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Abstract of the Thesis

The origin Upn¢ malintenance of the galactilc magnetic
field have been studied in this thesis.Bisymmetric spirals
are the most common feature of the magggtic field structure
in the galaxies though some of thenm possess ring structure
also. Even though dynamo theory explains the many
observational feature of the magnetic field of the galaxy,
it remains unsatisfactory, on many counts.

Evolution of galactic magnetic field is related with
the dynamics of the galactic plasma disk and hence it is
necessary to find the "mechanism” which would contribute to
the growth of the magnetic:field in the galactic disk.We
have studied here one such mechanism, which arises as a
result of the non-uniformity of the matter density in the
magnetized plasma disk. The inverted gradient of density
column supported by plasma agalnst the gravity is quite
effective for the energy needed for the growth of the
magnetic field. It is Rayleigh-Taylor instability whicﬁ is
responsible for the amplification of the magnetic field.It
is found that such a process could amplify the magnetic
field of the disk with the growth rates which depends on
the density gradient of the matter etc.

A more complete theory of the bisymmetpigspiral field,
as the allowed eigen—functions of a gravitating magnetized
disk would require. a self-consistent solution “as an

eigenvalue problem with proper boundary condition.We have



carried out. such a stﬁdy for a thin magnetized plasma disk
with ‘rigid rotation (which isvﬁhe only permissible solution
of the induction e€quation in the infinite conductivity
limit). It is found that bisymmetric spirals appear as the
allowed eigenmodes of the disks eventhough the disgk is

'#Eﬁzﬁly rotating which has to be contrasted with the
differential rotations required for the dynamo action in

&

the disk,



CHAPTER I

t

INTRODUCTION

1.1. Historical Background

The term "Galaxy" has been derived from the Greek, word
'galaktokos' meaning milky.And the galaxy.cah be seen with
naked eyes in the night sky as a pale,mysterious band of
light of drregular brightness and width stretching across
the heavens almost along a great circle.Edge~on view of the
galaxy approximately resembles an enormous lens (Fig. 1)
whose diameter is about 30 kpe (1 pc = 3x1018 cm) with an
average thickness of about 2 kpc.Two tightly twisted spiral

arms (about 0.4 kpc) would be seen (Fig. 2) if viewed from



above.

Majdr contribution ﬁo the mass of the galaxy comes from
the stars. The @gas contributes only a few percent of the
mass of the galaxy but 1t is ¥esponsible for the magnetic
field of the @galaxy (namely,the 1onized component of the
gas) and also for the birth of the new stars.By exploding
and evolving,star returns the gas to the interstellar space.

P
In addition to the gas,there is much dust in the galaxy.It
is assumed that these dust particles are paramagnetic in
nature. |

Magnetic field of the Sun was discovered in 1908 by
George Hale. Only after another 50 years the magnetic field
of other stars were discovered by Harold Babcock and only
during last two decades 1t ©became <clear that magnetic
fields are present around all stars.

Fermi (1949) was the first to propose that the disc of
the galaxy «contains a large-scale magnetic field.The first
confirmation about the presence of the galactic magnetic
field came in 1949 from the observations of star light
polarization of distant stars by W.A. Hiltner. This
polarization 1s due to the scattering of light by elongated
dust graiﬁs aligned by the magnetic fields (Davis and
Greenstein, 1951). For such an alignment would 1lead to
different amounts of scattering of light polarized parallel
and perpendlicular to the magnetic field and,therefore,to a
polarization of light reaching us.It can be shown (Spitzer,(
1968) that for =elongated particles,which one can idealize

as prolate spheroids, a strong magnetic field B,can align



fe 3
these grains so that their major axeé tend to be uniformly
distribqted in a plane_perpendicﬁlar to the magentic'field.
If the magnetic field 1is perbendicular to the line of sight,
the plane of vibration of the polarized light will then be
parallel to B, since for E parallel to the orienting
magnetic field the electric vector tends to be
perpendicular to the major axis of the grains,and the
extinction 1s less then for E perpendicular to B.Thgn,one
expects to observe no polarization in the general direction
of the magnetic lines of force, and maximum, in the
perpendicular direction. And if one interprets from this
point of view (Hiltmer, 1951) the maps of polarization
effects as a function of the direction of observation,one
finds that the galactic magnetic field is roughly parallel
to the direction of the spiral arms,in which we are located.

As one observes distant stars in a direction
approximately perpendicular to the spiral arm,it appears
that the direction of polarization plane 1is only‘
approximately parallel to the arm i.e. the field lines are
not straight but "wavy lines”.The mean angular deviation of
the plane of polarization from the direction of spiral arms
is about ‘c< = 0.2 radius (Hiltner,1951).Chandrasekhar and
Fermi (1953) <concluded that there must be a relation
between { and the magnetic field B.For a strong magnetic
field, lines of force will be straight,whereas weak fields
will be dragged 1in various directions by the turbulent
motion of the gas masses in the spiral arm and of would be

large.
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The velocity of the transverse magnetohydrodynamical

(MHD) wave is given by

v. P

T g
where .? is the density of the ionized mattef.The ionized
matter has a high electrical conductivity to be effectively
attached to the magnetic lines of force in such a way that
only longitudinal relative displacement are pos;ible°

Transverse oscillation of a particular line of force is

described by
Y = a Cos k(x-Vt)
?

where x 1s the longitudinal coordinate and Yy is the lateral

displacement.Now,

I

DY aksimk(x -vt)

X
fﬁ‘: makVSMR(XA%>
olt

Where we see that
L
<v" ‘;{,f,) > = <(?{%}2>

The lateral velocity of lines of force must be equal to the

lateral veloclty of the turbulent gas

;o [Ay Nt ~ 4 R |
L) > = 4
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Factor 1/3 arises from the fact that only one component of

the velocity is effective in shifting the lines of force.

< (2%f> -

Therefore,

Hence,

byl 2

For our galaxy, xf 2x10 24 gm/cm3,v = 5x105 cm/sec ande

= 0.2 radians,so that

B 7.2 x 10_6 gauss

It

Chandrasekhar and Fermi also derived the same order of
magnitude value of the magﬁetic field by using the argument
about the stability of the spliral arms.We know now that the
arguments given by Chandrasekhar and Fermi about the
stability of the spiral arms have been superseded. We
Present those arguments since they strongly.influenc;d the
development of galactic magnetic field theories, They
equated the gravitational Pressure in the spiral arm to the
sum of the material and magnetic pressure and hence,
concluded that the order of magnitude of above derived
result 1s correct. As today we know from observations that
this is the right order of magnitude of the field.

Observational data on the large-scale configuration of
the galactic magnetic field started accumulating in mid-70s

(Sofue et. al., 1986 and references therein).These data
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provided the clear evidence of the aligﬁment- of the
magnetic. fields in thé nearby galaxies.In contrast to the
external galaxies local field in our galaxy has been
extensively studied in the pést few decades (King,1983;
Vallee, 1984). These data,namely on the Faraday rotation of
the polarization plane by the ambient interstellar field

has led to the <conclusion that galactic magnetic field

&

possesses two different kinds of morphologies -~ ring and
‘bisymmetric spirals. Bisymmetric lines are directed inwards
in one half of the galactic disc and outwards in tﬁe other
(Fig. 3). Bisymmetric structue is most clearly seen in M33,
it is also prominent 1in the nearby galaxies M51 (Fig. 4).
The majority of the spiral galaxies ©possesses
bisymmetric spiral field (BSS),whereas only a minority such
as M31 has a ring configuration.Table 1.1 (Sofue et al,
1986) summarizes the derived configurations studied so far
together with their strength. Magnetic field structure of
greater complexity than ring or bisymmetric séiral
configuration are also expected to exist in these galaxies.
But the observational accuracy is still too poor to reveal
final structure except for the well studied local field in

our galaxy.
1.2. Observational Techniques of Galactic Magnetic Field
An understanding of galactic magnetic field depends on

independent type of observation and their interpretations,

some of which apparently contradict each othex. The
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difficulty in the measurement of the field is caused by the
enormous distance involved. Below we enlist briefly,
different measurement techniques and difficulties involved

with them.

1.2.1. Optical Polarization

The first evidence for interstellar magnetic field
comes from measurements of optical polarization.Th: basic
"mechanism (as mentioned earlier) that 1s responsible for
the optical polarization 1is the scattering ofAlight by
elongated dust grains aligned by the magnetic filelds.
Optical polarization measurements, however, give no fieid
strength, only the orientation of the field. The field
alignment 1is expected to be such that,the polarization
vector E is parallel to the field orientation.

Davis and Greenstien first outlined the mechanism of
optical polarization and the difficulties still being faced
are that, it doesn't appear that interstella% field is
strong enough to produce the neccesary alignment,unless
there are enhanced magnetic relaxation effécts in the dust
grain due to collective effects between adjacent iron atoms
within grains producing either ferromagnetism or
Super—-paramagnetism (Purcell & Spitzer,1971).

The problem lies in the requirements for fields of
several tens of microgauss for the simple Davis-Greenstien
models, compared to few ~(3-5), 1076 G known to exist in
Space, based on direct measurements.(See for review of the

problem,Spitzer,1978).



1.2.2. Faraday Rotation

As the radlo waves propagates through some interstellar
magnetoionic plasma; the polarization vector of some
intrinsically linearly polarized continuum source (e.g.
quasar) will be systematically rotated by the ambient
magnetic field in the plasma. Amount of this rotation
depends on the wavelength, the strength of the compo;ent of
the magnetic field along the line of sight and the number

of free electrons along the line of sight.Rotation'angle is

given by
g~ RM) 2
C) - L g © (1)
RM = 0. 31 \ne B, 4l
(2)
where C% is the rotation angle that determines the

orientation of the polarization plane, ne 1s the .thermal
electron density in cm“B,Bll is parallel'component of the
field along the path e from the source to the observer ¢
(g = 10—6 G), K is the path length in pc and§§0 is the
intrinsic rotation angle in the source.

It has been pointed by Sofue et. al. (1985),that ring
like and Dbisymmetric spiral structure produce different

patterns of variation of the rotation angle §? over the

galaxy 1image.The ring configuration gives an odd dependence
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of kthé rotation angle (and.RM) on the distance along the
major axis while the bisymmetric spiral configuration gives
an even correspondence (Fig. 5).Difficulty with rotation
angle measurement Ystems from the fact that ‘; cannot be
determined uniquely since for any %;, §%+ nx,n = 1,2, ————-
is also a solution.For examplé,position angle measurement
of NGC 2903 seems to fit an even dependence (solid line in
Fig. 6). However,addition of 180° to the angle at ihe right
side of the plot allows an equally successful
Interpretation of these data (dashed 1ine,Fig.6).(Ruzmaikin
et. al., 1986). This difficulty can be removed by taking
multifrequency observations (Ruzmaikin and Sokoloff,1979).

Faraday rotation measureﬁents in our galaxy show that
the iarge—scale magnetic field probably changes sign 1in
every spiral arm,from Perseus to Sagittarius (Ruzmaikin et
al, 1986). However, the investigated region (Fig. 7) is very
small (~ 3 kpc) as compared to the overall dimension of the
galaxy (= 15 kpc) and conclusions about the giobal magnetic
field seems to be premature. Avallable data cannot
distinguish bisymmetric structure ffom a ring with
aiternating fields. In many cases decisive evidence exists
on  magnetic field structures (Sofue and Takano,1981;Beck,
1982).

Another difficulty 4is due to the fact that Faraday
rotation can take place within the source 1t§elf,where the
radiation 1s Ggenerated (Zeldovich et. al.,1983).This may
result in the violation of the simple law (1),relating the

type of radiation to the source structure. (Ruzmaikin and



Sokoloff,1979;Vallee,1980).

1.2.3. Zeeman Effect

In the absence of externai magnetic field,atomic energy
levels are degenerate.Magnetic field removes the ‘degeneracy.
The energy level splits,each enérgy level being defined by
the conserved projection of the total angular momentum,on
the field direction B.The splitting of energy levzl leads
to a corresponding splitting of spectral line of an
emitting or absorbing atom.

In the simplest case,when Lande factor g (which allows
especially for the spin and 1is equal to one for an atom
with total =zero spin) is tﬁe same for the upper and lower

energy levels,the line 1s split 1nto a triplet

7 X ) 7 +
NI = —
:}W“"' 2 > Ve 1 <;ﬁhrmc:>

(normal Zeeman triplet). The unshifted “Jj” -component
correspnds to a transition that leaves the projection ‘of
total angular momentum unchanged.It is linearly polarized
while symmetric © ~components correspond tg the transitions
in which projgction of total angular momentum in the field
direction changes by + 1 and have,respectively,right-~handed
and left~handed circular polarization. |
Direct measurement of the interstellar magnetic field
is done wusing Zeeman effect.In HI (or OH) radio lines,in a
magnetic field, Verschuur (1974, 1979) has observed the
Zeeman effect 1in dense interstellar cloud in the galaxy.In

external galaxies, this type of observation has not been
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made. Main difficulty in using this effect stems from the
" fact that~Dopp1er broading sigpificantly exceeds the Zeeman
splitting. For a 21 cm hydrogen line,the distance between

the 6\—components is

AV x> 2.8 x 10° B Hz

while the Doppler width of the line is 20 KHz (Kaplan and

Pikelner,1970).

1.2.4. Magnetic Field Strength from Equipartition

It 1s assumed that there is an equipartition of energy
density between the cosmic rays and magnetic field Also the
electron in the relevant range of energies has an isotropic
velocity distribution and a differential energy spectrum of

the form
N(E)dE = NOE:XdE

In order to relate the electron fluxes at the source
and the Sun, it 1is assumed that these values are the same
i.e. N is uniform throughout'ﬁthé galaxy. According to
guiding centre approximation (magnetic moment - adiabatic
invariant), NO is uniform and velocity distribution 1is
isotrtopic all along the 1line of force (reflection at

higher B is compensated by increased density of the field

lines).
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Magnetic field energy 1is 3«7; «From equipartition
\ :}A‘/
R ' - . -
S R
L/ o E,
where E1 and E2 are relevant enérgies,corresponding to the
> N,
lower and upper cutoff frequencies =/ ;1 and v, of

synchrotron radio spectrum. a is the ratlio of total cosmic

ray energy to the electron energy.B (in G) is given by

B = (2.3) (aE£)2/7

where ¢ is the wvolume emissivity (ergs"l cm~3) and A is
gliven by
' o+ L x4 1
okt ﬁg 2 ;2 -
‘k\ n C < 1* - —
- o - «+1 <
2\ 9,
where € = 1.057x10'% 1in cgs and e = - (D-1)/2 - radio

spatial index.Emissivity is given by
2

o sz_ 317 0j&>
o 0 -
I ) is the intensity and § s the path length.
Equipartition hypothesis is open to objections but the
magnetic field strength calculated for external galaxies is

in good agreement with the values,found by other methods.
1.3. Earlier Theoretical Attempts

It 1s often found that usual hydrodynamics 1is Incapable

of describing astrophysical phenomenon without including
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the =electromagnetic effects, since almost all phenomena of
astrophysicé ocecur when there are magnetic filelds
associated with material_of iarge conductivity and hence a
strong coupling results between .the motion of matter and
the magnetic field. Motion of the highly conducting matter
in the magnetic field induces | an electric field,
perpendicular to both the magnetic field and the motion of
the matter. This gives rise to current,which acts backgon
the moving matter. This 1s how the coupling takes place
between the moving matter and the ﬁagnetic field.

Magnetic field in the astrophysical situations are the
offspring of the above mentioned magnetohydrodynamical
motions. Below, we briefly introduce the earlier theortical

attempts to explain the magnetic field.

1.3.1. Spiral Arms as Tubes of Force

Chandrasekhar and Fermi (1953) were led to postulate
the existence of a magnetic pressure opposing the
gravitational contraction of the arm from the comparison of
the dynamical and gravitational energies of the' arm.
Dynamical energy of the gaseous material inside the arm is
T o1.25 x 10ll erg/gm, for é random velocity v ~ 5 km/s.
Gravitational potential, between the central axis and the
surface of an arm 7 Gm = 8 x 1011 erg/gm for m (gas+star) ~

1.2 «x 1019

gm. Therefore,if dynamical motion balances the
gravitaiton,the dynamical energy has to be ~ 0.5 Gm.In fact,

gravitational energy appears to be six times greater than

the dynamical energy. Therefore, magnetic pressure should
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also be taken into conslideration.

Model of Chandrasekhar‘and Férmi is not correct in the
light of observations which became available only after
1960's. Spiral arms are ﬁainly caused by the density wave
(Lin and Shu, 1964) and they are not the tubes of force as

thought by them.

1.3.2. Helical Model E

To overcome the difficulty of the "cylindrical" model
of Chandrasekhar and Fermi, Hoyle and Ireland (1959)
proposed that magnetic field lines are helics wound around
the axis of the spiral arm.It is assumed that the magnetic
lines pass through or near thé galactic center.There they
become twisted. As the gas and twisted field move out into
the plane;the helix follows.

It 1s also assumed that halo field possesses large
scale regularity.Halo lines of force are crossing the plane
through the inter arm region.The lines of force are frozen
in the halo as well as in the disk.

Major difficulty of this model is the way,halo field
lines are connected through the interarm region from the
opposite side of the plane. This model assumes that halo
field 1lines are at first connected with the surrounding
arms from near the center,then they are convected radially
across the plane with the arms and then they are

disconnected when arriving at the edge of the plane.

1.3.3. Primordial Origin Theory
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In this theory, it is assumed that a wuniform

intergalactic field (= 10-9 G) was captured by a
protogalaxy (Fig. 8). Gravitational collapse of the

protogalaxy took place and owiﬁg to the angular momentum
conservation 1in the collapse, the uniform intergalactic
field was, thus,twisted by the differential rotation into a
bisymmetric spiral configuration (Fig. 9) and maintained
upto the present time by some "mechanism” (Piddington,1;64;
1978).

Differential rotation will cause an overwinding 6f the
field 1lines and to avoid that,a "mechanism” was proposed by
Sawa and Fujimoto (1980).They assumed that the disk field
is transported randomly by interstellar turbulence and
diffuses outward across the surface of the galactic disk.
They also assumed that the magnetic field of the halo can
simultaneously diffuse back in the disk. Then the field
lines 1in the disk are in open spiral configuraiton without
being twisted by the differential rotation.The steady—state.
configuration 1s considered to be achieved by this kind of
arrangement. The tightly twisted field lines in.the disk are
transported by the turbulent motion of the interstellar gas
up 1into the halo, where the magnetic energy is relatively
large enough to relax their tight winding since the field
strength in the halo 1s comparable or slightly less than
that 4in the disk (2-3) x 10—6G (Sofue et. al.,1979),The
less twisted 1lines of the halo diffuses 4into the disk
across its upper and lower surface and they are twisted and

Strengthened again by differential rotation.
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. In additiqn to being kiﬁematical in nature, the thedry
of Sawa and Fujimto and fujimto.and Sawa requires a halo
field of the order of or slightly less than the disk field.
There 1is no consensus as yet on the strength of the halo
magnetic fleld other than that it 1is "'10“6 G.

Kulsrud (1986) has suggested a model of the field which
avolds the winding wup dilemma without using the turbulent
diffusion. One knows that 1in a weakly ionized plasma,
ambipolar diffusion (i.e. relative drift between ions and
neutrals) allows hydromagnetic forces to act on the
neutrals throﬁgh friction.If the interstellar gas above the
galactic plane 1is partially supported by the magnetic
fields then there must be a drift of the field lines away
from the galactic plane, which ~ 0.04 km/s.This velocity
moves the 1lines wupward by one to two scale heights over

1010 year.

1.3.4. Dynamo Theory

G. Larmor in 1919 suggested that the magnetic~field of
earth and the Sun ié generated by the hydrodynamic motion
of the fluid. Dynamo theory went through several phases of
development (for a detailed account,see Parker,1979).

Essential features of the dynamo mechanism in the
gaseous disk are:

a. disk rotates non-uniformly causing a shear given by

Gz -

——

= 2~ T

where 7/ is rotational velocity.
o

a5
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b. turbulence in the - disk is cyclonic,i;e. local angular
velocity of the gas in the disk causes the smail eddies in
the £luid. |

c. the first stage of the galactic dynamo process is
differential rotation. Non-uniform rotation of spiral
galaxies turns a purely meridional field into one which is
a combination of meridional and azimuthal components.The
angular velocity of the gas is higher at the smaller rai}i,
and a meridional field (fig. 10) 1is stretched into a
trailing spiral.

The feedback 1loop of the galactic dynamo is associated
with the cyclonic turbulence. A turbulent cell, rising
through the disk expands because the density scale height
of the 1iInterstellar gas slightly exceeds the correlation
scale of the turbulence. The coriolis force from galactic
fotation delivers an additional rotation to the expanding
cells. Descending cells contract and aquire an oppositely
directed <coriolis rotation,but all cell above(or below) the
galactic plane have Thelicity( v, E?Y'Q‘) of the same sign
(fig .11). The mean helicity ( v q‘xsf) where - . 14‘>
is an ensemble average, is thus an odd function of the
vertical coordinate z,and breaks the mirror symmetry of the
plane. The average deviation from reflection symmetry in the
presence of an azimuthal field results 1in emergence of a
mean meridional magnetic field.

The action of helical turbulence is equivalent to the
generation of an azimuthal electromotive force cKEm where

(X 1s a function of position and is proportional to the
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mean helicity of the turbulence. Therefore, induction
équation, when averaged over-turbplent pulsation acquires an
additional term. Basic d1nduction and dynamo equations are

(Baryshnikova et. al.,1987):

: R CE: (3)
98 gavxn vavie w AR
Bt |
4 7
-8 =0 "
where B =W >, ﬁf is the regular  velocity and
e :__‘C<«-U-~‘ VXV‘) with { the correlation time and ™y~ the

turbulent velocity.

Indﬁction and dynamo equation for a thin,differentially
rotating disk of finlite thickness was solved by Parker
(1971a, b, 1975) as an eigenvalue problem for axisymmetric
mode, Below we briefly describe the treétment given by Sofue
et al(l986). Galactic rotation u is assumed to have only
azimuthal component, 1.e. u = (0,V(r),0) and B = (Br(r,z),
B?(r, z), Bz(r, z)) 1in (r,f , 2) coordinates in which {ll
components are independent of f3 .Writing equation (3) in
local rectangular coordinate (x,y,z) whose origin rotates
with the disk in the matter, and taking o as a
pseudo-scalar (generally speaking the mean helicity is a
pseudo—-tensor C4LK' In real astrophysical disks,however,the
turbulence’ is usually of small scale i.e. the mixing length

is 1less than the disk thickness and hence almost isotropic.

Therefore oK

» A\QLK approximately, where 74 is a

iR =

pseudo~-scalar (Zeldovich et. al.,l9839,wa have
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where x is directed away from the center,y-axlis 1is parallel
to the direction of galactic rotation and z~perpendicular
to the disk.

A solution of the form B = b} expi(—@t+kxx+kzz) is

substituted in the above equations and one gets the

dispersion relation

Ry 2w Y wk
X _ES 1w . fe ®)
W?Q ToRr T > R% R

ol 4 d% kY,
where k=3 (C,,Tﬁ )/»2 with G = 27; "";7).If one assumes

that kx = p then the dispersion relation i1s reduced to the

AY

relation between &> and k_.One has four roots of the above
equations kz(nl, 0y, N, n4).Therefore,the general solution

can be represented as a superposition of 4-plane waves
& .‘ . '
R, - 'Zm :EDJ (Y p [L ( =tat + }9;( + N2 )}
o J-1
From the ©boundary condition, the magnetic field suffers a

discontinuity across the plane,i.e.
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By = Puw By B, (2 =0)
92 12i=2 0 .

one determines ¢ and amplitude bj (i=1, 2, 3,4) as an

eigenvalue problem. Local ring field results as a solution
(Sofue et. al.,1986).

Induction - and dynamo model for a ring field was
extended by Sawa and Fujimoto (1986) and Fujimoto and Sawa
(1986)» for the bisymmetric spiral fields. Bisymmetriuc
spiral field, contrary to the ring fields depends on
azimuthal angle also.

Since magnetic field possesses a spiral structure,
solution is searched in the form

—

where E(r) varies slowly with radius.\?+ln r/6‘ = const,
describes the spiral and hence its pPresence 1in the

exponential.

Plugging it 4in the induction and dynamo equation,with

the expansion of b(r) in

(".’)

(\ 3
bir) = ol GU)D 4 Gl)o +.
and taking only the dominant terms,one gets a dispersion

relation for the BSS field

1 LS LV L LRa
Tz Y oTm Y aw T B )T R
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where
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" This dispersion relation gives four roots for kz against [ .
Thus the general solution 1is superposition of 4 spiral

waves 4

A il t e 2 rt\
B (v ¢, z) - Z} }3) (7)) txp[i (~wt + P 2+?y.s)j
KK

bj and w0 are determined through an eigenvalue problem.

Sawa and Fujumoto have found that the region of local
maximum fileld traces two spirals on the galactic plane and
that the magnetic field reverses 1ts direction across the
boundary of the two spirals.Therefore,they concluded that
induction and dynamo process is responsible for the

bisymmetric spiral magnetic field.

1.3.5. Bisymmetric Spirals in a Small Thickness Disk

Kinematic dynamo problem in the small thickness
disk(i.e. .x_ <<l,ﬁhere, A = height of the disk/radius of
the disk) has been considered by Baryshnikova et.al. (1987,
c.f. also Ruzmaikin et. al.,1981,1985).

They considered an axisymmetric disk(the coefficients
in (3) do not depend on *f ). Normal mode of the dynamo
equation (3) have the form

B=B(r,z)EXP( ] t+im £)

Equation for BZ splits wup from equation (3) 1n the
leading orders and equation (3) can be solved autonomously
f B .

or Br and &

In the thin disk,solution of equation (3) for Br and B

can be constructed in the following way.

&
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Where, br and b&r dépend parametrically on radius and

satisfies the 1local dynamo equation.If one puts gﬁgro and

by
E%

3@&. -30) 1n equation (3) for Br and B components,one gets
> 2 4

a Schrodinger equation with a complex potential.

XAV RG] - vma-Ta
VO YW iR

When the radial potential U(r) is determined from local

= (this is the essence of the approximation used,since

k3

generation problem, equation (5) gives the growth rate
(eigenvalue) and radial field distribitons Q(r)
(eigenfunctions).

It should be noted that major problem that arises in
this model is similar to the other dynamo models i.e. it is
a local theory. One knows that magnetic fields are global
features of the galaxies and therefore,a global eigenvalue
problem must be solved, if this model were to explain the

observed magnetic field structures in the galaxies.

1.4, Difficulties with Dynamo Theories

1.4.1. Dynamos are kinematical

Main problems of the dynamo theories are to construct a

velocity field capable of indefinite maintenance and
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"amplification 6f an initially given field.Source of energy
for maintaining the magnetic field is derived from the
plasma fluid and is not self-consistent with the ultimate
source of energy, namely, fhe gravitational field.In this
sense these theories are kinematical. Therefore dynamo
theory 1s an incomplete theory of magnetized matter and its

interactions with the magnetic field 1in presence of the

&
&

gravitational field of the galactic bulge.

1.4.2. Time—-scale Problem

Assuming the thickness of the ionized galactic layer h
to be 7 400 pc (in agreement with the observed pulsar
dispersion measure, Zeldovich et. al., 1983) and magnetic

~ 1026

diffusion constant ﬂ) cmz/s the field has to grow

faster than the characteristic diffusion time
: 2 - g, A8 -
7{ =1/t = h /%) 52107 yr (1/20) x age of the galaxy

. {7 / ,,
We know that < B =B exp (} 0t).For the dynamo

max’ o

to act, one mneeds an initial seed field to be ampiified and
changed. In the case of planets and stars question about the
seed field d1is not asked sipce it is assumed that weak
fields always exist 1In the medium in which these objects
are formed. But 1in the case of Galactic dynamo,no evidence
exlsts of appreclable intergalactic magnetic field.Assuming
the above mentioned growth time of the Galactic dynamo,

during the period of the Galaxy's existence (""10lO yrs),

the observed field (™ 2x107°0 G) could be produced by an



initial field of ~ 102! g.
Above argument has a flaw . for the following reasons.
Even though dynamo (o =) type gives the exponential growth

rate of the magentic field exp(f:t),B = B0 exp(T,t) to go

from 10_2l G (a maximal seed field) (Harrison,1970) to
10-6G one needs 40 exponential folding (since T ~

dynamo
2x108 yr).

&

Taking the 1ife time of a typical galaxy to be ~ 1010
year, radius to be of the order of ~ 20 Kpe,flat rotation
curve with a velocity ~ 200 km/s,one gets the rotation
frequency ~ 10_8/yr. Since formation of the galaxy,the
number of revolution required ,can be estimated from

6

107°%¢ = (1072

1G) x Exp(20-40)

Therefore, one needs 20-40 revolutions to anplify a weak
seed field. This means that galaxy barely had time to
amplify a weak cosmic seed field.At redshift of the order
of 3-4 when the age of the galaxy is ~ 109 aqd 108/yr§
respectively, galaxlies will not have time to spin even once
and thus required amplification factor will not be
achievable i.e. observed magnetic field of the order of

10—6 G at z=3~4 cannot be made by the galactic dynamo

mechanism (Norman,1987).

1.4.3. Dynamos are local
For the generation of the dynamo action in the galactic

disk, finite resistivity of the fluid 1is required (F’% 0).In
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almost all the astrophysical situationé ‘reSistivity is
taken to be 2ero owing to the large scale length involved.
Magnetic Réynold number, &hich measures the role of the

jonized gas motions relgtive to the magnetic diffusion is

given by {} N \/l*

\ N (3‘,

where V is the fluid velocity,L - typical scale length and

( ~ coefficient of magnetic diffusion.For the interstellar
: R
environment, taking v = 10 km/s,L = 100 pc and ~ 2x1021

cmbs one gets Rm = 5x104.This high value of Reynold number
indicates that magnetic diffusion 1s negligible comparéd to
the {onized gas motion and that the diffusion can only be
considered for the scale—heigth below 10“]“10“2 pc.For a
dynamo to work, one knows that a finite resistivity is
required (Ruzmaikin et. al., 1988) and therefore,dynamo
action can be 1nvoked locally only.Magnetic fields of the

galaxies are a global feature and therefore,dynamo theories

do not carry the conviction over large scale.

lL.4.4., Shortcoming of Sofue et. al.s Treatment :

In addition to the general difficulties of the dynamo
theories, as polnted above,the dynamo theory of Sofue et al
assumes the solutioﬁ of the dynamo equation as the spiral
Waves locally. Bilsymmetric spiral should follow as the
dynamical consequence of the theory and therefore,dynamo

theory of Fujimoto et al lacks convictilon.

1.4.5 Shortcoming of Baryshnikova et. al.s treatment
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Most of the galaxiés posseses bisymmetric spiral fields.
Therefore, one would expect that the preferred mode in the
galactic disk would be lowest non-axisymmetric mode.Growth
rate predicted by dynémo model of Baryshﬁikova et. al.
predicts smaller growth rate for m=1 mode.The dominant mode
in the dynamo's are axisymmetric.Ilntroducing modulation of
axisymmetric disk by spiral arms through cos(nCF)(nZZ,
corresponding to number of spilrals in the galaxies) and
also by tidal interaction by nearby galaxies,

Krasheninnikova et. al.(1989) have at least brought the
growth rate for m=1 mode closer to m=0.That means in the
galaxy the number of ring and Dbisymmetrric morphology

should be equally distributed which 1s not supported by

observations.

1.4.6 Feedback Problen

All the dynamo theories suffer from this problem.
Feedback of magnetic field on the fluid 18 assumed to be
negligible. Energetic arguments (Zweibel,1987) sugges? that
this 1s mnot the case. Feedback has been shown to be very

important in models of the solar dynamo (Gilman,1983).

1.5. Stability Analysis

One knows from the observations that ionized gas
component constitutes 3 to 4% of the total gas content in
the galactic disc.Therefore,the study of the magnetic field

on the dynamics of the system 1s of interest.Stability
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gnalysis of a mggnetized disc 1s of great importance for
the evdlﬁtion of the magﬁétic'field itself.

The effect of the magnetic field on the dynamics of the
galaxy has ©been studied by several authors.Below,we enlist

some of themn.

1.5.1. Hydromagnetic stability of a thin self-gravitating

disk(Hosking, 1969).

The stability of a thin, differentially rotating
magnetized, self-gravitating cold disk is considered. The
dynamics of the disk is described by the following MHD

equations (in cylidrical r,f,z coordinate), valid for z=0.

L T I R ) -0
ET L (rowv, ) + (6U¢>J M

ot O~ ‘;)‘P 6)
X% : 0N ~ J x B
= (VAN RY = & ¥ + 1
2 L yivu) = e ug
(7)
r'j’ B
wa ot = S? X V> x B
4at -—
(8)

and Maxwell's equation :
V.p = O
T B :://n Q g (2,)

Where 6“(r,% » t) 1s the surface mass density of the gas,

- . 4 is its material velocity
y \’Y' LF/ 1) = (M.Y} U‘F/ O) ’
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?é Cﬁ; ¥, Zz,jt ) is the negatilve of  the
gravitational potentigl, 2 = (-)y, J‘P/ O )

is the surface current density and @?(V‘P o i ) is the
/ / 7/

magnetic field.
First equilibrium with an azimuthal current was

considered.With !*;: ( @/ V?, D_> , \RP ~ pd) (7’ ))

96 = ¢% (v, 2) s .@ = ( qu>t)’ Eszw)

Equation of motion (7) can be written as

-y 02 = ¢?£?° ¢ Jo B
22 /2 - o ¥

. Mz)
O = 25; 2= 0

Perturbing over the above equilibrium,linearizing the

MHD equations (i.e. retaining first order term only) and

expressing the time dependence as xp(hat)

and q)
p(imt'f)

dependence as and applying WKB approximation one

gets the following dipersion relations.

L 2 .
(M.Im'msﬂ) - k ¢.<'?'\:GO k - (Bi’z )k?@

2R
(9)
K /M“%SE&?:> k - WAY (bdvu.ﬁle:) = O
hrey : (10)
6
where, fi‘: “?fl§1aﬁ is the gas fraction of total

self-gravitating mass,G-gravitational constant,and

k2= [ 40 i 1+ (35 ) I s
. Yo R



Wheré,R,is the reference radius.

The growth rate of the instability 1is the negative root

of B .6. Z B, )

F{ o?hgo

‘+1[(.‘2ﬂn (Ry 60)‘& KA ?7&0 ) K/h )

which exists for all the radial wave number k.In particular

there 1s instability at wavelengths that are neutrally
stable according to gas-dynamical theory.

When equilibrium current is radial, i.e. dinitial
equilibrium state is described by & = @b(q) 5 “;Z?C{ ’U?:

ST, 3y s dole) L B= (0 By, 0)

F

From éfy(yj X pone has "

JD1 = Y

where, the constant may be considered to be the strength of
a current source located at z=0., Reference to Maxwell's
equation shows that
o B
i 2 /V,J (2)
(9'2
and o ;
~1 ”__'CL -\fy B\FD - O
D .
From where, S G
4 v N AN AN
B&F__ ...:2/%\)07 g &
The mnontrivial 1linear perturbation equation at z=0,

derived from (8) is
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Where, use has been made of the fact that B v and B
suffers a discontinuity at z=0.

It follows that one has to solve equation (6) and

E TR SR
o4

on z=0 together with Poisson's equation for gravitational

potential ¢5. The problem reduces to purely gas-dynamic o§é

treated by Lin & Shu(l1964).

Stability analysis considered by Hosking is not éelf
consistent since Ohm's law (equation(8)) has not been
considered properly. On thg one hand, while the
differentially rotating equilibrium disk assumed by Hosking
would be inconsistent with the equilibrium Ohm's law,the
Ohm's law is nevertheless considered for the stability

analysis. No justification is offered by Hosking for such an

apparent inconsistency.

1.5.2 Effect of Poloidal Magnetic Field on the

Stability of a Rotating Self-Gravitating Disk

A stabilicty analysis of an 1isothermal, rotating,
magnetized equilibrium disk has been carried out by
Nakamura (1983, 1984). Equilibrium state consists of
Spitzer's(1942) density distribution fi{ZJ which is
assumed to rotate rigidly.The disk is threaded by a uniform

A
magnetic field B = E% Z . The equilibrium in the radial
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direction is not due to forces but dué to'the homogenelty
in this direction.

In this model, the physical equilibrium quantities are
unrelated. There is no equilibrium condition 1n the
r-direction.Therefore,its ﬁot a correct model.

Schmitz(1987) "investigated the behaviour of a rotating
self—-gravitating equilibrium configuration with
inhomogenous magnetic field and pressure gradient in the
radial direction.Rotational velocity 1s consistent with the
Ohm's law (equation(l0)). The stability of the sytem is
investigated 'by the wuse of marginally stable axisymmetric
perturbation.

Schmitz's stability analysis 1s mnot correct since
erronously, he has dropped the radial component of the Ohm's
law and then wrongly concluded that radial magnetic field

doesn't enter the equation of motion.

1.6. Profile of the Present Studies

From the above discussion 1t is clear that while dynamo
theories have been made to fit observational bisymmetric
spiral patterns, they are incomplete and not quite
consistent from a theoretical standpoint.

A conducting medium moving across the magentic field
induces an electrlic field which generates a current and
this in turn modifies the field,which in turn modifies the
motion of the fluid, the fluid motion 1itself is being

modified by gravitational field.Therefore,a complete theory
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.of the interaction of the magnetic field andv lonized
g%avitating » galactic matter - must be considered
self-consistently as an eigenvalue problem for the
perturbation of the equilibrium diék with a given current
density distribution. Solution of Maxwell's equations the
magnetic field, inside the disk shouldibe matched with the
solution outside.The system will;in general,furnish complex
. s
but discrete eigenvalues for the frequency of the magnetic
field perturbations, the real part of which will be related
to the pattern velocity of the spiral and imaginary pafts
will give the growth rate.The corresponding eigenfunctions
would furnish the eigen—-patterns in the disk for the
perturbation.

It 1is clear that this proper solution of the problem,as
outlined here, will automatically obviate the difficulties
(1.4.1, 1.4.3-1.4.5) pointed out above because they relate,
in one form or the other, to the absence of a proper
self-consistent solution of the problem in dynamo theories.

The large scale primordial cosmic magnetic field which
one mneeds in magnetohydrodynamical treatment of the problem
is ~ 10~9.Growth of this primordial field should be caused
by some instability in the disk.

In Chapter II, first we 1investigate the eigenvalue
problem for an inviscid, dincompressible, infinitely
conducting fluid for which Rayleigh—Téyior mode is derived.
Dispersion relation 1s recast in the variationmal form and

we have obtained the axisymmetric solution.Next,we study

numericélly the allowed eigeunmodes of a magnetized gaseous
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disk with a general equation of state aé an eigenvalue
problem with appropriate boundary condition.The natural,
discrete eigenvalues and cérreaponding elgenfuncitons have
been obtained with m = 1,2.The mégnetic field perturbations
have been plotted in 3D form to shoﬁ the allowed pattern in
the disks for a number of radial wave numbers.

Chapter III introduces briefly fhe numerical methods
used 1n the study of the global modes in the disk.The
stability and reliability of the results are discussed. ’

Finally, in Chapter 1IV,we discuss the salient features

of the present study and also future directions.
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CHAPTER II

AN INFINITELY THIN MAGNETIZED PLASMA DISK IN THE
GRAVITATIONAL FIELD OF THE GALACTIC BULGE -

A SELF-CONSISTENT TREATMENT

2.1. Introduction

As was described 1in the previous chapter,theories of
galactic magnetic field suffer from sevefal difficulties.We
think that most of the difficulties stems from the fact
that they are kinematical 1in nature and a complete
dynamical treatment, we Thope,shall remove the difficulties
encountered by them. Therefore,it calls for a complete MHD

analysis of the phenomena in the galactic disk.
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We shall be considering the dynamics of a thin
magnetized plasma disk with a central bulge in a
gself-consistant manner as. an eligen-value problem iIn

anticipation that the different ﬁagnetic field morphologies
will turm out to be the normal -mode. of the system.The
magnetic field morphologies should be the outcome of the
dynamics of the system and that they should draw their
energy from the gravitational field of the bulge.Rigid
rotation 1s the only permissible solution of an equilibrium
induction equation. As was noted in the previous chapter,
differential rotation of the galactec disk and finite
electuvlcal vedlolivity of the loulsed mutter are the
paramount condltlon Fuy a palavile dynamo to FTuuetlon and
we hope, dynamical treatment of the problem (i.e. coupling
of magnetic force with the gravitational force through
motion) will give us the different magnetic fileld
morphologies as the normal modes of the systems.

We first study the magnetized plasma disk with a
central bulge with the assumption that the fluid 1is
incompressible. We derive an eigen~value equation for an
incompressible plasma and see that fluid is wunstable
aganist gravity. Rayleigh-Taylor instability exﬁis in the
disk 1.e. top~heavy arrangement is that of plasma density
gradient supported by magnetic field aganist gravity.
Ultimate source of energy turns out to be the gravitational
energy which causes the growth of the magnetic field.

Next, in section 2.7, we consider a more general

isothermal equation of state and recast the whole
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eigen-value problem in the matrix  .form and solve
numerically the general eligen-value problem.Thé eigenmodes
are considered. Eigenmodes and eligenpattens have been
analyzed. |

We discuss the basic magnetﬁhydrodynamic equation in
section 2.2. In section 2.3,we consider the equlibrium of
the disk. In section 2.4., we describe the normal mode

analysis. Section 2.5 discusses the instability and it's

P

growth rate. In section 2.6, we recast the elgenvalue
equation in the variational form.In section 2.7,we discuss
a more general equation of state and derive a deﬁsity
distribution consistent with the equilibrium of the system.
Section 2.8 describes the non-dimensionalization of the
different quantities. Section 2.9 discusses the Maxwell's
equation and related with it the dispersion relation.In
section 2.10 we discuss the general matrix formulation of
the problem and finally, section 2.11 describes the

numerical results.
2.2. Magnetohydrodynamic Equations

We study here the amplification of the'magnetic fleld
perturbation in an infinitesimélly thin magnetized plasma
disk with a central bulge.One knows that only a fraction of
the galactic matter is in lonized form (™3 to 4%) and rest
of it consists of neutral component.The ionized and the
neutral components in the galactic disk interact via

collisions which exchange momentum and energy between them.



- 37
It 1s assumed here that fon-neutral coliiﬁidn 18 negligible
since their frictlional time—-scale 1s.typilcally short (6x105
years, Spitéer, 1968) compared to the dynamical time-scale
(106 years or more).Therefore,we consider a disk consisting
of one fluid which represeﬁts the ionized component.

It is further assumed that the plasma in the disk is
charge-neutral, since for a typical wvalue of electrical
conductivity & 7 10"8 s—.1 and 8 ~ 1, time of charge

3

separation ~ 10_8 s.Because of the charge neutrality

V.d =0
i.e. currents must flow either 1in closed 1loops or in
infinitely long circuilts.

We must also assume that the plasma in the disk is
infinitely conducting, 1.e. G 2> . Infinlite conductivity
( G200 ) is a good approximation in most of the
astrophysical situations.The gigantic scale-length involved
in the heavenly processes ensures 1ts validity.Magnetilc
Reynold number describes the relative importance of whether

the magnetic fields are "frozen” 1n the matter or it

diffuses with time.It 1s defined as

N
‘\M ~ 5V /v~ L

Where L is the characteristic scale—-length,V-velocity of

the fluid element, ¢ =-the electrical conductivity of the

fluid and /M -the magnetic permeability of the vacuum.

Numerically,if G 1is in sﬂl,v in cm s—l,and L in cm,we have

Ko~ N 107 gLV

4%
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In cosmic plaamnﬂ,‘Rm nearly alwéys turns out to be
large compafed to .unity. For example,for solar convection
zone Rm ’”108;for an Interstellar HI region Rm ~103;for HIT
region Rm ~106. On the other hand,in laboratory fluids we
seldom have Rm>l; for example,in a vat of mercury about 1lm
in size,we might have Rm ~10—1.
Note that Rm is proportional to the product o [ .Hence
a large value of Rm resulting from enormous linear
dimension (large L) 1is equivalent to a large valueﬁof
electrical conductivity G~ . Thus, cosmic plasma behave in
much the same way as would a laboratory fluid with infinite
conductivity.
.One fluid Magnetohydrodynamic equations which describes
the dynamics of a magnetized gra;itating plasma disk,in the
infinite conductivity limit are,

G

¢

L()

i Su.
e
{]

{
1L
P erate
i

M
,1f+:)>(@ (1)

— 4+ Y. \fl—}‘.) =0

Dt (2)
E + Vx B = O
B (3)
Vou o = 0
(4)
VXY E = __”?j%
- 2t (5)

Y Xb :Z/V\Q (6)
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Vep T O o (7)
Equation (1) 1is the momentum balance equation,with
tfv—the mass denslty and VY the mean or macroscoplc plasma
fluid velocity. The plasma is assumed electrically neutral
and the particle pressure ténsor is assumed to be a scalar.
The time derivative here is the total derivative, taken
moving along the fluid.
R R g

~—.» - »k ,£ .+ I [

Equation (3) 1is Ohm's 1law in dinfinite conductivity
limit. It shows that E has no component parallel to B.
Secondly, v; , the part of z‘islperpendicular to B is given
by E X B drift.

Equation (4) 1is the equation of state,which tells thgt
fluid 4is 1ncompressible. We assume this to be the case for
the present treatment.

Equations (5), (6) and (7) are Maxwell's equation with
the neglect of the displacement current.

By taking curl of equations (3) and making use of
equation (5), we have the -equation of inducﬁion in the

infinite conductivity limit.

=1

= - Yxvxh =0 (31

Meaning of equation (3') will become more transparent, if

one considers the change of magnetic flux q;,



(8)

S 48 a surface that movesa along with the fluld velocity
and 1s bounded by a fixed contour c.Rate of change of flux

of a vector field A thrbugh a moving surface S(Smyrnov,

1964),1is given by

Hence,

A S '?;B»\'zxw&]»d%

E \'5 2t . (9)
Equation (9) states that for a perfectly conducting

fluid the magnetic flux through any contour following the

material motion remains conséant in time. Alfven has

described the <consequence of (9) by saying that the

magnetic lines of force are "frozen" into the fluid.
2.3. Equilibrium for a Flat Disk

Spiral galaxies are known to be highly flattengd
structures with a thickness of typically 7400 pec and:a
radius R ~ 10 kpe, so that h/R ~ 0.04.They can thus be
modelled as infinitesimally thin.discs to the lowest order.

A cylindracal system of coordinates (r,%9,z) is adopted.
Since the disk 1s infiniteéimally thin,all the physical

quantitles are restricted to z=0 plane,i.e.

Pl oz, )= 0 (s )
T 2z, 2B

/
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Plv vz, 4 = plv,e,4) otz

where, & (7 Yo ; 1) (7, w, € ) are the surface
matter density and surface éurrent dénsity. 2 is pressure
per unit length in the plane of the disk.FurtH;f;
vo= (Ve o)
that, in a thin disk, material 4is confined to the (‘Y,Y3
-plane and hence U;Vgg () . Vorticity of the fluid is

perpendicular to the plane of the disk.Therefore,both the r

and %’ components of ( VxV) vanish.

<§7;< \[)LF = O

énd,
Vi v = O
(Y xv), =c¢
From where,one gets (since V; =0)
)
OVy = O
2
and,
0 Ve .
o7 ©

Therefore,

ve (Vv ey Ve (v 0, 1), 0)

Momentum balance equation (1) can be written as:

(QLZ)G” 2% + (V- ‘37)3;\] = »-Y;w SLZ) - 6“%(2')%{ +
+ J?’(&b(g)

Which after integration over z gives:



The contfinulty equation (2)

4y (fv) = o

likewise 1is

</

e ) A ‘e U 7 (2)= O s
Lg):_,‘: + ‘l'; L 37 (76 Uy) ~+ ‘e(qﬁU ) g( C

So that,after integration over z,it becomes

T

3 N ,'~'6'V~7:0
2, | 3 e ) g ()

The induction equation is

{1

2BG oy 0, t) IXVxB

e

ot

While the incompressibility condition (4) is:

v s Moo

D P

Writing equilibrium induction equation in cylindrical (r,tp,

z) coordinate




and using er% = 0,i.e.

:D iy
Tty 28

Plugging it in the induction equation,one gets:

B oY ’Vo ﬂ, Va
— + E) e T
" oY Iy Q .

From where,
Vo c vix, (10)
i.e. the only permissible consistent solution of Ohm's law
is rigid rotation of the disk.Taking into account the rigid
rotation of the disk and integrating the momentum balance
equation over z,one gets the following equilibrium equation.

2 ol .

"G, = - Z—fgo -~ g—;':/'; G, + ~)o~p1502

It was seen in the last chapter that the dynamos cannot
be sustained without differential rotation. On the other
hand as noted above,differential wgtation would require a
non—-zero electrical resistivity for an equilibrium solution.
"It would then "appear that no dynamo equation of magnetic
field would be possible with infinite conductivity which
leads to a rigidly rotating disk.We shall,however,see that
in the present self-consistent dynamical treatment of the

problem the gravitational energy 1is converted dinto the
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magnetic energy through the agency of fhe Rayleigh~Taylor
instability, band the rigid rotation 1s mno constriant.
‘Mugnetié perturbation grow even in the rigidly rotating
equilibrium disk.

To know the equilibfium magnetic field,one solves the

Maxwell's equation for the equillibrium current in the

gwg;(m;’ |

Using B = YA ,one gets,

following way

’g‘x(gxﬂ):/“-‘)— (6")

For azimuthal current,

[\7"/3]&() = oy

is the equilibrium azimuthal current.Solution of

(v) g (2)

J .\
where OT

the above Poisson equation is (Panofsky and Phillips,1964).
' | Ak’ dr’ f(kv”ff{kﬁéklz ') (n
'ALFVY'Z):‘ i )Y, Th)

With

Boy(% 2) = 7 D=2

- il 2)
b, (v 2) = 4 (ApG))

We see that the radial component of the magnetic field
changes i X =0 i.e. 2)zp)=0-0n the other hand
ang sign across z e %ﬂkﬁﬂa 0)=0 R

E%;(fV, 2:) remains continous throughout. Source of
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discontinulty of %r 18 azlmuthal current.Thilis follows from

integration of Maxwell's equatlon over .z

/ﬂ JO\F h) 6(2 ) - 896;7 n D__a_r_‘))?o,é

Integrating over z from z=— € to z=+ €,then yields

2 f% (W’ ) /q‘ Oy ( )

(12)
T € ‘
Since ' i~ n i€ .
. Az ~
Lim ('r Z)O/%N JZ“M 82(@75)5\.‘_0
£ >0 fé_
Writing momentum balance equation with

?%LP = () and

azimuthal current and rotational velocity Vb:ﬂyJ)

where the wuse has Dbeen made of (l11).Equation of radial

equilibrium,can be rewrltten as:

3 «G"I\(I - ')”le ~ - Cf’..};_o + 2 BD? BOZ
Ov| 2 ’ T ez

{

(13)

2.4. Normal Mode Analysis

As we have seen above, the equilibrium disc has an
axisymmetric poloidal

magnetlic fleld supported by an

azimuthal current density. This current density J_ , then

o



-
gsuports the imbalance between the.'pressure gradient,
gravitationél force aﬁd the inertial force. Such a disc
could be. Rayleligh-Taylor. unsﬁable to global perturbations
if there &exist inverted density gradients somewhere in the
disc. A global mode of mégnetic perturbation could thus grow
at the expense of the gravitational energy of the system
and could be identified with the observed global structure
if 1t has an appropriate azimuthal symmetry.To this end we
study the stability of the disc. *

We study the stability of this thin magnetized plasma
disk by using normal mode analysis.

Now, consider a non—-axisymmetric perturbation in the
density, pressurg current and vélocity over its equilibrium
values 1in the disk.Perturbation in current in turn causes a
perturbation in the magnetic field. We assume all the
perturbed quantities to be small compared to the
corresponding equilibrium quantities, 50 that a
linearization around unperturbed qu%}ities can be carried

out.Thus we write the net qu%}ities as

T19,8) = 6,00 € 5 (1, 9,4 )
Eve, o=kt e (nv, )
DG PR VAY) + € U (O, 4 4) ()
v, 4) =dul) v e T (e 4)
B (79,20 = Bylymrred G20

Where,

Tine+) = (0, 0)



vive, o= (8 0)
where G, b U ) and 13 represents the surface density,
to~ ) -

pressure, velocity, surface currént density and magnetic
field respectively. We recall that the velocity in
equilibrium is entirely azimuthal, and corresponding to a
rigid rotation,

Sub%}tuting (14) 1in equation (1)=-(6) and 1inearizing
and integrating over =z,we get the following equations for

the perturbed qu%}ities:

s, &(ﬁr' 03({)\) - 24 UL]D]p-)”ﬂu@V:.N{'f_f -~

o elr
-G (ii:f + 28y, b + 2 b, b,
LA (V,‘ [y\

- Ad ~ A—l’[_))l;i BC

) L | ) _ Do

— YAl 5
('B_{: + v »)\(:> AN D)- *Z:U ‘{

v e
0 Dﬁ = ’UT —DBUz‘. s
<% oS w) L"(’ L :5'55)2]: 91Q
(16)

2 0 2L~ L2 (vo, 5 Y+ 2

5t SO0y 2 Y [ 9 702 2y
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~ ] .
'l/(.Y) = - Q//” fo(y;()#>
where tilda denotes the perturbed qué}ities whereas index O
means equilibrium quatities.
The above set of partial differentiai equations (15-16)
involves terms with coefficients which are constant with
respect to Lf and t but depend on r explicitily.We can theng

fourier analyze with respect to the azimuthal angle'#) and

time t,and thus seek a solution in the form:

E(Yﬁf’,*): i\(“’) £X}"{“(“{“rmt’o)J (17)

r~

Where A stands for any perturbed quantity.The resulting
set of equations can be reduced to one ordinary
differential equation in terms of radial velocity ’G; ,
which must be solved as an eigen value ©problem with
appropriate boundary conditions.

In equation (17) TR is the frequency of the
perturbation and in general,is complex;m is the.azimuthal
wave mnumber. The frequency (O = 601‘+ CCOQ such that the

pattern-velocity 51}71 Covcn and Q% represents the temporal

growth rate of the perturbation.Using equation (17) along

with L ;Q (7'5;) — Eﬁf 6‘ » set of equations (15-16)
Y vy - ~ %

can be written in the following form:



Continuity

; ’ A - qu‘c i
;L ( Wy - YW 410) G~ + U‘f ‘w"’Y - (_)
Equations of motion:

""" - GN 23
Uo [ L(m— wﬂoﬁu .,))\QD/UK/Q ( ,,,J 0)A
~ - i).’. + ‘:) BOY 102 ;2 L 1502

S dn 7 ~
{ ~
B . LY ab B
. ) i 2 e V™ ) R Al
6ol b (o0~ e Qo U\f 4+ 243 Y [V‘

Induction equations:

Lo T~ 7y J ) : '
e = 3, (v 507;)‘* AN
A0 ) L,,T, - ,,BM% ( y}\p)

/;LW Wy ) b”j b
(18)

Pressure &’ is eliminated Dbetween the ¥ and VD

component of the momentum balance equation.Also using the
~ P

induction equation (18) to eliminate LV’ lzand %ZWe get

the followihg differential equation for ,

2 2 E’O'Y «:“?)og
“l(W tO»?leo) -+ /V‘fo Tv -+

o

"2807 ((’% oD

+l'~§{—~w('\1)q) ( (L\)»W\ql) <') o!_'fu + 1) 4,\50 ,,1 _
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RAEN g;’

o N ) (19)
dov (&M 2 Y o 2By ol [ =0
e — /’)\j o S .y T
d? Y , /MG& A

2.5. Discussion

\ P -., 2 cgﬁb\) )V\’J) )'yQ L"Sy
K"i) (v 0 )| (bo-mn ) o 2L i I rodss
1
&5

If for simplicity,one takes T’ST =constant and A AG&(( j
] Y s ..T

v oy

then one gets

' 2 of 2By AR
(w.-w\ 107 - - é—_ L(é{é @ 4 /mt;rc o? (209

which can be rewritten in terms of pressure gradilient and

magnetic field equation (13)

L e dbe, 2P d b

2
QP"7“J10> - 7 o 6@/% So

(21)
Relation (20) determines the stability of the system.
Writing .y . €O, ﬁco; » the time dependenece of the

solution is
E‘XP [L (o\)y{ A )J ~ [:KP[”Q‘*LI . Ea P[“’\tl

and hence perturbation grows and mode 1is wunstable 1if

£ Q- From (20),it is clear that,for instability

i (o) CE (S0

(‘V\OD




or,from equation (21)

( W ;‘ 1 —'5—25

Therefore,growth rate is given by

jA

—

(x{“)}; Y N N 9‘?&07 06&()2}
TICRon

.711

From 'the above expression,we see that the instabilility Zrows
faster for large positive density gradient.First term in
the expression for the growth rate 1is density gradient
times the imbalance of grvitational and centrifugal forces.
As the matter spirals towards the bulge,amount of energy
released is proportional to the imbalance of gravitational
and centrifugal terms. This energy 1s converted Jinto
magnetic energy by twisting of the field 1lines by the
infalling rotating matter.

Expressing through pressure gradient and magnetic force,
from the equilibrium equation, the imbalance of

gravitational and centrifugal force, one gets the growth

rate as j/ |
» / : 2
| Liéb :)_( ;9(_‘ 2 070)’ _”l ( ?UE )
—, e T dy g
6> <y dy ("

l.e. instability grows faster for the steeper pressure
. L LT
gradient. Assuming _T: (§L5b and taking C5 = 57 X lO3 cn/s

. ) 2 -
and G;/ = 11 X 105 cm/s for HI and HII reglon respectively

(Spitzer, 1968) and corresponding spread of thils region to
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be L ~ 3 x 1019 cm and L ~ 3 x 10%0 Cm,one gets the
HI HIT ’ .
growth rate
Lol . ) ~ (g : =9 ~1
\1%(@ ~ ) N - AT Y
- hr Yeﬂiov\ R '
Therefore, for over the galactic life time =~ 1010 Yr field
amplification ig ~ Exp60. For ¢ ~ 108 Yr ffeld
galaxy
amplification ig ~ E 6 '

Xp "7 times only,

o

In ! bl 8 «-1
.L'm(«;dg - md),) ~ o Ny
By Y28ion
Over the galactic life time field gets amplified Exp100
times. In the

case of high red-shift (Z=4) when age of the
~ 1,8 ~ (1-2)
galaxy was 107 Yr,field amplification Exp .

A simplification

¢an be affected in €quation (19) by

invoking a WKBJ dpproximation and writing

Ay = A0 Exp [kj Kiv')olv’ ] (22)

Assuming A Uy.and
write the

éxXpressing S ag in (22),we can
dispersion relation, after simple algebraic

manipulation,in the following form:

' ) ‘ | | AB,, ol s
Q“O”‘ ) (\kz* LR (YC%’MGO)] + K Oy <o



- I'rom where

2 "29) “ Bo¢

(&aw W\Jlo\ = vxb g ko - Loﬁ’

and from equilibrium

Bov olBz - GM (,_'l'; dse 5 ) A
Poo e = BR(RG )
‘ v b
¥ § . .
) @ol < . Eir: - 1) Fe, dre

Therefore,

@o--m@o")zz - K ls: Z<@~L’f A2,
kﬁ;)w- Lif'\; S 60 d,y'y
- c’77'3’0& J’%a)
(“ A

Growth rate is given by
q
) ’ 2 , . /vz
; k gﬂ -~ 1, drh» ‘)&D? Aﬁoi
) __"Cl‘y‘ '{" 6;\ Ay *+ - N CF
Koy ~ 1 o © |

e

oo e ,for the short

We see that as >

wavelength, instabllity grows very fast. Magnetié firfd

growth is caused by the infalling matter towards the center.

The above study indicates that the density gradient of
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the d{onized gas In the disk and the preésﬁré gradient
causes the growth‘ of the magnetic fleld in the disk.Field
draws” its energy from the "density and pressure gradients"
of the gas.Steeper the change in density of the gas,faster
‘the instability grows. This iﬁstability should have been
anticipated on the ground that in the galactic disk,the
arrangement 1s "top-heavy" of a magnetized plasma against a

gravitational field.
2.6. Variational Technique

We now come to a technique that 1is often used in
stability analysis. The technique 1is to construct a
variational form of the eigea—equation (19) since it is
difficult to construct even an approximaté solution for it
as an eigenvalue problem. We need to usé a generalized
variational technique, associated with the eigenenergy of a
system to the eigenvalue equation. Followiﬁg Moisewitch
(variational principles), we should construct our eigen

equation in the form:

Lg: /\\[\’lg
(23)
where L and M denotes differgntial operators.Introducing

adjoint operators

(24)

K ~
where the adjolnt operators L and M together with the

——

adjoint solution & 1s defined 1in such a way that the

&
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relotions

Sngalt :-(Sﬂé'o/‘( _’!.EM‘S AT :.SSM g dr (25)

are satisfied, the integration being pérformed over the

volume.

Multiplying both sides of (23) by S and integrating over

ylelds
V= ale] (26)
where,
j@LSo’r
i[s]= “ro—
S T M S dt (27)

The change 1n ;i[S] due to infinitesimal variation SS and

% 5 in § and S respectively is

N

05 Mg dt + I[SJJ'S‘MQSJC:

015

«

- SEELSJT‘FSELQSJf

gMsdr + I[s]

(0,1 AP . Sw NERE
neglecting VDS) qu%%itles. Provided $§ and o ¢ satisfies

appropriate boundary conditions,one can put

. N AR — ‘

KBLXSAf :,XGSLS dr
and . - -

géMSb(lf :.X GSMLSNE

and thereforé _ - - TRy
) o5 (Ls-amsrole SM,(L%/\M»" Jol

Ssmgely



We know that S and 8 are solutlions of (23) and (24)

respectively,

From the above description of the variational principle,
its clear that we mneed to reformulate our eigen-equation

%

(19) in the form
L = A MG

Let us denote

s

S = vy, N (60w )

and Fa,\ pa &w’ d Ja sthen (19) becomes

/l/\ 5 ‘U J ,).

c Y <ﬂS - o
T e ] e d e k] -

2 ’ O .
(= ) S A~ LONA ¢ sy N ds ([ 4/_'_0 2848, )
v N 011 So 0 o 5t ely nr'y - - B

Denoting by,

’{'f 4”0 ZKB
o d ey > L : ( ?]
IR Y N o o

-

¥
;i ihj\<:1 »We can rewrite the eigen—equation

and assuming
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in the form (23). Differential operators L. and M are not
~self-adjoint and hence equation (24) can not be satisfied.
To make L self-adjoint, one multiplies L by 1/r.
~ L. )
Therefore, L= '/1 « But M/r 1is mnot self-adjoint
operator,and to make it self-adjoint,one assumes that

: 2 Boy o Bz 1
v)= 2T TS
;2( ) MGy A T

Then,

and,therefore:
~ /'\-'.
L5 = AMS

Equation (25) is automatically satisfied.In our problem,

which possesses cylindrical symmetry,(25) can be rewritten

as
QBLS vyl = SgLS'Y‘y("
and, v
ggMS?cz('w = gSM‘S v oy
and, - .
551_37&’7
T N oYy
_)\:.IL-"):I J_L&J |
’ (EMSW{‘
We have to guess a function S = g OLOQ) and from
extremum of the functional j:DAJ yle.en ’%55 = () one should

find 03'5 .For m=0,we have constructed such a solution



"Plugging this solutilon in (25),one gets an upper bound

. 2-
on x T.ee on (- w4 )
A< a2y
or . o [.) -
6014,_4.i5‘}3(10 Y

For axisymmetric mode,a solution of the eigen—-equation goes
to zero at the origin and at the boundary of the disk (Fig
2.1). An upper bound to the eigenenergy gives the minimum

growth rate of the axisymmetric mode.
2.7. A More General Treatment

We study the equilibrium of a thin disk,as described in
section 2.3, with a more general equation of state.We have

assumed a polytropic equation of the form

P=ca
(28)
Where, C and 2{ are constants.The acoustics velocity in the

disk 1s given by

O‘P _ -1

The parameter C represents the measure of the randomness or

"hotness” of the gas and 2§ is the polytroplc index for
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two~dimensional systems. Equation (28)'cah be related to an

ordinary polytropic relation for the three dimensional

medium of the form:

1 = }'< f’

Where 1 - and j? are pressure and volume density

respectively and K and (X are constants.Hunter (1972) has

obtained the relation

% Y (2 ) )
92 - Vet [’(5‘/0(, ’/«)

Yot

.5’:: QL f; , C =

(29)
by taking a limit case of an infinitely thin disk.Here
k,

is a gamma function.Thus,the case with r=1 and r=3 in

equation (28) corresponds to the equation of state (29)

with A = 1 (isothermal) and o = < (incompressible),
respectively. From equation of state (28) asumming
:§ = 1 : (isothermal case), we can rewrite

above equation as:

. . " L
cloy G r {2, _ 455802
- Y N - T - —
A (e
(13")
Solving above equation, one gets the self-consistent

expression for the surface density in the disk:



‘ p % G
~ . 1 ) . &N N 2 -~ @jﬁ -
So (’1') = ?/M [2 }:"PQ@? + (%%;) e 265 o X
. S .
. . 'o
® By, Boz ot (30)

Equation (30) ~can be émployed to construct some models
with special current density distribution in finite as well
as 1infinite disks. We have considered one such model in
equilibrium, before studying their stability against various
perturbation. ‘

For regular current distributions,such as
L
\ (q) - g\lu( R 4 R* LA thh
Yo

! O T 7 R
z—component of the magnetic field is found to change sign
along the disk.The circumstance is not occasional:it may be
shown (Freedman and Polyachenko,1984) that,at any regular
current distribution, the field %z necessarily changes sign
at rSRd. This fact happens to be important in the analysis
of the stability of such systems.It is very easy to prove
that for any regular current,%z changes sign.We use for JOW

and Boz somewhat different representations:

s |

— C " 7 )

Yoo = L 1-E 2 A
W rb/ 4

A

Boy = 7 L B0

where,



WL ,J 1~ -*  H LP ! (71—) is the derivative of the
mu 2 ‘ . _
Legendre polynomial. In the expression for current and
magnetic field, n=0 term 1s not considered,since it would
correspond to singular term.This can be proved by rule of
contraries, i.e. assume that Boz does not change sign on the
disk,say BOZ>O.Then integrating BOZ from 0 to 1 over dq'

1
Z(“z)’) P

3 t;'.’)nSle)

0 4 } BU‘Z Gl'& = _/—1;‘ Z—%QM S’ P’zw("fr(v; 2?“’}01
’ v

0

L J)n<1 TL)_B ”L)) —~ 0
= L)h(?ht’l') O

Thus, the component BOz of a self-consistent magnetic field
ought to change sign on the disk.
It is clear from equation (30) that integrand

. _( Pezt . 6w
B,B,, € 260 ok

0y

will change sign along the disk making the density
unphysical. Therefore reguler current distribution can not
be taken as equilibrium currnet and we take the current
distribution of the following form (like Yobushita's,1969

density distribution)

. (24
Z) (v ) = Ly Z ap 3, (k) v v Ry
o - VR
O Y E’{"\R
b .15
Where R’ are zero's of the transcendental equation

‘T‘ ( k) Re'{hh ~> = O
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to ensure that the surface current density vanishes at the
boundary of the disk.

"We consider a particular current, with j=1 and aj=i.
tzt 3.5 31+ is the first =zero of the Bessel function.
Plugging Jof(mhzjdq{my) in the expression (l11),one gets the

vector potential
. ‘%aic4m . ) '~kd2]
ADLF(',: IZ’).: (3‘&'0\)'(’(0'7) e
From where,

i, Lo L
SRS S AT

2-0 - . 2
and e '
’ ,)) — (,‘L‘__J ¢ JO \RD'Y)
LDQ \?'20 2
From above expression for BOr and Boz we see that
3 2.0 . .
integrand Boysz_GX{’— {EJL.~ Gm is positive definite
‘ : -2('51 C)Lué

throughout the disk i.e.:

2 ew >
Bm)z\oz ex P 2t " @“\;J al’ﬁ //'O

-

The formalism for the above current density
distribution, may be extended to other current distribution.
We have not taken any other current distribution since the

computational time required even with this model is large.
2.8. Non—-Dimensional Equation
Non-dimensional function

Srey P19, 81, et and V(%) are

introduced corresponding to the surface density,pressure
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current density,magnetlc fleld and velociﬁy'as follows:

\\/) L 1"\..\
Gt = (F5.) 6 k) \
2.
Ply) = GM ol
( 2 123) ! 1)
y
X B M C’ PPN
M R () Ty
I
NZ7EA
M am r 0|
B(v) = 'EG< me)TBR) (31
o, ] ‘77) A
an GM < S
d Viv) = kﬂ——Rﬁ) v (%)
where -igr %jd ,Rd is the radius of the disk and M-mass of

the gravitational bulge.The angular velocity is measured in

non-dimensional unit of time

- _f«’,_M 3
- ( R") t

(32)
Substituting equation (29)~(30) in (1)-(2) and dropping the
N\
cap from él P etc. and writing ¥ for “§ s 4
/
for 'r ,one obtains non-dimensionalized equation
jocp(_Y) = Jl(ko7)
5 vy = I, ( 07)
O7r s
]
5 _ T (kM
by (¥) ————
oA
and 4 )
+



A

The above density distribution for J), = 1, x. =
3. 85> , has been plotted in Fig. 2.2.Using (31) and (32)
in equation (13), the nonﬁdimensional radial equilibrium

equation of motion becomes:

-

!92 ' L Aoy L 2 Boy Bp2

= - - . + =
Y So v+ 6
O

o
The central bulge has been assumed here to be spherical

and contribute a term r_z,at the plane of the disk in the

above equation.

2.9. Solution of Maxwell's Equation and Dispersion

Relation

Maxwell's equation (6') can be rewritten 1in the

following form:

. w2 3l : : oo
! %\q %’5‘) _ <7) Falt . (LMJY)W)?

b2 (28 - ()a +5E = 000

D2t 33)

where,
- = AY"% CA%
Q= Ko Uhy

(34)

and without loss of generality, one can assume Az=0 i.e



Integrating equation (33) over =z,one gets the " jump"

cohditlon:

(b ~LL»V-)
0 2 2= o

2 b"‘f "t (07) (35)

where wuse has been made of the fact that radial and

azimuthal component of the magnetic field suffers a
f

discontinuity caused by the azimuthal and radial current

respectively.

Solutions of equations (33), in the disk (r<l) camn be

written as

)
~ = k2
'F(% 2) = N tqw J#”,LkWJ
’ R =0
L i o k12
QKW/Z) - Z— -)’yp J’)V\‘H (ky) CJ
koo

Qutside the disk (r>l),equation (33) becomes Lapalce's

equation and thelr solution can be written as

Flrzy = 0 By N (ke &7

-kl
Bl12) = O B Ny (K7) @

Plugging the disk solution for F(r,z) and Q(r,z) in (35),

multiplying both sides of the 1st and 2nd equation by

J (k/r) and Jm+1(k/

-1 T) respectively and integrating over
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rdr from O to l,one gets:

4
E\M( ;» ‘2 3 ( - iby) %n»l(kv) !Yd')/
0
and — v
Dk = T Y b 11b) Dy 0741
e .
)
Where ~ -
1.2 Lo k)
, i~ : .M, = Y \ J
‘\4 ~ % l AW\R) ;}/ ’ ! 2 [
From (34),one gets A
| . Fo®
F 48 -
A

and therfore, one can write the solutions of Poisson's
equation (33) 1in terms of vector potential in the disk as

follows:

o L) [t s B9, 0] 2
AR S
k;o\)\ ‘ . (% )]éklff
ﬁ? - : Z:[;D%nj%+\(k73 a ﬁW)j%G‘
2

“ RkR=zO

outside the disk(r>1l)
kr) nl%l

LB [N D N (k] 25 Z
1T 7 a =0

'\\ = _2;_ 2‘ B,m LNM \kY) - Nw\ ,kk“f)]
f = Rz=v

From the above expressions, magnetic fields d1inside and

outside the disk are for r<1l

2 K LD g, (ko) - B Ty W)]
Ja,
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o
b(f’ ’z?] 0: B }5 Xk [D”’ T,W\_”(k'y)f &'W\T%-| (k')‘}
O | (36)
£ 2 R (Dot E) Glky)
Bzp .
for r>l
A o -
PRI R S N R Ny ko) |
\"3|’50 | <B=RY)
b, Mk f
- 7
LVhﬂiﬂm K koo
5 - (37)

balyeos * L KBaNm(kY)

kev o

Inside and outside magnetic fields should be matched at the
o~ ! ’ N
boundary of the disk,i.e. r=1.Matching by ’LyﬁP and L;z

respectively,one gets

I>W1 Wi | \\‘\j - EVW Y - ,kk')~ =2 Rl (‘ Qﬁ)~ thAk?>

; " _ Dy ‘
D, T (K 4 BT () = 2 B Ny ()

(D»wr g,) T k) = & B, Nm(k)

(38)

Expressing from the 1°% two equations C, and A in terms of

B as:
m
™ NW+AK)
“‘D‘W’: - v "‘*::\\— ----- S
)W\»H \k)
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and  pluggling 1t In  the 3rd equution'of'equutiou (38);0one

gets a dispersion relation:

Nowy, (kY 00y (R B () 4 Ny 1R By (R 8 [ KD
; -

« N\ R) DL ()00 (R) © 8 (58")
From where, one gets the following dispersion relations for

different m-modes:m=0

Rkr =0

&

No (k) To(k) T k) Ngl k) T, (k) T(0) <2N k)T k)
2(k) Tk )7 [k )+ sl a 1]70’(12) :O.z

Na(k) T (k) D () + N (KD T (k) T, (k) - 20,(%) B k) x
The zeros of the above equations have been tabulated in

Table §g.1.
2.10. Global Eigenvalue Equation

The set of MHD equations (1)~(7) can be written in a
more appropriate form to allow someL simplifications in
equations and consequdént reduction in the compﬁting time.We
add and subtract r and iF component of equation of motion

to get the following two equations involving the quantities

~ e~

and V- i'Ubf

R T T
oY (U\V". LUf ) + 2 ( v, +t L\f) + .

N BL.:,< [ oucbh e 2Bar ]
B . — , ) " & |/ -} 4 , b - ‘)'I.‘-
;o( oy +'Y }‘) * 4 ‘f) 5
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. ~ LA JPN'&/} 4
W0, - Vg ) m —2l (- V) = -, ( e b )+

4 -?Pm'z( ‘[; '—thf) &fﬁv b,

S

Similarly, adding and subtracting r and Q€ component of the

induction equation, one gets the qu%}ities involving
~ \"" Y . Z 7
b +¢ b and by-ﬁ by

v f f

- ~ A C%Bay s
Ko™ r~ (4% N ) — /l)l oAb N
LQ(}@,’,+£E‘{,> - - E’%@/ Kr\),f% “)‘f) v —=
+ Li&by, é;#y T"%%"VV/)
fa 2 ’\' d/&o,(
o~ A R o~ e _ ~
Lo (by-thy) = - boy (W -tV ) =Y Ty

“ 9 d‘().\" _: :' l‘ )
- . b ( a Y '
Where,

VRS I VAN AN

Therefore, after rearranging the equations,as pointed

out above,one gets the following set of equations:

W e Ll () s, 7 ]

vl dy
l«)('{}v«,+i‘u§3:) + 93 (U, + zﬁf)»*r %:(i.tmw) = :
i A 39)
: - o 7 BBy
- kcLS};»<%% '+% )) + 02%2‘(&"”1 70)+ 'fo} =
N R e At A
CABer ([ (D) ¢ 8B T




2 V, + (Ve Yy a2 A By,
L0+ ) Y
c‘lﬁ“ w~
) LBM(TJ" A LT’)
L\) ’E) — LE - . P) / } v _ \C’(/ny
L& r) s oy (W) vy S

397

(40)

We expand the radial and azimuthal component of the

magnetic field as in equation (36) while the density and

La - . ™~ [ g A/
the quantities ’U; - 2 Uxf f and q)y—-Lljr, are
written asg:
<
& (v) = ZAW Jw“”)
Y=o
. o
~ ~ " . "’
'\JTY'* ’Lr\)‘\f = T ?___ B’}y\ "‘)—W\%' (k"(}
ko
5 (41)
Voo ot =4 L G I (k)
Y g
f k2o
Which yields for the radial part of the perturbed

i

components 'VY and Y

it

Ay = % )g B R (k)
Sf =5 2 B (k) = G (k)
From (36), R=o

&
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191 4 2 L)‘f - - 1 2 R ‘E)m@#_ (ke )
. \' . ?’Zk; ) . | r (36 ' )
by-tbe = 2 2 kDB, 5 (k)

- - =

Plugging (41) and (36') in equation (39)-(40),0ne gets

an infinite set of equations as follows:

: .“’V"” b

e e
v ZHM O (k) 2# L Sy \RY) (1 e
lK:u R

O

! l

+ 'B-fb ':)“%) ( kv ) ] ~t C’)‘ﬂ [ Aj’m-l (R"/) (
v)
o )

IS

L 0(6‘0", 6¢’y 4
2 Hy "t 7) |

X
V)

- ' 43)
- K s 'T%,‘(k”)')] -y (

B oo U2
(n-7) 'JP(M de {
<«U~; 2) Z Iy (k") + Z ”W‘ i}( 60‘ * g\ d’
K= k=0
A b ' S ky) -
TM“W) + .m,"k T - (KW')] -+ Z‘—'m %Uu Boz j'm--'( Y
0ot R o
0 | -
- Z r Bor (Pm E ) T (Rv) = O (44)
k=0 oo
~ WP k3 ﬂkw) F
2 A \
{92 ) G Do (kD) T g |
h:"c -0 N

ART ) 4+
BO%- h\—\nﬂ

Y tRoe e T (k)= O (46)

o £ c‘f{-L))Df ZL}? T (k) 4
2( R E 3% ' ('y“) 3 L&Uy )ZW Wﬂ, {ev) + 2 Ay D Ay
NS RT L
b g Doy, (?/\'“r')J N L"‘f%g) ;22: [B’qf’ “]k T (RY) = &0 Ry)j -
- G l] T p (k) Tor LK) 5 J = (4 6)
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o T
-y 2 R D W*'\q,w) " /BUZ (o T L (k) +§3 Z L
k= o Y R=c K=y
(S ¢

TS NI PURTES AR

K=vu

¢ 31 ; o ~ . - —
B AR SN QDR PR I S ' el 3 wﬁ]co @%)
Now, multiplying the above equations (43),(44),(45),(46) and

(47) by Y9 (L) Y T (Av) Y 3, (L) i, T (6)
respectlively and integrating over the disk,one gets the

&

following algebraic equations:

oo o< =
¢ SRS YR
t=¢ R,,Q = © R, L=¢ l-o
« oy = Co k(-
Q\Ma} ’ PD;% J 2 A5 Nt 2_ B €4 * Z})W Ok
o R, 2= o K, L=0 “i’; ’
l=g ™
ed “o
'1 - KKoA)
v o0 k , M NARA AT R SAT e
kVY\"ri’l) 24 wa + Z_ ﬂ‘m X F Zﬁ 1'7\/) R KZL;:W ks
) oy R, o K, =0 cé 0
— w 2/‘ J(m
Lz o
X oo Lo
~ - }‘/)\ K\) v K M _ > U
kit Z ng LBW (‘«m Z Con %M - (/OZ: o
<o K,Q”Lu kR, t=0 {=v
g
“J Sl Nk @) o
\™ 'K&’) ) / — (A.) D’
™ Z ‘J.)"f + - (e ('/'3 Re ‘4‘ 2: (”m X“Lﬁ 2—- ' 4%
=y RLQ:L R, 4 =0 v

’ dea WS,
A JYdV T (L) {Ww+l(ky) 2 dy Ty )*
0

+ &;_" J‘W,(RY)f

~ ” ) | v ’5 }\(o J}/
Lo = =i “Y"“%M'”{%m,(m) PR Tﬁ“f
e — Mi~ ]
: 1)



- 73-

BV A G A [Dp de ‘f««k 4
ol = o \ vy 3., (L) UI% + 7, (kv)
) | |
/ + gﬁ k 5;”__)()‘(-’7)]
g,%

&

(4v) By, T, (k)
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1

e ; ! Wk
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1
ey = —%ﬁ j valr 3, 147) Boy Jm(R7)
= 50
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/)L,R?”) SL y W )M? L . N ) liﬂ ’(?j
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The set of algeblaic equations (48) can,convenlently be

written in a matrix form:



; ) ) W .i‘ - -
1 m éhe ’th O v : AQ ﬁg)
, "
Kki W~ 2 O o ke Glu P)Q B 3
D((« ) e (iv) a C C
2) )
@ ))U) f,gl) ) n E 2
- P K v 1 L5e ] L e
or
—> —
M X = OX

(49)

which defines an elgenvalue problem wilith ¢O as the
eigenfrequency for the allowed mode of oscillations of the
disk in question and ™) ,the corresponding eigenfunctions.In
general, M 1s ~complex, infinité, nonsymmetric matrix,where
submatrices @3, e , ¢ are infinite matrices themselvese;?
is an infinite column matrix representing " the
eigenfunctions. We may note here that that the nonsyﬁmetric
matrix, M, cannot be reduced to a symmetric form by any
transformations.

Opne can attempt to solve the eigenvalue problem (49) by
using a sufficiently 1large, truncated form of M and X.
However, while truncating,the convergence of the eigenvalue

and eilgenfunctions has to be ensured.An anaytic solution of
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the problem is not possible and wuse has to be made of

numerical methods in order -to obtain the eigenspectrum.

Complex, nonsymmetric matrices allow{éomplex conjugate pairs |
i S

of eigenvalues. Complex eigenvalues are associated with

complex eigenfunctions, hence,introduce radial phase shifts

in the perturbation maxima at various distances from the

centre of the disk.Thus,in general,the complex eigenmodes

yield spiral like feature. g
Let us consider the magnetic field perturbation:

Cwanavw)]

1)4~LL T Re&;ﬁv) e
! ¢
where,

x0
£r Ty (k) = 2 (Ejress + g
’ koo

O (RY) = My 2Me

™M

: Sm =

M

0

Therefore,

\ LPL = \[(_H'F‘9 H{2 )ﬂ Cbﬁ(&)t~f~v.-aq>+§)[*r)

where, &0
Hy - - L.3;X'€a/p ™ (kv)
K ‘KT.O
ks
— y" . N i ’ kY
and ”L - P%‘A;;) F\J"W\‘Ly J,m" ( )

Hz‘/
cl(gﬁ") Tawt ( My
- 2 K3 y‘,. )
If the amplitude part [~HY + MLJ , 1s reasonably constant

over the entire disk,the phase part at any instant of time,

traces out a regular spiral for the maxima,described by

Cong tant

M g P =

and other spiral branches at angles shifted by ‘ijwl for
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m)O. In ‘almost all the cases,it 1s féuﬁd that the amplitude
part doés not behave smoothly with r, so .thgre are
gignificant wundulations. To study the allowed patterns 1n a
more convenient manner, we have plotted the PLW and 75‘f
glven by equation (365 as contour plots and
three~dimensional plots. The field-perturbations at a large
number of mesh points in- and oﬁt~side thé disk have been
generated using the eigenfunction in the equation (49).
Here, one may note that 1f the expansions in the
equation (48) for the perturbed quantity retain n terms,the
resulting eigenvalue problem would admit the nérmal mode
with a maximum of (n-1) modes in the range 0<r<1 and the
subsequent short-wavelength .modes would not appear. By
increasing the number of the terms in the expansion,the
values of the existing eigenmodes would be refined,as well
as, few more new short wavelength modes would be obtained.
However, before the results for a particular mode are
confidently dicussed, its convergence with i1ncreasing

dimension of the eigenmatrix Iin the equation (49) has to be

checked.
2.11. Results and Discussions

We have carried out an analysis of the elgenvalue
problem of a magnetized, gravitating, finite disk. A
particular current density has been considered.However,in
the formalism developed,any current density profile can be

constructed in terms of a Bessel series and corresponding



- 77~
magnetic field can be obtained by using~eqﬁation (11).

The rotational profile 1is shown in figure (2.3) for
different angular velbcity. There 18 no differentlal
rotation throughout thg disk and the material revolves
around the center as a solid. body.Equilibrium magnetic
fields B and Bz calculated wusing the equation (l1) are

r
shown 1in figure 2.4 along with the rotational velocity,for
a fixed angular velocity.Equilibrium density distribution
igs calculated self—cqnsistently from the radial equiligrium

in the disk and is shown in figure 2.2.

2.11.1. The Eigen—-Modes in Disk-Bulge System

‘'

The eligenvalue problem (49) has ©been solved with

suitable truncations of the infinite dimensional matrix M.

The convergence of the eigen-frequencies for m=1 and m=2

modes, as the dimension of the matrix increases,is shown in

table (2.2). The relative changes 1n real and imaginary

parts of the elgenvalue ;0 ,are defined by

I
Ly

. W 7
bxp @x a9

i1

Ay

w, |
Py

and
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where g<{p and p and q are the size of the truncated matrix.
Using data from table (2.2), we see for the leading mode
that

A, = 0-23528180 407 ; A = 01737623 £t

for m=1
Aty = 053609418 f+05 3 Ao, =021 29514 E+03
for m=2
thus, the relative error is mnot so small i.e. the

convergence 1is not very good.As the dimension of the matrix
is 1increased to larger values,numerical errors associated
with the eigenvalue routine become significant.In view of
these considerations we have adopted nt.= 75 for m=1 and
m=2. Thus, the modes with the number of nodes larger than 15
has not been incorporated in our studies.

Figures (2.4), (2.5), (2.6) and (2.7) show the contour
and the eigenpatterns for the radial and azimuthal
components of the magnetic‘field for m=1 made and for the
fastest growth rate. Figures (2.8) and (2.9) compares
eigenpattern for radial magnetic field as obtained from
60x60 and 75x75 matrix for m=1 mode.Figures (2.10) and

(2.11) show the eigenpattern for azimuthal magnetic field
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for m=1 mode with 60x60 and (75x%x75) ﬁétrix.Clearly pattern
does changés and hence,convergence is not satisfactory.

We - find the dominant unstable mode for m=l.Growth rate
decreases as radial wavelength of perturbation increases.
Dominant mode correspdnds to the global structure of the
magnetic field.

The pattern—-frequency and growth rates for the
principle (or the fastest growing) mode,with m=1 and m=2
are listed in table (2.3).In all the cases,the growth iates
are small as compared to te pattern frequencies given by

f)p(g - EE‘), and hence explosive instabilities are absent
- - wm
in the disk.

Let wus consider some typical calculations for m=1 mode,
for allowed pattern velocities are of spiral patterns and
amplification period.Considering a typical disk with a mass,

11

m = 2.10 MO and radius, R = 108 kpc,the normalization

coefficients are

)
TeMo T
@il = 595 km/sec for velocity

R
Y,

WTGTﬂ'} = 74.4 km/sec-kpe ( = 7.8x10—8

yr‘l) for '\

angular velocity

38 2

Here G = 0.45145 x 10 kpc3/Mo—Sec
The circular wvelocity at a distance of 8 kpc from the
center for the disk 1is

74.43 km/sec~kpc.

The growth rate&@i as for the fastest mode is:



- 80-

L , = 0.718324 x 10% x 7.8 x 1078 yr~!

1
= 0.56 x 1077 yrt
Therefore;Pam (amplification period x 10+9years)=
= 5. (K07 Yerss

As is evident fram the émplification period, the
magnetic field increases over the life—time of the galaxy
by a large amount (“6_10 ).It points out towards the fact
that the 1linear analysis carried out above might not be
accurate enough and one has to achieve the beiter
convergence to be confident about the growth rates.

The pattern frequency, and growth rate for the féstest
growing mode with m=2,are listed in table (2.3).In all the
cases the growth rates are significantly small ‘ as
compared to the pattern frequencies Jz}.Figures (2.12),
(2.13) and (2.14) correspond to the contour and 3-D plots
of the radial and azimuthal component of thé magnetic field
respectively.

We would like to remark that eigenvalue problems ing%he
form, discussed above,remove several difficulties pointed in
Chapter I and also, provide a natural explanation of: the

origin and persistence of different spiral modes 1in a

gravitating magnetized disk.



O e.Nuwm.

)
R4
-
Z
-
o
i
-0y

.....
ane
.
PER
e®
>
»?
»

------
-------
.......
re.,
*a
vy
“a,
.

g.812008

RADIAL DISTANCE

ﬂ, 6. -1

8 . 9cud



EQUILIBRIUM DENSTTY VS. RADTAL DISTANCE

{

O3 39¢ p=
l.. ‘l'
.- 'l S
- "
- . .
ll * "
- * y .
. ll - >
- - * N
\d L4 ° :
. >
1 ! - %. " :
o . <
< > car TR, - .
¢ 7 o AT * >
B . « Tde, [N »
ot » - l" L4 -
B . LTS «®
) . - - ‘e, . M
. K . -« Cronvel »
R .
Ve . i * y K :
4 * lﬁ ¢ :
'- e " :
—~ : ) !
«
» ¢ s
. . N
- \A - M
~ . < S v “ :
* - R -
5 » A ~ “ . :
N R4 } 0\0 - g
. VA . .
- . - »
= K -
— " . k :
{ 3 3 : ]
1S * - K :
L4 . ‘ .
X . - ® ;
« o
- 4 .. 3
—— - * ]
.
L Il K .'
A\ - "
- * i ;
. - " :
. .
» . »
» 'l K ;-
L4 » K o
> . v -
.l '. ° 3
. . .
.\ . - 3
1 h' 'D 3
.l * l"
] :
K . r~ \\W R
o bo . Tva
. . . A
. -
« ~n‘ < ™
«
» i‘ *
.l . I'
.
PR ~ .
.. “ *’
e -
33e? -t
S wnenat®
Aob A "h'r'-llﬁl‘illillb"‘l"

O.
°T o oiooe
RADIAL DISTANCE

T e AR e e T e o R o e e

ReJ(2-2)




EQUILIBRIUM BR,BZ,V

RADTIAL DISTANCE

G <$2 . 3)




B

Radial Field Contour

75%75 matr ix, k= 1110600

.—2. 389500
.1 796285
.~1 . 283061
Q. 7609836
. 025661

' @.25561
. ©.760836

1. 283061

1. 796285
. 2300580

X OOXIB

Fig (2-4)




Raodial Field Comporent
75x75 matrix k= 11 Y0600

Fig(2.5)



Azimuthal Field Contour

75%75 matrix, k= (1.0 00

A:—2. 284066
B:—1.784274




Azimuthal Field Compornent
75%75 matrix k= (I 70600

F G .(g{-?)



Radial Field Plot

60=<60 matr ix ; k=14i-%0c00

A

”LJ : ‘ “-'vr .

: % M AN
— 00000

. AL 1.209380
_—1.00000¢




Radial Field Component
7575 matrix ;k= Ll 70600

1.006000




Azimutha! Field Component
BB>B88 matrix k= [|. 70 4&co

-0 0000 T T
1 . OGOTO """ — T~
___,A

e
M ._\‘______/,A\

w vw//—\
‘_‘_,_,-/A\
w
v A
—~1.00000¢

. (:« 10)



(vew)oy

RPVBGB* T

—S20raad 2

0ogok, 1T =T X 1430W G/XG/

JusuOdwo pel 4 |bYyjnwizy



Q1808 9
80008 @
2% %%
%55 % W)
1%, % S8
13%.% % S 0% o
€0008 " -
80008 B~
80000 " &
81608 -

(tv-e) oy

SIXV X

e

’a

e

PER 4
tarediees®

<M OO0 WWwWOoOT H D

..

Y teregyet®

TLoRicCT =X 7 X1J30w G/xGq/

“nojuey pe) 4 |Pipoy




Radial Component Plot

Bk= 1% 140247

—SFOBOB LT o
1.094u0dd

D

w J—

‘ et

’___—___’._——"'——N__ W

s i -
et e e e
w_”.—. T, p——
—— 4
R
il ST  — T3
—1.000000

Fie @15

1.000000



Az imuthal Comporent Plot

Bk= 1517037

—1 00

QY

M
VW
—N‘M—w

AVia al o

NLOT

-G 'Q-~|4)

1.@00000



&

§*

Y AXTR

Comporent Contour{Corresponding to fig.2.14>

75%75 matrix ; k= 13- 17637

.~

.

e
.

DR o
cemeo, o

5

« & 2
AR
vt s .
s°¢ 2 4
- r .y
a4 s
. s o ve
s s
« e ae
v <+ 9
P
- LN
C ‘o
LN
.« »
. >
s e o«
3
.
. .
0 »
.
'-‘...0
,..-'-.
.,
teas
~

“ann
ta, N .,

.

°® >
$&bbd
§

= -
s .
“
v
- * - N
G FURE %% %5}
‘. . an . :
. ¢ o8 e -
v - » . ..
g 4 e v aa
b » L ) L
» . ¢ o
. - . a2 pd
" L, g -
e

0. 00004
0. 2AY7
0 . 00009
B.00812

e agir et L
P S
TP 4va g aavan”

aree,
vaee” v .
L s

CHI®TmOo




Table 2.1

First Fifteen Zeros of Dispersion Relation

46.31960

m=1 m=2
1.841184 3.054237 ’
5.331443 6.706133
8.536316 9.969468
11.70600 13.17037
14.86359 16.37752
18.01553 19.51291
21.16437 22.67158
24.31133 25.82604
27.45705 128.97767
30.60192 32.12733
33.74618 35.27554
36.88999 38.42266
40.03344 41.56894
43.17663 44 .71455

47.85964



Table 2.2

Principal Mode for Two Truncated Matrices

(60x60) (75x75) (60x60) (75x75)
3288.49 2353.46 4763.50 3025.87
866.19 328.57 1131.00 799.50

---._-—._.-_._—._..-.——_—._—_—.._—.._—-—_-——_——.——_-...-:——s.—_.._-.—_._....—__-..

Table 2.3

Pattern Velocity and Growth Rate for (75x75) Matrix

———————-—_—_—_—_-—_—_..-.——-_..—_—_—-.a_—_—.—._..-_..—--_..—_—_..___

—--———_—_—_—.—.-_—_——.—-—————_—-——_—_——_—_-.-_.-—._—._..._._.—__,

-0.23531469 E+04 0.302587 E+04

-0.16428610 E+03 © 0.799500 E+03



CHAPTER III

NUMERICAL TECHNIQUES

3.I. Introduction

A large number of numerical schemes are involved in the
analysis of the eigenvalue problems for the global modes in

a magnetized, gravitating disk.We discuss,in this chapter,
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the numerical methods we have ~employed for various
calculations in the course of this work.

The eigen-matrices are, in general 500 X 500 matrices
with majtrix-elements, which themselves are certain
integrals over the disk boundaries.In practice,however,one
should truncate the size of the matrices involved to enable
oneself to solve the problen by numerical methods.
Truncation should be done after ensuring cdnvérgence of the;
eigenvalue and eigenfunctions. Here, we have discussed thé
numerical calculations involved to form the elgenmatrices
in section 3.2. About elgenroutines,we discuss in section
3.3. The ©problen of convergence has been presented in

¢

section 3.4,
3.2. Construction of Eigen~Matrices

Before proceeding to study the equilibrium and the
stability of the disk,one has to solve the transcendental
equation ( 38 ) for presribed values of the'disk boundaries
50 as to evaluate the roots;k g,

we have calculated the roots of the above mentioned
transcendental e€quation, by dividing the problem into two
sectors. First,to locate the polnts where F(k)=0 changes the
sign and finding the zero's 48 accurately as we desired by
another Programme. In Principle, there is an infinite
spectrum for k with a fixed disk boundary.However,it is
sufficient to obtain the first 20 zero's,accurate up to the

sixth place after the decimal,are given in the table (2.1).



3.2.1 The Matrix Elements

The matrix element in equation ( 44% ) are certailn

integrated qu%}ities over' the disk, with the integrands

which are products of some Bessel functions and the
equilibrium quantities like G (), Py () &6%(75)
etc. The function ng(kqp) sare oscillatory

in nature with the increasing number of modes 1in the
interval(0, 1) for large values of kls «Thus then
oscillating nature of integrands increases és matrices,
involving large number of zeros are considered. The
integration of such highly oscillating dintegrand is not
trivial and we Thave employed very accurate routines to
obtain the results.We have used {@-point Gaussian quadrature
for the evolution of these finite integrals, which
essentially form the eigen—matrix g | « To ensure the
convergence of these intégrals,We divide the interval(0,1)
of integration and carry out the integration in the
segments, again by 10-point quadrature method.The integrals
over the 1intervals are then summed up to yield the net
values of the integrals in the iﬁterval(O,l) and compared
with corresponding values earlier. The convergence scheme

employed by us,can be described as follows:
.1

1= )Q(‘Md}(

o
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Which has to be evaluated.It can ﬁeiwfitten as;
' 1 4
1 2 |
- — X ol x x 26l x
'0 : v , yzf

A
1, = |Quodx ;2,0 ) guodx

\o ‘/‘L«
then, - -
T ~ (;U’“LZ_) -3
— | <
o712

If the above condition is satisfied, one says the
integral converges up to 10—3.While integrating,an in built
convergence test was incorporated 1in the quadrature
programme .

Most of the matrix element are of the form

X

&(x_)A | Blgyds | «fx

9
o
A programme QUAD (Numerical Recipes) was modified for

the purpose with convergence of both the integrands

separately tested.

3.2.2. Generation of Eigen Patterns

Patterns associated with the eigenmodes of oscillation
have been constructed by using a grid with 100 X 100.A 100

X 100 grid has been superimposed over the disk. Any
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perturbed quatities, e.g. the radial component of perturbed

magnetic fiéld,may be obtained from
B : .
L Yoo - R‘ $v e
v(/ Tot)= RNe b fv)

L (t-mP )

L*@ e o )

for a given eigen-frequency Q?j (3.2.1),and azimuthal

wave number m.The radial part of the perturbation, lﬁy(’Y)

is calculated from the eigenfunctions j>¥k) and Eﬂ(k)
N)

corresponding to Y’ as

J

o .
- 2 Yk AT £ Ry e
. —_ & ) ) ’y + -:]‘ iy
l’# k?) — 79 J ml ,) g m
k=0 . ’
k :
where eigenfunctions ﬂ?j and E,Lk) are complex
- J
Sigenfrequency, ' , hence, introduces a radial phase in
equation (3.2.1).At a given instant of time,t (say t=0),one
can evaluate the perturbed magnetic field at all the mesh
g
points. From the calculated values of By(fﬂ\f)at 100 X

100 grid, the perturbations over the disk have been plotted

with an arbltrary scale of amplitude.

3.3. The Eigen Routine

The matrices 1in the eigenvalue problems are complex,
infinite dimensional and non-symmetric.

The determination of the eigenvalue and eigenfunctions
have been carried out by wusing the EISPACK interactive
routines (numerical recipes, 1988).The interactive part of

the programme has been developed by Dr. B.R. Sitaram of PRL.



3.4. Convergence of Eigenvalues and Eigenfunctions

Matrices of succesivély increasing dimension have been
used to carry out the - numerical accuracy of the
elgenvalue~eigenfunctions. Eigenvalues generaiiy depend on
. the wvalue of the dimension n, + 5 * n (where n is the term
retained in expansions for berturbed quantities),of the
eigenmatrix and they do not converge to certain values when
n, is increased. As n is increased,the number of complex
conjugate pairs and modes increases. Thus new modes of
oscillations appear, while the values of the already
exlsting modes are refined. The truncation of the
elgenmatrix to a size n; thus,contains modes upto (n-1)
modes only. The eigen modes of perturbations with much
shorter wavelengths would be ommitted by the truncation of
M. From figures (3.1) and (3.2) we note thét with
progressive dincrease in the dimension of the eligenmatrix,
the variatﬁ%s in the unstable eigenfrequenciles in W~plane
diminishes. However,the convergence is rather slow.The eigen
routine tends to show numerical errors for very large
matrices (75 x 75),hence the convergence of the eigenvalues
can not be pursued indefinitely. We have used a maximum
dimension of 60 X 60 on most of oyr calculatilons.

Referring to figures (3.1) and (3.2) which compare the

eigenpatterns obtained by wusing 75 X 75 and 60 X 60

matrices, it is evident that for the elgenvalues,under
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conslderatlon, the elgen-contours dnd uigunmputngrna do not
exhibit any major variations. The convergence of the
principle mode (or the dominant mode) can be éeen in the
table (2.2). Finally, we may remark again that the check on
the convergence oOf various eigenvalues and eigenfunctions
is wvery important,before a particular mode can be assumed a

genuine mode of osclllation in a global problem.
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CHAPTER 1V

EPILOGUE

One of the most striking morphological features of the
magnetic field of the spiral galaxies is their bisymmetric
spiral structure. The BSS structure turns out to be the
outcome of the dynamics of the system, namely, the
interaction between the magnetic field and ionized
component of the disk.,

The dynamo theories, as proposed by Sofue et. al.,
Baryshnikova et. al., are not self-consistent and face
several shortcomings as already described in Chapter I.An
attempt has been made here to understand the full content

of a self-consistent, boundary value problem,for a thin,
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magnecized, gravitating disk in Ag%ne component lonized
componenf) fluid mbdel. In general, one should as well
consider the mneutral. compbnent and its interéction with
ionized component via ambipolar drag. However, we have
confined our sﬁudy ﬁo one fluid model for simpli: city.The
pyablem 1s posed in an eigen-value form and the discrete
spectrum of allowed modes has been obtained for different
modes. In principle, infinite number of unstable modes are
permissible in the gravitating magnetized disk.Unstable
mode exhibits bisymmetric spiral features.These bisymmetric
spirals occur as a mnatural consequence of the collective
effects 1n the magnetized gravitating disk and thus explain
the “problem of the origin” of BSS in the disk galaxies.The
"persistence problem” which requires the amplification of
the perturbation 1s also explained since the BSS are
allowed for complex eigenmodes.

The growth rate for m=1 mode is larger than growth rate
for m=2, and hence we see in galaxies mostly BSS structdre.
One should carry out the similar analysis for axisymmetric
mode also, which perhaps should settle the question of m=l~
dominance 1in. he galaxies.

Eigenvalues with large-growth rate occur in the problém.

In fact, in many small wavelength modes,ui > LW r and thus

these represent violent instabilities 1n the system.Such

explosive mode cannot grow'  indefinitely 1n the disk,since
the energy reservoir is finite. Their evolution and
saturation should be studied through a nonlinear

calculation.
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We would 1ike to remark here that the " eigenvalue
problem, 1n the form discussed above, removes several
difficulties encountered by the-dyngﬁo theories.lHowever,one
should also take into consideration the neutral component
of the gas and a more complefe analysis should include two
component fluid equations - one for lonized one and the
other for the mneutral.Also,the analysis should be carried
out for a thick disk.We have considered a thin magnetized
gravitating disk. Gravity should also be considered in the
subsequent analysis self-consistently. Lastly, a full
analysis of the problem,requires a non-linear analysis of
the evolution of the system.So far,no attempt has been made
in this direction. Such a study is important to understand
the secular transport of the energy in the system.
The problem of the dynamics and stability of a
magnetized gravitating disk galaxies is extremely exciting
and needs much work in future in order to understand many

yet unsolved problems e.g. the cause of the dominance of

bisymmetric spiral in the galaxies, the origin of the

magnetic field,etc.
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