of gt the states |α+ gt/2〉
and |α−gt/2〉 overlap completely and thus quantum interference effects between |α+gt/2〉
and |α − gt/2〉 becomes significant. If we assume that the atom is detected in its ground

state |g〉, then the state of the field inside the cavity can be written as

|ψf 〉 ∝
[
e−i|E|tD(gt/2) + ei|E|t tan(θ)D(−gt/2)

]
|α〉, (6.17)

Clearly after passing one atom through the cavity the field inside the cavity is displaced

backward or forward along the line in a random way by the step of gt/2. We can now

iterate the above step to obtain the state of the field after the passage of N atoms. We

assume that atoms enter in the cavity in the state |Φ〉 and after interaction with the field

inside the cavity detected in their ground state |g〉. Note that the displacement operators

appearing in the above state commute with each other [D(gt/2), D(−gt/2)] = 0 for real gt.

Thus the field state after the passage of N atoms is given by

|ψf (N)〉 = C
[
e−i|E|tD(gt/2) + ei|E|t tan(θ)D(−gt/2)

]N
|α〉, (6.18)

= C
N∑

m=0


 N

m




[
e−im|E|tDm

(
gt

2

)
ei(N−m)|E|t(tan θ)N−mDN−m

(
−gt

2

)]
|α〉,

= C

N∑

m=0


 N

m


 ei(N−2m)|E|t(tan θ)N−mDN−2m(−gt/2)|α〉, (6.19)

= C
N∑

m=0


 N

m


 ei(N−2m)φ(tan θ)N−m|α− (N − 2m)gt/2)〉, (6.20)

where C is normalization constant and we have used the property of the displacement

operator D−1(α) = D(−α). On writing the above result in coordinate space representation,

we get the wavefunction ψN (x, α) = 〈x|ψf (N)〉

ψN (x, α) = C

N∑

m=0


 N

m


 ei(N−2m)φ(tan θ)N−mψα (x + [N − 2m]l) , (6.21)

where ψα(x) ≡ 〈x|α〉 is the wavefunction corresponding to the initial cavity field state |α〉
which is centered at x = α and the step size of the random walker is l = gt/2.
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Figure 6.2: The probability distribution P (x) for the position of the quantum random walker, assuming
initial wave packet as Gaussian exp[−(x− α)2/2] for α = 0, step size l = 0.05, φ = 2π and θ = 2π/3.
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Figure 6.3: The probability distribution P (x) for the position of the quantum random walker, after dropping
offdiagonal terms. Parameters used are same parameters as in FIG. 6.2.
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Figure 6.4: The probability distribution P (x) for the position of the quantum random walker after 10 steps,
using different set of values of θ and φ and for α = 0, step size l = 0.05.

Figure 6.5: The Wigner function W (x, p) of the state of the random walker, after number of steps (a) N = 0
(b) N = 10, using same parameters as in FIG. 6.2.
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We note that we have recovered the result of Aharonov et al [110]. In Fig. 6.2 we have

plotted the probability amplitude distribution for initial wave function ψα(x) ∼ exp[−(x−
α)2/2] for real values of x and α = 0. The displacement depends on θ, φ, and, the number

of steps, N . The unexpected displacement in the state of the random walker is the result

of constructive quantum interference between the states generated in various steps which

comes from the off diagonal terms in P (x) = |ψN (α, x)|2. The displacement of the random

walker is not bounded by the classically possible maximum and minimum displacements

±Nl. The quantum interference leads to an arbitrary displacement in the random walker’s

position and can be much larger than ±Nl. We have checked this by dropping the off

diagonal terms in P (x). In Fig. 6.3, we show the results after dropping the off diagonal

terms in |ψN (α, x)|2 in this case P (x) remains same in shape as for the initial wave packet

but shifts by an amount Nl.

A small squeezing in the wavepacket is also generated from these interference effects.

The selection of phases φ and θ is also critical for displacement in the position of quantum

walker. This can be understood from Eq. (6.21), each term in Eq. (6.21) corresponding

to a particular value of m represents a possible state of the quantum walker. The final

displacement of walker after N steps comes as a result of quantum interference among

all such possible states. Thus the final displacement depends on the relative weights and

the relative phases of these states. The relative weights of the states in Eq. (6.21) are

proportional to (tan θ)N−m while the relative phases are given by φ. Depending on the

the values of θ and φ, final displacement in the position of quantum walker can take any

value from the possible maximum to the minimum. For example, for the parameters used

in Fig. 6.2 we plot P (x) using different values of θ and φ in Fig. 6.4. The displacement in

the position of quantum walker is minimum when θ = 2π/3 and φ is half integer multiple

of π. Further for θ = π/3 and φ = 3π/2 the displacement is maximum again.

For visualizing quantum interferences, we plot the Wigner function of the random

walker in Fig. 6.5. The Wigner distribution for any state ψ(x) can be obtained by using

the definition [21],

W (x, p) =
1
π~

∫
e2ipy/~ψ(x− y)ψ∗(x + y)dy. (6.22)

In the Fig. 6.5(a) the field is in its initial coherent state and the Wigner function is perfect

Gaussian. As the field is displaced by random steps, by passing atoms through the cavity,
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quantum interference effects start deforming the shape of the Wigner function from the

Gaussian. After few steps the Wigner function is squeezed in x quadrature and gets dis-

placed by an arbitrary distance in x. In Fig. 6.5(b) (see also Fig. 6.7(a)), we have shown the

Wigner function after 10 random steps for initial Gaussian wave packet. The squeezing

is also clear from the Fig. 6.2 which shows the narrowing of the distribution P (x). It is

clear that the displacement in the position of random walker comes as a result of quantum

interference which is consequence of quantum coherence between the states generated in

random steps.

Here it should be noted that the quantum walks appear as a consequence of quantum

interference. Thus maintaining coherence of the system through out the experiment is

an essential requirement. In the context of currently available technologies these require-

ments can be fulfilled by using Rydberg atoms in a very-high-quality cavity. We also note

the recent success in trapping atoms in high-quality cavities [121, 122]. The question is if

one can use trapped atoms to realize the quantum random walk instead of flying atoms.

We believe that this should be possible by using (i) a trigger pulse, the duration of which

would set the interaction time (ii) the detection of atomic state possibly by using a very

short pulse, and (iii) resetting of the atomic state. In this arrangement the same atom is

used repeatedly rather than sending atoms one by one. As a matter of fact some of these

ideas are in vogue [123].

6.3 Measurement of the State of the Random Walker

We next discuss how we can probe the quantum state of the random walker. We propose

homodyne techniques [30] for measuring the state of the random walker. Such homodyne

measurement can be performed by mixing an external resonant coherent field to the cavity

and then probing the resultant cavity field by passing a test atom through the cavity. In the

previous section, we have shown how the cavity field is displaced backward or forward

in a random step by passing single atom through the cavity. The state of the field in the

cavity after such N steps can be monitored by homodyne measurements which can be

implemented in the same experimental set up. After displacing the field inside the cavity

by N random steps, by passing N atoms, a resonant external coherent field |β〉 is injected

into the cavity. After adding the external field, the state of the resultant field in the cavity
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Figure 6.6: The probability of detecting probe atom in its ground state as a function of δ for the state of the
quantum random walker after number of steps N = 0 ( solid line) and N = 10 (dashed line). The parameters
used are same as in Fig. 6.2 and the interaction time for the probe atom is selected such that gtp = 1.5π.

is

|ψH〉 = C
N∑

m=0


 N

m


 ei(N−2m)φ(tan θ)N−mD(β)|α− (N − 2m)gt/2)〉,

= C
∑

n

N∑

m=0


 N

m


 ei(N−2m)φ(tan θ)N−m〈n|D(β)|α− (N − 2m)gt/2)〉|n〉,

=
∑

n

Fn|n〉 (6.23)

Fn = C
N∑

m=0


 N

m


 ei(N−2m)φ(tan θ)N−m〈n|D(β)|α− (N − 2m)gt/2)〉. (6.24)

Now we bring a similar atom in its lower energy state |g〉 to probe the cavity field. The

probability of detecting the probe atom in its lower state |g〉 after crossing the cavity in

time tp is

Pg =
∑

n

|Fn|2 cos2(gtp
√

n). (6.25)

The interaction time tp for the probe atom is selected such that if there are photons in the

cavity, it leaves the cavity in its higher energy state |e〉with larger probability. If we choose
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the external field |β〉 such that β = −α + δ, the probe atom will leave the cavity in its

ground state with larger probability when the value of δ will be opposite and equal to the

displacement of the random walker from the initial position α. Thus the probability of the

probe atom leaving the cavity in its lower state |g〉 would, as a function of δ, have peak

corresponding to the positions of the random walker after N steps. In Fig. 6.6, we plot

the probability of detecting the probe atom in its lower state with δ. The solid line curve is

result of homodyne measurement of the position of the random walker corresponding to

its initial state. The dashed line curve corresponds to the homodyne measurement after 10

steps using the same parameter as in Fig. 6.2. Clearly the homodyne measurement yields

the state of the quantum walker (Fig. 6.2). Thus the homodyne measurement can be an

elegant way for monitoring the position of the random walker in our model of realizing

quantum random walks.

6.4 Decoherence in Quantum Random Walk

Quantum random walks are different from the classical random walks in the sense of

quantum interferences which may lead to much larger displacements in the position of

quantum random walker than the classically possible maximum displacements. These

quantum interferences are the consequences of coherence in the system. Clearly we need

the coherence to live for a long time, and thus it is important to study the effects of the

decoherence of the system. In this section we study the decoherence of the state of the

random walker due to damping in the cavity. This can be done using the master equation

ρ̇ = −κ

2
(a†aρ− 2aρa† + ρa†a), (6.26)

where κ is cavity field decay parameter and we carry the analysis in the absence of thermal

photons. For the initial state (6.20) we find the density matrix after time t :

ρ(t) = |C|2
N∑

m=0

N∑

n=0


 N

m





 N

n


 e2i(n−m)φ(tan θ)2N−m−n

〈α− (N − 2m)l|α− (N − 2n)l)〉(1−e−κt)

|α− (N − 2m)l〉t〈α− (N − 2n)l|t , (6.27)
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Figure 6.7: The decoherence of the state of the random walker in terms of Wigner function at different times,
for N = 10, l = 0.05, θ = 2π/3, φ = 2π, and (a) κt = 0, (b) κt = 1/4N2l2, (c) κt = 1/2N2l2, (d)
κt = 2/N2l2.

where |ζ〉t ≡ |ζe−κt/2〉. In the limit κt << 1, Eq. (6.27) simplifies to

ρ(t) = |C|2
N∑

m=0

N∑

n=0


 N

m





 N

n


 e2i(n−m)φ(tan θ)2N−m−n

e−2κtl2(n−m)2 |α− (N − 2m)l〉〈α− (N − 2n)l|. (6.28)

Thus the coherence of the state decays on the time scales 1/2N2l2. In Fig. 6.7 we show the

decoherence effects due to the cavity damping in the state of the quantum random walker

in terms of the Wigner function. As the time progresses from (a) to (d) the decoherence

reduces the quantum interference effects and the state of the random walker decays to its

initial state. In Fig. 6.7(a) the Wigner function for the state of the random walker after 10

steps using the parameters of Fig. 6.5(b) is plotted which is squeezed in x quadrature and
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centered at x ≈ −2. As a result of decoherence due to cavity damping the quantum in-

terferences start decaying and the Wigner function changes to the perfect Gaussian shape,

Fig. 6.7(c) centered at x = Nl. Now the field inside the cavity is almost in a coherent state

and decays with the cavity damping rate. Further the lifetime for the state of the quantum

random walker is given by TN = Tc/2N2l2 where Tc = 1/κ is the lifetime for field in the

cavity.

6.5 Summary

We have presented a simple possible realization of quantum random walks using cavity

QED. We have proposed homodyne detection for monitoring the position of the random

walker. We have also discussed the decoherence effects and the time scales at which quan-

tum nature of random walks survives. As a result of new emerging technologies various

improved cavities are feasible these days which makes our proposal much interesting and

realistic. Such a realization of quantum random walks may be useful for implementing

various algorithms [124] based on quantum random walks.



Conclusions and Future Outlook

In conclusion, this thesis reports various interesting phenomenons occurring in cavity

quantum electrodynamics as a result of quantum entanglement and quantum interference.

In chapter 2, we have proposed cavity quantum electrodynamics schemes to generate

superposition of four coherent states, |ψ〉 ∼ |α〉+|iα〉+|−α〉+|−iα〉 using resonant as well

as dispersive interaction between atoms and the field inside the cavity. We have discussed

the nonclassical character of these states in terms of negativity of the Wigner function as

well as zeros of Q-distribution. We have also shown that these superposition states can

exhibit regions in phase space with sub-Planck structures, i. e., the area of the variations of

the two quadratures can be much smaller than ~. These structures are direct signatures of

quantum coherence and are formed as a result of interference between two superposed cat

states. We have discussed decoherence of such superposition due to the leakage of photons

from the cavity. We have also discussed methods for monitoring these superposition states

in the cavity. These studies need further exploration for efficient methods of tomography

of such states. The central pattern in the Wigner function of such superposition states

depends on the phases of coherent states in the superposition, thus there is possibility of

investing new methods of quantum metrology [V. Giovannetti et al., Phys. Rev. Lett. 96,

010401 (2006)], using superposition of multiple coherent states.

In chapter 3, we have studied Ramsey interferometer with quantized fields and dis-

cussed the effects of field statistics on the visibility of interference fringes. We found that

interferences do not occur if the fields in two Ramsey zones have precise number of pho-

tons i.e. in Fock states, however, by passing two atoms one by one it has been shown

how atom-atom correlation interferometry can be used to restore interferences. We have
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also discussed interferences at a single photon level. Though interferences are absent with

precise number of photons in Ramsey zones but for states like |0〉 + |1〉 interferences are

restored. This occurs because of lack of information about the cavity in which atom makes

transition. We also discussed generation of various maximally entangled states, as well as,

the transfer of entanglement from atoms to photons and vice versa using Ramsey interfer-

ometer. Transfer of entanglement can have very useful applications in quantum computa-

tion. Further, these studies can be explored for realizing various quantum logics, as well

as, for teleporting quantum states from one cavity to another cavity.

In chapter 4, we have reported an unusual cooperative effect involving two atoms in a

non-resonant cavity. This cooperative effect arises when the atoms interact with a common

field in the cavity and can lead to a two-photon two-atom resonant absorption phenom-

enon. Earlier studies of dipole-dipole induced two photon processes involving two atoms

in free space require very high resolution because of very small interatomic separation.

In high quality cavities inter-atomic interactions can arise when different atoms interact

with a common quantized field. The cavity induced interatomic interactions do not need

small interatomic separation and atom can be placed anywhere inside the cavity. We have

demonstrated that in a high quality cavity the two-atom two-photon resonant effect could

be very large thus opening up the possibility of a variety of multi-photon cooperative

phenomena in non-resonant cavities. We have derived two-photon two-atom resonance

condition. We have studied such two-photon resonant processes in two different systems:

(1) two identical atoms interacting with field in a two mode cavity, (2) two nonidentical

atoms in a single mode cavity.

In chapter 5, we have discussed a new method of controlling spontaneous emission by

using dc-fields. We have shown that in the presence of dc-fields in the cavities the spon-

taneous emission of atoms can be modified significantly as a result of dc-field induced

stark shifts. Further, the change in spontaneous emission depends on the square of ap-

plied dc-field. We have found that in the case of cavities resonant to atomic transition

spontaneous emission can be inhibited significantly using dc-fields. In the case of cavities

having negligible mode density around atomic frequency the presence of dc-field shows

significant inhibition or enhancement of spontaneous emission depending on whether the

cavity is tuned below the atomic transition frequency or above the transition frequency.

These studied need further exploration in the case of high quality cavities where we can
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not neglect the back action of the field.

Random walk is a very useful tool in various computational algorithms, in a similar

fashion, quantum version of random walk, i.e., quantum random walk can also be used

more efficiently in quantum computation. In chapter 6, we have shown how quantum

random walk can be realized in microcavities as a consequence of quantum interference.

Using a homodyne technique, the state of the quantum random walker can be monitored.

We have also discussed the decoherence effects and the time scales at which quantum na-

ture of random walks survives. So far most of the models for realizing quantum random

walk are proposed using classical states of walker. Thus, these studies need further explo-

ration about the question, what could be the actual quantum random walk which depends

on the quantum nature of the state of the walker.



Appendix

A. Averaging over Fast Oscillating Variables

Our procedure for eliminating fast oscillating variables is extended form of the procedure

discussed in Ref.[125]. The Hamiltonian (4.5) can be written as

H = H0 + εV,

where

H0 = −∆a†a− δb†b, εV =
∑

i=1,2

~
[
|ei〉〈gi|(g1a + g2b) + |gi〉〈ei|(g1a

† + g2b
†)

]
.(A.1)

The eigenstates and corresponding eigenvalues of H0 are

|1〉 ≡ |e1, e2, 0, 0〉 E1 ≡ 0,

|2〉 ≡ 2−1/2(|e1, g2〉+ |g1, e2〉)|1, 0〉 E2 ≡ −∆,

|3〉 ≡ 2−1/2(|e1, g2〉+ |g1, e2〉)|0, 1〉 E3 ≡ −δ,

|4〉 ≡ |g1, g2, 1, 1〉 E4 ≡ −(∆ + δ),

|5〉 ≡ |g1, g2, 2, 0〉 E5 ≡ −2∆,

|6〉 ≡ |g1, g2, 0, 2〉 E6 ≡ −2δ.

The resolvent for H0 is the function

G0(z) =
1

z −H0
, (A.2)

where z is complex. If Pi is projection operator for the eigenstates of H0

Pi = |i〉〈i|; i = 1, 2...6. (A.3)
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The resolvent G0 can be expressed as

G0(z) =
∑

i

Pi

z − Ei
. (A.4)

The resolvent for the full Hamiltonian H is

G(z) =
1

z −H0 − εV
,

=
1

z −H0

(
1 + εV

1
z −H

)
,

= G0(1 + εV G). (A.5)

From Eq. (A.5) the resolvent for the full Hamiltonian H can be expressed in the power

series of ε as

G =
∑

n

εnG0(V G0)n. (A.6)

For small values of ε, G(z) has singularities in the complex z-plane in the neighborhood of

1

Γ

E4E

Figure A.1: The contour in complex plane shielding two eigenvalues E1 and E4 and leaving others outside.

poles of function G0, i.e., eigenvalues of H0. Further eigenvalues E1 and E4 are very close

to each other under the condition ∆ + δ ≈ 0 and other eigenvalues are largely separated.

We consider a contour, Γ in the z-plane that encloses eigenvalues E1 and E4 only and

leaves others outside as shown in the Fig.A.1. We define a new projection operator PΓ as

PΓ = P̄1 + P̄4,

=
1

2iπ

∮

Γ
G(z)dz. (A.7)

Here P̄1 and P̄4 are the projection operators for eigenstates of full Hamiltonian H corre-

sponding to the eigenvalues inside the contour. The effective Hamiltonian will have the

form

Heff ≡ (P1 + P4)HPΓ(P1 + P4). (A.8)
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From the definition of the resolvent we have

(z −H)G ≡ G(z −H) ≡ 1.

HPΓ =
1

2iπ

∮

Γ
zG(z)dz. (A.9)

Substituting value of G(z) from Eq. (A.6) in Eq. (A.9) and interchanging summation to the

integration we have

HPΓ =
∑

n

1
2iπ

∮

Γ
zG0(V G0)ndz. (A.10)

The effective Hamiltonian can be expressed as

Heff = E1P1 + E4P4 +
∞∑

n=1

εnA(n);

A(n) = (P1 + P4)
∞∑

n=1

1
2iπ

∮

Γ
zG0(V G0)ndz(P1 + P4). (A.11)

Inside the contour Γ, G0 has singularities at E1 and E4 only so the integral in the Eq. (A.11)

is nothing but the sum of the residues at z = E1 and z = E4. Further as in our case εP1V P1,

εP4V P4 and εP1V P4 equal to zero, there is no first order and third order terms. The second

order term is

A(2) = P1V Q1V P1 + P4V Q4V P4 + P1V Q4V P4 + P4V Q4V P1, (A.12)

Qj =
∑

i6=1,4

Pi

Ej −Ei
.

The forth order term is

A(4) =
1

2iπ

∮

Γ
z

(
P1

z − E1
+

P4

z − E4

)
V

∑

i 6=1,4

Pi

z −Ei
V ⊗


 P1

z − E1
+

P4

z −E4
+

∑

j 6=1,4

Pj

z − Ej


V

∑

k 6=1,4

Pk

z −Ek
V

(
P1

z − E1
+

P4

z − E4

)
dz (A.13)

For simplification we use the condition for resonance ∆ + δ = 0, i.e., E1 = E4. Thus the

forth order term is

A(4) =
1

2iπ

∮

Γ
z

(
P1

z −E1
+

P4

z −E1

)
V

∑

i6=1,4

Pi

z − Ei
V ⊗

∑

j 6=1,4

Pj

z −Ej
V

∑

k 6=1,4

Pk

z − Ek
V

(
P1

z −E1
+

P4

z −E1

)
dz. (A.14)
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Integrating Eq. (A.14) we have the forth order term

A(4) = (P1 + P4) V Q1V Q1V Q1V (P1 + P4). (A.15)

Using the values of E1, E2, E3, E4, E5, E6, and V the effective Hamiltonian expressed in

basis |e1, e2, 0, 0〉 and |g1, g2, 1, 1〉 is

Heff =




2g2
1

∆ + 2g2
2

δ + 4g4
1

∆3 + 4g4
2

δ3 −2g1g2

∆ − 2g1g2

δ + 4g3
1g2

∆3 + 4g1g3
2

δ3

−2g1g2

∆ − 2g1g2

δ + 4g3
1g2

∆3 + 4g1g3
2

δ3 −(∆ + δ)− 2g2
2

δ − 2g2
1

∆ + 4g2
1g2

2
∆3 + 4g2

1g2
2

δ3


 .(A.16)

With some algebraic manipulation and considering g1 and g2 up to forth order effectively

the Hamiltonian (4.5) reduces to

Heff =




2g2
1∆

∆2−2g2
1

+ 2g2
2δ

δ2−2g2
2

−2g1g2

(
∆

∆2+2g2
1

+ δ
δ2+2g2

2

)

−2g1g2

(
∆

∆2+2g2
1

+ δ
δ2+2g2

2

)
−

(
∆ + δ − 2g2

2∆

∆2−2g2
1
− 2g2

1δ

δ2−2g2
2

)

 . (A.17)

It should be noted here as two-atom two-photon resonance appears at large interaction

time in dispersive limit, the terms in the effective Hamiltonian up to forth order are im-

portant to predict correct evolution. Using the effective Hamiltonian (A.17) the Eq. (4.8)

reduces to Eq. (4.9).
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B. Time Averaging

We outline how the time averaging is to be done. Let us consider schrodinger equation

∂

∂t
|ψ(t)〉 = − i

~
V (t)|ψ(t)〉, (B.1)

where V (t) consists of rapidly oscillating terms only, so that the time average of V (t) is

zero. Let |ψ〉 be written as

|ψ〉 = |ψ̄〉+ |φ〉, (B.2)

where |ψ̄〉 is time averaged part and |φ〉 is the rapidly oscillating part. On substituting (B.2)

in Eq (B.1) we find that to the lowest order in V (t),

|φ〉 = − i

~

∫ t

0
V (τ)dτ |ψ̄〉, (B.3)

and
∂

∂t
|ψ̄(t)〉 = − i

~
V̄ (t)|ψ̄〉, (B.4)

where

V̄ (t) = − i

~
V (t)

∫ t

0
V (τ)dτ. (B.5)

The field induced shift term in (5.23) is obtained by using Eq. (B.5).
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